[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024262543A1 - Magnetic component and magnetic powder - Google Patents

Magnetic component and magnetic powder Download PDF

Info

Publication number
WO2024262543A1
WO2024262543A1 PCT/JP2024/022254 JP2024022254W WO2024262543A1 WO 2024262543 A1 WO2024262543 A1 WO 2024262543A1 JP 2024022254 W JP2024022254 W JP 2024022254W WO 2024262543 A1 WO2024262543 A1 WO 2024262543A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic powder
powder
specific particles
particles
Prior art date
Application number
PCT/JP2024/022254
Other languages
French (fr)
Japanese (ja)
Inventor
美帆 千葉
顕理 浦田
悠 金森
Original Assignee
株式会社トーキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トーキン filed Critical 株式会社トーキン
Publication of WO2024262543A1 publication Critical patent/WO2024262543A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin

Definitions

  • the present invention relates to a magnetic component that includes magnetic powder, and to the magnetic powder used in the magnetic component.
  • Patent Document 1 discloses a soft magnetic powder including particles having a composition expressed by Fe x Cu a Nb b (Si 1-y B y ) 100-x-a-b , the particles including crystal grains and Cu segregated portions, the crystal grains having a grain size of 1.0 nm or more and 30.0 nm or less, and Cu segregated in the Cu segregated portions, and a dust core including this soft magnetic powder.
  • Patent Document 2 discloses a nanocrystalline soft magnetic alloy having an alloy composition represented by Fe 100-a-b-c-d M a Si b B c Cu d , at least a portion of which contains crystal grains, the crystal grains having an average grain size of 50 nm or less, and a Cu segregation portion present in the nanocrystalline soft magnetic alloy at a position deeper than 2 nm from the surface of the nanocrystalline soft magnetic alloy, in which Cu elements are segregated, and a magnetic core using this nanocrystalline soft magnetic alloy.
  • Patent Document 3 discloses an amorphous alloy ribbon having an alloy composition represented by Fe 100-a-b-c-d M a Si b B c Cu d , in which a Cu segregation portion is present on the surface side of the amorphous alloy ribbon, and in which Cu is segregated at a higher concentration in the Cu segregation portion than in the outermost surface portion of the amorphous alloy ribbon, and a magnetic core using a nanocrystalline soft magnetic alloy obtained by heat-treating the amorphous alloy ribbon to nanocrystallize it.
  • Magnetic components such as magnetic cores require high DC bias characteristics and low iron loss in order to be compact and handle large currents.
  • the present invention aims to provide magnetic components that meet the above requirements and magnetic powder that is suitable as a material for such magnetic components.
  • a magnetic component comprising a magnetic powder
  • the magnetic powder includes a metal portion, an oxide film, and at least one specific particle
  • the specific particles are mainly composed of Cu, the specific particles are present at an interface between the metal portion and the oxide film,
  • the specific particles provide a magnetic component having a particle size of 3 to 70 nm.
  • the first magnetic powder is A magnetic powder comprising a metal portion, an oxide film, and at least one specific particle,
  • the specific particles are mainly composed of Cu, the specific particles are present at an interface between the metal portion and the oxide film,
  • the specific particles provide a magnetic powder having a particle size of 3 to 70 nm.
  • the magnetic powder provided in the magnetic component of the present invention has the following characteristics: the magnetic powder comprises a metal portion, an oxide film, and at least one specific particle; the specific particle is mainly composed of Cu; the specific particle is present at the interface between the metal portion and the oxide film; the specific particle has a particle size of 3 to 70 nm.
  • the magnetic component of the present invention has high DC superposition characteristics and also suppresses iron loss.
  • FIG. 1 is a schematic cross-sectional view showing a portion of a magnetic component according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view showing a part of a magnetic powder used as a material for the magnetic component of FIG. 1
  • 1 is a scanning transmission electron microscope (STEM) image showing a portion of the magnetic powder of Example 7. In the figure, the locations where area analysis was performed are indicated as P1, P2, P3, and P4, respectively.
  • the magnetic part 500 is a composite magnetic body in which magnetic powder 100 is dispersed within a hardened binder 600.
  • the magnetic part 500 includes magnetic powder 100.
  • the magnetic powder 100 according to the embodiment of the present invention is an Fe-based soft magnetic alloy powder in which Fe is the main element and the main phase is an amorphous phase.
  • the composition of the magnetic powder 100 will be described later.
  • the magnetic powder 100 according to the embodiment can be used as a direct material for producing various magnetic parts and dust cores.
  • the magnetic powder 100 of this embodiment is composed of a plurality of particles 110 that are amorphous and have a substantially spherical shape.
  • the particles 110 may have a shape other than substantially spherical.
  • the surfaces of the particles 110 of this embodiment are not coated with glass or the like.
  • the present invention is not limited to this, and the surfaces of the particles 110 may be coated with glass or the like.
  • improved insulation resistance and improved flowability are achieved compared to the magnetic powder 100 in which the surfaces of the particles 110 are not coated with glass or the like.
  • the particle 110 of this embodiment comprises a metal part 200, an oxide film 300, and at least one specific particle 400. That is, the magnetic powder 100 of this embodiment comprises a metal part 200, an oxide film 300, and at least one specific particle 400.
  • the metal part 200 of this embodiment is mainly composed of Fe.
  • the metal part 200 has a crystalline phase. More specifically, the metal part 200 has nanocrystals. These nanocrystals are generated by heat treating the magnetic powder 100 as described below.
  • the metal part 200 is located deeper from the surface of the particle 110 than the oxide film 300.
  • the oxide film 300 of this embodiment is a film whose main component is oxide. That is, the oxide film 300 is mainly composed of O. The proportion of O contained in the oxide film 300 is 35 at % or more. The oxide film 300 is located shallower from the surface of the particle 110 than the metal portion 200. The oxide film 300 forms the surface of the magnetic powder 100.
  • the specific particle 400 of this embodiment is mainly composed of Cu. At least one of the specific particles 400 is located at the interface between the metal part 200 and the oxide film 300.
  • the magnetic powder 100 contains at least one specific particle 400 located at the interface between the metal part 200 and the oxide film 300. In the radial direction of the particle 110, one surface of the specific particle 400 is in contact with the metal part 200, and the other surface of the specific particle 400 is in contact with the oxide film 300.
  • the magnetic powder 100 may be configured such that at least one of the specific particles 400 is located at the interface between the metal part 200 and the oxide film 300, and at least another of the specific particles 400 is located inside the oxide film 300. This is preferable because the magnetic powder 100 is less likely to become magnetically saturated.
  • the specific particles 400 of this embodiment have a particle size of 3 to 70 nm. Furthermore, if the particle size of the specific particles 400 is too small, the magnetic coupling between the particles 110 cannot be suppressed. For this reason, it is preferable that the specific particles 400 have a particle size of 5 nm or more. Cu, which is the main component of the specific particles 400, is conductive. Therefore, if the particle size of the specific particles 400 is too large, eddy currents tend to flow in the specific particles 400 due to the AC magnetic field, increasing eddy current loss. For this reason, it is preferable that the specific particles 400 have a particle size of 50 nm or less.
  • the concentration of Cu contained in the specific particles 400 of this embodiment is 40 at% or more.
  • the concentration of Cu contained in the specific particles 400 is preferably 60 at% or more in order to suppress magnetic coupling between the particles 110.
  • the aspect ratio of the specific particle 400 of this embodiment is greater than 1. Furthermore, when the specific particle 400 has an elliptical cross section, the surface of the particle 110 can be efficiently rendered nonmagnetic, so it is preferable that the aspect ratio of the specific particle 400 is 1.4 or greater.
  • the specific particles 400 exist independently without being directly bonded to each other.
  • the present invention is not limited to this, and multiple specific particles 400 may be directly bonded to each other to form larger particles. This is preferable because the magnetic powder 100 is less likely to become magnetically saturated.
  • the occupancy rate Oc of specific particles 400 in this embodiment is 4 to 60%.
  • Formula (1): Oc ( ⁇ Li)/Lb*100 If the occupancy rate of the specific particles 400 is too small, the magnetic coupling between the particles 110 cannot be suppressed. For this reason, it is preferable that the occupancy rate of the specific particles 400 is 10% or more.
  • the occupancy rate of the specific particles 400 is 50% or less.
  • composition range of the magnetic powder 100 according to this embodiment is explained in more detail below.
  • magnetic powder 100 of the present embodiment is represented by the composition formula Fe a Sib B c Pd Cu e M f excluding inevitable impurities.
  • M is Cr and/or Nb, and 75.4 at% ⁇ a ⁇ 86.4 at%, 0 at% ⁇ b ⁇ 9 at%, 4 at% ⁇ c ⁇ 13 at%, 3 at% ⁇ d ⁇ 12 at%, 0.3 at% ⁇ e ⁇ 1.0 at%, and 0 at% ⁇ f ⁇ 5 at%.
  • the Fe element is the main element and is an essential element responsible for magnetism.
  • the higher the Fe ratio the higher the magnetic flux density Bs and the lower the raw material price. Furthermore, if the Fe ratio falls below 75.4 at%, Tx1 (described later) becomes higher and ⁇ T (described later) becomes smaller. This makes it difficult to heat treat the magnetic powder 100, and the magnetic properties after heat treatment deteriorate. Furthermore, if the Fe ratio exceeds 86.4 at%, the amorphousness decreases significantly and the soft magnetic properties deteriorate.
  • the crystallinity of the magnetic powder 100 is suppressed to improve the amorphousness, and the soft magnetic properties of the magnetic powder 100 after heat treatment are improved, so the Fe ratio is more preferably in the range of 77.9 to 84.9 at%.
  • the Si element is the element responsible for forming the amorphous phase.
  • ⁇ T described later
  • the proportion of Si exceeds 9 at%, the amorphous forming ability decreases, and it becomes impossible to obtain a magnetic powder 100 having an amorphous phase as the main phase, so the proportion of Si is preferably 9 at% or less.
  • the B element is an essential element responsible for forming the amorphous phase. If the proportion of B falls below 4 at%, it becomes difficult to form an amorphous phase by rapid cooling when producing the magnetic powder 100, and good magnetic properties cannot be obtained. Furthermore, if the proportion of B exceeds 13 at%, the melting point becomes high, which is unfavorable for manufacturing, and the ability to form an amorphous phase also decreases. For this reason, the proportion of B is preferably in the range of 4 to 13 at%.
  • the P element is an essential element responsible for forming the amorphous phase.
  • P has a high affinity with Cu, and can efficiently form specific particles 400 near the surface of the particle 110.
  • the proportion of P exceeds 12 at%, the balance with other metalloid elements becomes poor, and the ability to form an amorphous phase decreases.
  • the proportion of P exceeds 12 at%, the saturation magnetic flux density Bs decreases significantly.
  • the proportion of P falls below 3 at%, the crystal grains tend to become large, and good magnetic properties cannot be obtained. For this reason, the proportion of P is preferably in the range of 3 to 12 at%.
  • the Cu element is an essential element that contributes to the formation of the nanocrystalline phase. If the Cu ratio is below 0.3 at%, there is little cluster precipitation during heat treatment, making uniform nanocrystallization difficult. If the Cu ratio exceeds 1.0 at%, the amorphous forming ability decreases and the occupancy rate of the specific particles 400 becomes too large. For this reason, it is preferable that the Cu ratio is in the range of 0.3 to 1.0 at%. In particular, in order to improve the amorphous nature of the magnetic powder 100 and enable uniform nanocrystallization, and to make the size and occupancy rate of the specific particles 400 appropriate and to improve the soft magnetic properties after heat treatment, it is more preferable that the Cu ratio is 0.7 at% or less.
  • the proportion of M is 0 at% or more and 5 at% or less.
  • M is Cr and/or Nb.
  • the inclusion of Cr in the magnetic powder 100 of this embodiment makes it easier for an oxide film 300 to form on the surface of the particles 110 of the magnetic powder 100, improving corrosion resistance. Furthermore, the inclusion of Nb in the magnetic powder 100 of this embodiment inhibits the growth of bccFe ( ⁇ Fe) crystal grains during nanocrystallization, making it easier to form a fine nanocrystalline structure. However, the inclusion of Cr and Nb relatively reduces the proportion of Fe in the magnetic powder 100, so that the saturation magnetic flux density Bs of the magnetic powder 100 decreases, and the ability of the magnetic powder 100 to form an amorphous phase also decreases. Therefore, the proportion of M in the magnetic powder 100 needs to be 5 at% or less.
  • the magnetic powder 100 according to this embodiment is preferably one in which 3 at% or less of Fe is replaced with one or more elements selected from Co, Ni, Zn, Zr, Hf, Mo, Ta, W, Ag, Au, Pd, Na, K, Ca, Mg, Sn, Ti, V, Mn, Al, S, C, O, N, Bi and rare earth elements.
  • This makes it possible to easily precipitate uniform nanocrystals in the magnetic powder 100 when the magnetic powder 100 is heat-treated, and also makes it possible to keep the adverse effects of the above elements in the magnetic powder 100 on the magnetic properties, etc., within an acceptable range.
  • the magnetic powder 100, magnetic component 500, and manufacturing method thereof in this embodiment will be described in more detail below.
  • the magnetic powder 100 of this embodiment can be produced by an atomization method such as a water atomization method or a gas atomization method.
  • the magnetic powder 100 produced in this manner has a non-crystalline phase (amorphous phase) as the main phase and is composed of a plurality of particles 110 that are approximately spherical.
  • the present invention is not limited to this, and the magnetic powder 100 may be composed of flakes formed by crushing an amorphous ribbon. In other words, the particles 110 that constitute the magnetic powder 100 of the present invention do not have to be approximately spherical. Even if the magnetic powder 100 is formed by crushing an amorphous ribbon in this manner, it can have a high saturation magnetic flux density Bs and a high relative magnetic permeability ⁇ by having the configuration of the present invention.
  • the raw materials are prepared.
  • the raw materials are weighed to obtain the specified composition and melted to produce a molten alloy.
  • the power consumption required for melting can be reduced.
  • the molten alloy is discharged from a nozzle and is broken into alloy droplets using high-pressure gas or water, thereby producing fine magnetic powder 100.
  • the gas used for fragmentation may be an inert gas such as argon or nitrogen.
  • the alloy droplets immediately after fragmentation may be rapidly cooled by contacting them with a cooling liquid or solid, or the alloy droplets may be fragmented again to further refine them.
  • a liquid for cooling
  • water or oil may be used.
  • a solid for cooling
  • a rotating copper roll or a rotating aluminum plate may be used.
  • the liquid or solid used for cooling is not limited to these, and various materials may be used.
  • the quenching rate by the atomization method is 10 3 K/s or more. If the quenching rate is less than 10 3 K/s, the amount of precipitated initial crystals (mainly bccFe) increases, and accordingly, the amount of Cu precipitated in the metal part 200 increases. If the quenching rate is less than 10 3 K/s, the composition of the amorphous phase in the magnetic powder 100 deviates from the desired composition, and the glass transition temperature Tg does not appear. In addition, if the quenching rate is less than 10 3 K/s, the first crystallization start temperature Tx1 shifts to the high temperature side, or the temperature peak due to the first crystallization decreases. It is preferable that the quenching rate by the atomization method is 10 4 K/s or more.
  • the magnetic powder 100 of the present invention preferably contains nanocrystals.
  • the magnetic powder 100 containing nanocrystals is obtained by subjecting the magnetic powder 100 to a heat treatment under predetermined heat treatment conditions as described below, thereby precipitating nanocrystals of bccFe ( ⁇ Fe).
  • the magnetic powder 100 When the magnetic powder 100 is heat-treated in a low-oxygen atmosphere mainly composed of an inert gas such as argon, it is crystallized two or more times.
  • the temperature at which the first crystallization starts is called the first crystallization start temperature (Tx1)
  • the temperature at which the second crystallization starts is called the second crystallization start temperature (Tx2).
  • the first crystallization start temperature (Tx1) is the exothermic peak of the precipitation of nanocrystals of ⁇ Fe
  • the second crystallization start temperature (Tx2) is the exothermic peak of the precipitation of compounds such as FeB and FeP.
  • These crystallization start temperatures can be evaluated, for example, by performing a thermal analysis at a heating rate of about 10°C/min using a differential scanning calorimetry (DSC) device.
  • DSC differential scanning calorimetry
  • the magnetic powder 100 produced by the above-mentioned powder production process is heat-treated as described above to precipitate ⁇ Fe nanocrystals in the magnetic powder 100.
  • this heat treatment must be performed at or below the second crystallization onset temperature (Tx2) so as not to precipitate a compound phase.
  • this heat treatment is preferably performed at a temperature of 300°C or higher in a low-oxygen atmosphere mainly composed of an inert gas such as nitrogen or argon in order to form an oxide film 300 on the surface of the particles 110 of the magnetic powder 100.
  • the magnetic powder 100 produced by the above-mentioned powder production process can be used to manufacture the magnetic part 500.
  • the magnetic powder 100 can be molded into a predetermined shape and then heat-treated under predetermined heat treatment conditions to manufacture the magnetic part 500.
  • the magnetic part 500 can also be used to manufacture magnetic parts such as transformers, inductors, motors, and generators. The method for manufacturing the magnetic part 500 of this embodiment using the magnetic powder 100 is described below.
  • the manufacturing method of the magnetic component 500 of this embodiment includes a step of producing a mixture of the magnetic powder 100 of this embodiment and the binder 600, a step of pressure-molding this mixture to produce a molded body, and a step of heat-treating this molded body.
  • the magnetic powder 100 of this embodiment is mixed with binder 600 having good insulating properties such as resin to obtain a mixture (granulated powder).
  • binder 600 for example, silicone, epoxy, phenol, melamine, polyurethane, polyimide, or polyamideimide may be used.
  • materials such as phosphates, borates, chromates, oxides (silica, alumina, magnesia, etc.), inorganic polymers (polysilane, polygermane, polystannane, polysiloxane, polysilsesquioxane, polysilazane, polyborazylene, polyphosphazene, etc.) may be used as binder 600 instead of or together with resin.
  • multiple binders 600 may be used in combination, and a coating of two or more layers may be formed using different binders 600.
  • the manufacturing of magnetic part 500 includes a process of heat-treating the molded body as described above, it is preferable to use a binder 600 with high heat resistance.
  • the amount of binder 600 is preferably about 0.1 to 10 wt%, and considering insulation and filling rate, about 0.3 to 6 wt% is preferable.
  • the amount of binder 600 can be appropriately determined taking into consideration the powder particle size, applicable frequency, application, etc.
  • the granulated powder is pressure molded using a die to obtain a molded body.
  • powders such as Fe, FeSi, FeSiCr, FeSiAl, FeNi, and carbonyl iron powder that are softer than the magnetic powder 100 according to this embodiment may be mixed.
  • any magnetic powder 100 having a particle size different from that of the magnetic powder 100 according to this embodiment may be mixed.
  • the amount of the magnetic powder 100 mixed with the magnetic powder according to this embodiment is preferably 50 wt % or less.
  • the molded body is subjected to a heat treatment under predetermined heat treatment conditions.
  • This heat treatment causes ⁇ Fe nanocrystals to precipitate in the magnetic powder 100.
  • This heat treatment is similar to the heat treatment for the magnetic powder 100 described above, and must be performed at or below the second crystallization onset temperature (Tx2).
  • this heat treatment is preferably performed at a temperature of 300°C or higher in a low-oxygen atmosphere mainly composed of an inert gas such as nitrogen or argon.
  • the magnetic part 500 is manufactured using magnetic powder 100 that has not been heat-treated as a raw material, but the present invention is not limited to this, and the magnetic part 500 may be manufactured using magnetic powder 100 that has been heat-treated in advance to precipitate ⁇ Fe nanocrystals as a raw material.
  • the magnetic part 500 can be manufactured by carrying out granulation and pressure molding in the same manner as in the manufacturing process of the magnetic part 500 described above.
  • the magnetic powder 100 of the present embodiment is used in the magnetic component 500 of the present embodiment, which is manufactured as described above, regardless of the manufacturing process. Similarly, the magnetic powder 100 of the present embodiment is used in the magnetic component 500 of the present embodiment.
  • Examples 1 to 39 and Comparative Examples 1 to 10 As raw materials for the magnetic powders 100 of Examples 1 to 15, 24 to 28 and Comparative Examples 1 to 5, and 10 listed in Table 2 below, industrially pure iron, ferrosilicon, ferrophosphorus, ferroboron, ferrochrome, and electrolytic copper were prepared. The raw materials were weighed to obtain the alloy compositions of Examples 1 to 39 and Comparative Examples 1 to 10, and melted by high-frequency melting in an argon atmosphere to prepare molten alloys. Next, the prepared molten alloys were quenched by water atomization to prepare magnetic powders 100 with an average particle size of 3 to 15 ⁇ m. Similarly to the above, magnetic powders 100 with an average particle size of 15 to 65 ⁇ m were prepared for the magnetic powders 100 of Examples 16 to 23, 29 to 39 and Comparative Examples 6 to 9 listed in Table 2 below.
  • the magnetic powder 100 produced in Example 7 was heat-treated in an electric furnace in a low-oxygen atmosphere mainly composed of inert gas at a predetermined temperature between 375°C and 475°C for a predetermined time.
  • the oxygen concentration in the treatment atmosphere was set to be in the range of 5 to 10,000 ppm, and the oxygen concentration at the start of the temperature rise was set to be higher than the oxygen concentration after a predetermined time had passed.
  • This heat treatment also nano-crystallizes the magnetic powder 100.
  • a thin film sample was prepared from the magnetic powder 100 of Example 7 after heat treatment by the FIB (focused ion beam) method.
  • the prepared thin film sample was observed with a scanning transmission electron microscope (STEM).
  • STEM scanning transmission electron microscope
  • elemental mapping analysis and area analysis were performed on the prepared thin film sample by energy dispersive X-ray spectroscopy (STEM-EDS). The results of the STEM observation and elemental mapping analysis are shown in Figure 3.
  • the locations where area analysis was performed (P1, P2, P3, P4) are also shown in Figure 3, and the elemental analysis results for each location are shown in Table 1.
  • the magnetic powder 100 of Example 7 has a plurality of specific particles 400 mainly composed of Cu. Also, from FIG. 3 and Table 1, it was confirmed that the P1 portion of the magnetic powder 100 of Example 7 contains a high concentration of Cu at 69.2 at%. Also, from FIG. 3, it was confirmed that the particle size of the particle at P1 is about 16 nm. Furthermore, from FIG. 3 and Table 1, it was confirmed that the P2 and P3 portions of the magnetic powder 100 of Example 7 contain high concentrations of O at 67.9 at% and 60.1 at%, respectively, while there is almost no Cu. In addition, from FIG.
  • the P4 portion of the magnetic powder 100 of Example 7 contains a high concentration of Fe at 80.6 at%, while there is almost no Cu. From these results, it was confirmed that the magnetic powder 100 of Example 7 comprises a metal part 200 whose main component is Fe, an oxide film 300 whose main component is O, and a plurality of specific particles 400 whose main component is Cu, the specific particles 400 are present at the interface between the metal part 200 and the oxide film 300, and the particle size of the specific particles 400 is in the range of 3 to 70 nm.
  • the magnetic powder 100 before heat treatment according to Examples 1 to 39 produced by the above method was used to produce the magnetic parts (dust cores) 500 according to Examples 1 to 39 by the following method.
  • the magnetic powder 100 of Examples 1 to 39 and the binder (silicone resin) 600 were mixed so that the ratio of the binder 600 to the magnetic powder 100 was 3 wt%, and the mixture was sized using a stainless steel sieve with a mesh size of 500 ⁇ m to obtain granules.
  • the granules were then filled into a mold, and the granules filled in the mold were molded using a hydraulic press at a molding pressure of 490 MPa. This produced a cylindrical molded body with an outer diameter of 13 mm and an inner diameter of 8 mm.
  • the molded body was then heated to a predetermined temperature between 375°C and 475°C at a heating rate of 30°C/min in a low-oxygen atmosphere mainly composed of inert gas using an infrared heating device, and then held at the predetermined temperature for 20 minutes, and then air-cooled to room temperature to produce the magnetic parts (powder magnetic cores) 500 of Examples 1 to 39.
  • a low-oxygen atmosphere mainly composed of inert gas using an infrared heating device
  • the oxygen concentration in the treatment atmosphere was set to be in the range of 5 to 10,000 ppm, and the oxygen concentration at the start of the temperature rise was set to be higher than the oxygen concentration immediately before air cooling.
  • This heat treatment also hardens the silicone resin, which is the binder 600, and nano-crystallizes the magnetic powder 100.
  • the particle size, aspect ratio, and Cu concentration of the specific particles in the powder constituting the powder cores of Comparative Examples 1 to 10 were derived using a method similar to the above method, and the occupancy Oc was calculated. These results are shown in Table 2.
  • the particle size of the specific particles 400 containing Cu as the main component is in the range of 3 to 70 nm
  • the concentration of Cu contained in the specific particles 400 is 40 at% or more
  • the aspect ratio of the specific particles 400 is greater than 1
  • the occupancy rate of the specific particles 400 is in the range of 4 to 60%.
  • the magnetic powders 100 of Examples 29 and 30 have 3 at% or less of Fe replaced with C, but in the powder cores 500 of Examples 29 and 30, the particle size of the specific particles 400 containing Cu as the main component is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.
  • the particle size of the specific particles 400 containing Cu as the main component is in the range of 3 to 70 nm
  • the concentration of Cu contained in the specific particles 400 is 40 at% or more
  • the aspect ratio of the specific particles 400 is greater than 1
  • the occupancy rate of the specific particles 400 is in the range of 4 to 60%.
  • the magnetic powder 100 of Example 32 has 3 at% or less of Fe replaced with Zn, but in the powder core 500 of Example 32, the particle size of the specific particles 400 mainly composed of Cu is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.
  • the magnetic powders 100 of Examples 33 and 34 have 3 at% or less of Fe replaced with Sn, but in the powder cores 500 of Examples 33 and 34, the particle size of the specific particles 400 containing Cu as the main component is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.
  • the magnetic powder 100 of Example 35 has 3 at% or less of Fe replaced with Ni, but in the powder core 500 of Example 35, the particle size of the specific particles 400 containing Cu as the main component is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.
  • the magnetic powder 100 of Example 36 has 3 at% or less of Fe replaced with Mn, but in the powder core 500 of Example 36, the particle size of the specific particles 400 containing Cu as the main component is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.
  • the magnetic powder 100 of Example 37 has 3 at% or less of Fe replaced with Al, but in the powder core 500 of Example 37, the particle size of the specific particles 400 containing Cu as the main component is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.
  • the magnetic powder 100 of Example 38 has 3 at% or less of Fe replaced with Ti, but in the powder core 500 of Example 38, the particle size of the specific particles 400 containing Cu as the main component is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.
  • the magnetic powder 100 of Example 39 has 3 at% or less of Fe replaced with O, but in the powder core 500 of Example 39, the particle size of the specific particles 400 mainly composed of Cu is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.
  • the powder of Comparative Example 1 has an Fe content of less than 75.4 at% and the powder of Comparative Example 2 has an Fe content of more than 86.4 at%.
  • the particle size of the specific particles is less than 3 nm, the Cu concentration in the specific particles is less than 40 at%, and the occupancy rate of the specific particles is not within the range of 4 to 60%.
  • Table 2 shows that the powder of Comparative Example 3 has a Si content of more than 9 at%, but in the powder magnetic core of Comparative Example 3, the particle size of the specific particles is less than 3 nm, the Cu concentration in the specific particles is less than 40 at%, and the occupancy rate of the specific particles is not within the range of 4 to 60%.
  • the powder of Comparative Example 4 has a B content of less than 4 at% and the powder of Comparative Example 5 has a B content of more than 13 at%.
  • the particle size of the specific particles is less than 3 nm, the Cu concentration in the specific particles is less than 40 at%, and the occupancy rate of the specific particles is not within the range of 4 to 60%.
  • the powder of Comparative Example 6 has a P content of less than 3 at% and the powder of Comparative Example 7 has a P content of more than 12 at%; however, in the powder core of Comparative Example 6, the particle size of the specific particles is less than 3 nm and the Cu concentration in the specific particles is less than 40 at%, so the occupancy rate of the specific particles is not within the range of 4 to 60%, and in the powder core of Comparative Example 7, the particle size of the specific particles is more than 70 nm and so the occupancy rate of the specific particles is not within the range of 4 to 60%.
  • the powder of Comparative Example 8 has a Cu content of less than 0.3 at% and the powder of Comparative Example 9 has a Cu content of more than 1.0 at%; however, in the powder core of Comparative Example 8, the particle size of the specific particles is less than 3 nm, the Cu concentration in the specific particles is less than 40 at%, and the occupancy rate of the specific particles is not within the range of 4 to 60%, and in the powder core of Comparative Example 9, the particle size of the specific particles is more than 70 nm, and the occupancy rate of the specific particles is not within the range of 4 to 60%.
  • the retention rate R is a value calculated by the following formula (2), where the measured value of L (or ⁇ ) at 0 kA/m is L0 (or ⁇ 0) and the measured value of L (or ⁇ ) at 8 kA/m is Lx (or ⁇ x).
  • the powder magnetic cores 500 of Examples 1 to 15 and 24 to 28 have improved DC bias characteristics and reduced iron loss compared to the powder magnetic cores of Comparative Examples 1 to 5 and 10.
  • Table 4 shows that in the powder core of Comparative Example 6, in which P is less than 3 at%, and the powder core of Comparative Example 8, in which Cu is less than 0.3 at%, the retention rate R is less than 70%, and the iron loss Pcv exceeds 300 kW/m 3. Also, Table 4 shows that in the powder core of Comparative Example 7, in which P exceeds 12 at%, and the powder core of Comparative Example 9, in which Cu exceeds 1.0 at%, the iron loss Pcv greatly exceeds 300 kW/m 3 .
  • the powder magnetic cores 500 of Examples 16 to 23 and 29 to 39 have improved DC bias characteristics and reduced iron loss compared to the powder magnetic cores of Comparative Examples 6 to 9.
  • the present invention is based on Japanese Patent Application No. 2023-103003, filed with the Japan Patent Office on June 23, 2023, the contents of which are incorporated herein by reference.
  • Magnetic powder 110 Particle 200 Metal part 300 Oxide film 400 Specific particle 500 Magnetic part (powder core) 600 Binder Lb Length Li Length

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

This magnetic component includes a magnetic powder, wherein the magnetic powder includes a metal portion, an oxide film, and at least one specific kind of particles. The specific particles contain Cu as a main component. The specific particles are present at the interface between the metal portion and the oxide film. The specific particles have a particle size of 3 to 70 nm.

Description

磁性部品及び磁性粉末Magnetic parts and powders

 本発明は、磁性粉末を備える磁性部品、及び、この磁性部品に使用される磁性粉末に関する。 The present invention relates to a magnetic component that includes magnetic powder, and to the magnetic powder used in the magnetic component.

 特許文献1には、軟磁性粉末であって、前記軟磁性粉末は、FeCuNb(Si1-y100-x-a-bで表される組成を有する粒子を含み、前記粒子は、結晶粒と、Cu偏析部とを含んでおり、前記結晶粒の粒径は、1.0nm以上30.0nm以下であり、前記Cu偏析部においてCuが偏析している、軟磁性粉末、及びこの軟磁性粉末を含む圧粉磁心が開示されている。また、特許文献2には、ナノ結晶軟磁性合金であって、前記ナノ結晶軟磁性合金は、合金組成がFe100-a-b-c-dSiCuで表され、前記ナノ結晶軟磁性合金には、結晶粒が少なくとも一部に存在しており、前記結晶粒の平均粒径は、50nm以下であり、前記ナノ結晶軟磁性合金には、前記ナノ結晶軟磁性合金の表面から2nmよりも深い位置にCu偏析部が存在しており、前記Cu偏析部においてCu元素が偏析している、ナノ結晶軟磁性合金、及びこのナノ結晶軟磁性合金を用いた磁心が開示されている。更に、特許文献3には、非晶質合金薄帯であって、前記非晶質合金薄帯は、合金組成がFe100-a-b-c-dSiCuで表され、前記非晶質合金薄帯には、前記非晶質合金薄帯の表面側にCu偏析部が存在しており、前記Cu偏析部において前記非晶質合金薄帯の最表面部よりも高い濃度でCuが偏析している、非晶質合金薄帯、及びこの非晶質合金薄帯を熱処理してナノ結晶化させたナノ結晶軟磁性合金を用いた磁心が開示されている。 Patent Document 1 discloses a soft magnetic powder including particles having a composition expressed by Fe x Cu a Nb b (Si 1-y B y ) 100-x-a-b , the particles including crystal grains and Cu segregated portions, the crystal grains having a grain size of 1.0 nm or more and 30.0 nm or less, and Cu segregated in the Cu segregated portions, and a dust core including this soft magnetic powder. Patent Document 2 discloses a nanocrystalline soft magnetic alloy having an alloy composition represented by Fe 100-a-b-c-d M a Si b B c Cu d , at least a portion of which contains crystal grains, the crystal grains having an average grain size of 50 nm or less, and a Cu segregation portion present in the nanocrystalline soft magnetic alloy at a position deeper than 2 nm from the surface of the nanocrystalline soft magnetic alloy, in which Cu elements are segregated, and a magnetic core using this nanocrystalline soft magnetic alloy. Furthermore, Patent Document 3 discloses an amorphous alloy ribbon having an alloy composition represented by Fe 100-a-b-c-d M a Si b B c Cu d , in which a Cu segregation portion is present on the surface side of the amorphous alloy ribbon, and in which Cu is segregated at a higher concentration in the Cu segregation portion than in the outermost surface portion of the amorphous alloy ribbon, and a magnetic core using a nanocrystalline soft magnetic alloy obtained by heat-treating the amorphous alloy ribbon to nanocrystallize it.

特開2022-121260号公報JP 2022-121260 A 特許第5429613号公報Patent No. 5429613 特許第5339192号公報Patent No. 5339192

 磁心のような磁性部品においては、小型化や大電流対応の観点から、高い直流重畳特性と低い鉄損が要求される。 Magnetic components such as magnetic cores require high DC bias characteristics and low iron loss in order to be compact and handle large currents.

 そこで本発明は、上記要求を満たす磁性部品や、この磁性部品の材料として好適な磁性粉末を提供することを目的とする。 The present invention aims to provide magnetic components that meet the above requirements and magnetic powder that is suitable as a material for such magnetic components.

 本発明の一の側面は、第1の磁性部品として、
 磁性粉末を備える磁性部品であって、
 前記磁性粉末は、金属部と、酸化膜と、少なくとも一つの特定粒子とを備えており、
 前記特定粒子は、Cuを主成分とするものであり、
 前記特定粒子は、前記金属部と前記酸化膜との界面に存在しており、
 前記特定粒子は、3~70nmの粒径を有している
磁性部品を提供する。
One aspect of the present invention provides a first magnetic component,
A magnetic component comprising a magnetic powder,
The magnetic powder includes a metal portion, an oxide film, and at least one specific particle,
The specific particles are mainly composed of Cu,
the specific particles are present at an interface between the metal portion and the oxide film,
The specific particles provide a magnetic component having a particle size of 3 to 70 nm.

 また、本発明の他の側面は、第1の磁性粉末として、
 金属部と、酸化膜と、少なくとも一つの特定粒子とを備える磁性粉末であって、
 前記特定粒子は、Cuを主成分とするものであり、
 前記特定粒子は、前記金属部と前記酸化膜との界面に存在しており、
 前記特定粒子は、3~70nmの粒径を有している
磁性粉末を提供する。
In another aspect of the present invention, the first magnetic powder is
A magnetic powder comprising a metal portion, an oxide film, and at least one specific particle,
The specific particles are mainly composed of Cu,
the specific particles are present at an interface between the metal portion and the oxide film,
The specific particles provide a magnetic powder having a particle size of 3 to 70 nm.

 本発明による磁性部品が備える磁性粉末は、以下の特徴を備えている:磁性粉末は、金属部と、酸化膜と、少なくとも一つの特定粒子とを備えている;特定粒子は、Cuを主成分とするものである;特定粒子は、金属部と酸化膜との界面に存在している;特定粒子は、3~70nmの粒径を有している。これにより、本発明の磁性部品は、直流重畳特性が高くなっており、且つ、鉄損も抑制されている。 The magnetic powder provided in the magnetic component of the present invention has the following characteristics: the magnetic powder comprises a metal portion, an oxide film, and at least one specific particle; the specific particle is mainly composed of Cu; the specific particle is present at the interface between the metal portion and the oxide film; the specific particle has a particle size of 3 to 70 nm. As a result, the magnetic component of the present invention has high DC superposition characteristics and also suppresses iron loss.

 添付の図面を参照しながら下記の最良の実施の形態の説明を検討することにより、本発明の目的が正しく理解され、且つその構成についてより完全に理解されるであろう。 The object of the present invention will be appreciated and its configuration will be more completely understood by studying the following description of the best mode for carrying out the invention in conjunction with the accompanying drawings.

本発明の実施の形態による磁性部品の一部を示す模式的な断面図である。1 is a schematic cross-sectional view showing a portion of a magnetic component according to an embodiment of the present invention; 図1の磁性部品の材料として用いられる磁性粉末の一部を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing a part of a magnetic powder used as a material for the magnetic component of FIG. 1 . 実施例7の磁性粉末の一部を示す走査透過型電子顕微鏡(STEM)像である。図において、エリア分析を行った箇所を、P1、P2、P3、P4として夫々示している。1 is a scanning transmission electron microscope (STEM) image showing a portion of the magnetic powder of Example 7. In the figure, the locations where area analysis was performed are indicated as P1, P2, P3, and P4, respectively.

 本発明については多様な変形や様々な形態にて実現することが可能であるが、その一例として、図面に示すような特定の実施の形態について、以下に詳細に説明する。図面及び実施の形態は、本発明をここに開示した特定の形態に限定するものではなく、添付の請求の範囲に明示されている範囲内においてなされる全ての変形例、均等物、代替例をその対象に含むものとする。 The present invention can be realized in various modifications and forms, but as an example, a specific embodiment as shown in the drawings will be described in detail below. The drawings and embodiments do not limit the present invention to the specific form disclosed herein, but include all modifications, equivalents, and alternative examples within the scope of the appended claims.

 図1を参照して、本発明の実施の形態の磁性部品500は、硬化した結合剤600の内部に磁性粉末100が分散配置された複合磁性体である。即ち、磁性部品500は、磁性粉末100を備えている。 Referring to FIG. 1, the magnetic part 500 according to the embodiment of the present invention is a composite magnetic body in which magnetic powder 100 is dispersed within a hardened binder 600. In other words, the magnetic part 500 includes magnetic powder 100.

 本発明の実施の形態による磁性粉末100は、Feを主要元素とし、非晶質相(アモルファス相)を主相とするFe基軟磁性合金粉末である。磁性粉末100の組成については後述する。本実施の形態の磁性粉末100は、様々な磁性部品や圧粉磁芯を作製するための直接的な材料として使用可能である。 The magnetic powder 100 according to the embodiment of the present invention is an Fe-based soft magnetic alloy powder in which Fe is the main element and the main phase is an amorphous phase. The composition of the magnetic powder 100 will be described later. The magnetic powder 100 according to the embodiment can be used as a direct material for producing various magnetic parts and dust cores.

 図2を参照して、本実施の形態の磁性粉末100は、非晶質相を主相とし、且つ、略球状の複数の粒子110で構成されている。なお、本発明はこれに限定されず、粒子110は略球状以外の形状を有してもよい。本実施の形態の粒子110の表面は、ガラス等で被覆されていない。なお、本発明はこれに限定されず、粒子110の表面は、ガラス等で被覆されていてもよい。粒子110の表面がガラス等で被覆された磁性粉末100においては、粒子110の表面がガラス等で被覆されていない磁性粉末100と比較して、絶縁抵抗の向上や、流動性の向上が図られることとなる。 Referring to FIG. 2, the magnetic powder 100 of this embodiment is composed of a plurality of particles 110 that are amorphous and have a substantially spherical shape. Note that the present invention is not limited to this, and the particles 110 may have a shape other than substantially spherical. The surfaces of the particles 110 of this embodiment are not coated with glass or the like. Note that the present invention is not limited to this, and the surfaces of the particles 110 may be coated with glass or the like. In the magnetic powder 100 in which the surfaces of the particles 110 are coated with glass or the like, improved insulation resistance and improved flowability are achieved compared to the magnetic powder 100 in which the surfaces of the particles 110 are not coated with glass or the like.

 図2を参照して、本実施の形態の粒子110は、金属部200と、酸化膜300と、少なくとも一つの特定粒子400とを備えている。即ち、本実施の形態の磁性粉末100は、金属部200と、酸化膜300と、少なくとも一つの特定粒子400とを備えている。 Referring to FIG. 2, the particle 110 of this embodiment comprises a metal part 200, an oxide film 300, and at least one specific particle 400. That is, the magnetic powder 100 of this embodiment comprises a metal part 200, an oxide film 300, and at least one specific particle 400.

 図2を参照して、本実施の形態の金属部200は、Feを主成分とするものである。金属部200は、結晶相を有している。より詳しくは、金属部200は、ナノ結晶を有している。このナノ結晶は、磁性粉末100を後述するように熱処理することにより生成するものである。金属部200は、酸化膜300よりも粒子110の表面からより深い位置に位置している。 Referring to FIG. 2, the metal part 200 of this embodiment is mainly composed of Fe. The metal part 200 has a crystalline phase. More specifically, the metal part 200 has nanocrystals. These nanocrystals are generated by heat treating the magnetic powder 100 as described below. The metal part 200 is located deeper from the surface of the particle 110 than the oxide film 300.

 図2を参照して、本実施の形態の酸化膜300は、酸化物を主成分とする膜である。即ち、酸化膜300は、Оを主成分とするものである。酸化膜300に含まれるОの割合は、35at%以上である。酸化膜300は、金属部200よりも粒子110の表面からより浅い位置に位置している。酸化膜300は、磁性粉末100の表面を形成している。 Referring to FIG. 2, the oxide film 300 of this embodiment is a film whose main component is oxide. That is, the oxide film 300 is mainly composed of O. The proportion of O contained in the oxide film 300 is 35 at % or more. The oxide film 300 is located shallower from the surface of the particle 110 than the metal portion 200. The oxide film 300 forms the surface of the magnetic powder 100.

 図2を参照して、本実施の形態の特定粒子400は、Cuを主成分とするものである。特定粒子400の少なくとも一つは、金属部200と酸化膜300との界面に位置している。換言すれば、磁性粉末100は、金属部200と酸化膜300との界面に位置する少なくとも一つの特定粒子400を含んでいる。粒子110の径方向において、特定粒子400の一方の面は、金属部200と接しており、特定粒子400の他方の面は、酸化膜300と接している。なお、特定粒子400の少なくとも一つが金属部200と酸化膜300との界面に位置すると共に、特定粒子400の別の少なくとも一つが酸化膜300の内部に位置するように、磁性粉末100が構成されていていてもよい。これにより、磁性粉末100は、より磁気飽和しにくくなるため、好ましい。 Referring to FIG. 2, the specific particle 400 of this embodiment is mainly composed of Cu. At least one of the specific particles 400 is located at the interface between the metal part 200 and the oxide film 300. In other words, the magnetic powder 100 contains at least one specific particle 400 located at the interface between the metal part 200 and the oxide film 300. In the radial direction of the particle 110, one surface of the specific particle 400 is in contact with the metal part 200, and the other surface of the specific particle 400 is in contact with the oxide film 300. The magnetic powder 100 may be configured such that at least one of the specific particles 400 is located at the interface between the metal part 200 and the oxide film 300, and at least another of the specific particles 400 is located inside the oxide film 300. This is preferable because the magnetic powder 100 is less likely to become magnetically saturated.

 図2を参照して、本実施の形態の特定粒子400は、3~70nmの粒径を有している。また、特定粒子400の粒径が小さすぎると、粒子110間の磁気的な連結を抑制できない。これにより、特定粒子400は、5nm以上の粒径を有していることが好ましい。特定粒子400の主成分であるCuは、導電性である。よって、特定粒子400の粒径が大きすぎると、交流磁場によって特定粒子400に渦電流が流れやすくなって渦電流損失が増大する。これにより、特定粒子400は、50nm以下の粒径を有していることが好ましい。 Referring to FIG. 2, the specific particles 400 of this embodiment have a particle size of 3 to 70 nm. Furthermore, if the particle size of the specific particles 400 is too small, the magnetic coupling between the particles 110 cannot be suppressed. For this reason, it is preferable that the specific particles 400 have a particle size of 5 nm or more. Cu, which is the main component of the specific particles 400, is conductive. Therefore, if the particle size of the specific particles 400 is too large, eddy currents tend to flow in the specific particles 400 due to the AC magnetic field, increasing eddy current loss. For this reason, it is preferable that the specific particles 400 have a particle size of 50 nm or less.

 本実施の形態の特定粒子400に含まれるCuの濃度は、40at%以上である。また、特定粒子400に含まれるCuの濃度は、粒子110間の磁気的な連結を抑制するために、60at%以上が好ましい。 The concentration of Cu contained in the specific particles 400 of this embodiment is 40 at% or more. In addition, the concentration of Cu contained in the specific particles 400 is preferably 60 at% or more in order to suppress magnetic coupling between the particles 110.

 図2を参照して、本実施の形態の特定粒子400のアスペクト比は、1より大きい。また、特定粒子400が楕円形状の断面を有している場合、粒子110の表面を効率的に非磁性とすることができるため、特定粒子400のアスペクト比は、1.4以上であることが好ましい。 Referring to FIG. 2, the aspect ratio of the specific particle 400 of this embodiment is greater than 1. Furthermore, when the specific particle 400 has an elliptical cross section, the surface of the particle 110 can be efficiently rendered nonmagnetic, so it is preferable that the aspect ratio of the specific particle 400 is 1.4 or greater.

 本実施の形態の磁性粉末100においては、特定粒子400は、互いに直接的に結着することなく独立して存在している。なお、本発明はこれに限定されず、複数の特定粒子400同士が直接的に結着して、より大きな粒子を形成していてもよい。これにより、磁性粉末100は、より磁気飽和しにくくなるため、好ましい。 In the magnetic powder 100 of this embodiment, the specific particles 400 exist independently without being directly bonded to each other. However, the present invention is not limited to this, and multiple specific particles 400 may be directly bonded to each other to form larger particles. This is preferable because the magnetic powder 100 is less likely to become magnetically saturated.

 図2を参照して、本実施の形態の特定粒子400の占有率Ocは、4~60%である。ここで、占有率Ocは、磁性粉末100の粒子110を所定の断面で見た場合における、金属部200と酸化膜300との界面の長さをLb、金属部200と酸化膜300との界面上に位置するn個の特定粒子400の夫々における金属部200と酸化膜300との界面に沿った長さをLi(i=1~n)としたとき、下記式(1)により得られる値である。
式(1):Oc=(ΣLi)/Lb*100
なお、特定粒子400の占有率が小さすぎると、粒子110間の磁気的な連結を抑制できない。このため、特定粒子400の占有率は、10%以上であることが好ましい。特定粒子400の主成分であるCuが導電性であることから、交流磁場によって特定粒子400に渦電流が流れてしまう可能性がある。しかしながら、特定粒子400が間隔をおいて位置することにより、特定粒子400同士の絶縁性を確保して渦電流損失の増大を抑制できる。これにより、特定粒子400の占有率は、50%以下であることが好ましい。
2, the occupancy rate Oc of specific particles 400 in this embodiment is 4 to 60%. Here, the occupancy rate Oc is a value obtained by the following formula (1) when particle 110 of magnetic powder 100 is viewed at a predetermined cross section, where Lb is the length of the interface between metal portion 200 and oxide film 300, and Li (i=1 to n) is the length along the interface between metal portion 200 and oxide film 300 for each of n specific particles 400 located on the interface between metal portion 200 and oxide film 300.
Formula (1): Oc=(ΣLi)/Lb*100
If the occupancy rate of the specific particles 400 is too small, the magnetic coupling between the particles 110 cannot be suppressed. For this reason, it is preferable that the occupancy rate of the specific particles 400 is 10% or more. Since Cu, which is the main component of the specific particles 400, is conductive, there is a possibility that an eddy current will flow in the specific particles 400 due to an AC magnetic field. However, by locating the specific particles 400 at intervals, it is possible to ensure insulation between the specific particles 400 and suppress an increase in eddy current loss. For this reason, it is preferable that the occupancy rate of the specific particles 400 is 50% or less.

 以下、本実施の形態による磁性粉末100の組成範囲について更に詳しく説明する。 The composition range of the magnetic powder 100 according to this embodiment is explained in more detail below.

 図1を参照して、本実施の形態の磁性粉末100は、不可避不純物を除き組成式FeSiCuで表わされる。組成式FeSiCuにおいて、Mは、Cr及び/又はNbであり、75.4at%≦a≦86.4at%、0at%≦b≦9at%、4at%≦c≦13at%、3at%≦d≦12at%、0.3at%≦e≦1.0at%、且つ、0at%≦f≦5at%である。 1, magnetic powder 100 of the present embodiment is represented by the composition formula Fe a Sib B c Pd Cu e M f excluding inevitable impurities. In the composition formula Fe a Sib B c Pd Cu e M f , M is Cr and/or Nb, and 75.4 at%≦a≦86.4 at%, 0 at%≦b≦9 at%, 4 at%≦c≦13 at%, 3 at%≦d≦12 at%, 0.3 at%≦e≦1.0 at%, and 0 at%≦f≦5 at%.

 本実施の形態による磁性粉末100において、Fe元素は主元素であり、磁性を担う必須元素である。Feの割合が多いほど、磁束密度Bsの向上及び原料価格の低減が可能である。また、Feの割合が75.4at%を下回ると、Tx1(後述)が高くなり、ΔT(後述)が小さくなる。そのため、磁性粉末100の熱処理が困難で、熱処理後の磁気特性が低下する。また、Feの割合が86.4at%を超えると、非晶質性が著しく低下し、軟磁気特性が低下する。加えて、磁性粉末100の結晶化度を抑制して非晶質性を向上させ、磁性粉末100の熱処理後の軟磁気特性が向上することから、Feの割合は、77.9~84.9at%の範囲がより好ましい。 In the magnetic powder 100 according to the present embodiment, the Fe element is the main element and is an essential element responsible for magnetism. The higher the Fe ratio, the higher the magnetic flux density Bs and the lower the raw material price. Furthermore, if the Fe ratio falls below 75.4 at%, Tx1 (described later) becomes higher and ΔT (described later) becomes smaller. This makes it difficult to heat treat the magnetic powder 100, and the magnetic properties after heat treatment deteriorate. Furthermore, if the Fe ratio exceeds 86.4 at%, the amorphousness decreases significantly and the soft magnetic properties deteriorate. In addition, the crystallinity of the magnetic powder 100 is suppressed to improve the amorphousness, and the soft magnetic properties of the magnetic powder 100 after heat treatment are improved, so the Fe ratio is more preferably in the range of 77.9 to 84.9 at%.

 本実施の形態による磁性粉末100において、Si元素は非晶質相形成を担う元素である。磁性粉末100にSiを含有させると、ΔT(後述)が大きくなり、熱処理を安定して行うことができる。ただし、Siの割合が9at%を超えると、非晶質形成能が低下し、非晶質を主相とする磁性粉末100が得られなくなるため、Siの割合は、9at%以下が好ましい。 In the magnetic powder 100 according to this embodiment, the Si element is the element responsible for forming the amorphous phase. When the magnetic powder 100 contains Si, ΔT (described later) becomes large, and heat treatment can be performed stably. However, if the proportion of Si exceeds 9 at%, the amorphous forming ability decreases, and it becomes impossible to obtain a magnetic powder 100 having an amorphous phase as the main phase, so the proportion of Si is preferably 9 at% or less.

 本実施の形態による磁性粉末100において、B元素は非晶質相形成を担う必須元素である。Bの割合が4at%を下回ると、磁性粉末100を作製する際の急冷による非晶質相の形成が困難になり、良好な磁気特性を得ることができない。また、Bの割合が13at%を超えると、融点が高くなり製造上好ましくなく、非晶質形成能も低下する。これにより、Bの割合は、4~13at%の範囲が好ましい。 In the magnetic powder 100 according to this embodiment, the B element is an essential element responsible for forming the amorphous phase. If the proportion of B falls below 4 at%, it becomes difficult to form an amorphous phase by rapid cooling when producing the magnetic powder 100, and good magnetic properties cannot be obtained. Furthermore, if the proportion of B exceeds 13 at%, the melting point becomes high, which is unfavorable for manufacturing, and the ability to form an amorphous phase also decreases. For this reason, the proportion of B is preferably in the range of 4 to 13 at%.

 本実施の形態による磁性粉末100において、P元素は非晶質相形成を担う必須元素である。磁性粉末100がPを含有することにより、微細で均一なナノ結晶組織を形成しやすくなり、良好な磁気特性が得られるようになる。またPは、Cuとの親和性が高く、粒子110の表面付近に効率的に特定粒子400を形成することができる。しかしながら、Pの割合が12at%を超えると、他のメタロイド元素とのバランスが悪くなり、非晶質形成能が低下する。また、Pの割合が12at%を超えると、飽和磁束密度Bsが著しく低下する。更に、Pの割合が3at%を下回ると、結晶粒が大きくなりやすく、良好な磁気特性を得ることができない。これにより、Pの割合は、3~12at%の範囲が好ましい。 In the magnetic powder 100 according to the present embodiment, the P element is an essential element responsible for forming the amorphous phase. By including P in the magnetic powder 100, it becomes easier to form a fine and uniform nanocrystalline structure, and good magnetic properties can be obtained. In addition, P has a high affinity with Cu, and can efficiently form specific particles 400 near the surface of the particle 110. However, if the proportion of P exceeds 12 at%, the balance with other metalloid elements becomes poor, and the ability to form an amorphous phase decreases. Also, if the proportion of P exceeds 12 at%, the saturation magnetic flux density Bs decreases significantly. Furthermore, if the proportion of P falls below 3 at%, the crystal grains tend to become large, and good magnetic properties cannot be obtained. For this reason, the proportion of P is preferably in the range of 3 to 12 at%.

 本実施の形態による磁性粉末100において、Cu元素はナノ結晶相の形成に寄与する必須元素である。Cuの割合が0.3at%を下回ると、熱処理時のクラスター析出が少なく均一なナノ結晶化が難しい。また、Cuの割合が1.0at%を超えると、非晶質形成能が低下したり、特定粒子400の占有率が大きくなりすぎることとなる。これにより、Cuの割合は、0.3~1.0at%の範囲が好ましい。特に、磁性粉末100の非晶質性を良好とし、均一なナノ結晶化を可能とするため、また、特定粒子400の大きさや占有率を適切とし、熱処理後の軟磁気特性を良好とするため、Cuの割合は、0.7at%以下であることがより好ましい。 In the magnetic powder 100 according to this embodiment, the Cu element is an essential element that contributes to the formation of the nanocrystalline phase. If the Cu ratio is below 0.3 at%, there is little cluster precipitation during heat treatment, making uniform nanocrystallization difficult. If the Cu ratio exceeds 1.0 at%, the amorphous forming ability decreases and the occupancy rate of the specific particles 400 becomes too large. For this reason, it is preferable that the Cu ratio is in the range of 0.3 to 1.0 at%. In particular, in order to improve the amorphous nature of the magnetic powder 100 and enable uniform nanocrystallization, and to make the size and occupancy rate of the specific particles 400 appropriate and to improve the soft magnetic properties after heat treatment, it is more preferable that the Cu ratio is 0.7 at% or less.

 本実施の形態の磁性粉末100において、Mの割合は、0at%以上かつ5at%以下である。ここで、Mは、Cr及び/又はNbである。 In the magnetic powder 100 of this embodiment, the proportion of M is 0 at% or more and 5 at% or less. Here, M is Cr and/or Nb.

 本実施の形態の磁性粉末100がCrを含有することにより、磁性粉末100の粒子110の表面に酸化膜300が形成されやすくなり、耐食性の向上が図られる。また、本実施の形態の磁性粉末100がNbを含有することにより、ナノ結晶化の際にbccFe(αFe)結晶粒の成長が抑制され、微細なナノ結晶構造が形成されやすくなる。しかしながら、Cr及びNbの含有により、磁性粉末100におけるFeの割合が相対的に低下するため、磁性粉末100の飽和磁束密度Bsは低下し、磁性粉末100の非晶質相の形成能も低下する。従って、磁性粉末100におけるMの割合は、5at%以下とする必要がある。 The inclusion of Cr in the magnetic powder 100 of this embodiment makes it easier for an oxide film 300 to form on the surface of the particles 110 of the magnetic powder 100, improving corrosion resistance. Furthermore, the inclusion of Nb in the magnetic powder 100 of this embodiment inhibits the growth of bccFe (αFe) crystal grains during nanocrystallization, making it easier to form a fine nanocrystalline structure. However, the inclusion of Cr and Nb relatively reduces the proportion of Fe in the magnetic powder 100, so that the saturation magnetic flux density Bs of the magnetic powder 100 decreases, and the ability of the magnetic powder 100 to form an amorphous phase also decreases. Therefore, the proportion of M in the magnetic powder 100 needs to be 5 at% or less.

 本実施の形態による磁性粉末100は、Feの3at%以下を、Co、Ni、Zn、Zr、Hf、Mo、Ta、W、Ag、Au、Pd、Na、K、Ca、Mg、Sn、Ti、V、Mn、Al、S、C、O、N、Bi及び希土類元素から選ばれる1種類以上の元素で置換してなるものが好ましい。これにより、磁性粉末100を熱処理した際に磁性粉末100中に均一なナノ結晶を容易に析出させることができるとともに、磁性粉末100における上記元素による磁気特性等への悪影響を許容範囲内に収めることができる。 The magnetic powder 100 according to this embodiment is preferably one in which 3 at% or less of Fe is replaced with one or more elements selected from Co, Ni, Zn, Zr, Hf, Mo, Ta, W, Ag, Au, Pd, Na, K, Ca, Mg, Sn, Ti, V, Mn, Al, S, C, O, N, Bi and rare earth elements. This makes it possible to easily precipitate uniform nanocrystals in the magnetic powder 100 when the magnetic powder 100 is heat-treated, and also makes it possible to keep the adverse effects of the above elements in the magnetic powder 100 on the magnetic properties, etc., within an acceptable range.

 以下、本実施の形態における磁性粉末100、磁性部品500及びこれらの製造方法を説明しつつ、更に詳しく説明する。 The magnetic powder 100, magnetic component 500, and manufacturing method thereof in this embodiment will be described in more detail below.

 本実施の形態の磁性粉末100は、水アトマイズ法やガスアトマイズ法のようなアトマイズ法によって作製することができる。このようにして作製された磁性粉末100は、非晶質相(アモルファス相)を主相とし、且つ、略球状の複数の粒子110で構成されることとなる。なお、本発明はこれに限定されず、磁性粉末100は、アモルファス薄帯を粉砕して形成された薄片で構成されていてもよい。即ち、本発明の磁性粉末100を構成する粒子110は、略球状でなくても良い。このようにアモルファス薄帯を粉砕して形成された磁性粉末100であっても、本発明の構成を備えることにより、高い飽和磁束密度Bsや、高い比透磁率μとすることができる。 The magnetic powder 100 of this embodiment can be produced by an atomization method such as a water atomization method or a gas atomization method. The magnetic powder 100 produced in this manner has a non-crystalline phase (amorphous phase) as the main phase and is composed of a plurality of particles 110 that are approximately spherical. The present invention is not limited to this, and the magnetic powder 100 may be composed of flakes formed by crushing an amorphous ribbon. In other words, the particles 110 that constitute the magnetic powder 100 of the present invention do not have to be approximately spherical. Even if the magnetic powder 100 is formed by crushing an amorphous ribbon in this manner, it can have a high saturation magnetic flux density Bs and a high relative magnetic permeability μ by having the configuration of the present invention.

 アトマイズ法による粉末作製工程において、まず、原料を準備する。次に、原料を、所定の組成になるように秤量し、溶解して合金溶湯を作製する。このとき、本実施の形態の磁性粉末100は、融点が低いため、溶解のための消費電力を削減できる。次に、合金溶湯をノズルから排出して、高圧のガスや水を使用して合金溶滴に分断し、これにより微細な磁性粉末100を作製する。 In the powder production process using the atomization method, first, the raw materials are prepared. Next, the raw materials are weighed to obtain the specified composition and melted to produce a molten alloy. At this time, since the magnetic powder 100 of this embodiment has a low melting point, the power consumption required for melting can be reduced. Next, the molten alloy is discharged from a nozzle and is broken into alloy droplets using high-pressure gas or water, thereby producing fine magnetic powder 100.

 上述の粉末作製工程において、分断に使用するガスは、アルゴンや窒素などの不活性ガスであってもよい。また、冷却速度を向上させるため、分断直後の合金溶滴を冷却用の液体や固体に接触させて急冷してもよいし、合金溶滴を再分断して更に微細化してもよい。冷却用に液体を使用する場合、例えば水や油を使用してもよい。冷却用に固体を使用する場合、例えば回転銅ロールや回転アルミ板を使用してもよい。但し、冷却用の液体や固体は、これに限定されず、様々な材料を使用できる。 In the above-mentioned powder production process, the gas used for fragmentation may be an inert gas such as argon or nitrogen. In addition, to improve the cooling rate, the alloy droplets immediately after fragmentation may be rapidly cooled by contacting them with a cooling liquid or solid, or the alloy droplets may be fragmented again to further refine them. When a liquid is used for cooling, for example, water or oil may be used. When a solid is used for cooling, for example, a rotating copper roll or a rotating aluminum plate may be used. However, the liquid or solid used for cooling is not limited to these, and various materials may be used.

 ここで、アトマイズ法による急冷速度は、10K/s以上とする。急冷速度が10K/s未満であると、析出する初期結晶(主としてbccFe)が多くなり、これに伴い、金属部200で析出するCuが多くなるからである。また、急冷速度が10K/s未満であると、磁性粉末100における非晶質相の組成が所望の組成からずれて、ガラス転移温度Tgが出現しなくなるからである。加えて、急冷速度が10K/s未満であると、第1結晶化開始温度Tx1が高温側へずれたり、第1結晶化による温度ピークが低下したりするからである。なお、アトマイズ法による急冷速度は、10K/s以上が好ましい。 Here, the quenching rate by the atomization method is 10 3 K/s or more. If the quenching rate is less than 10 3 K/s, the amount of precipitated initial crystals (mainly bccFe) increases, and accordingly, the amount of Cu precipitated in the metal part 200 increases. If the quenching rate is less than 10 3 K/s, the composition of the amorphous phase in the magnetic powder 100 deviates from the desired composition, and the glass transition temperature Tg does not appear. In addition, if the quenching rate is less than 10 3 K/s, the first crystallization start temperature Tx1 shifts to the high temperature side, or the temperature peak due to the first crystallization decreases. It is preferable that the quenching rate by the atomization method is 10 4 K/s or more.

 また本発明の磁性粉末100は、ナノ結晶を含有していることが好ましい。ここで、ナノ結晶を含有する磁性粉末100は、後述のように磁性粉末100に所定の熱処理条件による熱処理を施してbccFe(αFe)のナノ結晶を析出させることにより得られる。 Furthermore, the magnetic powder 100 of the present invention preferably contains nanocrystals. Here, the magnetic powder 100 containing nanocrystals is obtained by subjecting the magnetic powder 100 to a heat treatment under predetermined heat treatment conditions as described below, thereby precipitating nanocrystals of bccFe (αFe).

 磁性粉末100をアルゴンなどの不活性ガスを主成分とする低酸素雰囲気中で熱処理した場合、2回以上結晶化される。最初に結晶化が開始する温度を第1結晶化開始温度(Tx1)といい、2回目の結晶化が開始する温度を第2結晶化開始温度(Tx2)という。また、第1結晶化開始温度(Tx1)と第2結晶化開始温度(Tx2)の間の温度差をΔT=Tx2-Tx1という。第1結晶化開始温度(Tx1)は、αFeのナノ結晶析出の発熱ピークであり、第2結晶化開始温度(Tx2)は、FeBやFeP等の化合物析出の発熱ピークである。これらの結晶化開始温度は、例えば、示差走査熱量分析(DSC)装置を使用して、10℃/分程度の昇温速度で熱分析を行うことで評価可能である。 When the magnetic powder 100 is heat-treated in a low-oxygen atmosphere mainly composed of an inert gas such as argon, it is crystallized two or more times. The temperature at which the first crystallization starts is called the first crystallization start temperature (Tx1), and the temperature at which the second crystallization starts is called the second crystallization start temperature (Tx2). The temperature difference between the first crystallization start temperature (Tx1) and the second crystallization start temperature (Tx2) is called ΔT = Tx2 - Tx1. The first crystallization start temperature (Tx1) is the exothermic peak of the precipitation of nanocrystals of αFe, and the second crystallization start temperature (Tx2) is the exothermic peak of the precipitation of compounds such as FeB and FeP. These crystallization start temperatures can be evaluated, for example, by performing a thermal analysis at a heating rate of about 10°C/min using a differential scanning calorimetry (DSC) device.

 磁性粉末100においてαFeのナノ結晶を析出させるためには、化合物相の析出を抑制するように、第2結晶化開始温度(Tx2)以下の温度で熱処理することが望ましい。ここでΔTが大きい場合、所定の熱処理条件における熱処理が容易になる。このため、熱処理によってαFeのナノ結晶のみを析出させて良好な軟磁気特性の磁性粉末100を得ることができる。即ち、ΔTが大きくなるように磁性粉末100の元素組成を調整して熱処理することにより、磁性粉末100に含まれるαFeのナノ結晶組織が安定し、αFeのナノ結晶を含む磁性粉末100を備える磁性部品500の鉄損も低減することとなる。 In order to precipitate αFe nanocrystals in the magnetic powder 100, it is desirable to perform heat treatment at a temperature equal to or lower than the second crystallization onset temperature (Tx2) so as to suppress the precipitation of the compound phase. Here, if ΔT is large, heat treatment under the specified heat treatment conditions becomes easier. Therefore, it is possible to obtain magnetic powder 100 with good soft magnetic properties by precipitating only αFe nanocrystals by heat treatment. In other words, by adjusting the elemental composition of magnetic powder 100 so as to increase ΔT and then performing heat treatment, the αFe nanocrystal structure contained in magnetic powder 100 becomes stable, and the iron loss of magnetic component 500 including magnetic powder 100 containing αFe nanocrystals is also reduced.

 ナノ結晶を含む磁性粉末100を作製するためには、上述の粉末作製工程から作製された磁性粉末100を、前述のように熱処理して、αFeのナノ結晶が磁性粉末100中に析出させる。なお、この熱処理は、前述のように、化合物相を析出させないように、第2結晶化開始温度(Tx2)以下で行う必要がある。また、この熱処理は、磁性粉末100の粒子110の表面に酸化膜300を形成するため、窒素やアルゴンなどの不活性ガスを主成分とする低酸素雰囲気中において300℃以上の温度下で行うことが好ましい。 In order to produce magnetic powder 100 containing nanocrystals, the magnetic powder 100 produced by the above-mentioned powder production process is heat-treated as described above to precipitate αFe nanocrystals in the magnetic powder 100. As described above, this heat treatment must be performed at or below the second crystallization onset temperature (Tx2) so as not to precipitate a compound phase. In addition, this heat treatment is preferably performed at a temperature of 300°C or higher in a low-oxygen atmosphere mainly composed of an inert gas such as nitrogen or argon in order to form an oxide film 300 on the surface of the particles 110 of the magnetic powder 100.

 上述の粉末作製工程から作製された磁性粉末100を使用して、磁性部品500を製造することができる。例えば、磁性粉末100を所定の形状に成形した後に所定の熱処理条件による熱処理を施すことで、磁性部品500を製造できる。また、この磁性部品500を使用して、トランス、インダクタ、モータや発電機などの磁性部品を製造することができる。以下、磁性粉末100を使用した本実施の形態の磁性部品500の製造方法について説明する。 The magnetic powder 100 produced by the above-mentioned powder production process can be used to manufacture the magnetic part 500. For example, the magnetic powder 100 can be molded into a predetermined shape and then heat-treated under predetermined heat treatment conditions to manufacture the magnetic part 500. The magnetic part 500 can also be used to manufacture magnetic parts such as transformers, inductors, motors, and generators. The method for manufacturing the magnetic part 500 of this embodiment using the magnetic powder 100 is described below.

 本実施の形態の磁性部品500の製造方法は、本実施の形態の磁性粉末100と結合剤600との混合物を製造する工程と、この混合物を加圧成型して成型体を製造する工程と、この成型体を熱処理する工程とを備えている。 The manufacturing method of the magnetic component 500 of this embodiment includes a step of producing a mixture of the magnetic powder 100 of this embodiment and the binder 600, a step of pressure-molding this mixture to produce a molded body, and a step of heat-treating this molded body.

 まず磁性粉末100と結合剤600との混合物を製造する工程として、本実施の形態の磁性粉末100を、樹脂等の絶縁性が良好な結合剤600と混合して混合物(造粒粉)を得る。ここで結合剤600として樹脂を使用する場合、例えば、シリコーン、エポキシ、フェノール、メラミン、ポリウレタン、ポリイミド、ポリアミドイミドを使用してもよい。絶縁性や結着性を向上させるために、樹脂に代えて、又は、樹脂と共に、リン酸塩、ホウ酸塩、クロム酸塩、酸化物(シリカ、アルミナ、マグネシア等)、無機高分子(ポリシラン、ポリゲルマン、ポリスタナン、ポリシロキサン、ポリシルセスキオキサン、ポリシラザン、ポリボラジレン、ポリホスファゼンなど)などの材料を結合剤600として使用してもよい。また、複数の結合剤600を併用しても良く、異なる結合剤600によって2層またはそれ以上の多層構造の被覆を形成しても良い。なお、磁性部品500の製造においては、上述のように成型体を熱処理する工程を有していることから、耐熱性の高い結合剤600を使用することが好ましい。結合剤600の量は、一般的には、0.1~10wt%程度が好ましく、絶縁性及び充填率を考慮すると、0.3~6wt%程度が好ましい。但し、結合剤600の量は、粉末粒径、適用周波数、用途等を考慮して適切に決定すればよい。 First, in the process of producing a mixture of magnetic powder 100 and binder 600, the magnetic powder 100 of this embodiment is mixed with binder 600 having good insulating properties such as resin to obtain a mixture (granulated powder). When resin is used as binder 600, for example, silicone, epoxy, phenol, melamine, polyurethane, polyimide, or polyamideimide may be used. In order to improve insulating properties and binding properties, materials such as phosphates, borates, chromates, oxides (silica, alumina, magnesia, etc.), inorganic polymers (polysilane, polygermane, polystannane, polysiloxane, polysilsesquioxane, polysilazane, polyborazylene, polyphosphazene, etc.) may be used as binder 600 instead of or together with resin. In addition, multiple binders 600 may be used in combination, and a coating of two or more layers may be formed using different binders 600. In addition, since the manufacturing of magnetic part 500 includes a process of heat-treating the molded body as described above, it is preferable to use a binder 600 with high heat resistance. Generally, the amount of binder 600 is preferably about 0.1 to 10 wt%, and considering insulation and filling rate, about 0.3 to 6 wt% is preferable. However, the amount of binder 600 can be appropriately determined taking into consideration the powder particle size, applicable frequency, application, etc.

 次に、混合物を加圧成型して成型体を製造する工程として、造粒粉を金型を使用して加圧成形して成型体を得る。ここで造粒粉を加圧成形する際、充填性を向上させると共にナノ結晶化における発熱を抑制するため、本実施の形態による磁性粉末100よりも軟質のFe、FeSi、FeSiCr、FeSiAl、FeNi、カルボニル鉄粉等の粉末を混ぜてもよい。また、上記の軟質粉末に代えて、又は、上記の軟質粉末と共に、本実施の形態による磁性粉末100とは粒径の異なる任意の磁性粉末100を混ぜても良い。このとき、本実施の形態による磁性粉末100に対する混合量は、50wt%以下であることが好ましい。 Next, in the process of producing a molded body by pressure molding the mixture, the granulated powder is pressure molded using a die to obtain a molded body. When pressure molding the granulated powder, in order to improve filling properties and suppress heat generation during nanocrystallization, powders such as Fe, FeSi, FeSiCr, FeSiAl, FeNi, and carbonyl iron powder that are softer than the magnetic powder 100 according to this embodiment may be mixed. Also, instead of or together with the above soft powder, any magnetic powder 100 having a particle size different from that of the magnetic powder 100 according to this embodiment may be mixed. In this case, the amount of the magnetic powder 100 mixed with the magnetic powder according to this embodiment is preferably 50 wt % or less.

 その後、成型体に所定の熱処理条件による熱処理を施す。この熱処理により、磁性粉末100中にαFeのナノ結晶が析出する。この熱処理は、上述の磁性粉末100に対する熱処理と同様であり、第2結晶化開始温度(Tx2)以下で行う必要がある。また、この熱処理は、磁性粉末100の粒子110の表面に酸化膜300を形成するため、窒素やアルゴンなどの不活性ガスを主成分とする低酸素雰囲気中において300℃以上の温度下で行うことが好ましい。 Then, the molded body is subjected to a heat treatment under predetermined heat treatment conditions. This heat treatment causes αFe nanocrystals to precipitate in the magnetic powder 100. This heat treatment is similar to the heat treatment for the magnetic powder 100 described above, and must be performed at or below the second crystallization onset temperature (Tx2). In addition, in order to form an oxide film 300 on the surface of the particles 110 of the magnetic powder 100, this heat treatment is preferably performed at a temperature of 300°C or higher in a low-oxygen atmosphere mainly composed of an inert gas such as nitrogen or argon.

 本実施の形態における磁性部品500は、熱処理していない磁性粉末100を原料として製造されているが、本発明はこれに限定されず、予め熱処理してαFeのナノ結晶を析出させた磁性粉末100を原料として磁性部品500を製造してもよい。この場合、上述の磁性部品500の製造工程と同様に、造粒および加圧成形を行うことで磁性部品500を製造することができる。 In the present embodiment, the magnetic part 500 is manufactured using magnetic powder 100 that has not been heat-treated as a raw material, but the present invention is not limited to this, and the magnetic part 500 may be manufactured using magnetic powder 100 that has been heat-treated in advance to precipitate αFe nanocrystals as a raw material. In this case, the magnetic part 500 can be manufactured by carrying out granulation and pressure molding in the same manner as in the manufacturing process of the magnetic part 500 described above.

 以上のように作製した本実施の形態の磁性部品500には、作製工程に係らず、本実施の形態の磁性粉末100が用いられている。同様に、本実施の形態の磁性部品500には、本実施の形態の磁性粉末100が用いられている。 The magnetic powder 100 of the present embodiment is used in the magnetic component 500 of the present embodiment, which is manufactured as described above, regardless of the manufacturing process. Similarly, the magnetic powder 100 of the present embodiment is used in the magnetic component 500 of the present embodiment.

 以下、本発明の実施の形態について、複数の実施例を参照しながら更に詳細に説明する。 The following describes the embodiment of the present invention in more detail with reference to several examples.

 (実施例1~39及び比較例1~10)
 下記の表2に記載の実施例1~15,24~28の磁性粉末100及び比較例1~5,10の磁性粉末の原料として、工業純鉄、フェロシリコン、フェロリン、フェロボロン、フェロクロム、及び電解銅を準備した。原料を実施例1~39及び比較例1~10の合金組成となるように秤量し、アルゴン雰囲気中で高周波溶解によって溶解して合金溶湯を作製した。次に、作製された合金溶湯を水アトマイズ法により急冷して、平均粒径3~15μmの磁性粉末100を作製した。また上記と同様に、下記の表2に記載の実施例16~23,29~39の磁性粉末100及び比較例6~9の磁性粉末について、平均粒径15~65μmの磁性粉末100を作製した。
(Examples 1 to 39 and Comparative Examples 1 to 10)
As raw materials for the magnetic powders 100 of Examples 1 to 15, 24 to 28 and Comparative Examples 1 to 5, and 10 listed in Table 2 below, industrially pure iron, ferrosilicon, ferrophosphorus, ferroboron, ferrochrome, and electrolytic copper were prepared. The raw materials were weighed to obtain the alloy compositions of Examples 1 to 39 and Comparative Examples 1 to 10, and melted by high-frequency melting in an argon atmosphere to prepare molten alloys. Next, the prepared molten alloys were quenched by water atomization to prepare magnetic powders 100 with an average particle size of 3 to 15 μm. Similarly to the above, magnetic powders 100 with an average particle size of 15 to 65 μm were prepared for the magnetic powders 100 of Examples 16 to 23, 29 to 39 and Comparative Examples 6 to 9 listed in Table 2 below.

 作製された実施例7の磁性粉末100を、電気炉を用いて不活性ガスを主成分とする低酸素雰囲気中において、375℃~475℃の間の所定温度で所定時間に渡って熱処理を行った。なお、この熱処理においては、処理雰囲気中の酸素濃度が5~10000ppmの範囲となるようにするとともに、昇温開始時における酸素濃度が所定時間経過時の酸素濃度よりも高くなるように、設定した。また、この熱処理により、磁性粉末100のナノ結晶化が行われる。 The magnetic powder 100 produced in Example 7 was heat-treated in an electric furnace in a low-oxygen atmosphere mainly composed of inert gas at a predetermined temperature between 375°C and 475°C for a predetermined time. In this heat treatment, the oxygen concentration in the treatment atmosphere was set to be in the range of 5 to 10,000 ppm, and the oxygen concentration at the start of the temperature rise was set to be higher than the oxygen concentration after a predetermined time had passed. This heat treatment also nano-crystallizes the magnetic powder 100.

 熱処理後の実施例7の磁性粉末100から、FIB(focused ion beam)法により薄膜試料を作製した。この作製された薄膜試料を走査透過型電子顕微鏡(STEM)にて観察した。また、この作製された薄膜試料について、エネルギー分散型X線分光法(STEM-EDS)による元素マッピング分析及びエリア分析を実施した。STEM観察結果及び元素マッピング分析結果を図3に示す。また、エリア分析を行った箇所(P1、P2、P3、P4)を図3に示し、夫々の箇所の元素分析結果を表1に示す。 A thin film sample was prepared from the magnetic powder 100 of Example 7 after heat treatment by the FIB (focused ion beam) method. The prepared thin film sample was observed with a scanning transmission electron microscope (STEM). In addition, elemental mapping analysis and area analysis were performed on the prepared thin film sample by energy dispersive X-ray spectroscopy (STEM-EDS). The results of the STEM observation and elemental mapping analysis are shown in Figure 3. The locations where area analysis was performed (P1, P2, P3, P4) are also shown in Figure 3, and the elemental analysis results for each location are shown in Table 1.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 図3から、実施例7の磁性粉末100は、Cuを主成分とする複数の特定粒子400を備えていることが確認された。また、図3及び表1から、実施例7の磁性粉末100のP1の箇所に、Cuが69.2at%と高濃度で含まれていることが分かった。また、図3から、P1の箇所の粒子の粒径が16nm程度であることが確認された。更に、図3及び表1から、実施例7の磁性粉末100のP2、P3の箇所においては、Oが夫々67.9at%、60.1at%と高濃度で含まれている一方、Cuは殆ど含まれていないことが分かった。更に加えて、図3及び表1から、実施例7の磁性粉末100のP4の箇所においては、Feが80.6at%と高濃度で含まれている一方、Cuは殆ど含まれていないことが分かった。これらの結果から、実施例7の磁性粉末100は、Feを主成分とする金属部200と、Oを主成分とする酸化膜300と、Cuを主成分とする複数の特定粒子400とを備えており、特定粒子400は、金属部200と酸化膜300との界面に存在しており、特定粒子400の粒径が3~70nmの範囲にあることが確認された。 From FIG. 3, it was confirmed that the magnetic powder 100 of Example 7 has a plurality of specific particles 400 mainly composed of Cu. Also, from FIG. 3 and Table 1, it was confirmed that the P1 portion of the magnetic powder 100 of Example 7 contains a high concentration of Cu at 69.2 at%. Also, from FIG. 3, it was confirmed that the particle size of the particle at P1 is about 16 nm. Furthermore, from FIG. 3 and Table 1, it was confirmed that the P2 and P3 portions of the magnetic powder 100 of Example 7 contain high concentrations of O at 67.9 at% and 60.1 at%, respectively, while there is almost no Cu. In addition, from FIG. 3 and Table 1, it was confirmed that the P4 portion of the magnetic powder 100 of Example 7 contains a high concentration of Fe at 80.6 at%, while there is almost no Cu. From these results, it was confirmed that the magnetic powder 100 of Example 7 comprises a metal part 200 whose main component is Fe, an oxide film 300 whose main component is O, and a plurality of specific particles 400 whose main component is Cu, the specific particles 400 are present at the interface between the metal part 200 and the oxide film 300, and the particle size of the specific particles 400 is in the range of 3 to 70 nm.

 上記方法により製造された実施例1~39に係る熱処理前の磁性粉末100を用いて、以下の方法により、実施例1~39に係る磁性部品(圧粉磁芯)500を作製した。 The magnetic powder 100 before heat treatment according to Examples 1 to 39 produced by the above method was used to produce the magnetic parts (dust cores) 500 according to Examples 1 to 39 by the following method.

 まず初めに、製造された実施例1~39の磁性粉末100と、結合剤(シリコーン樹脂)600とを、磁性粉末100に対する結合剤600の割合が3wt%となるように混合し、目開き500μmのステンレス製篩で整粒して、顆粒を得る。その後、この顆粒を金型に充填し、金型に充填された顆粒を油圧プレスで成型圧力490MPaで成型する。これにより、外径13mm及び内径8mmの円筒形状の成型体を作製した。その後、作製された成型体を、赤外線加熱装置を用いて不活性ガスを主成分とする低酸素雰囲気中において、375℃~475℃の間の所定温度まで30℃/分の昇温速度で昇温した後、所定温度に20分間保持し、その後、室温まで空冷して、実施例1~39の磁性部品(圧粉磁心)500を作製した。なお、この熱処理においては、処理雰囲気中の酸素濃度が5~10000ppmの範囲となるようにするとともに、昇温開始時における酸素濃度が空冷直前の酸素濃度よりも高くなるように、設定した。また、この熱処理により、結合剤600であるシリコーン樹脂の硬化と、磁性粉末100のナノ結晶化が行われる。 First, the magnetic powder 100 of Examples 1 to 39 and the binder (silicone resin) 600 were mixed so that the ratio of the binder 600 to the magnetic powder 100 was 3 wt%, and the mixture was sized using a stainless steel sieve with a mesh size of 500 μm to obtain granules. The granules were then filled into a mold, and the granules filled in the mold were molded using a hydraulic press at a molding pressure of 490 MPa. This produced a cylindrical molded body with an outer diameter of 13 mm and an inner diameter of 8 mm. The molded body was then heated to a predetermined temperature between 375°C and 475°C at a heating rate of 30°C/min in a low-oxygen atmosphere mainly composed of inert gas using an infrared heating device, and then held at the predetermined temperature for 20 minutes, and then air-cooled to room temperature to produce the magnetic parts (powder magnetic cores) 500 of Examples 1 to 39. In this heat treatment, the oxygen concentration in the treatment atmosphere was set to be in the range of 5 to 10,000 ppm, and the oxygen concentration at the start of the temperature rise was set to be higher than the oxygen concentration immediately before air cooling. This heat treatment also hardens the silicone resin, which is the binder 600, and nano-crystallizes the magnetic powder 100.

 また上記方法と同様の方法により、比較例1~10の粉末を用いて、比較例1~10に係る磁性部品(圧粉磁芯)を作製した。 Furthermore, magnetic parts (dust cores) according to Comparative Examples 1 to 10 were produced using the powders of Comparative Examples 1 to 10 in a manner similar to that described above.

 作製された実施例1~39の圧粉磁心500を切断した後、CP(Cross section polisher)加工を行い、FIB(focused ion beam)法により薄膜試料を作製した。この作製された薄膜試料を、TEM観察して複数のTEM画像を取得すると共に、TEM付属のEDXにて元素分析を行った。これらの観察結果及び分析結果に基づいて、作製された実施例1~39の圧粉磁心500を構成する磁性粉末100中の特定粒子400の粒径、アスペクト比及びCuの濃度を導出した。また、得られた複数のTEM画像の夫々に基づいて、金属部200と酸化膜300との界面の長さLbと、金属部200と酸化膜300との界面上に位置するn個の特定粒子400の夫々における金属部200と酸化膜300との界面に沿った長さLi(i=1~n)とを導出して、上記式(1)により占有率Оcを算出し、得られた複数の占有率Ocの平均値を実施例1~39の圧粉磁心500の占有率Оcとした。加えて、上記方法と同様の方法により、比較例1~10に係る圧粉磁芯を構成する粉末中の特定粒子の粒径、アスペクト比及びCuの濃度を導出し、占有率Оcを算出した。これらの結果を表2に示す。 After cutting the powder magnetic cores 500 of Examples 1 to 39, CP (Cross Section Polisher) processing was performed, and thin film samples were prepared by the FIB (Focused Ion Beam) method. The thin film samples thus prepared were observed with a TEM to obtain multiple TEM images, and elemental analysis was performed using an EDX attached to the TEM. Based on these observation and analysis results, the particle size, aspect ratio, and Cu concentration of the specific particles 400 in the magnetic powder 100 constituting the powder magnetic cores 500 of Examples 1 to 39 were derived. Based on each of the obtained TEM images, the length Lb of the interface between the metal part 200 and the oxide film 300 and the length Li (i = 1 to n) along the interface between the metal part 200 and the oxide film 300 for each of the n specific particles 400 located on the interface between the metal part 200 and the oxide film 300 were derived, and the occupancy Oc was calculated using the above formula (1), and the average value of the obtained occupancy Oc was set as the occupancy Oc of the powder cores 500 of Examples 1 to 39. In addition, the particle size, aspect ratio, and Cu concentration of the specific particles in the powder constituting the powder cores of Comparative Examples 1 to 10 were derived using a method similar to the above method, and the occupancy Oc was calculated. These results are shown in Table 2.

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 表2から、実施例1~28の圧粉磁心500においては、Cuを主成分とする特定粒子400の粒径が3~70nmの範囲に入っており、特定粒子400に含まれるCuの濃度が40at%以上であり、特定粒子400のアスペクト比が1より大きく、特定粒子400の占有率が4~60%の範囲に入っていることが分かる。 From Table 2, it can be seen that in the powder magnetic cores 500 of Examples 1 to 28, the particle size of the specific particles 400 containing Cu as the main component is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.

 また表2から、実施例29,30の磁性粉末100は、Feの3at%以下をCで置換したものであるが、実施例29,30の圧粉磁心500においては、Cuを主成分とする特定粒子400の粒径が3~70nmの範囲に入っており、特定粒子400に含まれるCuの濃度が40at%以上であり、特定粒子400のアスペクト比が1より大きく、特定粒子400の占有率が4~60%の範囲に入っていることが分かる。 Also, from Table 2, it can be seen that the magnetic powders 100 of Examples 29 and 30 have 3 at% or less of Fe replaced with C, but in the powder cores 500 of Examples 29 and 30, the particle size of the specific particles 400 containing Cu as the main component is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.

 更に、表2から、実施例31の磁性粉末100は、Feの3at%以下をCoで置換したものであるが、実施例31の圧粉磁心500においては、Cuを主成分とする特定粒子400の粒径が3~70nmの範囲に入っており、特定粒子400に含まれるCuの濃度が40at%以上であり、特定粒子400のアスペクト比が1より大きく、特定粒子400の占有率が4~60%の範囲に入っていることが分かる。 Furthermore, from Table 2, it can be seen that while the magnetic powder 100 of Example 31 has 3 at% or less of Fe replaced with Co, in the powder core 500 of Example 31, the particle size of the specific particles 400 containing Cu as the main component is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.

 更に加えて、表2から、実施例32の磁性粉末100は、Feの3at%以下をZnで置換したものであるが、実施例32の圧粉磁心500においては、Cuを主成分とする特定粒子400の粒径が3~70nmの範囲に入っており、特定粒子400に含まれるCuの濃度が40at%以上であり、特定粒子400のアスペクト比が1より大きく、特定粒子400の占有率が4~60%の範囲に入っていることが分かる。 In addition, from Table 2, it can be seen that the magnetic powder 100 of Example 32 has 3 at% or less of Fe replaced with Zn, but in the powder core 500 of Example 32, the particle size of the specific particles 400 mainly composed of Cu is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.

 更に加えて、表2から、実施例33,34の磁性粉末100は、Feの3at%以下をSnで置換したものであるが、実施例33,34の圧粉磁心500においては、Cuを主成分とする特定粒子400の粒径が3~70nmの範囲に入っており、特定粒子400に含まれるCuの濃度が40at%以上であり、特定粒子400のアスペクト比が1より大きく、特定粒子400の占有率が4~60%の範囲に入っていることが分かる。 In addition, from Table 2, it can be seen that the magnetic powders 100 of Examples 33 and 34 have 3 at% or less of Fe replaced with Sn, but in the powder cores 500 of Examples 33 and 34, the particle size of the specific particles 400 containing Cu as the main component is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.

 更に加えて、表2から、実施例35の磁性粉末100は、Feの3at%以下をNiで置換したものであるが、実施例35の圧粉磁心500においては、Cuを主成分とする特定粒子400の粒径が3~70nmの範囲に入っており、特定粒子400に含まれるCuの濃度が40at%以上であり、特定粒子400のアスペクト比が1より大きく、特定粒子400の占有率が4~60%の範囲に入っていることが分かる。 In addition, from Table 2, it can be seen that the magnetic powder 100 of Example 35 has 3 at% or less of Fe replaced with Ni, but in the powder core 500 of Example 35, the particle size of the specific particles 400 containing Cu as the main component is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.

 更に加えて、表2から、実施例36の磁性粉末100は、Feの3at%以下をMnで置換したものであるが、実施例36の圧粉磁心500においては、Cuを主成分とする特定粒子400の粒径が3~70nmの範囲に入っており、特定粒子400に含まれるCuの濃度が40at%以上であり、特定粒子400のアスペクト比が1より大きく、特定粒子400の占有率が4~60%の範囲に入っていることが分かる。 In addition, from Table 2, it can be seen that the magnetic powder 100 of Example 36 has 3 at% or less of Fe replaced with Mn, but in the powder core 500 of Example 36, the particle size of the specific particles 400 containing Cu as the main component is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.

 更に加えて、表2から、実施例37の磁性粉末100は、Feの3at%以下をAlで置換したものであるが、実施例37の圧粉磁心500においては、Cuを主成分とする特定粒子400の粒径が3~70nmの範囲に入っており、特定粒子400に含まれるCuの濃度が40at%以上であり、特定粒子400のアスペクト比が1より大きく、特定粒子400の占有率が4~60%の範囲に入っていることが分かる。 In addition, from Table 2, it can be seen that the magnetic powder 100 of Example 37 has 3 at% or less of Fe replaced with Al, but in the powder core 500 of Example 37, the particle size of the specific particles 400 containing Cu as the main component is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.

 更に加えて、表2から、実施例38の磁性粉末100は、Feの3at%以下をTiで置換したものであるが、実施例38の圧粉磁心500においては、Cuを主成分とする特定粒子400の粒径が3~70nmの範囲に入っており、特定粒子400に含まれるCuの濃度が40at%以上であり、特定粒子400のアスペクト比が1より大きく、特定粒子400の占有率が4~60%の範囲に入っていることが分かる。 In addition, from Table 2, it can be seen that the magnetic powder 100 of Example 38 has 3 at% or less of Fe replaced with Ti, but in the powder core 500 of Example 38, the particle size of the specific particles 400 containing Cu as the main component is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.

 更に加えて、表2から、実施例39の磁性粉末100は、Feの3at%以下をОで置換したものであるが、実施例39の圧粉磁心500においては、Cuを主成分とする特定粒子400の粒径が3~70nmの範囲に入っており、特定粒子400に含まれるCuの濃度が40at%以上であり、特定粒子400のアスペクト比が1より大きく、特定粒子400の占有率が4~60%の範囲に入っていることが分かる。 In addition, from Table 2, it can be seen that the magnetic powder 100 of Example 39 has 3 at% or less of Fe replaced with O, but in the powder core 500 of Example 39, the particle size of the specific particles 400 mainly composed of Cu is in the range of 3 to 70 nm, the concentration of Cu contained in the specific particles 400 is 40 at% or more, the aspect ratio of the specific particles 400 is greater than 1, and the occupancy rate of the specific particles 400 is in the range of 4 to 60%.

 一方、表2から、比較例1の粉末はFeが75.4at%未満であり、比較例2の粉末はFeが86.4at%を超えているが、比較例1,2の圧粉磁心においては、特定粒子の粒径は3nm未満となっており、特定粒子におけるCuの濃度は40at%未満となっており、特定粒子の占有率が4~60%の範囲に入っていないことが分かる。 On the other hand, from Table 2, it can be seen that the powder of Comparative Example 1 has an Fe content of less than 75.4 at% and the powder of Comparative Example 2 has an Fe content of more than 86.4 at%. However, in the powder cores of Comparative Examples 1 and 2, the particle size of the specific particles is less than 3 nm, the Cu concentration in the specific particles is less than 40 at%, and the occupancy rate of the specific particles is not within the range of 4 to 60%.

 また表2から、比較例3の粉末は、Siが9at%を超えているが、比較例3の圧粉磁心においては、特定粒子の粒径は3nm未満となっており、特定粒子におけるCuの濃度は40at%未満となっており、特定粒子の占有率が4~60%の範囲に入っていないことが分かる。 In addition, Table 2 shows that the powder of Comparative Example 3 has a Si content of more than 9 at%, but in the powder magnetic core of Comparative Example 3, the particle size of the specific particles is less than 3 nm, the Cu concentration in the specific particles is less than 40 at%, and the occupancy rate of the specific particles is not within the range of 4 to 60%.

 更に表2から、比較例4の粉末は、Bが4at%未満となっており、比較例5の粉末は、Bが13at%を超えているが、比較例4,5の圧粉磁心においては、特定粒子の粒径は3nm未満となっており、特定粒子におけるCuの濃度は40at%未満となっており、特定粒子の占有率が4~60%の範囲に入っていないことが分かる。 Furthermore, from Table 2, it can be seen that the powder of Comparative Example 4 has a B content of less than 4 at% and the powder of Comparative Example 5 has a B content of more than 13 at%. However, in the powder cores of Comparative Examples 4 and 5, the particle size of the specific particles is less than 3 nm, the Cu concentration in the specific particles is less than 40 at%, and the occupancy rate of the specific particles is not within the range of 4 to 60%.

 更に表2から、比較例6の粉末は、Pが3at%未満となっており、比較例7の粉末は、Pが12at%を超えているが、比較例6の圧粉磁心においては、特定粒子の粒径は3nm未満となっており、且つ、特定粒子におけるCuの濃度は40at%未満となっており、特定粒子の占有率が4~60%の範囲に入っておらず、比較例7の圧粉磁心においては、特定粒子の粒径は70nmを超えており、特定粒子の占有率が4~60%の範囲に入っていないことが分かる。 Furthermore, from Table 2, it can be seen that the powder of Comparative Example 6 has a P content of less than 3 at% and the powder of Comparative Example 7 has a P content of more than 12 at%; however, in the powder core of Comparative Example 6, the particle size of the specific particles is less than 3 nm and the Cu concentration in the specific particles is less than 40 at%, so the occupancy rate of the specific particles is not within the range of 4 to 60%, and in the powder core of Comparative Example 7, the particle size of the specific particles is more than 70 nm and so the occupancy rate of the specific particles is not within the range of 4 to 60%.

 更に表2から、比較例8の粉末は、Cuが0.3at%未満となっており、比較例9の粉末は、Cuが1.0at%を超えているが、比較例8の圧粉磁心においては、特定粒子の粒径は3nm未満となっており、特定粒子におけるCuの濃度は40at%未満となっており、特定粒子の占有率が4~60%の範囲に入っておらず、比較例9の圧粉磁心においては、特定粒子の粒径は70nmを超えており、特定粒子の占有率が4~60%の範囲に入っていないことが分かる。 Furthermore, from Table 2, it can be seen that the powder of Comparative Example 8 has a Cu content of less than 0.3 at% and the powder of Comparative Example 9 has a Cu content of more than 1.0 at%; however, in the powder core of Comparative Example 8, the particle size of the specific particles is less than 3 nm, the Cu concentration in the specific particles is less than 40 at%, and the occupancy rate of the specific particles is not within the range of 4 to 60%, and in the powder core of Comparative Example 9, the particle size of the specific particles is more than 70 nm, and the occupancy rate of the specific particles is not within the range of 4 to 60%.

 更に表2から、比較例10の粉末は、Mが5at%を超えているが、比較例10の圧粉磁心においては、特定粒子の粒径は3nm未満となっており、特定粒子におけるCuの濃度は40at%未満となっており、且つ、特定粒子の占有率が4~60%の範囲に入っていないことが分かる。 Furthermore, from Table 2, it can be seen that while the powder of Comparative Example 10 has an M content exceeding 5 at%, in the powder magnetic core of Comparative Example 10, the particle size of the specific particles is less than 3 nm, the Cu concentration in the specific particles is less than 40 at%, and the occupancy rate of the specific particles is not within the range of 4 to 60%.

 作製された実施例1~15,24~28の圧粉磁心500及び比較例1~5,10の圧粉磁心について、専用DCバイアス電源を接続したLCRメーターを用いて、100kHzにおける直流重畳特性を測定し、維持率R(%)を算出した。ここで、維持率Rは、0kA/mにおけるL(又はμ)の測定値をL0(又はμ0)とし、8kA/mにおけるL(又はμ)の測定値をLx(又はμx)とすると、下記式(2)により算出された値である。
式(2):R=Lx(又はμx)/L0(又はμ0)*100
また、作製された実施例1~15,24~28の圧粉磁心500及び比較例1~5,10の圧粉磁心について、B-Hアナライザを用いて、300kHz・50mTの励磁条件における鉄損Pcv(kW/m)を測定した。これらの結果を表3に示す。
For the produced powder cores 500 of Examples 1 to 15 and 24 to 28 and the powder cores of Comparative Examples 1 to 5 and 10, the DC superposition characteristics at 100 kHz were measured using an LCR meter connected to a dedicated DC bias power supply, and the retention rate R (%) was calculated. Here, the retention rate R is a value calculated by the following formula (2), where the measured value of L (or μ) at 0 kA/m is L0 (or μ0) and the measured value of L (or μ) at 8 kA/m is Lx (or μx).
Formula (2): R = Lx (or μx) / L0 (or μ0) * 100
Furthermore, for the powder magnetic cores 500 produced in Examples 1 to 15 and 24 to 28 and the powder magnetic cores in Comparative Examples 1 to 5 and 10, the iron loss Pcv (kW/m 3 ) under excitation conditions of 300 kHz and 50 mT was measured using a BH analyzer. These results are shown in Table 3.

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

 表3から、実施例1~15,24~28の圧粉磁心500においては、維持率Rが70%以上となっており、鉄損Pcvが1250kW/m以下となっていることが分かる。 From Table 3, it can be seen that in the powder magnetic cores 500 of Examples 1 to 15 and 24 to 28, the retention rate R was 70% or more, and the iron loss Pcv was 1250 kW/m3 or less.

 一方、表3から、Feが75.4~86.4at%の範囲に入っていない比較例1,2の圧粉磁心、Siが9at%を超えている比較例3の圧粉磁心、Bが4at%未満となっている比較例4の圧粉磁心、Bが13at%を超えている比較例5の圧粉磁心、及び、Mが5at%を超えている比較例10の圧粉磁心においては、維持率Rは70%未満となっており、鉄損Pcvが1250kW/mを超えていることが分かる。 On the other hand, from Table 3, it can be seen that in the powder magnetic cores of Comparative Examples 1 and 2 in which Fe is not within the range of 75.4 to 86.4 at%, the powder magnetic core of Comparative Example 3 in which Si exceeds 9 at%, the powder magnetic core of Comparative Example 4 in which B is less than 4 at%, the powder magnetic core of Comparative Example 5 in which B exceeds 13 at%, and the powder magnetic core of Comparative Example 10 in which M exceeds 5 at%, the retention rate R is less than 70% and the iron loss Pcv exceeds 1250 kW/ m3 .

 これらのことから、実施例1~15,24~28の圧粉磁心500は、比較例1~5,10の圧粉磁心と比較して、直流重畳特性が高くなっており、且つ、鉄損も抑制されていることが分かる。 From these findings, it can be seen that the powder magnetic cores 500 of Examples 1 to 15 and 24 to 28 have improved DC bias characteristics and reduced iron loss compared to the powder magnetic cores of Comparative Examples 1 to 5 and 10.

 作製された実施例16~23,29~39の圧粉磁心500及び比較例6~9の圧粉磁心について、専用DCバイアス電源を接続したLCRメーターを用いて、100kHzにおける直流重畳特性を測定し、上記式(2)により維持率R(%)を算出した。また、作製された実施例16~23,29~39の圧粉磁心500及び比較例6~9の圧粉磁心について、B-Hアナライザを用いて、20kHz・100mTの励磁条件における鉄損Pcv(kW/m)を測定した。これらの結果を表4に示す。 For the powder cores 500 produced in Examples 16 to 23 and 29 to 39 and the powder cores of Comparative Examples 6 to 9, the DC superposition characteristics at 100 kHz were measured using an LCR meter connected to a dedicated DC bias power supply, and the retention ratio R (%) was calculated using the above formula (2). In addition, for the powder cores 500 produced in Examples 16 to 23 and 29 to 39 and the powder cores of Comparative Examples 6 to 9, the iron loss Pcv (kW/m 3 ) under excitation conditions of 20 kHz and 100 mT was measured using a BH analyzer. These results are shown in Table 4.

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

 表4から、実施例16~23,29~39の圧粉磁心500においては、維持率Rが70%以上となっており、鉄損Pcvが300kW/m以下となっていることが分かる。 From Table 4, it can be seen that in the powder magnetic cores 500 of Examples 16 to 23 and 29 to 39, the retention rate R was 70% or more, and the iron loss Pcv was 300 kW/m3 or less .

 一方、表4から、Pが3at%未満となっている比較例6の圧粉磁心、及び、Cuが0.3at%未満となっている比較例8の圧粉磁心においては、維持率Rは70%未満となっており、鉄損Pcvが300kW/mを超えていることが分かる。また、表4から、Pが12at%を超えている比較例7の圧粉磁心、及び、Cuが1.0at%を超えている比較例9の圧粉磁心においては、鉄損Pcvが300kW/mを大きく超えていることが分かる。 On the other hand, Table 4 shows that in the powder core of Comparative Example 6, in which P is less than 3 at%, and the powder core of Comparative Example 8, in which Cu is less than 0.3 at%, the retention rate R is less than 70%, and the iron loss Pcv exceeds 300 kW/m 3. Also, Table 4 shows that in the powder core of Comparative Example 7, in which P exceeds 12 at%, and the powder core of Comparative Example 9, in which Cu exceeds 1.0 at%, the iron loss Pcv greatly exceeds 300 kW/m 3 .

 これらのことから、実施例16~23,29~39の圧粉磁心500は、比較例6~9の圧粉磁心と比較して、直流重畳特性が高くなっており、且つ、鉄損も抑制されていることが分かる。 From these findings, it can be seen that the powder magnetic cores 500 of Examples 16 to 23 and 29 to 39 have improved DC bias characteristics and reduced iron loss compared to the powder magnetic cores of Comparative Examples 6 to 9.

 本発明は2023年6月23日に日本国特許庁に提出された日本特許出願第2023-103003号に基づいており、その内容は参照することにより本明細書の一部をなす。 The present invention is based on Japanese Patent Application No. 2023-103003, filed with the Japan Patent Office on June 23, 2023, the contents of which are incorporated herein by reference.

 本発明の最良の実施の形態について説明したが、当業者には明らかなように、本発明の精神を逸脱しない範囲で実施の形態を変形することが可能であり、そのような実施の形態は本発明の範囲に属するものである。 Although the best mode for carrying out the present invention has been described, it will be clear to those skilled in the art that modifications can be made to the present invention without departing from the spirit of the present invention, and such modifications are within the scope of the present invention.

 100    磁性粉末
 110    粒子
 200    金属部
 300    酸化膜
 400    特定粒子
 500    磁性部品(圧粉磁心)
 600    結合剤
 Lb     長さ
 Li     長さ
100 Magnetic powder 110 Particle 200 Metal part 300 Oxide film 400 Specific particle 500 Magnetic part (powder core)
600 Binder Lb Length Li Length

Claims (7)

 磁性粉末を備える磁性部品であって、
 前記磁性粉末は、金属部と、酸化膜と、少なくとも一つの特定粒子とを備えており、
 前記特定粒子は、Cuを主成分とするものであり、
 前記特定粒子は、前記金属部と前記酸化膜との界面に存在しており、
 前記特定粒子は、3~70nmの粒径を有している
磁性部品。
A magnetic component comprising a magnetic powder,
The magnetic powder includes a metal portion, an oxide film, and at least one specific particle,
The specific particles are mainly composed of Cu,
the specific particles are present at an interface between the metal portion and the oxide film,
The specific particles have a particle size of 3 to 70 nm.
 金属部と、酸化膜と、少なくとも一つの特定粒子とを備える磁性粉末であって、
 前記特定粒子は、Cuを主成分とするものであり、
 前記特定粒子は、前記金属部と前記酸化膜との界面に存在しており、
 前記特定粒子は、3~70nmの粒径を有している
磁性粉末。
A magnetic powder comprising a metal portion, an oxide film, and at least one specific particle,
The specific particles are mainly composed of Cu,
the specific particles are present at an interface between the metal portion and the oxide film,
The specific particles are magnetic powders having a particle size of 3 to 70 nm.
 請求項2記載の磁性粉末であって、
 前記特定粒子に含まれるCuの濃度は、40at%以上である
磁性粉末。
The magnetic powder according to claim 2,
The concentration of Cu contained in the specific particles is 40 at % or more.
 請求項2記載の磁性粉末であって、
 前記特定粒子のアスペクト比は、1より大きい
磁性粉末。
The magnetic powder according to claim 2,
The aspect ratio of the specific particles is greater than 1.
 請求項2記載の磁性粉末であって、
 前記特定粒子の占有率は、4~60%である
磁性粉末。
The magnetic powder according to claim 2,
The occupancy rate of the specific particles is 4 to 60%.
 請求項2から請求項5までのいずれかに記載の磁性粉末であって、
 前記磁性粉末は、不可避不純物を除き組成式FeSiCuで表わされ、
 Mは、Cr及び/又はNbであり、
 75.4at%≦a≦86.4at%、0at%≦b≦9at%、4at%≦c≦13at%、3at%≦d≦12at%、0.3at%≦e≦1.0at%、且つ、0at%≦f≦5at%である
磁性粉末。
A magnetic powder according to any one of claims 2 to 5,
The magnetic powder is represented by the composition formula Fe a Si b B c P d Cu e M f excluding inevitable impurities,
M is Cr and/or Nb;
A magnetic powder in which 75.4 at%≦a≦86.4 at%, 0 at%≦b≦9 at%, 4 at%≦c≦13 at%, 3 at%≦d≦12 at%, 0.3 at%≦e≦1.0 at%, and 0 at%≦f≦5 at%.
 請求項6記載の磁性粉末であって、
 前記Feの3at%以下を、Co、Ni、Zn、Zr、Hf、Mo、Ta、W、Ag、Au、Pd、Na、K、Ca、Mg、Sn、Ti、V、Mn、Al、S、C、O、N、Bi及び希土類元素から選ばれる1種類以上の元素で置換してなる
磁性粉末。
The magnetic powder according to claim 6,
A magnetic powder in which 3 at % or less of the Fe is replaced with one or more elements selected from Co, Ni, Zn, Zr, Hf, Mo, Ta, W, Ag, Au, Pd, Na, K, Ca, Mg, Sn, Ti, V, Mn, Al, S, C, O, N, Bi and rare earth elements.
PCT/JP2024/022254 2023-06-23 2024-06-19 Magnetic component and magnetic powder WO2024262543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-103003 2023-06-23
JP2023103003A JP2025002682A (en) 2023-06-23 2023-06-23 Magnetic parts and powders

Publications (1)

Publication Number Publication Date
WO2024262543A1 true WO2024262543A1 (en) 2024-12-26

Family

ID=93935462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/022254 WO2024262543A1 (en) 2023-06-23 2024-06-19 Magnetic component and magnetic powder

Country Status (2)

Country Link
JP (1) JP2025002682A (en)
WO (1) WO2024262543A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339192B2 (en) * 2008-03-31 2013-11-13 日立金属株式会社 Amorphous alloy ribbon, nanocrystalline soft magnetic alloy, magnetic core, and method for producing nanocrystalline soft magnetic alloy
JP5429613B2 (en) * 2009-03-26 2014-02-26 日立金属株式会社 Nanocrystalline soft magnetic alloys and magnetic cores
JP2021150555A (en) * 2020-03-23 2021-09-27 株式会社トーキン Powder magnetic core and method of manufacturing the same
JP2023083804A (en) * 2021-12-06 2023-06-16 株式会社トーキン magnetic powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339192B2 (en) * 2008-03-31 2013-11-13 日立金属株式会社 Amorphous alloy ribbon, nanocrystalline soft magnetic alloy, magnetic core, and method for producing nanocrystalline soft magnetic alloy
JP5429613B2 (en) * 2009-03-26 2014-02-26 日立金属株式会社 Nanocrystalline soft magnetic alloys and magnetic cores
JP2021150555A (en) * 2020-03-23 2021-09-27 株式会社トーキン Powder magnetic core and method of manufacturing the same
JP2023083804A (en) * 2021-12-06 2023-06-16 株式会社トーキン magnetic powder

Also Published As

Publication number Publication date
JP2025002682A (en) 2025-01-09

Similar Documents

Publication Publication Date Title
US11145448B2 (en) Soft magnetic alloy powder, dust core, and magnetic component
WO2018150952A1 (en) Soft magnetic powder, dust magnetic core, magnetic part, and method for producing dust magnetic core
JP6472939B2 (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic parts and dust core
EP0302355B1 (en) Fe-base soft magnetic alloy powder and magnetic core thereof and method of producing same
EP3792940A1 (en) Soft magnetic alloy powder, dust core, and magnetic component
JP6865860B2 (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic parts, and powder core
US11545286B2 (en) Crystalline Fe-based alloy powder and method for producing same
JP5305126B2 (en) Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component
JP2713363B2 (en) Fe-based soft magnetic alloy compact and manufacturing method thereof
JP2009174034A (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
CN111133540A (en) Method for manufacturing powder magnetic core, and inductor
JP2014075529A (en) Soft magnetic alloy powder, powder-compact magnetic core arranged by use thereof, and manufacturing method thereof
JP2016104900A (en) Metallic soft magnetic alloy, magnetic core, and production method of the same
CN111093860A (en) Fe-based nanocrystalline alloy powder, method for producing same, Fe-based amorphous alloy powder, and magnetic core
US20190013129A1 (en) Dust core
JPWO2019031463A1 (en) Fe-based alloy, crystalline Fe-based alloy atomized powder, and magnetic core
JPWO2020196608A1 (en) Amorphous alloy strip, amorphous alloy powder, nanocrystalline alloy dust core, and nanocrystal alloy dust core manufacturing method
WO2024262543A1 (en) Magnetic component and magnetic powder
JP7419127B2 (en) Powder magnetic core and its manufacturing method
JP7524664B2 (en) Fe-based alloy composition, powder and magnetic core of the Fe-based alloy composition
JP7603630B2 (en) Powder for dust cores and dust cores
CN112430791B (en) Fe-based alloy composition, powder of Fe-based alloy composition, and magnetic core
WO2023153366A1 (en) Soft magnetic powder
JP2021086941A (en) Fe-BASED SOFT MAGNETIC ALLOY, THIN STRIP, POWDER, MAGNETIC CORE, AND COIL COMPONENT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24825944

Country of ref document: EP

Kind code of ref document: A1