[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024252472A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2024252472A1
WO2024252472A1 PCT/JP2023/020818 JP2023020818W WO2024252472A1 WO 2024252472 A1 WO2024252472 A1 WO 2024252472A1 JP 2023020818 W JP2023020818 W JP 2023020818W WO 2024252472 A1 WO2024252472 A1 WO 2024252472A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat
heat exchanger
heat source
flow path
Prior art date
Application number
PCT/JP2023/020818
Other languages
French (fr)
Japanese (ja)
Inventor
宗史 池田
皓亮 宮脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2023/020818 priority Critical patent/WO2024252472A1/en
Publication of WO2024252472A1 publication Critical patent/WO2024252472A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines

Definitions

  • This disclosure relates to a refrigeration cycle device capable of multiple operations such as cooling, heating, and hot water supply, and in particular to a refrigeration cycle device that can reduce the load on the heat source side heat exchanger by using unused heat as a heat source.
  • the air conditioner disclosed in Patent Document 1 includes a heat source unit equipped with a compressor, an outdoor heat exchanger, and a throttling device, and multiple user units, and the heat source unit and the multiple user units are connected by three circuits: high-pressure gas piping, low-pressure gas piping, and two-phase refrigerant piping.
  • the multiple user units are configured to be able to operate in either cooling or heating mode by selectively connecting the high-pressure gas piping or the low-pressure gas piping.
  • the air conditioner of Patent Document 1 balances the cooling and heating loads of the multiple user units to improve the efficiency of the entire system.
  • Patent Document 2 air conditioning systems that use melted snow water or well water are known from the past (see, for example, Patent Document 2).
  • the snow and ice air conditioning system disclosed in Patent Document 2 comprises an indirect outdoor air cooling machine, a compression refrigeration cooling machine, and a snow and ice air conditioning machine.
  • the snow and ice air conditioning machine uses the cold energy of the snowy mountains to cool a refrigerant, which then cools the outdoor air supplied to the heat exchangers on the heat source side of the indirect outdoor air cooling machine and the compression refrigeration cooling machine.
  • the snow and ice air conditioning system of Patent Document 2 makes effective use of the cold energy of the snowy mountains, enabling energy-saving operation.
  • the refrigeration cycle device disclosed in Patent Document 1 is capable of improving the COP by balancing the cooling and heating loads of the user unit, but the cooling and heating capacity required for the load in the user unit under the relevant usage conditions is borne by the heat source unit. Therefore, no further energy saving effects beyond the improvement of the COP of the refrigeration cycle device could be expected.
  • the snow and ice air conditioning system disclosed in Patent Document 2 can use the cold energy of snowy mountains to reduce the load on the indirect outdoor air cooler and the compression refrigeration cooler, but the refrigerant circuits of the indirect outdoor air cooler, the compression refrigeration cooler, and the snow and ice cooler are independent.
  • the snow and ice cooler supplies cooled outdoor air to the sensible heat exchanger of the indirect outdoor air cooler and the condenser of the compression refrigeration cooler, and the refrigerant circuits of the indirect outdoor air cooler and the compression refrigeration cooler are also independent, making it difficult to improve the efficiency of the entire system by balancing the load on the two coolers.
  • This disclosure has been made to solve the problems described above, and provides a refrigeration cycle device that improves COP by balancing the load between each user unit, and enables energy-saving operation of the entire system by utilizing an external heat source.
  • the refrigeration cycle device disclosed herein includes a heat source unit having a compressor for compressing a refrigerant, a heat source side heat exchanger, and a first flow path switching device for switching the connection between the heat source side heat exchanger and the suction side or discharge side of the compressor, a high-pressure gas pipe connected to the discharge side of the compressor and through which the refrigerant flows out of the heat source unit, a low-pressure gas pipe connected to the suction side of the compressor and through which the refrigerant flows into the heat source unit, a utilization side unit having a utilization side heat exchanger and a utilization side flow control device for controlling the flow rate of the refrigerant flowing into the utilization side heat exchanger, and an external heat source
  • the heat medium converter has an intermediate heat exchanger that exchanges heat between a heat medium that carries heat from the heat source and a refrigerant, and a liquid pipe that is connected between the user unit and the heat source unit and through which a refrigerant at least partially in a liquid state flows.
  • the user unit is configured so that the user side heat exchanger can be selectively connected to the high pressure gas pipe or the low pressure gas pipe, the user side flow control device is connected to the liquid pipe, and the intermediate heat exchanger is connected to at least the liquid pipe, replacing or supporting the function of the heat source side heat exchanger.
  • the refrigeration cycle device connects the heat source device and the user side unit with high pressure gas pipes, low pressure gas pipes, and liquid pipes, and connects a heat medium converter that uses an external heat source between the heat source device and the user side heat exchanger.
  • This allows the refrigeration cycle device to heat or cool at least a portion of the refrigerant flowing out of or into the heat source device.
  • the refrigeration cycle device can simultaneously perform simultaneous heating and cooling operations and hot water supply operations, and the heat medium converter can function to supplement or replace the capacity of the heat source side heat exchanger. Because the heat medium converter can supplement some or all of the capacity of the heat source side heat exchanger with an external heat source, the refrigeration cycle device can operate more energy-efficiently than before.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a refrigeration cycle device 100 according to a first embodiment.
  • 1 is a circuit diagram showing an example of a refrigeration cycle device 100 according to a first embodiment.
  • 3 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the first embodiment is performing a cooling only operation.
  • FIG. 3 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the first embodiment is performing a full heating operation.
  • FIG. 3 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the first embodiment is performing a cooling-dominant operation.
  • FIG. 3 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the first embodiment is performing a heating-dominant operation.
  • FIG. FIG. 2 is a Mollier diagram of the refrigeration cycle apparatus 100 according to the first embodiment during cooling operation.
  • FIG. 11 is a circuit diagram showing an example of a refrigeration cycle device 100 according to a second embodiment.
  • 10 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the second embodiment is performing a full cooling operation.
  • FIG. 10 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the second embodiment is performing a full heating operation.
  • FIG. 10 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the second embodiment is performing a full heating operation.
  • FIG. 11 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the third embodiment is performing a cooling-dominant operation.
  • FIG. 11 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the third embodiment is performing a heating-dominant operation.
  • FIG. 11 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the third embodiment is performing a heating-dominant operation.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a refrigeration cycle device 100 according to embodiment 1.
  • the refrigeration cycle device 100 includes a heat source device A, a relay device B connected to the heat source device A by piping, and a user side unit C installed in an air-conditioned space V.
  • the refrigeration cycle device 100 is capable of simultaneous cooling and heating operation, in which each of the multiple user side units C can select and operate in cooling operation or heating operation.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a refrigeration cycle device 100 according to embodiment 1.
  • the refrigeration cycle device 100 includes a heat source device A, a relay device B connected to the heat source device A by piping, and a user side unit C installed in an air-conditioned space V.
  • the refrigeration cycle device 100 is capable of simultaneous cooling and heating operation, in which each of the multiple user side units C can select and operate in cooling operation or heating operation.
  • the user unit C performs heat exchange with the air in each air-conditioned space V to perform cooling or heating, but it may also be used for purposes other than air conditioning, such as a water heater or a refrigerator.
  • the refrigeration cycle device 100 may not only perform simultaneous cooling and heating operations, but may also perform mixed operations in which the user unit C performs water heating and refrigeration using a water heater or a refrigerator.
  • the refrigeration cycle apparatus 100 includes a heat source unit A, a relay unit B, a user side unit C, and a heat medium converter D.
  • the heat medium converter D is configured to use an external heat source E and to perform heat exchange between a heat medium carrying heat from the external heat source E and a refrigerant flowing through a refrigerant circuit of the refrigeration cycle apparatus 100.
  • the external heat source E and the heat medium converter D are connected by a circuit in which a heat medium different from the refrigerant flowing between the heat source unit A, the relay unit B, and the user side unit C circulates.
  • the heat medium converter D is configured to perform heat exchange between the heat medium having heat from the external heat source E and the refrigerant flowing into the heat medium converter D, and to function as a condenser or an evaporator by transferring heat or cold from the external heat source E to the refrigerant.
  • the heat source unit A is usually placed in a space outside a building, such as a rooftop, and supplies cold or hot heat to the user units C1 and C2 via the relay unit B.
  • the heat source unit A is not limited to being placed outdoors, and may be placed in an enclosed space, such as a machine room with a ventilation opening.
  • the heat source unit A may also be placed inside a building if the waste heat can be exhausted outside the building through an exhaust duct.
  • the heat source unit A may be placed inside a building as a water-cooled outdoor unit.
  • unused heat such as heat contained in river water, exhaust gas from equipment, wastewater, and waste heat generated by equipment can also be used as the external heat source E.
  • the heat medium such as water circulating through the heat medium circulation circuit 34 is heat exchanged with the refrigerant circulating through the heat source unit A, etc. in the heat medium heat exchanger 30.
  • the heat transfer medium converter D may be configured to circulate the liquid, such as well water, of the external heat source E directly through the heat transfer medium circuit 34, or may be configured to circulate an independent heat medium, different from the liquid of the external heat source E, through the heat transfer medium circuit 34.
  • an external heat source heat exchanger may be installed on the external heat source E side.
  • one heat transfer medium converter D and one external heat source E are installed, but multiple units may be installed. In addition, multiple types of heat sources may be used as the external heat source E.
  • the heat medium converter D can be used as an evaporator or a condenser is determined based on whether the temperature of the external heat source E is high or low, based on the evaporation temperature and condensation temperature of the refrigerant in the refrigeration cycle that circulates through the heat source unit A, relay unit B, user unit C, and heat medium converter D.
  • the heat medium converter D is used as an evaporator
  • the heat medium converter D is used as a condenser.
  • the heat medium converter D when a relatively high-temperature external heat source E such as geothermal energy or sunlight is used, the heat medium converter D should be used as an evaporator, and when a relatively low-temperature external heat source E such as well water, snow and ice, or melted snow is used, the heat medium converter D should be used as a condenser.
  • a relatively high-temperature external heat source E such as geothermal energy or sunlight
  • a relatively low-temperature external heat source E such as well water, snow and ice, or melted snow
  • the repeater B receives the refrigerant from the heat source unit A or the refrigerant that has passed through the heat medium converter D from the heat source unit A and distributes it to the multiple user units C.
  • Each of the multiple user units C is connected in parallel to the repeater B, and the repeater B can also merge the refrigerant that has flowed into some of the user units C and allow it to flow into the other user units C.
  • the repeater B has branching sections 10a, 10b, and 11 that branch and connect the liquid pipe 6, low pressure gas pipe 7a, and high pressure gas pipe 7b connected to the heat source unit A to the user units C.
  • the heat source unit A includes a compressor 1, a heat source side heat exchanger 3, first flow switching devices 2a and 2b that switch the connection between the suction side or discharge side of the compressor 1 and the heat source side heat exchanger 3, a heat source side flow rate control device 22 that controls the flow rate of refrigerant flowing to the heat source side heat exchanger 3, and an accumulator 29.
  • the heat source unit A further includes an auxiliary heat exchange unit G, which will be described later. Note that the auxiliary heat exchange unit G may not be installed in the heat source unit A.
  • the heat source unit A and the relay unit B are connected by a liquid pipe 6, a low-pressure gas pipe 7a, and a high-pressure gas pipe 7b.
  • the liquid pipe 6, the low-pressure gas pipe 7a, and the high-pressure gas pipe 7b are also called main pipes.
  • the high-pressure gas pipe 7b is a pipe that allows the high-pressure refrigerant compressed by the compressor 1 to flow directly from the heat source unit A.
  • the low-pressure gas pipe 7a is a pipe that allows the low-pressure gas refrigerant that has passed through the user unit C to flow into the heat source unit A, and is a pipe that returns the refrigerant from the relay unit B to the heat source unit A.
  • the liquid pipe 6 is a pipe that allows the refrigerant that has been heat exchanged in the user unit C or the heat source unit A and has become liquid or in a two-phase gas-liquid state to flow.
  • the compressor 1 draws in the refrigerant and compresses it to a high-temperature, high-pressure state, and is composed of, for example, an inverter compressor whose capacity can be controlled.
  • the discharge side of the compressor 1 is connected to the high-pressure gas pipe 7b and the first flow path switching devices 2a and 2b.
  • the high-pressure gas pipe 7b is one of the main pipes connecting the heat source unit A and the relay unit B, and is a pipe that supplies high-temperature, high-pressure gas refrigerant to the user unit C via the relay unit B.
  • the heat source unit A is equipped with two first flow path switching devices 2a and 2b, with the first flow path switching device 2a connected to the heat source side heat exchanger 3a and the first flow path switching device 2b connected to the heat source side heat exchanger 3b.
  • the first flow path switching devices 2a and 2b may be collectively referred to as the first flow path switching device 2.
  • the first flow path switching device 2 is exemplified as a four-way switching valve.
  • the heat source side heat exchanger 3 functions as an evaporator during heating operation and heating-dominated operation, and functions as a condenser or radiator during cooling operation and cooling-dominated operation.
  • the heat source side heat exchangers 3a and 3b may be collectively referred to as the heat source side heat exchanger 3.
  • the number of heat source side heat exchangers 3 is not limited to two, and may be one or three or more.
  • the heat source side heat exchanger 3 is connected in series with the heat source side flow control device 22.
  • An outdoor flow control device 3m is installed near the heat source side heat exchanger 3 to control the flow rate of a fluid such as outdoor air.
  • outdoor air is sent to the heat source side heat exchanger 3 by the outdoor flow control device 3m, where heat exchange with the refrigerant takes place.
  • the outdoor flow control device 3m is, for example, a fan that sends outdoor air to the heat source side heat exchanger 3.
  • an air-cooled outdoor heat exchanger is used as an example of the heat source side heat exchanger 3
  • an outdoor fan is used as an example of the outdoor flow control device 3m.
  • the heat source side heat exchanger 3 may be a water-cooled outdoor heat exchanger or the like as long as the refrigerant exchanges heat with another fluid.
  • the heat source side heat exchanger 3 exchanges heat between the refrigerant and the outdoor air, evaporating the refrigerant to gasify it or condensing it to liquefy it.
  • the outdoor flow control device 3m forms an air path for the air flowing through the heat source side heat exchanger 3.
  • the heat source side flow control device 22 is connected in series to the heat source side heat exchanger 3, and is provided between the liquid pipe 6 and the heat source side heat exchanger 3, and is configured to be freely opened and closed.
  • the heat source side flow control device 22 adjusts the flow rate of refrigerant flowing from the heat source side heat exchanger 3 to the liquid pipe 6 during cooling operation, and adjusts the flow rate of refrigerant flowing from the liquid pipe 6 to the heat source side heat exchanger 3 during heating operation.
  • the heat source side flow control device 22 is configured so that the flow resistance changes continuously.
  • the heat source side flow control device 22 also functions as an expansion valve, reducing the pressure of the flowing refrigerant.
  • the accumulator 29 is provided on the suction side of the compressor 1 and stores excess refrigerant due to differences between heating and cooling operation or excess refrigerant due to transient changes in operation.
  • the accumulator 29 is connected to the low-pressure gas pipe 7a and the first flow path switching device 2.
  • an auxiliary heat exchange unit G is installed in the heat source unit A.
  • the auxiliary heat exchange unit G includes a bypass pipe 17 that connects the liquid pipe 6 and the pipe 1b connected to the suction side of the compressor 1.
  • a bypass flow rate control device 15 is provided on the bypass pipe 17, and a refrigerant pipe heat exchanger 16 is provided to exchange heat between the refrigerants flowing through the bypass pipe 17 and the pipe 26 that connects the liquid pipe 6 and the heat source side flow rate control device 22.
  • the auxiliary heat exchange unit G may be installed outside the heat source unit A.
  • the relay B includes a low-pressure side branch 10a connected to the low-pressure gas pipe 7a, a high-pressure side branch 10b connected to the high-pressure gas pipe 7b, and a second branch 11 connected to the liquid pipe 6.
  • the low-pressure side branch 10a is connected to a first pipe 40 extending from the utilization side heat exchanger 5c of the utilization side unit C via a low-pressure side solenoid valve 9.
  • the high-pressure side branch 10b is connected to the first pipe 40 via a high-pressure side solenoid valve 8.
  • the low-pressure side solenoid valve 9 and the high-pressure side solenoid valve 8 are configured to select the connection between the utilization side unit C and the low-pressure gas pipe 7a or the high-pressure gas pipe 7b, respectively, and switch the connection depending on whether the utilization side heat exchanger 5c of the utilization side unit C functions as a condenser or an evaporator.
  • the low-pressure side solenoid valve 9 and the high-pressure side solenoid valve 8 may be collectively referred to as a second flow path switching device 10c.
  • the low-pressure side branch portion 10 a, the high-pressure side branch portion 10 b, and the second flow path switching device 10 c are collectively referred to as a first branch portion 10.
  • the low-pressure side solenoid valve 9 and the high-pressure side solenoid valve 8 are installed on each of the two pipes that branch off from the first pipe 40, but they may also be configured using, for example, a three-way valve. In other words, other structures may be used as long as the first pipe 40 of the user side unit C and the heat medium converter D is configured to connect to either the low-pressure gas pipe 7a or the high-pressure gas pipe 7b. In addition, it is preferable that the low-pressure side solenoid valve 9 and the high-pressure side solenoid valve 8 are configured so that they can be closed to prevent the refrigerant from flowing to any of the user side units C.
  • the second branching section 11 is connected to the second pipe 41 extending from the usage-side flow control device 4c of the usage-side unit C.
  • the second branching section 11 is also connected to the liquid pipe 6, and distributes the refrigerant from the liquid pipe 6 to multiple usage-side units C, merges the refrigerant from multiple usage-side units C and sends it to the liquid pipe 6, or merges the refrigerant from some of the usage-side units C and distributes it to other usage-side units C and the liquid pipe 6.
  • the user side units C are installed at positions where they can supply conditioned air to a space to be air-conditioned, such as a room, and supply cooled air or heated air to the space to be air-conditioned by using cold or hot heat from the heat source unit A supplied via the relay unit B.
  • the user side units C1 and C2 each have a built-in user side heat exchanger 5c1, 5c2, 5c3 and a user side flow control device 4c1, 4c2, 4c3.
  • the user side heat exchangers 5c1, 5c2, and 5c3 may be collectively referred to as the user side heat exchanger 5c
  • the user side flow control devices 4c1, 4c2, and 4c3 may be collectively referred to as the user side flow control device 4c.
  • Each of the utilization side heat exchangers 5c exchanges heat between the air supplied from the flow control device 5m and the refrigerant to generate heated air or cooled air to be supplied to the space to be air-conditioned.
  • the flow control device 5m forms an air path for the air flowing to the utilization side heat exchanger 5c.
  • the utilization side flow control device 4c is provided between the second branch section 11 of the relay unit B and the utilization side heat exchanger 5c, and is configured to be freely opened and closed. The utilization side flow control device 4c adjusts the flow rate of the refrigerant flowing into the utilization side heat exchanger 5c.
  • the heat medium relay unit D is for supplying heat or cold from an external heat source E to a refrigerant circulating in the refrigeration cycle apparatus 100.
  • the heat medium relay unit D has an intermediate heat exchanger 30 that exchanges heat between the refrigerant circulating in the heat source unit A, the relay unit B, and the user side unit C and a heat medium that carries heat from the external heat source E.
  • the heat medium converter D is installed in the liquid pipe 6.
  • the refrigerant flowing through the liquid pipe 6 passes through the heat medium heat exchanger 30 that the heat medium converter D has.
  • the heat medium that carries the heat or cold of the external heat source E is circulated through the heat medium circulation circuit 34 by the pump 31, and is sent from the external heat source E to the heat medium-intermediate heat exchanger 30.
  • the heat medium-intermediate heat exchanger 30 is, for example, a plate-type heat exchanger, inside which the refrigerant and heat medium circulate, and the heat or cold of the heat medium is transferred to the refrigerant.
  • the heat medium converter D is equipped with external heat source temperature sensors 32 and 33.
  • the external heat source temperature sensor 32 detects the temperature of the heat medium flowing into the heat medium-to-heat medium heat exchanger 30.
  • the external heat source temperature sensor 33 detects the temperature of the heat medium flowing out of the heat medium-to-heat medium heat exchanger 30.
  • the external heat source E is, for example, well water, melted snow, ice and snow, geothermal heat, solar light, etc., and the heat medium can be changed appropriately depending on the target heat source.
  • the external heat source E is well water stored in a large amount in a well underground
  • the well water is pumped up by a pump 31 to become a heat medium, and is caused to flow into the heat medium heat exchanger 30 by a heat medium circulation circuit 34.
  • the well water exchanges heat with the refrigerant, flows out of the heat medium heat exchanger 30, and its temperature increases.
  • the well water with the increased temperature is returned to the well.
  • the well water that serves as the external heat source E is stored in a large amount underground, and even if the temperature increases through the heat medium converter D and the water resistance is returned, the temperature of the external heat source E hardly changes.
  • the heat medium circulation circuit 34 may be configured to circulate an independent heat medium in the heat medium circulation circuit 34.
  • the heat medium circulation circuit 34 may be connected to an external heat exchanger F that exchanges heat between the external heat source E and the heat medium flowing through the heat medium circulation circuit 34.
  • the external heat exchanger F exchanges heat between the heat medium and the external heat source E.
  • the heat medium that has been heat exchanged in the external heat exchanger F is sent to the heat medium-to-heat medium heat exchanger 30 and is heat exchanged with the refrigerant circulating through the refrigerant circuit of the refrigeration cycle device 100.
  • the quality of the heat medium flowing through the heat medium circulation circuit 34 can be maintained, and the durability of the heat medium circulation circuit 34 and the heat medium converter D can be ensured, as opposed to pumping up well water as the heat medium, for example.
  • the configuration of the heat medium circulation circuit 34 may be changed as appropriate depending on what is used as the external heat source E.
  • the refrigeration cycle device 100 makes effective use of such an external heat source E to achieve energy savings.
  • the refrigeration cycle apparatus 100 is provided with a control device 50.
  • the control device 50 controls actuators and the like based on refrigerant pressure information, refrigerant and heat medium temperature information, outdoor temperature information, indoor temperature information, and the like detected by each sensor provided in the refrigeration cycle apparatus 100.
  • the control device 50 controls driving of the compressor 1, switching between the first flow path switching device 2 and the second flow path switching device 10c, driving of the fan motor of the outdoor flow control device 3m, driving of the fan motor of the flow control device 5m, and the pump 31 that sends the heat medium to the heat source side heat exchanger 3.
  • the control device 50 also controls the opening of the heat source side flow control device 22, the utilization side flow control device 4c, and the bypass flow control device 15.
  • the control device 50 includes a memory 50a in which information for determining each control value is stored.
  • the control device 50 may be configured as hardware such as a control circuit that realizes its functions.
  • the control device 50 may also be configured as a software program stored in a storage unit such as a semiconductor memory, and a calculation device 50b such as a microcomputer or CPU (Central Processing Unit) that executes the software program.
  • the control device 50 is shown independently, but it may be provided in the heat source unit A, the relay unit B, the utilization side unit C, etc.
  • the number of control devices 50 may be one or more than three.
  • the control device 50 is connected to each device to be controlled by wire or wirelessly.
  • the control device 50 is not shown in FIG. 3 and subsequent figures.
  • the operation of the refrigeration cycle apparatus 100 includes a cooling operation and a heating operation.
  • the cooling operation includes a cooling-dominated operation in which a heating operation is performed in some of the user-side units C.
  • the heating operation includes a heating-dominated operation in which a cooling operation is performed in some of the user-side units C.
  • Cooling operation is an operation mode in which all user side units C are either in cooling operation or stopped.
  • Heating operation is an operation mode in which all user side units C are either in heating operation or stopped.
  • Cooling-dominated operation is an operation mode in which heating or cooling can be selected for each indoor unit, and the cooling load is greater than the heating load.
  • Cooling-dominated operation is an operation mode in which the heat source side heat exchanger 3 is connected to the discharge side of the compressor 1 and acts as a condenser.
  • Heating-dominated operation is an operation mode in which heating or cooling can be selected for each indoor unit, and the heating load is greater than the cooling load.
  • Heating-dominated operation is an operation mode in which the heat source side heat exchanger 3 is connected to the suction side of the compressor 1 and acts as an evaporator.
  • FIG. 3 is an explanatory diagram of the flow of the refrigerant when the refrigeration cycle apparatus 100 according to the embodiment 1 is in a full cooling operation.
  • Fig. 3 shows a state when all the user side units C are in a cooling operation, and all the user side heat exchangers 5c function as evaporators.
  • the control device 50 switches the first flow path switching device 2a so that the refrigerant discharged from the compressor 1 flows to the heat source side heat exchanger 3.
  • the low pressure side solenoid valves 9c1, 9c2, and 9c3 connected to the user side unit C1 are opened, and the high pressure side solenoid valves 8c1, 8c2, and 8c3 are closed.
  • the closed valves of the second flow path switching device 10c are shown in black.
  • the thick solid lines indicate that high pressure refrigerant is circulating
  • the thin solid lines indicate that low pressure refrigerant is circulating
  • the thick dashed lines indicate that medium pressure refrigerant is circulating.
  • the parts of the refrigeration cycle circuit indicated by thin dashed lines are not circulated by refrigerant.
  • the low-temperature, low-pressure gaseous refrigerant is compressed by the compressor 1 and discharged as a high-temperature, high-pressure gaseous refrigerant.
  • the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3 via the first flow switching device 2.
  • the refrigerant discharged from the compressor 1 and flowing into the heat source side heat exchanger 3 is cooled while heating the outdoor air, and becomes a medium-temperature, high-pressure liquid refrigerant or a gas-liquid two-phase refrigerant.
  • the medium-temperature, high-pressure refrigerant that flows out of the heat source side heat exchanger 3 flows out of the heat source unit A and flows into the liquid pipe 6.
  • the refrigerant that flows into the liquid pipe 6 is further cooled by the heat medium heat exchanger 30 installed on the liquid pipe 6. This condenses the refrigerant to a temperature equivalent to the lower temperature of the external heat source E, ensures the enthalpy difference between the refrigerant before and after condensation, and makes it possible to further improve the cooling capacity.
  • the refrigerant then heats up while cooling the indoor air, becoming a low-temperature, low-pressure gaseous refrigerant.
  • the low-temperature, low-pressure gaseous refrigerant flowing out of the user-side heat exchangers 5c1, 5c2, and 5c3 passes through the low-pressure solenoid valves 9c1, 9c2, and 9c3, respectively, and flows into the low-pressure branch 10a of the first branch 10.
  • the low-temperature, low-pressure gaseous refrigerant that joins at the low-pressure branch 10a flows into the heat source unit A from the low-pressure gas pipe 7a, passes through the accumulator 29, is sucked into the compressor 1, and is compressed.
  • FIG. 4 is an explanatory diagram of the flow of the refrigerant when the refrigeration cycle apparatus 100 according to the embodiment 1 is in full heating operation.
  • Fig. 3 shows a state when all the user side units C are in heating operation, and all the user side heat exchangers 5c function as condensers.
  • the control device 50 switches the first flow path switching device 2a so that the refrigerant discharged from the compressor 1 flows out of the heat source unit A into the high-pressure gas pipe 7b.
  • the high-pressure side solenoid valves 8c1, 8c2, and 8c3 connected to the user side unit C1 are opened, and the low-pressure side solenoid valves 9c1, 9c2, and 9c3 are closed.
  • the first flow path switching device 2a is switched to connect the heat source side heat exchanger 3 and the suction side of the compressor 1.
  • the low-temperature, low-pressure gaseous refrigerant is compressed by the compressor 1 and discharged as high-temperature, high-pressure gaseous refrigerant.
  • the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 leaves the heat source unit A and flows into the high-pressure gas pipe 7b, and flows from the first branch 10 through the first piping 40c1, 40c2, and 40c3 into the user side unit C.
  • the refrigerant that flows into the user side unit C is cooled in the user side heat exchanger 5c while heating the indoor air, and becomes a medium-temperature, high-pressure liquid refrigerant or a two-phase gas-liquid refrigerant.
  • the medium-temperature, high-pressure refrigerant that flows out of the user side heat exchanger 5c is depressurized by the user side flow control device 4c and becomes a low-temperature, low-pressure two-phase gas-liquid state.
  • the refrigerant that flows into the liquid pipe 6 is heated by the heat medium heat exchanger 30 provided on the liquid pipe 6. As a result, the refrigerant flowing through the liquid pipe 6 can be evaporated using the external heat source E.
  • the refrigerant in the liquid pipe 6 flows into the heat source unit A, passes through the heat source side flow control device 22, and flows into the heat source side heat exchanger 3.
  • the refrigerant is also heated in the heat source side heat exchanger 3, becoming a low-temperature, low-pressure gas refrigerant. Because the refrigerant has already been heated in the heat medium heat exchanger 30, the heat exchange capacity of the heat source side heat exchanger 3 can also be reduced.
  • the heat medium heat exchanger 30 and the heat source side heat exchanger 3 are connected in series on the refrigeration cycle circuit, and the heat medium heat exchanger 30 functions to supplement the capacity of the heat source side heat exchanger 3.
  • the low-temperature, low-pressure gaseous refrigerant that flows out of the heat source side heat exchanger 3 passes through the first flow switching device 2 and flows into the pipe 1b, passes through the accumulator 29, and is sucked into the compressor 1 and compressed.
  • FIG. 5 is an explanatory diagram of the flow of refrigerant when the refrigeration cycle apparatus 100 according to embodiment 1 is operating mainly in cooling mode.
  • Fig. 5 illustrates a state in which the user side units C1 and C2 among the user side units C are operating in cooling mode and the user side unit C3 is operating in heating mode, with the user side heat exchangers 5c1 and 5c2 functioning as evaporators and the user side heat exchanger 5c3 functioning as a condenser.
  • the low-temperature, low-pressure gaseous refrigerant is compressed by the compressor 1 and discharged as a high-temperature, high-pressure gaseous refrigerant.
  • a portion of the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 flows out of the heat source unit A and into the high-pressure gas pipe 7b, and the other portion flows into the heat source side heat exchanger 3 via the first flow switching device 2.
  • the refrigerant discharged from the compressor 1 and flowing into the high-pressure gas pipe 7b flows from the high-pressure side branching section 10b into the user side unit C3 operating in heating mode, and is cooled while heating the outdoor air in the user side heat exchanger 5c3, becoming a medium-temperature, high-pressure liquid refrigerant or a gas-liquid two-phase refrigerant.
  • the refrigerant that leaves the user side heat exchanger 5c3 is decompressed by the user side flow control device 4c3 and becomes a low-temperature, low-pressure gas-liquid two-phase state. Note that the user side flow control device 4c3 does not need to decompress depending on the state of the refrigerant.
  • the refrigerant that flows into the heat source side heat exchanger 3 is cooled while heating the outdoor air, becoming a medium temperature and high pressure liquid refrigerant or a gas-liquid two-phase refrigerant.
  • the medium temperature and high pressure refrigerant that flows out of the heat source side heat exchanger 3 flows out of the heat source unit A and into the liquid pipe 6.
  • the refrigerant that flows into the liquid pipe 6 is further cooled by the inter-heat medium heat exchanger 30 provided on the liquid pipe 6.
  • the inter-heat medium heat exchanger 30 and the heat source side heat exchanger 3 are connected in series on the refrigeration cycle circuit, and the inter-heat medium heat exchanger 30 functions to supplement the capacity of the heat source side heat exchanger 3.
  • the flow path through which the refrigerant flows in this order from the heat source unit A to the heat medium converter D is sometimes called the auxiliary refrigerant flow path.
  • the refrigerant is shown to flow only through the heat source-side heat exchanger 3b, and the refrigeration cycle device 100 can perform cooling-dominated operation using only the heat source-side heat exchanger 3b by using the heat medium converter D.
  • the refrigerant condensed in the heat exchanger 30 installed on the liquid pipe 6 flows into the second branch 11 of the relay B.
  • the refrigerant flowing in from the user unit C3 and the refrigerant flowing in from the liquid pipe 6 join together and flow into the second pipes 41c1, 41c2 that are branched and connected to the user units C1 and C2 that are operating in cooling mode.
  • the refrigerant that flows through the second pipes 41c1, 41c2 flows into the user side flow control devices 4c1, 4c2 of the user side units C1, C2, where it is throttled, expanded and reduced in pressure, becoming a low-temperature, low-pressure two-phase gas-liquid state.
  • the low-temperature, low-pressure gaseous refrigerant flowing out of the user-side heat exchangers 5c1 and 5c2 passes through the low-pressure solenoid valves 9c1 and 9c2, respectively, and flows into the low-pressure branch 10a of the first branch 10.
  • the low-temperature, low-pressure gaseous refrigerant that joins at the low-pressure branch 10a flows into the heat source unit A from the low-pressure gas pipe 7a, passes through the accumulator 29, is sucked into the compressor 1, and is compressed.
  • FIG. 6 is an explanatory diagram of the flow of the refrigerant when the refrigeration cycle apparatus 100 according to the embodiment 1 is in heating-dominated operation.
  • Fig. 6 illustrates a state in which the user-side units C1 and C2 among the user-side units C are in heating operation and the user-side unit C3 is in cooling operation, in which the user-side heat exchangers 5c1 and 5c2 function as condensers and the user-side heat exchanger 5c3 functions as an evaporator.
  • the control device 50 switches the first flow path switching device 2a so that the refrigerant discharged from the compressor 1 flows from the heat source unit A to the high-pressure gas pipe 7b.
  • the high-pressure side solenoid valves 8c1, 8c2 connected to the user side units C1 and C2 performing heating operation are opened, and the low-pressure side solenoid valves 9c1, 9c2 are closed.
  • the high-pressure side solenoid valve 8c3 connected to the user side unit C3 performing cooling operation is closed, and the low-pressure side solenoid valve 9c3 is closed.
  • the first flow path switching device 2a is switched to connect the heat source side heat exchanger 3 to the suction side of the compressor 1.
  • the low-temperature, low-pressure gaseous refrigerant is compressed by the compressor 1 and discharged as a high-temperature, high-pressure gaseous refrigerant.
  • the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 leaves the heat source unit A and flows into the high-pressure gas pipe 7b, and flows from the first branch 10 through the first piping 40c1, 40c2 into the user-side units C1 and C2.
  • the refrigerant that flows into the user-side units C1 and C2 is cooled while heating the indoor air in the user-side heat exchanger 5c, and becomes a medium-temperature, high-pressure liquid refrigerant or a gas-liquid two-phase refrigerant.
  • the medium-temperature, high-pressure refrigerant that flows out of each of the user-side heat exchangers 5c1, 5c2 is depressurized by each of the user-side flow control devices 4c1, 4c2, and becomes a low-temperature, low-pressure gas-liquid two-phase state. Note that the user-side flow control devices 4c1, 4c2 do not need to depressurize depending on the state of the refrigerant.
  • the low-temperature, low-pressure two-phase gas-liquid refrigerant flowing out of the user-side flow control devices 4c1 and 4c2 passes through the second branch 11, with some flowing from the relay unit B into the liquid pipe 6 and the other flowing into the second pipe 41c3 connected to the user-side unit C2 performing cooling operation.
  • the refrigerant flowing into the second pipe 41c3 is depressurized by the user-side flow control device 4c3, and evaporates in the user-side heat exchanger 5c3 while cooling the indoor air, becoming a low-temperature, low-pressure gas refrigerant.
  • the refrigerant leaving the user-side unit C3 passes through the first branch 10 and flows into the heat source unit A from the low-pressure gas pipe 7a.
  • the refrigerant that flows into the liquid pipe 6 is heated by the heat exchanger 30 installed on the liquid pipe 6. As a result, the refrigerant flowing through the liquid pipe 6 can be evaporated using the external heat source E.
  • the refrigerant in the liquid pipe 6 flows into the heat source unit A and into the heat source side heat exchanger 3 via the heat source side flow control device 22.
  • the refrigerant is also heated in the heat source side heat exchanger 3, becoming a low-temperature, low-pressure gas refrigerant. Since the refrigerant has already been heated in the heat medium heat exchanger 30, the heat exchange capacity of the heat source side heat exchanger 3 can be reduced.
  • the refrigerant is shown to flow only through the heat source side heat exchanger 3b, and the refrigeration cycle device 100 can perform heating-dominated operation using only the heat source side heat exchanger 3b by using the heat medium converter D.
  • the heat medium heat exchanger 30 and the heat source side heat exchanger 3 are connected in series on the refrigeration cycle circuit, and the heat medium heat exchanger 30 functions to supplement the capacity of the heat source side heat exchanger 3.
  • the low-temperature, low-pressure gaseous refrigerant that flows out of the heat source side heat exchanger 3 flows into the pipe 1b via the first flow switching device 2.
  • the refrigerant that flows out of the relay unit B and into the heat source unit A via the low-pressure gas pipe 7a also flows into the pipe 1b, passes through the accumulator 29, and is sucked into the compressor 1 and compressed.
  • the refrigeration cycle apparatus 100 includes a heat source unit A having a compressor 1 that compresses a refrigerant, a heat source side heat exchanger 3, and a first flow path switching device 2 that switches a connection between the heat source side heat exchanger 3 and the suction side or the discharge side of the compressor 1, a high-pressure gas pipe 7b that is connected to the discharge side of the compressor 1 and through which the refrigerant flows out of the heat source unit A, a low-pressure gas pipe 7a that is connected to the suction side of the compressor 1 and through which the refrigerant flows into the heat source unit A, a user side unit C having a user side heat exchanger 5c and a user side flow control device 4c that controls the flow rate of the refrigerant flowing through the user side heat exchanger 5c, a heat medium converter D having an inter-heat medium heat exchanger 30 that exchanges heat between the refrigerant and a heat medium that carries heat from an
  • the utilization side heat exchanger 5c is configured to be selectively connectable to the high pressure gas pipe 7b or the low pressure gas pipe 7a, and the utilization side flow rate control device 4c is connected to the liquid pipe 6.
  • the heat medium heat exchanger 30 is connected to at least the liquid pipe 6, and replaces or assists the function of the heat source side heat exchanger 3.
  • the refrigeration cycle device 100 has three main pipes, namely, a low-pressure gas pipe 7a, a high-pressure gas pipe 7b, and a liquid pipe 6, extending from the heat source unit A, and can use an external heat source E to supplement the heat source side heat exchanger 3.
  • the heat medium heat exchanger 30 is connected in series with the heat source side heat exchanger 3 by piping, and performs the same function as the heat source side heat exchanger 3 functioning as an evaporator or condenser.
  • the heat medium heat exchanger 30 can be used as a substitute for the heat source side heat exchanger 3 without using the heat source side heat exchanger 3.
  • FIG. 7 is a Mollier diagram of the refrigeration cycle apparatus 100 according to the first embodiment during operation.
  • FIG. 7(a) shows the Mollier diagram during cooling operation
  • FIG. 7(b) shows the Mollier diagram during heating operation.
  • the Mollier diagram of the refrigeration cycle apparatus 100 according to the first embodiment is shown by a thick solid line.
  • the heat source side heat exchanger 3 functions as a condenser during cooling operation
  • the heat medium heat exchanger 30 also functions as a condenser, thereby making it possible to increase the enthalpy difference of the refrigerant before and after passing through the condenser.
  • the heat source unit A of the refrigeration cycle device 100 includes a first flow path to which the heat source side heat exchanger 3 and the heat source side flow control device 22 that controls the flow rate of the refrigerant flowing through the heat source side heat exchanger 3 are connected.
  • the first flow path switching device 2 is configured to be able to switch the connection between the first flow path and the discharge side or the suction side of the compressor 1.
  • the heat medium heat exchanger 30 is connected in series on the liquid pipe 6.
  • the refrigeration cycle apparatus 100 can heat or cool the refrigerant flowing in the liquid pipe 6 by the heat medium converter D using the heat or cold of the external heat source E, and the external heat source E can be used to assist the heat source side heat exchanger 3.
  • the heat exchange capacity of the refrigeration cycle apparatus 100 is improved, and it becomes possible to operate with the heat exchange capacity of the heat source side heat exchanger 3 reduced, enabling further energy-saving operation.
  • Embodiment 2 The refrigeration cycle apparatus 100 according to the second embodiment is obtained by modifying the circuit structure of the refrigeration cycle apparatus 100 according to the first embodiment. Specifically, in the first embodiment, the heat medium relay unit D is connected in series to the user side unit C and the heat source unit A, whereas in the second embodiment, the heat medium relay unit D is connected in parallel to the heat source unit A. The following description will focus on the differences between the second embodiment and the first embodiment.
  • FIG. 8 is a circuit diagram showing an example of a refrigeration cycle apparatus 100 according to embodiment 2.
  • the heat medium converter D is connected not only to the liquid pipe 6 but also to the low-pressure gas pipe 7a and the high-pressure gas pipe 7b.
  • the heat medium converter D includes an intermediate heat exchanger 30, as in embodiment 1, and the intermediate heat exchanger 30 is connected to an external heat source E.
  • the first pipe 40d and the second pipe 41d extend from the intermediate heat exchanger 30, and the refrigerant is configured to flow through the intermediate heat exchanger 30.
  • the first pipe 40d1 branches and is connected to the high pressure gas pipe 7b or the low pressure gas pipe 7a so that the refrigerant can be selected.
  • the second pipe 41d is connected to the liquid pipe 6.
  • the second pipe 41d is equipped with a refrigerant flow control device 4d.
  • the flow path in which the heat medium converter D is installed may be referred to as the second flow path 60.
  • the second flow path 60 is a flow path that connects the main low pressure gas pipe 7a or the high pressure gas pipe 7b to the liquid pipe 6.
  • the connection between the second flow path 60 and the low pressure gas pipe 7a or the high pressure gas pipe 7b is switched by opening and closing the low pressure side solenoid valve 9d and the high pressure side solenoid valve 8d.
  • the flow rate of the refrigerant flowing through the second flow path 60 is controlled by the refrigerant flow control device 4d.
  • the refrigerant flow control device 4d may be built into the heat medium converter D.
  • FIG. 9 is an explanatory diagram of the flow of the refrigerant when the refrigeration cycle apparatus 100 according to the second embodiment is in a full cooling operation.
  • Fig. 9 illustrates a state when all the user side units C are in a cooling operation, and all the user side heat exchangers 5c function as evaporators.
  • the control device 50 switches the first flow path switching device 2a so that the refrigerant discharged from the compressor 1 flows to the heat source side heat exchanger 3.
  • the low pressure side solenoid valves 9c1, 9c2, and 9c3 connected to the user side unit C1 are opened, and the high pressure side solenoid valves 8c1, 8c2, and 8c3 are closed.
  • the high pressure side solenoid valve 8d of the second flow path 60 in which the heat medium converter D is installed is opened and the low pressure side solenoid valve 9d is closed, the refrigerant discharged from the compressor 1 flows into the second flow path 60 in which the heat medium converter D is installed via the high pressure gas pipe 70b.
  • the high pressure side solenoid valve 8d and the low pressure side solenoid valve 9d of the second flow path 60 are displayed as closed valves in black.
  • the low-temperature, low-pressure gaseous refrigerant is compressed by the compressor 1 and discharged as high-temperature, high-pressure gaseous refrigerant.
  • the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 flows into the first flow path 20 in which the heat source side heat exchanger 3 and the heat source side flow control device 22 are installed via the first flow path switching device 2.
  • the refrigerant discharged from the compressor 1 and flowing into the heat source side heat exchanger 3 is cooled while heating the outdoor air, and becomes a medium-temperature, high-pressure liquid refrigerant or a gas-liquid two-phase refrigerant.
  • the medium-temperature, high-pressure refrigerant flowing out of the heat source side heat exchanger 3 flows out of the heat source unit A and into the liquid pipe 6.
  • the refrigerant discharged from the compressor 1 branches off from the pipe 1a, flows out of the heat source unit A, and flows into the second flow path 60 via the high-pressure gas pipe 7b.
  • the refrigerant that flows into the second flow path 60 is condensed in the heat medium heat exchanger 30, and flows into the liquid pipe 6 via the refrigerant flow control device 4d.
  • the refrigerant that has passed through the second flow path 60 and the refrigerant that has passed through the heat source side heat exchanger 3 join here and flow into the second branch section 11.
  • the refrigerant that has flowed into the second branch section 11 returns to the heat source unit A via the user side unit C and the relay unit B, as in the full cooling operation in embodiment 1.
  • the intermediate heat exchanger 30 is arranged in parallel with the heat source side heat exchanger 3.
  • the refrigeration cycle apparatus 100 according to the second embodiment can flow refrigerant to the intermediate heat exchanger 30 through a path independent of the heat source side heat exchanger 3, thereby increasing the condenser capacity.
  • the refrigerant may be sent only to the second flow path 60, and the heat source side flow control device 22 may be closed so that the refrigerant is not sent to the heat source side heat exchanger 3.
  • FIG. 10 is an explanatory diagram of the flow of the refrigerant when the refrigeration cycle apparatus 100 according to the second embodiment is in full heating operation.
  • Fig. 10 illustrates a state when all the user side units C are in heating operation, and all the user side heat exchangers 5c function as condensers.
  • the control device 50 switches the first flow path switching device 2a so that the refrigerant discharged from the compressor 1 flows out of the heat source unit A into the high-pressure gas pipe 7b.
  • the high-pressure side solenoid valves 8c1, 8c2, and 8c3 connected to the user side unit C1 are opened, and the low-pressure side solenoid valves 9c1, 9c2, and 9c3 are closed.
  • the first flow path switching device 2a is switched to connect the heat source side heat exchanger 3 and the suction side of the compressor 1.
  • compressor 1 When compressor 1 starts operating, low-temperature, low-pressure gaseous refrigerant is compressed by compressor 1 and discharged as high-temperature, high-pressure gaseous refrigerant. As in the full heating operation of embodiment 1, the high-temperature, high-pressure gaseous refrigerant discharged from compressor 1 leaves heat source unit A and flows into high-pressure gas pipe 7b, then flows from first branch 10 through first piping 40c1, 40c2, and 40c3 into user unit C. The refrigerant that flows into user unit C is condensed and decompressed, flows out of relay unit B through second branch 11, and flows into liquid pipe 6.
  • the intermediate heat exchanger 30 is arranged in parallel with the heat source side heat exchanger 3.
  • the refrigeration cycle apparatus 100 according to the second embodiment can flow refrigerant to the intermediate heat exchanger 30 through a path independent of the heat source side heat exchanger 3, thereby increasing the evaporator capacity.
  • the heat medium converter D has a high capacity as an evaporator
  • the refrigerant may be sent only to the second flow path 60, and the heat source side flow control device 22 may be closed so that the refrigerant is not sent to the heat source side heat exchanger 3. In this way, energy-saving operation can be achieved by partially using the cold energy of the external heat source E to evaporate the refrigerant.
  • FIG. 11 is an explanatory diagram of the flow of refrigerant when the refrigeration cycle apparatus 100 according to embodiment 2 is operating mainly in cooling mode.
  • Fig. 11 illustrates a state in which the user side units C1 and C2 among the user side units C are operating in cooling mode and the user side unit C3 is operating in heating mode, with the user side heat exchangers 5c1 and 5c2 functioning as evaporators and the user side heat exchanger 5c3 functioning as a condenser.
  • the control device 50 switches the first flow path switching device 2a so that the refrigerant discharged from the compressor 1 flows to the heat source side heat exchanger 3.
  • the low pressure side solenoid valves 9c1 and 9c2 connected to the utilization side units C1 and C2 are opened, and the low pressure side solenoid valve 9c3 connected to the utilization side unit C3 is closed.
  • the high pressure side solenoid valves 8c1 and 8c2 are closed, and the high pressure side solenoid valve 8c3 is open.
  • the high-pressure side solenoid valve 8d installed in the second flow path 60 is opened so that the refrigerant flowing in the high-pressure gas pipe 7b also branches off and flows in the second flow path 60 in which the heat medium converter D is installed.
  • the low-temperature, low-pressure gaseous refrigerant is compressed by the compressor 1 and discharged as a high-temperature, high-pressure gaseous refrigerant.
  • a portion flows out of the heat source unit A and enters the high-pressure gas pipe 7b, and the other portion flows into the heat source side heat exchanger 3 via the first flow path switching device 2.
  • a portion of the refrigerant discharged from the compressor 1 and flowing into the high-pressure gas pipe 7b flows from the high-pressure side branch 10b into the user side unit C3, which is operating in heating mode, as in the cooling-dominated operation in embodiment 1.
  • the remaining portion of the refrigerant that flowed into the high-pressure gas pipe 7b flows into the second flow path 60 and is condensed in the heat medium heat exchanger 30.
  • a portion of the refrigerant flowing into the high-pressure gas pipe 7b is condensed in the heat medium converter D by utilizing the cold heat of the external heat source E.
  • the refrigerant that flows through the second flow path 60 merges with the refrigerant that flows through the first flow path 20, where the heat source side heat exchanger 3 is installed, in the liquid pipe 6, and flows into the second branch section 11 of the relay unit B.
  • the refrigerant that flows into the second branch 11 is a mixture of refrigerant condensed in the heat source heat exchanger 3, the heat medium heat exchanger 30, and the user side heat exchanger 5c3 in heating operation, and flows into the user side units C1 and C2 in cooling operation.
  • the refrigerant that flows out of the user side units C1 and C2 passes through the low pressure side solenoid valves 9c1 and 9c2, respectively, and flows into the low pressure side branch 10a of the first branch 10.
  • the low temperature, low pressure gaseous refrigerant that flows into the low pressure side branch 10a flows into the heat source unit A from the low pressure gas pipe 7a, passes through the accumulator 29, is sucked into the compressor 1, and is compressed.
  • the heat medium heat exchanger 30 is arranged in parallel with the heat source side heat exchanger 3 even during cooling-dominated operation, just as during full cooling operation, and the capacity of the condenser can be increased.
  • FIG. 12 is an explanatory diagram of the flow of the refrigerant when the refrigeration cycle apparatus 100 according to the embodiment 2 is in heating-dominated operation.
  • Fig. 12 illustrates a state in which the user-side units C1 and C2 among the user-side units C are in heating operation and the user-side unit C3 is in cooling operation, in which the user-side heat exchangers 5c1 and 5c2 function as condensers and the user-side heat exchanger 5c3 functions as an evaporator.
  • the control device 50 switches the first flow path switching device 2a so that the refrigerant discharged from the compressor 1 flows from the heat source unit A to the high-pressure gas pipe 7b.
  • the high-pressure side solenoid valves 8c1, 8c2 connected to the user side units C1 and C2 performing heating operation are opened, and the low-pressure side solenoid valves 9c1, 9c2 are closed.
  • the high-pressure side solenoid valve 8c3 connected to the user side unit C3 performing cooling operation is closed, and the low-pressure side solenoid valve 9c3 is closed.
  • the first flow path switching device 2a is switched to connect the heat source side heat exchanger 3 to the suction side of the compressor 1.
  • the low-temperature, low-pressure gaseous refrigerant is compressed by the compressor 1 and discharged as a high-temperature, high-pressure gaseous refrigerant.
  • the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 leaves the heat source unit A and flows into the high-pressure gas pipe 7b, and flows from the first branch 10 through the first piping 40c1, 40c2 into the user-side units C1 and C2.
  • the refrigerant that flows into the user-side units C1 and C2 is cooled while heating the indoor air in the user-side heat exchanger 5c, and becomes a medium-temperature, high-pressure liquid refrigerant or a gas-liquid two-phase refrigerant.
  • the medium-temperature, high-pressure refrigerant that flows out of each of the user-side heat exchangers 5c1, 5c2 is depressurized by each of the user-side flow control devices 4c1, 4c2, and becomes a low-temperature, low-pressure gas-liquid two-phase state. Note that the user-side flow control devices 4c1, 4c2 do not need to depressurize depending on the state of the refrigerant.
  • the low-temperature, low-pressure two-phase gas-liquid refrigerant flowing out of the user-side flow control devices 4c1 and 4c2 passes through the second branch 11, with some flowing from the relay unit B into the liquid pipe 6 and the other flowing into the second pipe 41c3 connected to the user-side unit C2 performing cooling operation.
  • the refrigerant flowing into the second pipe 41c3 is depressurized by the user-side flow control device 4c3, and evaporates in the user-side heat exchanger 5c3 while cooling the indoor air, becoming a low-temperature, low-pressure gas refrigerant.
  • the refrigerant leaving the user-side unit C3 passes through the first branch 10 and flows into the heat source unit A from the low-pressure gas pipe 7a.
  • the refrigerant that flows into the liquid pipe 6 flows into the first flow path 20 in which the heat source side heat exchanger 3 is installed, and the rest flows into the second flow path 60 in which the heat medium converter D is installed.
  • the refrigerant flowing through the liquid pipe 6 branches into the heat source side heat exchanger 3 and the intermediate heat exchanger 30, and is evaporated in each.
  • the refrigerant that flowed through the intermediate heat exchanger 30 and the refrigerant that passed through the first branch section 10 from the user side unit C3 join in the low pressure gas pipe 7a, and the refrigerant that joined in the low pressure gas pipe 7a joins with the refrigerant that passed through the heat source side heat exchanger 3 in the pipe 1b, and is sucked into the compressor 1.
  • the intermediate heat exchanger 30 is arranged in parallel with the heat source side heat exchanger 3 even in the heating-dominated operation, as in the full heating operation, and the capacity of the evaporator can be increased.
  • the intermediate pressure refrigerant discharged from the compressor 1 and passing through the user side units C1 and C2 in heating operation passes through the second branching section 11 and is branched into three, the user side unit C3 in cooling operation, the heat source side heat exchanger 3, and the heat medium converter D, and evaporated, and finally merges and is sucked into the compressor 1.
  • the refrigeration cycle device 100 can flow the refrigerant to the intermediate heat exchanger 30 through a path independent of the heat source side heat exchanger 3, and the capacity of the evaporator can be increased.
  • the refrigerant may be sent only to the second flow path 60, and the heat source side flow control device 22 may be closed so that the refrigerant is not sent to the heat source side heat exchanger 3. In this way, energy-saving operation can be achieved by partially using the cold heat from external heat source E to evaporate the refrigerant.
  • the heat medium relay unit D of the refrigeration cycle apparatus 100 according to the second embodiment includes a refrigerant flow rate control device 4d that controls the flow rate of the refrigerant flowing through the intermediate heat exchanger 30.
  • the intermediate heat exchanger 30 is selectively connected to a high pressure gas pipe 7b or a low pressure gas pipe 7a.
  • the refrigerant flow rate control device 4d is connected to a liquid pipe 6.
  • the refrigerant that has passed through the first flow path 20 and the second flow path 60 join together and flow into the user side unit.
  • the refrigerant that flows through the heat source unit A and the user side unit C in this order branches from the liquid pipe 6 into the first flow path 20 and the second flow path 60, and the refrigerant that has passed through the first flow path 20 and the refrigerant that has passed through the low pressure gas pipe 7a from the second flow path 60 join together and flow into the suction side of the compressor 1.
  • the refrigerant discharged from the compressor 1 branches into a flow path that passes through the first flow path 20 and the high pressure gas pipe 7b, the refrigerant that flows through the high pressure gas pipe 7b branches into the second flow path 60 and a heating flow path in which the user side unit C3 in which the user side heat exchanger 5c3 functions as a condenser is installed, and the refrigerant that has passed through the first flow path 20, the refrigerant that has passed through the second flow path 60, and the refrigerant that has passed through the heating flow path join together and flow into the cooling flow path in which the user side units C1 and C2 in which the user side heat exchangers 5c1 and 5c2 function as evaporators are installed.
  • the refrigerant that flows through the cooling flow path passes through the low-pressure gas pipe 7a and flows into the suction side of the compressor 1.
  • the refrigeration cycle device 100 can heat or cool the refrigerant using the heat or cold of the external heat source E by the heat medium converter D, as in the first embodiment, and can use the external heat source E to supplement the heat source side heat exchanger 3.
  • the heat exchange capacity of the refrigeration cycle device 100 is improved, and it is possible to operate the refrigeration cycle device 100 with the heat exchange capacity of the heat source side heat exchanger 3 reduced, enabling further energy-saving operation.
  • the heat medium-to-heat medium heat exchanger 30 is installed in parallel with the heat source side heat exchanger 3, so that not only can the heat medium-to-heat medium heat exchanger 30 supplement the capacity of the heat source side heat exchanger 3, but the heat medium-to-heat medium heat exchanger 30 can also be used as a substitute for the heat source side heat exchanger 3.
  • the heat source side flow control device 22 is closed to not flow the refrigerant through the first flow path 20, and the refrigerant is flowed through the second flow path 60, so that the heat medium-to-heat medium heat exchanger 30 can be used as a substitute for the heat source side heat exchanger 3.
  • Embodiment 3 The refrigeration cycle apparatus 100 according to the third embodiment is different from the refrigeration cycle apparatus 100 according to the second embodiment in that the connection position of the heat medium relay unit D is changed.
  • the heat medium relay unit D is directly connected to three main pipes (the liquid pipe 6, the low-pressure gas pipe 7a, and the high-pressure gas pipe 7b), but in the third embodiment, the heat medium relay unit D is connected to a relay unit B.
  • the following description will focus on the differences between the second embodiment and the first embodiment.
  • FIG. 13 is a circuit diagram showing an example of a refrigeration cycle apparatus 100 according to the third embodiment.
  • the user side units C1, C2, C3 and the heat medium converter D are connected in parallel to the relay unit B.
  • the first pipe 40d of the heat medium converter D is connected to the first branch 10
  • the second pipe 41d of the heat medium converter D is connected to the second branch 11.
  • this is the same as in the second embodiment in that the heat medium converter D is connected to the circuit in parallel with the heat source unit A and the user side unit C.
  • FIG. 14 is an explanatory diagram of the refrigerant flow when the refrigeration cycle apparatus 100 according to embodiment 3 is in full cooling operation.
  • FIG. 15 is an explanatory diagram of the refrigerant flow when the refrigeration cycle apparatus 100 according to embodiment 3 is in full heating operation.
  • FIG. 16 is an explanatory diagram of the refrigerant flow when the refrigeration cycle apparatus 100 according to embodiment 3 is in cooling-dominated operation.
  • FIG. 17 is an explanatory diagram of the refrigerant flow when the refrigeration cycle apparatus 100 according to embodiment 3 is in heating-dominated operation.
  • the refrigerant flow in each operation mode of the refrigeration cycle apparatus 100 according to embodiment 3 is the same as the refrigerant flow in each operation mode of embodiment 3.
  • the heat medium converter D of the refrigeration cycle device 100 includes a first branch 10 connected to a plurality of first pipes 40 extending from each of the heat exchanger 5c of the heat medium converter C and the heat exchanger 30 of the heat medium converter D, and a second branch 11 connected to a plurality of second pipes 41 extending from each of the flow control device 4c of the heat medium converter C and the refrigerant flow control device 4d of the heat medium converter D.
  • the refrigeration cycle apparatus 100 according to embodiment 3 can heat or cool the refrigerant using the heat or cold of the external heat source E by the heat medium converter D, and can use the external heat source E to assist the heat source side heat exchanger 3.
  • the refrigeration cycle apparatus 100 according to embodiment 3 has the advantage that the user side unit C and the heat medium converter D are connected to the relay unit B in a similar structure, and the method of connection to the refrigeration cycle circuit can be appropriately selected depending on the type or location of the external heat source E to be used.
  • the first to third embodiments of the present disclosure have been described.
  • the first to third embodiments are merely examples of the refrigeration cycle device 100, and may be combined with other known technologies.
  • the configuration of the refrigeration cycle device 100 may be partially omitted or modified without departing from the gist of the present disclosure.
  • the refrigeration cycle device 100 includes the range of design modifications and application variations that would normally be made by a person skilled in the art, without departing from the technical concept thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

A refrigeration cycle device according to the present disclosure comprises: a heat source machine having a compressor that compresses a refrigerant, a heat-source-side heat exchanger, and a first flow path switching device that switches connection between the heat-source-side heat exchanger and a suction side or a discharge side of the compressor; a high-pressure gas pipe that is connected to the discharge side of the compressor and through which the refrigerant flows out from the heat source machine; a low-pressure gas pipe that is connected to the suction side of the compressor and through which the refrigerant flows into the heat source machine; a use-side unit that has a use-side heat exchanger and a use-side flow rate control device that controls the flow rate of the refrigerant flowing through the use-side heat exchanger; a heat medium relay unit having an inter-heat-medium heat exchanger that exchanges heat between the refrigerant and a heat medium that carries heat from an external heat source; and a liquid pipe that is connected between the use-side unit and the heat source machine and in which the refrigerant at least a part of which is in a liquid state flows. The use-side unit is configured such that the use-side heat exchanger can selectively be connected to the high-pressure gas pipe or the low-pressure gas pipe, the use-side flow rate control device is connected to the liquid pipe, and the inter-heat-medium heat exchanger is connected to at least the liquid pipe and substitutes for or assists the function of the heat-source-side heat exchanger.

Description

冷凍サイクル装置Refrigeration Cycle Equipment

 本開示は、冷房運転、暖房運転及び給湯運転などの複合的な運転が可能な冷凍サイクル装置において、特に未利用熱を熱源として利用して熱源側熱交換器の負荷を低減できる冷凍サイクル装置に関する。 This disclosure relates to a refrigeration cycle device capable of multiple operations such as cooling, heating, and hot water supply, and in particular to a refrigeration cycle device that can reduce the load on the heat source side heat exchanger by using unused heat as a heat source.

 従来から、空調給湯複合システムを含め、冷房負荷、暖房負荷及び給湯負荷を同時に供給できる空調給湯複合システムにおいては、冷房負荷、暖房負荷および給湯負荷をバランスさせることによりシステムCOPが向上することが知られている(例えば特許文献1参照)。特許文献1に開示されている空気調和機は、圧縮機、室外熱交換器及び絞り装置を備える熱源ユニットと、複数の利用側ユニットと、を備え、熱源ユニットと複数の利用側ユニットとは高圧ガス配管、低圧ガス配管、2相冷媒配管の3回路により接続されている。複数の利用側ユニットは、高圧ガス配管又は低圧側ガス配管を選択的に接続することにより、冷暖房いずれかの運転モードで運転可能に構成されている。特許文献1の空気調和機は、複数の利用側ユニットの冷房負荷、暖房負荷をバランスさせて、システム全体の効率が向上する。  It has been known for some time that in combined air conditioning and hot water supply systems that can simultaneously supply cooling, heating, and hot water loads, including combined air conditioning and hot water supply systems, the system COP can be improved by balancing the cooling, heating, and hot water loads (see, for example, Patent Document 1). The air conditioner disclosed in Patent Document 1 includes a heat source unit equipped with a compressor, an outdoor heat exchanger, and a throttling device, and multiple user units, and the heat source unit and the multiple user units are connected by three circuits: high-pressure gas piping, low-pressure gas piping, and two-phase refrigerant piping. The multiple user units are configured to be able to operate in either cooling or heating mode by selectively connecting the high-pressure gas piping or the low-pressure gas piping. The air conditioner of Patent Document 1 balances the cooling and heating loads of the multiple user units to improve the efficiency of the entire system.

 また、従来から融雪水または井水などを利用した空調システムが知られている(例えば特許文献2参照)。特許文献2に開示されている雪氷利用空調システムは、間接外気利用冷房機と圧縮冷凍冷房機と雪氷冷房機とを備えている。雪氷冷房機は、雪山の冷熱を利用して冷媒を冷却し、その冷媒により間接外気利用冷房機及び圧縮冷凍冷房機の熱源側の熱交換器に供給する外気を冷却している。特許文献2の雪氷利用空調システムは、雪山の冷熱の有効利用が可能となり、省エネ運転が可能となる。 Furthermore, air conditioning systems that use melted snow water or well water are known from the past (see, for example, Patent Document 2). The snow and ice air conditioning system disclosed in Patent Document 2 comprises an indirect outdoor air cooling machine, a compression refrigeration cooling machine, and a snow and ice air conditioning machine. The snow and ice air conditioning machine uses the cold energy of the snowy mountains to cool a refrigerant, which then cools the outdoor air supplied to the heat exchangers on the heat source side of the indirect outdoor air cooling machine and the compression refrigeration cooling machine. The snow and ice air conditioning system of Patent Document 2 makes effective use of the cold energy of the snowy mountains, enabling energy-saving operation.

特開平1-127866号公報Japanese Unexamined Patent Publication No. 1-127866 特開2018-146221号公報JP 2018-146221 A

 特許文献1に開示された冷凍サイクル装置は、利用側ユニットの冷房負荷及び暖房負荷をバランスさせてCOPの向上が可能だが、利用側ユニットの当該使用状況における負荷に必要な冷暖房能力は熱源ユニットが負担する。そのため、冷凍サイクル装置のCOPの向上以上のさらなる省エネ効果は見込めなかった。 The refrigeration cycle device disclosed in Patent Document 1 is capable of improving the COP by balancing the cooling and heating loads of the user unit, but the cooling and heating capacity required for the load in the user unit under the relevant usage conditions is borne by the heat source unit. Therefore, no further energy saving effects beyond the improvement of the COP of the refrigeration cycle device could be expected.

 また、特許文献2に開示された雪氷空調システムは、雪山の冷熱を使用して間接外気利用冷房機及び圧縮冷凍冷房機の負荷を下げることが可能であるが、間接外気利用冷房機、圧縮冷凍冷房機及び雪氷冷房機のそれぞれの冷媒回路が独立している。雪氷冷房機は、冷却した外気を間接外気利用冷房機の顕熱交換器及び圧縮冷凍冷房機の凝縮器に供給するものであり、間接外気利用冷房機及び圧縮冷凍冷房機の冷媒回路も独立しているため、2つの冷房機の負荷のバランスによりシステム全体の効率化を図るのは困難であった。 The snow and ice air conditioning system disclosed in Patent Document 2 can use the cold energy of snowy mountains to reduce the load on the indirect outdoor air cooler and the compression refrigeration cooler, but the refrigerant circuits of the indirect outdoor air cooler, the compression refrigeration cooler, and the snow and ice cooler are independent. The snow and ice cooler supplies cooled outdoor air to the sensible heat exchanger of the indirect outdoor air cooler and the condenser of the compression refrigeration cooler, and the refrigerant circuits of the indirect outdoor air cooler and the compression refrigeration cooler are also independent, making it difficult to improve the efficiency of the entire system by balancing the load on the two coolers.

 本開示は、上記のような課題を解決するためになされたもので、各利用側ユニット間の負荷のバランスによりCOPを向上させるとともに、外部の熱源を利用してシステム全体の省エネ運転を可能とする、冷凍サイクル装置を提供するものである。 This disclosure has been made to solve the problems described above, and provides a refrigeration cycle device that improves COP by balancing the load between each user unit, and enables energy-saving operation of the entire system by utilizing an external heat source.

 本開示の冷凍サイクル装置は、冷媒を圧縮する圧縮機、熱源側熱交換器、及び前記熱源側熱交換器と前記圧縮機の吸入側又は吐出側との接続を切り替える第1流路切替装置を有する熱源機と、前記圧縮機の吐出側に接続され、前記熱源機から冷媒が流出する高圧ガス管と、前記圧縮機の吸入側に接続され、前記熱源機へ冷媒が流入する低圧ガス管と、利用側熱交換器及び前記利用側熱交換器に流れる冷媒の流量を制御する利用側流量制御装置を有する利用側ユニットと、外部熱源からの熱を運ぶ熱媒体と冷媒とを熱交換する熱媒体間熱交換器を有する熱媒体変換機と、前記利用側ユニットと前記熱源機との間に接続され、少なくとも一部が液状態である冷媒が流動する液管と、を備え、前記利用側ユニットは、前記利用側熱交換器が前記高圧ガス管又は前記低圧ガス管に選択的に接続可能に構成され、前記利用側流量制御装置が前記液管と接続され、前記熱媒体間熱交換器は、少なくとも前記液管と接続され、前記熱源側熱交換器の機能を代替又は補助する。 The refrigeration cycle device disclosed herein includes a heat source unit having a compressor for compressing a refrigerant, a heat source side heat exchanger, and a first flow path switching device for switching the connection between the heat source side heat exchanger and the suction side or discharge side of the compressor, a high-pressure gas pipe connected to the discharge side of the compressor and through which the refrigerant flows out of the heat source unit, a low-pressure gas pipe connected to the suction side of the compressor and through which the refrigerant flows into the heat source unit, a utilization side unit having a utilization side heat exchanger and a utilization side flow control device for controlling the flow rate of the refrigerant flowing into the utilization side heat exchanger, and an external heat source The heat medium converter has an intermediate heat exchanger that exchanges heat between a heat medium that carries heat from the heat source and a refrigerant, and a liquid pipe that is connected between the user unit and the heat source unit and through which a refrigerant at least partially in a liquid state flows. The user unit is configured so that the user side heat exchanger can be selectively connected to the high pressure gas pipe or the low pressure gas pipe, the user side flow control device is connected to the liquid pipe, and the intermediate heat exchanger is connected to at least the liquid pipe, replacing or supporting the function of the heat source side heat exchanger.

 本開示によれば、冷凍サイクル装置は、高圧ガス管、低圧ガス管及び液管により熱源機と利用側ユニットとを接続し、外部熱源を利用した熱媒体変換機を熱源機と利用側熱交換器との間に接続している。これにより、冷凍サイクル装置は、熱源機から流出又は熱源機に流入する冷媒の少なくとも一部を加熱または冷却できる。そのため、冷凍サイクル装置は、冷暖同時運転及び給湯運転などを同時にできると共に熱媒体変換機が熱源側熱交換器の能力を補助または代替するように機能させることができる。熱媒体変換機は、熱源側熱交換器の能力の一部又は全部を外部熱源により補うことができるため、冷凍サイクル装置は、従来と比較して省エネ運転が可能となる。 According to the present disclosure, the refrigeration cycle device connects the heat source device and the user side unit with high pressure gas pipes, low pressure gas pipes, and liquid pipes, and connects a heat medium converter that uses an external heat source between the heat source device and the user side heat exchanger. This allows the refrigeration cycle device to heat or cool at least a portion of the refrigerant flowing out of or into the heat source device. As a result, the refrigeration cycle device can simultaneously perform simultaneous heating and cooling operations and hot water supply operations, and the heat medium converter can function to supplement or replace the capacity of the heat source side heat exchanger. Because the heat medium converter can supplement some or all of the capacity of the heat source side heat exchanger with an external heat source, the refrigeration cycle device can operate more energy-efficiently than before.

実施の形態1に係る冷凍サイクル装置100の構成の一例を示す概略図である。1 is a schematic diagram showing an example of the configuration of a refrigeration cycle device 100 according to a first embodiment. 実施の形態1に係る冷凍サイクル装置100の一例を示す回路図である。1 is a circuit diagram showing an example of a refrigeration cycle device 100 according to a first embodiment. 実施の形態1に係る冷凍サイクル装置100が全冷房運転している場合の冷媒の流れの説明図である。3 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the first embodiment is performing a cooling only operation. FIG. 実施の形態1に係る冷凍サイクル装置100が全暖房運転している場合の冷媒の流れの説明図である。3 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the first embodiment is performing a full heating operation. FIG. 実施の形態1に係る冷凍サイクル装置100が冷房主体運転している場合の冷媒の流れの説明図である。3 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the first embodiment is performing a cooling-dominant operation. FIG. 実施の形態1に係る冷凍サイクル装置100が暖房主体運転している場合の冷媒の流れの説明図である。3 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the first embodiment is performing a heating-dominant operation. FIG. 実施の形態1に係る冷凍サイクル装置100の冷房運転時のモリエル線図である。FIG. 2 is a Mollier diagram of the refrigeration cycle apparatus 100 according to the first embodiment during cooling operation. 実施の形態2に係る冷凍サイクル装置100の一例を示す回路図である。FIG. 11 is a circuit diagram showing an example of a refrigeration cycle device 100 according to a second embodiment. 実施の形態2に係る冷凍サイクル装置100が全冷房運転している場合の冷媒の流れの説明図である。10 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the second embodiment is performing a full cooling operation. FIG. 実施の形態2に係る冷凍サイクル装置100が全暖房運転している場合の冷媒の流れの説明図である。10 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the second embodiment is performing a full heating operation. FIG. 実施の形態2に係る冷凍サイクル装置100が冷房主体運転している場合の冷媒の流れの説明図である。10 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the second embodiment is performing a cooling-dominant operation. FIG. 実施の形態2に係る冷凍サイクル装置100が暖房主体運転している場合の冷媒の流れの説明図である。10 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the second embodiment is performing a heating-dominant operation. FIG. 実施の形態3に係る冷凍サイクル装置100の一例を示す回路図である。FIG. 11 is a circuit diagram showing an example of a refrigeration cycle device 100 according to a third embodiment. 実施の形態3に係る冷凍サイクル装置100が全冷房運転している場合の冷媒の流れの説明図である。11 is an explanatory diagram of the flow of refrigerant when the refrigeration cycle apparatus 100 according to the third embodiment is performing a full cooling operation. FIG. 実施の形態3に係る冷凍サイクル装置100が全暖房運転している場合の冷媒の流れの説明図である。FIG. 11 is an explanatory diagram of the flow of the refrigerant when the refrigeration cycle apparatus 100 according to the third embodiment is performing a full heating operation. 実施の形態3に係る冷凍サイクル装置100が冷房主体運転している場合の冷媒の流れの説明図である。11 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the third embodiment is performing a cooling-dominant operation. FIG. 実施の形態3に係る冷凍サイクル装置100が暖房主体運転している場合の冷媒の流れの説明図である。11 is an explanatory diagram of a flow of a refrigerant when the refrigeration cycle apparatus 100 according to the third embodiment is performing a heating-dominant operation. FIG.

 実施の形態1.
 以下、本開示に係る空気調和装置の実施の形態について、図面を参照しながら説明する。図1は、実施の形態1に係る冷凍サイクル装置100の構成の一例を示す概略図である。冷凍サイクル装置100は、熱源機Aと、熱源機Aに配管によって接続された中継機Bと、空調対象空間Vに設置された利用側ユニットCと、を備える。冷凍サイクル装置100は、複数の利用側ユニットCのそれぞれが冷房運転又は暖房運転を選択して運転できる冷暖同時運転が可能なものである。図1においては、冷凍サイクル装置100は、例えばビルに設置されたマルチエアコンであり、屋上に室外機として熱源機Aが設置され、各フロアの中継機Bを介して複数の利用側ユニットCが熱源機Aと接続されている。冷凍サイクル装置100を構成する熱源機A、中継機B及び利用側ユニットCは、設置される数量を適宜変更できるものである。
Embodiment 1.
Hereinafter, an embodiment of an air conditioning device according to the present disclosure will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an example of the configuration of a refrigeration cycle device 100 according to embodiment 1. The refrigeration cycle device 100 includes a heat source device A, a relay device B connected to the heat source device A by piping, and a user side unit C installed in an air-conditioned space V. The refrigeration cycle device 100 is capable of simultaneous cooling and heating operation, in which each of the multiple user side units C can select and operate in cooling operation or heating operation. In FIG. 1, the refrigeration cycle device 100 is, for example, a multi-air conditioner installed in a building, in which a heat source device A is installed as an outdoor unit on the roof, and multiple user side units C are connected to the heat source device A via relay devices B on each floor. The heat source device A, relay device B, and user side units C constituting the refrigeration cycle device 100 can be appropriately changed in the number of units installed.

 図1において中継機Bは、各フロアに設置されているが、冷凍サイクル装置100の冷媒回路に熱源機Aからの冷媒の分岐又は合流についての機能が備わっていれば、独立したユニットとして存在しなくとも良い。なお、実施の形態1においては、冷凍サイクル装置100は、熱源機A、中継機B、利用側ユニットC及び熱媒体変換機Dを備えているが、冷凍サイクル回路を構成する各要素を備えていれば、明確に熱源機A、中継機B、利用側ユニットC及び熱媒体変換機Dを区別できる形態でなくともよい。 In FIG. 1, the relay unit B is installed on each floor, but it does not have to exist as an independent unit as long as the refrigerant circuit of the refrigeration cycle device 100 has a function for branching or merging the refrigerant from the heat source unit A. In the first embodiment, the refrigeration cycle device 100 has the heat source unit A, the relay unit B, the user unit C, and the heat medium converter D, but as long as each element that constitutes the refrigeration cycle circuit is included, the form does not need to clearly distinguish the heat source unit A, the relay unit B, the user unit C, and the heat medium converter D.

 図1において、利用側ユニットCは、各空調対象空間Vの空気と熱交換を行い冷房又は暖房を行うが、例えば湯沸かし器又は冷凍機などの空気調和以外を目的とするものであっても良い。冷凍サイクル装置100は、冷暖同時運転だけでなく、利用側ユニットCが湯沸かし器又は冷凍機を用いた湯沸かし及び冷凍等も混在した運転をしても良い。 In FIG. 1, the user unit C performs heat exchange with the air in each air-conditioned space V to perform cooling or heating, but it may also be used for purposes other than air conditioning, such as a water heater or a refrigerator. The refrigeration cycle device 100 may not only perform simultaneous cooling and heating operations, but may also perform mixed operations in which the user unit C performs water heating and refrigeration using a water heater or a refrigerator.

 熱源機Aと中継機Bとは液管6、低圧ガス管7a及び高圧ガス管7bにより接続され、熱源機Aが備える圧縮機1(図2参照)で圧縮された冷媒を中継機Bに送り、中継機Bが各利用側ユニットCに冷媒を分配する様に構成されている。各利用側ユニットCは、第1配管40を、低圧ガス管7a及び高圧ガス管7bのうち何れかに連通させるかにより、運転状態が変更されるものである。 The heat source unit A and the relay unit B are connected by a liquid pipe 6, a low-pressure gas pipe 7a, and a high-pressure gas pipe 7b, and are configured so that the refrigerant compressed by the compressor 1 (see Figure 2) of the heat source unit A is sent to the relay unit B, which distributes the refrigerant to each user unit C. The operating state of each user unit C is changed depending on whether the first piping 40 is connected to the low-pressure gas pipe 7a or the high-pressure gas pipe 7b.

 (冷凍サイクル装置100の回路構成)
 図2は、実施の形態1に係る冷凍サイクル装置100の一例を示す回路図である。冷凍サイクル装置100は、熱源機A、中継機B、利用側ユニットC、及び熱媒体変換機Dを備える。熱媒体変換機Dは、外部熱源Eを利用し、外部熱源Eからの熱を運ぶ熱媒体と冷凍サイクル装置100の冷媒回路を流れる冷媒との間で熱交換を行える様に構成されたものである。外部熱源Eと熱媒体変換機Dとは、熱源機A、中継機B及び利用側ユニットCの間を流れる冷媒とは異なる熱媒体が循環する回路により接続されている。熱媒体変換機Dは、外部熱源Eからの熱を有する熱媒体と熱媒体変換機Dに流れ込んだ冷媒との間で熱交換を行い、外部熱源Eからの熱又は冷熱を冷媒に伝達することにより、凝縮器又は蒸発器として機能するように構成されている。
(Circuit configuration of refrigeration cycle device 100)
2 is a circuit diagram showing an example of the refrigeration cycle apparatus 100 according to the first embodiment. The refrigeration cycle apparatus 100 includes a heat source unit A, a relay unit B, a user side unit C, and a heat medium converter D. The heat medium converter D is configured to use an external heat source E and to perform heat exchange between a heat medium carrying heat from the external heat source E and a refrigerant flowing through a refrigerant circuit of the refrigeration cycle apparatus 100. The external heat source E and the heat medium converter D are connected by a circuit in which a heat medium different from the refrigerant flowing between the heat source unit A, the relay unit B, and the user side unit C circulates. The heat medium converter D is configured to perform heat exchange between the heat medium having heat from the external heat source E and the refrigerant flowing into the heat medium converter D, and to function as a condenser or an evaporator by transferring heat or cold from the external heat source E to the refrigerant.

 熱源機Aは、通常、ビル等の建物の外の屋上等の空間に配置され、中継機Bを介して利用側ユニットC1及びC2に冷熱又は温熱を供給するものである。なお、熱源機Aは、室外に設置される場合に限らず、たとえば換気口が形成された機械室等の囲まれた空間に設置されてもよい。また、熱源機Aは、排気ダクトで廃熱を建物の外に排気することができる場合、建物の内部に設置されてもよい。更に、熱源機Aは、水冷式の室外機として建物の内部に設置されるようにしてもよい。 The heat source unit A is usually placed in a space outside a building, such as a rooftop, and supplies cold or hot heat to the user units C1 and C2 via the relay unit B. The heat source unit A is not limited to being placed outdoors, and may be placed in an enclosed space, such as a machine room with a ventilation opening. The heat source unit A may also be placed inside a building if the waste heat can be exhausted outside the building through an exhaust duct. Furthermore, the heat source unit A may be placed inside a building as a water-cooled outdoor unit.

 熱媒体変換機Dに接続されている外部熱源Eは、例えば井水、地熱、太陽光などの熱又は冷熱を有するものである。熱媒体変換機Dは、外部熱源Eが有する熱又は冷熱を、熱媒体を介して冷媒に伝達する装置である。外部熱源Eが井水である場合、その井水をくみ上げ、井水を熱媒体として熱媒体循環回路34に循環させる。また、外部熱源Eとして地熱を利用する場合、地熱により加熱された水などの熱媒体が熱媒体循環回路34を循環する。また、外部熱源Eとして太陽光を利用する場合は、太陽光により熱せられた水などの熱媒体が熱媒体循環回路34を循環する。その他、外部熱源Eとして氷雪又は融雪水などを利用しても良い。また、外部熱源Eとしては、河川の水が持つ熱、設備からの排ガス、排水、設備が発する廃熱などの未利用熱を利用することもできる。熱媒体循環回路34を循環する水などの熱媒体は、熱媒体間熱交換器30において熱源機Aなどを循環する冷媒と熱交換される。なお、熱媒体変換機Dは、外部熱源Eが有する井水などの液体をそのまま熱媒体循環回路34に循環させるように構成させても良いし、熱媒体循環回路34に外部熱源Eが有する液体とは異なる独立した熱媒体を循環させるように構成されていても良い。この場合、外部熱源E側に外部熱源熱交換器を設置しても良い。 The external heat source E connected to the heat medium converter D has heat or cold, for example, well water, geothermal heat, solar light, etc. The heat medium converter D is a device that transfers the heat or cold of the external heat source E to the refrigerant via a heat medium. When the external heat source E is well water, the well water is pumped up and circulated as a heat medium to the heat medium circulation circuit 34. When geothermal heat is used as the external heat source E, a heat medium such as water heated by geothermal heat circulates through the heat medium circulation circuit 34. When solar light is used as the external heat source E, a heat medium such as water heated by solar light circulates through the heat medium circulation circuit 34. In addition, ice and snow or melted snow water may be used as the external heat source E. In addition, unused heat such as heat contained in river water, exhaust gas from equipment, wastewater, and waste heat generated by equipment can also be used as the external heat source E. The heat medium such as water circulating through the heat medium circulation circuit 34 is heat exchanged with the refrigerant circulating through the heat source unit A, etc. in the heat medium heat exchanger 30. The heat transfer medium converter D may be configured to circulate the liquid, such as well water, of the external heat source E directly through the heat transfer medium circuit 34, or may be configured to circulate an independent heat medium, different from the liquid of the external heat source E, through the heat transfer medium circuit 34. In this case, an external heat source heat exchanger may be installed on the external heat source E side.

 図1において熱媒体変換機D及び外部熱源Eは、一台設置されているが、複数でも良い。また、外部熱源Eは、複数種の熱源を利用しても良い。 In FIG. 1, one heat transfer medium converter D and one external heat source E are installed, but multiple units may be installed. In addition, multiple types of heat sources may be used as the external heat source E.

 実施の形態1においては、熱媒体変換機Dは、熱源機Aが有する熱源側熱交換器3を補助するように機能し、熱源側熱交換器3が凝縮器として機能する場合には凝縮器として、熱源側熱交換器3が蒸発器として機能する場合には蒸発器として機能させることができる。これにより、熱源側熱交換器3は、外部熱源Eを利用した分だけ熱交換能力を落とした運転が可能となり、冷凍サイクル装置100全体として省エネルギー化が図れる。 In the first embodiment, the heat medium converter D functions to assist the heat source side heat exchanger 3 of the heat source unit A, and can function as a condenser when the heat source side heat exchanger 3 functions as a condenser, and as an evaporator when the heat source side heat exchanger 3 functions as an evaporator. This allows the heat source side heat exchanger 3 to operate with reduced heat exchange capacity by the amount that the external heat source E is used, and energy savings can be achieved for the refrigeration cycle device 100 as a whole.

 熱源機A、中継機B、利用側ユニットC及び熱媒体変換機Dを循環する冷凍サイクルの冷媒の蒸発温度及び凝縮温度を基準にして外部熱源Eの温度が高いか低いかにより、熱媒体変換機Dが蒸発器として用いることができるか凝縮器に用いることができるかが決まる。外部熱源Eの温度が冷媒の蒸発温度より高い場合は、熱媒体変換機Dは蒸発器として用いられ、外部熱源Eの温度が冷媒の凝縮温度よりも低い場合は、熱媒体変換機Dは凝縮器として用いられる。一般に、地熱又は太陽光などの比較的温度の高い外部熱源Eとして用いる場合は、熱媒体変換機Dを蒸発器として用い、井水、氷雪、融雪水などの比較的温度の低い外部熱源Eを用いる場合は、熱媒体変換機Dを凝縮器として用いると良い。 Whether the heat medium converter D can be used as an evaporator or a condenser is determined based on whether the temperature of the external heat source E is high or low, based on the evaporation temperature and condensation temperature of the refrigerant in the refrigeration cycle that circulates through the heat source unit A, relay unit B, user unit C, and heat medium converter D. When the temperature of the external heat source E is higher than the evaporation temperature of the refrigerant, the heat medium converter D is used as an evaporator, and when the temperature of the external heat source E is lower than the condensation temperature of the refrigerant, the heat medium converter D is used as a condenser. In general, when a relatively high-temperature external heat source E such as geothermal energy or sunlight is used, the heat medium converter D should be used as an evaporator, and when a relatively low-temperature external heat source E such as well water, snow and ice, or melted snow is used, the heat medium converter D should be used as a condenser.

 中継機Bは、熱源機Aからの冷媒又は熱源機Aから熱媒体変換機Dを経た冷媒が流入し、複数の利用側ユニットCに分配するものである。また、複数の利用側ユニットCのそれぞれは、中継機Bに対して並列に接続されており、中継機Bは一部の利用側ユニットCに流入させた冷媒を合流させて他の利用側ユニットCに流入させることもできる。中継機Bは、熱源機Aと接続された液管6、低圧ガス管7a及び高圧ガス管7bのそれぞれを利用側ユニットCに分岐して接続する分岐部10a、10b及び11を備える。  The repeater B receives the refrigerant from the heat source unit A or the refrigerant that has passed through the heat medium converter D from the heat source unit A and distributes it to the multiple user units C. Each of the multiple user units C is connected in parallel to the repeater B, and the repeater B can also merge the refrigerant that has flowed into some of the user units C and allow it to flow into the other user units C. The repeater B has branching sections 10a, 10b, and 11 that branch and connect the liquid pipe 6, low pressure gas pipe 7a, and high pressure gas pipe 7b connected to the heat source unit A to the user units C.

(熱源機A)
 熱源機Aは、圧縮機1、熱源側熱交換器3、圧縮機1の吸入側又は吐出側と熱源側熱交換器3との接続を切り替える第1流路切替装置2a及び2b、熱源側熱交換器3に流れる冷媒の流量を制御する熱源側流量制御装置22、アキュムレータ29を備える。また、熱源機Aは、更に補助熱交換ユニットGを備える。これについては後述する。なお、補助熱交換ユニットGは、熱源機Aに設置されていない場合もある。
(Heat source machine A)
The heat source unit A includes a compressor 1, a heat source side heat exchanger 3, first flow switching devices 2a and 2b that switch the connection between the suction side or discharge side of the compressor 1 and the heat source side heat exchanger 3, a heat source side flow rate control device 22 that controls the flow rate of refrigerant flowing to the heat source side heat exchanger 3, and an accumulator 29. The heat source unit A further includes an auxiliary heat exchange unit G, which will be described later. Note that the auxiliary heat exchange unit G may not be installed in the heat source unit A.

 熱源機Aと中継機Bとは、液管6、低圧ガス管7a及び高圧ガス管7bにより接続されている。液管6、低圧ガス管7a及び高圧ガス管7bは、主管とも呼ばれる。高圧ガス管7bは、圧縮機1により圧縮された高圧の冷媒を、熱源機Aからそのまま流出させる配管である。低圧ガス管7aは、利用側ユニットCを経た低圧のガス冷媒が熱源機Aに流入する配管であり、中継機Bから熱源機Aに冷媒を戻すための配管である。液管6は、利用側ユニットC又は熱源機Aにおいて熱交換されて液状又は気液二相状態になった冷媒が流通する配管である。 The heat source unit A and the relay unit B are connected by a liquid pipe 6, a low-pressure gas pipe 7a, and a high-pressure gas pipe 7b. The liquid pipe 6, the low-pressure gas pipe 7a, and the high-pressure gas pipe 7b are also called main pipes. The high-pressure gas pipe 7b is a pipe that allows the high-pressure refrigerant compressed by the compressor 1 to flow directly from the heat source unit A. The low-pressure gas pipe 7a is a pipe that allows the low-pressure gas refrigerant that has passed through the user unit C to flow into the heat source unit A, and is a pipe that returns the refrigerant from the relay unit B to the heat source unit A. The liquid pipe 6 is a pipe that allows the refrigerant that has been heat exchanged in the user unit C or the heat source unit A and has become liquid or in a two-phase gas-liquid state to flow.

 圧縮機1は、冷媒を吸入し、圧縮して高温且つ高圧の状態にするものであり、例えば容量制御可能なインバーター圧縮機等で構成される。圧縮機1の吐出側は、高圧ガス管7b及び第1流路切替装置2a及び2bに接続されている。高圧ガス管7bは、熱源機Aと中継機Bとを接続する主管のうちの1つであり、中継機Bを介して利用側ユニットCに高温高圧のガス冷媒を供給する配管である。 The compressor 1 draws in the refrigerant and compresses it to a high-temperature, high-pressure state, and is composed of, for example, an inverter compressor whose capacity can be controlled. The discharge side of the compressor 1 is connected to the high-pressure gas pipe 7b and the first flow path switching devices 2a and 2b. The high-pressure gas pipe 7b is one of the main pipes connecting the heat source unit A and the relay unit B, and is a pipe that supplies high-temperature, high-pressure gas refrigerant to the user unit C via the relay unit B.

 実施の形態1においては、熱源機Aは、2つの第1流路切替装置2a及び2bを備えており、第1流路切替装置2aは熱源側熱交換器3aに、第1流路切替装置2bは熱源側熱交換器3bに接続されている。第1流路切替装置2a及び2bを総称して、第1流路切替装置2と称する場合がある。 In embodiment 1, the heat source unit A is equipped with two first flow path switching devices 2a and 2b, with the first flow path switching device 2a connected to the heat source side heat exchanger 3a and the first flow path switching device 2b connected to the heat source side heat exchanger 3b. The first flow path switching devices 2a and 2b may be collectively referred to as the first flow path switching device 2.

 第1流路切替装置2は、熱源側熱交換器3と圧縮機1の吐出側又は吸入側との接続を選択して接続できる様に構成されている。つまり、第1流路切替装置2は、圧縮機1の吐出側から延びる配管1a、圧縮機1の吸入側から延びる配管1b(実施の形態1においてはアキュムレータ29に接続されている配管1b)及び熱源側熱交換器3から延びる配管24に接続されており、それらの3つの配管1a、1b及び24の3つのうちから、配管24と配管1a又は1bとを接続する。 The first flow path switching device 2 is configured to be able to selectively connect the heat source side heat exchanger 3 to the discharge side or the suction side of the compressor 1. In other words, the first flow path switching device 2 is connected to the pipe 1a extending from the discharge side of the compressor 1, the pipe 1b extending from the suction side of the compressor 1 (the pipe 1b connected to the accumulator 29 in the first embodiment), and the pipe 24 extending from the heat source side heat exchanger 3, and connects the pipe 24 to the pipe 1a or 1b from among the three pipes 1a, 1b, and 24.

 第1流路切替装置2は、四方切替弁として例示している。第1流路切替装置2の流路の切替により、熱源側熱交換器3は、暖房運転及び暖房主体運転時には蒸発器として機能し、冷房運転及び冷房主体運転時には凝縮器又は放熱器として機能する。 The first flow path switching device 2 is exemplified as a four-way switching valve. By switching the flow path of the first flow path switching device 2, the heat source side heat exchanger 3 functions as an evaporator during heating operation and heating-dominated operation, and functions as a condenser or radiator during cooling operation and cooling-dominated operation.

 熱源側熱交換器3a及び3bは、熱源側熱交換器3と総称する場合がある。また、熱源側熱交換器3は、2台に限定されず、1台又は3台以上であっても良い。熱源側熱交換器3は、熱源側流量制御装置22と直列に接続されている。 The heat source side heat exchangers 3a and 3b may be collectively referred to as the heat source side heat exchanger 3. The number of heat source side heat exchangers 3 is not limited to two, and may be one or three or more. The heat source side heat exchanger 3 is connected in series with the heat source side flow control device 22.

 熱源側熱交換器3の近傍には、例えば室外空気等の流体の流量を制御する室外流量制御装置3mが設置されている。実施の形態1においては、室外空気が室外流量制御装置3mにより空気を熱源側熱交換器3に送られ、冷媒と熱交換が行われる。室外流量制御装置3mは、例えば室外の空気を熱源側熱交換器3に送るファンである。実施の形態1では、熱源側熱交換器3の一例として空冷式の室外熱交換器が用いられ、室外流量制御装置3mの一例として室外ファンが用いられる。なお、熱源側熱交換器3は、冷媒が他の流体と熱交換する形態であれば水冷式等の室外熱交換器とされてもよい。 An outdoor flow control device 3m is installed near the heat source side heat exchanger 3 to control the flow rate of a fluid such as outdoor air. In the first embodiment, outdoor air is sent to the heat source side heat exchanger 3 by the outdoor flow control device 3m, where heat exchange with the refrigerant takes place. The outdoor flow control device 3m is, for example, a fan that sends outdoor air to the heat source side heat exchanger 3. In the first embodiment, an air-cooled outdoor heat exchanger is used as an example of the heat source side heat exchanger 3, and an outdoor fan is used as an example of the outdoor flow control device 3m. Note that the heat source side heat exchanger 3 may be a water-cooled outdoor heat exchanger or the like as long as the refrigerant exchanges heat with another fluid.

 実施の形態1において、熱源側熱交換器3は、冷媒と室外空気との熱交換を行い、その冷媒を蒸発してガス化又は凝縮して液化するものである。室外流量制御装置3mは、熱源側熱交換器3に流れる空気の風路を形成する。 In the first embodiment, the heat source side heat exchanger 3 exchanges heat between the refrigerant and the outdoor air, evaporating the refrigerant to gasify it or condensing it to liquefy it. The outdoor flow control device 3m forms an air path for the air flowing through the heat source side heat exchanger 3.

 熱源側流量制御装置22は、熱源側熱交換器3に直列に接続され、液管6と熱源側熱交換器3との間に設けられており、開閉自在に構成されている。熱源側流量制御装置22は、冷房運転時には熱源側熱交換器3から液管6へ流れる冷媒の流量を調整し、暖房運転時には液管6から熱源側熱交換器3へ流入する冷媒の流量を調整する。なお、熱源側流量制御装置22は、流路抵抗が連続的に変化するように構成されている。また、熱源側流量制御装置22は、膨張弁として機能するものであり、流入した冷媒を減圧する。 The heat source side flow control device 22 is connected in series to the heat source side heat exchanger 3, and is provided between the liquid pipe 6 and the heat source side heat exchanger 3, and is configured to be freely opened and closed. The heat source side flow control device 22 adjusts the flow rate of refrigerant flowing from the heat source side heat exchanger 3 to the liquid pipe 6 during cooling operation, and adjusts the flow rate of refrigerant flowing from the liquid pipe 6 to the heat source side heat exchanger 3 during heating operation. The heat source side flow control device 22 is configured so that the flow resistance changes continuously. The heat source side flow control device 22 also functions as an expansion valve, reducing the pressure of the flowing refrigerant.

 アキュムレータ29は、圧縮機1の吸入側に設けられており、暖房運転時と冷房運転時との違いによる余剰冷媒又は過渡的な運転の変化に対する余剰冷媒を蓄えるものである。アキュムレータ29は、低圧ガス管7a及び第1流路切替装置2と接続されている。 The accumulator 29 is provided on the suction side of the compressor 1 and stores excess refrigerant due to differences between heating and cooling operation or excess refrigerant due to transient changes in operation. The accumulator 29 is connected to the low-pressure gas pipe 7a and the first flow path switching device 2.

(補助熱交換ユニットG)
 実施の形態1においては、熱源機Aに補助熱交換ユニットGが設置されている。補助熱交換ユニットGは、液管6と圧縮機1の吸入側に接続された配管1bとを接続するバイパス配管17を備える。バイパス配管17上には、バイパス流量制御装置15を備え、バイパス配管17及び液管6と熱源側流量制御装置22との間を接続する配管26のそれぞれを流れる冷媒同士の熱交換を行う冷媒管熱交換器16を備える。なお、補助熱交換ユニットGは、熱源機A外に設置されていても良い。
(Auxiliary heat exchange unit G)
In the first embodiment, an auxiliary heat exchange unit G is installed in the heat source unit A. The auxiliary heat exchange unit G includes a bypass pipe 17 that connects the liquid pipe 6 and the pipe 1b connected to the suction side of the compressor 1. A bypass flow rate control device 15 is provided on the bypass pipe 17, and a refrigerant pipe heat exchanger 16 is provided to exchange heat between the refrigerants flowing through the bypass pipe 17 and the pipe 26 that connects the liquid pipe 6 and the heat source side flow rate control device 22. The auxiliary heat exchange unit G may be installed outside the heat source unit A.

 (中継機B)
 中継機Bは、低圧ガス管7aと接続された低圧側分岐部10a、高圧ガス管7bと接続された高圧側分岐部10b、及び液管6と接続された第2分岐部11を備える。低圧側分岐部10aは、低圧側電磁弁9を介して利用側ユニットCの利用側熱交換器5cから延びる第1配管40と接続されている。高圧側分岐部10bは、高圧側電磁弁8を介して第1配管40と接続されている。低圧側電磁弁9と高圧側電磁弁8は、それぞれ利用側ユニットCと低圧ガス管7a又は高圧ガス管7bとの接続を選択できるように構成されており、利用側ユニットCの利用側熱交換器5cが凝縮器又は蒸発器として機能させるかによって接続を切り替えるものである。低圧側電磁弁9と高圧側電磁弁8とをまとめて第2流路切替装置10cと呼ぶ場合がある。また、低圧側分岐部10a、高圧側分岐部10b及び第2流路切替装置10cをまとめて、第1分岐部10と呼ぶ。
(Repeater B)
The relay B includes a low-pressure side branch 10a connected to the low-pressure gas pipe 7a, a high-pressure side branch 10b connected to the high-pressure gas pipe 7b, and a second branch 11 connected to the liquid pipe 6. The low-pressure side branch 10a is connected to a first pipe 40 extending from the utilization side heat exchanger 5c of the utilization side unit C via a low-pressure side solenoid valve 9. The high-pressure side branch 10b is connected to the first pipe 40 via a high-pressure side solenoid valve 8. The low-pressure side solenoid valve 9 and the high-pressure side solenoid valve 8 are configured to select the connection between the utilization side unit C and the low-pressure gas pipe 7a or the high-pressure gas pipe 7b, respectively, and switch the connection depending on whether the utilization side heat exchanger 5c of the utilization side unit C functions as a condenser or an evaporator. The low-pressure side solenoid valve 9 and the high-pressure side solenoid valve 8 may be collectively referred to as a second flow path switching device 10c. The low-pressure side branch portion 10 a, the high-pressure side branch portion 10 b, and the second flow path switching device 10 c are collectively referred to as a first branch portion 10.

 低圧側電磁弁9及び高圧側電磁弁8は、第1配管40が二股に分かれたそれぞれの配管に設置されているが、例えば三方弁などを用いて構成されていても良い。つまり、利用側ユニットC及び熱媒体変換機Dの第1配管40が低圧ガス管7a及び高圧ガス管7bの何れかに接続する様に構成されていれば、他の構造を用いても良い。また、低圧側電磁弁9及び高圧側電磁弁8は、任意の利用側ユニットCに冷媒が流通しないように閉止できる様に構成されていると良い。 The low-pressure side solenoid valve 9 and the high-pressure side solenoid valve 8 are installed on each of the two pipes that branch off from the first pipe 40, but they may also be configured using, for example, a three-way valve. In other words, other structures may be used as long as the first pipe 40 of the user side unit C and the heat medium converter D is configured to connect to either the low-pressure gas pipe 7a or the high-pressure gas pipe 7b. In addition, it is preferable that the low-pressure side solenoid valve 9 and the high-pressure side solenoid valve 8 are configured so that they can be closed to prevent the refrigerant from flowing to any of the user side units C.

 第2分岐部11は、利用側ユニットCの利用側流量制御装置4cから延びる第2配管41に接続されている。また、第2分岐部11は、液管6と接続されており、液管6からの冷媒を複数の利用側ユニットCに分配する、複数の利用側ユニットCからの冷媒を合流させて液管6に送る、又は一部の利用側ユニットCからの冷媒を合流させて他の利用側ユニットC及び液管6に分配するものである。 The second branching section 11 is connected to the second pipe 41 extending from the usage-side flow control device 4c of the usage-side unit C. The second branching section 11 is also connected to the liquid pipe 6, and distributes the refrigerant from the liquid pipe 6 to multiple usage-side units C, merges the refrigerant from multiple usage-side units C and sends it to the liquid pipe 6, or merges the refrigerant from some of the usage-side units C and distributes it to other usage-side units C and the liquid pipe 6.

 (利用側ユニットC)
 利用側ユニットCは、それぞれ室内等の空調対象空間に空調空気を供給できる位置に設置され、中継機Bを介して供給された熱源機Aからの冷熱又は温熱により、空調対象空間に冷房空気又は暖房空気を供給するものである。利用側ユニットC1、C2には、それぞれ利用側熱交換器5c1、5c2、5c3及び利用側流量制御装置4c1、4c2、4c3が内蔵されている。なお、利用側熱交換器5c1、5c2及び5c3をまとめて利用側熱交換器5cと呼び、利用側流量制御装置4c1、4c2及び4c3をまとめて利用側流量制御装置4cと呼ぶ場合がある。
(User unit C)
The user side units C are installed at positions where they can supply conditioned air to a space to be air-conditioned, such as a room, and supply cooled air or heated air to the space to be air-conditioned by using cold or hot heat from the heat source unit A supplied via the relay unit B. The user side units C1 and C2 each have a built-in user side heat exchanger 5c1, 5c2, 5c3 and a user side flow control device 4c1, 4c2, 4c3. The user side heat exchangers 5c1, 5c2, and 5c3 may be collectively referred to as the user side heat exchanger 5c, and the user side flow control devices 4c1, 4c2, and 4c3 may be collectively referred to as the user side flow control device 4c.

 また、利用側熱交換器5cの近傍には、冷媒と熱交換する流体である室内空気の流量を制御する流量制御装置5mが設置されている。なお、実施の形態1では、利用側熱交換器5cの一例として空冷式の利用側熱交換器を用い、流量制御装置5mの一例として室内ファンを用いて説明するが、冷媒が他の流体と熱交換する形態であれば水冷式等の利用側熱交換器としてもよい。また、利用側ユニットCとして給湯機が用いられる場合は、利用側熱交換器5は、水と冷媒との間で熱交換を行う水熱交換器を用いても良い。この場合、流量制御装置5mとして、水を流動させるポンプが用いられる。 Also, near the user-side heat exchanger 5c, a flow control device 5m is installed to control the flow rate of indoor air, which is a fluid that exchanges heat with the refrigerant. Note that in the first embodiment, an air-cooled user-side heat exchanger is used as an example of the user-side heat exchanger 5c, and an indoor fan is used as an example of the flow control device 5m, but a water-cooled user-side heat exchanger or the like may also be used as long as the refrigerant exchanges heat with another fluid. Also, when a water heater is used as the user-side unit C, the user-side heat exchanger 5 may be a water heat exchanger that exchanges heat between water and the refrigerant. In this case, a pump that moves water is used as the flow control device 5m.

 利用側熱交換器5cのそれぞれは、流量制御装置5mから供給される空気と冷媒との間で熱交換を行い、空調対象空間に供給するための暖房空気又は冷房空気を生成する。流量制御装置5mは、利用側熱交換器5cに流れる空気の風路を形成する。利用側流量制御装置4cは、中継機Bの第2分岐部11と利用側熱交換器5cとの間に設けられ、開閉自在に構成されている。利用側流量制御装置4cによって、利用側熱交換器5cに流入する冷媒流量を調整する。 Each of the utilization side heat exchangers 5c exchanges heat between the air supplied from the flow control device 5m and the refrigerant to generate heated air or cooled air to be supplied to the space to be air-conditioned. The flow control device 5m forms an air path for the air flowing to the utilization side heat exchanger 5c. The utilization side flow control device 4c is provided between the second branch section 11 of the relay unit B and the utilization side heat exchanger 5c, and is configured to be freely opened and closed. The utilization side flow control device 4c adjusts the flow rate of the refrigerant flowing into the utilization side heat exchanger 5c.

 (熱媒体変換機D)
 熱媒体変換機Dは、外部熱源Eの熱又は冷熱を、冷凍サイクル装置100を循環する冷媒に供給するためのものである。熱媒体変換機Dは、熱源機A、中継機B及び利用側ユニットCを循環する冷媒と、外部熱源Eからの熱を運ぶ熱媒体との熱交換を行う熱媒体間熱交換器30を有する。
(Heat medium converter D)
The heat medium relay unit D is for supplying heat or cold from an external heat source E to a refrigerant circulating in the refrigeration cycle apparatus 100. The heat medium relay unit D has an intermediate heat exchanger 30 that exchanges heat between the refrigerant circulating in the heat source unit A, the relay unit B, and the user side unit C and a heat medium that carries heat from the external heat source E.

 実施の形態1において熱媒体変換機Dは、液管6に設置されている。つまり、液管6を流通する冷媒は、熱媒体変換機Dが有する熱媒体間熱交換器30を通過する様に構成されている。 In the first embodiment, the heat medium converter D is installed in the liquid pipe 6. In other words, the refrigerant flowing through the liquid pipe 6 passes through the heat medium heat exchanger 30 that the heat medium converter D has.

 外部熱源Eの熱又は冷熱を運ぶ熱媒体は、熱媒体循環回路34をポンプ31により循環し、外部熱源Eから熱媒体間熱交換器30に送られる。熱媒体間熱交換器30は、例えばプレート式の熱交換器であり内部を冷媒及び熱媒体が循環し、熱媒体の熱または冷熱が冷媒に伝達される。 The heat medium that carries the heat or cold of the external heat source E is circulated through the heat medium circulation circuit 34 by the pump 31, and is sent from the external heat source E to the heat medium-intermediate heat exchanger 30. The heat medium-intermediate heat exchanger 30 is, for example, a plate-type heat exchanger, inside which the refrigerant and heat medium circulate, and the heat or cold of the heat medium is transferred to the refrigerant.

 熱媒体変換機Dは、外部熱源温度センサ32及び33を備える。外部熱源温度センサ32は、熱媒体間熱交換器30に流れ込む熱媒体の温度を検出する。外部熱源温度センサ33は、熱媒体間熱交換器30から流出する熱媒体の温度を検出する。 The heat medium converter D is equipped with external heat source temperature sensors 32 and 33. The external heat source temperature sensor 32 detects the temperature of the heat medium flowing into the heat medium-to-heat medium heat exchanger 30. The external heat source temperature sensor 33 detects the temperature of the heat medium flowing out of the heat medium-to-heat medium heat exchanger 30.

 (外部熱源E)
 外部熱源Eは、例えば井水、融雪水、氷雪、地熱、太陽光などであり、対象となる熱源により熱媒体を適宜変更できる。例えば、外部熱源Eが地中の井戸に大量に貯留された井水である場合、ポンプ31により井水をくみ上げ熱媒体とし、熱媒体循環回路34により熱媒体間熱交換器30に流入させる。井水は、冷媒と熱交換を行い、熱媒体間熱交換器30から流出し、温度が上昇する。温度が上昇した井水は、井戸に戻される。外部熱源Eとなる井水は、地中に大量に貯留されているものであり、熱媒体変換機Dを経て温度が上昇し耐水が戻されても、外部熱源Eの温度はほぼ変動しない。
(External heat source E)
The external heat source E is, for example, well water, melted snow, ice and snow, geothermal heat, solar light, etc., and the heat medium can be changed appropriately depending on the target heat source. For example, when the external heat source E is well water stored in a large amount in a well underground, the well water is pumped up by a pump 31 to become a heat medium, and is caused to flow into the heat medium heat exchanger 30 by a heat medium circulation circuit 34. The well water exchanges heat with the refrigerant, flows out of the heat medium heat exchanger 30, and its temperature increases. The well water with the increased temperature is returned to the well. The well water that serves as the external heat source E is stored in a large amount underground, and even if the temperature increases through the heat medium converter D and the water resistance is returned, the temperature of the external heat source E hardly changes.

 なお、熱媒体循環回路34は、熱媒体循環回路34に独立した熱媒体を循環させるように構成されていても良い。熱媒体循環回路34は、外部熱源Eと熱媒体循環回路34を流れる熱媒体との間で熱交換を行う外部熱交換器Fに接続されていても良い。外部熱交換器Fは、熱媒体と外部熱源Eとの間で熱交換を行う。外部熱交換器Fにおいて熱交換された熱媒体は、熱媒体間熱交換器30に送られて、冷凍サイクル装置100の冷媒回路を循環する冷媒と熱交換される。このように構成することにより、例えば井水をくみ上げて熱媒体とするよりも熱媒体循環回路34を流動する熱媒体の品質が保たれ、熱媒体循環回路34及び熱媒体変換機Dの耐久性を確保できる。熱媒体循環回路34の構成は、外部熱源Eに何を使用するかによって適宜変更しても良い。 The heat medium circulation circuit 34 may be configured to circulate an independent heat medium in the heat medium circulation circuit 34. The heat medium circulation circuit 34 may be connected to an external heat exchanger F that exchanges heat between the external heat source E and the heat medium flowing through the heat medium circulation circuit 34. The external heat exchanger F exchanges heat between the heat medium and the external heat source E. The heat medium that has been heat exchanged in the external heat exchanger F is sent to the heat medium-to-heat medium heat exchanger 30 and is heat exchanged with the refrigerant circulating through the refrigerant circuit of the refrigeration cycle device 100. By configuring in this way, the quality of the heat medium flowing through the heat medium circulation circuit 34 can be maintained, and the durability of the heat medium circulation circuit 34 and the heat medium converter D can be ensured, as opposed to pumping up well water as the heat medium, for example. The configuration of the heat medium circulation circuit 34 may be changed as appropriate depending on what is used as the external heat source E.

 また、地熱を外部熱源Eとして利用する場合、水などの熱媒体が循環する配管を地中まで延ばし、地熱を熱媒体に伝達させる。また、太陽光を外部熱源Eとして利用する場合、水などの熱媒体が循環する配管を太陽熱温水器などに接続し、太陽光による熱を熱媒体に伝達させる。実施の形態1に係る冷凍サイクル装置100は、このような外部熱源Eを有効利用して、省エネを実現するものである。 When geothermal energy is used as the external heat source E, piping through which a heat medium such as water circulates is extended into the ground, and the geothermal energy is transferred to the heat medium. When sunlight is used as the external heat source E, piping through which a heat medium such as water circulates is connected to a solar water heater or the like, and the heat from the sunlight is transferred to the heat medium. The refrigeration cycle device 100 according to the first embodiment makes effective use of such an external heat source E to achieve energy savings.

 (制御装置50)
 冷凍サイクル装置100には、制御装置50が設けられている。制御装置50は、冷凍サイクル装置100に設けられた各センサで検出された冷媒の圧力情報、冷媒及び熱媒体の温度情報、室外温度情報及び室内温度情報等に基づいて、アクチュエータ等を制御する。例えば、制御装置50は、圧縮機1の駆動、第1流路切替装置2及び第2流路切替装置10cの切り替え、室外流量制御装置3mのファンモーターの駆動、流量制御装置5mのファンモーターの駆動、熱源側熱交換器3へ熱媒体を送るポンプ31を制御する。
(Control device 50)
The refrigeration cycle apparatus 100 is provided with a control device 50. The control device 50 controls actuators and the like based on refrigerant pressure information, refrigerant and heat medium temperature information, outdoor temperature information, indoor temperature information, and the like detected by each sensor provided in the refrigeration cycle apparatus 100. For example, the control device 50 controls driving of the compressor 1, switching between the first flow path switching device 2 and the second flow path switching device 10c, driving of the fan motor of the outdoor flow control device 3m, driving of the fan motor of the flow control device 5m, and the pump 31 that sends the heat medium to the heat source side heat exchanger 3.

 また、制御装置50は、熱源側流量制御装置22、利用側流量制御装置4c及びバイパス流量制御装置15の開度を制御する。制御装置50は、各制御値を決定する情報が格納されるメモリ50aを備えている。なお、制御装置50は、その機能を実現する制御回路のようなハードウェアで構成されるようにしてもよい。また、制御装置50は、半導体メモリなどの記憶部に記憶されたソフトウェアプログラムと、このソフトウェアプログラムを実行するマイコン又はCPU(中央演算装置)のような演算装置50bとによって構成されるようにしてもよい。図2では、制御装置50が独立して表示されているが、熱源機A、中継機B及び利用側ユニットCなどに設けられていても良い。制御装置50は1個でも3個以上でもよい。制御装置50は、制御対象となる各機器と有線又は無線にて接続されている。なお、図3以降においては制御装置50の表示を省略している。 The control device 50 also controls the opening of the heat source side flow control device 22, the utilization side flow control device 4c, and the bypass flow control device 15. The control device 50 includes a memory 50a in which information for determining each control value is stored. The control device 50 may be configured as hardware such as a control circuit that realizes its functions. The control device 50 may also be configured as a software program stored in a storage unit such as a semiconductor memory, and a calculation device 50b such as a microcomputer or CPU (Central Processing Unit) that executes the software program. In FIG. 2, the control device 50 is shown independently, but it may be provided in the heat source unit A, the relay unit B, the utilization side unit C, etc. The number of control devices 50 may be one or more than three. The control device 50 is connected to each device to be controlled by wire or wirelessly. The control device 50 is not shown in FIG. 3 and subsequent figures.

 (冷凍サイクル装置100の運転モード)
 次に、冷凍サイクル装置100が実行する各種運転時の運転動作について説明する。冷凍サイクル装置100の運転動作には、冷房運転、暖房運転がある。冷房運転には、一部の利用側ユニットCにおいて暖房運転を行う冷房主体運転も含まれる。暖房運転には、一部の利用側ユニットCにおいて冷房運転を行う暖房主体運転も含まれる。
(Operation Mode of Refrigeration Cycle Apparatus 100)
Next, the operation during various operations performed by the refrigeration cycle apparatus 100 will be described. The operation of the refrigeration cycle apparatus 100 includes a cooling operation and a heating operation. The cooling operation includes a cooling-dominated operation in which a heating operation is performed in some of the user-side units C. The heating operation includes a heating-dominated operation in which a cooling operation is performed in some of the user-side units C.

 冷房運転は、全ての利用側ユニットCが冷房運転及び停止の何れかの状態である運転モードである。暖房運転は、全ての利用側ユニットCが暖房運転及び停止の何れかの状態である運転モードである。冷房主体運転は、室内機毎に冷暖房を選択することができる運転モードであり、冷房負荷が暖房負荷よりも大きい。冷房主体運転は、熱源側熱交換器3が、圧縮機1の吐出側に接続されて凝縮器として作用する運転モードである。暖房主体運転は、室内機毎に冷暖房を選択することができる運転モードであり、暖房負荷が冷房負荷よりも大きい。暖房主体運転は、熱源側熱交換器3が、圧縮機1の吸入側に接続されて蒸発器として作用する運転モードである。 Cooling operation is an operation mode in which all user side units C are either in cooling operation or stopped. Heating operation is an operation mode in which all user side units C are either in heating operation or stopped. Cooling-dominated operation is an operation mode in which heating or cooling can be selected for each indoor unit, and the cooling load is greater than the heating load. Cooling-dominated operation is an operation mode in which the heat source side heat exchanger 3 is connected to the discharge side of the compressor 1 and acts as a condenser. Heating-dominated operation is an operation mode in which heating or cooling can be selected for each indoor unit, and the heating load is greater than the cooling load. Heating-dominated operation is an operation mode in which the heat source side heat exchanger 3 is connected to the suction side of the compressor 1 and acts as an evaporator.

 (全冷房運転について)
 図3は、実施の形態1に係る冷凍サイクル装置100が全冷房運転している場合の冷媒の流れの説明図である。図3は、利用側ユニットCが全て冷房運転しているときの状態を表しており、利用側熱交換器5cは全て蒸発器として機能している。
(About full cooling operation)
Fig. 3 is an explanatory diagram of the flow of the refrigerant when the refrigeration cycle apparatus 100 according to the embodiment 1 is in a full cooling operation. Fig. 3 shows a state when all the user side units C are in a cooling operation, and all the user side heat exchangers 5c function as evaporators.

 全冷房運転が行われる場合、制御装置50は、第1流路切替装置2aを、圧縮機1から吐出された冷媒が熱源側熱交換器3に流れるように切り替える。また、利用側ユニットC1に接続された低圧側電磁弁9c1、9c2、9c3は開放され、高圧側電磁弁8c1、8c2、8c3は閉止される。なお、図3以降の図においては、第2流路切替装置10cのうち閉止した弁を黒塗りで表示している。また、図3以降の冷凍サイクル回路において、太い実線は高圧の冷媒、細い実線は低圧の冷媒、太い破線は中圧の冷媒が流通していることを意味している。また、冷凍サイクル回路において細い破線で示されている部分は冷媒が流通していない。 When full cooling operation is performed, the control device 50 switches the first flow path switching device 2a so that the refrigerant discharged from the compressor 1 flows to the heat source side heat exchanger 3. In addition, the low pressure side solenoid valves 9c1, 9c2, and 9c3 connected to the user side unit C1 are opened, and the high pressure side solenoid valves 8c1, 8c2, and 8c3 are closed. In addition, in the figures from FIG. 3 onwards, the closed valves of the second flow path switching device 10c are shown in black. In addition, in the refrigeration cycle circuits from FIG. 3 onwards, the thick solid lines indicate that high pressure refrigerant is circulating, the thin solid lines indicate that low pressure refrigerant is circulating, and the thick dashed lines indicate that medium pressure refrigerant is circulating. In addition, the parts of the refrigeration cycle circuit indicated by thin dashed lines are not circulated by refrigerant.

 圧縮機1の運転が開始されると低温且つ低圧のガス状冷媒が圧縮機1によって圧縮され、高温且つ高圧のガス状冷媒となって吐出される。圧縮機1から吐出された高温且つ高圧のガス状冷媒は、第1流路切替装置2を介して熱源側熱交換器3に流入する。圧縮機1から吐出され熱源側熱交換器3に流入した冷媒は、室外空気を加熱しながら冷却され、中温且つ高圧の液状冷媒又は気液二相冷媒となる。熱源側熱交換器3から流出した中温且つ高圧の冷媒は、熱源機Aから流出し、液管6に流入する。液管6に流入した冷媒は、液管6上に設けられている熱媒体間熱交換器30でさらに冷却される。これにより、より温度の低い外部熱源Eの温度相当まで冷媒を凝縮させ、凝縮前後の冷媒のエンタルピー差を確保し、より冷房能力を向上させることが可能となる。 When the compressor 1 starts operating, the low-temperature, low-pressure gaseous refrigerant is compressed by the compressor 1 and discharged as a high-temperature, high-pressure gaseous refrigerant. The high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3 via the first flow switching device 2. The refrigerant discharged from the compressor 1 and flowing into the heat source side heat exchanger 3 is cooled while heating the outdoor air, and becomes a medium-temperature, high-pressure liquid refrigerant or a gas-liquid two-phase refrigerant. The medium-temperature, high-pressure refrigerant that flows out of the heat source side heat exchanger 3 flows out of the heat source unit A and flows into the liquid pipe 6. The refrigerant that flows into the liquid pipe 6 is further cooled by the heat medium heat exchanger 30 installed on the liquid pipe 6. This condenses the refrigerant to a temperature equivalent to the lower temperature of the external heat source E, ensures the enthalpy difference between the refrigerant before and after condensation, and makes it possible to further improve the cooling capacity.

 液管6上に設置された熱媒体間熱交換器30で凝縮された冷媒は、中継機Bの第2分岐部11に流入する。第2分岐部11に流入した高圧の液状又は気液二相冷媒は、分岐され複数の利用側ユニットCに繋がる第2配管41c1、41c2、41c3に流入する。第2配管41c1、41c2、41c3を流れた冷媒は、利用側ユニットC1、C2の利用側流量制御装置4c1、4c2、4c3に流入する。そして、高圧の液状冷媒は、利用側流量制御装置4c1、4c2、4c3で絞られ、膨張して減圧し、低温且つ低圧の気液二相状態になる。利用側流量制御装置4c1、4c2、4c3から流出した低温且つ低圧の気液二相状態の冷媒は、利用側熱交換器5c1、5c2、5c3に流入する。そして、冷媒が室内空気を冷却しながら加熱され、低温且つ低圧のガス状冷媒となる。 The refrigerant condensed in the heat exchanger 30 installed on the liquid pipe 6 flows into the second branch 11 of the relay B. The high-pressure liquid or gas-liquid two-phase refrigerant that flows into the second branch 11 flows into the second pipes 41c1, 41c2, 41c3 that are branched and connected to multiple user-side units C. The refrigerant that flows through the second pipes 41c1, 41c2, 41c3 flows into the user-side flow control devices 4c1, 4c2, 4c3 of the user-side units C1, C2. The high-pressure liquid refrigerant is then throttled by the user-side flow control devices 4c1, 4c2, 4c3, expands and reduces its pressure, becoming a low-temperature, low-pressure, two-phase gas-liquid state. The low-temperature, low-pressure, two-phase gas-liquid refrigerant that flows out of the user-side flow control devices 4c1, 4c2, 4c3 flows into the user-side heat exchangers 5c1, 5c2, 5c3. The refrigerant then heats up while cooling the indoor air, becoming a low-temperature, low-pressure gaseous refrigerant.

 利用側熱交換器5c1、5c2、5c3から流出した低温且つ低圧のガス状冷媒は、それぞれ低圧側電磁弁9c1、9c2、9c3を通り、第1分岐部10の低圧側分岐部10aに流入する。低圧側分岐部10aで合流した低温且つ低圧のガス状冷媒は、低圧ガス管7aから熱源機Aに流入し、アキュムレータ29を通り圧縮機1に吸入され、圧縮される。 The low-temperature, low-pressure gaseous refrigerant flowing out of the user-side heat exchangers 5c1, 5c2, and 5c3 passes through the low-pressure solenoid valves 9c1, 9c2, and 9c3, respectively, and flows into the low-pressure branch 10a of the first branch 10. The low-temperature, low-pressure gaseous refrigerant that joins at the low-pressure branch 10a flows into the heat source unit A from the low-pressure gas pipe 7a, passes through the accumulator 29, is sucked into the compressor 1, and is compressed.

(全暖房運転について)
 図4は、実施の形態1に係る冷凍サイクル装置100が全暖房運転している場合の冷媒の流れの説明図である。図3は、利用側ユニットCが全て暖房運転しているときの状態を表しており、利用側熱交換器5cは全て凝縮器として機能している。
(About full heating operation)
Fig. 4 is an explanatory diagram of the flow of the refrigerant when the refrigeration cycle apparatus 100 according to the embodiment 1 is in full heating operation. Fig. 3 shows a state when all the user side units C are in heating operation, and all the user side heat exchangers 5c function as condensers.

 全暖房運転が行われる場合、制御装置50は、第1流路切替装置2aを、圧縮機1から吐出された冷媒が熱源機Aを出て高圧ガス管7bに流れる様に切り替えられる。また、利用側ユニットC1に接続された高圧側電磁弁8c1、8c2、8c3は開放され、低圧側電磁弁9c1、9c2、9c3は閉止される。なお、第1流路切替装置2aは、熱源側熱交換器3と圧縮機1の吸入側と接続するように切り替えられている。 When full heating operation is performed, the control device 50 switches the first flow path switching device 2a so that the refrigerant discharged from the compressor 1 flows out of the heat source unit A into the high-pressure gas pipe 7b. In addition, the high-pressure side solenoid valves 8c1, 8c2, and 8c3 connected to the user side unit C1 are opened, and the low-pressure side solenoid valves 9c1, 9c2, and 9c3 are closed. The first flow path switching device 2a is switched to connect the heat source side heat exchanger 3 and the suction side of the compressor 1.

 圧縮機1の運転が開始されると低温且つ低圧のガス状冷媒が圧縮機1によって圧縮され、高温且つ高圧のガス状冷媒となって吐出される。圧縮機1から吐出された高温且つ高圧のガス状冷媒は、熱源機Aを出て高圧ガス管7bに流入し、第1分岐部10から第1配管40c1、40c2、40c3を経て利用側ユニットCに流入する。利用側ユニットCに流入した冷媒は、利用側熱交換器5cにおいて室内空気を加熱しながら冷却され、中温且つ高圧の液状冷媒又は気液二相冷媒となる。利用側熱交換器5cから流出した中温且つ高圧の冷媒は、利用側流量制御装置4cで減圧され、低温且つ低圧の気液二相状態になる。 When the compressor 1 starts operating, the low-temperature, low-pressure gaseous refrigerant is compressed by the compressor 1 and discharged as high-temperature, high-pressure gaseous refrigerant. The high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 leaves the heat source unit A and flows into the high-pressure gas pipe 7b, and flows from the first branch 10 through the first piping 40c1, 40c2, and 40c3 into the user side unit C. The refrigerant that flows into the user side unit C is cooled in the user side heat exchanger 5c while heating the indoor air, and becomes a medium-temperature, high-pressure liquid refrigerant or a two-phase gas-liquid refrigerant. The medium-temperature, high-pressure refrigerant that flows out of the user side heat exchanger 5c is depressurized by the user side flow control device 4c and becomes a low-temperature, low-pressure two-phase gas-liquid state.

 利用側流量制御装置4c1、4c2、4c3から流出した低温且つ低圧の気液二相状態の冷媒は、第2分岐部11を経て中継機Bから流出し、液管6に流入する。液管6に流入した冷媒は、液管6上に設けられている熱媒体間熱交換器30で加熱される。これにより、液管6を流れる冷媒は、外部熱源Eを用いて蒸発させることができる。 The low-temperature, low-pressure refrigerant in a gas-liquid two-phase state that flows out of the user-side flow control devices 4c1, 4c2, and 4c3 flows out of the relay B via the second branch section 11 and flows into the liquid pipe 6. The refrigerant that flows into the liquid pipe 6 is heated by the heat medium heat exchanger 30 provided on the liquid pipe 6. As a result, the refrigerant flowing through the liquid pipe 6 can be evaporated using the external heat source E.

 液管6の冷媒は、熱源機Aに流入し、熱源側流量制御装置22を経て熱源側熱交換器3に流入する。冷媒は、熱源側熱交換器3においても加熱され、低温低圧のガス冷媒となる。冷媒は、熱媒体間熱交換器30において既に加熱されているため、熱源側熱交換器3の熱交換能力を下げることもできる。つまり、熱媒体間熱交換器30と熱源側熱交換器3とは、冷凍サイクル回路上で直列に接続されており、熱媒体間熱交換器30は熱源側熱交換器3の能力を補助するように機能している。 The refrigerant in the liquid pipe 6 flows into the heat source unit A, passes through the heat source side flow control device 22, and flows into the heat source side heat exchanger 3. The refrigerant is also heated in the heat source side heat exchanger 3, becoming a low-temperature, low-pressure gas refrigerant. Because the refrigerant has already been heated in the heat medium heat exchanger 30, the heat exchange capacity of the heat source side heat exchanger 3 can also be reduced. In other words, the heat medium heat exchanger 30 and the heat source side heat exchanger 3 are connected in series on the refrigeration cycle circuit, and the heat medium heat exchanger 30 functions to supplement the capacity of the heat source side heat exchanger 3.

 熱源側熱交換器3を流出した低温且つ低圧のガス状冷媒は、第1流路切替装置2を経て配管1bに流入し、アキュムレータ29を通り圧縮機1に吸入され、圧縮される。 The low-temperature, low-pressure gaseous refrigerant that flows out of the heat source side heat exchanger 3 passes through the first flow switching device 2 and flows into the pipe 1b, passes through the accumulator 29, and is sucked into the compressor 1 and compressed.

 (冷房主体運転について)
 図5は、実施の形態1に係る冷凍サイクル装置100が冷房主体運転している場合の冷媒の流れの説明図である。図5は、利用側ユニットCのうち利用側ユニットC1及びC2が冷房運転し、利用側ユニットC3が暖房運転をしているときの状態を表しており、利用側熱交換器5c1及び5c2が蒸発器、利用側熱交換器5c3が凝縮器として機能している。
(Cooling-dominant operation)
Fig. 5 is an explanatory diagram of the flow of refrigerant when the refrigeration cycle apparatus 100 according to embodiment 1 is operating mainly in cooling mode. Fig. 5 illustrates a state in which the user side units C1 and C2 among the user side units C are operating in cooling mode and the user side unit C3 is operating in heating mode, with the user side heat exchangers 5c1 and 5c2 functioning as evaporators and the user side heat exchanger 5c3 functioning as a condenser.

 冷房主体運転が行われる場合、制御装置50は、第1流路切替装置2aを、圧縮機1から吐出された冷媒が熱源側熱交換器3に流れるように切り替える。また、利用側ユニットC1及びC2に接続された低圧側電磁弁9c1、9c2は開放され、利用側ユニットC3に接続された低圧側電磁弁9c3は閉止されている。また、高圧側電磁弁8c1、8c2は閉止され、高圧側電磁弁8c3は開放されている。 When cooling-dominant operation is performed, the control device 50 switches the first flow path switching device 2a so that the refrigerant discharged from the compressor 1 flows to the heat source side heat exchanger 3. In addition, the low pressure side solenoid valves 9c1 and 9c2 connected to the utilization side units C1 and C2 are opened, and the low pressure side solenoid valve 9c3 connected to the utilization side unit C3 is closed. In addition, the high pressure side solenoid valves 8c1 and 8c2 are closed, and the high pressure side solenoid valve 8c3 is open.

 圧縮機1の運転が開始されると低温且つ低圧のガス状冷媒が圧縮機1によって圧縮され、高温且つ高圧のガス状冷媒となって吐出される。圧縮機1から吐出された高温且つ高圧のガス状冷媒は、一部が熱源機Aから流出して高圧ガス管7bに入り、他の一部が第1流路切替装置2を介して熱源側熱交換器3に流入する。圧縮機1から吐出され高圧ガス管7bに流入した冷媒は、高圧側分岐部10bから暖房運転される利用側ユニットC3に流入し利用側熱交換器5c3において室外空気を加熱しながら冷却され、中温且つ高圧の液状冷媒又は気液二相冷媒となる。利用側熱交換器5c3を出た冷媒は、利用側流量制御装置4c3で減圧され、低温且つ低圧の気液二相状態になる。なお、利用側流量制御装置4c3においては、冷媒の状態によっては減圧されなくとも良い。 When the compressor 1 starts operating, the low-temperature, low-pressure gaseous refrigerant is compressed by the compressor 1 and discharged as a high-temperature, high-pressure gaseous refrigerant. A portion of the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 flows out of the heat source unit A and into the high-pressure gas pipe 7b, and the other portion flows into the heat source side heat exchanger 3 via the first flow switching device 2. The refrigerant discharged from the compressor 1 and flowing into the high-pressure gas pipe 7b flows from the high-pressure side branching section 10b into the user side unit C3 operating in heating mode, and is cooled while heating the outdoor air in the user side heat exchanger 5c3, becoming a medium-temperature, high-pressure liquid refrigerant or a gas-liquid two-phase refrigerant. The refrigerant that leaves the user side heat exchanger 5c3 is decompressed by the user side flow control device 4c3 and becomes a low-temperature, low-pressure gas-liquid two-phase state. Note that the user side flow control device 4c3 does not need to decompress depending on the state of the refrigerant.

 また、圧縮機1から吐出された冷媒のうち、熱源側熱交換器3に流入した冷媒は、室外空気を加熱しながら冷却され、中温且つ高圧の液状冷媒又は気液二相冷媒となる。熱源側熱交換器3から流出した中温且つ高圧の冷媒は、熱源機Aから流出し、液管6に流入する。液管6に流入した冷媒は、液管6上に設けられている熱媒体間熱交換器30でさらに冷却される。つまり、熱媒体間熱交換器30と熱源側熱交換器3とは、冷凍サイクル回路上で直列に接続されており、熱媒体間熱交換器30は熱源側熱交換器3の能力を補助するように機能している。なお、この熱源機Aから熱媒体変換機Dの順に冷媒が流れる流路を補助冷媒流路と呼ぶ場合がある。図5に示す冷房主体運転においては、熱源側熱交換器3bのみに冷媒が流れる様に表示されており、冷凍サイクル装置100は、熱媒体変換機Dを用いることにより一方の熱源側熱交換器3bのみでも冷房主体運転が可能である。 Furthermore, of the refrigerant discharged from the compressor 1, the refrigerant that flows into the heat source side heat exchanger 3 is cooled while heating the outdoor air, becoming a medium temperature and high pressure liquid refrigerant or a gas-liquid two-phase refrigerant. The medium temperature and high pressure refrigerant that flows out of the heat source side heat exchanger 3 flows out of the heat source unit A and into the liquid pipe 6. The refrigerant that flows into the liquid pipe 6 is further cooled by the inter-heat medium heat exchanger 30 provided on the liquid pipe 6. In other words, the inter-heat medium heat exchanger 30 and the heat source side heat exchanger 3 are connected in series on the refrigeration cycle circuit, and the inter-heat medium heat exchanger 30 functions to supplement the capacity of the heat source side heat exchanger 3. The flow path through which the refrigerant flows in this order from the heat source unit A to the heat medium converter D is sometimes called the auxiliary refrigerant flow path. In the cooling-dominated operation shown in FIG. 5, the refrigerant is shown to flow only through the heat source-side heat exchanger 3b, and the refrigeration cycle device 100 can perform cooling-dominated operation using only the heat source-side heat exchanger 3b by using the heat medium converter D.

 液管6上に設置された熱媒体間熱交換器30で凝縮された冷媒は、中継機Bの第2分岐部11に流入する。第2分岐部11は、利用側ユニットC3から流入した冷媒と液管6から流入した冷媒が合流し、分岐され冷房運転される利用側ユニットC1及びC2に繋がる第2配管41c1、41c2に流入する。第2配管41c1、41c2を流れた冷媒は、利用側ユニットC1、C2の利用側流量制御装置4c1、4c2に流入し、利用側流量制御装置4c1、4c2で絞られ、膨張して減圧し、低温且つ低圧の気液二相状態になる。利用側流量制御装置4c1、4c2から流出した低温且つ低圧の気液二相状態の冷媒は、利用側熱交換器5c1、5c2に流入し、冷媒が室内空気を冷却しながら加熱され、低温且つ低圧のガス状冷媒となる。 The refrigerant condensed in the heat exchanger 30 installed on the liquid pipe 6 flows into the second branch 11 of the relay B. In the second branch 11, the refrigerant flowing in from the user unit C3 and the refrigerant flowing in from the liquid pipe 6 join together and flow into the second pipes 41c1, 41c2 that are branched and connected to the user units C1 and C2 that are operating in cooling mode. The refrigerant that flows through the second pipes 41c1, 41c2 flows into the user side flow control devices 4c1, 4c2 of the user side units C1, C2, where it is throttled, expanded and reduced in pressure, becoming a low-temperature, low-pressure two-phase gas-liquid state. The low-temperature, low-pressure two-phase gas-liquid refrigerant that flows out of the user side flow control devices 4c1, 4c2 flows into the user side heat exchangers 5c1, 5c2, where the refrigerant is heated while cooling the indoor air, becoming a low-temperature, low-pressure gaseous refrigerant.

 利用側熱交換器5c1、5c2から流出した低温且つ低圧のガス状冷媒は、それぞれ低圧側電磁弁9c1、9c2を通り、第1分岐部10の低圧側分岐部10aに流入する。低圧側分岐部10aで合流した低温且つ低圧のガス状冷媒は、低圧ガス管7aから熱源機Aに流入し、アキュムレータ29を通り圧縮機1に吸入され、圧縮される。 The low-temperature, low-pressure gaseous refrigerant flowing out of the user-side heat exchangers 5c1 and 5c2 passes through the low-pressure solenoid valves 9c1 and 9c2, respectively, and flows into the low-pressure branch 10a of the first branch 10. The low-temperature, low-pressure gaseous refrigerant that joins at the low-pressure branch 10a flows into the heat source unit A from the low-pressure gas pipe 7a, passes through the accumulator 29, is sucked into the compressor 1, and is compressed.

(暖房主体運転について)
 図6は、実施の形態1に係る冷凍サイクル装置100が暖房主体運転している場合の冷媒の流れの説明図である。図6は、利用側ユニットCのうち利用側ユニットC1及びC2が暖房運転し、利用側ユニットC3が冷房運転をしているときの状態を表しており、利用側熱交換器5c1及び5c2が凝縮器、利用側熱交換器5c3が蒸発器として機能している。
(Heating-dominant operation)
Fig. 6 is an explanatory diagram of the flow of the refrigerant when the refrigeration cycle apparatus 100 according to the embodiment 1 is in heating-dominated operation. Fig. 6 illustrates a state in which the user-side units C1 and C2 among the user-side units C are in heating operation and the user-side unit C3 is in cooling operation, in which the user-side heat exchangers 5c1 and 5c2 function as condensers and the user-side heat exchanger 5c3 functions as an evaporator.

 暖房主体運転が行われる場合、制御装置50は、第1流路切替装置2aを、圧縮機1から吐出された冷媒が熱源機Aを出て高圧ガス管7bに流れる様に切り替えられる。また、暖房運転が行われる利用側ユニットC1及びC2に接続された高圧側電磁弁8c1、8c2は開放され、低圧側電磁弁9c1、9c2は閉止される。冷房運転される利用側ユニットC3に接続された高圧側電磁弁8c3は閉止され、低圧側電磁弁9c3は閉止される。なお、第1流路切替装置2aは、熱源側熱交換器3と圧縮機1の吸入側と接続するように切り替えられている。 When heating-dominant operation is performed, the control device 50 switches the first flow path switching device 2a so that the refrigerant discharged from the compressor 1 flows from the heat source unit A to the high-pressure gas pipe 7b. In addition, the high-pressure side solenoid valves 8c1, 8c2 connected to the user side units C1 and C2 performing heating operation are opened, and the low-pressure side solenoid valves 9c1, 9c2 are closed. The high-pressure side solenoid valve 8c3 connected to the user side unit C3 performing cooling operation is closed, and the low-pressure side solenoid valve 9c3 is closed. The first flow path switching device 2a is switched to connect the heat source side heat exchanger 3 to the suction side of the compressor 1.

 圧縮機1の運転が開始されると低温且つ低圧のガス状冷媒が圧縮機1によって圧縮され、高温且つ高圧のガス状冷媒となって吐出される。圧縮機1から吐出された高温且つ高圧のガス状冷媒は、熱源機Aを出て高圧ガス管7bに流入し、第1分岐部10から第1配管40c1、40c2を経て利用側ユニットC1及びC2に流入する。利用側ユニットC1、C2に流入した冷媒は、利用側熱交換器5cにおいて室内空気を加熱しながら冷却され、中温且つ高圧の液状冷媒又は気液二相冷媒となる。利用側熱交換器5c1、5c2のそれぞれから流出した中温且つ高圧の冷媒は、利用側流量制御装置4c1、4c2のそれぞれで減圧され、低温且つ低圧の気液二相状態になる。なお、利用側流量制御装置4c1、4c2においては、冷媒の状態によっては減圧されなくとも良い。 When the compressor 1 starts operating, the low-temperature, low-pressure gaseous refrigerant is compressed by the compressor 1 and discharged as a high-temperature, high-pressure gaseous refrigerant. The high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 leaves the heat source unit A and flows into the high-pressure gas pipe 7b, and flows from the first branch 10 through the first piping 40c1, 40c2 into the user-side units C1 and C2. The refrigerant that flows into the user-side units C1 and C2 is cooled while heating the indoor air in the user-side heat exchanger 5c, and becomes a medium-temperature, high-pressure liquid refrigerant or a gas-liquid two-phase refrigerant. The medium-temperature, high-pressure refrigerant that flows out of each of the user-side heat exchangers 5c1, 5c2 is depressurized by each of the user-side flow control devices 4c1, 4c2, and becomes a low-temperature, low-pressure gas-liquid two-phase state. Note that the user-side flow control devices 4c1, 4c2 do not need to depressurize depending on the state of the refrigerant.

 利用側流量制御装置4c1、4c2から流出した低温且つ低圧の気液二相状態の冷媒は、第2分岐部11を経て、一部は中継機Bから液管6に流入し、他の一部は冷房運転する利用側ユニットC2に繋がる第2配管41c3に流入する。第2配管41c3に流入した冷媒は、利用側流量制御装置4c3で減圧され、利用側熱交換器5c3において室内空気を冷却しながら蒸発し、低温低圧のガス冷媒になる。利用側ユニットC3を出た冷媒は、第1分岐部10を経て低圧ガス管7aから熱源機Aに流入する。 The low-temperature, low-pressure two-phase gas-liquid refrigerant flowing out of the user-side flow control devices 4c1 and 4c2 passes through the second branch 11, with some flowing from the relay unit B into the liquid pipe 6 and the other flowing into the second pipe 41c3 connected to the user-side unit C2 performing cooling operation. The refrigerant flowing into the second pipe 41c3 is depressurized by the user-side flow control device 4c3, and evaporates in the user-side heat exchanger 5c3 while cooling the indoor air, becoming a low-temperature, low-pressure gas refrigerant. The refrigerant leaving the user-side unit C3 passes through the first branch 10 and flows into the heat source unit A from the low-pressure gas pipe 7a.

 液管6に流入した冷媒は、液管6上に設けられている熱媒体間熱交換器30で加熱される。これにより、液管6を流れる冷媒は、外部熱源Eを用いて蒸発させることができる。 The refrigerant that flows into the liquid pipe 6 is heated by the heat exchanger 30 installed on the liquid pipe 6. As a result, the refrigerant flowing through the liquid pipe 6 can be evaporated using the external heat source E.

 液管6の冷媒は、熱源機Aに流入し、熱源側流量制御装置22を経て熱源側熱交換器3に流入する。冷媒は、熱源側熱交換器3においても加熱され、低温低圧のガス冷媒となる。冷媒は、熱媒体間熱交換器30において既に加熱されているため、熱源側熱交換器3の熱交換能力を下げることもできる。図6に示す暖房主体運転においては、熱源側熱交換器3bのみに冷媒が流れる様に表示されており、冷凍サイクル装置100は、熱媒体変換機Dを用いることにより一方の熱源側熱交換器3bのみでも暖房主体運転が可能である。つまり、熱媒体間熱交換器30と熱源側熱交換器3とは、冷凍サイクル回路上で直列に接続されており、熱媒体間熱交換器30は熱源側熱交換器3の能力を補助するように機能している。 The refrigerant in the liquid pipe 6 flows into the heat source unit A and into the heat source side heat exchanger 3 via the heat source side flow control device 22. The refrigerant is also heated in the heat source side heat exchanger 3, becoming a low-temperature, low-pressure gas refrigerant. Since the refrigerant has already been heated in the heat medium heat exchanger 30, the heat exchange capacity of the heat source side heat exchanger 3 can be reduced. In the heating-dominated operation shown in FIG. 6, the refrigerant is shown to flow only through the heat source side heat exchanger 3b, and the refrigeration cycle device 100 can perform heating-dominated operation using only the heat source side heat exchanger 3b by using the heat medium converter D. In other words, the heat medium heat exchanger 30 and the heat source side heat exchanger 3 are connected in series on the refrigeration cycle circuit, and the heat medium heat exchanger 30 functions to supplement the capacity of the heat source side heat exchanger 3.

 熱源側熱交換器3を流出した低温且つ低圧のガス状冷媒は、第1流路切替装置2を経て配管1bに流入する。また、配管1bには、中継機Bを流出して低圧ガス管7aを経て熱源機Aに流入した冷媒も合流し、アキュムレータ29を通り圧縮機1に吸入され、圧縮される。 The low-temperature, low-pressure gaseous refrigerant that flows out of the heat source side heat exchanger 3 flows into the pipe 1b via the first flow switching device 2. In addition, the refrigerant that flows out of the relay unit B and into the heat source unit A via the low-pressure gas pipe 7a also flows into the pipe 1b, passes through the accumulator 29, and is sucked into the compressor 1 and compressed.

(実施の形態1に係る冷凍サイクル装置100の効果)
 実施の形態1に係る冷凍サイクル装置100は、冷媒を圧縮する圧縮機1、熱源側熱交換器3、及び熱源側熱交換器3と圧縮機1の吸入側又は吐出側との接続を切り替える第1流路切替装置2を有する熱源機Aと、圧縮機1の吐出側に接続され、熱源機Aから冷媒が流出する高圧ガス管7bと、圧縮機1の吸入側に接続され、熱源機Aへ冷媒が流入する低圧ガス管7aと、利用側熱交換器5c及び利用側熱交換器5cに流れる冷媒の流量を制御する利用側流量制御装置4cを有する利用側ユニットCと、外部熱源Eからの熱を運ぶ熱媒体と冷媒とを熱交換する熱媒体間熱交換器30を有する熱媒体変換機Dと、利用側ユニットCと熱源側熱交換器3との間に接続され、少なくとも一部が液状態である冷媒が流動する液管6と、を備える。利用側ユニットCは、利用側熱交換器5cが高圧ガス管7b又は低圧ガス管7aに選択的に接続可能に構成され、利用側流量制御装置4cが液管6と接続されている。熱媒体間熱交換器30は、少なくとも液管6と接続され、熱源側熱交換器3の機能を代替又は補助する。
(Effects of the refrigeration cycle apparatus 100 according to the first embodiment)
The refrigeration cycle apparatus 100 according to the first embodiment includes a heat source unit A having a compressor 1 that compresses a refrigerant, a heat source side heat exchanger 3, and a first flow path switching device 2 that switches a connection between the heat source side heat exchanger 3 and the suction side or the discharge side of the compressor 1, a high-pressure gas pipe 7b that is connected to the discharge side of the compressor 1 and through which the refrigerant flows out of the heat source unit A, a low-pressure gas pipe 7a that is connected to the suction side of the compressor 1 and through which the refrigerant flows into the heat source unit A, a user side unit C having a user side heat exchanger 5c and a user side flow control device 4c that controls the flow rate of the refrigerant flowing through the user side heat exchanger 5c, a heat medium converter D having an inter-heat medium heat exchanger 30 that exchanges heat between the refrigerant and a heat medium that carries heat from an external heat source E, and a liquid pipe 6 that is connected between the user side unit C and the heat source side heat exchanger 3 and through which a refrigerant at least a part of which is in a liquid state flows. In the utilization side unit C, the utilization side heat exchanger 5c is configured to be selectively connectable to the high pressure gas pipe 7b or the low pressure gas pipe 7a, and the utilization side flow rate control device 4c is connected to the liquid pipe 6. The heat medium heat exchanger 30 is connected to at least the liquid pipe 6, and replaces or assists the function of the heat source side heat exchanger 3.

 このように構成されることにより、実施の形態1に係る冷凍サイクル装置100は、熱源機Aから延びる低圧ガス管7a、高圧ガス管7b、及び液管6の3本の主管を備えるものであって、外部熱源Eを熱源側熱交換器3の補助に使用することができる。熱媒体間熱交換器30は、熱源側熱交換器3と配管により直列に接続されており、蒸発器又は凝縮器として機能する熱源側熱交換器3と同じ機能を発揮する。また、熱源機Aに熱源側熱交換器3をバイパスする配管を設置することにより、熱源側熱交換器3を使用せずに熱媒体熱交換器30を熱源側熱交換器3の代替として使用することもできる。 By configuring in this manner, the refrigeration cycle device 100 according to embodiment 1 has three main pipes, namely, a low-pressure gas pipe 7a, a high-pressure gas pipe 7b, and a liquid pipe 6, extending from the heat source unit A, and can use an external heat source E to supplement the heat source side heat exchanger 3. The heat medium heat exchanger 30 is connected in series with the heat source side heat exchanger 3 by piping, and performs the same function as the heat source side heat exchanger 3 functioning as an evaporator or condenser. In addition, by installing piping that bypasses the heat source side heat exchanger 3 in the heat source unit A, the heat medium heat exchanger 30 can be used as a substitute for the heat source side heat exchanger 3 without using the heat source side heat exchanger 3.

 図7は、実施の形態1に係る冷凍サイクル装置100の運転時のモリエル線図である。図7(a)は冷房運転時のモリエル線図を示しており、図7(b)は暖房運転時のモリエル線図を示している。実施の形態1に係る冷凍サイクル装置100のモリエル線図は、太い実線で示されている。冷凍サイクル装置100は、冷房運転時において熱源側熱交換器3を凝縮器として機能させるとともに、熱媒体間熱交換器30も凝縮器として機能させることにより、凝縮器を通過する前後の冷媒のエンタルピ差を大きくできる。図7に示す細実線で示されているモリエル線図は、熱媒体間熱交換器30を使用しない場合の冷凍サイクル装置についてのものであるが、実施の形態1に係る冷凍サイクル装置100は、冷房運転時において、過冷却を大きくできるため、冷房能力を高くできる。また、暖房運転時において、冷凍サイクル装置100は、熱源側熱交換器3に加えて熱媒体間熱交換器30を蒸発器として機能させることにより、蒸発能力が向上する。図7においては、20℃の井水を使用することを想定しているが、外部熱源Eとして井水を使用することにより、全冷房運転、冷房主体運転、全暖房運転、及び暖房主体運転において熱媒体間熱交換器30が熱源側熱交換器3の補助熱交換器として機能するため、冷凍サイクル装置100は、能力が向上し、省エネ運転も可能になる。 7 is a Mollier diagram of the refrigeration cycle apparatus 100 according to the first embodiment during operation. FIG. 7(a) shows the Mollier diagram during cooling operation, and FIG. 7(b) shows the Mollier diagram during heating operation. The Mollier diagram of the refrigeration cycle apparatus 100 according to the first embodiment is shown by a thick solid line. In the refrigeration cycle apparatus 100, the heat source side heat exchanger 3 functions as a condenser during cooling operation, and the heat medium heat exchanger 30 also functions as a condenser, thereby making it possible to increase the enthalpy difference of the refrigerant before and after passing through the condenser. The Mollier diagram shown by the thin solid line in FIG. 7 is for a refrigeration cycle apparatus in which the heat medium heat exchanger 30 is not used, but the refrigeration cycle apparatus 100 according to the first embodiment can increase the subcooling during cooling operation, thereby increasing the cooling capacity. In addition, in the heating operation, the refrigeration cycle apparatus 100 makes the heat source side heat exchanger 3 and the heat medium heat exchanger 30 function as an evaporator, thereby improving the evaporation capacity. In FIG. 7, it is assumed that well water at 20°C is used. By using well water as the external heat source E, the heat medium heat exchanger 30 functions as an auxiliary heat exchanger for the heat source side heat exchanger 3 in full cooling operation, cooling-dominated operation, full heating operation, and heating-dominated operation, so the capacity of the refrigeration cycle device 100 is improved and energy-saving operation is also possible.

 また、実施の形態1に係る冷凍サイクル装置100の熱源機Aは、熱源側熱交換器3及び熱源側熱交換器3に流れる冷媒の流量を制御する熱源側流量制御装置22が接続されている第1流路を備える。第1流路切替装置2は、第1流路と圧縮機1の吐出側又は吸入側との接続を切り替え可能に構成されている。そして、熱媒体間熱交換器30は、液管6上に直列に接続されている。 The heat source unit A of the refrigeration cycle device 100 according to the first embodiment includes a first flow path to which the heat source side heat exchanger 3 and the heat source side flow control device 22 that controls the flow rate of the refrigerant flowing through the heat source side heat exchanger 3 are connected. The first flow path switching device 2 is configured to be able to switch the connection between the first flow path and the discharge side or the suction side of the compressor 1. The heat medium heat exchanger 30 is connected in series on the liquid pipe 6.

 このように構成されていることにより、実施の形態1に係る冷凍サイクル装置100は、液管6上を流れる冷媒を熱媒体変換機Dにより外部熱源Eの熱又は冷熱を用いて加熱または冷却でき、外部熱源Eを熱源側熱交換器3の補助に使用することができる。そのため、冷凍サイクル装置100は、熱交換能力が向上し、熱源側熱交換器3の熱交換能力を落とした状態での運転が可能となり、さらなる省エネ運転が可能となる。 By being configured in this manner, the refrigeration cycle apparatus 100 according to embodiment 1 can heat or cool the refrigerant flowing in the liquid pipe 6 by the heat medium converter D using the heat or cold of the external heat source E, and the external heat source E can be used to assist the heat source side heat exchanger 3. As a result, the heat exchange capacity of the refrigeration cycle apparatus 100 is improved, and it becomes possible to operate with the heat exchange capacity of the heat source side heat exchanger 3 reduced, enabling further energy-saving operation.

 実施の形態2.
 実施の形態2に係る冷凍サイクル装置100は、実施の形態1に係る冷凍サイクル装置100の回路構造を変更したものである。具体的には、実施の形態1においては、熱媒体変換機Dが利用側ユニットC及び熱源機Aに直列に接続されていたのに対し、実施の形態2においては、熱媒体変換機Dが熱源機Aに対し並列になるように変更されている。以下、実施の形態2が実施の形態1と異なる点を中心に説明する。
Embodiment 2.
The refrigeration cycle apparatus 100 according to the second embodiment is obtained by modifying the circuit structure of the refrigeration cycle apparatus 100 according to the first embodiment. Specifically, in the first embodiment, the heat medium relay unit D is connected in series to the user side unit C and the heat source unit A, whereas in the second embodiment, the heat medium relay unit D is connected in parallel to the heat source unit A. The following description will focus on the differences between the second embodiment and the first embodiment.

 図8は、実施の形態2に係る冷凍サイクル装置100の一例を示す回路図である。実施の形態2に係る冷凍サイクル装置100は、熱媒体変換機Dが液管6だけでなく、低圧ガス管7a及び高圧ガス管7bにも接続されている。熱媒体変換機Dは、実施の形態1と同様に熱媒体間熱交換器30を備え、熱媒体間熱交換器30は、外部熱源Eと接続されている。 FIG. 8 is a circuit diagram showing an example of a refrigeration cycle apparatus 100 according to embodiment 2. In the refrigeration cycle apparatus 100 according to embodiment 2, the heat medium converter D is connected not only to the liquid pipe 6 but also to the low-pressure gas pipe 7a and the high-pressure gas pipe 7b. The heat medium converter D includes an intermediate heat exchanger 30, as in embodiment 1, and the intermediate heat exchanger 30 is connected to an external heat source E.

 熱媒体間熱交換器30からは第1配管40dと第2配管41dとが延び、熱媒体間熱交換器30に冷媒が流通するように構成されている。第1配管40d1は、分岐して高圧ガス管7b又は低圧ガス管7aを選択可能に接続されている。また、第2配管41dは、液管6に接続されている。第2配管41dには、冷媒流量制御装置4dが設置されている。この熱媒体変換機Dが設置されている流路を第2流路60と称する場合がある。つまり、第2流路60は、主管である低圧ガス管7a又は高圧ガス管7bと液管6とを接続する流路である。第2流路60と低圧ガス管7a又は高圧ガス管7bとの接続は、低圧側電磁弁9d及び高圧側電磁弁8dを開閉することにより切り替えられる。また、第2流路60に流れる冷媒の流量は、冷媒流量制御装置4dを用いて制御される。なお、冷媒流量制御装置4dは、熱媒体変換機Dに内蔵されていても良い。 The first pipe 40d and the second pipe 41d extend from the intermediate heat exchanger 30, and the refrigerant is configured to flow through the intermediate heat exchanger 30. The first pipe 40d1 branches and is connected to the high pressure gas pipe 7b or the low pressure gas pipe 7a so that the refrigerant can be selected. The second pipe 41d is connected to the liquid pipe 6. The second pipe 41d is equipped with a refrigerant flow control device 4d. The flow path in which the heat medium converter D is installed may be referred to as the second flow path 60. In other words, the second flow path 60 is a flow path that connects the main low pressure gas pipe 7a or the high pressure gas pipe 7b to the liquid pipe 6. The connection between the second flow path 60 and the low pressure gas pipe 7a or the high pressure gas pipe 7b is switched by opening and closing the low pressure side solenoid valve 9d and the high pressure side solenoid valve 8d. The flow rate of the refrigerant flowing through the second flow path 60 is controlled by the refrigerant flow control device 4d. The refrigerant flow control device 4d may be built into the heat medium converter D.

 (全冷房運転について)
 図9は、実施の形態2に係る冷凍サイクル装置100が全冷房運転している場合の冷媒の流れの説明図である。図9は、利用側ユニットCが全て冷房運転しているときの状態を表しており、利用側熱交換器5cは全て蒸発器として機能している。
(About full cooling operation)
Fig. 9 is an explanatory diagram of the flow of the refrigerant when the refrigeration cycle apparatus 100 according to the second embodiment is in a full cooling operation. Fig. 9 illustrates a state when all the user side units C are in a cooling operation, and all the user side heat exchangers 5c function as evaporators.

 全冷房運転が行われる場合、制御装置50は、第1流路切替装置2aを、圧縮機1から吐出された冷媒が熱源側熱交換器3に流れるように切り替える。また、利用側ユニットC1に接続された低圧側電磁弁9c1、9c2、9c3は開放され、高圧側電磁弁8c1、8c2、8c3は閉止される。また、熱媒体変換機Dが設置されている第2流路60の高圧側電磁弁8dが開放され、低圧側電磁弁9dが閉止されているため、圧縮機1から吐出された冷媒は、高圧ガス管70bを経て熱媒体変換機Dが設置されている第2流路60に流入する。なお、実施の形態1と同様に、第2流路60の高圧側電磁弁8d及び低圧側電磁弁9dは、閉止した弁を黒塗りで表示している。 When the full cooling operation is performed, the control device 50 switches the first flow path switching device 2a so that the refrigerant discharged from the compressor 1 flows to the heat source side heat exchanger 3. In addition, the low pressure side solenoid valves 9c1, 9c2, and 9c3 connected to the user side unit C1 are opened, and the high pressure side solenoid valves 8c1, 8c2, and 8c3 are closed. In addition, since the high pressure side solenoid valve 8d of the second flow path 60 in which the heat medium converter D is installed is opened and the low pressure side solenoid valve 9d is closed, the refrigerant discharged from the compressor 1 flows into the second flow path 60 in which the heat medium converter D is installed via the high pressure gas pipe 70b. As in the first embodiment, the high pressure side solenoid valve 8d and the low pressure side solenoid valve 9d of the second flow path 60 are displayed as closed valves in black.

 圧縮機1の運転が開始されると低温且つ低圧のガス状冷媒が圧縮機1によって圧縮され、高温且つ高圧のガス状冷媒となって吐出される。圧縮機1から吐出された高温且つ高圧のガス状冷媒は、第1流路切替装置2を介して熱源側熱交換器3及び熱源側流量制御装置22が設置されている第1流路20に流入する。圧縮機1から吐出され熱源側熱交換器3に流入した冷媒は、室外空気を加熱しながら冷却され、中温且つ高圧の液状冷媒又は気液二相冷媒となる。熱源側熱交換器3から流出した中温且つ高圧の冷媒は、熱源機Aから流出し、液管6に流入する。 When the compressor 1 starts operating, the low-temperature, low-pressure gaseous refrigerant is compressed by the compressor 1 and discharged as high-temperature, high-pressure gaseous refrigerant. The high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 flows into the first flow path 20 in which the heat source side heat exchanger 3 and the heat source side flow control device 22 are installed via the first flow path switching device 2. The refrigerant discharged from the compressor 1 and flowing into the heat source side heat exchanger 3 is cooled while heating the outdoor air, and becomes a medium-temperature, high-pressure liquid refrigerant or a gas-liquid two-phase refrigerant. The medium-temperature, high-pressure refrigerant flowing out of the heat source side heat exchanger 3 flows out of the heat source unit A and into the liquid pipe 6.

 また、圧縮機1から吐出された冷媒は、配管1aから分岐して熱源機Aから流出し、高圧ガス管7bを経て第2流路60に流入する。第2流路60に流入した冷媒は、熱媒体間熱交換器30で凝縮され、冷媒流量制御装置4dを経て液管6に流入する。第2流路60を経た冷媒と熱源側熱交換器3を経た冷媒とは、ここで合流し、第2分岐部11へ流入する。第2分岐部11に流入した冷媒は、実施の形態1における全冷房運転と同様に、利用側ユニットC及び中継機Bを経て熱源機Aに戻る。 The refrigerant discharged from the compressor 1 branches off from the pipe 1a, flows out of the heat source unit A, and flows into the second flow path 60 via the high-pressure gas pipe 7b. The refrigerant that flows into the second flow path 60 is condensed in the heat medium heat exchanger 30, and flows into the liquid pipe 6 via the refrigerant flow control device 4d. The refrigerant that has passed through the second flow path 60 and the refrigerant that has passed through the heat source side heat exchanger 3 join here and flow into the second branch section 11. The refrigerant that has flowed into the second branch section 11 returns to the heat source unit A via the user side unit C and the relay unit B, as in the full cooling operation in embodiment 1.

 実施の形態2に係る冷凍サイクル装置100の全冷房運転においては、熱媒体間熱交換器30が熱源側熱交換器3と並列に配置されている。つまり、実施の形態2に係る冷凍サイクル装置100は、熱媒体間熱交換器30に熱源側熱交換器3とは独立した経路で冷媒を流すことができ、凝縮器の能力を増加できる。また、熱媒体変換機Dの凝縮器としての能力が高い場合には、第2流路60のみに冷媒を送り、熱源側流量制御装置22を閉止して熱源側熱交換器3には冷媒を送らないようにしても良い。 In the full cooling operation of the refrigeration cycle apparatus 100 according to the second embodiment, the intermediate heat exchanger 30 is arranged in parallel with the heat source side heat exchanger 3. In other words, the refrigeration cycle apparatus 100 according to the second embodiment can flow refrigerant to the intermediate heat exchanger 30 through a path independent of the heat source side heat exchanger 3, thereby increasing the condenser capacity. In addition, when the heat medium converter D has a high capacity as a condenser, the refrigerant may be sent only to the second flow path 60, and the heat source side flow control device 22 may be closed so that the refrigerant is not sent to the heat source side heat exchanger 3.

(全暖房運転について)
 図10は、実施の形態2に係る冷凍サイクル装置100が全暖房運転している場合の冷媒の流れの説明図である。図10は、利用側ユニットCが全て暖房運転しているときの状態を表しており、利用側熱交換器5cは全て凝縮器として機能している。
(About full heating operation)
Fig. 10 is an explanatory diagram of the flow of the refrigerant when the refrigeration cycle apparatus 100 according to the second embodiment is in full heating operation. Fig. 10 illustrates a state when all the user side units C are in heating operation, and all the user side heat exchangers 5c function as condensers.

 全暖房運転が行われる場合、制御装置50は、第1流路切替装置2aを、圧縮機1から吐出された冷媒が熱源機Aを出て高圧ガス管7bに流れる様に切り替えられる。また、利用側ユニットC1に接続された高圧側電磁弁8c1、8c2、8c3は開放され、低圧側電磁弁9c1、9c2、9c3は閉止される。なお、第1流路切替装置2aは、熱源側熱交換器3と圧縮機1の吸入側と接続するように切り替えられている。 When full heating operation is performed, the control device 50 switches the first flow path switching device 2a so that the refrigerant discharged from the compressor 1 flows out of the heat source unit A into the high-pressure gas pipe 7b. In addition, the high-pressure side solenoid valves 8c1, 8c2, and 8c3 connected to the user side unit C1 are opened, and the low-pressure side solenoid valves 9c1, 9c2, and 9c3 are closed. The first flow path switching device 2a is switched to connect the heat source side heat exchanger 3 and the suction side of the compressor 1.

 圧縮機1の運転が開始されると低温且つ低圧のガス状冷媒が圧縮機1によって圧縮され、高温且つ高圧のガス状冷媒となって吐出される。圧縮機1から吐出された高温且つ高圧のガス状冷媒は、実施の形態1の全暖房運転と同様に、熱源機Aを出て高圧ガス管7bに流入し、第1分岐部10から第1配管40c1、40c2、40c3を経て利用側ユニットCに流入する。利用側ユニットCに流入した冷媒は、凝縮、減圧され、第2分岐部11を経て中継機Bから流出し、液管6に流入する。 When compressor 1 starts operating, low-temperature, low-pressure gaseous refrigerant is compressed by compressor 1 and discharged as high-temperature, high-pressure gaseous refrigerant. As in the full heating operation of embodiment 1, the high-temperature, high-pressure gaseous refrigerant discharged from compressor 1 leaves heat source unit A and flows into high-pressure gas pipe 7b, then flows from first branch 10 through first piping 40c1, 40c2, and 40c3 into user unit C. The refrigerant that flows into user unit C is condensed and decompressed, flows out of relay unit B through second branch 11, and flows into liquid pipe 6.

 液管6に流入した冷媒は、熱源機Aに流入し熱源側流量制御装置22及び熱源側熱交換器3を通る第1流路20と、熱媒体変換機Dが設置されている第2流路60と、に分岐する。つまり、液管6を流れる冷媒は、熱源側熱交換器3と熱媒体間熱交換器30とに分岐して流れてそれぞれ蒸発され、配管1bで合流し、圧縮機1に吸入される。 The refrigerant that flows into the liquid pipe 6 branches into a first flow path 20 that flows into the heat source unit A and passes through the heat source side flow control device 22 and the heat source side heat exchanger 3, and a second flow path 60 in which the heat medium converter D is installed. In other words, the refrigerant flowing through the liquid pipe 6 branches into the heat source side heat exchanger 3 and the heat medium heat exchanger 30, where it is evaporated in each, joins in the pipe 1b, and is sucked into the compressor 1.

 実施の形態2に係る冷凍サイクル装置100の全暖房運転においては、熱媒体間熱交換器30が熱源側熱交換器3と並列に配置されている。つまり、実施の形態2に係る冷凍サイクル装置100は、熱媒体間熱交換器30に熱源側熱交換器3とは独立した経路で冷媒を流すことができ、蒸発器の能力を増加できる。また、熱媒体変換機Dの蒸発器としての能力が高い場合には、第2流路60のみに冷媒を送り、熱源側流量制御装置22を閉止して熱源側熱交換器3には冷媒を送らないようにしても良い。このように、冷媒の蒸発に部分的に外部熱源Eの冷熱を利用することにより、省エネ運転が実現できる。 In the full heating operation of the refrigeration cycle apparatus 100 according to the second embodiment, the intermediate heat exchanger 30 is arranged in parallel with the heat source side heat exchanger 3. In other words, the refrigeration cycle apparatus 100 according to the second embodiment can flow refrigerant to the intermediate heat exchanger 30 through a path independent of the heat source side heat exchanger 3, thereby increasing the evaporator capacity. In addition, when the heat medium converter D has a high capacity as an evaporator, the refrigerant may be sent only to the second flow path 60, and the heat source side flow control device 22 may be closed so that the refrigerant is not sent to the heat source side heat exchanger 3. In this way, energy-saving operation can be achieved by partially using the cold energy of the external heat source E to evaporate the refrigerant.

 (冷房主体運転について)
 図11は、実施の形態2に係る冷凍サイクル装置100が冷房主体運転している場合の冷媒の流れの説明図である。図11は、利用側ユニットCのうち利用側ユニットC1及びC2が冷房運転し、利用側ユニットC3が暖房運転をしているときの状態を表しており、利用側熱交換器5c1及び5c2が蒸発器、利用側熱交換器5c3が凝縮器として機能している。
(Cooling-dominant operation)
Fig. 11 is an explanatory diagram of the flow of refrigerant when the refrigeration cycle apparatus 100 according to embodiment 2 is operating mainly in cooling mode. Fig. 11 illustrates a state in which the user side units C1 and C2 among the user side units C are operating in cooling mode and the user side unit C3 is operating in heating mode, with the user side heat exchangers 5c1 and 5c2 functioning as evaporators and the user side heat exchanger 5c3 functioning as a condenser.

 冷房主体運転が行われる場合、実施の形態1と同様に、制御装置50は、第1流路切替装置2aを圧縮機1から吐出された冷媒が熱源側熱交換器3に流れるように切り替える。また、利用側ユニットC1及びC2に接続された低圧側電磁弁9c1、9c2は開放され、利用側ユニットC3に接続された低圧側電磁弁9c3は閉止されている。また、高圧側電磁弁8c1、8c2は閉止され、高圧側電磁弁8c3は開放されている。 When cooling-dominant operation is performed, as in the first embodiment, the control device 50 switches the first flow path switching device 2a so that the refrigerant discharged from the compressor 1 flows to the heat source side heat exchanger 3. In addition, the low pressure side solenoid valves 9c1 and 9c2 connected to the utilization side units C1 and C2 are opened, and the low pressure side solenoid valve 9c3 connected to the utilization side unit C3 is closed. In addition, the high pressure side solenoid valves 8c1 and 8c2 are closed, and the high pressure side solenoid valve 8c3 is open.

 実施の形態2に係る冷房主体運転においては、高圧ガス管7bに流れる冷媒は、熱媒体変換機Dが設置されている第2流路60にも分岐して流れるように、第2流路60に設置された高圧側電磁弁8dが開放されている。 In the cooling-dominated operation according to the second embodiment, the high-pressure side solenoid valve 8d installed in the second flow path 60 is opened so that the refrigerant flowing in the high-pressure gas pipe 7b also branches off and flows in the second flow path 60 in which the heat medium converter D is installed.

 圧縮機1の運転が開始されると低温且つ低圧のガス状冷媒が圧縮機1によって圧縮され、高温且つ高圧のガス状冷媒となって吐出される。圧縮機1から吐出された高温且つ高圧のガス状冷媒は、一部が熱源機Aから流出して高圧ガス管7bに入り、他の一部が第1流路切替装置2を介して熱源側熱交換器3に流入する。圧縮機1から吐出され高圧ガス管7bに流入した冷媒のうち一部は、実施の形態1に係る冷房主体運転と同様に高圧側分岐部10bから暖房運転される利用側ユニットC3に流入する。高圧ガス管7bに流入した冷媒のうち残りの一部は、第2流路60に流入し、熱媒体間熱交換器30で凝縮される。つまり、高圧ガス管7bに流れる冷媒のうち一部は、熱媒体変換機Dにおいて外部熱源Eの冷熱を利用して凝縮される。第2流路60を流れた冷媒は、熱源側熱交換器3が設置されている第1流路20を流れた冷媒と液管6で合流し、中継機Bの第2分岐部11に流入する。 When the compressor 1 starts operating, the low-temperature, low-pressure gaseous refrigerant is compressed by the compressor 1 and discharged as a high-temperature, high-pressure gaseous refrigerant. Of the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1, a portion flows out of the heat source unit A and enters the high-pressure gas pipe 7b, and the other portion flows into the heat source side heat exchanger 3 via the first flow path switching device 2. A portion of the refrigerant discharged from the compressor 1 and flowing into the high-pressure gas pipe 7b flows from the high-pressure side branch 10b into the user side unit C3, which is operating in heating mode, as in the cooling-dominated operation in embodiment 1. The remaining portion of the refrigerant that flowed into the high-pressure gas pipe 7b flows into the second flow path 60 and is condensed in the heat medium heat exchanger 30. In other words, a portion of the refrigerant flowing into the high-pressure gas pipe 7b is condensed in the heat medium converter D by utilizing the cold heat of the external heat source E. The refrigerant that flows through the second flow path 60 merges with the refrigerant that flows through the first flow path 20, where the heat source side heat exchanger 3 is installed, in the liquid pipe 6, and flows into the second branch section 11 of the relay unit B.

 第2分岐部11に流入した冷媒は、熱源側熱交換器3、熱媒体間熱交換器30及び暖房運転されている利用側熱交換器5c3で凝縮された冷媒が合流したものであり、冷房運転されている利用側ユニットC1及びC2に流入する。利用側ユニットC1及びC2から流出した冷媒は、実施の形態1と同様に、それぞれ低圧側電磁弁9c1、9c2を通り、第1分岐部10の低圧側分岐部10aに流入する。低圧側分岐部10aで合流した低温且つ低圧のガス状冷媒は、低圧ガス管7aから熱源機Aに流入し、アキュムレータ29を通り圧縮機1に吸入され、圧縮される。 The refrigerant that flows into the second branch 11 is a mixture of refrigerant condensed in the heat source heat exchanger 3, the heat medium heat exchanger 30, and the user side heat exchanger 5c3 in heating operation, and flows into the user side units C1 and C2 in cooling operation. As in the first embodiment, the refrigerant that flows out of the user side units C1 and C2 passes through the low pressure side solenoid valves 9c1 and 9c2, respectively, and flows into the low pressure side branch 10a of the first branch 10. The low temperature, low pressure gaseous refrigerant that flows into the low pressure side branch 10a flows into the heat source unit A from the low pressure gas pipe 7a, passes through the accumulator 29, is sucked into the compressor 1, and is compressed.

 実施の形態2に係る冷凍サイクル装置100は、冷房主体運転においても全冷房運転時と同様に熱媒体間熱交換器30が熱源側熱交換器3と並列に配置されており、凝縮器の能力を増加できる。 In the refrigeration cycle device 100 according to the second embodiment, the heat medium heat exchanger 30 is arranged in parallel with the heat source side heat exchanger 3 even during cooling-dominated operation, just as during full cooling operation, and the capacity of the condenser can be increased.

(暖房主体運転について)
 図12は、実施の形態2に係る冷凍サイクル装置100が暖房主体運転している場合の冷媒の流れの説明図である。図12は、利用側ユニットCのうち利用側ユニットC1及びC2が暖房運転し、利用側ユニットC3が冷房運転をしているときの状態を表しており、利用側熱交換器5c1及び5c2が凝縮器、利用側熱交換器5c3が蒸発器として機能している。
(Heating-dominant operation)
Fig. 12 is an explanatory diagram of the flow of the refrigerant when the refrigeration cycle apparatus 100 according to the embodiment 2 is in heating-dominated operation. Fig. 12 illustrates a state in which the user-side units C1 and C2 among the user-side units C are in heating operation and the user-side unit C3 is in cooling operation, in which the user-side heat exchangers 5c1 and 5c2 function as condensers and the user-side heat exchanger 5c3 functions as an evaporator.

 暖房主体運転が行われる場合、制御装置50は、第1流路切替装置2aを、圧縮機1から吐出された冷媒が熱源機Aを出て高圧ガス管7bに流れる様に切り替えられる。また、暖房運転が行われる利用側ユニットC1及びC2に接続された高圧側電磁弁8c1、8c2は開放され、低圧側電磁弁9c1、9c2は閉止される。冷房運転される利用側ユニットC3に接続された高圧側電磁弁8c3は閉止され、低圧側電磁弁9c3は閉止される。なお、第1流路切替装置2aは、熱源側熱交換器3と圧縮機1の吸入側と接続するように切り替えられている。 When heating-dominant operation is performed, the control device 50 switches the first flow path switching device 2a so that the refrigerant discharged from the compressor 1 flows from the heat source unit A to the high-pressure gas pipe 7b. In addition, the high-pressure side solenoid valves 8c1, 8c2 connected to the user side units C1 and C2 performing heating operation are opened, and the low-pressure side solenoid valves 9c1, 9c2 are closed. The high-pressure side solenoid valve 8c3 connected to the user side unit C3 performing cooling operation is closed, and the low-pressure side solenoid valve 9c3 is closed. The first flow path switching device 2a is switched to connect the heat source side heat exchanger 3 to the suction side of the compressor 1.

 圧縮機1の運転が開始されると低温且つ低圧のガス状冷媒が圧縮機1によって圧縮され、高温且つ高圧のガス状冷媒となって吐出される。圧縮機1から吐出された高温且つ高圧のガス状冷媒は、熱源機Aを出て高圧ガス管7bに流入し、第1分岐部10から第1配管40c1、40c2を経て利用側ユニットC1及びC2に流入する。利用側ユニットC1、C2に流入した冷媒は、利用側熱交換器5cにおいて室内空気を加熱しながら冷却され、中温且つ高圧の液状冷媒又は気液二相冷媒となる。利用側熱交換器5c1、5c2のそれぞれから流出した中温且つ高圧の冷媒は、利用側流量制御装置4c1、4c2のそれぞれで減圧され、低温且つ低圧の気液二相状態になる。なお、利用側流量制御装置4c1、4c2においては、冷媒の状態によっては減圧されなくとも良い。 When the compressor 1 starts operating, the low-temperature, low-pressure gaseous refrigerant is compressed by the compressor 1 and discharged as a high-temperature, high-pressure gaseous refrigerant. The high-temperature, high-pressure gaseous refrigerant discharged from the compressor 1 leaves the heat source unit A and flows into the high-pressure gas pipe 7b, and flows from the first branch 10 through the first piping 40c1, 40c2 into the user-side units C1 and C2. The refrigerant that flows into the user-side units C1 and C2 is cooled while heating the indoor air in the user-side heat exchanger 5c, and becomes a medium-temperature, high-pressure liquid refrigerant or a gas-liquid two-phase refrigerant. The medium-temperature, high-pressure refrigerant that flows out of each of the user-side heat exchangers 5c1, 5c2 is depressurized by each of the user-side flow control devices 4c1, 4c2, and becomes a low-temperature, low-pressure gas-liquid two-phase state. Note that the user-side flow control devices 4c1, 4c2 do not need to depressurize depending on the state of the refrigerant.

 利用側流量制御装置4c1、4c2から流出した低温且つ低圧の気液二相状態の冷媒は、第2分岐部11を経て、一部は中継機Bから液管6に流入し、他の一部は冷房運転する利用側ユニットC2に繋がる第2配管41c3に流入する。第2配管41c3に流入した冷媒は、利用側流量制御装置4c3で減圧され、利用側熱交換器5c3において室内空気を冷却しながら蒸発し、低温低圧のガス冷媒になる。利用側ユニットC3を出た冷媒は、第1分岐部10を経て低圧ガス管7aから熱源機Aに流入する。 The low-temperature, low-pressure two-phase gas-liquid refrigerant flowing out of the user-side flow control devices 4c1 and 4c2 passes through the second branch 11, with some flowing from the relay unit B into the liquid pipe 6 and the other flowing into the second pipe 41c3 connected to the user-side unit C2 performing cooling operation. The refrigerant flowing into the second pipe 41c3 is depressurized by the user-side flow control device 4c3, and evaporates in the user-side heat exchanger 5c3 while cooling the indoor air, becoming a low-temperature, low-pressure gas refrigerant. The refrigerant leaving the user-side unit C3 passes through the first branch 10 and flows into the heat source unit A from the low-pressure gas pipe 7a.

 液管6に流入した冷媒は、一部が熱源側熱交換器3が設置されている第1流路20に流入し、残りは熱媒体変換機Dが設置されている第2流路60に流入する。つまり、液管6を流れる冷媒は、熱源側熱交換器3と熱媒体間熱交換器30とに分岐して流れてそれぞれ蒸発される。そして、熱媒体間熱交換器30を流れた冷媒と利用側ユニットC3から第1分岐部10を経た冷媒とが低圧ガス管7aで合流し、低圧ガス管7aで合流した冷媒が熱源側熱交換器3を経た冷媒と配管1bで合流し、圧縮機1に吸入される。 Some of the refrigerant that flows into the liquid pipe 6 flows into the first flow path 20 in which the heat source side heat exchanger 3 is installed, and the rest flows into the second flow path 60 in which the heat medium converter D is installed. In other words, the refrigerant flowing through the liquid pipe 6 branches into the heat source side heat exchanger 3 and the intermediate heat exchanger 30, and is evaporated in each. The refrigerant that flowed through the intermediate heat exchanger 30 and the refrigerant that passed through the first branch section 10 from the user side unit C3 join in the low pressure gas pipe 7a, and the refrigerant that joined in the low pressure gas pipe 7a joins with the refrigerant that passed through the heat source side heat exchanger 3 in the pipe 1b, and is sucked into the compressor 1.

 実施の形態2に係る冷凍サイクル装置100は、暖房主体運転においても全暖房運転時と同様に熱媒体間熱交換器30が熱源側熱交換器3と並列に配置されており、蒸発器の能力を増加できる。圧縮機1から吐出され、暖房運転される利用側ユニットC1及びC2を経た中間圧の冷媒は、第2分岐部11を経て、冷房運転される利用側ユニットC3、熱源側熱交換器3、熱媒体変換機Dの3つに分岐されて蒸発され、最終的に合流し、圧縮機1に吸入される。実施の形態2に係る冷凍サイクル装置100は、熱媒体間熱交換器30に熱源側熱交換器3とは独立した経路で冷媒を流すことができ、蒸発器の能力を増加できる。また、熱媒体変換機Dの蒸発器としての能力が高い場合には、第2流路60のみに冷媒を送り、熱源側流量制御装置22を閉止して熱源側熱交換器3には冷媒を送らないようにしても良い。このように、冷媒の蒸発に部分的に外部熱源Eの冷熱を利用することにより、省エネ運転が実現できる。 In the refrigeration cycle device 100 according to the second embodiment, the intermediate heat exchanger 30 is arranged in parallel with the heat source side heat exchanger 3 even in the heating-dominated operation, as in the full heating operation, and the capacity of the evaporator can be increased. The intermediate pressure refrigerant discharged from the compressor 1 and passing through the user side units C1 and C2 in heating operation passes through the second branching section 11 and is branched into three, the user side unit C3 in cooling operation, the heat source side heat exchanger 3, and the heat medium converter D, and evaporated, and finally merges and is sucked into the compressor 1. The refrigeration cycle device 100 according to the second embodiment can flow the refrigerant to the intermediate heat exchanger 30 through a path independent of the heat source side heat exchanger 3, and the capacity of the evaporator can be increased. In addition, when the capacity of the heat medium converter D as an evaporator is high, the refrigerant may be sent only to the second flow path 60, and the heat source side flow control device 22 may be closed so that the refrigerant is not sent to the heat source side heat exchanger 3. In this way, energy-saving operation can be achieved by partially using the cold heat from external heat source E to evaporate the refrigerant.

(実施の形態2に係る冷凍サイクル装置100の効果)
 実施の形態2に係る冷凍サイクル装置100の熱媒体変換機Dは、熱媒体間熱交換器30に流れる冷媒の流量を制御する冷媒流量制御装置4dを備える。熱媒体間熱交換器30は、高圧ガス管7b又は低圧ガス管7aを選択可能に接続されている。冷媒流量制御装置4dは、液管6に接続されている。
(Effects of the refrigeration cycle apparatus 100 according to the second embodiment)
The heat medium relay unit D of the refrigeration cycle apparatus 100 according to the second embodiment includes a refrigerant flow rate control device 4d that controls the flow rate of the refrigerant flowing through the intermediate heat exchanger 30. The intermediate heat exchanger 30 is selectively connected to a high pressure gas pipe 7b or a low pressure gas pipe 7a. The refrigerant flow rate control device 4d is connected to a liquid pipe 6.

 実施の形態2に係る冷凍サイクル装置100の熱媒体変換機Dは、一方の端が高圧ガス管7b又は低圧ガス管7aに選択可能に接続され、他方の端が液管6に接続された第2流路60に接続されている。運転されている利用側熱交換器5c1、5c2及び5c3は、全冷房運転時には全てが蒸発器となり、全暖房運転時には全てが凝縮器となり、冷房主体運転時及び暖房主体運転時には一部が蒸発器となりかつ他の一部が凝縮器となる。全冷房運転時には、圧縮機1から吐出された冷媒が、第1流路20及び高圧ガス管7bから第2流路60を経る流路に分岐して流れる。第1流路20を経た冷媒と第2流路60を経た冷媒とが合流して利用側ユニットに流入する。全暖房運転時は、熱源機A、利用側ユニットCの順に流れた冷媒が、液管6から第1流路20と第2流路60とに分岐して流れ、第1流路20を経た冷媒と第2流路60から低圧ガス管7aを経た冷媒とが合流して圧縮機1の吸入側に流入する。冷房主体運転時は、圧縮機1から吐出された冷媒が、第1流路20及び高圧ガス管7bを経る流路に分岐して流れ、高圧ガス管7bを流れる冷媒が、第2流路60と利用側熱交換器5c3が凝縮器として機能する利用側ユニットC3が設置された暖房流路とに分岐して流れ、第1流路20を経た冷媒と第2流路60を経た冷媒と暖房流路を経た冷媒とが、合流して利用側熱交換器5c1、5c2が蒸発器として機能する利用側ユニットC1、C2が設置された冷房流路を流れる。冷房流路を流れた冷媒は、低圧ガス管7aを経て圧縮機1の吸入側に流入する。 The heat medium converter D of the refrigeration cycle device 100 according to the second embodiment has one end selectively connected to the high pressure gas pipe 7b or the low pressure gas pipe 7a, and the other end connected to the second flow path 60 connected to the liquid pipe 6. The operating user side heat exchangers 5c1, 5c2, and 5c3 all function as evaporators during full cooling operation, all function as condensers during full heating operation, and some function as evaporators and others function as condensers during cooling-dominated operation and heating-dominated operation. During full cooling operation, the refrigerant discharged from the compressor 1 branches from the first flow path 20 and the high pressure gas pipe 7b to a flow path via the second flow path 60 and flows. The refrigerant that has passed through the first flow path 20 and the second flow path 60 join together and flow into the user side unit. During heating only operation, the refrigerant that flows through the heat source unit A and the user side unit C in this order branches from the liquid pipe 6 into the first flow path 20 and the second flow path 60, and the refrigerant that has passed through the first flow path 20 and the refrigerant that has passed through the low pressure gas pipe 7a from the second flow path 60 join together and flow into the suction side of the compressor 1. During cooling-dominant operation, the refrigerant discharged from the compressor 1 branches into a flow path that passes through the first flow path 20 and the high pressure gas pipe 7b, the refrigerant that flows through the high pressure gas pipe 7b branches into the second flow path 60 and a heating flow path in which the user side unit C3 in which the user side heat exchanger 5c3 functions as a condenser is installed, and the refrigerant that has passed through the first flow path 20, the refrigerant that has passed through the second flow path 60, and the refrigerant that has passed through the heating flow path join together and flow into the cooling flow path in which the user side units C1 and C2 in which the user side heat exchangers 5c1 and 5c2 function as evaporators are installed. The refrigerant that flows through the cooling flow path passes through the low-pressure gas pipe 7a and flows into the suction side of the compressor 1.

 このように構成されていることにより、実施の形態2に係る冷凍サイクル装置100は、実施の形態1と同様に、冷媒を熱媒体変換機Dにより外部熱源Eの熱又は冷熱を用いて加熱または冷却でき、外部熱源Eを熱源側熱交換器3の補助に使用することができる。これにより、冷凍サイクル装置100は、熱交換能力が向上し、熱源側熱交換器3の熱交換能力を落とした状態での運転が可能となり、さらなる省エネ運転が可能となる。また、実施の形態2においては、熱媒体間熱交換器30が熱源側熱交換器3に並列に設置されていることにより、熱媒体間熱交換器30により熱源側熱交換器3の能力を補助するだけでなく、熱媒体間熱交換器30を熱源側熱交換器3の代用として使用しても良い。つまり、実施の形態2に係る冷凍サイクル装置100において、熱源側流量制御装置22を閉止して第1流路20に冷媒を流さず、第2流路60に冷媒を流すことにより熱媒体間熱交換器30を熱源側熱交換器3の代替として使用することができる。 As a result of this configuration, the refrigeration cycle device 100 according to the second embodiment can heat or cool the refrigerant using the heat or cold of the external heat source E by the heat medium converter D, as in the first embodiment, and can use the external heat source E to supplement the heat source side heat exchanger 3. As a result, the heat exchange capacity of the refrigeration cycle device 100 is improved, and it is possible to operate the refrigeration cycle device 100 with the heat exchange capacity of the heat source side heat exchanger 3 reduced, enabling further energy-saving operation. In addition, in the second embodiment, the heat medium-to-heat medium heat exchanger 30 is installed in parallel with the heat source side heat exchanger 3, so that not only can the heat medium-to-heat medium heat exchanger 30 supplement the capacity of the heat source side heat exchanger 3, but the heat medium-to-heat medium heat exchanger 30 can also be used as a substitute for the heat source side heat exchanger 3. In other words, in the refrigeration cycle device 100 according to the second embodiment, the heat source side flow control device 22 is closed to not flow the refrigerant through the first flow path 20, and the refrigerant is flowed through the second flow path 60, so that the heat medium-to-heat medium heat exchanger 30 can be used as a substitute for the heat source side heat exchanger 3.

 実施の形態3.
 実施の形態3に係る冷凍サイクル装置100は、実施の形態2に係る冷凍サイクル装置100が有する熱媒体変換機Dの接続位置を変更したものである。実施の形態2においては、熱媒体変換機Dは3本の主管(液管6、低圧ガス管7a、高圧ガス管7b)に直接接続していたが、実施の形態3においては、熱媒体変換機Dは中継機Bに接続されている。以下、実施の形態2が実施の形態1と異なる点を中心に説明する。
Embodiment 3.
The refrigeration cycle apparatus 100 according to the third embodiment is different from the refrigeration cycle apparatus 100 according to the second embodiment in that the connection position of the heat medium relay unit D is changed. In the second embodiment, the heat medium relay unit D is directly connected to three main pipes (the liquid pipe 6, the low-pressure gas pipe 7a, and the high-pressure gas pipe 7b), but in the third embodiment, the heat medium relay unit D is connected to a relay unit B. The following description will focus on the differences between the second embodiment and the first embodiment.

 図13は、実施の形態3に係る冷凍サイクル装置100の一例を示す回路図である。実施の形態3に係る冷凍サイクル装置100は、中継機Bに利用側ユニットC1、C2、C3及び熱媒体変換機Dが並列に接続されている。熱媒体変換機Dの第1配管40dは、第1分岐部10に接続され、熱媒体変換機Dの第2配管41dは、第2分岐部11に接続されている。ただし、熱媒体変換機Dは、熱源機A及び利用側ユニットCに対し並列になるように回路に接続されているという点では実施の形態2と同じである。 FIG. 13 is a circuit diagram showing an example of a refrigeration cycle apparatus 100 according to the third embodiment. In the refrigeration cycle apparatus 100 according to the third embodiment, the user side units C1, C2, C3 and the heat medium converter D are connected in parallel to the relay unit B. The first pipe 40d of the heat medium converter D is connected to the first branch 10, and the second pipe 41d of the heat medium converter D is connected to the second branch 11. However, this is the same as in the second embodiment in that the heat medium converter D is connected to the circuit in parallel with the heat source unit A and the user side unit C.

 図14は、実施の形態3に係る冷凍サイクル装置100が全冷房運転している場合の冷媒の流れの説明図である。図15は、実施の形態3に係る冷凍サイクル装置100が全暖房運転している場合の冷媒の流れの説明図である。図16は、実施の形態3に係る冷凍サイクル装置100が冷房主体運転している場合の冷媒の流れの説明図である。図17は、実施の形態3に係る冷凍サイクル装置100が暖房主体運転している場合の冷媒の流れの説明図である。実施の形態3に係る冷凍サイクル装置100の各運転モードにおける冷媒の流れは、実施の形態3の各運転モードにおける冷媒の流れと同じである。 FIG. 14 is an explanatory diagram of the refrigerant flow when the refrigeration cycle apparatus 100 according to embodiment 3 is in full cooling operation. FIG. 15 is an explanatory diagram of the refrigerant flow when the refrigeration cycle apparatus 100 according to embodiment 3 is in full heating operation. FIG. 16 is an explanatory diagram of the refrigerant flow when the refrigeration cycle apparatus 100 according to embodiment 3 is in cooling-dominated operation. FIG. 17 is an explanatory diagram of the refrigerant flow when the refrigeration cycle apparatus 100 according to embodiment 3 is in heating-dominated operation. The refrigerant flow in each operation mode of the refrigeration cycle apparatus 100 according to embodiment 3 is the same as the refrigerant flow in each operation mode of embodiment 3.

 実施の形態3に係る冷凍サイクル装置100の熱媒体変換機Dは、利用側ユニットCの利用側熱交換器5c及び熱媒体変換機Dの熱媒体間熱交換器30のそれぞれから延びる複数の第1配管40と接続された第1分岐部10と、利用側ユニットCの利用側流量制御装置4c及び熱媒体変換機Dの冷媒流量制御装置4dのそれぞれから延びる複数の第2配管41と接続された第2分岐部11と、を備える。第1分岐部10は、高圧ガス管7bを複数の第1配管40に分岐して接続する高圧側分岐部10bと、低圧ガス管7aを複数の第1配管40に分岐して接続する低圧側分岐部10aと、複数の第1配管40のそれぞれと低圧側分岐部10a又は高圧側分岐部10bとの接続を切り替える第2流路切替装置10cと、を備える。 The heat medium converter D of the refrigeration cycle device 100 according to the third embodiment includes a first branch 10 connected to a plurality of first pipes 40 extending from each of the heat exchanger 5c of the heat medium converter C and the heat exchanger 30 of the heat medium converter D, and a second branch 11 connected to a plurality of second pipes 41 extending from each of the flow control device 4c of the heat medium converter C and the refrigerant flow control device 4d of the heat medium converter D. The first branch 10 includes a high-pressure side branch 10b that branches and connects the high-pressure gas pipe 7b to the plurality of first pipes 40, a low-pressure side branch 10a that branches and connects the low-pressure gas pipe 7a to the plurality of first pipes 40, and a second flow path switching device 10c that switches the connection between each of the plurality of first pipes 40 and the low-pressure side branch 10a or the high-pressure side branch 10b.

 このように構成されていることにより、実施の形態3に係る冷凍サイクル装置100は、実施の形態1及び2と同様に、冷媒を熱媒体変換機Dにより外部熱源Eの熱又は冷熱を用いて加熱または冷却でき、外部熱源Eを熱源側熱交換器3の補助に使用することができる。また、実施の形態3に係る冷凍サイクル装置100は、利用側ユニットCと熱媒体変換機Dとを中継機Bに対し同様な構造で接続しており、利用する外部熱源Eの種類又は場所等に応じて冷凍サイクル回路への接続の仕方を適宜選択できるという利点がある。 As a result of this configuration, the refrigeration cycle apparatus 100 according to embodiment 3, like the first and second embodiments, can heat or cool the refrigerant using the heat or cold of the external heat source E by the heat medium converter D, and can use the external heat source E to assist the heat source side heat exchanger 3. In addition, the refrigeration cycle apparatus 100 according to embodiment 3 has the advantage that the user side unit C and the heat medium converter D are connected to the relay unit B in a similar structure, and the method of connection to the refrigeration cycle circuit can be appropriately selected depending on the type or location of the external heat source E to be used.

 以上のように、本開示の実施の形態1~3について説明したが、実施の形態1~3は、冷凍サイクル装置100の一例であり、別の公知の技術と組み合わせることもできる。また冷凍サイクル装置100は、本開示の要旨を逸脱しない範囲で、構成の一部を省略又は変更することもできる。要するに、冷凍サイクル装置100は、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更及び応用のバリエーションの範囲を含むものである。 As described above, the first to third embodiments of the present disclosure have been described. However, the first to third embodiments are merely examples of the refrigeration cycle device 100, and may be combined with other known technologies. Furthermore, the configuration of the refrigeration cycle device 100 may be partially omitted or modified without departing from the gist of the present disclosure. In short, the refrigeration cycle device 100 includes the range of design modifications and application variations that would normally be made by a person skilled in the art, without departing from the technical concept thereof.

 1 圧縮機、1a 配管、1b 配管、2 第1流路切替装置、2a 第1流路切替装置、2b 第1流路切替装置、3 熱源側熱交換器、3a 熱源側熱交換器、3b 熱源側熱交換器、3m 室外流量制御装置、4c 利用側流量制御装置、4c1 利用側流量制御装置、4c2 利用側流量制御装置、4c3 利用側流量制御装置、4d 冷媒流量制御装置、5 利用側熱交換器、5c 利用側熱交換器、5c1 利用側熱交換器、5c2 利用側熱交換器、5c3 利用側熱交換器、5m 流量制御装置、6 液管、7a 低圧ガス管、7b 高圧ガス管、8 高圧側電磁弁、8c1 高圧側電磁弁、8c2 高圧側電磁弁、8c3 高圧側電磁弁、8d 高圧側電磁弁、9 低圧側電磁弁、9c1 低圧側電磁弁、9c2 低圧側電磁弁、9c3 低圧側電磁弁、9d 低圧側電磁弁、10 第1分岐部、10a 低圧側分岐部、10b 高圧側分岐部、10c 第2流路切替装置、11 第2分岐部、15 バイパス流量制御装置、16 冷媒管熱交換器、17 バイパス配管、20 第1流路、22 熱源側流量制御装置、24 配管、26 配管、29 アキュムレータ、30 熱媒体間熱交換器、31 ポンプ、32 外部熱源温度センサ、33 外部熱源温度センサ、34 熱媒体循環回路、40 第1配管、40c1 第1配管、40c2 第1配管、40c3 第1配管、40d 第1配管、40d1 第1配管、41 第2配管、41c1 第2配管、41c2 第2配管、41c3 第2配管、41d 第2配管、50 制御装置、50a メモリ、50b 演算装置、60 第2流路、70b 高圧ガス管、100 冷凍サイクル装置、A 熱源機、B 中継機、C 利用側ユニット、C1 利用側ユニット、C2 利用側ユニット、C3 利用側ユニット、D 熱媒体変換機、E 外部熱源、F 外部熱交換器、G 補助熱交換ユニット、V 空調対象空間。 1 compressor, 1a piping, 1b piping, 2 first flow path switching device, 2a first flow path switching device, 2b first flow path switching device, 3 heat source side heat exchanger, 3a heat source side heat exchanger, 3b heat source side heat exchanger, 3m outdoor flow control device, 4c utilization side flow control device, 4c1 utilization side flow control device, 4c2 utilization side flow control device, 4c3 utilization side flow control device, 4d refrigerant flow control device, 5 utilization side heat exchanger, 5c utilization side heat exchanger, 5c1 utilization side heat exchanger, 5c2 Utilization side heat exchanger, 5c3 Utilization side heat exchanger, 5m Flow control device, 6 Liquid pipe, 7a Low pressure gas pipe, 7b High pressure gas pipe, 8 High pressure side solenoid valve, 8c1 High pressure side solenoid valve, 8c2 High pressure side solenoid valve, 8c3 High pressure side solenoid valve, 8d High pressure side solenoid valve, 9 Low pressure side solenoid valve, 9c1 Low pressure side solenoid valve, 9c2 Low pressure side solenoid valve, 9c3 Low pressure side solenoid valve, 9d Low pressure side solenoid valve, 10 First branch, 10a Low pressure side branch, 10b High pressure side branch, 10c Second flow path switching device, 1 1 second branch, 15 bypass flow control device, 16 refrigerant pipe heat exchanger, 17 bypass piping, 20 first flow path, 22 heat source side flow control device, 24 piping, 26 piping, 29 accumulator, 30 heat medium heat exchanger, 31 pump, 32 external heat source temperature sensor, 33 external heat source temperature sensor, 34 heat medium circulation circuit, 40 first piping, 40c1 first piping, 40c2 first piping, 40c3 first piping, 40d first piping, 40d1 first piping, 41 Second piping, 41c1 second piping, 41c2 second piping, 41c3 second piping, 41d second piping, 50 control device, 50a memory, 50b calculation device, 60 second flow path, 70b high pressure gas pipe, 100 refrigeration cycle device, A heat source unit, B relay unit, C user unit, C1 user unit, C2 user unit, C3 user unit, D heat medium converter, E external heat source, F external heat exchanger, G auxiliary heat exchange unit, V air conditioned space.

Claims (9)

 冷媒を圧縮する圧縮機、熱源側熱交換器、及び前記熱源側熱交換器と前記圧縮機の吸入側又は吐出側との接続を切り替える第1流路切替装置を有する熱源機と、
 前記圧縮機の吐出側に接続され、前記熱源機から冷媒が流出する高圧ガス管と、
 前記圧縮機の吸入側に接続され、前記熱源機へ冷媒が流入する低圧ガス管と、
 利用側熱交換器及び前記利用側熱交換器に流れる冷媒の流量を制御する利用側流量制御装置を有する利用側ユニットと、
 外部熱源からの熱を運ぶ熱媒体と冷媒とを熱交換する熱媒体間熱交換器を有する熱媒体変換機と、
 前記利用側ユニットと前記熱源機との間に接続され、少なくとも一部が液状態である冷媒が流動する液管と、を備え、
 前記利用側ユニットは、
 前記利用側熱交換器が前記高圧ガス管又は前記低圧ガス管に選択的に接続可能に構成され、前記利用側流量制御装置が前記液管と接続され、
 前記熱媒体間熱交換器は、
 少なくとも前記液管と接続され、前記熱源側熱交換器の機能を代替又は補助する、冷凍サイクル装置。
a heat source unit including a compressor that compresses a refrigerant, a heat source side heat exchanger, and a first flow switching device that switches a connection between the heat source side heat exchanger and a suction side or a discharge side of the compressor;
A high-pressure gas pipe connected to a discharge side of the compressor and through which a refrigerant flows out from the heat source unit;
A low-pressure gas pipe connected to the suction side of the compressor and through which a refrigerant flows into the heat source unit;
a utilization side unit having a utilization side heat exchanger and a utilization side flow rate control device for controlling a flow rate of a refrigerant flowing through the utilization side heat exchanger;
a heat medium converter having an intermediate heat exchanger for exchanging heat between a heat medium that transfers heat from an external heat source and a refrigerant;
a liquid pipe connected between the user unit and the heat source unit, through which a refrigerant at least a part of which is in a liquid state flows;
The user unit includes:
The utilization side heat exchanger is configured to be selectively connectable to the high pressure gas pipe or the low pressure gas pipe, and the utilization side flow rate control device is connected to the liquid pipe,
The heat medium heat exchanger includes:
a refrigeration cycle device connected to at least the liquid pipe and replacing or assisting the function of the heat source side heat exchanger.
 前記熱源機は、
 前記熱源側熱交換器及び前記熱源側熱交換器に流れる冷媒の流量を制御する熱源側流量制御装置が設置されている第1流路を備え、
 前記第1流路切替装置は、
 前記第1流路と前記圧縮機の吐出側又は吸入側との接続を切り替え可能に構成されている、請求項1に記載の冷凍サイクル装置。
The heat source machine is
a first flow path in which a heat source side flow control device is installed to control a flow rate of the refrigerant flowing through the heat source side heat exchanger and the heat source side heat exchanger;
The first flow path switching device is
The refrigeration cycle apparatus according to claim 1 , wherein a connection between the first flow path and a discharge side or a suction side of the compressor is switchable.
 前記熱媒体間熱交換器は、
 前記液管上に直列に接続されている、請求項1又は2に記載の冷凍サイクル装置。
The heat medium heat exchanger includes:
The refrigeration cycle apparatus according to claim 1 or 2, wherein the liquid pipe is connected in series.
 運転されている前記利用側熱交換器は、
 全冷房運転時には全てが蒸発器となり、全暖房運転時には全てが凝縮器となり、冷房主体運転時及び暖房主体運転時には一部が蒸発器となりかつ他の一部が凝縮器となり、
 前記全冷房運転時は、
 前記熱源機、前記熱媒体変換機、前記利用側ユニット、前記熱源機の順に冷媒が流れ、
 前記全暖房運転時は、
 前記熱源機、前記利用側ユニット、前記熱媒体変換機、前記熱源機の順に冷媒が流れ、
 前記冷房主体運転時は、
 前記熱源機、前記利用側熱交換器が凝縮器として機能する前記利用側ユニット、前記熱源機の順に冷媒が流れる暖房流路と、
 前記暖房流路と並行して前記熱源機、前記熱媒体変換機の順に冷媒が流れる補助冷媒流路と、が形成され、
 前記暖房流路及び前記補助冷媒流路を流れる冷媒が合流し、前記利用側熱交換器が蒸発器として機能する前記利用側ユニット、前記熱源機の順に冷媒が流れ、
 前記暖房主体運転時は、
 前記暖房流路と、前記補助冷媒流路と、が形成され、
 前記暖房流路及び前記補助冷媒流路を流れる冷媒が合流し、前記利用側熱交換器が蒸発器として機能する前記利用側ユニット、前記熱源機の順に冷媒が流れる、請求項1~3の何れか1項に記載の冷凍サイクル装置。
The utilization side heat exchanger in operation is
During full cooling operation, all of them become evaporators, during full heating operation, all of them become condensers, and during cooling-dominated operation and heating-dominated operation, some of them become evaporators and others become condensers.
During the full cooling operation,
The refrigerant flows in the order of the heat source unit, the heat medium converter, the user unit, and the heat source unit.
During the full heating operation,
The refrigerant flows in the order of the heat source unit, the user side unit, the heat medium converter, and the heat source unit.
During the cooling-dominant operation,
A heating flow path through which a refrigerant flows in the order of the heat source unit, the utilization side unit in which the utilization side heat exchanger functions as a condenser, and the heat source unit;
an auxiliary refrigerant flow path in which a refrigerant flows in the order of the heat source unit and the heat medium converter in parallel with the heating flow path;
The refrigerant flowing through the heating flow path and the auxiliary refrigerant flow path merge, and the refrigerant flows in this order through the user-side unit in which the user-side heat exchanger functions as an evaporator, and then through the heat source unit;
During the heating-dominant operation,
The heating flow path and the auxiliary refrigerant flow path are formed,
4. The refrigeration cycle device according to claim 1, wherein the refrigerant flowing through the heating flow path and the auxiliary refrigerant flow path merges, and the refrigerant flows in the order of the user side unit in which the user side heat exchanger functions as an evaporator, and then the heat source unit.
 前記熱媒体変換機は、
 前記熱媒体間熱交換器に流れる冷媒の流量を制御する冷媒流量制御装置を備え、
 前記熱媒体間熱交換器は、
 前記高圧ガス管又は前記低圧ガス管を選択可能に接続され、
 前記冷媒流量制御装置は、
 前記液管に接続されている、請求項2に記載の冷凍サイクル装置。
The heat transfer medium converter comprises:
a refrigerant flow rate control device for controlling a flow rate of the refrigerant flowing through the intermediate heat exchanger,
The heat medium heat exchanger includes:
The high pressure gas pipe or the low pressure gas pipe is selectively connected,
The refrigerant flow rate control device includes:
The refrigeration cycle apparatus according to claim 2 , which is connected to the liquid pipe.
 前記利用側ユニットの前記利用側熱交換器及び前記熱媒体変換機の前記熱媒体間熱交換器のそれぞれから延びる複数の第1配管と接続された第1分岐部と、
 前記利用側ユニットの前記利用側流量制御装置及び前記熱媒体変換機の前記冷媒流量制御装置のそれぞれから延びる複数の第2配管と接続された第2分岐部と、を備え、
 前記第1分岐部は、
 前記高圧ガス管を前記複数の第1配管に分岐して接続する高圧側分岐部と、
 前記低圧ガス管を前記複数の第1配管に分岐して接続する低圧側分岐部と、
 前記複数の第1配管のそれぞれと前記高圧側分岐部又は前記低圧側分岐部との接続を切り替える第2流路切替装置と、を備える、請求項5に記載の冷凍サイクル装置。
a first branch portion connected to a plurality of first pipes extending from the use side heat exchanger of the use side unit and the intermediate heat exchanger of the heat medium converter;
a second branch portion connected to a plurality of second pipes extending from the utilization side flow control device of the utilization side unit and the refrigerant flow control device of the heat medium relay machine,
The first branch portion is
a high-pressure side branching section that branches and connects the high-pressure gas pipe to the plurality of first pipes;
A low-pressure side branching section that branches and connects the low-pressure gas pipe to the plurality of first pipes;
The refrigeration cycle apparatus according to claim 5 , further comprising: a second flow path switching device that switches a connection between each of the plurality of first pipes and the high-pressure side branch portion or the low-pressure side branch portion.
 前記熱媒体変換機は、
 一方の端が前記高圧ガス管又は前記低圧ガス管に選択可能に接続され、他方の端が前記液管に接続された第2流路に設置されており、
 運転されている前記利用側熱交換器は、
 全冷房運転時には全てが蒸発器となり、全暖房運転時には全てが凝縮器となり、冷房主体運転時及び暖房主体運転時には一部が蒸発器となりかつ他の一部が凝縮器となり、
 前記全冷房運転時は、
 前記圧縮機から吐出された冷媒が、前記第1流路及び前記高圧ガス管から前記第2流路を経る流路に分岐して流れ、
 前記第1流路を経た冷媒と前記第2流路を経た冷媒とが合流して前記利用側ユニットに流入し、
 前記全暖房運転時は、
 前記熱源機、前記利用側ユニットの順に流れた冷媒が、前記液管から前記第1流路と前記第2流路とに分岐して流れ、前記第1流路を経た冷媒と前記第2流路から前記低圧ガス管を経た冷媒とが合流して前記圧縮機の吸入側に流入し、
 前記冷房主体運転時は、
 前記圧縮機から吐出された冷媒が、前記第1流路及び前記高圧ガス管を経る流路に分岐して流れ、
 前記高圧ガス管を流れる冷媒が、前記第2流路と前記利用側熱交換器が凝縮器として機能する前記利用側ユニットが設置された暖房流路とに分岐して流れ、
 前記第1流路を経た冷媒と前記第2流路を経た冷媒と前記暖房流路を経た冷媒とが、合流して前記利用側熱交換器が蒸発器として機能する前記利用側ユニットが設置された冷房流路を流れ、
 前記冷房流路を流れた冷媒は、前記低圧ガス管を経て前記圧縮機の吸入側に流入する、請求項5又は6に記載の冷凍サイクル装置。
The heat transfer medium converter comprises:
One end of the second flow path is selectively connected to the high pressure gas pipe or the low pressure gas pipe, and the other end of the second flow path is connected to the liquid pipe;
The utilization side heat exchanger in operation is
During full cooling operation, all of them become evaporators, during full heating operation, all of them become condensers, and during cooling-dominated operation and heating-dominated operation, some of them become evaporators and others become condensers.
During the full cooling operation,
A refrigerant discharged from the compressor branches into a flow path that passes through the first flow path and the high-pressure gas pipe and the second flow path,
the refrigerant that has passed through the first flow path and the refrigerant that has passed through the second flow path join together and flow into the utilization side unit,
During the full heating operation,
the refrigerant that has flowed through the heat source unit and the user-side unit in that order branches from the liquid pipe into the first flow path and the second flow path, the refrigerant that has passed through the first flow path and the refrigerant that has passed through the second flow path and the low-pressure gas pipe join together and flow into the suction side of the compressor,
During the cooling-dominant operation,
A refrigerant discharged from the compressor branches into a flow path passing through the first flow path and the high-pressure gas pipe,
the refrigerant flowing through the high-pressure gas pipe branches into the second flow path and a heating flow path in which the user-side unit in which the user-side heat exchanger functions as a condenser is installed,
the refrigerant that has passed through the first flow path, the refrigerant that has passed through the second flow path, and the refrigerant that has passed through the heating flow path join together and flow through a cooling flow path in which the user-side unit in which the user-side heat exchanger functions as an evaporator is installed;
The refrigeration cycle apparatus according to claim 5 or 6, wherein the refrigerant having flowed through the cooling flow passage passes through the low-pressure gas pipe and flows into a suction side of the compressor.
 前記液管から分岐し前記圧縮機の吸入側に接続されたバイパス配管と、
 前記バイパス配管を流れる冷媒及び前記液管を流れる配管の間で熱交換を行う補助熱交換器と、
 前記補助熱交換器に流れる冷媒の流量を制御するバイパス流量制御装置と、を更に備える、請求項1~7の何れか1項に記載の冷凍サイクル装置。
a bypass pipe branched from the liquid pipe and connected to the suction side of the compressor;
an auxiliary heat exchanger for exchanging heat between the refrigerant flowing through the bypass pipe and the refrigerant flowing through the liquid pipe;
The refrigeration cycle apparatus according to any one of claims 1 to 7, further comprising a bypass flow rate control device that controls a flow rate of the refrigerant flowing through the auxiliary heat exchanger.
 前記熱源機は、
 前記補助熱交換器を備える、請求項8に記載の冷凍サイクル装置。
The heat source machine is
The refrigeration cycle apparatus according to claim 8 , comprising the auxiliary heat exchanger.
PCT/JP2023/020818 2023-06-05 2023-06-05 Refrigeration cycle device WO2024252472A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/020818 WO2024252472A1 (en) 2023-06-05 2023-06-05 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/020818 WO2024252472A1 (en) 2023-06-05 2023-06-05 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2024252472A1 true WO2024252472A1 (en) 2024-12-12

Family

ID=93795149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020818 WO2024252472A1 (en) 2023-06-05 2023-06-05 Refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2024252472A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165546A (en) * 1999-12-07 2001-06-22 Nakano Refrigerators Co Ltd Cooling system of showcase or the like and its cooling method
JP2001280747A (en) * 2000-03-31 2001-10-10 Mitsubishi Heavy Ind Ltd Air conditioner
WO2012077156A1 (en) * 2010-12-07 2012-06-14 三菱電機株式会社 Heat pump device
JP2019158248A (en) * 2018-03-14 2019-09-19 アイシン精機株式会社 Gas engine driven air conditioning equipment
JP2019158249A (en) * 2018-03-14 2019-09-19 アイシン精機株式会社 Gas engine driven air conditioning equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165546A (en) * 1999-12-07 2001-06-22 Nakano Refrigerators Co Ltd Cooling system of showcase or the like and its cooling method
JP2001280747A (en) * 2000-03-31 2001-10-10 Mitsubishi Heavy Ind Ltd Air conditioner
WO2012077156A1 (en) * 2010-12-07 2012-06-14 三菱電機株式会社 Heat pump device
JP2019158248A (en) * 2018-03-14 2019-09-19 アイシン精機株式会社 Gas engine driven air conditioning equipment
JP2019158249A (en) * 2018-03-14 2019-09-19 アイシン精機株式会社 Gas engine driven air conditioning equipment

Similar Documents

Publication Publication Date Title
US9140459B2 (en) Heat pump device
KR100463548B1 (en) Air conditioner
CN110425764B (en) Heat exchange system and control method
CN111102770A (en) Air conditioning system capable of continuously heating
CN113970194B (en) Heat pump system
JP3259273B2 (en) Air conditioner
JP2005299935A (en) Air conditioner
JP2001082818A (en) Heat pump system and installation method therefor
EP2584285B1 (en) Refrigerating air-conditioning device
JP4258363B2 (en) Refrigeration air conditioner, operation method of refrigeration air conditioner
WO2011104834A1 (en) Air conditioner
EP2159511B1 (en) Air conditioning system
JP2001263848A (en) Air conditioner
JP4270555B2 (en) Reheat dehumidification type air conditioner
CN215930175U (en) Refrigerating system
WO2024252472A1 (en) Refrigeration cycle device
CN215930176U (en) Refrigerating system
JP3511161B2 (en) Air conditioner
JP6042037B2 (en) Refrigeration cycle equipment
JP2006125762A (en) Indoor unit, air conditioning device comprising the same, and its operating method
JP6932551B2 (en) Heat exchange system and its control method
KR100744504B1 (en) Air conditioning system
WO2024252471A1 (en) Refrigeration cycle device
CN113465220B (en) Refrigerating system and control method
CN113465219B (en) Refrigerating system and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23940579

Country of ref document: EP

Kind code of ref document: A1