[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024241478A1 - Oxidation tank - Google Patents

Oxidation tank Download PDF

Info

Publication number
WO2024241478A1
WO2024241478A1 PCT/JP2023/019109 JP2023019109W WO2024241478A1 WO 2024241478 A1 WO2024241478 A1 WO 2024241478A1 JP 2023019109 W JP2023019109 W JP 2023019109W WO 2024241478 A1 WO2024241478 A1 WO 2024241478A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidation
light
tank
electrode
receiving window
Prior art date
Application number
PCT/JP2023/019109
Other languages
French (fr)
Japanese (ja)
Inventor
裕也 渦巻
紗弓 里
晃洋 鴻野
浩伸 蓑輪
淳 荒武
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2023/019109 priority Critical patent/WO2024241478A1/en
Publication of WO2024241478A1 publication Critical patent/WO2024241478A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Definitions

  • This disclosure relates to an oxidation tank.
  • Non-Patent Document 1 There is a device that produces hydrogen through a water decomposition reaction using a semiconductor photoelectrode (Non-Patent Document 1).
  • This device has an oxidation tank and a reduction tank. An aqueous solution and an oxidation electrode are placed in the oxidation tank. An aqueous solution and a reduction electrode are placed in the reduction tank. The oxidation tank and reduction tank are connected via a proton exchange membrane. The oxidation electrode and reduction electrode are electrically connected by a conductor.
  • the water splitting reaction using photocatalysts consists of a water oxidation reaction and a proton reduction reaction.
  • light is irradiated onto an n-type photocatalyst material, electrons and holes are generated and separated in the photocatalyst.
  • the holes move to the surface of the photocatalyst material and contribute to the water oxidation reaction.
  • the electrons move to the reduction electrode and contribute to the proton reduction reaction.
  • this type of oxidation-reduction reaction progresses, resulting in a water splitting reaction.
  • the oxidation electrode is a semiconductor coating.
  • the oxidation electrode is a gallium nitride thin film grown on a sapphire substrate.
  • the gallium nitride thin film holes are generated and separated under light irradiation, and are consumed in the etching reaction of the gallium nitride itself at the same time as the water oxidation reaction.
  • the photoelectrode may deteriorate, and the light energy conversion efficiency may decrease with the duration of light irradiation.
  • the aqueous solution reacts with the light-receiving window that receives the light entering the oxidation tank.
  • the surface of the material that composes the light-receiving window becomes rough, and the light transmittance of the window deteriorates (it becomes devitrified).
  • the light energy that reaches the oxidation electrode is attenuated by the deteriorated light-receiving window. This can result in a decrease in the light energy conversion efficiency at the oxidation electrode.
  • This disclosure has been made in light of the above circumstances, and the purpose of this disclosure is to provide technology that can protect the light-receiving window of an oxidation tank.
  • the oxidation tank of one embodiment of the present disclosure has an oxidation electrode and an electrolyte solution provided in the oxidation tank, a light-receiving window installed in the oxidation tank that receives light to the oxidation electrode, a conductor that electrically connects the oxidation electrode and the reduction electrode in the reduction tank, and an electrolyte membrane that separates the oxidation tank from the reduction tank, and a protective layer is formed on the surface of the light-receiving window that faces the inside of the oxidation tank.
  • the oxidation tank of one embodiment of the present disclosure has an oxidation electrode and an electrolyte solution provided in the oxidation tank, a first light-receiving window installed in the oxidation tank to receive light to the oxidation electrode, a second light-receiving window installed in the oxidation tank to receive light that has passed through the oxidation electrode, a conductor that electrically connects the oxidation electrode to the reduction electrode in the reduction tank, and an electrolyte membrane that separates the oxidation tank from the reduction tank, and a protective layer is formed on the inner surfaces of the first light-receiving window and the second light-receiving window that face the oxidation tank.
  • This disclosure provides technology that can protect the light receiving window of an oxidation tank.
  • FIG. 1 is a diagram illustrating an apparatus according to a first embodiment.
  • FIG. 2 is a diagram illustrating an apparatus according to the second embodiment.
  • FIG. 3 is a diagram illustrating a conventional device.
  • the device 100 includes a light source 101, an oxidation tank 102, a reduction tank 103, a proton exchange membrane 104, and a lead wire 106.
  • the oxidation tank 102 includes an oxidation electrode 121 and an aqueous solution 122.
  • the oxidation tank 102 is provided with a light receiving window 124.
  • the light receiving window 124 receives light from the light source 101 to the oxidation electrode 121.
  • the reduction tank 103 includes a reduction electrode 131 and an aqueous solution 132.
  • the oxidation electrode 121 is in contact with the aqueous solution 122.
  • the oxidation electrode 121 is a nitride semiconductor, titanium oxide, amorphous silicon, or the like.
  • the aqueous solution 122 is, for example, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, or hydrochloric acid.
  • the reduction electrode 131 is in contact with the aqueous solution 132.
  • the reduction electrode 131 is a metal or a metal compound, such as nickel, iron, gold, platinum, silver, copper, indium, or titanium.
  • the aqueous solution 132 is, for example, an aqueous solution of sodium bicarbonate, an aqueous solution of potassium chloride, or an aqueous solution of sodium chloride.
  • the proton exchange membrane 104 is sandwiched between the oxidation chamber 102 and the reduction chamber 103. Protons are generated in the oxidation chamber 102. The generated protons diffuse into the reduction chamber 103 via the proton exchange membrane 104.
  • the proton exchange membrane 104 is, for example, a perfluorocarbon material. Purple carbon material is composed of a hydrophobic Teflon (registered trademark) skeleton made of carbon and fluorine, and perfluoro side chains with sulfonic acid groups.
  • the proton exchange membrane 104 is, for example, Nafion (registered trademark).
  • the oxidation electrode 121 and the reduction electrode 131 are electrically connected by a conductor 106. Electrons move from the oxidation electrode 121 to the reduction electrode 131 via the conductor 106.
  • the light source 101 is, for example, a xenon lamp, a mercury lamp, a halogen lamp, a pseudo-sun light source, sunlight, or a combination of these.
  • the light source 101 irradiates light with a wavelength that can be absorbed by the material that constitutes the oxide electrode 121.
  • the wavelength that can be absorbed by the oxide electrode 121 is 365 nm or less.
  • the lifespan of the oxidation electrode has been extended, making it possible to operate for long periods of time.
  • the aqueous solution 122 reacts with the light-receiving window 124, which receives light into the oxidation tank 102.
  • the surface of the material that constitutes the light-receiving window 124 becomes rough, and the light transmittance of the light-receiving window 124 deteriorates (it becomes devitrified).
  • the light energy that reaches the oxidation electrode 121 is attenuated by the deteriorated light-receiving window 124. This may result in a decrease in the light energy conversion efficiency in the oxidation electrode 121.
  • the present disclosure prevents deterioration of the light transmittance of the light receiving window 124 due to deterioration of the light receiving window.
  • the present disclosure enables long-term operation of a device in which the oxidation reaction of water and the reduction reaction of protons proceed.
  • a protective layer is formed on the surface of the light-receiving window that faces the inside of the oxidation tank.
  • the protective layer is formed so that the light-receiving window does not come into contact with the electrolyte (aqueous solution). As the light-receiving window does not come into contact with the electrolyte, deterioration of the light-receiving window can be prevented.
  • the protective layer is made of a light-transmitting resin that transmits light.
  • the protective layer By making the protective layer out of a light-transmitting resin, the light transmittance of the light-receiving window is guaranteed, and light from the light source can irradiate the oxidation electrode.
  • the protective layer is made of a material that does not react with the electrolyte. Because the protective layer does not react when it comes into contact with the electrolyte, the protective effect of the protective layer on the light receiving window can be maintained.
  • the light receiving window is coated with a protective layer so that it does not come into contact with the electrolyte. This prevents the light receiving window from losing transparency and improves the stability of the light energy conversion efficiency.
  • FIG. 1 An apparatus 1 according to a first embodiment will be described with reference to Fig. 1.
  • the apparatus 1 is used for an oxidation-reduction reaction test, similar to the apparatus 100 shown in Fig. 3.
  • an oxidation reaction of water and a reduction reaction of protons proceed.
  • the device 1 includes an oxidation tank 2 and a reduction tank 3.
  • the oxidation tank 2 and the reduction tank 3 are separated by an electrolyte membrane 4.
  • the oxidation tank 2 and the reduction tank 3 are described as being adjacent to each other in the horizontal direction, but this is not limited thereto, and the oxidation tank 2 and the reduction tank 3 may be adjacent to each other in the vertical direction.
  • An electrolyte solution 5 is injected into the oxidation tank 2 and the reduction tank 3.
  • the electrolyte solution 5 is used in the oxidation-reduction reaction.
  • the electrolyte solution 5 may be an aqueous solution in which an electrolyte that moves ions is dissolved.
  • the electrolyte solution 5 may be, for example, an aqueous solution of potassium hydroxide, an aqueous solution of rubidium hydroxide, or an aqueous solution of cesium hydroxide, in addition to sodium hydroxide.
  • the oxidation tank 2 is provided with an oxidation electrode 21, a gas inlet line 22, a gas exhaust line 23, and a light receiving window 24.
  • the oxidation electrode 21 is provided so as to be in contact with the electrolyte 5.
  • the oxidation electrode 21 is provided so that light passing through a light receiving window 24 provided in the housing of the oxidation tank 2 is irradiated onto the oxidation electrode 21.
  • the oxidation electrode 21 is a nitride semiconductor such as a GaN (gallium nitride)-based semiconductor.
  • the oxidation electrode 21 may be an oxide semiconductor other than a nitride semiconductor.
  • the gas inlet line 22 and the gas exhaust line 23 have a hollow pipe shape. One end of the gas inlet line 22 contacts the air above the electrolyte 5, and the other end contacts the electrolyte 5. Both ends of the gas exhaust line 23 contact the air above the electrolyte 5. Nitrogen gas is introduced into the electrolyte 5 by the gas inlet line 22. The gas exhaust line 23 collects oxygen gas exhausted from the electrolyte 5.
  • the light receiving window 24 is installed in the housing of the oxidation tank 2.
  • the light receiving window 24 receives light from a light source outside the oxidation tank 2 and is directed to the oxidation electrode 21.
  • the light receiving window 24 transmits light from the light source. The transmitted light irradiates the oxidation electrode 21.
  • the reduction tank 3 is provided with a reduction electrode 31, a gas inlet line 32, and a gas exhaust line 33.
  • the reduction electrode 31 is provided so as to be in contact with the electrolyte 5.
  • the gas inlet line 32 and the gas exhaust line 33 are similar to the gas inlet line 22 and the gas exhaust line 33, respectively, provided in the oxidation tank 2.
  • nitrogen gas is introduced into the electrolyte 5 by the gas inlet line 32.
  • the gas exhaust line 33 collects hydrogen gas exhausted from the electrolyte 5.
  • the oxidation electrode 21 and the reduction electrode 31 are electrically connected by a conductor 6. Electrons move from the oxidation electrode 21 to the reduction electrode 31 via the conductor 6.
  • a protective layer 25 is formed on the surface of the light-receiving window 24 on the inner surface of the oxidation tank 2.
  • the protective layer 25 is formed on the surface of the light-receiving window 24 on a portion that may come into contact with the electrolyte 5.
  • the protective layer 25 prevents the light-receiving window 24 from coming into contact with the electrolyte 5.
  • the light-receiving window 24 is protected.
  • the light transmittance of the light-receiving window 24 does not deteriorate even during long-term oxidation-reduction reaction tests. As a result, the light energy that passes through the light-receiving window 24 reaches the oxidation electrode 21 without attenuation. The light energy conversion efficiency in the oxidation electrode 21 is maintained.
  • the protective layer 25 is preferably formed from a light-transmitting resin that transmits light. This allows the light receiving window 24 to maintain light transmittance in the same way as if the protective layer 25 were not present.
  • the protective layer 25 is formed from, for example, an acrylic resin. In addition to acrylic resin, the protective layer 25 may also be formed from a polyethylene terephthalate-based, polyvinyl chloride-based, polystyrene-based, or other material.
  • the protective layer 25 is preferably made of a material that does not react with the electrolyte 5. This allows the performance of the protective layer 25 to be maintained even during long-term oxidation-reduction reaction tests.
  • FIG. 2 An apparatus 1 according to a second embodiment will be described with reference to Fig. 2.
  • the apparatus 1a is used for an oxidation-reduction reaction test, similar to the apparatus 100 shown in Fig. 3.
  • an oxidation reaction of water and a reduction reaction of protons proceed.
  • the device 1a includes an oxidation tank 2 and a reduction tank 3, similar to the device 1 shown in FIG. 1.
  • the oxidation tank 2 and the reduction tank 3 are separated by an electrolyte membrane 4.
  • the oxidation tank 2 and the reduction tank 3 are described as being adjacent to each other in the vertical direction, but this is not limited thereto.
  • the oxidation tank 2 and the reduction tank 3 may be adjacent to each other in the horizontal direction.
  • light passes through the first light receiving window 24a, the oxidation electrode 21, and the second light receiving window 24b, so it is preferable to install the oxidation tank 2 and the reduction tank 3 in the vertical direction. This is because the reduction tank 3 is not installed around the oxidation tank 2.
  • Apparatus 1a has a similar configuration to apparatus 1 shown in FIG. 1. Apparatus 1a differs from apparatus 1 in that it includes a solar power generation element 7 and that the oxidation tank 2 includes a first light receiving window 24a and a second light receiving window 24b.
  • the solar power generation element 7 emits light when it is irradiated onto the oxidation electrode 21.
  • the solar power generation element 7 is, for example, a Si (silicon)-based element.
  • the solar power generation element 7 may be made of various light-emitting elements such as CIS (thin film type: copper indium selenium), CIGS (copper indium gallium selenium), GaAs (gallium arsenide), organic, and perovskite-type light-emitting elements.
  • the first light receiving window 24a is installed in the oxidation tank 2 and receives light that reaches the oxidation electrode 21.
  • the second light receiving window 24b is installed in the oxidation tank 2 and receives light that has passed through the oxidation electrode 21.
  • light irradiated by the solar power generation element 7 passes through the first light receiving window 24a, the oxidation electrode 21, and the second light receiving window 24b.
  • a first protective layer 25a is formed on the surface of the first light receiving window 24a facing the inside of the oxidation tank 2.
  • a second protective layer 25b is formed on the surface of the second light receiving window 24b facing the inside of the oxidation tank 2.
  • the first protective layer 25a in the second embodiment is similar to the protective layer 25 described in the first embodiment.
  • the first protective layer 25a and the second protective layer 25b are formed of a light-transmitting resin that transmits light.
  • the first protective layer 25a and the second protective layer 25b are formed of a material that does not react with the electrolyte.
  • the materials of the device 1 shown in the first embodiment and the device 1a shown in the second embodiment are merely examples and are not limited to these.
  • the target product is hydrogen.
  • the reduction electrode 31 may be formed of, for example, Ni (nickel), Fe (iron), Au (gold), Pt (platinum), Ag (silver), Cu (copper), In (indium), Ti (titanium), Co (cobalt), Ru (ruthenium), etc.
  • Example 1 In Example 1, the device 1 according to the first embodiment shown in FIG. 1 was used.
  • Quartz was used as the material for the light receiving window 24. Only the surface that comes into contact with the aqueous solution was coated with acrylic resin. The light transmittance of the light receiving window 24 coated with acrylic resin is 90%.
  • a GaN substrate was used as the substrate.
  • a silicon-doped n-GaN semiconductor thin film was epitaxially grown on a 2-inch diameter GaN substrate by MOCVD (Metal Organic Chemical Vapor Deposition).
  • the n-GaN film had a thickness of 2 ⁇ m, which is sufficient to absorb light.
  • the carrier density was 3 ⁇ 10 18 cm 3.
  • aluminum gallium nitride AlGaN was grown.
  • the aluminum composition ratio was 10%.
  • the film thickness was 100 nm, which is sufficient to absorb light.
  • the 2-inch semiconductor thin film was cleaved into four equal parts, and one of them was used to fabricate the electrode.
  • NiO a layer of Ni with a thickness of approximately 1 nm was deposited on the AlGaN surface using electron beam (EB). This semiconductor thin film was then heat-treated on a hot plate in an air atmosphere at 300°C for 1 hour to form NiO.
  • EB electron beam
  • Example 1 the redox reaction test in Example 1 will be explained.
  • parts of the NiO and AlGaN surfaces were scratched to expose the n-GaN surface.
  • a conductor 6 was connected to part of the exposed n-GaN surface and soldered using In. After that, it was covered with epoxy resin so that the In surface would not be exposed. This was installed as the oxidation electrode 21 in Figure 1.
  • the electrolyte 5 was a 1 mol/L aqueous solution of sodium hydroxide.
  • the reduction electrode 31 was made of platinum (manufactured by Nilaco).
  • the electrolyte membrane 4 was made of Nafion (registered trademark). Nitrogen gas was passed through each reaction tank at 10 mL/min. The light irradiation area of the oxidation electrode 21 was 1 cm2 .
  • the oxidation electrode 21 prepared by the above procedure was fixed so that the light source was facing the surface on which NiO was formed.
  • the light source was a 300W high-pressure xenon lamp (illuminance 5mW/cm2).
  • the oxidation electrode 21 was uniformly irradiated with light from the light source.
  • gas samples were taken from inside each reaction tank at any time, and the reaction products were analyzed by gas chromatography. As a result, it was confirmed that oxygen was produced in the oxidation tank 2, and hydrogen was produced in the reduction tank 3.
  • Example 2 The electrolyte 5 in Example 1 was changed to a 1 mol/L aqueous potassium hydroxide solution.
  • Example 3 The electrolyte 5 in Example 1 was changed to a 1 mol/L aqueous solution of rubidium hydroxide.
  • Example 4 The electrolyte 5 in Example 1 was changed to a 1 mol/L aqueous cesium hydroxide solution.
  • Example 5 In Example 5, the device 1a according to the second embodiment shown in FIG. 2 was used.
  • the production of the first light receiving window 24a on which the first protective layer 25a is formed will be explained.
  • the second light receiving window 24b on which the second protective layer 25b is formed is produced in the same manner. Quartz was used as the material for the first light receiving window 24a. Only the surface that comes into contact with the aqueous solution was coated with acrylic resin. The light transmittance of the acrylic resin-coated light receiving window 24 is 90%.
  • a GaN substrate was used as the substrate.
  • a silicon-doped n-GaN semiconductor thin film was epitaxially grown on a 2-inch diameter GaN substrate by MOCVD (Metal Organic Chemical Vapor Deposition).
  • the n-GaN film had a thickness of 2 ⁇ m, which was sufficient to absorb light.
  • the carrier density was 3 ⁇ 10 18 cm 3.
  • indium gallium nitride InGaN was grown.
  • the indium composition ratio was 10%.
  • the film thickness was 100 nm, which was sufficient to absorb light.
  • the 2-inch semiconductor thin film was cleaved into four equal parts, and one of the pieces was used to fabricate the electrode.
  • Example 5 Next, the redox reaction test in Example 5 will be described. As shown in FIG. 2, an oxidation electrode 21 was installed. A silicon-based p-n junction semiconductor element was used as the photovoltaic power generation element 7. The oxidation electrode 21, the photovoltaic power generation element 7, and the reduction electrode 31 were connected in series. The rest of the experiment was the same as in Example 1.
  • Example 6 The electrolyte 5 in Example 5 was a 1 mol/L aqueous potassium hydroxide solution.
  • Example 7 The electrolyte 5 in Example 5 was a 1 mol/L aqueous rubidium hydroxide solution.
  • Example 8 The electrolyte 5 in Example 5 was a 1 mol/L aqueous cesium hydroxide solution.
  • Table 1 shows the amount of hydrogen gas produced for each example 1 hour and 500 hours after light irradiation.
  • the amount of each gas produced was normalized by the surface area of the semiconductor photoelectrode. It was found that hydrogen was produced in all cases when exposed to light.
  • Example 1 the amount of hydrogen generated after 500 hours was greater in Example 1 than in Comparative Example 1. The same was true when comparing each of Examples 2 to 4 with each of Comparative Examples 2 to 4.
  • Example 4 since the amount of hydrogen generated after 500 hours was greater in Example 4 than in Example 1, it can be said that CsOH is effective in extending the life of the oxidation electrode 21.
  • RbOH and CsOH are more corrosive than NaOH or KOH, and therefore have a greater impact on the devitrification of quartz.
  • this drawback can be prevented and the life of the oxidation electrode 21 can be extended. The same was true for Examples 5 to 8.
  • a protective layer 25 is formed on the light receiving window 24 to prevent contact between the light receiving window 24 and the electrolyte 5.
  • the protective layer 25 prevents the light receiving window 24 from losing transparency and improves the stability of the light energy conversion efficiency.
  • RbOH or CsOH is expected to extend the life of the oxidation electrode 21, but it was thought that it would be difficult to apply it to the light-receiving window 24 because of its high corrosiveness to quartz.
  • a protective layer 25 on the light-receiving window 24 made of RbOH or CsOH it is possible to further improve stability.
  • Reference Signs List 1 100 Apparatus 2, 102 Oxidation tank 3, 103 Reduction tank 4 Electrolyte membrane 5 Electrolyte solution 6, 106 Conductor 7 Photovoltaic power generation element 21, 121 Oxidation electrode 22, 32 Gas inlet line 23, 33 Gas exhaust line 24, 124 Light receiving window 25 Protective layer 31, 131 Reduction electrode 101 Light source 122, 132 Aqueous solution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

An oxidation tank 2 includes: an oxidation electrode 21 and an electrolytic solution 5 provided in the oxidation tank 2; a light receiving window 24 which is installed in the oxidation tank 2 and receives light to the oxidation electrode 21; a conducting wire 6 which electrically connects the oxidation electrode 21 and a reduction electrode 31 in a reduction tank 3; and an electrolyte film 5 which separates the oxidation tank 2 from the reduction tank 3. A protection layer 25 is formed on the inner surface of the oxidation tank 2, among the surfaces of the light receiving window 24.

Description

酸化槽Oxidation tank

 本開示は、酸化槽に関する。 This disclosure relates to an oxidation tank.

 半導体光電極を用いた水の分解反応により水素を生成する装置がある(非特許文献1)。この装置は、酸化槽と還元槽を有する。酸化槽に、水溶液と酸化電極が入る。還元槽に、水溶液と還元電極が入る。酸化槽と還元槽は、プロトン交換膜を介して繋がる。酸化電極と還元電極とは、導線で電気的に接続される。 There is a device that produces hydrogen through a water decomposition reaction using a semiconductor photoelectrode (Non-Patent Document 1). This device has an oxidation tank and a reduction tank. An aqueous solution and an oxidation electrode are placed in the oxidation tank. An aqueous solution and a reduction electrode are placed in the reduction tank. The oxidation tank and reduction tank are connected via a proton exchange membrane. The oxidation electrode and reduction electrode are electrically connected by a conductor.

 光触媒を用いた水の分解反応は、水の酸化反応とプロトンの還元反応からなる。n型の光触媒材料に光を照射すると、光触媒中で電子と正孔が生成分離する。正孔は光触媒材料の表面に移動し、水の酸化反応に寄与する。一方、電子は還元電極に移動し、プロトンの還元反応に寄与する。理想的には、このような酸化還元反応が進行し、水分解反応が生じる。 The water splitting reaction using photocatalysts consists of a water oxidation reaction and a proton reduction reaction. When light is irradiated onto an n-type photocatalyst material, electrons and holes are generated and separated in the photocatalyst. The holes move to the surface of the photocatalyst material and contribute to the water oxidation reaction. Meanwhile, the electrons move to the reduction electrode and contribute to the proton reduction reaction. Ideally, this type of oxidation-reduction reaction progresses, resulting in a water splitting reaction.

 酸化反応: 2H2O + 4h+ → O2 + 4H+
 還元反応: 4H+ + 4e- → 2H2
Oxidation reaction: 2H 2 O + 4h + → O 2 + 4H +
Reduction reaction: 4H + + 4e - → 2H 2

 酸化電極は、半導体被膜である。酸化電極は、例えば、サファイア基板上に成長した窒化ガリウム薄膜である。窒化ガリウム薄膜において、光照射下にて生成および分離した正孔が、水の酸化反応と同時に、窒化ガリウム自身のエッチング反応に消費される。光電極が劣化し、光エネルギー変換効率が光照射時間と共に低下する場合がある。 The oxidation electrode is a semiconductor coating. For example, the oxidation electrode is a gallium nitride thin film grown on a sapphire substrate. In the gallium nitride thin film, holes are generated and separated under light irradiation, and are consumed in the etching reaction of the gallium nitride itself at the same time as the water oxidation reaction. The photoelectrode may deteriorate, and the light energy conversion efficiency may decrease with the duration of light irradiation.

 このような劣化の抑制を目的として、酸素発生用の助触媒(酸化ニッケル)を保護層として形成し、寿命向上した例が報告されている。酸化電極の長寿命化が進むことで、長時間運転が可能となった。 In order to prevent this type of deterioration, there have been reports of extending the lifespan by forming a promoter for oxygen generation (nickel oxide) as a protective layer. By extending the lifespan of the oxidation electrode, it has become possible to operate the device for long periods of time.

S. Yotsuhashi, et al., “CO2Conversion with Light and Water by GaN Photoelectrode”, Japanese Journal of Applied Physics, The Japan Society of Applied Physics, 2012, Volume 51, pp. 02BP07-1-02BP07-3S. Yotsuhashi, et al., “CO2Conversion with Light and Water by GaN Photoelectrode”, Japanese Journal of Applied Physics, The Japan Society of Applied Physics, 2012, Volume 51, pp. 02BP07-1-02BP07-3

 長時間運転時において、酸化槽への光を受ける受光窓と水溶液が反応する。受光窓を構成する材料の表面が荒れ、受光窓の光透過性が劣化する(失透する)。これにより、酸化電極に届く光エネルギーは、劣化した受光窓により減衰する。酸化電極における光エネルギー変換効率が、低下する場合がある。 During long-term operation, the aqueous solution reacts with the light-receiving window that receives the light entering the oxidation tank. The surface of the material that composes the light-receiving window becomes rough, and the light transmittance of the window deteriorates (it becomes devitrified). As a result, the light energy that reaches the oxidation electrode is attenuated by the deteriorated light-receiving window. This can result in a decrease in the light energy conversion efficiency at the oxidation electrode.

 本開示は、上記事情に鑑みてなされたものであり、本開示の目的は、酸化槽の受光窓を保護可能な技術を提供することである。 This disclosure has been made in light of the above circumstances, and the purpose of this disclosure is to provide technology that can protect the light-receiving window of an oxidation tank.

 本開示の一態様の酸化槽は、酸化槽内に設けられる酸化電極および電解液と、前記酸化槽に設置され、前記酸化電極への光を受ける受光窓と、前記酸化電極と、還元槽内の還元電極を電気的に接続する導線と、前記酸化槽と前記還元槽を隔てる電解質膜を有し、前記受光窓の表面のうち前記酸化槽の内側の面に、保護層が形成される。 The oxidation tank of one embodiment of the present disclosure has an oxidation electrode and an electrolyte solution provided in the oxidation tank, a light-receiving window installed in the oxidation tank that receives light to the oxidation electrode, a conductor that electrically connects the oxidation electrode and the reduction electrode in the reduction tank, and an electrolyte membrane that separates the oxidation tank from the reduction tank, and a protective layer is formed on the surface of the light-receiving window that faces the inside of the oxidation tank.

 本開示の一態様の酸化槽は、酸化槽内に設けられる酸化電極および電解液と、前記酸化槽に設置され、前記酸化電極への光を受ける第1の受光窓と、前記酸化槽に設置され、前記酸化電極を透過した光を受ける第2の受光窓と、前記酸化電極と、還元槽内の還元電極を電気的に接続する導線と、前記酸化槽と前記還元槽を隔てる電解質膜を有し、前記第1の受光窓および前記第2の受光窓の表面のうち前記酸化槽の内側の面に、保護層が形成される。 The oxidation tank of one embodiment of the present disclosure has an oxidation electrode and an electrolyte solution provided in the oxidation tank, a first light-receiving window installed in the oxidation tank to receive light to the oxidation electrode, a second light-receiving window installed in the oxidation tank to receive light that has passed through the oxidation electrode, a conductor that electrically connects the oxidation electrode to the reduction electrode in the reduction tank, and an electrolyte membrane that separates the oxidation tank from the reduction tank, and a protective layer is formed on the inner surfaces of the first light-receiving window and the second light-receiving window that face the oxidation tank.

 本開示によれば、酸化槽の受光窓を保護可能な技術を提供することができる。 This disclosure provides technology that can protect the light receiving window of an oxidation tank.

図1は、第1の実施の形態に係る装置を説明する図である。FIG. 1 is a diagram illustrating an apparatus according to a first embodiment. 図2は、第2の実施の形態に係る装置を説明する図である。FIG. 2 is a diagram illustrating an apparatus according to the second embodiment. 図3は、従来の装置を説明する図である。FIG. 3 is a diagram illustrating a conventional device.

 以下、図面を参照して、本開示の実施の形態を説明する。図面の記載において同一部分には同一符号を付し説明を省略する。 Below, an embodiment of the present disclosure will be described with reference to the drawings. In the description of the drawings, the same parts are given the same reference numerals and the description will be omitted.

 まず図3を参照して、酸化還元反応試験に用いられる装置100を説明する。装置100は、光源101、酸化槽102、還元槽103、プロトン交換膜104および導線106を備える。酸化槽102は、酸化電極121と、水溶液122を含む。酸化槽102には、受光窓124が設けられる。受光窓124は、光源101から酸化電極121への光を受ける。還元槽103は、還元電極131と水溶液132を含む。 First, referring to FIG. 3, the device 100 used in the oxidation-reduction reaction test will be described. The device 100 includes a light source 101, an oxidation tank 102, a reduction tank 103, a proton exchange membrane 104, and a lead wire 106. The oxidation tank 102 includes an oxidation electrode 121 and an aqueous solution 122. The oxidation tank 102 is provided with a light receiving window 124. The light receiving window 124 receives light from the light source 101 to the oxidation electrode 121. The reduction tank 103 includes a reduction electrode 131 and an aqueous solution 132.

 酸化槽102において、酸化電極121は水溶液122に接する。酸化電極121は、窒化物半導体や酸化チタン、またはアモルファスシリコンなどである。水溶液122は、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液、または塩酸などである。 In the oxidation tank 102, the oxidation electrode 121 is in contact with the aqueous solution 122. The oxidation electrode 121 is a nitride semiconductor, titanium oxide, amorphous silicon, or the like. The aqueous solution 122 is, for example, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, or hydrochloric acid.

 還元槽103において、還元電極131は水溶液132に接する。還元電極131は、金属または金属化合物であり、例えば、ニッケル、鉄、金、白金、銀、銅、インジウムまたはチタンなどである。水溶液132は、例えば、炭酸水素ナトリウム水溶液、塩化カリウム水溶液、または塩化ナトリウム水溶液などである。 In the reduction tank 103, the reduction electrode 131 is in contact with the aqueous solution 132. The reduction electrode 131 is a metal or a metal compound, such as nickel, iron, gold, platinum, silver, copper, indium, or titanium. The aqueous solution 132 is, for example, an aqueous solution of sodium bicarbonate, an aqueous solution of potassium chloride, or an aqueous solution of sodium chloride.

 プロトン交換膜104は、酸化槽102と、還元槽103の間に挟まれる。酸化槽102で、プロトンが生成される。生成されたプロトンは、プロトン交換膜104を介して、還元槽103へ拡散する。プロトン交換膜104は、例えば、パーフルオロカーボン材料などである。パープルオロカーボン素材は、炭素-フッ素からなる疎水性テフロン(登録商標)骨格と、スルホン酸基を持つパーフルオロ側鎖から構成される。プロトン交換膜104は、例えば、ナフィオン(登録商標)である。 The proton exchange membrane 104 is sandwiched between the oxidation chamber 102 and the reduction chamber 103. Protons are generated in the oxidation chamber 102. The generated protons diffuse into the reduction chamber 103 via the proton exchange membrane 104. The proton exchange membrane 104 is, for example, a perfluorocarbon material. Purple carbon material is composed of a hydrophobic Teflon (registered trademark) skeleton made of carbon and fluorine, and perfluoro side chains with sulfonic acid groups. The proton exchange membrane 104 is, for example, Nafion (registered trademark).

 酸化電極121と還元電極131は、導線106により電気的に接続される。酸化電極121から還元電極131へ、導線106を介して電子が移動する。 The oxidation electrode 121 and the reduction electrode 131 are electrically connected by a conductor 106. Electrons move from the oxidation electrode 121 to the reduction electrode 131 via the conductor 106.

 光源101は、例えば、キセノンランプ、水銀ランプ、ハロゲンランプ、疑似太陽光源、太陽光、またはこれらの組み合わせである。光源101から、酸化電極121を構成する材料が吸収可能な波長の光が、照射される。例えば、窒化ガリウムで構成される酸化電極121の場合、酸化電極121が吸収可能な波長は、365 nm以下である。 The light source 101 is, for example, a xenon lamp, a mercury lamp, a halogen lamp, a pseudo-sun light source, sunlight, or a combination of these. The light source 101 irradiates light with a wavelength that can be absorbed by the material that constitutes the oxide electrode 121. For example, in the case of the oxide electrode 121 made of gallium nitride, the wavelength that can be absorbed by the oxide electrode 121 is 365 nm or less.

 このような装置100において、酸化電極の長寿命化が進み、長時間運転が可能となった。しかしながら、長時間運転時において、酸化槽102への光を受ける受光窓124と水溶液122が反応する。受光窓124を構成する材料の表面が荒れ、受光窓124の光透過性が劣化する(失透する)。これにより、酸化電極121に届く光エネルギーは、劣化した受光窓124により減衰する。酸化電極121における光エネルギー変換効率が、低下する場合がある。 In such an apparatus 100, the lifespan of the oxidation electrode has been extended, making it possible to operate for long periods of time. However, during long-term operation, the aqueous solution 122 reacts with the light-receiving window 124, which receives light into the oxidation tank 102. The surface of the material that constitutes the light-receiving window 124 becomes rough, and the light transmittance of the light-receiving window 124 deteriorates (it becomes devitrified). As a result, the light energy that reaches the oxidation electrode 121 is attenuated by the deteriorated light-receiving window 124. This may result in a decrease in the light energy conversion efficiency in the oxidation electrode 121.

 本開示は、受光窓の劣化により、受光窓124の光透過性の劣化を防ぐ。本開示は、水の酸化反応とプロトンの還元反応が進行する装置の、長時間運転を可能にする。 The present disclosure prevents deterioration of the light transmittance of the light receiving window 124 due to deterioration of the light receiving window. The present disclosure enables long-term operation of a device in which the oxidation reaction of water and the reduction reaction of protons proceed.

 具体的には、本開示に係る装置において、受光窓の表面のうち酸化槽の内側の面に、保護層が形成される。保護層は、受光窓と電解液(水溶液)とが接触しないように形成される。受光窓と電解液が接触しないので、受光窓の劣化を防ぐことができる。 Specifically, in the device disclosed herein, a protective layer is formed on the surface of the light-receiving window that faces the inside of the oxidation tank. The protective layer is formed so that the light-receiving window does not come into contact with the electrolyte (aqueous solution). As the light-receiving window does not come into contact with the electrolyte, deterioration of the light-receiving window can be prevented.

 保護層は、光を透過する光透過性樹脂で形成される。保護層が光透過性樹脂で形成されることにより、受光窓の光透過性を担保し、光源からの光が、酸化電極を照射することができる。 The protective layer is made of a light-transmitting resin that transmits light. By making the protective layer out of a light-transmitting resin, the light transmittance of the light-receiving window is guaranteed, and light from the light source can irradiate the oxidation electrode.

 保護層は、電解液と反応しない材料で形成される。保護層は電解液と接しても反応しないので、保護層による受光窓の保護効果を、維持することができる。 The protective layer is made of a material that does not react with the electrolyte. Because the protective layer does not react when it comes into contact with the electrolyte, the protective effect of the protective layer on the light receiving window can be maintained.

 受光窓が、保護層によりコーティングされることで、電解液と接触しない。これにより受光窓の失透を防ぎ、光エネルギーの変換効率の安定性を向上することができる。 The light receiving window is coated with a protective layer so that it does not come into contact with the electrolyte. This prevents the light receiving window from losing transparency and improves the stability of the light energy conversion efficiency.

 (第1の実施の形態)
 図1を参照して、第1の実施の形態に係る装置1を説明する。装置1は、図3に示した装置100と同様に、酸化還元反応試験に用いられる。酸化還元反応試験において、水の酸化反応とプロトンの還元反応が進行する。
(First embodiment)
An apparatus 1 according to a first embodiment will be described with reference to Fig. 1. The apparatus 1 is used for an oxidation-reduction reaction test, similar to the apparatus 100 shown in Fig. 3. In the oxidation-reduction reaction test, an oxidation reaction of water and a reduction reaction of protons proceed.

 装置1は、酸化槽2と還元槽3を備える。酸化槽2と還元槽3は、電解質膜4によって隔てられる。装置1において、酸化槽2と還元槽3は、水平方向に隣接する場合を説明するが、これに限らない、酸化槽2と還元槽3は、垂直方向に隣接しても良い。 The device 1 includes an oxidation tank 2 and a reduction tank 3. The oxidation tank 2 and the reduction tank 3 are separated by an electrolyte membrane 4. In the device 1, the oxidation tank 2 and the reduction tank 3 are described as being adjacent to each other in the horizontal direction, but this is not limited thereto, and the oxidation tank 2 and the reduction tank 3 may be adjacent to each other in the vertical direction.

 酸化槽2および還元槽3に、電解液5が注入される。電解液5は、酸化還元反応に用いられる。電解液5は、イオンを移動させる電解質を溶解させた水溶液であっても良い。電解液5は、例えば、水酸化ナトリウムのほか、水酸化カリウム水溶液、水酸化ルビジウム水溶液、水酸化セシウム水溶液などである。 An electrolyte solution 5 is injected into the oxidation tank 2 and the reduction tank 3. The electrolyte solution 5 is used in the oxidation-reduction reaction. The electrolyte solution 5 may be an aqueous solution in which an electrolyte that moves ions is dissolved. The electrolyte solution 5 may be, for example, an aqueous solution of potassium hydroxide, an aqueous solution of rubidium hydroxide, or an aqueous solution of cesium hydroxide, in addition to sodium hydroxide.

 酸化槽2に、酸化電極21、ガス導入ライン22、ガス排気ライン23および受光窓24が設けられる。 The oxidation tank 2 is provided with an oxidation electrode 21, a gas inlet line 22, a gas exhaust line 23, and a light receiving window 24.

 酸化電極21は、電解液5に接するように設けられる。酸化槽2の筐体に設けられた受光窓24を透過する光が酸化電極21に照射されるように、酸化電極21は、設けられる。酸化電極21は、GaN(窒化ガリウム)系のような窒化物半導体である。酸化電極21は、窒化物半導体以外に、酸化物半導体でも良い。 The oxidation electrode 21 is provided so as to be in contact with the electrolyte 5. The oxidation electrode 21 is provided so that light passing through a light receiving window 24 provided in the housing of the oxidation tank 2 is irradiated onto the oxidation electrode 21. The oxidation electrode 21 is a nitride semiconductor such as a GaN (gallium nitride)-based semiconductor. The oxidation electrode 21 may be an oxide semiconductor other than a nitride semiconductor.

 ガス導入ライン22およびガス排気ライン23は、中空のパイプ形状を有する。ガス導入ライン22は、一端が電解液5の上方の空気に、一端が電解液5に、それぞれ接する。ガス排気ライン23は、両端が電解液5の上方の空気に接する。ガス導入ライン22によって電解液5に窒素ガスが取り込まれる。ガス排気ライン23は、電解液5から排気される酸素ガスを採取する。 The gas inlet line 22 and the gas exhaust line 23 have a hollow pipe shape. One end of the gas inlet line 22 contacts the air above the electrolyte 5, and the other end contacts the electrolyte 5. Both ends of the gas exhaust line 23 contact the air above the electrolyte 5. Nitrogen gas is introduced into the electrolyte 5 by the gas inlet line 22. The gas exhaust line 23 collects oxygen gas exhausted from the electrolyte 5.

 受光窓24は、酸化槽2の筐体に設置される。受光窓24は、酸化槽2の外部の光源から酸化電極21への光を受ける。受光窓24は、光源からの光を透過する。透過した光は、酸化電極21を照射する。 The light receiving window 24 is installed in the housing of the oxidation tank 2. The light receiving window 24 receives light from a light source outside the oxidation tank 2 and is directed to the oxidation electrode 21. The light receiving window 24 transmits light from the light source. The transmitted light irradiates the oxidation electrode 21.

 還元槽3に、還元電極31、ガス導入ライン32およびガス排気ライン33が設けられる。 The reduction tank 3 is provided with a reduction electrode 31, a gas inlet line 32, and a gas exhaust line 33.

 還元電極31は、電解液5に接するように設けられる。 The reduction electrode 31 is provided so as to be in contact with the electrolyte 5.

 ガス導入ライン32およびガス排気ライン33はそれぞれ、酸化槽2に設けられるガス導入ライン22およびガス排気ライン33のそれぞれと同様である。還元槽3において、ガス導入ライン32によって電解液5に窒素ガスが取り込まれる。ガス排気ライン33は、電解液5から排気される水素ガスを採取する。 The gas inlet line 32 and the gas exhaust line 33 are similar to the gas inlet line 22 and the gas exhaust line 33, respectively, provided in the oxidation tank 2. In the reduction tank 3, nitrogen gas is introduced into the electrolyte 5 by the gas inlet line 32. The gas exhaust line 33 collects hydrogen gas exhausted from the electrolyte 5.

 酸化電極21と酸化電極は、導線6によって電気的に接続される。酸化電極21から還元電極31へ、導線6を介して電子が移動する。 The oxidation electrode 21 and the reduction electrode 31 are electrically connected by a conductor 6. Electrons move from the oxidation electrode 21 to the reduction electrode 31 via the conductor 6.

 図1に示す装置1において、受光窓24の表面のうち酸化槽2の内側の面に、保護層25が形成される。受光窓24の表面のうち、電解液5に接触する可能性のある部分に、保護層25が形成される。保護層25により受光窓24と電解液5が接触しない。受光窓24は、保護される。受光窓24は、長期の酸化還元反応試験においても、光透過性が劣化することはない。これにより、受光窓24を透過した光エネルギーは、減衰することなく、酸化電極21に届く。酸化電極21における光エネルギー変換効率は、維持される。 In the device 1 shown in FIG. 1, a protective layer 25 is formed on the surface of the light-receiving window 24 on the inner surface of the oxidation tank 2. The protective layer 25 is formed on the surface of the light-receiving window 24 on a portion that may come into contact with the electrolyte 5. The protective layer 25 prevents the light-receiving window 24 from coming into contact with the electrolyte 5. The light-receiving window 24 is protected. The light transmittance of the light-receiving window 24 does not deteriorate even during long-term oxidation-reduction reaction tests. As a result, the light energy that passes through the light-receiving window 24 reaches the oxidation electrode 21 without attenuation. The light energy conversion efficiency in the oxidation electrode 21 is maintained.

 保護層25は、光を透過する光透過性樹脂で形成されることが好ましい。これにより、受光窓24は、保護層25がない場合と同様に、光透過性を維持することができる。保護層25は、例えば、アクリル樹脂で形成される。保護層25は、アクリル樹脂のほか、ポリエチレンテレフタレート系、ポリ塩化ビニル系、またはポリスチレン系等の材料で形成されても良い。 The protective layer 25 is preferably formed from a light-transmitting resin that transmits light. This allows the light receiving window 24 to maintain light transmittance in the same way as if the protective layer 25 were not present. The protective layer 25 is formed from, for example, an acrylic resin. In addition to acrylic resin, the protective layer 25 may also be formed from a polyethylene terephthalate-based, polyvinyl chloride-based, polystyrene-based, or other material.

 保護層25は、電解液5と反応しない材料で形成されることが好ましい。これにより、長期の酸化還元反応試験においても、保護層25の性能は維持される。 The protective layer 25 is preferably made of a material that does not react with the electrolyte 5. This allows the performance of the protective layer 25 to be maintained even during long-term oxidation-reduction reaction tests.

 (第2の実施の形態)
 図2を参照して、第2の実施の形態に係る装置1を説明する。装置1aは、図3に示した装置100と同様に、酸化還元反応試験に用いられる。酸化還元反応試験において、水の酸化反応とプロトンの還元反応が進行する。
Second Embodiment
An apparatus 1 according to a second embodiment will be described with reference to Fig. 2. The apparatus 1a is used for an oxidation-reduction reaction test, similar to the apparatus 100 shown in Fig. 3. In the oxidation-reduction reaction test, an oxidation reaction of water and a reduction reaction of protons proceed.

 装置1aは、図1に示す装置1と同様に、酸化槽2と還元槽3を備える。酸化槽2と還元槽3は、電解質膜4によって隔てられる。装置1aにおいて、酸化槽2と還元槽3は、垂直方向に隣接する場合を説明するが、これに限らない、酸化槽2と還元槽3は、水平方向に隣接しても良い。なお、第2の実施の形態に係る装置1aの酸化槽2において、光は、第1の受光窓24a、酸化電極21および第2の受光窓24bを通るので、酸化槽2および還元槽3が上下方向に設置せるのが好適である。酸化槽2の周囲に還元槽3が設置されないからである。 The device 1a includes an oxidation tank 2 and a reduction tank 3, similar to the device 1 shown in FIG. 1. The oxidation tank 2 and the reduction tank 3 are separated by an electrolyte membrane 4. In the device 1a, the oxidation tank 2 and the reduction tank 3 are described as being adjacent to each other in the vertical direction, but this is not limited thereto. The oxidation tank 2 and the reduction tank 3 may be adjacent to each other in the horizontal direction. In the oxidation tank 2 of the device 1a according to the second embodiment, light passes through the first light receiving window 24a, the oxidation electrode 21, and the second light receiving window 24b, so it is preferable to install the oxidation tank 2 and the reduction tank 3 in the vertical direction. This is because the reduction tank 3 is not installed around the oxidation tank 2.

 装置1aは、図1に示す装置1と同様の構成を有する。装置1aは、装置1と比べて、太陽光発電素子7を備える点、および、酸化槽2において、第1の受光窓24aと、第2の受光窓24bを備える点が異なる。 Apparatus 1a has a similar configuration to apparatus 1 shown in FIG. 1. Apparatus 1a differs from apparatus 1 in that it includes a solar power generation element 7 and that the oxidation tank 2 includes a first light receiving window 24a and a second light receiving window 24b.

 太陽光発電素子7は、酸化電極21に照射される光を発光する。太陽光発電素子7は、例えば、Si(シリコン)系素子である。太陽光発電素子7は、Si系以外に、CIS(薄膜系:Copper Indium Selenium)系、CIGS(Copper Indium Gallium Selenium)系、GaAs(ガリウム砒素)系、有機系、ペロブスカイト型系など、各種発光素子が用いられても良い。 The solar power generation element 7 emits light when it is irradiated onto the oxidation electrode 21. The solar power generation element 7 is, for example, a Si (silicon)-based element. In addition to Si-based elements, the solar power generation element 7 may be made of various light-emitting elements such as CIS (thin film type: copper indium selenium), CIGS (copper indium gallium selenium), GaAs (gallium arsenide), organic, and perovskite-type light-emitting elements.

 第1の受光窓24aは、酸化槽2に設置され、酸化電極21への光を受ける。第2の受光窓24bは、酸化槽2に設置され、酸化電極21を透過した光を受ける。酸化槽2において、太陽光発電素子7によって照射された光は、第1の受光窓24a、酸化電極21および第2の受光窓24bを透過する。 The first light receiving window 24a is installed in the oxidation tank 2 and receives light that reaches the oxidation electrode 21. The second light receiving window 24b is installed in the oxidation tank 2 and receives light that has passed through the oxidation electrode 21. In the oxidation tank 2, light irradiated by the solar power generation element 7 passes through the first light receiving window 24a, the oxidation electrode 21, and the second light receiving window 24b.

 第1の受光窓24aの表面のうち酸化槽2の内側の面に、第1の保護層25aが形成される。同様に、第2の受光窓24bの表面のうち酸化槽2の内側の面に、第2の保護層25bが形成される。第2の実施の形態における第1の保護層25aは、第1の実施の形態で説明した保護層25と同様である。 A first protective layer 25a is formed on the surface of the first light receiving window 24a facing the inside of the oxidation tank 2. Similarly, a second protective layer 25b is formed on the surface of the second light receiving window 24b facing the inside of the oxidation tank 2. The first protective layer 25a in the second embodiment is similar to the protective layer 25 described in the first embodiment.

 第1の保護層25aおよび第2の保護層25bは、光を透過する光透過性樹脂で形成される。第1の保護層25aおよび第2の保護層25bは、電解液と反応しない材料で形成される。 The first protective layer 25a and the second protective layer 25b are formed of a light-transmitting resin that transmits light. The first protective layer 25a and the second protective layer 25b are formed of a material that does not react with the electrolyte.

 第1の実施の形態に示す装置1、および第2の実施の形態に示す装置1aの材料は、一例であって、これに限るものではない。本開示において目的生成物が水素である場合を説明した。還元電極31の材料、または装置内の雰囲気を変えることで、二酸化炭素の還元反応による炭素化合物の生成、または窒素の還元反応によるアンモニアの生成など、様々な目的生成物の生成が可能である。還元電極31は、例えば、Ni(ニッケル)、Fe(鉄)、Au(金)、Pt(プラチナ)、Ag(銀)、Cu(銅)、In(インジウム)、Ti(チタン)、Co(コバルト)、Ru(ルテニウム)などで形成されても良い。 The materials of the device 1 shown in the first embodiment and the device 1a shown in the second embodiment are merely examples and are not limited to these. In this disclosure, a case has been described in which the target product is hydrogen. By changing the material of the reduction electrode 31 or the atmosphere within the device, it is possible to generate various target products, such as the generation of carbon compounds through the reduction reaction of carbon dioxide, or the generation of ammonia through the reduction reaction of nitrogen. The reduction electrode 31 may be formed of, for example, Ni (nickel), Fe (iron), Au (gold), Pt (platinum), Ag (silver), Cu (copper), In (indium), Ti (titanium), Co (cobalt), Ru (ruthenium), etc.

 次に、本開示に係る装置を用いて、酸化還元反応試験を行った結果を説明する。試験では、表1に示すように、受光窓24に樹脂の保護層25を形成した場合と形成しない場合について、電極および水溶液種の複数の組み合わせのそれぞれについて、所定時間後の水素ガスの発生量を計測した。本試験において、水溶液は、電解液5である。 Next, the results of an oxidation-reduction reaction test performed using the device according to the present disclosure will be described. In the test, as shown in Table 1, the amount of hydrogen gas generated after a specified time was measured for each of several combinations of electrodes and aqueous solution types, with and without a resin protective layer 25 formed on the light receiving window 24. In this test, the aqueous solution was electrolyte solution 5.

 <実施例1>
 実施例1では、図1に示す第1の実施の形態に係る装置1を用いた。
Example 1
In Example 1, the device 1 according to the first embodiment shown in FIG. 1 was used.

 保護層25が形成された受光窓24の生成を、説明する。受光窓24の材料として、石英を用いた。水溶液と接触する面のみに、アクリル樹脂を用いてコーティングした。アクリル樹脂をコーティングした受光窓24の光透過率は90%である。 The creation of the light receiving window 24 on which the protective layer 25 is formed will now be explained. Quartz was used as the material for the light receiving window 24. Only the surface that comes into contact with the aqueous solution was coated with acrylic resin. The light transmittance of the light receiving window 24 coated with acrylic resin is 90%.

 酸化電極21の生成を説明する。基板として、GaN基板を用いた。直径2インチ  のGaN基板上に、シリコンをドープしたn-GaN半導体薄膜を、MOCVD(Metal Organic Chemical Vapor Deposition)法によりエピタキシャル成長させた。n-GaNの膜厚は、光を吸収するに十分足る2μmとした。キャリア密度は3×1018 cm3であった。その後、窒化アルミニウムガリウムAlGaNを、成長した。アルミニウムの組成比は、10%である。膜厚は、光を十分に吸収するに足る100 nmとした。その後、2インチの半導体薄膜を4等分にへき開し、そのうちの1枚を、電極作製に使用した。 The generation of the oxidation electrode 21 will be explained. A GaN substrate was used as the substrate. A silicon-doped n-GaN semiconductor thin film was epitaxially grown on a 2-inch diameter GaN substrate by MOCVD (Metal Organic Chemical Vapor Deposition). The n-GaN film had a thickness of 2 μm, which is sufficient to absorb light. The carrier density was 3×10 18 cm 3. Then, aluminum gallium nitride AlGaN was grown. The aluminum composition ratio was 10%. The film thickness was 100 nm, which is sufficient to absorb light. Then, the 2-inch semiconductor thin film was cleaved into four equal parts, and one of them was used to fabricate the electrode.

 次に、AlGaN表面に、膜厚約1 nmのNiをEB(Electron Beam)蒸着した。その後、この半導体薄膜をホットプレート上かつ空気雰囲気中で、300度、1時間熱処理し、NiOを形成した。 Next, a layer of Ni with a thickness of approximately 1 nm was deposited on the AlGaN surface using electron beam (EB). This semiconductor thin film was then heat-treated on a hot plate in an air atmosphere at 300°C for 1 hour to form NiO.

 次に、実施例1における酸化還元反応試験を説明する。酸化還元反応試験では、NiOおよびAlGaNの表面の一部をけがき、n-GaN表面を露出した。露出したn-GaN表面の一部に、導線6を接続し、Inを用いてはんだ付けした。その後、In表面が露出しないように、エポキシ樹脂で被覆した。これを図1の酸化電極21として設置した。 Next, the redox reaction test in Example 1 will be explained. In the redox reaction test, parts of the NiO and AlGaN surfaces were scratched to expose the n-GaN surface. A conductor 6 was connected to part of the exposed n-GaN surface and soldered using In. After that, it was covered with epoxy resin so that the In surface would not be exposed. This was installed as the oxidation electrode 21 in Figure 1.

 電解液5は、1 mol/Lの水酸化ナトリウム水溶液とした。還元電極31は、白金(ニラコ製)を用いた。電解質膜4は、ナフィオン(登録商標)を用いた。各反応槽において、窒素ガスを10 mL/min.で流した。酸化電極21への光照射面積は、1 cm2とした。 The electrolyte 5 was a 1 mol/L aqueous solution of sodium hydroxide. The reduction electrode 31 was made of platinum (manufactured by Nilaco). The electrolyte membrane 4 was made of Nafion (registered trademark). Nitrogen gas was passed through each reaction tank at 10 mL/min. The light irradiation area of the oxidation electrode 21 was 1 cm2 .

 反応槽内が窒素ガスに十分に置換された後、上述の手順で作製した酸化電極21のNiOが形成されている面に、光源が向くように固定した。光源は、300Wの高圧キセノンランプ(照度5mW/cm2)である。光源で、酸化電極21を、均一に光を照射した。光照射中、任意の時間に、各反応槽内のガスを採取し、ガスクロマトグラフにて反応生成物を分析した。その結果、酸化槽2では酸素が、還元槽3では水素が生成していることを確認した。 After the inside of the reaction tanks had been fully replaced with nitrogen gas, the oxidation electrode 21 prepared by the above procedure was fixed so that the light source was facing the surface on which NiO was formed. The light source was a 300W high-pressure xenon lamp (illuminance 5mW/cm2). The oxidation electrode 21 was uniformly irradiated with light from the light source. During the light irradiation, gas samples were taken from inside each reaction tank at any time, and the reaction products were analyzed by gas chromatography. As a result, it was confirmed that oxygen was produced in the oxidation tank 2, and hydrogen was produced in the reduction tank 3.

 <実施例2>
 実施例1の電解液5を、1 mol/L 水酸化カリウム水溶液とした。それ以外は、実施例1と同様である。
Example 2
The electrolyte 5 in Example 1 was changed to a 1 mol/L aqueous potassium hydroxide solution.

 <実施例3>
 実施例1の電解液5を、1 mol/L 水酸化ルビジウム水溶液とした。それ以外は、実施例1と同様である。
Example 3
The electrolyte 5 in Example 1 was changed to a 1 mol/L aqueous solution of rubidium hydroxide.

 <実施例4>
 実施例1の電解液5を、1 mol/L 水酸化セシウム水溶液とした。それ以外は、実施例1と同様である。
Example 4
The electrolyte 5 in Example 1 was changed to a 1 mol/L aqueous cesium hydroxide solution.

 <実施例5>
 実施例5では、図2に示す第2の実施の形態に係る装置1aを用いた。
Example 5
In Example 5, the device 1a according to the second embodiment shown in FIG. 2 was used.

 第1の保護層25aが形成された第1の受光窓24aの生成を、説明する。第2の保護層25bが形成された第2の受光窓24bも、同様に生成される、第1の受光窓24aの材料として、石英を用いた。水溶液と接触する面のみに、アクリル樹脂を用いてコーティングした。アクリル樹脂をコーティングした受光窓24の光透過率は90%である。 The production of the first light receiving window 24a on which the first protective layer 25a is formed will be explained. The second light receiving window 24b on which the second protective layer 25b is formed is produced in the same manner. Quartz was used as the material for the first light receiving window 24a. Only the surface that comes into contact with the aqueous solution was coated with acrylic resin. The light transmittance of the acrylic resin-coated light receiving window 24 is 90%.

 酸化電極21の生成を説明する。基板として、GaN基板を用いた。直径2インチのGaN基板上に、シリコンをドープしたn-GaN半導体薄膜を、MOCVD(Metal Organic Chemical Vapor Deposition)法によりエピタキシャル成長させた。n-GaNの膜厚は、光を吸収するに十分足る2μmとした。キャリア密度は3×1018 cm3であった。その後、窒化インジウムガリウムInGaNを、成長した。インジウムの組成比は、10%である。膜厚は、光を十分に吸収するに足る100nmとした。その後、2インチの半導体薄膜を4等分にへき開し、そのうちの1枚を、電極作製に使用した。 The generation of the oxidation electrode 21 will be described. A GaN substrate was used as the substrate. A silicon-doped n-GaN semiconductor thin film was epitaxially grown on a 2-inch diameter GaN substrate by MOCVD (Metal Organic Chemical Vapor Deposition). The n-GaN film had a thickness of 2 μm, which was sufficient to absorb light. The carrier density was 3×10 18 cm 3. Then, indium gallium nitride InGaN was grown. The indium composition ratio was 10%. The film thickness was 100 nm, which was sufficient to absorb light. Then, the 2-inch semiconductor thin film was cleaved into four equal parts, and one of the pieces was used to fabricate the electrode.

 次に、実施例5における酸化還元反応試験を説明する。図2に示すように、酸化電極21を設置した。太陽光発電素子7として、シリコン系のp-n接合半導体素子を用いた。酸化電極21と太陽光発電素子7と還元電極31とを、直列接続した。それ以外は、実施例1と同様である。 Next, the redox reaction test in Example 5 will be described. As shown in FIG. 2, an oxidation electrode 21 was installed. A silicon-based p-n junction semiconductor element was used as the photovoltaic power generation element 7. The oxidation electrode 21, the photovoltaic power generation element 7, and the reduction electrode 31 were connected in series. The rest of the experiment was the same as in Example 1.

 <実施例6>
 実施例5の電解液5を、1 mol/L 水酸化カリウム水溶液とした。それ以外は、実施例5と同様である。
Example 6
The electrolyte 5 in Example 5 was a 1 mol/L aqueous potassium hydroxide solution.

 <実施例7>
 実施例5の電解液5を、1 mol/L 水酸化ルビジウム水溶液とした。それ以外は、実施例5と同様である。
Example 7
The electrolyte 5 in Example 5 was a 1 mol/L aqueous rubidium hydroxide solution.

 <実施例8>
 実施例5の電解液5を、1 mol/L 水酸化セシウム水溶液とした。それ以外は、実施例5と同様である。
Example 8
The electrolyte 5 in Example 5 was a 1 mol/L aqueous cesium hydroxide solution.

 <比較対象例1>
 実施例1において保護層25を形成せずに、実施した。それ以外は、実施例1と同様である。
<Comparative Example 1>
This embodiment was carried out in the same manner as in Example 1, except that the protective layer 25 was not formed.

 <比較対象例2>
 実施例2において保護層25を形成せずに、実施した。それ以外は、実施例2と同様である。
<Comparative Example 2>
This embodiment was carried out in the same manner as in Example 2, except that the protective layer 25 was not formed.

 <比較対象例3>
 実施例3において保護層25を形成せずに、実施した。それ以外は、実施例3と同様である。
<Comparative Example 3>
This embodiment was carried out in the same manner as in Example 3, except that the protective layer 25 was not formed.

 <比較対象例4>
 実施例4において保護層25を形成せずに、実施した。それ以外は、実施例4と同様である。
<Comparative Example 4>
This example was carried out in the same manner as in Example 4, except that the protective layer 25 was not formed.

 <比較対象例5>
 実施例5において第1の保護層25aおよび第2の保護層25bを形成せずに、実施した。それ以外は、実施例5と同様である。
<Comparative Example 5>
This embodiment was carried out in the same manner as in Example 5, except that the first protective layer 25a and the second protective layer 25b were not formed.

 <比較対象例6>
 実施例6において第1の保護層25aおよび第2の保護層25bを形成せずに、実施した。それ以外は、実施例6と同様である。
<Comparative Example 6>
This embodiment was carried out in the same manner as in Example 6, except that the first protective layer 25a and the second protective layer 25b were not formed.

 <比較対象例7>
 実施例7において第1の保護層25aおよび第2の保護層25bを形成せずに、実施した。それ以外は、実施例7と同様である。
<Comparative Example 7>
This embodiment was carried out in the same manner as in Example 7, except that the first protective layer 25a and the second protective layer 25b were not formed.

 <比較対象例8>
 実施例8において第1の保護層25aおよび第2の保護層25bを形成せずに、実施した。それ以外は、実施例8と同様である。
<Comparative Example 8>
This embodiment was carried out in the same manner as in Example 8, except that the first protective layer 25a and the second protective layer 25b were not formed.

 各例について、光照射から、1時間後と500時間後における、水素ガスの生成量を表1に示す。 Table 1 shows the amount of hydrogen gas produced for each example 1 hour and 500 hours after light irradiation.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 各ガスの生成量は、半導体光電極の表面積で規格化して示した。どの例でも光照射時に、水素が生成していることがわかった。 The amount of each gas produced was normalized by the surface area of the semiconductor photoelectrode. It was found that hydrogen was produced in all cases when exposed to light.

 実施例1から4において、光照射から1時間後の水素生成量は、大きな差異は見られなかった。また、比較対象例4から4と比較しても、1時間後の水素生成量は、大きな差異は見られなかった。 In Examples 1 to 4, no significant difference was observed in the amount of hydrogen produced one hour after light irradiation. In addition, when compared to Comparative Example 4, no significant difference was observed in the amount of hydrogen produced one hour after light irradiation.

 一方、500時間後の水素生成量について、実施例1は、比較対象例1に比べて多かった。実施例2から4のそれぞれと、比較対象例2から4のそれぞれを比較したときも、同様であった。 On the other hand, the amount of hydrogen generated after 500 hours was greater in Example 1 than in Comparative Example 1. The same was true when comparing each of Examples 2 to 4 with each of Comparative Examples 2 to 4.

 これらは、樹脂による保護が、石英の失透を防ぎ、電極への光エネルギー減衰を抑制できたためと考えられる。 This is thought to be because the protection provided by the resin prevents the quartz from devitrifying, and reduces the attenuation of light energy to the electrode.

 また、実施例1に比べて、実施例4のほうが500時間後の水素生成量が多かったことから、CsOHは、酸化電極21の長寿命化に効果があるといえる。RbOHおよびCsOHは、NaOHまたはKOHに比べて腐食性が高いことから石英の失透への影響が高い。しかしながら、樹脂による石英の保護を実施することで、その欠点を防ぎ、酸化電極21の長寿命化を引き出せたと考える。
実施例5から8についても、同様であった。
In addition, since the amount of hydrogen generated after 500 hours was greater in Example 4 than in Example 1, it can be said that CsOH is effective in extending the life of the oxidation electrode 21. RbOH and CsOH are more corrosive than NaOH or KOH, and therefore have a greater impact on the devitrification of quartz. However, by protecting the quartz with a resin, it is believed that this drawback can be prevented and the life of the oxidation electrode 21 can be extended.
The same was true for Examples 5 to 8.

 本開示は、受光窓24と電解液5が接触しないように、受光窓24に保護層25を形成する。保護層25により、受光窓24の失透を防ぎ、光エネルギー変換効率の安定性を向上することができる。 In this disclosure, a protective layer 25 is formed on the light receiving window 24 to prevent contact between the light receiving window 24 and the electrolyte 5. The protective layer 25 prevents the light receiving window 24 from losing transparency and improves the stability of the light energy conversion efficiency.

 従来、RbOHまたはCsOHは、酸化電極21の長寿命化に期待ができるものの、石英の腐食性が高いので、受光窓24に適用しにくいと考えられていた。しかしながら本開示に係る装置1のように、RbOHまたはCsOHで形成した受光窓24に保護層25を形成することで、更に安定性を向上することができる。  Conventionally, RbOH or CsOH is expected to extend the life of the oxidation electrode 21, but it was thought that it would be difficult to apply it to the light-receiving window 24 because of its high corrosiveness to quartz. However, as in the device 1 disclosed herein, by forming a protective layer 25 on the light-receiving window 24 made of RbOH or CsOH, it is possible to further improve stability.

 このように、受光窓24に保護層25を形成することで、受光窓24と電解液5との接触を防ぐことができるので、受光窓24の失透を防ぎ、光エネルギー変換効率の安定性を向上することができる。 In this way, by forming the protective layer 25 on the light-receiving window 24, contact between the light-receiving window 24 and the electrolyte 5 can be prevented, thereby preventing devitrification of the light-receiving window 24 and improving the stability of the light energy conversion efficiency.

 なお、本開示は上記実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。 Note that this disclosure is not limited to the above-described embodiments, and many variations are possible within the scope of the gist of the disclosure.

 1、100 装置
 2、102 酸化槽
 3、103 還元槽
 4 電解質膜
 5 電解液
 6、106 導線
 7 太陽光発電素子
 21、121 酸化電極
 22、32 ガス導入ライン
 23、33 ガス排気ライン
 24、124 受光窓
 25 保護層
 31、131 還元電極
 101 光源
 122、132 水溶液
Reference Signs List 1, 100 Apparatus 2, 102 Oxidation tank 3, 103 Reduction tank 4 Electrolyte membrane 5 Electrolyte solution 6, 106 Conductor 7 Photovoltaic power generation element 21, 121 Oxidation electrode 22, 32 Gas inlet line 23, 33 Gas exhaust line 24, 124 Light receiving window 25 Protective layer 31, 131 Reduction electrode 101 Light source 122, 132 Aqueous solution

Claims (6)

 酸化槽内に設けられる酸化電極および電解液と、
 前記酸化槽に設置され、前記酸化電極への光を受ける受光窓と、
 前記酸化電極と、還元槽内の還元電極を電気的に接続する導線と、
 前記酸化槽と前記還元槽を隔てる電解質膜を有し、
 前記受光窓の表面のうち前記酸化槽の内側の面に、保護層が形成される
 酸化槽。
an oxidation electrode and an electrolyte provided in the oxidation tank;
a light receiving window disposed in the oxidation tank for receiving light onto the oxidation electrode;
A conductor electrically connecting the oxidation electrode and a reduction electrode in a reduction tank;
an electrolyte membrane separating the oxidation chamber and the reduction chamber;
An oxidation tank, wherein a protective layer is formed on the surface of the light receiving window on the inner side of the oxidation tank.
 前記保護層は、光を透過する光透過性樹脂で形成される
 請求項1に記載の酸化槽。
The oxidation tank according to claim 1 , wherein the protective layer is formed of a light-transmitting resin that transmits light.
 前記保護層は、前記電解液と反応しない材料で形成される
 請求項1に記載の酸化槽。
The oxidation bath of claim 1 , wherein the protective layer is formed of a material that does not react with the electrolyte.
 酸化槽内に設けられる酸化電極および電解液と、
 前記酸化槽に設置され、前記酸化電極への光を受ける第1の受光窓と、
 前記酸化槽に設置され、前記酸化電極を透過した光を受ける第2の受光窓と、
 前記酸化電極と、還元槽内の還元電極を電気的に接続する導線と、
 前記酸化槽と前記還元槽を隔てる電解質膜を有し、
 前記第1の受光窓および前記第2の受光窓の表面のうち前記酸化槽の内側の面に、保護層が形成される
 酸化槽。
an oxidation electrode and an electrolyte provided in the oxidation tank;
a first light-receiving window disposed in the oxidation tank for receiving light onto the oxidation electrode;
a second light-receiving window disposed in the oxidation tank and receiving light transmitted through the oxidation electrode;
A conductor electrically connecting the oxidation electrode and a reduction electrode in a reduction tank;
an electrolyte membrane separating the oxidation chamber and the reduction chamber;
a protective layer is formed on the inner surfaces of the first light-receiving window and the second light-receiving window of the oxidation bath.
 前記保護層は、光を透過する光透過性樹脂で形成される
 請求項4に記載の酸化槽。
The oxidation tank according to claim 4 , wherein the protective layer is formed of a light-transmitting resin that transmits light.
 前記保護層は、前記電解液と反応しない材料で形成される
 請求項4に記載の酸化槽。
The oxidation cell of claim 4 , wherein the protective layer is formed of a material that does not react with the electrolyte.
PCT/JP2023/019109 2023-05-23 2023-05-23 Oxidation tank WO2024241478A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/019109 WO2024241478A1 (en) 2023-05-23 2023-05-23 Oxidation tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/019109 WO2024241478A1 (en) 2023-05-23 2023-05-23 Oxidation tank

Publications (1)

Publication Number Publication Date
WO2024241478A1 true WO2024241478A1 (en) 2024-11-28

Family

ID=93589078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019109 WO2024241478A1 (en) 2023-05-23 2023-05-23 Oxidation tank

Country Status (1)

Country Link
WO (1) WO2024241478A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163142A (en) * 1985-01-14 1986-07-23 Fuji Photo Film Co Ltd Glass material provided with alkali elusion-proof film and its production
JPH04285033A (en) * 1991-03-12 1992-10-09 Central Glass Co Ltd Tision-based multilayer thin film-coated glass and its production
US20020060161A1 (en) * 2000-01-31 2002-05-23 Roe A. Nicholas Photo-assisted electrolysis
WO2010073881A1 (en) * 2008-12-25 2010-07-01 シャープ株式会社 Liquid storage tank, in-liquid observation tool, and optical film
JP2015206085A (en) * 2014-04-22 2015-11-19 パナソニックIpマネジメント株式会社 Method for generating hydrogen, and hydrogen generator used therefor
JP2017031467A (en) * 2015-07-31 2017-02-09 株式会社東芝 Photoelectrochemical reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163142A (en) * 1985-01-14 1986-07-23 Fuji Photo Film Co Ltd Glass material provided with alkali elusion-proof film and its production
JPH04285033A (en) * 1991-03-12 1992-10-09 Central Glass Co Ltd Tision-based multilayer thin film-coated glass and its production
US20020060161A1 (en) * 2000-01-31 2002-05-23 Roe A. Nicholas Photo-assisted electrolysis
WO2010073881A1 (en) * 2008-12-25 2010-07-01 シャープ株式会社 Liquid storage tank, in-liquid observation tool, and optical film
JP2015206085A (en) * 2014-04-22 2015-11-19 パナソニックIpマネジメント株式会社 Method for generating hydrogen, and hydrogen generator used therefor
JP2017031467A (en) * 2015-07-31 2017-02-09 株式会社東芝 Photoelectrochemical reactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "About quartz glass", TOSOH SGM CORPORATION (ACCESSED VIA THE WAYBACK MACHINE), 1 December 2022 (2022-12-01), XP093243383, Retrieved from the Internet <URL:https://web.archive.org/web/20221201170342/https://tosoh-sgm.jp/syousai/tokutyou/> *

Similar Documents

Publication Publication Date Title
JP5753641B2 (en) Carbon dioxide reduction apparatus and method for reducing carbon dioxide
US9598781B2 (en) Carbon dioxide reducing method, carbon dioxide reducing cell, and carbon dioxide reducing apparatus
JP5641489B2 (en) How to produce alcohol
JP2017210666A (en) Reduction method of carbon dioxide and reduction apparatus of carbon dioxide
US20220002886A1 (en) Method for Producing Nitride Semiconductor Photoelectrode
Deguchi et al. Enhanced capability of photoelectrochemical CO2 conversion system using an AlGaN/GaN photoelectrode
US10087533B2 (en) Method for reducing carbon dioxide and device used therefor
WO2015001729A1 (en) Method for reducing carbon dioxide
WO2020116153A1 (en) Semiconductor optical electrode
JP6715172B2 (en) Method for manufacturing semiconductor photoelectrode
JP2014227563A (en) Photochemical electrode for reducing carbon dioxide, apparatus for reducing carbon dioxide, and method for reducing carbon dioxide
WO2024241478A1 (en) Oxidation tank
JP2018090862A (en) Semiconductor photoelectrode
JP6898566B2 (en) Semiconductor optical electrode
US20210123150A1 (en) Semiconductor Photoelectrode
JP2015050224A (en) III-V nitride semiconductor, semiconductor light emitting device, semiconductor light emitting device, photocatalytic semiconductor device, photocatalytic oxidation-reduction reaction device, and photoelectrochemical reaction execution method
US20250011952A1 (en) Semiconductor Photoelectrode
JP7343810B2 (en) Method for manufacturing nitride semiconductor photoelectrode
JP7602149B2 (en) Semiconductor photoelectrode and method for producing the same
WO2024116358A1 (en) Semiconductor photoelectrode
US20230392269A1 (en) Semiconductor Photoelectrode and Method for Manufacturing Same
US20170335468A1 (en) Fuel production method and fuel production apparatus
WO2023089656A1 (en) Method for producing semiconductor photoelectrode
WO2023089654A1 (en) Production method for semiconductor photoelectrode
WO2024116357A1 (en) Semiconductor photoelectrode