WO2024135536A1 - Lithium ion secondary battery positive electrode active material, lithium ion secondary battery mixed positive electrode active material, electrode foil, and lithium ion secondary battery - Google Patents
Lithium ion secondary battery positive electrode active material, lithium ion secondary battery mixed positive electrode active material, electrode foil, and lithium ion secondary battery Download PDFInfo
- Publication number
- WO2024135536A1 WO2024135536A1 PCT/JP2023/044902 JP2023044902W WO2024135536A1 WO 2024135536 A1 WO2024135536 A1 WO 2024135536A1 JP 2023044902 W JP2023044902 W JP 2023044902W WO 2024135536 A1 WO2024135536 A1 WO 2024135536A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- electrode active
- active material
- ion secondary
- lithium ion
- Prior art date
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 272
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 190
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 190
- 239000011888 foil Substances 0.000 title claims description 34
- 239000013078 crystal Substances 0.000 claims abstract description 104
- 238000001887 electron backscatter diffraction Methods 0.000 claims abstract description 46
- 239000000203 mixture Substances 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 26
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 229910013716 LiNi Inorganic materials 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910006423 Li—Ni—Co—Al Inorganic materials 0.000 abstract description 13
- 229910008080 Li-Ni-Co-Mn Inorganic materials 0.000 abstract description 12
- 229910006461 Li—Ni—Co—Mn Inorganic materials 0.000 abstract description 12
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 239000002184 metal Substances 0.000 abstract description 4
- 230000002349 favourable effect Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 64
- 239000002245 particle Substances 0.000 description 64
- 239000002243 precursor Substances 0.000 description 53
- 239000002002 slurry Substances 0.000 description 35
- 238000004458 analytical method Methods 0.000 description 34
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 33
- 239000007864 aqueous solution Substances 0.000 description 29
- 238000006243 chemical reaction Methods 0.000 description 29
- 239000002131 composite material Substances 0.000 description 25
- 150000001875 compounds Chemical class 0.000 description 25
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 19
- 239000007788 liquid Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 239000002994 raw material Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 229910017709 Ni Co Inorganic materials 0.000 description 13
- 229910003267 Ni-Co Inorganic materials 0.000 description 13
- 229910003262 Ni‐Co Inorganic materials 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000012452 mother liquor Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 239000007787 solid Substances 0.000 description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 238000005406 washing Methods 0.000 description 8
- 229910018058 Ni-Co-Al Inorganic materials 0.000 description 7
- 229910018060 Ni-Co-Mn Inorganic materials 0.000 description 7
- 229910018144 Ni—Co—Al Inorganic materials 0.000 description 7
- 229910018209 Ni—Co—Mn Inorganic materials 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 239000011163 secondary particle Substances 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 150000004679 hydroxides Chemical class 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 4
- 229910032387 LiCoO2 Inorganic materials 0.000 description 4
- -1 Ni-Co Chemical class 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000007872 degassing Methods 0.000 description 4
- 239000002612 dispersion medium Substances 0.000 description 4
- 238000007580 dry-mixing Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000009830 intercalation Methods 0.000 description 3
- 230000002687 intercalation Effects 0.000 description 3
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium;hydroxide;hydrate Chemical compound [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000004848 polyfunctional curative Substances 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 229910002991 LiNi0.5Co0.2Mn0.3O2 Inorganic materials 0.000 description 2
- 229910015872 LiNi0.8Co0.1Mn0.1O2 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000006182 cathode active material Substances 0.000 description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910018871 CoO 2 Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910016739 Ni0.5Co0.2Mn0.3(OH)2 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007590 electrostatic spraying Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical group 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 239000011206 ternary composite Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
Definitions
- the present invention relates to a positive electrode active material for lithium ion secondary batteries, a mixed positive electrode active material for lithium ion secondary batteries, an electrode foil, and a lithium ion secondary battery. More specifically, the present invention relates to a positive electrode active material for lithium ion secondary batteries that is mainly composed of a Li-Ni-Co-Al-based or Li-Ni-Co-Mn-based composite oxide. In particular, the present invention relates to a positive electrode active material for lithium ion secondary batteries that has a specific preferred orientation and can be suitably used for lithium ion secondary batteries that have high capacity, excellent charge/discharge cycle characteristics, and rate characteristics.
- Lithium-ion secondary batteries are used in a variety of applications, including as power sources for mobile devices such as laptops and mobile phones, and for power tools. Their use is expected to continue to expand in the future in light of the need to build a low-carbon society and promote energy security, and there is a strong demand for improved performance.
- lithium-ion secondary batteries as power sources for hybrid and electric vehicles (hereinafter collectively referred to as "EVs"), or as storage materials for renewable power generation, is rapidly expanding.
- EVs hybrid and electric vehicles
- lithium-ion secondary batteries are particularly desired to have high capacity and high charge/discharge cycles.
- LiCoO2 which is mainly composed of cobalt (Co)
- Co cobalt
- a positive electrode active material to replace LiCoO 2 As a positive electrode active material to replace LiCoO 2 , a positive electrode active material made of LiMn 2 O 4 containing Mn as the main component and a Ni-Co-Mn ternary composite oxide have been proposed.
- these positive electrode active materials have both advantages and disadvantages in terms of battery characteristics, and at present, they do not fully meet the requirements for use as a power source for power tools and EVs.
- Li-Ni-Co-Al composite oxides mainly composed of Ni which also have a large charge/discharge capacity, as a positive electrode active material have been studied.
- a technique in order to increase capacity and improve charge/discharge retention rate, for example, a technique has been proposed in which an oxide containing Zn and Al is deposited on the surface of a LiNiO 2 positive electrode active material to improve conductivity and extend life (Patent Document 1).
- Patent Document 2 a technique has been proposed to improve the charge/discharge capacity, packability, and storage stability of Li-Ni-Co-Al composite oxides by reducing the rate of change in specific surface area before and after compression and the content of sulfate ions.
- various improvement techniques have been proposed for positive electrode active material particles for lithium ion secondary batteries, including LiCoO 2 particle materials that contain wire-shaped LiCoO 2 particles and have fast electronic conduction to improve the output characteristics of the battery (Non-Patent Document 1).
- the positive electrode active material composed of Li x Ni (1-yz) Co y Al z O 2 proposed in the above Patent Documents 1 and 2 is considered to have a coating layer made of a surface modifier to stabilize the crystal structure, thereby improving the electronic conductivity and achieving a high capacity and long life.
- composite hydroxide secondary particles having different aggregation states at the center and outer periphery of the particle are synthesized, and this is used as a precursor to obtain a positive electrode active material having a hollow structure, thereby improving the cycle characteristics.
- sufficient effects have not yet been obtained. For this reason, the market is always demanding the development of a positive electrode active material for lithium ion secondary batteries with better battery characteristics than the positive electrode active materials for lithium ion secondary batteries that have been proposed in the past.
- the present applicant has proposed a positive electrode active material made of nearly spherical Li x Ni (1-yz) Co y Al z O 2 as a positive electrode active material that has excellent electrical conductivity and can be suitably used for lithium ion secondary batteries that can achieve high capacity and improved charge/discharge retention rate (Patent Document 4, International Publication No. 2016/143844).
- the present invention aims to provide a positive electrode active material for lithium ion secondary batteries that has good cycle characteristics while minimizing the amount of rare metal Co used, and that is primarily composed of Li-Ni-Co-Al or Li-Ni-Co-Mn composite oxides.
- the positive electrode active material for a secondary battery according to the present invention which advantageously solves the above problems, is [1]
- a positive electrode active material for a lithium ion secondary battery having excellent charge/discharge cycle characteristics and rate characteristics is [1]
- a positive electrode active material for a lithium ion secondary battery having excellent charge/discharge cycle characteristics and rate characteristics is [1]
- a positive electrode active material for a lithium ion secondary battery having excellent charge/discharge cycle characteristics and rate characteristics is [1]
- the (0001) plane of the positive electrode active material crystal made of a hexagonal crystal has a preferred orientation in which it is assembled in one axial direction, and a pole figure created under the conditions of the following relational formula (1) based on crystal orientation information of the (0001) plane of the positive electrode active material crystal measured by electron backscatter diffraction (EBSD) method is:
- the positive electrode active material is characterized in that the maximum value of the degree of preferred orientation (MUD) of the (0001) plane of the crystals of the positive electrode active
- a mixed positive electrode active material for a lithium ion secondary battery comprising (a) the positive electrode active material for a lithium ion secondary battery according to [2] and (b) a mixed positive electrode active material for a lithium ion secondary battery, wherein the mixed positive electrode active material for a lithium ion secondary battery contains (a) the positive electrode active material for a lithium ion secondary battery in an amount of 10 mass% or more.
- An electrode foil comprising the positive electrode active material for a lithium ion secondary battery according to [2] or [3].
- a lithium ion secondary battery comprising the electrode foil according to [3].
- the present invention makes it possible to obtain a lithium-ion secondary battery that has not only a high initial discharge capacity, but also high capacity, high charge/discharge cycle characteristics, and high rate characteristics.
- Example 1 This is information obtained by EBSD analysis of the precursor particles for the positive electrode active material for lithium ion secondary batteries obtained in Example 1, and the analysis results of a total of three particles from the particle group in Example 1 are shown in fields 1 to 3.
- A An electron microscope photograph at 5,000 times magnification of the positive electrode active material for lithium secondary batteries obtained in Example 1.
- B An electron microscope photograph at 10,000 times magnification of the positive electrode active material for lithium secondary batteries obtained in Example 1.
- C An electron microscope photograph at 20,000 times magnification of the positive electrode active material for lithium secondary batteries obtained in Example 1.
- Example 1 is a graph showing the discharge capacity (cycle characteristics) per cycle number obtained in Example 1 and Comparative Example 1.
- 1 is a graph showing the discharge capacity retention rate (cycle characteristics) depending on the number of cycles obtained in Example 1 and Comparative Example 1.
- 1 shows the rate characteristics obtained in Example 1 and Comparative Example 1, where (A) is the rate characteristic obtained in Example 1 and (B) is the rate characteristic obtained in Comparative Example 1.
- 4 is an electron microscope photograph showing a method for measuring the particle size of a positive electrode active material obtained using the precursor produced in Example 1.
- the positive electrode active material for lithium ion secondary batteries according to this embodiment will be described.
- the positive electrode active material for lithium ion secondary batteries according to this embodiment (hereinafter, sometimes referred to as "positive electrode active material”) can provide a lithium ion secondary battery with excellent charge/discharge cycle characteristics and rate characteristics, and is characterized by having a crystal orientation that satisfies the relationships of the following relational formulas (1) and (2).
- the positive electrode active material for lithium ion secondary batteries has a preferred orientation in which the (0001) plane of the positive electrode active material crystal made of a hexagonal crystal is assembled in one axial direction, and is characterized in that in a pole figure created under the conditions of the following relational formula (1) based on the crystal orientation information of the (0001) plane of the positive electrode active material crystal measured by electron backscatter diffraction (EBSD), the maximum value of the preferred orientation degree (MUD) indicating the crystal orientation of the (0001) plane of the positive electrode active material crystal satisfies the following relational formula (2).
- EBSD electron backscatter diffraction
- the shape of the positive electrode active material be a nearly spherical particle
- all particles constituting the positive electrode active material have a uniform composition and shape
- the shape of the positive electrode active material is not that of extremely small particles, but has a certain degree of size and high particle strength.
- Non-Patent Document 1 a lithium ion secondary battery manufactured using the cathode active material having the special wire-like shape described in Non-Patent Document 1 has extremely superior rate characteristics and cycle characteristics compared to a lithium ion secondary battery manufactured using a cathode active material having a shape closer to a sphere.
- the plate - like crystals constituting the precursor are aggregated and grow in random directions.
- the positive electrode active material produced using such a precursor has cracks (fissures) inside the positive electrode active material particles when the lithium ion secondary battery is repeatedly charged and discharged.
- cracks that occur inside the positive electrode active material are considered to be one of the factors that deteriorate the cycle characteristics of lithium-ion secondary batteries that contain that positive electrode active material.
- the cracks are said to be caused by the expansion and contraction of the crystals of the positive electrode active material that accompanies the charge and discharge reactions of the lithium-ion secondary battery.
- secondary particle-like positive electrode active material particles that are an aggregate of countless primary particles it can be said that cracks are likely to occur when a lithium-ion secondary battery using the particles of that positive electrode active material is charged and discharged because the countless primary particles that make up the secondary particles each individually expand and contract in different directions.
- Li-Ni-Co-Al-based positive electrode active materials and Li-Ni-Co-Mn-based positive electrode active materials which have high capacity and low Co usage, are generally secondary particles consisting of countless crystal grains, unlike LiCoO2 .
- the crystal orientation of the crystal grains constituting such positive electrode active materials is randomly oriented, and it is considered that it is extremely difficult to control the orientation.
- the reason why it is difficult to control the orientation of the crystal orientation of the crystal grains is due to the crystal habit of the precursor composite hydroxides such as Ni-Co, Ni-Co-Al, and Ni-Co-Mn.
- a material with a high Ni content is used for the positive electrode active material required to manufacture lithium-ion secondary batteries with excellent high capacity.
- Li-Ni-Co-Al and Li-Ni-Co-Mn positive electrode active materials which have a high Ni content and are expected to have high capacity, and which are secondary particles consisting of multiple crystal grains, it is possible to obtain a lithium-ion secondary battery with excellent cycle characteristics by giving the positive electrode active material crystals a preferred orientation in which the (0001) planes are oriented in the same axial direction.
- Li-Ni-Co-Al or Li-Ni-Co-Mn composite oxides which are positive electrode active materials for lithium ion secondary batteries.
- Ni--Co based, Ni--Co--Al based and Ni--Co--Mn based composite hydroxides which are precursors of this positive electrode active material, were investigated in detail.
- composite hydroxide particles with a preferred orientation in which the (0001) faces of hexagonal composite hydroxide crystals are concentrated in the same axial direction could be obtained.
- the inventors also discovered that by using hydroxide particles having a preferred orientation in which the (0001) planes of the composite hydroxide crystals are concentrated in the same axial direction as a precursor of a positive electrode active material for a lithium ion secondary battery, a positive electrode active material for a lithium ion secondary battery having a preferred orientation in the (0001) plane of the positive electrode active material crystals can be obtained, and that the positive electrode active material has excellent battery characteristics.
- the positive electrode active material for lithium ion secondary batteries of the present invention is a structure having a preferred orientation in which the (0001) planes of the positive electrode active material crystals constituting the positive electrode active material particles made of hexagonal crystals are oriented in the same axial direction, and is obtained by using a precursor having a preferred orientation in the (0001) plane as a precursor of the positive electrode active material crystals based on the above findings. Furthermore, the positive electrode active material for lithium ion secondary batteries of the present invention is obtained by mixing this precursor with a Li compound and, if necessary, an Al compound, a Zr compound, an Mg compound, etc., and firing it, and has a structure in which crystal grains made of a large number of composite oxides are assembled. The positive electrode active material for lithium ion secondary batteries of the present invention has a preferred orientation despite being a secondary particle body.
- the positive electrode active material for lithium ion secondary batteries of this embodiment may be a crystal grain made of a composite oxide or a structure formed by bonding multiple crystal grains, and may have a preferred orientation in the (0001) plane of the positive electrode active material particles made of a composite oxide.
- the positive electrode active material for lithium ion secondary batteries according to this embodiment has a specific crystal orientation represented by the following relational formulas (1) and (2). That is, the positive electrode active material for lithium ion secondary batteries according to this embodiment has a preferred orientation in which the (0001) planes of the positive electrode active material crystals made of hexagonal crystals are assembled in one axial direction, and the characteristics of the crystal orientation are obtained from a pole figure created with the half-width setting represented by the following relational formula (1) based on crystal orientation information of the (0001) planes of the positive electrode active material crystals measured by electron backscatter diffraction (EBSD),
- the positive electrode active material is characterized in that the maximum value of a preferred orientation degree (MUD (multiple uniform density)) indicating the crystal orientation of the (0001) plane of the positive electrode active material crystal satisfies the following relational expression (2).
- MOD multiple uniform density
- the positive electrode active material for lithium ion secondary batteries according to this embodiment is made of a hexagonal crystal.
- the positive electrode active material for lithium ion secondary batteries is preferably made of a hexagonal crystal, since it facilitates lithium intercalation reaction.
- the lithium intercalation reaction means that lithium ions can enter and leave the crystal during charge and discharge reactions.
- the positive electrode active material for lithium ion secondary batteries according to this embodiment has a preferred orientation in which the (0001) plane of the positive electrode active material crystal is assembled in a uniaxial direction. By preferentially orienting the (0001) plane of the positive electrode active material crystal, it is expected to improve the lithium intercalation reaction efficiency and suppress cracks due to repeated charge and discharge reactions, which is preferable.
- the uniaxial direction may be any spatial coordinate axis direction regardless of the shape of the positive electrode active material particle.
- the uniaxial direction is the x-axis, y-axis, z-axis, or any orthogonal coordinate axis direction that combines these, which is defined in an orthogonal coordinate system in a three-dimensional space with the center of the target particle as the origin.
- the (0001) planes of the positive electrode active material for a lithium ion secondary battery are assembled in one axial direction, so that the positive electrode active material for a lithium ion secondary battery according to this embodiment has a specific preferred orientation.
- the positive electrode active material for a lithium ion secondary battery has a peak point where the preferred orientation degree (MUD (multiple uniform density)) indicating the crystal orientation of the (0001) plane of the positive electrode active material crystal, obtained from a pole figure created with the half-width setting shown in the following relational expression (1) based on the crystal orientation information of the (0001) plane of the positive electrode active material crystal measured by electron backscatter diffraction (EBSD), satisfies the following relational expression (2).
- MOD multiple uniform density
- the half-width value is also defined as the half-width.
- the half-width value (°) is a value that sets the spread of the width of a normal distribution, etc., and any value can be used as necessary. In this embodiment, the half-width value was limited to 10° for evaluation.
- Electron backscatter diffraction (EBSD) can obtain information about the crystal system and crystal orientation.
- a pole figure can be created based on the obtained analytical information. From the pole figure, it is possible to visualize whether there is a texture (a collection of specific crystal planes) on the sample cross section. In this embodiment, a pole figure was created and evaluated with the half-width value set to 10° for the (0001) plane.
- the reason for limiting the half width to 10° is as follows.
- the half-width value (°) is one of the default values used to create pole figures.
- the setting of this half-width value (°) affects the results of creating pole figures and the numerical value of MUD (multiple uniform density). For this reason, when comparing multiple pieces of data, it is necessary to use the same half-width value for all pole figures. Therefore, in this embodiment, the evaluation was performed with the condition fixed at the default half-width value of 10°. If the half-width value is less than 10°, the information indicating the orientation of the (0001) plane when creating the pole figures is easily affected by noise due to roughness of the measurement surface, which is not preferable. If the half-width exceeds 10°, the information indicating the orientation of the (0001) plane becomes unclear when creating a pole figure, and it becomes impossible to correctly determine whether or not there is a preferred orientation, which is not preferable.
- the pole figure is created by converting the crystal information of each point obtained from the Kikuchi pattern acquired by the EBSD detector into an area using a Gaussian function and stereoscopically projecting it.
- the Kikuchi pattern acquired by the EBSD detector means a figure obtained by irradiating a crystalline sample with electrons and projecting the reflected electrons.
- the preferred orientation degree (MUD (multiple uniform density)) of the positive electrode active material particles for lithium ion secondary batteries according to this embodiment is evaluated using a pole figure created focusing on the (0001) plane.
- the preferred orientation degree (MUD (multiple uniform density)) indicating the crystal orientation of the (0001) plane of the positive electrode active material crystal is a numerical value calculated from the information of the pole figure. It indicates the distribution of the (0001) plane on the plane to be evaluated (a sample cross section in this embodiment described later), and is defined as an index for evaluating the degree of orientation.
- the MUD of the positive electrode active material particles of the positive electrode active material for lithium ion secondary batteries of this embodiment is preferably 30 or more and less than 200. If the MUD of the positive electrode active material particles of the above positive electrode active material is 30 or more, the preferential orientation of the (0001) plane of the positive electrode active material crystals can be made regular in the orientation of the expansion and contraction of the crystals accompanying charge and discharge, and the occurrence of cracks can be suppressed, which is preferable. However, a positive electrode active material with a MUD of 200 or more is not preferable because the productivity during synthesis decreases.
- the positive electrode active material for lithium ion secondary batteries according to this embodiment is superior to conventionally proposed positive electrode active materials that do not have a preferred orientation in the (0001) plane of the positive electrode active material crystal is presumably due to the following reasons.
- positive electrode active materials made of Li-Ni-Co-Al or Li-Ni-Co-Mn composite oxides have a secondary particle-like structural feature composed of multiple crystal grains.
- the orientation of the c-axis of each crystal grain is irregular, so there is no regularity in the direction of the volume change accompanying the charge and discharge reaction. This causes adjacent crystal grains to interfere with each other, causing cracks due to stress.
- the positive electrode active material according to this embodiment is a positive electrode active material made of Li-Ni-Co-Al or Li-Ni-Co-Mn composite oxides that have secondary particle-like structural characteristics composed of multiple crystal grains, but because the orientation of the c-axis (0001) plane of the positive electrode active material crystals is aligned in a uniaxial direction, there is a uniform regularity in the orientation of the volume change. This reduces interference between crystal grains and suppresses the occurrence of cracks, making it superior to lithium ion secondary batteries that use conventional positive electrode active materials for lithium ion secondary batteries. This improves cycle characteristics.
- the crystal grains constituting the material have regularity in their crystal orientation, and therefore it is clear that lithium ions can easily diffuse at the interfaces between adjacent crystal grains.
- the positive electrode active material for lithium ion secondary batteries according to this embodiment has higher rate characteristics than lithium ion secondary batteries that use conventional positive electrode active materials for lithium ion secondary batteries.
- the method for producing a positive electrode active material for a lithium ion secondary battery according to the present embodiment includes a step (i) of producing a precursor of the positive electrode active material for a lithium ion secondary battery, a step (ii) of dry-mixing the precursor with a Li compound to obtain a dry mixed raw material, and a step (iii) of firing the dry mixed raw material.
- a step (i) of producing a precursor of the positive electrode active material for a lithium ion secondary battery includes a step (i) of producing a precursor of the positive electrode active material for a lithium ion secondary battery, a step (ii) of dry-mixing the precursor with a Li compound to obtain a dry mixed raw material, and a step (iii) of firing the dry mixed raw material.
- the method for producing a positive electrode active material for a lithium ion secondary battery includes a step (i) of producing a precursor of the positive electrode active material for a lithium ion secondary battery.
- the step (i) of producing a precursor of the positive electrode active material for a lithium ion secondary battery includes a step of synthesizing a hydroxide made of Ni-Co, Ni-Co-Al, or Ni-Co-Mn, a step of washing the hydroxide with water, a step of classifying the hydroxide, and a step of drying the hydroxide.
- the process for synthesizing hydroxides consisting of Ni-Co, Ni-Co-Al, or Ni-Co-Mn involves preparing a raw material solution using Ni compounds and Co compounds, and if necessary, Al compounds and Mn compounds, in order to achieve the desired composition ratio.
- the compounds used to prepare the raw material solution are water-soluble, but sulfates, nitrates, chlorides, etc. are preferably used.
- the concentration of the raw material solution is adjusted so that the total content of Ni, Co, Al, and Mn contained therein is 10 to 300 g/L (hereinafter referred to as “aqueous Me solution”).
- the target hydroxide is synthesized by supplying this aqueous Me solution to an aqueous solution (hereinafter referred to as "initial mother liquor") adjusted to 30 to 90°C, pH 9 to 13, and an NH4 + concentration of 5 to 15.0 g/L.
- the supply flow rate of the aqueous Me solution is not particularly specified, but it is preferably supplied at a flow rate (L/min) equivalent to 0.05% to 0.5% of the total amount (L) of the initial mother liquor.
- the reaction tank used for synthesizing Me hydroxide is a SUS reaction tank with a lid and an overflow port.
- the initial mother liquid is stirred at 100 to 1200 rpm, the liquid temperature is 30 to 90°C, the pH is 9 to 13, the NH4 + concentration is 5 to 15.0 g/L, and the nitrogen atmosphere is maintained.
- the pH and NH4 + concentration of this initial mother liquid and the nitrogen atmosphere are controlled by supplying an aqueous solution of NaOH and an aqueous solution of ammonium salt such as ( NH4 ) 2SO4 (hereinafter referred to as " NH4 + source”) and nitrogen gas.
- aqueous solution of NaOH an aqueous solution of ammonium salt such as ( NH4 ) 2SO4 (hereinafter referred to as " NH4 + source”) and nitrogen gas.
- NH4 + source an aqueous solution of NaOH and an aqueous solution of ammonium salt such as ( NH4 ) 2SO4
- a slurry with a solids concentration of 10 to 200 g/L is continuously produced, which is composed of Me hydroxide (hereinafter referred to as “first Me hydroxide”) and an aqueous solution of water-soluble by-products (hereinafter referred to as “reaction mother liquor”).
- the continuously produced slurry flows out from the overflow port of the reaction tank and is sent to a service tank.
- the slurry in the reaction tank or service tank obtained by continuing this operation for 12 hours or more (hereinafter referred to as “first slurry") is used in the next process.
- the solids concentration of the first slurry is concentrated to 350 to 1200 g/L (hereinafter referred to as "second slurry").
- the first slurry is concentrated by removing the reaction mother liquor or adding first Me hydroxide.
- the reaction mother liquid of the second slurry is adjusted to an NH 4 + concentration of 5 to 15.0 g/L at 30 to 90°C and pH 9 to 13.
- the adjustment method is not particularly specified, but is preferably performed using ammonia water and NaOH aqueous solution.
- a reaction tank with a lid and no overflow port is used.
- An aqueous Me solution is supplied to the second slurry described above.
- the supply flow rate of the aqueous Me solution is not particularly specified, but is preferably supplied at a flow rate (L/min) equivalent to 0.001% to 0.3% of the total amount (L) of the second slurry.
- the composition ratio of metal elements in the aqueous Me solution must be the same as that of the desired precursor, but does not need to be the same as that of the first hydroxide.
- the reaction mother liquid is stirred at 500-1500 rpm, the liquid temperature is maintained at 30-90°C, the pH is 9-13, the NH4 + concentration is 5-20.0 g/L, and the second slurry concentration is maintained at 350 g/L or more.
- the atmosphere is not particularly specified, but a nitrogen atmosphere is preferable.
- the pH and NH4 + concentration of the second slurry, as well as the nitrogen atmosphere, are controlled by supplying an NaOH aqueous solution and nitrogen gas.
- concentrations and flow rates of the NaOH aqueous solution, NH 4 + source, and nitrogen gas are not particularly specified.
- the concentration of the second slurry is controlled by removing the reaction mother liquor continuously or palindrically.
- a slurry (hereinafter referred to as “third slurry”) in which a hydroxide having a plate-like or columnar shape (hereinafter referred to as "second Me hydroxide”) is newly generated in the second slurry.
- the supply of the Me aqueous solution is continued until the particle size of the second Me hydroxide reaches the desired size.
- the dimensions of the 2Me hydroxide are measured by sampling at appropriate times, separating the 2Me hydroxide into solid and liquid, washing with water, and drying, and then observing the 2Me hydroxide with a scanning electron microscope. At this time, the dimensions and shape of the 1Me hydroxide that is mixed in are not measured.
- the supply of the Me aqueous solution is stopped.
- the third slurry in the reaction tank is then washed with water to remove the reaction mother liquor. After washing with water, solid-liquid separation and drying can be performed to obtain a powder (first precursor) in which the first Me hydroxide and the second Me hydroxide are mixed.
- a classification operation is performed to separate and collect the second Me hydroxide from the first precursor.
- the classification method is not particularly specified, but it is preferable to be able to remove 70% or more of the first Me hydroxide by weight.
- the reason for removing the first Me hydroxide is that the first Me hydroxide has a nearly spherical shape, and the battery characteristics of a lithium-ion secondary battery using this as a raw material for the positive electrode active material are lower than those of a positive electrode active material using the second Me hydroxide as a raw material.
- Samples for EBSD analysis can be prepared, for example, as follows: The precursor is dispersed in a commercially available room temperature curing epoxy resin that is a two-part mixture consisting of a base agent and a hardener, and cured in a vacuum while promoting degassing. The resin block containing the cured precursor is cut and the cut surface is smoothed with sandpaper. This cut surface is then processed with a cross-session polisher to further smooth it, thereby obtaining a precursor cross-section sample for EBSD analysis.
- EBSD electron backscatter diffraction
- the precursor cross-section sample for EBSD analysis prepared by the above-mentioned operations is evaluated by EBSD analysis.
- the obtained orientation information of the sample is constructed on analysis software, and the crystal orientation and pole figures of the sample are evaluated by acquiring a mapping image. From the obtained pole figure information, the preferred orientation degree (MUD) of the (0001) plane of the precursor crystal is evaluated. Note that no particular device or analysis software is specified for use in the EBSD analysis.
- the manufacturing method of the positive electrode active material for lithium ion secondary batteries includes a step (ii) of dry-mixing the precursor with a Li compound to obtain a dry mixed raw material (hereinafter referred to as the "mixture").
- Step (ii) includes dry-mixing the precursor with a Li compound. If the positive electrode active material is a Ni-Co-Al system, a Li compound and, if necessary, an Al compound are further dry-mixed, and if the positive electrode active material is a Li-Ni-Co-Mn system, a Li compound is further dry-mixed.
- step (ii) the precursor produced in step (i) is dry-mixed with Li compounds (hydroxides, carbonates, halides, etc., Li compounds that can be oxides at high temperatures, with an average particle size of about 50 ⁇ m or less), and, if necessary, Al compounds, Zr compounds, or Mg compounds (commercially available Al, Zr, or Mg compounds with an average particle size of 10 ⁇ m or less, which can be oxides at high temperatures, such as oxides, hydroxides, sulfates, nitrates, etc.) in a ratio that stoichiometrically satisfies the relationship of a specified composition formula to prepare a dry mixed raw material.
- Li compounds hydrooxides, carbonates, halides, etc., Li compounds that can be oxides at high temperatures, with an average particle size of about 50 ⁇ m or less
- Al compounds, Zr compounds, or Mg compounds commercially available Al, Zr, or Mg compounds with an average particle size of 10 ⁇ m or less
- Li compounds include LiOH.H2O , LiOH, and Li2CO3 .
- Al compounds include Al2O3 and Al(OH)3 .
- Zr compounds include ZrO2 .
- Mg compounds include MgO and MgCO3 .
- the composition ratio of these metal compounds is Li x Ni (1-y- ⁇ - ⁇ ) Co y Al ⁇ B ⁇ O 2 (wherein, in the composition formula, 0.9 ⁇ x ⁇ 1.1, 0.03 ⁇ y ⁇ 0.3, 0.00 ⁇ 0.05, B is one or more elements selected from Zr and Mg, and 0.00 ⁇ 0.10), or Li x Ni (1-y- ⁇ - ⁇ ) Co y Mn ⁇ B ⁇ O 2 (wherein, in the composition formula, 0.9 ⁇ x ⁇ 1.1, 0 ⁇ y ⁇ 0.33, 0.00 ⁇ 0.33), B is one or more elements selected from Zr and Mg, and 0.00 ⁇ 0.10).
- step (ii) is desirably carried out for approximately 0.5 to 1.5 hours under normal temperature, normal pressure, and closed conditions (e.g., closing the raw material inlet of the powder mixing device).
- the method for producing a positive electrode active material for a lithium ion secondary battery according to this embodiment includes step (iii) of calcining the mixture obtained in step (ii).
- step (iii) the raw material mixture prepared as described above is calcined in an oxidizing atmosphere at 700 to 800° C. for 5 to 20 hours. After the calcination, the mixture is rapidly cooled outside the calcination furnace or slowly cooled inside the furnace.
- the heating conditions during firing are not particularly limited, but for example, the temperature is raised for 5 to 15 hours, preferably 8 to 12 hours, from the start of heating the furnace.
- the positive electrode active material for a lithium ion secondary battery according to the present embodiment shown in FIGS. 1 and 2 can be produced by steps (i) to (iii).
- the positive electrode active material particles obtained by the above-mentioned step (iii) are evaluated by EBSD analysis.
- Samples for EBSD analysis can be prepared as follows.
- the positive electrode active material is dispersed in a commercially available room temperature curing epoxy resin of a two-liquid mixture type consisting of a base agent and a hardener, and cured in a vacuum while promoting degassing.
- the resin block containing the cured positive electrode active material is cut and the cut surface is smoothed with sandpaper.
- the cut surface can be further smoothed by cross-session polishing to obtain a cross-sectional sample of the positive electrode active material for EBSD analysis.
- the positive electrode active material reacts with moisture and carbon dioxide to generate impurities on the crystal surface, so this series of pretreatments should be performed in a low humidity environment, and the cross-sectional sample of the positive electrode active material for EBSD analysis should be stored under an inert gas such as Ar.
- the cross-sectional sample of the positive electrode active material for EBSD analysis prepared by the above-mentioned procedure is subjected to EBSD analysis.
- the obtained orientation information is constructed on an analysis software, and the crystal orientation and pole figures of the sample are evaluated by acquiring a mapping image.
- the preferred orientation degree (MUD) is evaluated from the pole figure information of the (0001) plane of the obtained positive electrode active material crystal. Note that no particular device or analysis software is specified for use in the EBSD analysis.
- the positive electrode active material for a lithium ion secondary battery according to the second embodiment is characterized in that, in the positive electrode active material for a lithium ion secondary battery according to the above embodiment, it is composed of a chemical composition represented by the following general formula (3).
- A represents Mn or Al
- B represents Mg or Zr
- x represents 0.00 ⁇ x ⁇ 0.33
- y represents 0.00 ⁇ y ⁇ 0.33
- z represents 0.00 ⁇ y ⁇ 0.10.
- the positive electrode active material of the present invention is composed of a Li-Ni-Co-Al based or Li-Ni-Co-Mn based composite oxide, and specific examples thereof include composite oxides represented by the composition formula Li x Ni 1-yz Co y Al z O 2 (where 0.9 ⁇ x ⁇ 1.1, 0.00 ⁇ y ⁇ 0.3, 0.00 ⁇ z ⁇ 0.05), Li x Ni 1-yz Co y Mn z O 2 (where 0.9 ⁇ x ⁇ 1.1, 0.00 ⁇ y ⁇ 0.33, 0.00 ⁇ z ⁇ 0.33), etc.
- Li-Ni-Co- Al based composite oxides include LiNi0.86Co0.11Al0.03O2 and LiNi0.90Co0.05Al0.05O2.
- Specific examples of Li -Ni - Co - Mn based composite oxides include LiNi0.8Co0.1Mn0.1O2 and LiNi0.5Co0.2Mn0.3O2 .
- the Li-Ni-Co-Al based composite oxide constituting the positive electrode active material particles for lithium ion secondary batteries according to this embodiment is not particularly limited, but may be, for example, LiNi 0.86 Co 0.11 Al 0.03 O 2 or LiNi 0.90 Co 0.05 Al 0.05 O 2.
- the Li-Ni-Co-Mn based composite oxide constituting the positive electrode active material particles for lithium ion secondary batteries is not particularly limited, but may be, for example, LiNi 0.8 Co 0.1 Mn 0.1 O 2 or LiNi 0.5 Co 0.2 Mn 0.3 O 2 .
- the precursor is not particularly limited as long as it is a metal hydroxide that produces an oxide by firing, and examples thereof include Ni0.86Co0.11Al0.03 (OH) 2 , Ni0.89Co0.11 (OH) 2 , and Ni0.5Co0.2Mn0.3 (OH) 2 .
- the positive electrode active material precursor for lithium ion secondary batteries is not particularly limited as long as it is a composite carbonate , and examples thereof include Ni0.86Co0.11Al0.03CO3 , Ni0.89Co0.11CO3 , and Ni0.5Co0.2Mn0.3CO3 .
- the third embodiment is a mixed positive electrode active material for lithium ion secondary batteries, comprising (a) the positive electrode active material for lithium ion secondary batteries obtained in the above embodiment, and (b) a mixed positive electrode active material for lithium ion secondary batteries. That is, the mixed positive electrode active material for lithium ion secondary batteries of this embodiment is a mixed positive electrode active material for lithium ion secondary batteries, comprising (a) the positive electrode active material for lithium ion secondary batteries obtained in the above embodiment, and (b) a mixed positive electrode active material for lithium ion secondary batteries, characterized in that the content of the positive electrode active material for lithium ion secondary batteries (a) contained in the mixed positive electrode active material for lithium ion secondary batteries is 10 mass% or more.
- the (a) positive electrode active material for lithium ion secondary batteries obtained in the above embodiment can be used as a positive electrode active material in the same manner even when mixed with other positive electrode active material particles for lithium ion secondary batteries having different crystal orientation characteristics or composition.
- the mixed positive electrode active material for lithium ion secondary batteries according to this embodiment is composed of the (a) positive electrode active material for lithium ion secondary batteries obtained in the above embodiment and (b) mixed positive electrode active material for lithium ion secondary batteries.
- the content of the (a) mixed positive electrode active material for lithium ion secondary batteries contained in the mixed positive electrode active material for lithium ion secondary batteries according to this embodiment is 10% by mass or more and 98% by mass or less.
- the mixed ratio of the positive electrode active material for lithium ion secondary batteries of the present invention is 10% by mass or more and 98% by mass or less, the cycle characteristics and rate characteristics can be improved by 10% or more.
- the (b) mixed positive electrode active material for lithium ion secondary batteries that can be mixed and used with the (a) positive electrode active material for lithium ion secondary batteries is a conventional positive electrode active material for lithium ion secondary batteries, for example, the positive electrode active material for lithium ion secondary batteries described in WO2016-143844A1 or other commercially available Co-based, Ni-Co-Al-based, or Ni-Co-Mn-based positive electrode active materials.
- the positive electrode active material for a lithium ion secondary battery to be mixed is preferably a positive electrode active material having the same composition ratio of Ni, Co, Al, and Mn as the positive electrode active material for a lithium ion secondary battery to be used (a).
- the composition of the positive electrode active material to be mixed is one type, or a mixture of two or more types.
- the general formulas showing the mixed positive electrode active materials for lithium ion secondary batteries, Co-based, Ni-Co-Al-based, and Ni-Co-Mn-based are Li x CoO 2 for the Co-based, Li x Ni (1-y- ⁇ ) Co y Al ⁇ O 2 for the Ni-Co-Al-based, and Li x Ni (1-y- ⁇ ) Co y Mn ⁇ O 2 for the Ni-Co-Mn-based (wherein, in the composition formulas, 0.9 ⁇ x ⁇ 1.1, 0.03 ⁇ y ⁇ 0.33, 0.00 ⁇ 0.05, 0.00 ⁇ 0.33).
- the mixed positive electrode active material containing the positive electrode active material for lithium ion secondary batteries according to this embodiment can improve the cycle characteristics and rate characteristics of the lithium ion secondary battery even when a commercially available positive electrode active material for lithium ion secondary batteries is used.
- the positive electrode active material obtained as described above and other materials can be combined to produce an electrode foil (hereinafter, sometimes referred to as "positive electrode foil").
- the positive electrode current collector of the positive electrode foil of the lithium ion secondary battery is preferably made of aluminum, which is processed into a thin film, although there is no particular limitation thereto.
- the method of supporting the positive electrode mixture on the positive electrode current collector is, without particular limitation thereto, for example, a method of pressurizing the positive electrode mixture on the positive electrode current collector.
- the positive electrode mixture may be made into a paste using an organic solvent, and the resulting paste of the positive electrode mixture may be applied to at least one side of the positive electrode current collector, dried, and pressed to adhere.
- the composition of the paste of the positive electrode mixture is not particularly limited, but is preferably composed of a positive electrode active material, a conductive assistant, a binder, and a dispersion medium.
- the conductive assistant is not particularly limited, but carbon black (e.g., acetylene black) may be used.
- the binder is not particularly limited, but it is more preferable to use polyvinylidene fluoride, which may be used alone or in combination of two or more types.
- the dispersion medium is not particularly limited, but N-methyl-2-pyrrolidone is more preferable.
- the method for applying the paste of the positive electrode mixture to the positive electrode current collector is not particularly limited, but examples include slit die coating, screen coating, curtain coating, knife coating, gravure coating, and electrostatic spraying. Positive electrodes can be manufactured by the methods listed above.
- a lithium ion secondary battery can be obtained by combining the positive electrode foil obtained as described above with other materials.
- One example of a lithium ion secondary battery using the positive electrode active material for lithium ion secondary batteries of the present invention has a positive electrode foil and a negative electrode foil, a separator sandwiched between the positive electrode foil and the negative electrode foil, and an electrolyte placed between the positive electrode foil and the negative electrode foil.
- the separator is not particularly limited, but may be, for example, a material having a form such as a porous film, nonwoven fabric, or woven fabric, made of a material such as a polyolefin resin, such as polyethylene or polypropylene, a fluororesin, or a nitrogen-containing aromatic polymer. One or more of these materials may be used.
- the negative electrode is not particularly limited as long as it is capable of doping and dedoping lithium ions at a lower potential than the positive electrode.
- Examples of the negative electrode foil include an electrode in which a negative electrode mixture containing a negative electrode active material is supported on a negative electrode current collector, and an electrode made of a negative electrode active material alone. If necessary, a binder may be included.
- the electrolyte of the lithium ion secondary battery contains an electrolyte and an organic solvent.
- the electrolyte contained in the electrolyte is not particularly limited, but it is preferable to use an electrolyte containing at least one selected from the group consisting of fluorine-containing LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 and LiC(SO 2 CF 3 ) 3.
- the lithium salt used in the electrolyte may be one or more.
- the organic solvent contained in the electrolyte is not particularly limited, but examples include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and 4-trifluoromethyl-1,. These may be used alone or in combination of two or more.
- Example 1 Provide of Ni-Co coprecipitated hydroxide> A Ni-Co aqueous solution (hereinafter referred to as "Me aqueous solution” ) was prepared at room temperature by adjusting the molar ratio of Ni:Co between NiSO4 and CoSO4 to 89:11 and the total content of NiSO4.6H2O and CoSO4.7H2O to 265 g/L.
- Nitrogen gas was introduced into the reaction vessel to maintain a positive pressure environment, and an aqueous Me solution was supplied to the initial mother liquid at a flow rate of 40 ml/min.
- the initial mother liquid was controlled to have a liquid temperature of 60°C, a stirring speed of 400 rpm with a propeller blade of 20 cm in diameter, a pH of 12.0, and an NH4 + concentration of 12.0 g/L. These controls were performed by supplying a 25% aqueous NaOH solution and a 20% aqueous ammonia solution.
- first slurry a slurry (hereinafter referred to as "first slurry") with a solid content concentration of 80 g/L was continuously produced, which was composed of a solid phase of spherical hydroxide with a Ni:Co molar ratio of 89:11 (hereinafter referred to as “first Me hydroxide”) and a liquid phase of an aqueous solution in which sodium sulfate, sodium hydroxide, and ammonia were dissolved (hereinafter referred to as reaction mother liquor).
- first Me hydroxide a solid phase of spherical hydroxide with a Ni:Co molar ratio of 89:11
- reaction mother liquor a liquid phase of an aqueous solution in which sodium sulfate, sodium hydroxide, and ammonia were dissolved
- the solid content of the first slurry was concentrated to 500 g/L (hereinafter referred to as "second slurry").
- the obtained second slurry was charged into another lidded SUS reactor (capacity 5 L), and nitrogen gas was introduced into the reactor to maintain a positive pressure environment, while Me aqueous solution was supplied to the second slurry at a flow rate of 2 ml/min.
- the second slurry was controlled to have a liquid temperature of 55°C, a stirring speed of 1000 rpm with a turbine blade having a diameter of 5 cm, pH of 12.0, and an NH4 + concentration of 12.0 g/L.
- These controls were performed by supplying a 25% NaOH aqueous solution and a 20% ammonia aqueous solution.
- reaction mother liquor was periodically removed so that the solids concentration of the second slurry was maintained in the range of 500 to 1000 g/L.
- a slurry (hereinafter referred to as “third slurry”) was obtained in which a plate-like or caterpillar-like hydroxide (hereinafter referred to as "second Me hydroxide”) was newly generated in the second slurry by supplying the Me aqueous solution.
- the dimensions of the second Me hydroxide contained in the third slurry were measured by sampling 10 ml every 7 hours, separating the solid and liquid, washing with water, and drying, and then observing the particle shape at 1500x magnification using a microscope (JEOL Ltd., product name "JSM-6700F” was used).
- the third slurry containing the first Me hydroxide and the second Me hydroxide was taken out and washed with water until the conductivity of the washing water was 300 mS/cm or less, and the reaction mother liquor components, which are impurities in the third slurry containing the first Me hydroxide and the second Me hydroxide, were removed.
- the solid matter was then dehydrated and dried to obtain a mixture of the first Me hydroxide, which is the conventional precursor, and the second Me hydroxide, which is a precursor having a preferred orientation.
- the reason for washing with water until the conductivity of the washing water was 300 mS/cm or less is to confirm the removal target when removing the reaction mother liquor components in the third slurry containing the mixture of the precursors first Me hydroxide and second Me hydroxide by washing with water in the manufacturing process, by using the conductivity of the washed water, and in the present invention, the target value is 300 mS/cm or less.
- the sample to be subjected to the EBSD analysis was prepared as follows.
- the precursor hydroxide was dispersed in a commercially available room temperature curing epoxy resin of a two-liquid mixture type consisting of a base agent and a curing agent, and cured while promoting degassing in a vacuum.
- the resin block containing the cured precursor hydroxide was cut and the cut surface was smoothed with sandpaper. The cut surface was then processed with a cross-session polisher to further smoothen it, obtaining a cross-sectional sample of the precursor hydroxide for EBSD analysis.
- the cross-sectional sample of the hydroxide which was the precursor for EBSD analysis prepared by the above-mentioned procedure, was analyzed using the JSM-7001F manufactured by JEOL Ltd., and orientation analysis was performed using the analysis software AZtec Crystal manufactured by Oxford Instruments Ltd.
- the MUD was calculated using the pole figure creation function of the analysis software, with the (0001) plane being evaluated and the half-width set to 10°. Analysis was performed on three randomly selected fields of view for each particle being evaluated, and the average maximum MUD was 115.3.
- the EBSD results for the precursor hydroxide are shown in Figure 1.
- the molar ratio of Ni:Co:Al was measured by an inductively coupled plasma (ICP) emission spectrometer (manufactured by Thermo Fisher Scientific Co., Ltd. under the trade name "ICAP6500").
- Fig. 2 is an electron microscope photograph of the positive electrode active material for lithium ion secondary batteries obtained in Example 1. Specifically, Fig. 2(A) is an enlarged photograph at 5000 times, Fig. 2(B) is an enlarged photograph at 10000 times, and Fig. 2(C) is an enlarged photograph at 20000 times. As shown in the microscope photograph in Fig. 2, the shape of the obtained positive electrode active material for lithium ion secondary batteries exhibited a columnar structure. Furthermore, the particle dimensions of the positive electrode active material for lithium ion secondary batteries were measured using an electron microscope, and the measured values were that the minor axis T was 1.6 ⁇ m on average and the major axis G was 4.2 ⁇ m on average.
- the sample to be subjected to the EBSD analysis was prepared as follows.
- the positive electrode active material is dispersed in a two-liquid mixture of room temperature curing epoxy resin consisting of a base agent and a hardener, and cured under vacuum while promoting degassing.
- the resin block containing the cured positive electrode active material is cut, and the cut surface is smoothed with sandpaper.
- the cut surface is then processed with a cross-session polisher to further smooth it, thereby obtaining a cross-sectional sample of the positive electrode active material for EBSD analysis.
- the positive electrode active material reacts with humidity and carbon dioxide to generate impurities on the crystal surface, this series of pretreatments is performed in a low humidity environment, and the cross-sectional sample of the positive electrode active material for EBSD analysis is stored under an inert gas such as Ar.
- the cross-sectional sample of the positive electrode active material for EBSD analysis prepared by the above-mentioned procedure was analyzed using the JSM-7001F manufactured by JEOL Ltd., and orientation analysis was performed using the analysis software AZtec Crystal manufactured by Oxford Instruments Ltd.
- the MUD was calculated using the pole figure creation function of the analysis software, with the (0001) plane as the evaluation target and the half-width set to 10°.
- the particle to be evaluated was analyzed in three randomly selected fields of view, with the average maximum MUD being 96.
- the EBSD results for the positive electrode active material obtained from the hydroxide precursor described above are shown in Figure 3.
- the electrode foil was produced using the positive electrode active material obtained as described above.
- the electrode foil material was mixed using a homodisper manufactured by Primix at 6000 rpm for 5 minutes to form a paste.
- the paste-like electrode foil material was then applied to an aluminum foil with a thickness of 7 mil by the doctor blade method.
- the aluminum foil coated with the paste-like electrode foil material was heated at 110°C for 4 hours, after which the NMP was removed, and the electrode foil was obtained by roll pressing at 0.04 mm.
- a lithium ion secondary battery was produced using the obtained electrode foil.
- the produced lithium ion secondary battery was composed of a positive electrode, a separator (glass fiber filter paper), a metallic lithium negative electrode, and an electrolyte (1 mol/L LiPF 6 /PC), and was produced in the argon atmosphere.
- This lithium ion secondary battery was repeatedly charged and discharged 80 times at a measurement temperature of 20°C, a voltage range of 4.25 to 2.5 V, and a voltage rate of 1 C, and the cycle characteristics (discharge capacity for each cycle and discharge capacity retention rate) were evaluated.
- the rate characteristic test was carried out at a voltage range of 4.25 to 2.5 V and a voltage rate of 0.1 C to 5 C.
- Table 1 and Figures 4 to 6 show the measurement results of the cycle characteristics (discharge capacity for each cycle or the rate of capacity decrease for each cycle relative to the discharge capacity at the initial discharge) and rate characteristics during charge and discharge of the lithium ion secondary battery obtained in Example 1.
- ⁇ 5 is the data for Example 1.
- (A) is the data for Example 1.
- Figure 7 shows the method for measuring the dimensions of positive electrode active material particles for lithium ion secondary batteries using an electron microscope.
- the dimensions of a specified amount of product taken from appropriately selected locations of the positive electrode active material for lithium ion secondary batteries were measured and averaged to calculate the average short axis T and long axis G of the positive electrode active material particles for lithium ion secondary batteries. Note that when measuring the dimensions from the microscope image, a field of view with low particle density was selected so that the particle shape could be clearly confirmed.
- Example 1 (same as Example 1 of WO2016-143844A1) A Ni-Co aqueous solution was prepared at room temperature with a molar ratio of Ni:Co between NiSO4 and CoSO4 of 89:11. Meanwhile, pure water was placed in a SUS reaction tank (capacity 50 L) with a lid and an overflow port, and the agitator was operated at 60°C. While maintaining this state, N2 gas was introduced, and the Ni-Co aqueous solution, ( NH4 ) 2SO4 , and NaOH aqueous solution were dropped, and stirring was continued for 10 hours at a tip speed of 4.1 m/s.
- 950g (molar ratio 0.97) of the Ni-Co coprecipitated hydroxide, 160g (molar ratio 0.03) of alumina (average particle size: 10 ⁇ m), and 445g (molar ratio 1.03) of pulverized lithium hydroxide monohydrate (D50: 30 ⁇ m) were dry mixed in a blender for 1 hour. After mixing, the raw material powders of the Ni-Co coprecipitated hydroxide, alumina, and lithium hydroxide were sintered in an oxidizing atmosphere at 750°C for 20 hours, including the heating time, in an electric furnace.
- the raw material was taken out of the furnace when the temperature inside the furnace reached 200°C, and was allowed to cool to room temperature, and a positive electrode active material for lithium ion secondary batteries was obtained. It was found that the positive electrode active material for lithium ion secondary batteries was a positive electrode active material with an aspect ratio of more than 0.9, nearly spherical particles, and a smooth surface.
- an electrode foil which is a positive electrode of a lithium ion secondary battery, was prepared in the same manner as in Example 1.
- a lithium ion secondary battery was prepared using this electrode foil.
- the initial capacity (discharge capacity), discharge capacity retention rate, i.e., cycle characteristics (the ratio of discharge capacity after 80 discharges to the discharge capacity at the initial discharge), and rate characteristics of this lithium ion secondary battery were measured under the same conditions as in Example 1, and the results are shown in Table 1 and Figures 4 to 6.
- square 6 represents the data for Comparative Example 1
- the dashed line in Figure 6 (B) represents the data for Comparative Example 1.
- a positive electrode active material for a lithium ion secondary battery was produced in the same manner as in Example 1, except that this precursor was used.
- the initial capacity (discharge capacity), cycle characteristics (discharge capacity for each cycle or capacity reduction rate for each cycle relative to the discharge capacity at the time of initial discharge) and rate characteristics of this lithium ion secondary battery were measured under the same conditions as in Example 1. The measurement results are shown in Table 1.
- EBSD analysis (electron backscatter diffraction) of the positive electrode active material particles was performed in the same manner as in Example 1, except that the above positive electrode active material was used.
- the average value of the maximum MUD was 31.
- a positive electrode active material for a lithium ion secondary battery was produced in the same manner as in Example 1 except that this precursor was used.
- the initial capacity (discharge capacity), cycle characteristics (discharge capacity for each cycle or capacity reduction ratio for each cycle relative to the discharge capacity at the time of initial discharge), and rate characteristics of this battery were measured under the same conditions as in Example 1. The measurement results are shown in Table 1.
- EBSD analysis (electron backscatter diffraction) of the positive electrode active material particles was performed in the same manner as in Example 1 except that the above positive electrode active material was used. The average value of the maximum MUD was 178.
- the lithium ion secondary battery equipped with the electrode foil obtained using the positive electrode active material of Example 1 has excellent initial capacity, rate characteristics, and cycle characteristics. Furthermore, as shown in Figures 4 to 6, the lithium ion secondary battery obtained using the above-mentioned positive electrode active material of the present invention has excellent initial discharge capacity, cycle characteristics, and rate characteristics compared to lithium ion secondary batteries using conventional positive electrode active materials.
- Figure 4 shows the discharge capacity per cycle
- Figure 5 shows the discharge capacity maintenance rate from the initial discharge capacity per cycle
- ⁇ 5 shows the discharge capacity per cycle and the discharge capacity maintenance rate from the initial discharge capacity per cycle depending on the number of cycles when the positive electrode active material of the present invention having the preferred orientation obtained in Example 1 was used and measured under the measurement conditions described in Example 1
- ⁇ 6 shows the discharge capacity per cycle and the discharge capacity maintenance rate from the initial discharge capacity per cycle when measured under the same conditions as above using the conventional positive electrode active material obtained in Comparative Example 1.
- Figure 6 shows the rate characteristics of a lithium ion secondary battery equipped with an electrode foil obtained using the positive electrode active material of Example 1.
- Figure 6(A) shows the results when the positive electrode active material of the columnar structure of the present invention obtained in Example 1 was used, measured under the same conditions as above, and
- Figure 6(B) shows the results when the conventional positive electrode active material obtained in Comparative Example 1 was used, measured under the same conditions as above.
- the positive electrode active material for lithium ion secondary batteries according to the present invention is superior in various properties required for positive electrode active materials for lithium ion secondary batteries compared to conventional positive electrode active materials for lithium ion secondary batteries that do not have a preferred orientation.
- Example 4 An electrode foil, which is a positive electrode of a lithium ion secondary battery, and a lithium ion secondary battery including the electrode foil were prepared in the same manner as in Example 1, except that the positive electrode active material for lithium ion secondary batteries obtained in Example 1 was mixed with a conventional positive electrode active material for lithium ion secondary batteries as shown in Table 2.
- the initial capacity (discharge capacity), cycle characteristics (discharge capacity for each cycle or the rate of capacity decrease for each cycle relative to the discharge capacity at the time of initial discharge) and rate characteristics of these batteries were measured under the same conditions as in Example 1. The measurement results are shown in Table 2.
- Fig. 7 is an electron microscope photograph showing a method for measuring the particle size of the positive electrode active material produced in Example 1.
- the positive electrode active material of Example 1 is a columnar structure having a concept of a long axis and a short axis, which is significantly different from conventional positive electrode active materials. This is because the particle shape of the precursor is inherited by the particle shape of the positive electrode active material.
- 9 is an electron microscope photograph for measuring the particle size of particles constituting a positive electrode obtained using the positive electrode active material produced in Comparative Example 1 by the same measuring method as in Example 1. As shown in Fig. 9, it is clear that the positive electrode active material of Comparative Example 1 is spherical and has no concept of major axis and minor axis.
- the positive electrode active material for lithium secondary batteries which is made of a columnar structure formed by bonding granules made of the complex oxide of the present invention, can be used in a variety of well-known applications that require high capacity at all times during use, including power sources for EVs, personal computers, mobile phones, and backup power sources, and is therefore industrially useful.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
[Problem] To provide a positive electrode active material that is for a lithium ion secondary battery that has favorable cycle characteristics but uses as little of the rare metal Co as possible, the positive electrode active material for a lithium ion secondary battery including an Li-Ni-Co-Al or Li-Ni-Co-Mn complex oxide as a principal component. [Solution] According to the present invention, a lithium ion secondary battery positive electrode active material that has excellent charge/discharge cycle characteristics and rate characteristics is characterized by having a preferred orientation in which the (0001) faces of positive electrode active material crystals that comprise hexagonal crystals are gathered on one side in the axial direction, the maximum value of a degree of preferred orientation (MUD) that indicates the crystal orientation of the (0001) faces of the positive electrode active material crystals on a pole figure created under the condition in expression (1) on the basis of crystal orientation information for the (0001) faces of the positive electrode active material crystals as measured by electron backscatter diffraction (EBSD) satisfying expression (2). (1) Half width value=10°. (2) 30≤MUD≤200.
Description
本発明は、リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用混合正極活物質、電極箔及びリチウムイオン二次電池に関する。更に詳しくは、Li-Ni-Co-Al系、又はLi-Ni-Co-Mn系の複合酸化物を主成分とするリチウムイオン二次電池用正極活物質に関する。特に、本発明は、特定の優先配向を有するリチウムイオン二次電池用正極活物質であって、高容量、充放電サイクル特性及びレート特性に優れたリチウムイオン二次電池に好適に使用することができる正極活物質に関する。
The present invention relates to a positive electrode active material for lithium ion secondary batteries, a mixed positive electrode active material for lithium ion secondary batteries, an electrode foil, and a lithium ion secondary battery. More specifically, the present invention relates to a positive electrode active material for lithium ion secondary batteries that is mainly composed of a Li-Ni-Co-Al-based or Li-Ni-Co-Mn-based composite oxide. In particular, the present invention relates to a positive electrode active material for lithium ion secondary batteries that has a specific preferred orientation and can be suitably used for lithium ion secondary batteries that have high capacity, excellent charge/discharge cycle characteristics, and rate characteristics.
リチウムイオン二次電池は、ノート型パソコンや携帯電話等のモバイル機器・パワーツール用電源等の様々な用途で使用されており、低炭素社会の構築やエネルギーセキュリティの面からその用途は今後もさらに拡大することが予想され、その高性能化が切望されている。
Lithium-ion secondary batteries are used in a variety of applications, including as power sources for mobile devices such as laptops and mobile phones, and for power tools. Their use is expected to continue to expand in the future in light of the need to build a low-carbon society and promote energy security, and there is a strong demand for improved performance.
近年、リチウムイオン二次電池は、ハイブリッド自動車及び電気自動車(以下、これらをまとめて「EV」と記す。)用電源としての需要、あるいは再生可能型発電用の蓄電材としての需要等の用途が急速に拡大しつつある。これらの用途においてはリチウムイオン二次電池の特性として、特に、高容量、高充放電サイクルであることが望まれる。このようなことから、リチウムイオン二次電池の材料面での改良が急務となっている。リチウムイオン二次電池を構成する材料のうち、従来から正極活物質としては、コバルト(Co)を主成分としたLiCoO2が広く使われている。しかしながら、EV用電源としての需要が急速に拡大しつつある現状において、希少金属であるCoは、資源的に枯渇の不安があり、また、コストも高くなることが懸念される。
In recent years, the demand for lithium-ion secondary batteries as power sources for hybrid and electric vehicles (hereinafter collectively referred to as "EVs"), or as storage materials for renewable power generation, is rapidly expanding. In these applications, lithium-ion secondary batteries are particularly desired to have high capacity and high charge/discharge cycles. For this reason, there is an urgent need to improve the materials of lithium-ion secondary batteries. Among the materials constituting lithium-ion secondary batteries, LiCoO2 , which is mainly composed of cobalt (Co), has been widely used as a positive electrode active material. However, in the current situation where the demand for EV power sources is rapidly expanding, there is a concern that Co, which is a rare metal, will be depleted as a resource and that the cost will be high.
そこで、LiCoO2に代わる正極活物質としては、Mnを主成分としたLiMn2O4やNi-Co-Mn三元系複合酸化物からなる正極活物質が提案されている。しかしながら、これらの正極活物質は、電池特性に一長一短があり、パワーツールやEV用電源としての要求に対しては十分に応えられていないのが現状である。
Therefore, as a positive electrode active material to replace LiCoO 2 , a positive electrode active material made of LiMn 2 O 4 containing Mn as the main component and a Ni-Co-Mn ternary composite oxide have been proposed. However, these positive electrode active materials have both advantages and disadvantages in terms of battery characteristics, and at present, they do not fully meet the requirements for use as a power source for power tools and EVs.
このような状況下において、充放電容量も大きいNiを主体としたLi-Ni-Co-Al系複合酸化物を正極活物質として用いるリチウムイオン二次電池が検討されている。従来技術として、高容量化や充放電維持率等の改善のために、例えば、LiNiO2正極活物質の表面にZnとAlとを含む酸化物を被着させて導電性を向上させ、長寿命化する技術が提案されている(特許文献1)。さらに、圧縮前後の比表面積の変化率及び硫酸イオンの含有率を小さくすることにより、Li-Ni-Co-Al系複合酸化物の充放電容量や、充填性と保存性を向上させる技術が提案されている(特許文献2)。また、ワイヤー形状のLiCoO2粒子を含み、電子伝導が速くて電池の出力特性を向上させるLiCoO2粒子材料等をはじめとして、リチウムイオン二次電池用正極活物質粒子に対する種々の改良技術が提案されている(非特許文献1)。
Under such circumstances, lithium ion secondary batteries using Li-Ni-Co-Al composite oxides mainly composed of Ni, which also have a large charge/discharge capacity, as a positive electrode active material have been studied. As a conventional technique, in order to increase capacity and improve charge/discharge retention rate, for example, a technique has been proposed in which an oxide containing Zn and Al is deposited on the surface of a LiNiO 2 positive electrode active material to improve conductivity and extend life (Patent Document 1). Furthermore, a technique has been proposed to improve the charge/discharge capacity, packability, and storage stability of Li-Ni-Co-Al composite oxides by reducing the rate of change in specific surface area before and after compression and the content of sulfate ions (Patent Document 2). In addition, various improvement techniques have been proposed for positive electrode active material particles for lithium ion secondary batteries, including LiCoO 2 particle materials that contain wire-shaped LiCoO 2 particles and have fast electronic conduction to improve the output characteristics of the battery (Non-Patent Document 1).
そして、上記特許文献1及び2において提案されているLixNi(1-y-z)CoyAlzO2から構成される正極活物質は、結晶構造を安定化させるために、表面修飾剤からなるコーティング層を作製することにより、電子伝導性を向上させて、高容量で長寿命化を図ることが検討されている。また、特許文献3に提案されている技術において、粒子中心部と外周部で異なる凝集状態を有する複合水酸化物二次粒子を合成し、これを前駆体として用いることで中空構造を有する正極活物質とし、サイクル特性を改善しようとしている。しかしながら、これらの改良技術を以ってしても、未だ十分な効果を得るには至っていない。このため、市場では常に従来から提案されているリチウムイオン二次電池用正極活物質よりも、電池特性のより優れたリチウムイオン二次電池用正極活物質の開発が要望されている。
In addition, the positive electrode active material composed of Li x Ni (1-yz) Co y Al z O 2 proposed in the above Patent Documents 1 and 2 is considered to have a coating layer made of a surface modifier to stabilize the crystal structure, thereby improving the electronic conductivity and achieving a high capacity and long life. In addition, in the technology proposed in Patent Document 3, composite hydroxide secondary particles having different aggregation states at the center and outer periphery of the particle are synthesized, and this is used as a precursor to obtain a positive electrode active material having a hollow structure, thereby improving the cycle characteristics. However, even with these improvement technologies, sufficient effects have not yet been obtained. For this reason, the market is always demanding the development of a positive electrode active material for lithium ion secondary batteries with better battery characteristics than the positive electrode active materials for lithium ion secondary batteries that have been proposed in the past.
更に、上記の要望に応じて、電導性に優れ、高容量化や充放電維持率等の改善が可能なリチウムイオン二次電池に好適に使用することができる正極活物質として、本出願人において、球形に近いLixNi(1-y-z)CoyAlzO2からなる正極活物質を提案している(特許文献4、国際公開第2016/第143844号)。
Furthermore, in response to the above demands, the present applicant has proposed a positive electrode active material made of nearly spherical Li x Ni (1-yz) Co y Al z O 2 as a positive electrode active material that has excellent electrical conductivity and can be suitably used for lithium ion secondary batteries that can achieve high capacity and improved charge/discharge retention rate (Patent Document 4, International Publication No. 2016/143844).
一方、上記した従来のLiCoO2結晶を六角樽状または六角板状の結晶体としたリチウムイオン二次電池用正極活物質が提案されており、当該リチウムイオン二次電池が高いレート特性を有することが開示されている(非特許文献2、特許文献5)。しかし、上記したように、希少金属であって資源に枯渇が懸念されるCoに代えて、上記したような充放電電圧が高く充放電容量も大きいNiを主体とするLixNi(1-y-z)CoyAlzO2やLixNi(1-y-z)CoyMnzO2においても、NiやMnならびにAlの特性上、上記のような六角樽状あるいは板状の結晶体が生成できるか否か疑問がある。
On the other hand, a positive electrode active material for lithium ion secondary batteries has been proposed in which the above-mentioned conventional LiCoO 2 crystal is made into a hexagonal barrel-shaped or hexagonal plate-shaped crystal, and it has been disclosed that the lithium ion secondary battery has high rate characteristics (Non-Patent Document 2, Patent Document 5). However, as described above, even in Li x Ni (1-yz) Co y Al z O 2 and Li x Ni (1-yz) Co y Mn z O 2 mainly composed of Ni, which has a high charge/discharge voltage and a large charge/discharge capacity, instead of Co, which is a rare metal and is a concern for depletion of resources, it is questionable whether the above-mentioned hexagonal barrel-shaped or plate-shaped crystal can be produced due to the characteristics of Ni , Mn , and Al.
本発明は、以上の従来技術を踏まえ、希少金属であるCoの使用量を極力抑制しつつ、良好なサイクル特性を有するリチウムイオン二次電池を構成する正極活物質であって、Li-Ni-Co-Al系、又はLi-Ni-Co-Mn系の複合酸化物を主成分とするリチウムイオン二次電池用正極活物質を提供することを課題とする。
In light of the above-mentioned conventional technologies, the present invention aims to provide a positive electrode active material for lithium ion secondary batteries that has good cycle characteristics while minimizing the amount of rare metal Co used, and that is primarily composed of Li-Ni-Co-Al or Li-Ni-Co-Mn composite oxides.
すなわち、上記課題を有利に解決する本発明に係る次電池用正極活物質は、
[1]充放電サイクル特性及びレート特性に優れたリチウムイオン二次電池用正極活物質であって、
六方晶からなる正極活物質結晶の(0001)面が一軸方向へ集合する優先配向を有しており、電子線後方散乱回折法(EBSD)によって測定された前記正極活物質結晶の(0001)面の結晶方位情報に基づいて、下記関係式(1)の条件にて作成される極点図において、
前記正極活物質結晶の(0001)面の優先配向度(MUD)の最大値が下記関係式(2)を満たすことを特徴とする。
[数1]
半幅値(半値幅)=10° ・・・ (1)
[数2]
30≦MUD≦200 ・・・ (2)
[2][1]に記載のリチウムイオン二次電池用正極活物質であって、下記一般式(3)で表される化学組成から構成されること、
[化1]
LiNi1-x-y-zCoxAyBzO2 ・・・ (3)
上記一般式(1)中、AはMn又はAl、BはMg又はZr、xは0.00≦x≦0.33、yは0.00≦y≦0.33、zは0.00≦y≦0.10を表す。
[3][2]に記載の(a)リチウムイオン二次電池用正極活物質と、(b)混合用リチウムイオン二次電池用正極活物質と、を含むリチウムイオン二次電池用混合正極活物質であって、前記リチウムイオン二次電池用混合正極活物質に含まれる(a)リチウムイオン二次電池用正極活物質の含有量が10質量%以上であることを特徴とするリチウムイオン二次電池用混合正極活物質。
[4][2]又は[3]に記載のリチウムイオン二次電池用正極活物質を含むことを特徴とする電極箔。
[5][3]に記載の電極箔を備えることを特徴とするリチウムイオン二次電池。 That is, the positive electrode active material for a secondary battery according to the present invention, which advantageously solves the above problems, is
[1] A positive electrode active material for a lithium ion secondary battery having excellent charge/discharge cycle characteristics and rate characteristics,
The (0001) plane of the positive electrode active material crystal made of a hexagonal crystal has a preferred orientation in which it is assembled in one axial direction, and a pole figure created under the conditions of the following relational formula (1) based on crystal orientation information of the (0001) plane of the positive electrode active material crystal measured by electron backscatter diffraction (EBSD) method is:
The positive electrode active material is characterized in that the maximum value of the degree of preferred orientation (MUD) of the (0001) plane of the crystals of the positive electrode active material satisfies the following relational expression (2).
[Equation 1]
Half width (half width) = 10° ... (1)
[Equation 2]
30≦MUD≦200... (2)
[2] The positive electrode active material for a lithium ion secondary battery according to [1], which is composed of a chemical composition represented by the following general formula (3):
[Chemical formula 1]
LiNi 1-xyz C x A y B z O 2 ... (3)
In the above general formula (1), A represents Mn or Al, B represents Mg or Zr, x represents 0.00≦x≦0.33, y represents 0.00≦y≦0.33, and z represents 0.00≦y≦0.10.
[3] A mixed positive electrode active material for a lithium ion secondary battery, comprising (a) the positive electrode active material for a lithium ion secondary battery according to [2] and (b) a mixed positive electrode active material for a lithium ion secondary battery, wherein the mixed positive electrode active material for a lithium ion secondary battery contains (a) the positive electrode active material for a lithium ion secondary battery in an amount of 10 mass% or more.
[4] An electrode foil comprising the positive electrode active material for a lithium ion secondary battery according to [2] or [3].
[5] A lithium ion secondary battery comprising the electrode foil according to [3].
[1]充放電サイクル特性及びレート特性に優れたリチウムイオン二次電池用正極活物質であって、
六方晶からなる正極活物質結晶の(0001)面が一軸方向へ集合する優先配向を有しており、電子線後方散乱回折法(EBSD)によって測定された前記正極活物質結晶の(0001)面の結晶方位情報に基づいて、下記関係式(1)の条件にて作成される極点図において、
前記正極活物質結晶の(0001)面の優先配向度(MUD)の最大値が下記関係式(2)を満たすことを特徴とする。
[数1]
半幅値(半値幅)=10° ・・・ (1)
[数2]
30≦MUD≦200 ・・・ (2)
[2][1]に記載のリチウムイオン二次電池用正極活物質であって、下記一般式(3)で表される化学組成から構成されること、
[化1]
LiNi1-x-y-zCoxAyBzO2 ・・・ (3)
上記一般式(1)中、AはMn又はAl、BはMg又はZr、xは0.00≦x≦0.33、yは0.00≦y≦0.33、zは0.00≦y≦0.10を表す。
[3][2]に記載の(a)リチウムイオン二次電池用正極活物質と、(b)混合用リチウムイオン二次電池用正極活物質と、を含むリチウムイオン二次電池用混合正極活物質であって、前記リチウムイオン二次電池用混合正極活物質に含まれる(a)リチウムイオン二次電池用正極活物質の含有量が10質量%以上であることを特徴とするリチウムイオン二次電池用混合正極活物質。
[4][2]又は[3]に記載のリチウムイオン二次電池用正極活物質を含むことを特徴とする電極箔。
[5][3]に記載の電極箔を備えることを特徴とするリチウムイオン二次電池。 That is, the positive electrode active material for a secondary battery according to the present invention, which advantageously solves the above problems, is
[1] A positive electrode active material for a lithium ion secondary battery having excellent charge/discharge cycle characteristics and rate characteristics,
The (0001) plane of the positive electrode active material crystal made of a hexagonal crystal has a preferred orientation in which it is assembled in one axial direction, and a pole figure created under the conditions of the following relational formula (1) based on crystal orientation information of the (0001) plane of the positive electrode active material crystal measured by electron backscatter diffraction (EBSD) method is:
The positive electrode active material is characterized in that the maximum value of the degree of preferred orientation (MUD) of the (0001) plane of the crystals of the positive electrode active material satisfies the following relational expression (2).
[Equation 1]
Half width (half width) = 10° ... (1)
[Equation 2]
30≦MUD≦200... (2)
[2] The positive electrode active material for a lithium ion secondary battery according to [1], which is composed of a chemical composition represented by the following general formula (3):
[Chemical formula 1]
LiNi 1-xyz C x A y B z O 2 ... (3)
In the above general formula (1), A represents Mn or Al, B represents Mg or Zr, x represents 0.00≦x≦0.33, y represents 0.00≦y≦0.33, and z represents 0.00≦y≦0.10.
[3] A mixed positive electrode active material for a lithium ion secondary battery, comprising (a) the positive electrode active material for a lithium ion secondary battery according to [2] and (b) a mixed positive electrode active material for a lithium ion secondary battery, wherein the mixed positive electrode active material for a lithium ion secondary battery contains (a) the positive electrode active material for a lithium ion secondary battery in an amount of 10 mass% or more.
[4] An electrode foil comprising the positive electrode active material for a lithium ion secondary battery according to [2] or [3].
[5] A lithium ion secondary battery comprising the electrode foil according to [3].
本発明によれば、初期放電容量が高いことはもとより、高容量、高充放電サイクル特性、高レート特性を備えたリチウムイオン二次電池を得ることができる。
The present invention makes it possible to obtain a lithium-ion secondary battery that has not only a high initial discharge capacity, but also high capacity, high charge/discharge cycle characteristics, and high rate characteristics.
以下、本発明の実施の形態について具体的に説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
Below, the embodiments of the present invention are specifically described. Note that the drawings are schematic and may differ from the actual product. Furthermore, the following embodiments are intended to exemplify devices and methods for embodying the technical ideas of the present invention, and are not intended to specify the configurations as described below. In other words, the technical ideas of the present invention can be modified in various ways within the technical scope described in the claims.
[第1実施形態]
本実施形態に係るリチウムイオン二次電池用正極活物質について説明する。本実施形態に係るリチウムイオン二次電池用正極活物質(以下、「正極活物質」という場合がある。)正極活物質は、充放電サイクル特性及びレート特性に優れたリチウムイオン二次電池を提供することができるものであって、下記関係式(1)及び関係式(2)の関係を満たす結晶配向を有することを特徴とする。すなわち、本実施形態に係るリチウムイオン二次電池用正極活物質は、六方晶からなる正極活物質結晶の(0001)面が一軸方向へ集合する優先配向を有しており、電子線後方散乱回折法(EBSD)によって測定された前記正極活物質結晶の(0001)面の結晶方位情報に基づいて、下記関係式(1)の条件にて作成される極点図において、前記正極活物質結晶の(0001)面の結晶方位を示す優先配向度(MUD)の最大値が下記関係式(2)を満たすことを特徴とする。 [First embodiment]
The positive electrode active material for lithium ion secondary batteries according to this embodiment will be described. The positive electrode active material for lithium ion secondary batteries according to this embodiment (hereinafter, sometimes referred to as "positive electrode active material") can provide a lithium ion secondary battery with excellent charge/discharge cycle characteristics and rate characteristics, and is characterized by having a crystal orientation that satisfies the relationships of the following relational formulas (1) and (2). That is, the positive electrode active material for lithium ion secondary batteries according to this embodiment has a preferred orientation in which the (0001) plane of the positive electrode active material crystal made of a hexagonal crystal is assembled in one axial direction, and is characterized in that in a pole figure created under the conditions of the following relational formula (1) based on the crystal orientation information of the (0001) plane of the positive electrode active material crystal measured by electron backscatter diffraction (EBSD), the maximum value of the preferred orientation degree (MUD) indicating the crystal orientation of the (0001) plane of the positive electrode active material crystal satisfies the following relational formula (2).
本実施形態に係るリチウムイオン二次電池用正極活物質について説明する。本実施形態に係るリチウムイオン二次電池用正極活物質(以下、「正極活物質」という場合がある。)正極活物質は、充放電サイクル特性及びレート特性に優れたリチウムイオン二次電池を提供することができるものであって、下記関係式(1)及び関係式(2)の関係を満たす結晶配向を有することを特徴とする。すなわち、本実施形態に係るリチウムイオン二次電池用正極活物質は、六方晶からなる正極活物質結晶の(0001)面が一軸方向へ集合する優先配向を有しており、電子線後方散乱回折法(EBSD)によって測定された前記正極活物質結晶の(0001)面の結晶方位情報に基づいて、下記関係式(1)の条件にて作成される極点図において、前記正極活物質結晶の(0001)面の結晶方位を示す優先配向度(MUD)の最大値が下記関係式(2)を満たすことを特徴とする。 [First embodiment]
The positive electrode active material for lithium ion secondary batteries according to this embodiment will be described. The positive electrode active material for lithium ion secondary batteries according to this embodiment (hereinafter, sometimes referred to as "positive electrode active material") can provide a lithium ion secondary battery with excellent charge/discharge cycle characteristics and rate characteristics, and is characterized by having a crystal orientation that satisfies the relationships of the following relational formulas (1) and (2). That is, the positive electrode active material for lithium ion secondary batteries according to this embodiment has a preferred orientation in which the (0001) plane of the positive electrode active material crystal made of a hexagonal crystal is assembled in one axial direction, and is characterized in that in a pole figure created under the conditions of the following relational formula (1) based on the crystal orientation information of the (0001) plane of the positive electrode active material crystal measured by electron backscatter diffraction (EBSD), the maximum value of the preferred orientation degree (MUD) indicating the crystal orientation of the (0001) plane of the positive electrode active material crystal satisfies the following relational formula (2).
[数1]
半幅値(半値幅)=10° ・・・ (1) [Equation 1]
Half width (half width) = 10° ... (1)
半幅値(半値幅)=10° ・・・ (1) [Equation 1]
Half width (half width) = 10° ... (1)
[数2]
30≦MUD≦200 ・・・ (2) [Equation 2]
30≦MUD≦200... (2)
30≦MUD≦200 ・・・ (2) [Equation 2]
30≦MUD≦200... (2)
まず、本実施形態に係るリチウムイオン二次電池用正極活物質を開発するに至るまでの経緯について説明する。第1に、これまでは高容量で高サイクル特性を有するリチウムイオン二次電池を製造するためには、当該リチウムイオン二次電池を構成する正極活物質の高充填密度化が重要であることが基本である。
First, the process leading up to the development of the positive electrode active material for lithium ion secondary batteries according to this embodiment will be described. First, in order to manufacture lithium ion secondary batteries with high capacity and high cycle characteristics, it has been essential to increase the packing density of the positive electrode active material that constitutes the lithium ion secondary battery.
このため、(I)上記正極活物質の形状を球形に近い粒子とすること、(II)上記正極活物質を構成する全粒子が均一な組成・形状であること、(III)上記正極活物質の形状は、極小微粒子ではなく、ある程度の大きさと高粒子強度を有することが重要であるとされていた。
For this reason, it was considered important that (I) the shape of the positive electrode active material be a nearly spherical particle, (II) all particles constituting the positive electrode active material have a uniform composition and shape, and (III) the shape of the positive electrode active material is not that of extremely small particles, but has a certain degree of size and high particle strength.
しかしながら、非特許文献1に記載された特殊なワイヤー状の形態を有する正極活物質を用いて製造したリチウムイオン二次電池は、正極活物質の形状が球形に近いものを用いて製造したリチウムイオン二次電池に比較して、極めて優れたレート特性やサイクル特性を有することが推測される。
However, it is speculated that a lithium ion secondary battery manufactured using the cathode active material having the special wire-like shape described in Non-Patent Document 1 has extremely superior rate characteristics and cycle characteristics compared to a lithium ion secondary battery manufactured using a cathode active material having a shape closer to a sphere.
第2に、LiNi(1-x-y)CoxMnyO2系、LiNi(1-x-y)CoxAlyO2系の正極活物質の前駆体であるNi(1-x-y)CoxMny系の複合水酸化物又は酸化物は、上記前駆体を構成する複数の板状の結晶が凝集してランダムな方向に成長している。その結果、このような前駆体を用いて製造された正極活物質は、当該リチウムイオン二次電池が充放電を繰り返すことより、正極活物質粒子の内部にクラック(ひび割れ)が発生する。
Secondly, in the Ni (1-xy) CoxMny composite hydroxide or oxide , which is the precursor of the LiNi (1-xy)CoxAlyO2-based and LiNi(1-xy) CoxAlyO2 - based positive electrode active material, the plate - like crystals constituting the precursor are aggregated and grow in random directions. As a result, the positive electrode active material produced using such a precursor has cracks (fissures) inside the positive electrode active material particles when the lithium ion secondary battery is repeatedly charged and discharged.
正極活物質を構成する粒子の内部に発生するクラック(ひび割れ)は、当該正極活物質を含むリチウムイオン二次電池のサイクル特性が低下する一因とされている。すなわち、リチウムイオン二次電池のサイクル特性の低下は、正極活物質からなる二次粒子がランダムな方向を向いた一次粒子結晶の集合によって構成されていることに起因する。つまり、リチウムイオン二次電池の充放電に伴い、正極物質を構成する粒子の結晶の膨張収縮の方向に規則性が無いため、粒子の内部にクラックが発生するものと考えられる。
Cracks that occur inside the particles that make up the positive electrode active material are believed to be one of the causes of the deterioration of the cycle characteristics of lithium-ion secondary batteries that contain that positive electrode active material. In other words, the deterioration of the cycle characteristics of lithium-ion secondary batteries is caused by the fact that the secondary particles made up of the positive electrode active material are composed of a collection of primary particle crystals that are oriented in random directions. In other words, it is thought that cracks occur inside the particles because there is no regularity in the direction of expansion and contraction of the crystals of the particles that make up the positive electrode material as the lithium-ion secondary battery is charged and discharged.
すなわち、正極活物質内部に発生するクラック(ひび割れ)は、当該正極活物質を含むリチウムイオン二次電池のサイクル特性が低下する一因とされている。クラックの原因はリチウムイオン二次電池の充放電反応に伴う正極活物質の結晶の膨張収縮によって発生するとされる。特に、無数の一次粒子の集合体である二次粒子状の正極活物質の粒子では、当該正極活物質の粒子を用いたリチウムイオン二次電池の充放電を行う際、二次粒子を構成する無数の一次粒子がそれぞれ個別に異なる方向へ膨張収縮するためクラックが発生しやすいと言える。
In other words, cracks that occur inside the positive electrode active material are considered to be one of the factors that deteriorate the cycle characteristics of lithium-ion secondary batteries that contain that positive electrode active material. The cracks are said to be caused by the expansion and contraction of the crystals of the positive electrode active material that accompanies the charge and discharge reactions of the lithium-ion secondary battery. In particular, with secondary particle-like positive electrode active material particles that are an aggregate of countless primary particles, it can be said that cracks are likely to occur when a lithium-ion secondary battery using the particles of that positive electrode active material is charged and discharged because the countless primary particles that make up the secondary particles each individually expand and contract in different directions.
しかしながら、高容量でCo使用量が少ないLi-Ni-Co-Al系の正極活物質及びLi-Ni-Co-Mn系の正極活物質は、LiCoO2とは異なり無数の結晶粒からなる二次粒子であることが一般的である。このような正極活物質を構成する結晶粒の結晶方位はランダムな配向をしており、配向制御はきわめて困難であるとされている。この結晶粒の結晶方位の配向制御が困難である要因は、前駆体であるNi-CoおよびNi-Co-AlおよびNi-Co-Mnなどの複合水酸化物の晶癖に起因する。
However, Li-Ni-Co-Al-based positive electrode active materials and Li-Ni-Co-Mn-based positive electrode active materials, which have high capacity and low Co usage, are generally secondary particles consisting of countless crystal grains, unlike LiCoO2 . The crystal orientation of the crystal grains constituting such positive electrode active materials is randomly oriented, and it is considered that it is extremely difficult to control the orientation. The reason why it is difficult to control the orientation of the crystal orientation of the crystal grains is due to the crystal habit of the precursor composite hydroxides such as Ni-Co, Ni-Co-Al, and Ni-Co-Mn.
このような技術的観点から、高容量化に優れたリチウムイオン二次電池を製造するために必要となる正極活物質には、Ni含量が高い材料系を用い、正極活物質粒子の結晶配向性を制御し正極活物質粒子が充放電反応を行う際の体積変化の方向を制御することで、サイクル特性低下の原因とされる粒子の内部に発生するクラック(ひび割れ)の発生を抑制する検討を実施した。
From this technical perspective, a material with a high Ni content is used for the positive electrode active material required to manufacture lithium-ion secondary batteries with excellent high capacity. By controlling the crystal orientation of the positive electrode active material particles and controlling the direction of volume change when the positive electrode active material particles undergo charge and discharge reactions, the researchers investigated how to suppress the occurrence of cracks that occur inside the particles, which are believed to be the cause of reduced cycle characteristics.
その結果、Ni含量が高く高容量化が期待できるLi-Ni-Co-Al系及びLi-Ni-Co-Mn系の正極活物質であり複数の結晶粒からなる二次粒子であっても、正極活物質結晶の(0001)面を同一軸方向に配向させた優先配向を持たせることでサイクル特性の優れたリチウムイオン二次電池を得られることを見出した。
As a result, they discovered that even with Li-Ni-Co-Al and Li-Ni-Co-Mn positive electrode active materials, which have a high Ni content and are expected to have high capacity, and which are secondary particles consisting of multiple crystal grains, it is possible to obtain a lithium-ion secondary battery with excellent cycle characteristics by giving the positive electrode active material crystals a preferred orientation in which the (0001) planes are oriented in the same axial direction.
なお、本発明者等は、リチウムイオン二次電池用正極活物質であるLi-Ni-Co-Al系やLi-Ni-Co-Mn系の複合酸化物を用いて、上記の優先配向を持たせることは極めて困難であることを確認している。
The inventors have confirmed that it is extremely difficult to achieve the above-mentioned preferred orientation using Li-Ni-Co-Al or Li-Ni-Co-Mn composite oxides, which are positive electrode active materials for lithium ion secondary batteries.
そこで、この正極活物質の前駆体であるNi-Co系、Ni-Co-Al系およびNi-Co-Mn系の複合水酸化物について、詳細に検討した。
その結果、核生成及び結晶成長の過程を制御することで六方晶からなる複合水酸化物結晶の(0001)面が同一軸方向に集中する優先配向を有する複合水酸化物粒子を得ることができた。
そして、複合水酸化物結晶の(0001)面が同一軸方向に集中する優先配向を有する水酸化物粒子をリチウムイオン二次電池用正極活物質の前駆体とすることにより、正極活物質結晶の(0001)面に優先配向を有するリチウムイオン二次電池用正極活物質が得られ、優れた電池特性を有することを見出した。 Therefore, the Ni--Co based, Ni--Co--Al based and Ni--Co--Mn based composite hydroxides, which are precursors of this positive electrode active material, were investigated in detail.
As a result, by controlling the nucleation and crystal growth processes, composite hydroxide particles with a preferred orientation in which the (0001) faces of hexagonal composite hydroxide crystals are concentrated in the same axial direction could be obtained.
The inventors also discovered that by using hydroxide particles having a preferred orientation in which the (0001) planes of the composite hydroxide crystals are concentrated in the same axial direction as a precursor of a positive electrode active material for a lithium ion secondary battery, a positive electrode active material for a lithium ion secondary battery having a preferred orientation in the (0001) plane of the positive electrode active material crystals can be obtained, and that the positive electrode active material has excellent battery characteristics.
その結果、核生成及び結晶成長の過程を制御することで六方晶からなる複合水酸化物結晶の(0001)面が同一軸方向に集中する優先配向を有する複合水酸化物粒子を得ることができた。
そして、複合水酸化物結晶の(0001)面が同一軸方向に集中する優先配向を有する水酸化物粒子をリチウムイオン二次電池用正極活物質の前駆体とすることにより、正極活物質結晶の(0001)面に優先配向を有するリチウムイオン二次電池用正極活物質が得られ、優れた電池特性を有することを見出した。 Therefore, the Ni--Co based, Ni--Co--Al based and Ni--Co--Mn based composite hydroxides, which are precursors of this positive electrode active material, were investigated in detail.
As a result, by controlling the nucleation and crystal growth processes, composite hydroxide particles with a preferred orientation in which the (0001) faces of hexagonal composite hydroxide crystals are concentrated in the same axial direction could be obtained.
The inventors also discovered that by using hydroxide particles having a preferred orientation in which the (0001) planes of the composite hydroxide crystals are concentrated in the same axial direction as a precursor of a positive electrode active material for a lithium ion secondary battery, a positive electrode active material for a lithium ion secondary battery having a preferred orientation in the (0001) plane of the positive electrode active material crystals can be obtained, and that the positive electrode active material has excellent battery characteristics.
本発明のリチウムイオン二次電池用正極活物質は、六方晶からなる正極活物質粒子を構成する正極活物質結晶の(0001)面が同一軸方向に配向した優先配向を有する構造体であり、上記の知見に基づく正極活物質結晶の前駆体として(0001)面に優先配向を有する前駆体を用いることで得られる。さらに、本発明のリチウムイオン二次電池用正極活物質は、この前駆体にLi化合物と、必要であればAl化合物、Zr化合物、Mg化合物等とを混合し、焼成して得られ、多数の複合酸化物からなる結晶粒が集合した構造を有している。本発明のリチウムイオン二次電池用正極活物質は、二次粒子体でありながら優先配向を有している。
The positive electrode active material for lithium ion secondary batteries of the present invention is a structure having a preferred orientation in which the (0001) planes of the positive electrode active material crystals constituting the positive electrode active material particles made of hexagonal crystals are oriented in the same axial direction, and is obtained by using a precursor having a preferred orientation in the (0001) plane as a precursor of the positive electrode active material crystals based on the above findings. Furthermore, the positive electrode active material for lithium ion secondary batteries of the present invention is obtained by mixing this precursor with a Li compound and, if necessary, an Al compound, a Zr compound, an Mg compound, etc., and firing it, and has a structure in which crystal grains made of a large number of composite oxides are assembled. The positive electrode active material for lithium ion secondary batteries of the present invention has a preferred orientation despite being a secondary particle body.
本実施形態のリチウムイオン二次電池用正極活物質は、複合酸化物からなる結晶粒もしくは結晶粒が複数結合して形成された構造体であればよく、複合酸化物からなる正極活物質粒子の(0001)面に優先配向を有していればよい。
The positive electrode active material for lithium ion secondary batteries of this embodiment may be a crystal grain made of a composite oxide or a structure formed by bonding multiple crystal grains, and may have a preferred orientation in the (0001) plane of the positive electrode active material particles made of a composite oxide.
本実施形態に係るリチウムイオン二次電池用正極活物質は、下記関係式(1)及び関係式(2)で表される特定の結晶配向を有する。すなわち、本実施形態に係るリチウムイオン二次電池用正極活物質は、六方晶からなる正極活物質結晶の(0001)面が一軸方向へ集合する優先配向を有しており、その結晶配向に関する特徴は、電子線後方散乱回折法(EBSD)によって測定された、前記正極活物質結晶の(0001)面の結晶方位情報に基づいて下記関係式(1)に示される半幅値設定にて作成される極点図にて得られる、
前記正極活物質結晶の(0001)面の結晶方位を示す優先配向度(MUD(multiple uniform density))の最大値が下記関係式(2)を満たすことを特徴とする。 The positive electrode active material for lithium ion secondary batteries according to this embodiment has a specific crystal orientation represented by the following relational formulas (1) and (2). That is, the positive electrode active material for lithium ion secondary batteries according to this embodiment has a preferred orientation in which the (0001) planes of the positive electrode active material crystals made of hexagonal crystals are assembled in one axial direction, and the characteristics of the crystal orientation are obtained from a pole figure created with the half-width setting represented by the following relational formula (1) based on crystal orientation information of the (0001) planes of the positive electrode active material crystals measured by electron backscatter diffraction (EBSD),
The positive electrode active material is characterized in that the maximum value of a preferred orientation degree (MUD (multiple uniform density)) indicating the crystal orientation of the (0001) plane of the positive electrode active material crystal satisfies the following relational expression (2).
前記正極活物質結晶の(0001)面の結晶方位を示す優先配向度(MUD(multiple uniform density))の最大値が下記関係式(2)を満たすことを特徴とする。 The positive electrode active material for lithium ion secondary batteries according to this embodiment has a specific crystal orientation represented by the following relational formulas (1) and (2). That is, the positive electrode active material for lithium ion secondary batteries according to this embodiment has a preferred orientation in which the (0001) planes of the positive electrode active material crystals made of hexagonal crystals are assembled in one axial direction, and the characteristics of the crystal orientation are obtained from a pole figure created with the half-width setting represented by the following relational formula (1) based on crystal orientation information of the (0001) planes of the positive electrode active material crystals measured by electron backscatter diffraction (EBSD),
The positive electrode active material is characterized in that the maximum value of a preferred orientation degree (MUD (multiple uniform density)) indicating the crystal orientation of the (0001) plane of the positive electrode active material crystal satisfies the following relational expression (2).
[数1]
半幅値(半値幅)=10° ・・・ (1) [Equation 1]
Half width (half width) = 10° ... (1)
半幅値(半値幅)=10° ・・・ (1) [Equation 1]
Half width (half width) = 10° ... (1)
[数2]
30≦MUD≦200 ・・・ (2) [Equation 2]
30≦MUD≦200... (2)
30≦MUD≦200 ・・・ (2) [Equation 2]
30≦MUD≦200... (2)
本実施形態に係るリチウムイオン二次電池用正極活物質は、六方晶からなる。リチウムイオン二次電池用正極活物質が六方晶であることにより、リチウムインターカレーション反応が容易となるため好ましい。ここで、リチウムインターカレーション反応とは、充放電反応時にリチウムイオンが結晶内に出入りできることを意味する。さらに、本実施形態に係るリチウムイオン二次電池用正極活物質は、正極活物質結晶の(0001)面が一軸方向へ集合する優先配向を有している。正極活物質結晶の(0001)面を優先配向させることにより、リチウムインターカレーション反応効率の向上および充放電反応の繰り返しによるクラックの抑制が期待できるため好ましい。ここで、一軸方向とは、正極活物質粒子の形状にかかわらずいずれの空間座標軸方向であってもよい。例えば、一軸方向は、対象粒子の中心を原点とする3次元空間における直交座標系において定義されるx軸、y軸、z軸もしくはこれらを複合するいずれかの直交座標軸方向である。
このように、リチウムイオン二次電池用正極活物質の(0001)面が一軸方向に集合することによって、本実施形態に係るリチウムイオン二次電池用正極活物質は、特定の優先配向を有することとなる。 The positive electrode active material for lithium ion secondary batteries according to this embodiment is made of a hexagonal crystal. The positive electrode active material for lithium ion secondary batteries is preferably made of a hexagonal crystal, since it facilitates lithium intercalation reaction. Here, the lithium intercalation reaction means that lithium ions can enter and leave the crystal during charge and discharge reactions. Furthermore, the positive electrode active material for lithium ion secondary batteries according to this embodiment has a preferred orientation in which the (0001) plane of the positive electrode active material crystal is assembled in a uniaxial direction. By preferentially orienting the (0001) plane of the positive electrode active material crystal, it is expected to improve the lithium intercalation reaction efficiency and suppress cracks due to repeated charge and discharge reactions, which is preferable. Here, the uniaxial direction may be any spatial coordinate axis direction regardless of the shape of the positive electrode active material particle. For example, the uniaxial direction is the x-axis, y-axis, z-axis, or any orthogonal coordinate axis direction that combines these, which is defined in an orthogonal coordinate system in a three-dimensional space with the center of the target particle as the origin.
In this way, the (0001) planes of the positive electrode active material for a lithium ion secondary battery are assembled in one axial direction, so that the positive electrode active material for a lithium ion secondary battery according to this embodiment has a specific preferred orientation.
このように、リチウムイオン二次電池用正極活物質の(0001)面が一軸方向に集合することによって、本実施形態に係るリチウムイオン二次電池用正極活物質は、特定の優先配向を有することとなる。 The positive electrode active material for lithium ion secondary batteries according to this embodiment is made of a hexagonal crystal. The positive electrode active material for lithium ion secondary batteries is preferably made of a hexagonal crystal, since it facilitates lithium intercalation reaction. Here, the lithium intercalation reaction means that lithium ions can enter and leave the crystal during charge and discharge reactions. Furthermore, the positive electrode active material for lithium ion secondary batteries according to this embodiment has a preferred orientation in which the (0001) plane of the positive electrode active material crystal is assembled in a uniaxial direction. By preferentially orienting the (0001) plane of the positive electrode active material crystal, it is expected to improve the lithium intercalation reaction efficiency and suppress cracks due to repeated charge and discharge reactions, which is preferable. Here, the uniaxial direction may be any spatial coordinate axis direction regardless of the shape of the positive electrode active material particle. For example, the uniaxial direction is the x-axis, y-axis, z-axis, or any orthogonal coordinate axis direction that combines these, which is defined in an orthogonal coordinate system in a three-dimensional space with the center of the target particle as the origin.
In this way, the (0001) planes of the positive electrode active material for a lithium ion secondary battery are assembled in one axial direction, so that the positive electrode active material for a lithium ion secondary battery according to this embodiment has a specific preferred orientation.
次に、本実施形態に係るリチウムイオン二次電池用正極活物質は、電子線後方散乱回折法(EBSD)によって測定された前記正極活物質結晶の(0001)面の結晶方位情報に基づいて下記関係式(1)に示される半幅値設定にて作成される極点図にて得られる、前記正極活物質結晶の(0001)面の結晶方位を示す優先配向度(MUD(multiple uniform density))が下記関係式(2)を満たすピーク点を有している。
Next, the positive electrode active material for a lithium ion secondary battery according to this embodiment has a peak point where the preferred orientation degree (MUD (multiple uniform density)) indicating the crystal orientation of the (0001) plane of the positive electrode active material crystal, obtained from a pole figure created with the half-width setting shown in the following relational expression (1) based on the crystal orientation information of the (0001) plane of the positive electrode active material crystal measured by electron backscatter diffraction (EBSD), satisfies the following relational expression (2).
[数1]
半幅値(半値幅)=10° ・・・ (1) [Equation 1]
Half width (half width) = 10° ... (1)
半幅値(半値幅)=10° ・・・ (1) [Equation 1]
Half width (half width) = 10° ... (1)
[数2]
30≦MUD≦200 ・・・ (2) [Equation 2]
30≦MUD≦200... (2)
30≦MUD≦200 ・・・ (2) [Equation 2]
30≦MUD≦200... (2)
半幅値は、半値幅としても定義される。半幅値(°)は、正規分布などの幅の広がりを設定する数値であり、必要に応じて任意の値を用いることができる。本実施形態では半幅値を10°に限定し評価を行った。電子線後方散乱回折法(EBSD)では結晶系や結晶方位に関する情報が得られる。また、得られた解析情報をもとに極点図を作成することができる。極点図からはサンプル断面に集合組織(特定の結晶面の集合)があるかを可視化することができる。本実施形態では(0001)面を半幅値が10°の設定にて極点図の作成を行い評価した。
The half-width value is also defined as the half-width. The half-width value (°) is a value that sets the spread of the width of a normal distribution, etc., and any value can be used as necessary. In this embodiment, the half-width value was limited to 10° for evaluation. Electron backscatter diffraction (EBSD) can obtain information about the crystal system and crystal orientation. In addition, a pole figure can be created based on the obtained analytical information. From the pole figure, it is possible to visualize whether there is a texture (a collection of specific crystal planes) on the sample cross section. In this embodiment, a pole figure was created and evaluated with the half-width value set to 10° for the (0001) plane.
半幅値を10°に限定した理由は、以下の通りである。
半幅値(°)は、極点図作成に用いるデフォルト値のひとつである。この半幅値(°)の設定は、極点図の作成結果、およびMUD(multiple uniform density))の数値に影響する。このため複数のデータを比較する場合、すべての極点図に同じ半幅値を使用する必要がある。よって、本実施形態ではデフォルト値である半幅値10°に条件を固定して評価を行った。半幅値が10°未満であると、極点図作成時に(0001)面の方位を示す情報が測定面の荒れなどによるノイズの影響を受けやすくなるため好ましくない。
半幅値が10°を超えると、極点図作成時に(0001)面の方位を示す情報が曖昧になり優先配向の有無を正しくとらえることができなくなるため好ましくない。 The reason for limiting the half width to 10° is as follows.
The half-width value (°) is one of the default values used to create pole figures. The setting of this half-width value (°) affects the results of creating pole figures and the numerical value of MUD (multiple uniform density). For this reason, when comparing multiple pieces of data, it is necessary to use the same half-width value for all pole figures. Therefore, in this embodiment, the evaluation was performed with the condition fixed at the default half-width value of 10°. If the half-width value is less than 10°, the information indicating the orientation of the (0001) plane when creating the pole figures is easily affected by noise due to roughness of the measurement surface, which is not preferable.
If the half-width exceeds 10°, the information indicating the orientation of the (0001) plane becomes unclear when creating a pole figure, and it becomes impossible to correctly determine whether or not there is a preferred orientation, which is not preferable.
半幅値(°)は、極点図作成に用いるデフォルト値のひとつである。この半幅値(°)の設定は、極点図の作成結果、およびMUD(multiple uniform density))の数値に影響する。このため複数のデータを比較する場合、すべての極点図に同じ半幅値を使用する必要がある。よって、本実施形態ではデフォルト値である半幅値10°に条件を固定して評価を行った。半幅値が10°未満であると、極点図作成時に(0001)面の方位を示す情報が測定面の荒れなどによるノイズの影響を受けやすくなるため好ましくない。
半幅値が10°を超えると、極点図作成時に(0001)面の方位を示す情報が曖昧になり優先配向の有無を正しくとらえることができなくなるため好ましくない。 The reason for limiting the half width to 10° is as follows.
The half-width value (°) is one of the default values used to create pole figures. The setting of this half-width value (°) affects the results of creating pole figures and the numerical value of MUD (multiple uniform density). For this reason, when comparing multiple pieces of data, it is necessary to use the same half-width value for all pole figures. Therefore, in this embodiment, the evaluation was performed with the condition fixed at the default half-width value of 10°. If the half-width value is less than 10°, the information indicating the orientation of the (0001) plane when creating the pole figures is easily affected by noise due to roughness of the measurement surface, which is not preferable.
If the half-width exceeds 10°, the information indicating the orientation of the (0001) plane becomes unclear when creating a pole figure, and it becomes impossible to correctly determine whether or not there is a preferred orientation, which is not preferable.
極点図の作成は、EBSD検出器により取得した菊池パターンから得られる個々のポイントの結晶情報を、ガウス関数を用いて面積に変換し、ステレオ投影することで作成される。ここで、EBSD検出器により取得した菊池パターンとは、電子を結晶性サンプルに照射し得られる反射電子を投影することで得られる図形を意味する。
本実施形態に係るリチウムイオン二次電池用正極活物質粒子の優先配向度(MUD(multiple uniform density))の評価は(0001)面に注目して作成した極点図にて行う。正極活物質結晶の(0001)面の結晶方位を示す優先配向度(MUD(multiple uniform density))とは、極点図の情報により算出される数値である。評価対象である平面(後述する本実施例ではサンプル断面)において(0001)面の分布を示しており、配向度を評価する指標と定義される。 The pole figure is created by converting the crystal information of each point obtained from the Kikuchi pattern acquired by the EBSD detector into an area using a Gaussian function and stereoscopically projecting it. Here, the Kikuchi pattern acquired by the EBSD detector means a figure obtained by irradiating a crystalline sample with electrons and projecting the reflected electrons.
The preferred orientation degree (MUD (multiple uniform density)) of the positive electrode active material particles for lithium ion secondary batteries according to this embodiment is evaluated using a pole figure created focusing on the (0001) plane. The preferred orientation degree (MUD (multiple uniform density)) indicating the crystal orientation of the (0001) plane of the positive electrode active material crystal is a numerical value calculated from the information of the pole figure. It indicates the distribution of the (0001) plane on the plane to be evaluated (a sample cross section in this embodiment described later), and is defined as an index for evaluating the degree of orientation.
本実施形態に係るリチウムイオン二次電池用正極活物質粒子の優先配向度(MUD(multiple uniform density))の評価は(0001)面に注目して作成した極点図にて行う。正極活物質結晶の(0001)面の結晶方位を示す優先配向度(MUD(multiple uniform density))とは、極点図の情報により算出される数値である。評価対象である平面(後述する本実施例ではサンプル断面)において(0001)面の分布を示しており、配向度を評価する指標と定義される。 The pole figure is created by converting the crystal information of each point obtained from the Kikuchi pattern acquired by the EBSD detector into an area using a Gaussian function and stereoscopically projecting it. Here, the Kikuchi pattern acquired by the EBSD detector means a figure obtained by irradiating a crystalline sample with electrons and projecting the reflected electrons.
The preferred orientation degree (MUD (multiple uniform density)) of the positive electrode active material particles for lithium ion secondary batteries according to this embodiment is evaluated using a pole figure created focusing on the (0001) plane. The preferred orientation degree (MUD (multiple uniform density)) indicating the crystal orientation of the (0001) plane of the positive electrode active material crystal is a numerical value calculated from the information of the pole figure. It indicates the distribution of the (0001) plane on the plane to be evaluated (a sample cross section in this embodiment described later), and is defined as an index for evaluating the degree of orientation.
本実施形態のリチウムイオン二次電池用正極活物質の正極活物質粒子のMUDは、30以上、200未満であることが好ましい。上記正極活物質の正極活物質粒子のMUDが30以上であれば、正極活物質結晶の(0001)面の優先配向により充放電にともなう結晶の膨張収縮の方位に規則性を持たせることが出来、クラック発生を抑制できるため好ましい。なお、MUDが200以上の正極活物質では合成時の生産性が低下するため好ましくない。
The MUD of the positive electrode active material particles of the positive electrode active material for lithium ion secondary batteries of this embodiment is preferably 30 or more and less than 200. If the MUD of the positive electrode active material particles of the above positive electrode active material is 30 or more, the preferential orientation of the (0001) plane of the positive electrode active material crystals can be made regular in the orientation of the expansion and contraction of the crystals accompanying charge and discharge, and the occurrence of cracks can be suppressed, which is preferable. However, a positive electrode active material with a MUD of 200 or more is not preferable because the productivity during synthesis decreases.
本実施形態に係るリチウムイオン二次電池用正極活物質が従来から提案されている正極活物質結晶の(0001)面に優先配向を有さない正極活物質と比較して、リチウムイオン二次電池用正極活物質に要求される各種特性に優れているのは、次の理由によると推測される。
The reason why the positive electrode active material for lithium ion secondary batteries according to this embodiment is superior to conventionally proposed positive electrode active materials that do not have a preferred orientation in the (0001) plane of the positive electrode active material crystal is presumably due to the following reasons.
リチウムイオン二次電池の充電時及び放電時におけるリチウムイオンは、当該正極活物質の特定の結晶面のみから挿入脱離を行う。このリチウムイオンの結晶内への挿入量に対応して正極活物質結晶の結晶軸のc軸方向への体積膨張収縮が発生する。一般的にLi-Ni-Co-Al系やLi-Ni-Co-Mn系の複合酸化物からなる正極活物質では複数の結晶粒から構成される二次粒子状の構造的特徴を有する。この一般的なLi-Ni-Co-Al系やLi-Ni-Co-Mn系の複合酸化物からなる正極活物質では各結晶粒のc軸の方位に規則性が無いため、充放電反応に伴う体積変化の向きにも規則性をともなわない。これにより隣接する結晶粒同士が干渉しストレスによりクラックが発生する。
When a lithium-ion secondary battery is charged or discharged, lithium ions are inserted and removed only from specific crystal planes of the positive electrode active material. The volume of the positive electrode active material expands and contracts in the c-axis direction of the crystal axis in response to the amount of lithium ions inserted into the crystal. Generally, positive electrode active materials made of Li-Ni-Co-Al or Li-Ni-Co-Mn composite oxides have a secondary particle-like structural feature composed of multiple crystal grains. In these general positive electrode active materials made of Li-Ni-Co-Al or Li-Ni-Co-Mn composite oxides, the orientation of the c-axis of each crystal grain is irregular, so there is no regularity in the direction of the volume change accompanying the charge and discharge reaction. This causes adjacent crystal grains to interfere with each other, causing cracks due to stress.
一方、本実施形態に関わる正極活物質では複数の結晶粒から構成される二次粒子状の構造的特徴を有するLi-Ni-Co-Al系やLi-Ni-Co-Mn系の複合酸化物からなる正極活物質でありながら正極活物質結晶のc軸(0001)面の方位が一軸方向に整列した優先配向を有していることで体積変化の方位にも一様な規則性が存在する。これにより結晶粒同士の干渉が軽減されクラック発生が抑制されるため従来のリチウムイオン二次電池用正極活物質を用いたリチウムイオン二次電池に比較して優れたものとなる。これによりサイクル特性が向上する。
On the other hand, the positive electrode active material according to this embodiment is a positive electrode active material made of Li-Ni-Co-Al or Li-Ni-Co-Mn composite oxides that have secondary particle-like structural characteristics composed of multiple crystal grains, but because the orientation of the c-axis (0001) plane of the positive electrode active material crystals is aligned in a uniaxial direction, there is a uniform regularity in the orientation of the volume change. This reduces interference between crystal grains and suppresses the occurrence of cracks, making it superior to lithium ion secondary batteries that use conventional positive electrode active materials for lithium ion secondary batteries. This improves cycle characteristics.
さらに、本実施形態に係るリチウムイオン二次電池用正極活物質は、構成する結晶粒同士の結晶方位の配向に規則性があるため隣接する結晶粒同士の界面でのリチウムイオンの拡散が容易であることは明白である。
Furthermore, in the positive electrode active material for lithium ion secondary batteries according to this embodiment, the crystal grains constituting the material have regularity in their crystal orientation, and therefore it is clear that lithium ions can easily diffuse at the interfaces between adjacent crystal grains.
その結果、本実施形態に係るリチウムイオン二次電池用正極活物質は従来のリチウムイオン二次電池用正極活物質を用いたリチウムイオン二次電池と比べ高いレート特性を有する。
As a result, the positive electrode active material for lithium ion secondary batteries according to this embodiment has higher rate characteristics than lithium ion secondary batteries that use conventional positive electrode active materials for lithium ion secondary batteries.
次に、本実施形態に係るリチウムイオン二次電池用正極活物質の製造方法について説明する。本実施形態に係るリチウムイオン二次電池用正極活物質の製造方法は、リチウムイオン二次電池用正極活物質の前駆体を製造する工程(i)と、前記前駆体と、Li化合物と、を乾式混合して乾式混合原料を得る工程(ii)と、前記乾式混合原料を焼成する工程(iii)と、を含む。
以下、本実施形態に係るリチウムイオン二次電池用正極活物質の製造方法に含まれる各工程について説明する。 Next, a method for producing a positive electrode active material for a lithium ion secondary battery according to the present embodiment will be described. The method for producing a positive electrode active material for a lithium ion secondary battery according to the present embodiment includes a step (i) of producing a precursor of the positive electrode active material for a lithium ion secondary battery, a step (ii) of dry-mixing the precursor with a Li compound to obtain a dry mixed raw material, and a step (iii) of firing the dry mixed raw material.
Hereinafter, each step included in the method for producing a positive electrode active material for a lithium ion secondary battery according to this embodiment will be described.
以下、本実施形態に係るリチウムイオン二次電池用正極活物質の製造方法に含まれる各工程について説明する。 Next, a method for producing a positive electrode active material for a lithium ion secondary battery according to the present embodiment will be described. The method for producing a positive electrode active material for a lithium ion secondary battery according to the present embodiment includes a step (i) of producing a precursor of the positive electrode active material for a lithium ion secondary battery, a step (ii) of dry-mixing the precursor with a Li compound to obtain a dry mixed raw material, and a step (iii) of firing the dry mixed raw material.
Hereinafter, each step included in the method for producing a positive electrode active material for a lithium ion secondary battery according to this embodiment will be described.
本実施形態に係るリチウムイオン二次電池用正極活物質の製造方法は、リチウムイオン二次電池用正極活物質の前駆体を製造する工程(i)を含む。リチウムイオン二次電池用正極活物質の前駆体を製造する工程(i)は、Ni-CoもしくはNi-Co-AlあるいはNi-Co-Mnからなる水酸化物を合成する工程、水酸化物の水洗工程、水酸化物の分級工程、水酸化物の乾燥工程からなる。
The method for producing a positive electrode active material for a lithium ion secondary battery according to this embodiment includes a step (i) of producing a precursor of the positive electrode active material for a lithium ion secondary battery. The step (i) of producing a precursor of the positive electrode active material for a lithium ion secondary battery includes a step of synthesizing a hydroxide made of Ni-Co, Ni-Co-Al, or Ni-Co-Mn, a step of washing the hydroxide with water, a step of classifying the hydroxide, and a step of drying the hydroxide.
Ni-CoもしくはNi-Co-AlあるいはNi-Co-Mnからなる水酸化物を合成する工程は、目標の組成比になるようにNi化合物およびCo化合物と必要であればAl化合物やMn化合物を合わせて用いて原料液を調整する。原料液の調整に用いる化合物は水溶性物質であれば特に指定しないが、好ましくは硫酸塩、硝酸塩、塩化物等を使用する。
The process for synthesizing hydroxides consisting of Ni-Co, Ni-Co-Al, or Ni-Co-Mn involves preparing a raw material solution using Ni compounds and Co compounds, and if necessary, Al compounds and Mn compounds, in order to achieve the desired composition ratio. There is no particular restriction on the compounds used to prepare the raw material solution as long as they are water-soluble, but sulfates, nitrates, chlorides, etc. are preferably used.
原料液の濃度は含まれるNi,Co,Al,Mnの合計含量が10~300g/Lになるように水溶液の濃度を調整する(以下「Me水溶液」という。)。目的の水酸化物の合成はこのMe水溶液を30~90℃且つpH9~13でNH4
+濃度5~15.0g/Lに調整された水溶液(以下、「初期母液」という)に供給することで行われる。なお、Me水溶液の供給流量は特に指定はしないが、好ましくは初期母液総量(L)の0.05%~0.5%に相当する流量で(L/分)供給する。
The concentration of the raw material solution is adjusted so that the total content of Ni, Co, Al, and Mn contained therein is 10 to 300 g/L (hereinafter referred to as "aqueous Me solution"). The target hydroxide is synthesized by supplying this aqueous Me solution to an aqueous solution (hereinafter referred to as "initial mother liquor") adjusted to 30 to 90°C, pH 9 to 13, and an NH4 + concentration of 5 to 15.0 g/L. The supply flow rate of the aqueous Me solution is not particularly specified, but it is preferably supplied at a flow rate (L/min) equivalent to 0.05% to 0.5% of the total amount (L) of the initial mother liquor.
Me水酸化物の合成に使用する反応槽は蓋付、オーバーフロー口付のSUS製反応槽を使用する。Me水溶液の供給中は初期母液を100~1200rpmの攪拌状態、液温30~90℃、pH9~13、NH4
+濃度5~15.0g/L、窒素雰囲気の状態を維持する。
The reaction tank used for synthesizing Me hydroxide is a SUS reaction tank with a lid and an overflow port. During the supply of the Me aqueous solution, the initial mother liquid is stirred at 100 to 1200 rpm, the liquid temperature is 30 to 90°C, the pH is 9 to 13, the NH4 + concentration is 5 to 15.0 g/L, and the nitrogen atmosphere is maintained.
この初期母液のpHおよびNH4
+濃度ならびに窒素雰囲気の制御はNaOH水溶液および(NH4)2SO4などのアンモニウム塩からなる水溶液(以下、「NH4
+源」という)や窒素ガスを供給することによって行われる。なお、NaOH水溶液、NH4
+源、窒素ガスの濃度や流量は、特に指定しない。
The pH and NH4 + concentration of this initial mother liquid and the nitrogen atmosphere are controlled by supplying an aqueous solution of NaOH and an aqueous solution of ammonium salt such as ( NH4 ) 2SO4 (hereinafter referred to as " NH4 + source") and nitrogen gas. The concentrations and flow rates of the NaOH aqueous solution, NH4 + source, and nitrogen gas are not particularly specified.
前述したMe水酸化物の合成操作を連続的に継続することでMe水酸化物(以下、「第1Me水酸化物」という。)と水溶性の副生成物からなる水溶液(以下、「反応母液」という)で構成された固形分濃度10~200g/Lのスラリーが連続的に生成される。なお、連続的に生成されるスラリーは、反応槽のオーバーフロー口から流出してサービスタンクに送られる。この操作を12時間以上継続して得られた反応槽内もしくはサービスタンク内のスラリー(以下、「第1スラリー」という)を次工程で使用する。
By continuously carrying out the above-mentioned Me hydroxide synthesis operation, a slurry with a solids concentration of 10 to 200 g/L is continuously produced, which is composed of Me hydroxide (hereinafter referred to as "first Me hydroxide") and an aqueous solution of water-soluble by-products (hereinafter referred to as "reaction mother liquor"). The continuously produced slurry flows out from the overflow port of the reaction tank and is sent to a service tank. The slurry in the reaction tank or service tank obtained by continuing this operation for 12 hours or more (hereinafter referred to as "first slurry") is used in the next process.
前述した第1スラリーの固形分濃度を350~1200g/Lに濃縮する(以下「第2スラリー」という)。なお、第1スラリーの濃縮操作は反応母液の除去もしくは第1Me水酸化物の添加により行う。
The solids concentration of the first slurry is concentrated to 350 to 1200 g/L (hereinafter referred to as "second slurry"). The first slurry is concentrated by removing the reaction mother liquor or adding first Me hydroxide.
第2スラリーの反応母液を30~90℃且つpH9~13でNH4
+濃度5~15.0g/Lに調整する。調整する方法は特に指定しないが、好ましくはアンモニア水とNaOH水溶液により行う。反応槽はオーバーフロー口の無い蓋付のものを使用する。前述した第2スラリーにMe水溶液を供給する。Me水溶液の供給流量は特に指定はしないが、好ましくは第2スラリー総量(L)の0.001%~0.3%に相当する流量で(L/分)供給する。なおMe水溶液の金属元素の組成比は目的とする前駆体と同じ必要はあるが第1水酸化物の組成と同じである必要はない。
The reaction mother liquid of the second slurry is adjusted to an NH 4 + concentration of 5 to 15.0 g/L at 30 to 90°C and pH 9 to 13. The adjustment method is not particularly specified, but is preferably performed using ammonia water and NaOH aqueous solution. A reaction tank with a lid and no overflow port is used. An aqueous Me solution is supplied to the second slurry described above. The supply flow rate of the aqueous Me solution is not particularly specified, but is preferably supplied at a flow rate (L/min) equivalent to 0.001% to 0.3% of the total amount (L) of the second slurry. The composition ratio of metal elements in the aqueous Me solution must be the same as that of the desired precursor, but does not need to be the same as that of the first hydroxide.
Me水溶液の供給中は反応母液を500~1500rpmの攪拌状態、液温30~90℃、pH9~13、NH4
+濃度5~20.0g/L、第2スラリー濃度350g/L以上を維持する。雰囲気は特に指定しないが、好ましくは窒素雰囲気とする。この第2スラリーのpHおよびNH4
+濃度ならびに窒素雰囲気の制御はNaOH水溶液および窒素ガスを供給することによって行われる。
なお、NaOH水溶液、NH4 +源、窒素ガスの濃度や流量は特に指定しない。第2スラリー濃度の制御は連続式もしく回文式で反応母液を除去することで行う。 During the supply of the Me aqueous solution, the reaction mother liquid is stirred at 500-1500 rpm, the liquid temperature is maintained at 30-90°C, the pH is 9-13, the NH4 + concentration is 5-20.0 g/L, and the second slurry concentration is maintained at 350 g/L or more. The atmosphere is not particularly specified, but a nitrogen atmosphere is preferable. The pH and NH4 + concentration of the second slurry, as well as the nitrogen atmosphere, are controlled by supplying an NaOH aqueous solution and nitrogen gas.
The concentrations and flow rates of the NaOH aqueous solution, NH 4 + source, and nitrogen gas are not particularly specified. The concentration of the second slurry is controlled by removing the reaction mother liquor continuously or palindrically.
なお、NaOH水溶液、NH4 +源、窒素ガスの濃度や流量は特に指定しない。第2スラリー濃度の制御は連続式もしく回文式で反応母液を除去することで行う。 During the supply of the Me aqueous solution, the reaction mother liquid is stirred at 500-1500 rpm, the liquid temperature is maintained at 30-90°C, the pH is 9-13, the NH4 + concentration is 5-20.0 g/L, and the second slurry concentration is maintained at 350 g/L or more. The atmosphere is not particularly specified, but a nitrogen atmosphere is preferable. The pH and NH4 + concentration of the second slurry, as well as the nitrogen atmosphere, are controlled by supplying an NaOH aqueous solution and nitrogen gas.
The concentrations and flow rates of the NaOH aqueous solution, NH 4 + source, and nitrogen gas are not particularly specified. The concentration of the second slurry is controlled by removing the reaction mother liquor continuously or palindrically.
この操作を連続式もしくは回文式で継続することで第2スラリー中に板状もしくは柱状の形状を有する水酸化物(以下「第2Me水酸化物」という。)が新たに生成されたスラリー(以下「第3スラリー」という。)を得ることができる。Me水溶液の供給は第2Me水酸化物の粒子の寸法が目的の寸法になるまで継続される。
なお、第2Me水酸化物の寸法の計測は適時サンプリングを行い固液分離と水洗、乾燥を行った後、走査型電子顕微鏡にて行う。この際、混在している第1Me水酸化物の寸法や形状は計測しない。 By continuing this operation in a continuous or palindrome, a slurry (hereinafter referred to as "third slurry") can be obtained in which a hydroxide having a plate-like or columnar shape (hereinafter referred to as "second Me hydroxide") is newly generated in the second slurry. The supply of the Me aqueous solution is continued until the particle size of the second Me hydroxide reaches the desired size.
The dimensions of the 2Me hydroxide are measured by sampling at appropriate times, separating the 2Me hydroxide into solid and liquid, washing with water, and drying, and then observing the 2Me hydroxide with a scanning electron microscope. At this time, the dimensions and shape of the 1Me hydroxide that is mixed in are not measured.
なお、第2Me水酸化物の寸法の計測は適時サンプリングを行い固液分離と水洗、乾燥を行った後、走査型電子顕微鏡にて行う。この際、混在している第1Me水酸化物の寸法や形状は計測しない。 By continuing this operation in a continuous or palindrome, a slurry (hereinafter referred to as "third slurry") can be obtained in which a hydroxide having a plate-like or columnar shape (hereinafter referred to as "second Me hydroxide") is newly generated in the second slurry. The supply of the Me aqueous solution is continued until the particle size of the second Me hydroxide reaches the desired size.
The dimensions of the 2Me hydroxide are measured by sampling at appropriate times, separating the 2Me hydroxide into solid and liquid, washing with water, and drying, and then observing the 2Me hydroxide with a scanning electron microscope. At this time, the dimensions and shape of the 1Me hydroxide that is mixed in are not measured.
第2Me水酸化物の寸法が目的の水準に到達した段階でMe水溶液の供給を停止する。その後反応槽内の第3スラリーを水洗して反応母液を除去する。水洗後固液分離して乾燥させることで第1Me水酸化物と第2Me水酸化物が混在している粉体(第1前駆体)を得ることができる。
When the dimensions of the second Me hydroxide reach the desired level, the supply of the Me aqueous solution is stopped. The third slurry in the reaction tank is then washed with water to remove the reaction mother liquor. After washing with water, solid-liquid separation and drying can be performed to obtain a powder (first precursor) in which the first Me hydroxide and the second Me hydroxide are mixed.
次に、第1前駆体から第2Me水酸化物を分離捕集する分級操作を行う。分級方法については特に指定しないが第1Me水酸化物を重量比で70%以上除外できることが好ましい。第1Me水酸化物を除外する理由は第1Me水酸化物が球状に近い形状を有しており、これを原料とした正極活物質のリチウムイオン二次電池の電池特性が第2Me水酸化物を原料とした正極活物質と比較して低いためである。前述した分級操作により柱状形状を有する第2Me水酸化物を重量比で70%以上含む水酸化物(以下、「前駆体」という。)の粉体を得ることができる。
Next, a classification operation is performed to separate and collect the second Me hydroxide from the first precursor. The classification method is not particularly specified, but it is preferable to be able to remove 70% or more of the first Me hydroxide by weight. The reason for removing the first Me hydroxide is that the first Me hydroxide has a nearly spherical shape, and the battery characteristics of a lithium-ion secondary battery using this as a raw material for the positive electrode active material are lower than those of a positive electrode active material using the second Me hydroxide as a raw material. By the above-mentioned classification operation, a hydroxide powder (hereinafter referred to as "precursor") containing 70% or more by weight of the second Me hydroxide having a columnar shape can be obtained.
前述する前駆体は、電子後方散乱回折法(Electron backscatter diffraction)以下、「EBSD」という。)によって結晶方位に関する特徴を評価することができる。EBSD解析を行うサンプルは、例えば、以下のように準備することができる。主剤と硬化剤からなる2液混合式の市販の常温硬化エポキシレジンに前駆体を分散させ、真空状態で脱泡を促しながら硬化させる。硬化した前駆体を含むレジンの塊を切断し切断面を紙やすりで平滑にする。更にこの切断面をクロスセッションポリッシャー加工して、更に平滑化することでEBSD解析用前駆体断面サンプルを得ることができる。
The aforementioned precursors can be evaluated for their crystal orientation characteristics by electron backscatter diffraction (hereinafter referred to as "EBSD"). Samples for EBSD analysis can be prepared, for example, as follows: The precursor is dispersed in a commercially available room temperature curing epoxy resin that is a two-part mixture consisting of a base agent and a hardener, and cured in a vacuum while promoting degassing. The resin block containing the cured precursor is cut and the cut surface is smoothed with sandpaper. This cut surface is then processed with a cross-session polisher to further smooth it, thereby obtaining a precursor cross-section sample for EBSD analysis.
前述した操作により用意したEBSD解析用前駆体断面サンプルをEBSD解析により評価する。得られたサンプルの方位情報は解析ソフト上で構築し、マッピング像を取得することによって試料の結晶方位及び極点図等の評価を行う。得られた極点図情報より、前駆体結晶の(0001)面の優先配向度(MUD)を評価した。なお、EBSD解析に用いる装置及び解析ソフトは特に指定しない。
The precursor cross-section sample for EBSD analysis prepared by the above-mentioned operations is evaluated by EBSD analysis. The obtained orientation information of the sample is constructed on analysis software, and the crystal orientation and pole figures of the sample are evaluated by acquiring a mapping image. From the obtained pole figure information, the preferred orientation degree (MUD) of the (0001) plane of the precursor crystal is evaluated. Note that no particular device or analysis software is specified for use in the EBSD analysis.
さらに、本実施形態に係るリチウムイオン二次電池用正極活物質の製造方法は、前記前駆体と、Li化合物と、を乾式混合して乾式混合原料(以下、「混合物」という)を得る工程(ii)を含む。工程(ii)は、前駆体と、Li化合物と、を乾式混合することを含む。正極活物質がNi-Co-Al系であれば、更にLi化合物と必要であればAl化合物とを乾式混合し、Li-Ni-Co-Mn系であれば、更にLi化合物を乾式混合する。
Furthermore, the manufacturing method of the positive electrode active material for lithium ion secondary batteries according to this embodiment includes a step (ii) of dry-mixing the precursor with a Li compound to obtain a dry mixed raw material (hereinafter referred to as the "mixture"). Step (ii) includes dry-mixing the precursor with a Li compound. If the positive electrode active material is a Ni-Co-Al system, a Li compound and, if necessary, an Al compound are further dry-mixed, and if the positive electrode active material is a Li-Ni-Co-Mn system, a Li compound is further dry-mixed.
工程(ii)では、工程(i)で製造された前駆体と、Li化合物(水酸化物、炭酸塩、ハロゲン化物等、高温で酸化物になり得るLi化合物で、平均粒径50μm以下程度のもの)と、必要であれば、Al化合物あるいはZr化合物やMg化合物(いずれも酸化物、水酸化物、硫酸塩、硝酸塩等、高温で酸化物になり得るAlあるいはZrやMg化合物で、平均粒径が10μm以下の市販品)と、を化学量論的に所定の組成式の関係を満たす割合で乾式混合して乾式混合原料を調製する。
In step (ii), the precursor produced in step (i) is dry-mixed with Li compounds (hydroxides, carbonates, halides, etc., Li compounds that can be oxides at high temperatures, with an average particle size of about 50 μm or less), and, if necessary, Al compounds, Zr compounds, or Mg compounds (commercially available Al, Zr, or Mg compounds with an average particle size of 10 μm or less, which can be oxides at high temperatures, such as oxides, hydroxides, sulfates, nitrates, etc.) in a ratio that stoichiometrically satisfies the relationship of a specified composition formula to prepare a dry mixed raw material.
Li化合物としては、LiOH・H2OやLiOHやLi2CO3を例示することができる。Al化合物としては、Al2O3やAl(OH)3を例示することができる。Zr化合物としては、ZrO2を例示することができる。Mg化合物としては、MgOやMgCO3を例示することができる。
これらの金属化合物の組成比は、LixNi(1-y-α-γ)CoyAlαBγO2(但し、組成式中、0.9≦x≦1.1、0.03≦y≦0.3、0.00<α≦0.05、BはZr、Mgから選ばれる1種類以上の元素であり0.00≦γ≦0.10)、又は、LixNi(1-y-β-γ)CoyMnβBγO2(但し、組成式中、0.9<x<1.1、0≦y≦0.33、0.00<β≦0.33)、BはZr、Mgから選ばれる1種類以上の元素であり、0.00≦γ≦0.10)である。 Examples of Li compounds include LiOH.H2O , LiOH, and Li2CO3 . Examples of Al compounds include Al2O3 and Al(OH)3 . Examples of Zr compounds include ZrO2 . Examples of Mg compounds include MgO and MgCO3 .
The composition ratio of these metal compounds is Li x Ni (1-y-α-γ) Co y Al αB γ O 2 (wherein, in the composition formula, 0.9≦x≦1.1, 0.03≦y≦0.3, 0.00<α≦0.05, B is one or more elements selected from Zr and Mg, and 0.00≦γ≦0.10), or Li x Ni (1-y-β-γ) Co y Mn βB γ O 2 (wherein, in the composition formula, 0.9<x<1.1, 0≦y≦0.33, 0.00<β≦0.33), B is one or more elements selected from Zr and Mg, and 0.00≦γ≦0.10).
これらの金属化合物の組成比は、LixNi(1-y-α-γ)CoyAlαBγO2(但し、組成式中、0.9≦x≦1.1、0.03≦y≦0.3、0.00<α≦0.05、BはZr、Mgから選ばれる1種類以上の元素であり0.00≦γ≦0.10)、又は、LixNi(1-y-β-γ)CoyMnβBγO2(但し、組成式中、0.9<x<1.1、0≦y≦0.33、0.00<β≦0.33)、BはZr、Mgから選ばれる1種類以上の元素であり、0.00≦γ≦0.10)である。 Examples of Li compounds include LiOH.H2O , LiOH, and Li2CO3 . Examples of Al compounds include Al2O3 and Al(OH)3 . Examples of Zr compounds include ZrO2 . Examples of Mg compounds include MgO and MgCO3 .
The composition ratio of these metal compounds is Li x Ni (1-y-α-γ) Co y Al αB γ O 2 (wherein, in the composition formula, 0.9≦x≦1.1, 0.03≦y≦0.3, 0.00<α≦0.05, B is one or more elements selected from Zr and Mg, and 0.00≦γ≦0.10), or Li x Ni (1-y-β-γ) Co y Mn βB γ O 2 (wherein, in the composition formula, 0.9<x<1.1, 0≦y≦0.33, 0.00<β≦0.33), B is one or more elements selected from Zr and Mg, and 0.00≦γ≦0.10).
工程(ii)における乾式混合は、常温・常圧・閉鎖(粉体混合装置の原料投入部等を閉じる等の)条件下で、0.5~1.5時間程度行うことが望ましい。
The dry mixing in step (ii) is desirably carried out for approximately 0.5 to 1.5 hours under normal temperature, normal pressure, and closed conditions (e.g., closing the raw material inlet of the powder mixing device).
本実施形態に係るリチウムイオン二次電池用正極活物質の製造方法は、工程(ii)で得られた混合物を焼成すること工程(iii)と、を含む。工程(iii)において、上記のようにして調製した原料混合物を、酸化性雰囲気下、700~800℃、5~20時間焼成する。混合物を焼成終了後、焼成炉外で急冷、又は炉内で徐冷する。
なお、焼成する際の昇温条件は、特に制限しないが、例えば炉の昇温開始から5~15時間、好ましくは8~12時間程度で昇温する。
このように、工程(i)~工程(iii)により、図1~2に示された本実施形態に係るリチウムイオン二次電池用正極活物質を製造することができる。 The method for producing a positive electrode active material for a lithium ion secondary battery according to this embodiment includes step (iii) of calcining the mixture obtained in step (ii). In step (iii), the raw material mixture prepared as described above is calcined in an oxidizing atmosphere at 700 to 800° C. for 5 to 20 hours. After the calcination, the mixture is rapidly cooled outside the calcination furnace or slowly cooled inside the furnace.
The heating conditions during firing are not particularly limited, but for example, the temperature is raised for 5 to 15 hours, preferably 8 to 12 hours, from the start of heating the furnace.
In this manner, the positive electrode active material for a lithium ion secondary battery according to the present embodiment shown in FIGS. 1 and 2 can be produced by steps (i) to (iii).
なお、焼成する際の昇温条件は、特に制限しないが、例えば炉の昇温開始から5~15時間、好ましくは8~12時間程度で昇温する。
このように、工程(i)~工程(iii)により、図1~2に示された本実施形態に係るリチウムイオン二次電池用正極活物質を製造することができる。 The method for producing a positive electrode active material for a lithium ion secondary battery according to this embodiment includes step (iii) of calcining the mixture obtained in step (ii). In step (iii), the raw material mixture prepared as described above is calcined in an oxidizing atmosphere at 700 to 800° C. for 5 to 20 hours. After the calcination, the mixture is rapidly cooled outside the calcination furnace or slowly cooled inside the furnace.
The heating conditions during firing are not particularly limited, but for example, the temperature is raised for 5 to 15 hours, preferably 8 to 12 hours, from the start of heating the furnace.
In this manner, the positive electrode active material for a lithium ion secondary battery according to the present embodiment shown in FIGS. 1 and 2 can be produced by steps (i) to (iii).
前述する工程(iii)により得られた正極活物質粒子はEBSD解析により評価する。EBSD解析を行うサンプルは以下のように準備することができる。主剤と硬化剤からなる2液混合式の市販の常温硬化エポキシレジンに正極活物質を分散させ、真空状態で脱泡を促しながら硬化させる。硬化した正極活物質を含むレジンの塊を切断し切断面を紙やすりで平滑にする。更に、この切断面をクロスセッションポリッシャー加工により更に平滑化することでEBSD解析用正極活物質断面サンプルを得ることができる。 なお正極活物質は、湿度や二酸化炭素と反応し結晶表面に不純物を生成するため、これら一連の前処理は低湿度環境で行いEBSD解析用正極活物質断面サンプルの保管についてはAr等の不活性ガス下で行う。
The positive electrode active material particles obtained by the above-mentioned step (iii) are evaluated by EBSD analysis. Samples for EBSD analysis can be prepared as follows. The positive electrode active material is dispersed in a commercially available room temperature curing epoxy resin of a two-liquid mixture type consisting of a base agent and a hardener, and cured in a vacuum while promoting degassing. The resin block containing the cured positive electrode active material is cut and the cut surface is smoothed with sandpaper. The cut surface can be further smoothed by cross-session polishing to obtain a cross-sectional sample of the positive electrode active material for EBSD analysis. Note that the positive electrode active material reacts with moisture and carbon dioxide to generate impurities on the crystal surface, so this series of pretreatments should be performed in a low humidity environment, and the cross-sectional sample of the positive electrode active material for EBSD analysis should be stored under an inert gas such as Ar.
前述した操作により用意したEBSD解析用正極活物質断面サンプルはEBSD解析を行う。得られた方位情報は解析ソフト上で構築し、マッピング像を取得することによって試料の結晶方位及び極点図等の評価を行う。得られた正極活物質結晶の(0001)面の極点図情報より優先配向度(MUD)を評価した。なお、EBSD解析に用いる装置及び解析ソフトは特に指定しない。
The cross-sectional sample of the positive electrode active material for EBSD analysis prepared by the above-mentioned procedure is subjected to EBSD analysis. The obtained orientation information is constructed on an analysis software, and the crystal orientation and pole figures of the sample are evaluated by acquiring a mapping image. The preferred orientation degree (MUD) is evaluated from the pole figure information of the (0001) plane of the obtained positive electrode active material crystal. Note that no particular device or analysis software is specified for use in the EBSD analysis.
以上、本実施形態に係るリチウムイオン二次電池用正極活物質を採用し、その結晶配向を制御することにより、サイクル特性およびレート特性を向上することができるリチウムイオン二次電池を提供することができる。
As described above, by adopting the positive electrode active material for lithium ion secondary batteries according to this embodiment and controlling its crystal orientation, it is possible to provide a lithium ion secondary battery that can improve cycle characteristics and rate characteristics.
[第2実施形態]
第2実施形態に係るリチウムイオン二次電池用正極活物質は、上記実施形態に係るリチウムイオン二次電池用正極活物質において、下記一般式(3)で表される化学組成から構成されることを特徴とする。 [Second embodiment]
The positive electrode active material for a lithium ion secondary battery according to the second embodiment is characterized in that, in the positive electrode active material for a lithium ion secondary battery according to the above embodiment, it is composed of a chemical composition represented by the following general formula (3).
第2実施形態に係るリチウムイオン二次電池用正極活物質は、上記実施形態に係るリチウムイオン二次電池用正極活物質において、下記一般式(3)で表される化学組成から構成されることを特徴とする。 [Second embodiment]
The positive electrode active material for a lithium ion secondary battery according to the second embodiment is characterized in that, in the positive electrode active material for a lithium ion secondary battery according to the above embodiment, it is composed of a chemical composition represented by the following general formula (3).
[化1]
LiNi1-x-y-zCoxAyBzO2 ・・・ (3)
上記一般式(1)中、AはMn又はAl、BはMg又はZr、xは0.00≦x≦0.33、yは0.00≦y≦0.33、zは0.00≦y≦0.10を表す。 [Chemical formula 1]
LiNi 1-xyz C x A y B z O 2 ... (3)
In the above general formula (1), A represents Mn or Al, B represents Mg or Zr, x represents 0.00≦x≦0.33, y represents 0.00≦y≦0.33, and z represents 0.00≦y≦0.10.
LiNi1-x-y-zCoxAyBzO2 ・・・ (3)
上記一般式(1)中、AはMn又はAl、BはMg又はZr、xは0.00≦x≦0.33、yは0.00≦y≦0.33、zは0.00≦y≦0.10を表す。 [Chemical formula 1]
LiNi 1-xyz C x A y B z O 2 ... (3)
In the above general formula (1), A represents Mn or Al, B represents Mg or Zr, x represents 0.00≦x≦0.33, y represents 0.00≦y≦0.33, and z represents 0.00≦y≦0.10.
本発明の正極活物質は、Li-Ni-Co-Al系やLi-Ni-Co-Mn系の複合酸化物からなり、具体的には、組成式がLixNi1-y-zCoyAlzO2(但し、0.9≦x≦1.1、0.00≦y≦0.3、0.00<z≦0.05)、LixNi1-y-zCoyMnzO2(但し、0.9<x<1.1、0.00≦y≦0.33、0.00<z≦0.33)等で表される複合酸化物が挙げられる。具体的にLi-Ni-Co-Al系の複合酸化物としては、LiNi0.86Co0.11Al0.03O2やLiNi0.90Co0.05Al0.05O2を例示することができる。Li-Ni-Co-Mn系の複合酸化物としては、LiNi0.8Co0.1Mn0.1O2やLiNi0.5Co0.2Mn0.3O2を例示することができる。
The positive electrode active material of the present invention is composed of a Li-Ni-Co-Al based or Li-Ni-Co-Mn based composite oxide, and specific examples thereof include composite oxides represented by the composition formula Li x Ni 1-yz Co y Al z O 2 (where 0.9≦x≦1.1, 0.00≦y≦0.3, 0.00<z≦0.05), Li x Ni 1-yz Co y Mn z O 2 (where 0.9<x<1.1, 0.00≦y≦0.33, 0.00<z≦0.33), etc. Specific examples of Li-Ni-Co- Al based composite oxides include LiNi0.86Co0.11Al0.03O2 and LiNi0.90Co0.05Al0.05O2.Specific examples of Li -Ni - Co - Mn based composite oxides include LiNi0.8Co0.1Mn0.1O2 and LiNi0.5Co0.2Mn0.3O2 .
本実施形態に係るリチウムイオン二次電池用正極活物質粒子を構成するLi-Ni-Co-Al系の複合酸化物としては、特に制限されるものではないが、例えばLiNi0.86Co0.11Al0.03O2やLiNi0.90Co0.05Al0.05O2を挙げることができる。リチウムイオン二次電池用正極活物質粒子を構成するLi-Ni-Co-Mn系の複合酸化物としては、特に制限されるものではないが、例えばLiNi0.8Co0.1Mn0.1O2やLiNi0.5Co0.2Mn0.3O2を挙げることができる。
The Li-Ni-Co-Al based composite oxide constituting the positive electrode active material particles for lithium ion secondary batteries according to this embodiment is not particularly limited, but may be, for example, LiNi 0.86 Co 0.11 Al 0.03 O 2 or LiNi 0.90 Co 0.05 Al 0.05 O 2. The Li-Ni-Co-Mn based composite oxide constituting the positive electrode active material particles for lithium ion secondary batteries is not particularly limited, but may be, for example, LiNi 0.8 Co 0.1 Mn 0.1 O 2 or LiNi 0.5 Co 0.2 Mn 0.3 O 2 .
前駆体としては、焼成により酸化物を生成する金属水酸化物であれば特に制限されるものではないが、例えば、Ni0.86Co0.11Al0.03(OH)2やNi0.89Co0.11(OH)2やNi0.5Co0.2Mn0.3(OH)2を挙げることができる。リチウムイオン二次電池用正極活物質前駆体が複合炭酸塩であれば特に制限されるものではないが、例えば、Ni0.86Co0.11Al0.03CO3やNi0.89Co0.11CO3やNi0.5Co0.2Mn0.3CO3を挙げることができる。
The precursor is not particularly limited as long as it is a metal hydroxide that produces an oxide by firing, and examples thereof include Ni0.86Co0.11Al0.03 (OH) 2 , Ni0.89Co0.11 (OH) 2 , and Ni0.5Co0.2Mn0.3 (OH) 2 . The positive electrode active material precursor for lithium ion secondary batteries is not particularly limited as long as it is a composite carbonate , and examples thereof include Ni0.86Co0.11Al0.03CO3 , Ni0.89Co0.11CO3 , and Ni0.5Co0.2Mn0.3CO3 .
[第3実施形態]
第3実施形態は、上記実施形態において得られた(a)リチウムイオン二次電池用正極活物質と、(b)混合用リチウムイオン二次電池用正極活物質と、を含むリチウムイオン二次電池用混合正極活物質である。すなわち、本実施形態のリチウムイオン二次電池用混合正極活物質は、上記実施形態において得られた(a)リチウムイオン二次電池用正極活物質と、(b)混合用リチウムイオン二次電池用正極活物質と、を含むリチウムイオン二次電池用混合正極活物質であって、前記リチウムイオン二次電池用混合正極活物質に含まれる(a)リチウムイオン二次電池用正極活物質の含有量が10質量%以上であることを特徴とする。 [Third embodiment]
The third embodiment is a mixed positive electrode active material for lithium ion secondary batteries, comprising (a) the positive electrode active material for lithium ion secondary batteries obtained in the above embodiment, and (b) a mixed positive electrode active material for lithium ion secondary batteries. That is, the mixed positive electrode active material for lithium ion secondary batteries of this embodiment is a mixed positive electrode active material for lithium ion secondary batteries, comprising (a) the positive electrode active material for lithium ion secondary batteries obtained in the above embodiment, and (b) a mixed positive electrode active material for lithium ion secondary batteries, characterized in that the content of the positive electrode active material for lithium ion secondary batteries (a) contained in the mixed positive electrode active material for lithium ion secondary batteries is 10 mass% or more.
第3実施形態は、上記実施形態において得られた(a)リチウムイオン二次電池用正極活物質と、(b)混合用リチウムイオン二次電池用正極活物質と、を含むリチウムイオン二次電池用混合正極活物質である。すなわち、本実施形態のリチウムイオン二次電池用混合正極活物質は、上記実施形態において得られた(a)リチウムイオン二次電池用正極活物質と、(b)混合用リチウムイオン二次電池用正極活物質と、を含むリチウムイオン二次電池用混合正極活物質であって、前記リチウムイオン二次電池用混合正極活物質に含まれる(a)リチウムイオン二次電池用正極活物質の含有量が10質量%以上であることを特徴とする。 [Third embodiment]
The third embodiment is a mixed positive electrode active material for lithium ion secondary batteries, comprising (a) the positive electrode active material for lithium ion secondary batteries obtained in the above embodiment, and (b) a mixed positive electrode active material for lithium ion secondary batteries. That is, the mixed positive electrode active material for lithium ion secondary batteries of this embodiment is a mixed positive electrode active material for lithium ion secondary batteries, comprising (a) the positive electrode active material for lithium ion secondary batteries obtained in the above embodiment, and (b) a mixed positive electrode active material for lithium ion secondary batteries, characterized in that the content of the positive electrode active material for lithium ion secondary batteries (a) contained in the mixed positive electrode active material for lithium ion secondary batteries is 10 mass% or more.
上記実施形態において得られた(a)リチウムイオン二次電池用正極活物質は、結晶配向的特徴や組成が異なる他のリチウムイオン二次電池用正極活物質粒子と混合しても、同様に正極活物質として使用することができる。すなわち、本実施形態に係るリチウムイオン二次電池用混合正極活物質は、上記実施形態において得られた(a)リチウムイオン二次電池用正極活物質と、(b)混合用リチウムイオン二次電池用正極活物質と、を含んで構成される。
The (a) positive electrode active material for lithium ion secondary batteries obtained in the above embodiment can be used as a positive electrode active material in the same manner even when mixed with other positive electrode active material particles for lithium ion secondary batteries having different crystal orientation characteristics or composition. In other words, the mixed positive electrode active material for lithium ion secondary batteries according to this embodiment is composed of the (a) positive electrode active material for lithium ion secondary batteries obtained in the above embodiment and (b) mixed positive electrode active material for lithium ion secondary batteries.
つまり、上記実施形態において得られた(a)リチウムイオン二次電池用正極活物質に他の正極活物質(添加正極活物質)を混合してリチウムイオン二次電池の混合正極活物質として使用することでサイクル特性、レート特性が向上した正極活物質が得られる。
In other words, by mixing the (a) lithium ion secondary battery positive electrode active material obtained in the above embodiment with another positive electrode active material (additive positive electrode active material) and using it as a mixed positive electrode active material for a lithium ion secondary battery, a positive electrode active material with improved cycle characteristics and rate characteristics can be obtained.
さらに、本実施形態に係るリチウムイオン二次電池用混合正極活物質に含まれる(a)混合用リチウムイオン二次電池用正極活物質の含有量が10質量%以上98質量%以下とすることが好ましい。その理由は、本発明のリチウムイオン二次電池用正極活物質の混合比率が10%以上98質量%以下であればサイクル特性およびレート特性が10%以上向上できるからである。なお、(a)リチウムイオン二次電池用正極活物質と、混合使用することができる(b)混合用リチウムイオン二次電池用正極活物質は、従前のリチウムイオン二次電池用正極活物質、例えばWO2016-143844A1公報に記載したリチウムイオン二次電池用正極活物質やその他市販のCo系やNi-Co-Al系やNi-Co-Mn系の正極活物質である。
Furthermore, it is preferable that the content of the (a) mixed positive electrode active material for lithium ion secondary batteries contained in the mixed positive electrode active material for lithium ion secondary batteries according to this embodiment is 10% by mass or more and 98% by mass or less. The reason is that if the mixed ratio of the positive electrode active material for lithium ion secondary batteries of the present invention is 10% by mass or more and 98% by mass or less, the cycle characteristics and rate characteristics can be improved by 10% or more. Note that the (b) mixed positive electrode active material for lithium ion secondary batteries that can be mixed and used with the (a) positive electrode active material for lithium ion secondary batteries is a conventional positive electrode active material for lithium ion secondary batteries, for example, the positive electrode active material for lithium ion secondary batteries described in WO2016-143844A1 or other commercially available Co-based, Ni-Co-Al-based, or Ni-Co-Mn-based positive electrode active materials.
これらの中でも、(b)混合用リチウムイオン二次電池用正極活物質としては、使用する(a)リチウムイオン二次電池用正極活物質と同様のNi、Co、Al、Mnの組成比を有する正極活物質が好ましい。混合使用される正極活物質の組成は1種あるいは2種以上が混合使用される。
Among these, (b) the positive electrode active material for a lithium ion secondary battery to be mixed is preferably a positive electrode active material having the same composition ratio of Ni, Co, Al, and Mn as the positive electrode active material for a lithium ion secondary battery to be used (a). The composition of the positive electrode active material to be mixed is one type, or a mixture of two or more types.
また、混合用リチウムイオン二次電池用正極活物質であるCo系、Ni-Co-Al系、Ni-Co-Mn系を示した一般式はCo系ではLixCoO2であり、Ni-Co-Al系ではLixNi(1-y-α)CoyAlαO2、でありNi-Co-Mn系ではLixNi(1-y-β)CoyMnβO2(但し、組成式中0.9≦x≦1.1、0.03≦y≦0.33、0.00<α≦0.05、0.00<β≦0.33)である。
The general formulas showing the mixed positive electrode active materials for lithium ion secondary batteries, Co-based, Ni-Co-Al-based, and Ni-Co-Mn-based, are Li x CoO 2 for the Co-based, Li x Ni (1-y-α) Co y Al α O 2 for the Ni-Co-Al-based, and Li x Ni (1-y-β) Co y Mn β O 2 for the Ni-Co-Mn-based (wherein, in the composition formulas, 0.9≦x≦1.1, 0.03≦y≦0.33, 0.00<α≦0.05, 0.00<β≦0.33).
以上、本実施形態に係るリチウムイオン二次電池用正極活物質を含む混合正極活物質によれば、市販のリチウムイオン二次電池用正極活物質を使用しても、リチウムイオン二次電池のサイクル特性およびレート特性を向上することができる。
As described above, the mixed positive electrode active material containing the positive electrode active material for lithium ion secondary batteries according to this embodiment can improve the cycle characteristics and rate characteristics of the lithium ion secondary battery even when a commercially available positive electrode active material for lithium ion secondary batteries is used.
そして、上記のようにして得た正極活物質とその他材料とを複合して電極箔(以下、「正極箔」という場合がある。)を製造することができる。リチウムイオン二次電池の正極箔が有する正極集電体としては、特に制限されるものではないがアルミニウムを形成材料として使用し、薄膜状に加工したものがより好ましい。正極集電体に正極合剤を担持させる方法としては、特に制限されるものではないが、例えば、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
Then, the positive electrode active material obtained as described above and other materials can be combined to produce an electrode foil (hereinafter, sometimes referred to as "positive electrode foil"). The positive electrode current collector of the positive electrode foil of the lithium ion secondary battery is preferably made of aluminum, which is processed into a thin film, although there is no particular limitation thereto. The method of supporting the positive electrode mixture on the positive electrode current collector is, without particular limitation thereto, for example, a method of pressurizing the positive electrode mixture on the positive electrode current collector. Alternatively, the positive electrode mixture may be made into a paste using an organic solvent, and the resulting paste of the positive electrode mixture may be applied to at least one side of the positive electrode current collector, dried, and pressed to adhere.
正極合剤のペーストの構成は、特に制限されるものではないが、正極活物質、導電助剤、バインダー、分散媒で構成されることが望ましい。導電助剤は、特に制限されるものではないが、カーボンブラック(例えばアセチレンブラック)を用いてもよい。バインダーは、特に制限されるものではないが、ポリフッ化ビニリデンを用いることがより好ましく、単独で使用してもよく、2種以上を併用してもよい。分散媒は、特に制限されるものではないが、N-メチル-2-ピロリドンがより好ましい。
The composition of the paste of the positive electrode mixture is not particularly limited, but is preferably composed of a positive electrode active material, a conductive assistant, a binder, and a dispersion medium. The conductive assistant is not particularly limited, but carbon black (e.g., acetylene black) may be used. The binder is not particularly limited, but it is more preferable to use polyvinylidene fluoride, which may be used alone or in combination of two or more types. The dispersion medium is not particularly limited, but N-methyl-2-pyrrolidone is more preferable.
正極合剤のペーストを正極集電体へ塗布する方法としては、特に制限されるものではないが、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法および静電スプレー法等が挙げられる。以上に挙げられた方法により、正極を製造することができる。
The method for applying the paste of the positive electrode mixture to the positive electrode current collector is not particularly limited, but examples include slit die coating, screen coating, curtain coating, knife coating, gravure coating, and electrostatic spraying. Positive electrodes can be manufactured by the methods listed above.
上記のようにして得た正極箔とその他材料を複合しリチウムイオン二次電池を得ることができる。本発明のリチウムイオン二次電池用正極活物質を用いたリチウムイオン二次電池の一例は、正極箔および負極箔、正極箔と負極箔との間に挟持されるセパレータ、正極箔と負極箔の間に配置される電解液を有する。
A lithium ion secondary battery can be obtained by combining the positive electrode foil obtained as described above with other materials. One example of a lithium ion secondary battery using the positive electrode active material for lithium ion secondary batteries of the present invention has a positive electrode foil and a negative electrode foil, a separator sandwiched between the positive electrode foil and the negative electrode foil, and an electrolyte placed between the positive electrode foil and the negative electrode foil.
セパレータは、特に制限されるものではないが、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を1種または2種以上を用いてもよい。
The separator is not particularly limited, but may be, for example, a material having a form such as a porous film, nonwoven fabric, or woven fabric, made of a material such as a polyolefin resin, such as polyethylene or polypropylene, a fluororesin, or a nitrogen-containing aromatic polymer. One or more of these materials may be used.
負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であれば特に限定されるものではない。負極箔としては負極活物質を含む負極合剤が負極集電体に担持されてなるものや負極活物質単独からなる電極を挙げることができる。なお、必要に応じて、バインダーを含有してもよい。
The negative electrode is not particularly limited as long as it is capable of doping and dedoping lithium ions at a lower potential than the positive electrode. Examples of the negative electrode foil include an electrode in which a negative electrode mixture containing a negative electrode active material is supported on a negative electrode current collector, and an electrode made of a negative electrode active material alone. If necessary, a binder may be included.
リチウムイオン二次電池が有する電解液は、電解質および有機溶媒を含有する。 電解液に含まれる電解質としては特に限定されないが、電解質としては、フッ素を含むLiPF6、LiAsF6、LiSbF6、LiBF4、LiCF3SO3、LiN(SO2CF3)2およびLiC(SO2CF3)3からなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。なお、電解質に使用するリチウム塩は1種または2種以上を用いてもよい。
The electrolyte of the lithium ion secondary battery contains an electrolyte and an organic solvent. The electrolyte contained in the electrolyte is not particularly limited, but it is preferable to use an electrolyte containing at least one selected from the group consisting of fluorine-containing LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 and LiC(SO 2 CF 3 ) 3. The lithium salt used in the electrolyte may be one or more.
また前記電解液に含まれる有機溶媒としては特に制限されるものではないが、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,を用いることができる。これらは、単独で使用してもよく、2種以上を併用してもよい。
The organic solvent contained in the electrolyte is not particularly limited, but examples include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and 4-trifluoromethyl-1,. These may be used alone or in combination of two or more.
[他の実施形態]
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の技術的範囲で当業者が理解し得る様々な変更をすることができる。 [Other embodiments]
Although the present invention has been described above with reference to the embodiment, the present invention is not limited to the above embodiment. Various modifications that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the technical scope of the present invention.
以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の技術的範囲で当業者が理解し得る様々な変更をすることができる。 [Other embodiments]
Although the present invention has been described above with reference to the embodiment, the present invention is not limited to the above embodiment. Various modifications that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the technical scope of the present invention.
(実施例1)
<Ni-Co共沈水酸化物の製造>
室温下でNiSO4とCoSO4のNi:Coのモル比を89:11とし、NiSO4・6H2OとCoSO4・7H2Oの含量が合量で265g/Lとなるようにして、Ni-Co水溶液(以下、「Me水溶液」という)を調製した。一方、蓋付・オーバーフロー口付のSUS製反応槽(内容量50L)に純水、25%のNaOH水溶液、(NH4)2SO4結晶を加え昇温、攪拌を行うことで60℃、pH12.0、NH4 +濃度12.0g/Lに調整された水溶液(以下、「初期母液」という)を作製した。 Example 1
<Production of Ni-Co coprecipitated hydroxide>
A Ni-Co aqueous solution (hereinafter referred to as "Me aqueous solution" ) was prepared at room temperature by adjusting the molar ratio of Ni:Co between NiSO4 and CoSO4 to 89:11 and the total content of NiSO4.6H2O and CoSO4.7H2O to 265 g/L. Meanwhile, pure water, 25% NaOH aqueous solution, and ( NH4 ) 2SO4 crystals were added to a SUS reaction tank (capacity 50 L) equipped with a lid and an overflow port, and the mixture was heated and stirred to prepare an aqueous solution (hereinafter referred to as "initial mother liquor") adjusted to 60°C, pH 12.0, and NH4 + concentration 12.0 g/L.
<Ni-Co共沈水酸化物の製造>
室温下でNiSO4とCoSO4のNi:Coのモル比を89:11とし、NiSO4・6H2OとCoSO4・7H2Oの含量が合量で265g/Lとなるようにして、Ni-Co水溶液(以下、「Me水溶液」という)を調製した。一方、蓋付・オーバーフロー口付のSUS製反応槽(内容量50L)に純水、25%のNaOH水溶液、(NH4)2SO4結晶を加え昇温、攪拌を行うことで60℃、pH12.0、NH4 +濃度12.0g/Lに調整された水溶液(以下、「初期母液」という)を作製した。 Example 1
<Production of Ni-Co coprecipitated hydroxide>
A Ni-Co aqueous solution (hereinafter referred to as "Me aqueous solution" ) was prepared at room temperature by adjusting the molar ratio of Ni:Co between NiSO4 and CoSO4 to 89:11 and the total content of NiSO4.6H2O and CoSO4.7H2O to 265 g/L. Meanwhile, pure water, 25% NaOH aqueous solution, and ( NH4 ) 2SO4 crystals were added to a SUS reaction tank (capacity 50 L) equipped with a lid and an overflow port, and the mixture was heated and stirred to prepare an aqueous solution (hereinafter referred to as "initial mother liquor") adjusted to 60°C, pH 12.0, and NH4 + concentration 12.0 g/L.
反応槽内へ窒素ガスを導入して陽圧環境を継続させるとともに、初期母液にMe水溶液を流量40ml/分で供給した。このとき初期母液は液温60℃、直径20cmのプロペラ翼で攪拌速度400rpm、pH12.0、をNH4
+濃度12.0g/Lの状態になるよう制御した。これらの制御は25%のNaOH水溶液と、20%アンモニア水溶液の供給により行った。
Nitrogen gas was introduced into the reaction vessel to maintain a positive pressure environment, and an aqueous Me solution was supplied to the initial mother liquid at a flow rate of 40 ml/min. The initial mother liquid was controlled to have a liquid temperature of 60°C, a stirring speed of 400 rpm with a propeller blade of 20 cm in diameter, a pH of 12.0, and an NH4 + concentration of 12.0 g/L. These controls were performed by supplying a 25% aqueous NaOH solution and a 20% aqueous ammonia solution.
前述したMe水溶液の供給操作を連続的に継続することでNi:Coのモル比89:11の球状の水酸化物(以下、「第1Me水酸化物」という)の固相と硫酸ナトリウムと水酸化ナトリウム及びアンモニアが溶解した水溶液(以下、反応母液)の液相で構成された固形分濃度80g/Lのスラリー(以下、「第1スラリー」という)が連続的に生成された。なお連続的に生成される第1スラリーは反応槽のオーバーフロー口から流出してサービスタンクに送られる。この操作を48時間継続して得られたサービスタンク内の第1スラリーを次工程で使用する。
By continuously continuing the above-mentioned Me aqueous solution supply operation, a slurry (hereinafter referred to as "first slurry") with a solid content concentration of 80 g/L was continuously produced, which was composed of a solid phase of spherical hydroxide with a Ni:Co molar ratio of 89:11 (hereinafter referred to as "first Me hydroxide") and a liquid phase of an aqueous solution in which sodium sulfate, sodium hydroxide, and ammonia were dissolved (hereinafter referred to as reaction mother liquor). The continuously produced first slurry flows out from the overflow port of the reaction tank and is sent to a service tank. The first slurry in the service tank obtained by continuing this operation for 48 hours is used in the next process.
前述した第1スラリーの固形分濃度を500g/Lに濃縮した(以下、「第2スラリー」という)。得られた第2スラリーを別の蓋付・SUS製反応槽(内容量5L)に投入し、反応槽内へ窒素ガスを導入して陽圧環境を継続させるとともに、第2スラリーにMe水溶液を流量2ml/分で供給した。このとき第2スラリーは液温55℃、直径5cmのタービン翼で撹拌速度1000rpm、pH12.0、をNH4
+濃度12.0g/Lの状態になるよう制御した。これらの制御は25%のNaOH水溶液と、20%アンモニア水溶液の供給により行った。
The solid content of the first slurry was concentrated to 500 g/L (hereinafter referred to as "second slurry"). The obtained second slurry was charged into another lidded SUS reactor (capacity 5 L), and nitrogen gas was introduced into the reactor to maintain a positive pressure environment, while Me aqueous solution was supplied to the second slurry at a flow rate of 2 ml/min. At this time, the second slurry was controlled to have a liquid temperature of 55°C, a stirring speed of 1000 rpm with a turbine blade having a diameter of 5 cm, pH of 12.0, and an NH4 + concentration of 12.0 g/L. These controls were performed by supplying a 25% NaOH aqueous solution and a 20% ammonia aqueous solution.
また、第2スラリーの固形分濃度が500~1000g/Lの範囲に維持されるよう反応母液を除去する操作を定期的に行った。Me水溶液の供給によって第2スラリー中に板状もしくは芋虫状の形状を有する水酸化物(以下、「第2Me水酸化物」という)が新たに生成されたスラリー(以下、「第3スラリー」という)が得られた。第3スラリーに含まれる第2Me水酸化物の寸法の計測は7時間ごとに10mlのサンプリングを行い固液分離と水洗、乾燥を行った後、顕微鏡(日本電子株式会社製商品名“JSM-6700F”を使用)で1500倍の粒形観察を行った。
Furthermore, the reaction mother liquor was periodically removed so that the solids concentration of the second slurry was maintained in the range of 500 to 1000 g/L. A slurry (hereinafter referred to as "third slurry") was obtained in which a plate-like or caterpillar-like hydroxide (hereinafter referred to as "second Me hydroxide") was newly generated in the second slurry by supplying the Me aqueous solution. The dimensions of the second Me hydroxide contained in the third slurry were measured by sampling 10 ml every 7 hours, separating the solid and liquid, washing with water, and drying, and then observing the particle shape at 1500x magnification using a microscope (JEOL Ltd., product name "JSM-6700F" was used).
撹拌開始時から7時間経過毎に第2Me水酸化物の寸法を測定した。寸法の計測は無作為に選択した1500倍の画角内に存在する粒子の中で、寸法を明瞭に認識できる粒子を選択して計測を行い、個数換算で画角内の70%以上のサンプル粒子の長軸Gおよび短軸Tの寸法の平均寸法がそれぞれ短軸T=1.8μm、長軸G=4.1μmの寸法となった時点で、Me水溶液の給液を停止した。
The dimensions of the 2Me hydroxide were measured every 7 hours from the start of stirring. Dimensions were measured by selecting particles whose dimensions could be clearly recognized from among the particles present within a randomly selected 1500x field of view, and measuring them. When the average dimensions of the major axis G and minor axis T of more than 70% of the sample particles within the field of view, calculated by number, reached minor axis T = 1.8 μm and major axis G = 4.1 μm, respectively, the supply of the Me aqueous solution was stopped.
その後、上記第1Me水酸化物と第2Me水酸化物とを含む第3スラリーを取り出し、水洗水の伝導度が300mS/cm以下になるまで水洗し、上記第1Me水酸化物と第2Me水酸化物を含む第3スラリー中の不純物である反応母液成分を除去した。その後脱水乾燥して従前の前駆体である第1Me水酸化物と優先配向を有する前駆体である第2Me水酸化物が混在している固形分を得た。なお、水洗水の伝導度が300mS/cm以下になるまで水洗するのは、製造工程において前駆体である第1Me水酸化物と第2Me水酸化物の混在する第3スラリー中の反応母液成分を水洗により除去する際の除去目標を、水洗済水の電導度により確認するためであり、本発明では、300mS/cm以下を目標値としている。
Then, the third slurry containing the first Me hydroxide and the second Me hydroxide was taken out and washed with water until the conductivity of the washing water was 300 mS/cm or less, and the reaction mother liquor components, which are impurities in the third slurry containing the first Me hydroxide and the second Me hydroxide, were removed. The solid matter was then dehydrated and dried to obtain a mixture of the first Me hydroxide, which is the conventional precursor, and the second Me hydroxide, which is a precursor having a preferred orientation. The reason for washing with water until the conductivity of the washing water was 300 mS/cm or less is to confirm the removal target when removing the reaction mother liquor components in the third slurry containing the mixture of the precursors first Me hydroxide and second Me hydroxide by washing with water in the manufacturing process, by using the conductivity of the washed water, and in the present invention, the target value is 300 mS/cm or less.
次に、従前の前駆体である第1Me水酸化物と優先配向を有する前駆体である第2Me水酸化物を沈降速度の違いを利用して分級するため従前の前駆体である第1Me水酸化物と芋虫状前駆体である第2Me水酸化物の混合物からなる固形分100gを純水1000mLに分散させた。その後、5分間静置し、まだ浮遊している固形分を回収し、脱水、乾燥して、Ni:Coのモル比が89:11の芋虫状の形態を呈する第2Me水酸化物からなる前駆体を得た。
Next, in order to classify the first Me hydroxide, which is the conventional precursor, and the second Me hydroxide, which is the precursor having a preferred orientation, by utilizing the difference in sedimentation speed, 100 g of solids consisting of a mixture of the first Me hydroxide, which is the conventional precursor, and the second Me hydroxide, which is the caterpillar-shaped precursor, were dispersed in 1000 mL of pure water. After that, it was left to stand for 5 minutes, and the solids that were still floating were collected, dehydrated, and dried to obtain a precursor consisting of the second Me hydroxide exhibiting a caterpillar-shaped form with a Ni:Co molar ratio of 89:11.
本実施例1にて得た前駆体である水酸化物のEBSD解析(電子後方散乱回折法)を行った。EBSD解析を行うサンプルは以下のように準備した。
主剤と硬化剤からなる2液混合式の市販の常温硬化エポキシレジンに前駆体である水酸化物を分散させ、真空状態で脱泡を促しながら硬化させる。硬化した前駆体である水酸化物を含むレジンの塊を切断し切断面を紙やすりで平滑にする。更にこの切断面をクロスセッションポリッシャー加工を行い更に平滑化することでEBSD解析用前駆体である水酸化物の断面サンプルを得た。 An EBSD (electron backscatter diffraction) analysis was performed on the hydroxide precursor obtained in this Example 1. The sample to be subjected to the EBSD analysis was prepared as follows.
The precursor hydroxide was dispersed in a commercially available room temperature curing epoxy resin of a two-liquid mixture type consisting of a base agent and a curing agent, and cured while promoting degassing in a vacuum. The resin block containing the cured precursor hydroxide was cut and the cut surface was smoothed with sandpaper. The cut surface was then processed with a cross-session polisher to further smoothen it, obtaining a cross-sectional sample of the precursor hydroxide for EBSD analysis.
主剤と硬化剤からなる2液混合式の市販の常温硬化エポキシレジンに前駆体である水酸化物を分散させ、真空状態で脱泡を促しながら硬化させる。硬化した前駆体である水酸化物を含むレジンの塊を切断し切断面を紙やすりで平滑にする。更にこの切断面をクロスセッションポリッシャー加工を行い更に平滑化することでEBSD解析用前駆体である水酸化物の断面サンプルを得た。 An EBSD (electron backscatter diffraction) analysis was performed on the hydroxide precursor obtained in this Example 1. The sample to be subjected to the EBSD analysis was prepared as follows.
The precursor hydroxide was dispersed in a commercially available room temperature curing epoxy resin of a two-liquid mixture type consisting of a base agent and a curing agent, and cured while promoting degassing in a vacuum. The resin block containing the cured precursor hydroxide was cut and the cut surface was smoothed with sandpaper. The cut surface was then processed with a cross-session polisher to further smoothen it, obtaining a cross-sectional sample of the precursor hydroxide for EBSD analysis.
前述した操作により用意したEBSD解析用前駆体である水酸化物の断面サンプルは日本電子株式会社製「JSM-7001F」にて分析を行い、オックスフォード・インストゥルメンツ株式会社製解析ソフト「AZtec Crystal」にて方位解析を実施した。
The cross-sectional sample of the hydroxide, which was the precursor for EBSD analysis prepared by the above-mentioned procedure, was analyzed using the JSM-7001F manufactured by JEOL Ltd., and orientation analysis was performed using the analysis software AZtec Crystal manufactured by Oxford Instruments Ltd.
MUDの算出は解析ソフトの極点図の作成機能で行い(0001)面を評価対象とし、半幅値を10°に設定し実施した。評価する粒子は一粒単位を対象として無作為に選んだ3視野で解析を実施し、最大値MUDの平均値は、115.3であった。前駆体である水酸化物のEBSDの結果を図1に示す。
The MUD was calculated using the pole figure creation function of the analysis software, with the (0001) plane being evaluated and the half-width set to 10°. Analysis was performed on three randomly selected fields of view for each particle being evaluated, and the average maximum MUD was 115.3. The EBSD results for the precursor hydroxide are shown in Figure 1.
<リチウムイオン二次電池用正極活物質の製造及び分析>
このようにして得られた前駆体150gと市販の水酸化リチウム一水和物粉砕品(D50:30μm)71.8gと市販のアルミナ2.3gを乾式混合し、混合物を調製した。上記の原料混合物を、酸素雰囲気下、730℃で、15.3時間焼成して、組成式LiNi0.86Co0.11Al0.03O2、であるリチウムイオン二次電池用正極活物質を得た。なお、Ni:Co:Alのモル比(各元素のグラム原子数の比)は、誘導結合プラズマ(ICP)発光分光分析装置(Thermo Fisher Scientific株式会社製商品名“ICAP6500”)によって測定した。 <Production and analysis of positive electrode active material for lithium ion secondary battery>
150 g of the precursor thus obtained was dry-mixed with 71.8 g of commercially available lithium hydroxide monohydrate pulverized product (D50: 30 μm) and 2.3 g of commercially available alumina to prepare a mixture. The above raw material mixture was fired at 730° C. for 15.3 hours in an oxygen atmosphere to obtain a positive electrode active material for lithium ion secondary batteries having the composition formula LiNi 0.86 Co 0.11 Al 0.03 O 2 . The molar ratio of Ni:Co:Al (ratio of gram atoms of each element) was measured by an inductively coupled plasma (ICP) emission spectrometer (manufactured by Thermo Fisher Scientific Co., Ltd. under the trade name "ICAP6500").
このようにして得られた前駆体150gと市販の水酸化リチウム一水和物粉砕品(D50:30μm)71.8gと市販のアルミナ2.3gを乾式混合し、混合物を調製した。上記の原料混合物を、酸素雰囲気下、730℃で、15.3時間焼成して、組成式LiNi0.86Co0.11Al0.03O2、であるリチウムイオン二次電池用正極活物質を得た。なお、Ni:Co:Alのモル比(各元素のグラム原子数の比)は、誘導結合プラズマ(ICP)発光分光分析装置(Thermo Fisher Scientific株式会社製商品名“ICAP6500”)によって測定した。 <Production and analysis of positive electrode active material for lithium ion secondary battery>
150 g of the precursor thus obtained was dry-mixed with 71.8 g of commercially available lithium hydroxide monohydrate pulverized product (D50: 30 μm) and 2.3 g of commercially available alumina to prepare a mixture. The above raw material mixture was fired at 730° C. for 15.3 hours in an oxygen atmosphere to obtain a positive electrode active material for lithium ion secondary batteries having the composition formula LiNi 0.86 Co 0.11 Al 0.03 O 2 . The molar ratio of Ni:Co:Al (ratio of gram atoms of each element) was measured by an inductively coupled plasma (ICP) emission spectrometer (manufactured by Thermo Fisher Scientific Co., Ltd. under the trade name "ICAP6500").
図2は実施例1で得られたリチウムイオン二次電池用正極活物質の電子顕微鏡写真である。具体的には、図2(A)が5000倍、図2(B)が10000倍、図2(C)が20000倍の拡大写真である。得られたリチウムイオン二次電池用正極活物質の形状は、図2の顕微鏡写真に示すように、柱状構造を呈していた。
さらに、電子顕微鏡によるリチウムイオン二次電池用正極活物質の粒子寸法を計測した結果、その計測値は、その短軸Tが平均値で1.6μmであり、その長軸Gは平均値4.2μmであった。 Fig. 2 is an electron microscope photograph of the positive electrode active material for lithium ion secondary batteries obtained in Example 1. Specifically, Fig. 2(A) is an enlarged photograph at 5000 times, Fig. 2(B) is an enlarged photograph at 10000 times, and Fig. 2(C) is an enlarged photograph at 20000 times. As shown in the microscope photograph in Fig. 2, the shape of the obtained positive electrode active material for lithium ion secondary batteries exhibited a columnar structure.
Furthermore, the particle dimensions of the positive electrode active material for lithium ion secondary batteries were measured using an electron microscope, and the measured values were that the minor axis T was 1.6 μm on average and the major axis G was 4.2 μm on average.
さらに、電子顕微鏡によるリチウムイオン二次電池用正極活物質の粒子寸法を計測した結果、その計測値は、その短軸Tが平均値で1.6μmであり、その長軸Gは平均値4.2μmであった。 Fig. 2 is an electron microscope photograph of the positive electrode active material for lithium ion secondary batteries obtained in Example 1. Specifically, Fig. 2(A) is an enlarged photograph at 5000 times, Fig. 2(B) is an enlarged photograph at 10000 times, and Fig. 2(C) is an enlarged photograph at 20000 times. As shown in the microscope photograph in Fig. 2, the shape of the obtained positive electrode active material for lithium ion secondary batteries exhibited a columnar structure.
Furthermore, the particle dimensions of the positive electrode active material for lithium ion secondary batteries were measured using an electron microscope, and the measured values were that the minor axis T was 1.6 μm on average and the major axis G was 4.2 μm on average.
本実施例1にて得た正極活物質粒子のEBSD解析(電子後方散乱回折法)を行った。EBSD解析を行うサンプルは以下のように準備した。
主剤と硬化剤からなる2液混合式の常温硬化エポキシレジンに正極活物質を分散させ、真空状態で脱泡を促しながら硬化させる。硬化した正極活物質を含むレジンの塊を切断し切断面を紙やすりで平滑にする。更にこの切断面をクロスセッションポリッシャー加工を行い更に平滑化することでEBSD解析用正極活物質断面サンプルを得た。なお正極活物質は湿度や二酸化炭素と反応し結晶表面に不純物を生成するため、これら一連の前処理は低湿度環境で行いEBSD解析用正極活物質断面サンプルの保管についてはAr等の不活性ガス下で行う。 An EBSD analysis (electron backscatter diffraction method) was performed on the positive electrode active material particles obtained in this Example 1. The sample to be subjected to the EBSD analysis was prepared as follows.
The positive electrode active material is dispersed in a two-liquid mixture of room temperature curing epoxy resin consisting of a base agent and a hardener, and cured under vacuum while promoting degassing. The resin block containing the cured positive electrode active material is cut, and the cut surface is smoothed with sandpaper. The cut surface is then processed with a cross-session polisher to further smooth it, thereby obtaining a cross-sectional sample of the positive electrode active material for EBSD analysis. Since the positive electrode active material reacts with humidity and carbon dioxide to generate impurities on the crystal surface, this series of pretreatments is performed in a low humidity environment, and the cross-sectional sample of the positive electrode active material for EBSD analysis is stored under an inert gas such as Ar.
主剤と硬化剤からなる2液混合式の常温硬化エポキシレジンに正極活物質を分散させ、真空状態で脱泡を促しながら硬化させる。硬化した正極活物質を含むレジンの塊を切断し切断面を紙やすりで平滑にする。更にこの切断面をクロスセッションポリッシャー加工を行い更に平滑化することでEBSD解析用正極活物質断面サンプルを得た。なお正極活物質は湿度や二酸化炭素と反応し結晶表面に不純物を生成するため、これら一連の前処理は低湿度環境で行いEBSD解析用正極活物質断面サンプルの保管についてはAr等の不活性ガス下で行う。 An EBSD analysis (electron backscatter diffraction method) was performed on the positive electrode active material particles obtained in this Example 1. The sample to be subjected to the EBSD analysis was prepared as follows.
The positive electrode active material is dispersed in a two-liquid mixture of room temperature curing epoxy resin consisting of a base agent and a hardener, and cured under vacuum while promoting degassing. The resin block containing the cured positive electrode active material is cut, and the cut surface is smoothed with sandpaper. The cut surface is then processed with a cross-session polisher to further smooth it, thereby obtaining a cross-sectional sample of the positive electrode active material for EBSD analysis. Since the positive electrode active material reacts with humidity and carbon dioxide to generate impurities on the crystal surface, this series of pretreatments is performed in a low humidity environment, and the cross-sectional sample of the positive electrode active material for EBSD analysis is stored under an inert gas such as Ar.
前述した操作により用意したEBSD解析用正極活物質断面サンプルは日本電子株式会社製「JSM-7001F」にて分析を行い、オックスフォード・インストゥルメンツ株式会社製解析ソフト「AZtec Crystal」にて方位解析を実施した。
The cross-sectional sample of the positive electrode active material for EBSD analysis prepared by the above-mentioned procedure was analyzed using the JSM-7001F manufactured by JEOL Ltd., and orientation analysis was performed using the analysis software AZtec Crystal manufactured by Oxford Instruments Ltd.
MUDの算出は、解析ソフトの極点図の作成機能で行い(0001)面を評価対象とし、半幅値を10°に設定し実施した。なお、評価する粒子は一粒単位を対象として無作為に選んだ3視野で解析を実施し、最大値MUDの平均値は96であった。上記前駆体である水酸化物から得られた正極活物質のEBSDの結果を図3に示す。
The MUD was calculated using the pole figure creation function of the analysis software, with the (0001) plane as the evaluation target and the half-width set to 10°. The particle to be evaluated was analyzed in three randomly selected fields of view, with the average maximum MUD being 96. The EBSD results for the positive electrode active material obtained from the hydroxide precursor described above are shown in Figure 3.
上記のようにして得た正極活物質を使用して電極箔を作製した。電極箔材料として、正極活物質:導電助剤:バインダー:分散媒=45:2.5:2.5:50の比率で混合した。導電助剤には、デンカ製デンカブラックを使用し、バインダー及び分散媒には、ソルベイジャパン製Solef5130を使用した。電極箔材料の混合は、プライミックス社製ホモディスパーを用いて6000rpmで5分間行いペースト状にした。さらに、ペースト状の電極箔材料をアルミニウム箔上にドクターブレード法にて7mil厚で塗工した。ペースト状の電極箔材料を塗工したアルミニウム箔を110℃で4時間加熱した後、NMPの除去を行い、0.04mmでロールプレスを実施することによって電極箔を得た。
The electrode foil was produced using the positive electrode active material obtained as described above. The electrode foil material was mixed in a ratio of positive electrode active material: conductive assistant: binder: dispersion medium = 45:2.5:2.5:50. Denka Black manufactured by Denka was used as the conductive assistant, and Solef5130 manufactured by Solvay Japan was used as the binder and dispersion medium. The electrode foil material was mixed using a homodisper manufactured by Primix at 6000 rpm for 5 minutes to form a paste. The paste-like electrode foil material was then applied to an aluminum foil with a thickness of 7 mil by the doctor blade method. The aluminum foil coated with the paste-like electrode foil material was heated at 110°C for 4 hours, after which the NMP was removed, and the electrode foil was obtained by roll pressing at 0.04 mm.
得た電極箔を使用しリチウムイオン二次電池を作製した。なお、作製したリチウムイオン二次電池は、正極、セパレータ(ガラス繊維濾紙)、金属リチウム負極、電解液(1mol/L LiPF6/PC)、から構成され、当該アルゴン雰囲気中でリチウムイオン二次電池を作製した。このリチウムイオン二次電池を測定温度20℃、電圧範囲4.25~2.5Vの間、電圧レート1Cで、80回の充放電を繰り返しサイクル特性(各サイクルごとの放電容量、及び放電容量維持率)を評価した。レート特性試験は、電圧範囲4.25~2.5Vの間、電圧レート0.1C~5Cで実施した。
A lithium ion secondary battery was produced using the obtained electrode foil. The produced lithium ion secondary battery was composed of a positive electrode, a separator (glass fiber filter paper), a metallic lithium negative electrode, and an electrolyte (1 mol/L LiPF 6 /PC), and was produced in the argon atmosphere. This lithium ion secondary battery was repeatedly charged and discharged 80 times at a measurement temperature of 20°C, a voltage range of 4.25 to 2.5 V, and a voltage rate of 1 C, and the cycle characteristics (discharge capacity for each cycle and discharge capacity retention rate) were evaluated. The rate characteristic test was carried out at a voltage range of 4.25 to 2.5 V and a voltage rate of 0.1 C to 5 C.
表1及び図4~図6に、実施例1で得られたリチウムイオン二次電池の充放電時のサイクル特性(各サイクル毎の放電容量または初期放電時の放電容量に対する各サイクル毎の容量低下割合)及びレート特性の測定結果を示す。図4及び図5中、●5が実施例1のデータである。また、図6中、(A)が実施例1のデータである。
Table 1 and Figures 4 to 6 show the measurement results of the cycle characteristics (discharge capacity for each cycle or the rate of capacity decrease for each cycle relative to the discharge capacity at the initial discharge) and rate characteristics during charge and discharge of the lithium ion secondary battery obtained in Example 1. In Figures 4 and 5, ●5 is the data for Example 1. Also, in Figure 6, (A) is the data for Example 1.
図7に電子顕微鏡によるリチウムイオン二次電池用正極活物質粒子の寸法計測手法を示した。リチウムイオン二次電池用正極活物質の適宜選択した箇所から採取した所定量の製品の寸法を計測し、平均値を求めることによってリチウムイオン二次電池用正極活物質粒子の短軸Tの平均値及び長軸Gの平均値を算出した。なお、顕微鏡の画像から寸法計測を行うにあたり粒子形状が明瞭に確認できるよう粒子密度が低い視野を選択して実施した。
Figure 7 shows the method for measuring the dimensions of positive electrode active material particles for lithium ion secondary batteries using an electron microscope. The dimensions of a specified amount of product taken from appropriately selected locations of the positive electrode active material for lithium ion secondary batteries were measured and averaged to calculate the average short axis T and long axis G of the positive electrode active material particles for lithium ion secondary batteries. Note that when measuring the dimensions from the microscope image, a field of view with low particle density was selected so that the particle shape could be clearly confirmed.
(比較例1)(WO2016―143844A1公報の実施例1と同じ)
室温下でNiSO4とCoSO4のNi:Coのモル比を89:11としてNi-Co水溶液を調製した。一方、蓋付・オーバーフロー口付のSUS製反応槽(内容量50L)に純水を入れ、60℃で、攪拌機を稼働させた。この状態を保持しつつ、N2ガスを導入し、上記のNi-Co水溶液と、(NH4)2SO4とNaOH水溶液を滴下し、撹拌翼の先端速度4.1m/sで撹拌を10時間継続した。 (Comparative Example 1) (same as Example 1 of WO2016-143844A1)
A Ni-Co aqueous solution was prepared at room temperature with a molar ratio of Ni:Co between NiSO4 and CoSO4 of 89:11. Meanwhile, pure water was placed in a SUS reaction tank (capacity 50 L) with a lid and an overflow port, and the agitator was operated at 60°C. While maintaining this state, N2 gas was introduced, and the Ni-Co aqueous solution, ( NH4 ) 2SO4 , and NaOH aqueous solution were dropped, and stirring was continued for 10 hours at a tip speed of 4.1 m/s.
室温下でNiSO4とCoSO4のNi:Coのモル比を89:11としてNi-Co水溶液を調製した。一方、蓋付・オーバーフロー口付のSUS製反応槽(内容量50L)に純水を入れ、60℃で、攪拌機を稼働させた。この状態を保持しつつ、N2ガスを導入し、上記のNi-Co水溶液と、(NH4)2SO4とNaOH水溶液を滴下し、撹拌翼の先端速度4.1m/sで撹拌を10時間継続した。 (Comparative Example 1) (same as Example 1 of WO2016-143844A1)
A Ni-Co aqueous solution was prepared at room temperature with a molar ratio of Ni:Co between NiSO4 and CoSO4 of 89:11. Meanwhile, pure water was placed in a SUS reaction tank (capacity 50 L) with a lid and an overflow port, and the agitator was operated at 60°C. While maintaining this state, N2 gas was introduced, and the Ni-Co aqueous solution, ( NH4 ) 2SO4 , and NaOH aqueous solution were dropped, and stirring was continued for 10 hours at a tip speed of 4.1 m/s.
この撹拌中、反応槽内に通気しているN2ガスが、継続して上記Ni-Co水溶液中に巻き込まれるのが確認できた。また、(NH4)2SO4は、上記槽内のNi-Co水溶液がアンモニア濃度12.0g/Lとなるように、NaOHは、上記槽内のNi-Co水溶液がpH12.0となるように滴下を調整した。得られた沈殿物を、スラリー状態で取り出し、脱水後、110℃で16時間乾燥し、Ni-Co共沈水酸化物を得た。
During this stirring, it was confirmed that N2 gas passing through the reaction tank was continuously entrained in the Ni-Co aqueous solution. The amount of ( NH4 ) 2SO4 dropped was adjusted so that the Ni-Co aqueous solution in the tank had an ammonia concentration of 12.0 g/L, and the amount of NaOH dropped was adjusted so that the Ni-Co aqueous solution in the tank had a pH of 12.0. The resulting precipitate was taken out in a slurry state, dehydrated, and dried at 110°C for 16 hours to obtain Ni-Co coprecipitated hydroxide.
950g(モル比0.97)の上記Ni-Co共沈水酸化物、160g(モル比0.03)のアルミナ(平均粒子径:10μm)及び445g(モル比1.03)の水酸化リチウム一水和物粉砕品(D50:30μm)の各原料紛体をブレンダーで1時間乾式混合した。混合後、電気炉にて、750℃で昇温時間を含めて20時間、酸化性雰囲気下でNi-Co共沈水酸化物、アルミナ、水酸化リチウムの各原料紛体を乾式混合した原料を焼成した。当該原料を焼成した後、炉内温度が200℃になった時点で、炉外に取り出し、室温まで放冷した後、リチウムイオン二次電池用正極活物質を得た。リチウムイオン二次電池用正極活物質は、アスペクト比が0.9より大きい、ほぼ球状の粒子で、かつ表面が滑らかな正極活物質であることが判明した。
950g (molar ratio 0.97) of the Ni-Co coprecipitated hydroxide, 160g (molar ratio 0.03) of alumina (average particle size: 10μm), and 445g (molar ratio 1.03) of pulverized lithium hydroxide monohydrate (D50: 30μm) were dry mixed in a blender for 1 hour. After mixing, the raw material powders of the Ni-Co coprecipitated hydroxide, alumina, and lithium hydroxide were sintered in an oxidizing atmosphere at 750°C for 20 hours, including the heating time, in an electric furnace. After sintering, the raw material was taken out of the furnace when the temperature inside the furnace reached 200°C, and was allowed to cool to room temperature, and a positive electrode active material for lithium ion secondary batteries was obtained. It was found that the positive electrode active material for lithium ion secondary batteries was a positive electrode active material with an aspect ratio of more than 0.9, nearly spherical particles, and a smooth surface.
上記の正極活物質を用いる以外は、実施例1と同様にして正極活物質粒子のEBSD解析(電子後方散乱回折法)を行った。最大MUDの平均値は5であった。比較例1で得られた正極活物質のEBSDの結果を図8に示す。
Except for using the above positive electrode active material, EBSD analysis (electron backscatter diffraction) of the positive electrode active material particles was performed in the same manner as in Example 1. The average maximum MUD was 5. The EBSD results of the positive electrode active material obtained in Comparative Example 1 are shown in Figure 8.
上記の正極活物質を用いる以外は、実施例1と同様にしてリチウムイオン二次電池が備える正極である電極箔を作製した。この電極箔を用いてリチウムイオン二次電池を作製した。このリチウムイオン二次電池を実施例1と同じ条件で、初期容量(放電容量)、放電容量維持率すなわちサイクル特性(初期放電時の放電容量に対する80回後の放電時の放電容量の割合)、及びレート特性を測定し、結果を表1及び図4~6に併せて示す。図4及び図5中、□6が比較例1のデータであり、図6中(B)の破線が比較例1のデータである。
Except for using the above positive electrode active material, an electrode foil, which is a positive electrode of a lithium ion secondary battery, was prepared in the same manner as in Example 1. A lithium ion secondary battery was prepared using this electrode foil. The initial capacity (discharge capacity), discharge capacity retention rate, i.e., cycle characteristics (the ratio of discharge capacity after 80 discharges to the discharge capacity at the initial discharge), and rate characteristics of this lithium ion secondary battery were measured under the same conditions as in Example 1, and the results are shown in Table 1 and Figures 4 to 6. In Figures 4 and 5, square 6 represents the data for Comparative Example 1, and the dashed line in Figure 6 (B) represents the data for Comparative Example 1.
(実施例2)
電子顕微鏡による計測結果が、平均値で、短軸T=0.6、長軸G=1.7μmの寸法となった時点で、撹拌および給液を停止する以外は実施例1と同様にしてリチウム二次電池用正極活物質前駆体を製造した。この前駆体を用いる以外は実施例1と同様にしてリチウムイオン二次電池用正極活物質を製造した。このリチウムイオン二次電池用活物質(平均値で、短軸T=0.6μm、長軸G=1.3μm)を用いる以外は実施例1と同様にしてリチウムイオン二次電池が備える正極である電極箔およびそれを備えるリチウムイオン二次電池を作製した。このリチウムイオン二次電池を実施例1と同じ条件で、初期容量(放電容量)、サイクル特性(各サイクル毎の放電容量または初期放電時の放電容量に対する各サイクル毎の容量低下割合)及びレート特性を測定した。測定結果を表1に示す。また上記の正極活物質を用いる以外は、実施例1と同様にして正極活物質粒子のEBSD解析(電子後方散乱回折法)を行った。最大MUDの平均値は31であった。 Example 2
A positive electrode active material precursor for a lithium secondary battery was produced in the same manner as in Example 1, except that stirring and supplying were stopped when the measurement results by an electron microscope showed average values of minor axis T = 0.6 and major axis G = 1.7 μm. A positive electrode active material for a lithium ion secondary battery was produced in the same manner as in Example 1, except that this precursor was used. An electrode foil, which is a positive electrode of a lithium ion secondary battery, and a lithium ion secondary battery including the same were produced in the same manner as in Example 1, except that this active material for a lithium ion secondary battery (average values of minor axis T = 0.6 μm and major axis G = 1.3 μm) was used. The initial capacity (discharge capacity), cycle characteristics (discharge capacity for each cycle or capacity reduction rate for each cycle relative to the discharge capacity at the time of initial discharge) and rate characteristics of this lithium ion secondary battery were measured under the same conditions as in Example 1. The measurement results are shown in Table 1. In addition, EBSD analysis (electron backscatter diffraction) of the positive electrode active material particles was performed in the same manner as in Example 1, except that the above positive electrode active material was used. The average value of the maximum MUD was 31.
電子顕微鏡による計測結果が、平均値で、短軸T=0.6、長軸G=1.7μmの寸法となった時点で、撹拌および給液を停止する以外は実施例1と同様にしてリチウム二次電池用正極活物質前駆体を製造した。この前駆体を用いる以外は実施例1と同様にしてリチウムイオン二次電池用正極活物質を製造した。このリチウムイオン二次電池用活物質(平均値で、短軸T=0.6μm、長軸G=1.3μm)を用いる以外は実施例1と同様にしてリチウムイオン二次電池が備える正極である電極箔およびそれを備えるリチウムイオン二次電池を作製した。このリチウムイオン二次電池を実施例1と同じ条件で、初期容量(放電容量)、サイクル特性(各サイクル毎の放電容量または初期放電時の放電容量に対する各サイクル毎の容量低下割合)及びレート特性を測定した。測定結果を表1に示す。また上記の正極活物質を用いる以外は、実施例1と同様にして正極活物質粒子のEBSD解析(電子後方散乱回折法)を行った。最大MUDの平均値は31であった。 Example 2
A positive electrode active material precursor for a lithium secondary battery was produced in the same manner as in Example 1, except that stirring and supplying were stopped when the measurement results by an electron microscope showed average values of minor axis T = 0.6 and major axis G = 1.7 μm. A positive electrode active material for a lithium ion secondary battery was produced in the same manner as in Example 1, except that this precursor was used. An electrode foil, which is a positive electrode of a lithium ion secondary battery, and a lithium ion secondary battery including the same were produced in the same manner as in Example 1, except that this active material for a lithium ion secondary battery (average values of minor axis T = 0.6 μm and major axis G = 1.3 μm) was used. The initial capacity (discharge capacity), cycle characteristics (discharge capacity for each cycle or capacity reduction rate for each cycle relative to the discharge capacity at the time of initial discharge) and rate characteristics of this lithium ion secondary battery were measured under the same conditions as in Example 1. The measurement results are shown in Table 1. In addition, EBSD analysis (electron backscatter diffraction) of the positive electrode active material particles was performed in the same manner as in Example 1, except that the above positive electrode active material was used. The average value of the maximum MUD was 31.
(実施例3)
電子顕微鏡による計測結果が、平均値で、短軸T=4.2μm、長軸G=19μmの寸法となった時点で、撹拌および給液を停止する以外は実施例1と同様にしてリチウムイオン二次電池用正極活物質前駆体を製造し、この前駆体を用いる以外は実施例1と同様にしてリチウムイオン二次電池用正極活物質を製造した。この正極活物質(平均値で、短軸T=5.1μm、長軸G=18μm)を用いる以外は実施例1と同様にして、リチウムイオン二次電池が備える正極である電極箔およびそれを備えるリチウムイオン二次電池を作製し、この電池を実施例1と同じ条件で、初期容量(放電容量)、サイクル特性(各サイクル毎の放電容量または初期放電時の放電容量に対する各サイクル毎の容量低下割合)、及びレート特性を測定した。測定結果を表1に示す。また上記の正極活物質を用いる以外は、実施例1と同様にして正極活物質粒子のEBSD解析(電子後方散乱回折法)を行った。最大MUDの平均値は178であった。 Example 3
A positive electrode active material precursor for a lithium ion secondary battery was produced in the same manner as in Example 1 except that stirring and supplying were stopped when the measurement results by the electron microscope reached the average dimensions of the minor axis T = 4.2 μm and the major axis G = 19 μm. A positive electrode active material for a lithium ion secondary battery was produced in the same manner as in Example 1 except that this precursor was used. An electrode foil, which is a positive electrode of a lithium ion secondary battery, and a lithium ion secondary battery including the same were produced in the same manner as in Example 1 except that this positive electrode active material (average values of minor axis T = 5.1 μm and major axis G = 18 μm) was used. The initial capacity (discharge capacity), cycle characteristics (discharge capacity for each cycle or capacity reduction ratio for each cycle relative to the discharge capacity at the time of initial discharge), and rate characteristics of this battery were measured under the same conditions as in Example 1. The measurement results are shown in Table 1. In addition, EBSD analysis (electron backscatter diffraction) of the positive electrode active material particles was performed in the same manner as in Example 1 except that the above positive electrode active material was used. The average value of the maximum MUD was 178.
電子顕微鏡による計測結果が、平均値で、短軸T=4.2μm、長軸G=19μmの寸法となった時点で、撹拌および給液を停止する以外は実施例1と同様にしてリチウムイオン二次電池用正極活物質前駆体を製造し、この前駆体を用いる以外は実施例1と同様にしてリチウムイオン二次電池用正極活物質を製造した。この正極活物質(平均値で、短軸T=5.1μm、長軸G=18μm)を用いる以外は実施例1と同様にして、リチウムイオン二次電池が備える正極である電極箔およびそれを備えるリチウムイオン二次電池を作製し、この電池を実施例1と同じ条件で、初期容量(放電容量)、サイクル特性(各サイクル毎の放電容量または初期放電時の放電容量に対する各サイクル毎の容量低下割合)、及びレート特性を測定した。測定結果を表1に示す。また上記の正極活物質を用いる以外は、実施例1と同様にして正極活物質粒子のEBSD解析(電子後方散乱回折法)を行った。最大MUDの平均値は178であった。 Example 3
A positive electrode active material precursor for a lithium ion secondary battery was produced in the same manner as in Example 1 except that stirring and supplying were stopped when the measurement results by the electron microscope reached the average dimensions of the minor axis T = 4.2 μm and the major axis G = 19 μm. A positive electrode active material for a lithium ion secondary battery was produced in the same manner as in Example 1 except that this precursor was used. An electrode foil, which is a positive electrode of a lithium ion secondary battery, and a lithium ion secondary battery including the same were produced in the same manner as in Example 1 except that this positive electrode active material (average values of minor axis T = 5.1 μm and major axis G = 18 μm) was used. The initial capacity (discharge capacity), cycle characteristics (discharge capacity for each cycle or capacity reduction ratio for each cycle relative to the discharge capacity at the time of initial discharge), and rate characteristics of this battery were measured under the same conditions as in Example 1. The measurement results are shown in Table 1. In addition, EBSD analysis (electron backscatter diffraction) of the positive electrode active material particles was performed in the same manner as in Example 1 except that the above positive electrode active material was used. The average value of the maximum MUD was 178.
表1によれば、実施例1の正極活物質を用いて得られる電極箔を備えたリチウムイオン二次電池は、初期容量、レート特性、及びサイクル特性に優れることが判明した。さらに、上記した本発明の優先配向を有する正極活物質を使用して得られるリチウムイオン二次電池は、図4~図6に示すように、従前の正極活物質を使用したリチウムイオン二次電池に比して、初期放電容量、サイクル特性、レート特性共に優れている。
According to Table 1, it was found that the lithium ion secondary battery equipped with the electrode foil obtained using the positive electrode active material of Example 1 has excellent initial capacity, rate characteristics, and cycle characteristics. Furthermore, as shown in Figures 4 to 6, the lithium ion secondary battery obtained using the above-mentioned positive electrode active material of the present invention has excellent initial discharge capacity, cycle characteristics, and rate characteristics compared to lithium ion secondary batteries using conventional positive electrode active materials.
図4は、サイクル毎の放電容量、図5は、サイクル毎の初期放電容量からの放電容量維持率を示しており、図4~図5において、●5が実施例1で得た優先配向を有する本発明の正極活物質を使用して実施例1に記載の測定条件で測定した場合、□6が比較例1で得た従前の正極活物質を使用し上記と同じ条件で測定した場合のサイクル数によるサイクル毎の放電容量、サイクル毎の初期放電容量からの放電容量維持率を示している。
Figure 4 shows the discharge capacity per cycle, and Figure 5 shows the discharge capacity maintenance rate from the initial discharge capacity per cycle. In Figures 4 and 5, ●5 shows the discharge capacity per cycle and the discharge capacity maintenance rate from the initial discharge capacity per cycle depending on the number of cycles when the positive electrode active material of the present invention having the preferred orientation obtained in Example 1 was used and measured under the measurement conditions described in Example 1, and □6 shows the discharge capacity per cycle and the discharge capacity maintenance rate from the initial discharge capacity per cycle when measured under the same conditions as above using the conventional positive electrode active material obtained in Comparative Example 1.
図6は、実施例1の正極活物質を用いて得られる電極箔を備えたリチウムイオン二次電池のレート特性を示しており、図6(A)が実施例1で得た本発明の柱状構造体である正極活物質を使用し上記と同じ条件で測定した場合、図6(B)が比較例1で得た従前の正極活物質を使用し上記と同じ条件で測定した場合である。
Figure 6 shows the rate characteristics of a lithium ion secondary battery equipped with an electrode foil obtained using the positive electrode active material of Example 1. Figure 6(A) shows the results when the positive electrode active material of the columnar structure of the present invention obtained in Example 1 was used, measured under the same conditions as above, and Figure 6(B) shows the results when the conventional positive electrode active material obtained in Comparative Example 1 was used, measured under the same conditions as above.
このように、図4~図6から明らかなように、本発明に係るリチウムイオン二次電池用正極活物質は、優先配向を持たない従前のリチウムイオン二次電池用正極活物質に比較して、リチウムイオン二次電池用正極活物質に要求される各種特性に優れていることが判明した。
As is clear from Figures 4 to 6, it has been found that the positive electrode active material for lithium ion secondary batteries according to the present invention is superior in various properties required for positive electrode active materials for lithium ion secondary batteries compared to conventional positive electrode active materials for lithium ion secondary batteries that do not have a preferred orientation.
(実施例4~7)
実施例1で得たリチウムイオン二次電池用正極活物質に対して従前のリチウムイオン二次電池用正極活物質を表2に示す通り混合する以外は実施例1と同様にして、リチウムイオン二次電池が備える正極である電極箔およびそれを備えるリチウムイオン二次電池を作製し、これらの電池を実施例1と同じ条件で、初期容量(放電容量)、サイクル特性(各サイクル毎の放電容量または初期放電時の放電容量に対する各サイクル毎の容量低下割合)、及びレート特性を測定した。測定結果を表2に示す。 (Examples 4 to 7)
An electrode foil, which is a positive electrode of a lithium ion secondary battery, and a lithium ion secondary battery including the electrode foil were prepared in the same manner as in Example 1, except that the positive electrode active material for lithium ion secondary batteries obtained in Example 1 was mixed with a conventional positive electrode active material for lithium ion secondary batteries as shown in Table 2. The initial capacity (discharge capacity), cycle characteristics (discharge capacity for each cycle or the rate of capacity decrease for each cycle relative to the discharge capacity at the time of initial discharge) and rate characteristics of these batteries were measured under the same conditions as in Example 1. The measurement results are shown in Table 2.
実施例1で得たリチウムイオン二次電池用正極活物質に対して従前のリチウムイオン二次電池用正極活物質を表2に示す通り混合する以外は実施例1と同様にして、リチウムイオン二次電池が備える正極である電極箔およびそれを備えるリチウムイオン二次電池を作製し、これらの電池を実施例1と同じ条件で、初期容量(放電容量)、サイクル特性(各サイクル毎の放電容量または初期放電時の放電容量に対する各サイクル毎の容量低下割合)、及びレート特性を測定した。測定結果を表2に示す。 (Examples 4 to 7)
An electrode foil, which is a positive electrode of a lithium ion secondary battery, and a lithium ion secondary battery including the electrode foil were prepared in the same manner as in Example 1, except that the positive electrode active material for lithium ion secondary batteries obtained in Example 1 was mixed with a conventional positive electrode active material for lithium ion secondary batteries as shown in Table 2. The initial capacity (discharge capacity), cycle characteristics (discharge capacity for each cycle or the rate of capacity decrease for each cycle relative to the discharge capacity at the time of initial discharge) and rate characteristics of these batteries were measured under the same conditions as in Example 1. The measurement results are shown in Table 2.
図7は、実施例1で製造した正極活物質粒子寸法の計測手法を示す電子顕微鏡写真である。図7に示されるように、実施例1の正極活物質は従来の正極活物質とは大きく異なり、長軸、短軸の概念を有する柱状構造体であることが明らかとなった。これは前駆体の粒子形状が正極活物質の粒子形状に継承されることに起因する。
図9は、比較例1で製造した正極活物質を使用して得られた正極を構成する粒子の粒子寸法を実施例1と同様の計測手法で計測するための電子顕微鏡写真である。図9に示されるように、比較例1の正極活物質は球状を成し長軸、短軸の概念を持たないことが明らかとなった。 Fig. 7 is an electron microscope photograph showing a method for measuring the particle size of the positive electrode active material produced in Example 1. As shown in Fig. 7, it was revealed that the positive electrode active material of Example 1 is a columnar structure having a concept of a long axis and a short axis, which is significantly different from conventional positive electrode active materials. This is because the particle shape of the precursor is inherited by the particle shape of the positive electrode active material.
9 is an electron microscope photograph for measuring the particle size of particles constituting a positive electrode obtained using the positive electrode active material produced in Comparative Example 1 by the same measuring method as in Example 1. As shown in Fig. 9, it is clear that the positive electrode active material of Comparative Example 1 is spherical and has no concept of major axis and minor axis.
図9は、比較例1で製造した正極活物質を使用して得られた正極を構成する粒子の粒子寸法を実施例1と同様の計測手法で計測するための電子顕微鏡写真である。図9に示されるように、比較例1の正極活物質は球状を成し長軸、短軸の概念を持たないことが明らかとなった。 Fig. 7 is an electron microscope photograph showing a method for measuring the particle size of the positive electrode active material produced in Example 1. As shown in Fig. 7, it was revealed that the positive electrode active material of Example 1 is a columnar structure having a concept of a long axis and a short axis, which is significantly different from conventional positive electrode active materials. This is because the particle shape of the precursor is inherited by the particle shape of the positive electrode active material.
9 is an electron microscope photograph for measuring the particle size of particles constituting a positive electrode obtained using the positive electrode active material produced in Comparative Example 1 by the same measuring method as in Example 1. As shown in Fig. 9, it is clear that the positive electrode active material of Comparative Example 1 is spherical and has no concept of major axis and minor axis.
表2によれば、実施例1のリチウムイオン二次電池用正極活物質を10%以上従前の正極活物質に混合することで初期容量、レート特性、サイクル特性に優れるリチウムイオン二次電池用正極活物質となることが判明した。
According to Table 2, it was found that by mixing 10% or more of the positive electrode active material for lithium ion secondary batteries of Example 1 with a conventional positive electrode active material, a positive electrode active material for lithium ion secondary batteries with excellent initial capacity, rate characteristics, and cycle characteristics was obtained.
本発明の複合酸化物からなる粒状物が結合して形成された柱状構造体からなるリチウム二次電池用正極活物質は、使用時において、常に高容量が要求されるEV用電源、パソコン用電源、携帯電話用電源、バックアップ電源等をはじめとする公知の各種の用途に用いることが可能であり、産業上有用である。
The positive electrode active material for lithium secondary batteries, which is made of a columnar structure formed by bonding granules made of the complex oxide of the present invention, can be used in a variety of well-known applications that require high capacity at all times during use, including power sources for EVs, personal computers, mobile phones, and backup power sources, and is therefore industrially useful.
Claims (5)
- 充放電サイクル特性及びレート特性に優れたリチウムイオン二次電池用正極活物質であって、
六方晶からなる正極活物質結晶の(0001)面が一軸方向へ集合する優先配向を有しており、電子線後方散乱回折法(EBSD)によって測定された前記正極活物質結晶の(0001)面の結晶方位情報に基づいて、下記関係式(1)の条件にて作成される極点図において、
前記正極活物質結晶の(0001)面の結晶方位を示す優先配向度(MUD)の最大値が下記関係式(2)を満たすことを特徴とするリチウムイオン二次電池用正極活物質。
[数1]
半幅値(半値幅)=10° ・・・ (1)
[数2]
30≦MUD≦200 ・・・ (2) A positive electrode active material for a lithium ion secondary battery having excellent charge/discharge cycle characteristics and rate characteristics,
The (0001) plane of the positive electrode active material crystal made of a hexagonal crystal has a preferred orientation in which it is assembled in one axial direction, and a pole figure created under the conditions of the following relational formula (1) based on crystal orientation information of the (0001) plane of the positive electrode active material crystal measured by electron backscatter diffraction (EBSD) method is:
A positive electrode active material for a lithium ion secondary battery, characterized in that a maximum value of a degree of preferred orientation (MUD), which indicates a crystal orientation of the (0001) plane of the positive electrode active material crystal, satisfies the following relational expression (2):
[Equation 1]
Half width (half width) = 10° ... (1)
[Equation 2]
30≦MUD≦200... (2) - 請求項1に記載のリチウムイオン二次電池用正極活物質であって、下記一般式(3)で表される化学組成から構成されることを特徴とする。
[化1]
LiNi1-x-y-zCoxAyBzO2 ・・・ (3)
上記一般式(1)中、AはMn又はAl、BはMg又はZr、xは0.00≦x≦0.33、yは0.00≦y≦0.33、zは0.00≦y≦0.10を表す。 The positive electrode active material for a lithium ion secondary battery according to claim 1, characterized in that it is composed of a chemical composition represented by the following general formula (3):
[Chemical formula 1]
LiNi 1-xyz C x A y B z O 2 ... (3)
In the above general formula (1), A represents Mn or Al, B represents Mg or Zr, x represents 0.00≦x≦0.33, y represents 0.00≦y≦0.33, and z represents 0.00≦y≦0.10. - 請求項2に記載の(a)リチウムイオン二次電池用正極活物質と、(b)混合用リチウムイオン二次電池用正極活物質と、を含むリチウムイオン二次電池用混合正極活物質であって、
前記リチウムイオン二次電池用混合正極活物質に含まれる(a)リチウムイオン二次電池用正極活物質の含有量が10質量%以上であることを特徴とするリチウムイオン二次電池用混合正極活物質。 A mixed positive electrode active material for a lithium ion secondary battery comprising (a) the positive electrode active material for a lithium ion secondary battery according to claim 2 and (b) a mixed positive electrode active material for a lithium ion secondary battery,
The mixed positive electrode active material for lithium ion secondary batteries is characterized in that the content of the (a) positive electrode active material for lithium ion secondary batteries contained in the mixed positive electrode active material for lithium ion secondary batteries is 10 mass % or more. - 請求項2又は3に記載のリチウムイオン二次電池用正極活物質を含むことを特徴とする電極箔。 An electrode foil comprising the positive electrode active material for a lithium ion secondary battery according to claim 2 or 3.
- 請求項4記載の電極箔を備えることを特徴とするリチウムイオン二次電池。 A lithium ion secondary battery comprising the electrode foil according to claim 4.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-203467 | 2022-12-20 | ||
JP2022203467 | 2022-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024135536A1 true WO2024135536A1 (en) | 2024-06-27 |
Family
ID=91588806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/044902 WO2024135536A1 (en) | 2022-12-20 | 2023-12-14 | Lithium ion secondary battery positive electrode active material, lithium ion secondary battery mixed positive electrode active material, electrode foil, and lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024135536A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014067546A (en) * | 2012-09-25 | 2014-04-17 | Ngk Insulators Ltd | Positive electrode active material of lithium secondary battery, and lithium secondary battery |
JP2014129188A (en) * | 2012-12-28 | 2014-07-10 | Sumitomo Metal Mining Co Ltd | Nickel composite hydroxide and production method thereof, cathode active material and production method thereof, and nonaqueous electrolyte secondary battery |
JP2023137836A (en) * | 2022-03-18 | 2023-09-29 | 日本化学産業株式会社 | Positive electrode active material precursor for lithium ion secondary battery |
-
2023
- 2023-12-14 WO PCT/JP2023/044902 patent/WO2024135536A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014067546A (en) * | 2012-09-25 | 2014-04-17 | Ngk Insulators Ltd | Positive electrode active material of lithium secondary battery, and lithium secondary battery |
JP2014129188A (en) * | 2012-12-28 | 2014-07-10 | Sumitomo Metal Mining Co Ltd | Nickel composite hydroxide and production method thereof, cathode active material and production method thereof, and nonaqueous electrolyte secondary battery |
JP2023137836A (en) * | 2022-03-18 | 2023-09-29 | 日本化学産業株式会社 | Positive electrode active material precursor for lithium ion secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230282825A1 (en) | Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material | |
US10741837B2 (en) | Nickel-based positive electroactive materials | |
JP5712544B2 (en) | Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery | |
KR101746187B1 (en) | Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same | |
KR101577179B1 (en) | Cathod active material for lithium rechargeable battery and lithium rechargeable battery comprising the same | |
KR101456313B1 (en) | Lithium manganese for non-aqueous electrolyte secondary battery, method for production thereof, and non-aqueous electrolyte secondary battery | |
EP2868630A1 (en) | Polycrystalline lithium manganese oxide particles, method for preparing same, and anode active material containing polycrystalline lithium manganese oxide particles | |
KR101562686B1 (en) | Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same | |
CN112670506B (en) | Nickel-cobalt-manganese-tantalum composite quaternary positive electrode material coated by fast ion conductor and preparation method thereof | |
KR20150073969A (en) | Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL | |
KR20150073970A (en) | Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY | |
KR101892225B1 (en) | Positive active material precursor for lithium rechargeable battery and manufacturing method thereof, positive active material for lithium rechargeable battery and manufacturing method thereof, lithium rechargeable battery including the same positive active material | |
CN109716564B (en) | Positive electrode active material, method for producing same, and nonaqueous electrolyte secondary battery | |
CN113113590B (en) | Single crystal anode material with core-shell structure and preparation method thereof | |
KR20160075404A (en) | Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same | |
JP6343951B2 (en) | Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery | |
CN111048775A (en) | In-situ sodium doping modification method for improving lithium storage performance of ternary cathode material | |
JP3974396B2 (en) | Method for producing positive electrode active material for lithium secondary battery | |
CN110120519B (en) | Precursor of lithium-rich manganese-based positive electrode material with stacking structure and preparation method of lithium-rich manganese-based positive electrode material with stacking structure | |
CN114735761A (en) | Positive electrode active material and nonaqueous electrolyte secondary battery | |
WO2024135536A1 (en) | Lithium ion secondary battery positive electrode active material, lithium ion secondary battery mixed positive electrode active material, electrode foil, and lithium ion secondary battery | |
Xiang et al. | An improved carbonate precipitation method for the preparation of Li 1.2 Ni 0.12 Co 0.12 Mn 0.56 O 2 cathode material | |
CN114583150B (en) | Positive electrode active material and application thereof | |
KR20160095644A (en) | Positive active material and secondary battery comprising the same | |
Lu et al. | Modified KCl molten salt method synthesis of spinel LiNi0. 5Mn1. 5O4 with loose structure as cathodes for Li-ion batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23906900 Country of ref document: EP Kind code of ref document: A1 |