[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024135360A1 - Control system - Google Patents

Control system Download PDF

Info

Publication number
WO2024135360A1
WO2024135360A1 PCT/JP2023/043605 JP2023043605W WO2024135360A1 WO 2024135360 A1 WO2024135360 A1 WO 2024135360A1 JP 2023043605 W JP2023043605 W JP 2023043605W WO 2024135360 A1 WO2024135360 A1 WO 2024135360A1
Authority
WO
WIPO (PCT)
Prior art keywords
safety
board
transmission process
notification
related parameters
Prior art date
Application number
PCT/JP2023/043605
Other languages
French (fr)
Japanese (ja)
Inventor
楓 武知
靖啓 衣笠
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202380015937.3A priority Critical patent/CN118541650A/en
Publication of WO2024135360A1 publication Critical patent/WO2024135360A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric

Definitions

  • This disclosure relates to a control system that controls equipment such as robots.
  • Patent document 1 discloses a control system for controlling equipment.
  • This disclosure has been made in consideration of these points, and its purpose is to shorten the preparation time required from when the power is turned on until the slave board of the safety-related part is able to execute processing using safety-related parameters in a control system having a non-safety-related part and a safety-related part having a master board and a slave board.
  • the present disclosure provides a control system for controlling equipment, the system comprising a non-safety-related part, a master board, and an initial communication target slave board, the safety-related part conforming to Category 3 of ISO 13849-1 and executing a predetermined process using safety-related parameters, the master board executing an initial transmission process for transmitting safety-related parameters to the initial communication target slave board between the time when the non-safety-related part and the safety-related part are powered on and the time when communication between the non-safety-related part and the safety-related part starts.
  • This disclosure makes it possible to reduce the preparation time required from when the power is turned on until the slave board in the safety-related section is able to execute processing using safety-related parameters.
  • FIG. 1 is a block diagram illustrating a configuration of a robot control system according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram illustrating a main part of a robot control system according to an embodiment of the present disclosure.
  • FIG. 3 is a communication sequence diagram illustrating an operation of the robot control system according to an embodiment of the present disclosure when the robot control system is powered on.
  • FIG. 4 is a communication sequence diagram illustrating an operation subsequent to the operation shown in FIG. 3 when the robot control system according to the embodiment of the present disclosure is powered on.
  • FIG. 5 is a communication sequence diagram illustrating an operation of a robot control system according to an embodiment of the present disclosure after transition from a normal mode to a setting change mode.
  • FIG. 1 shows the configuration of a robot control system 1 according to an embodiment of the present disclosure.
  • This robot control system 1 controls a robot 2 as a device.
  • the robot control system 1 has a teach pendant 3, an area sensor 4, and a controller 5.
  • the robot 2 has nine motors 21 and nine encoders 22 that detect and output the position of the rotation axis of the corresponding motor 21. Some of the motors 21 and encoders 22 are not shown in FIG. 1.
  • Each robot 2 is a six-axis robot with six rotary joints, and six of the nine motors 21 are motors that rotate the rotary joints, and three motors 21 are motors for external axes (not shown).
  • the teach pendant 3 has an input unit 31, an operation input board 32 as a non-initial communication target slave board, a TP side communication board 33, and a display unit 34.
  • the input unit 31 accepts input from a user and outputs an input signal corresponding to the input.
  • the operation input board 32 generates operation input information based on the input signal output by the input unit 31, and transmits it to the TP side communication board 33 using the communication method specified in IEC 61784-3.
  • the TP-side communication board 33 receives the operation input information sent by the operation input board 32 and sends it to the controller 5 via the communication medium M.
  • the TP-side communication board 33 is a non-safety-related part that does not comply with standards such as ISO 13849-1 Category 3 and has not been certified for safety standards.
  • the TP-side communication board 33 causes the display unit 34 to display a specified message.
  • the display unit 34 is configured, for example, with a liquid crystal display.
  • the display unit 34 outputs a display screen according to a signal from the TP side communication board 33.
  • the area sensor 4 outputs a detection result indicating whether or not a person is within the working range of the robot 2.
  • the controller 5 controls the robot 2.
  • the controller 5 includes a main control board 51, a sensor input board 52 as a non-initial communication target slave board, a monitoring board 53 as an initial communication target slave board, a notification board 54 as a master board, a motor control unit 55, and nine amplifiers 56.
  • the main control board 51 receives the signal output by the teach pendant 3.
  • the main control board 51 stores safety-related parameters corresponding to this signal in a non-volatile memory (not shown).
  • the main control board 51 then outputs the safety-related parameters stored in the non-volatile memory.
  • the main control board 51 is a non-safety-related part that does not comply with standards such as ISO 13849-1 Category 3 and has not been certified for safety standards.
  • the sensor input board 52 generates sensor input information that indicates the detection results output by the area sensor 4.
  • the monitoring board 53 generates and outputs monitoring information based on the output of the nine corresponding encoders 22, which indicates whether or not the safety conditions are met, that is, the positions (angles) of the rotation shafts of the nine motors 21 that rotate the rotary joints are within a safety area and the speeds of the rotation shafts of the nine motors 21 are less than the speed limit.
  • the monitoring board 53 also refers to a notification signal (described below) output by the notification board 54, and if the notification signal is at a low level, outputs a stop signal to the amplifier 56, thereby bringing the robot 2 to an emergency stop.
  • the notification board 54 can perform a reception process to receive operation input information, sensor input information, and monitoring information, and a notification signal output process to generate a notification signal related to the robot 2 based on this information and output it to the outside.
  • the motor control unit 55 controls the nine motors 21 by controlling the nine amplifiers 56.
  • the amplifier 56 stops the motor 21 when a stop signal is output from the monitoring board 53.
  • the amplifier 56 can rotate the motor 21 under the control of the motor control unit 55.
  • the operation input board 32, the sensor input board 52, the monitoring board 53, and the notification board 54 are safety-related parts that comply with Category 3 of ISO 13849-1 and execute predetermined processing using safety-related parameters.
  • the operation input board 32, the sensor input board 52, the monitoring board 53, and the notification board 54 are certified for Category 3 of ISO 13849-1.
  • the notification board 54 has two master processors 54a and 54b, non-volatile memories 54c and 54d corresponding to the master processors 54a and 54b, and volatile memories 54e and 54f corresponding to the master processors 54a and 54b. That is, the notification board 54 has two non-volatile memories 54c and 54d.
  • Each master processor 54a and 54b receives the safety-related parameters from the main control board 51 and stores them in the non-volatile memories 54c and 54d corresponding to the master processors 54a and 54b.
  • each master processor 54a and 54b reads the safety-related parameters from the non-volatile memories 54c and 54d, and transfers the safety-related parameters to the monitoring board 53, the sensor input board 52, and the operation input board 32 with the test data attached.
  • the test data is a CRC value of a CRC (Cyclic Redundancy Check).
  • each of the master processors 54a and 54b executes a first calculation process using a portion of the safety-related parameters stored in the corresponding non-volatile memory 54c and 54d.
  • the first calculation process includes the above-mentioned notification signal output process that generates a notification signal for controlling the robot 2.
  • Each master processor 54a, 54b further determines whether the first calculated value obtained in the first calculation process matches the first calculated value output by the other master processor 54a, 54b.
  • the first calculated value is a result of the first calculation process, or a calculated value obtained during the first calculation process. If the first calculated value obtained by the master processor 54a, 54b matches the first calculated value obtained by the other master processor 54a, 54b, each master processor 54a, 54b continues processing as is, but if they do not match a predetermined number of times, it stops the robot 2.
  • the monitoring board 53 has two first slave processors 53a, 53b and volatile memories 53c, 53d corresponding to each of the first slave processors 53a, 53b.
  • Each of the first slave processors 53a, 53b executes a reception process to receive the safety-related parameters transferred by the master processors 54a, 54b of the notification board 54 together with the inspection data, and stores the safety-related parameters received in the reception process in the corresponding volatile memory 53c, 53d.
  • Each of the first slave processors 53a, 53b further executes a second calculation process using the safety-related parameters stored in the corresponding volatile memory 53c, 53d.
  • the second calculation process includes the above-mentioned process of generating the monitoring information, and the process of generating the stop signal based on the notification signal from the notification board 54.
  • Each first slave processor 53a, 53b further determines whether the second calculated value obtained in the second calculation process matches the second calculated value output by the other first slave processor 53a, 53b.
  • the second calculated value is a result of the second calculation process, or a calculated value obtained during the second calculation process.
  • Each first slave processor 53a, 53b continues processing if the second calculated value obtained by the first slave processor 53a, 53b matches the second calculated value obtained by the other first slave processor 53a, 53b, but stops the robot 2 if they do not match a predetermined number of times.
  • the sensor input board 52 has two second slave processors 52a, 52b and volatile memories 52c, 52d corresponding to each of the second slave processors 52a, 52b.
  • Each of the second slave processors 52a, 52b executes a reception process to receive the safety-related parameters transferred by the master processors 54a, 54b of the notification board 54 together with the inspection data, and stores the safety-related parameters received in the reception process in the corresponding volatile memory 52c, 52d.
  • Each of the second slave processors 52a, 52b further executes a third calculation process using the safety-related parameters.
  • Each second slave processor 52a, 52b further determines whether the third calculated value obtained in the third calculation process matches the third calculated value output by the other second slave processor 52a, 52b.
  • the third calculated value is a result of the third calculation process, or a calculated value obtained during the third calculation process.
  • Each second slave processor 52a, 52b continues processing if the third calculated value obtained by the second slave processor 52a, 52b matches the third calculated value obtained by the other second slave processor 52a, 52b, but stops the robot 2 if they do not match a predetermined number of times.
  • the operation input board 32 has two third slave processors 32a, 32b and volatile memories 32c, 32d corresponding to each of the third slave processors 32a, 32b.
  • Each of the third slave processors 32a, 32b executes a reception process to receive the safety-related parameters transferred by the master processors 54a, 54b of the notification board 54 together with the inspection data via the main control board 51 and the TP side communication board 33.
  • Each of the third slave processors 32a, 32b stores the safety-related parameters received in the reception process in the corresponding volatile memory 32c, 32d.
  • Each of the third slave processors 32a, 32b further executes a fourth calculation process using the safety-related parameters.
  • Each third slave processor 32a, 32b further determines whether the fourth calculated value obtained in the fourth calculation process matches the fourth calculated value output by the other third slave processor 32a, 32b.
  • the fourth calculated value is a result of the fourth calculation process, or a calculated value obtained during the fourth calculation process.
  • Each third slave processor 32a, 32b continues processing if the fourth calculated value obtained by that third slave processor 32a, 32b matches the fourth calculated value obtained by the other third slave processor 32a, 32b, but stops the robot 2 if they do not match a predetermined number of times.
  • the master processors 54a and 54b of the notification board 54 execute an initial transmission process to transmit the first safety-related parameter together with the first inspection data to the first slave processors 53a and 53b of the monitoring board 53.
  • the first safety-related parameter is a safety-related parameter used by the monitoring board 53.
  • the first slave processors 53a and 53b of the monitoring board 53 receive the first safety-related parameter together with the first inspection data, and perform a CRC calculation on the received first safety-related parameter.
  • the first slave processors 53a and 53b of the monitoring board 53 calculate the remainder when the first safety-related parameter is divided by a predetermined constant (generator polynomial) as the first CRC value.
  • the master processors 54a and 54b of the notification board 54 checks whether the calculated first CRC value matches the first test data received from the master processors 54a and 54b of the notification board 54, and if the first CRC value matches the first test data, it transmits information indicating that the transmission process was successful to the master processors 54a and 54b of the notification board 54. The process when the first CRC value does not match the test data is omitted here.
  • the robot control system 1 executes a ready information sharing process of S200.
  • S200 first, in S201, the main control board 51 transmits main ready information to the notification board 54.
  • the notification board 54 transmits ready information to the operation input board 32.
  • the operation input board 32 returns information indicating the version of the operation input board 32 to the notification board 54.
  • the notification board 54 transmits ready information to the monitoring board 53.
  • the monitoring board 53 returns information indicating the version of the monitoring board 53 to the notification board 54.
  • the notification board 54 also transmits ready information to the sensor input board 52.
  • the sensor input board 52 returns information indicating the version of the sensor input board 52, etc., to the notification board 54.
  • the notification board 54 returns information indicating the versions of the operation input board 32, the monitoring board 53, and the sensor input board 52, etc., to the main control board 51, and the ready information sharing process ends.
  • the robot control system 1 executes a parameter sharing process of S300.
  • the main control board 51 transmits the second safety-related parameters together with the second inspection data to the notification board 54.
  • the second safety-related parameters include the safety-related parameters used by the operation input board 32 and the safety-related parameters used by the sensor input board 52.
  • the master processors 54a and 54b of the notification board 54 receive the second safety-related parameters and perform a CRC calculation on the received second safety-related parameters. Specifically, the master processors 54a and 54b of the notification board 54 calculate the remainder of dividing the second safety-related parameters by a predetermined constant (generator polynomial) as the second CRC value.
  • the main control board 51 checks whether the calculated second CRC value matches the second test data received from the main control board 51, and if the second CRC value matches the second test data, it transmits information indicating that the transmission process was successful to the main control board 51. The process when the second CRC value does not match the second test data is omitted here.
  • the main control board 51 transmits the second safety-related parameters to the notification board 54 (third transmission process).
  • the master processors 54a and 54b of the notification board 54 receive the second safety-related parameter transmitted in S303 from the main control board 51. Then, the master processors 54a and 54b of the notification board 54 transmit the third safety-related parameter together with the third inspection data to the operation input board 32 (fourth transmission process).
  • the third safety-related parameter is a safety-related parameter among the second safety-related parameters that is used by the operation input board 32.
  • the third slave processors 32a and 32b of the operation input board 32 receive the third safety-related parameter and perform a CRC calculation on the received third safety-related parameter.
  • the third slave processors 32a and 32b of the operation input board 32 calculate the remainder of dividing the third safety-related parameter by a predetermined constant (generator polynomial) as the third CRC value. Then, it checks whether the calculated third CRC value matches the third test data received from the notification board 54, and if the third CRC value matches the third test data, it transmits information indicating that the transmission process was successful to the notification board 54. The process when the third CRC value does not match the third test data is omitted here.
  • the master processors 54a and 54b of the notification board 54 transmit the ID (Identification) of the final frame and the inspection data for the ID to the monitoring board 53 (fifth transmission process).
  • the ID of the final frame is predetermined dummy data.
  • the data transmitted by the notification board 54 to the monitoring board 53 in S306 does not include the safety-related parameters transmitted in the initial transmission process.
  • the first slave processors 53a and 53b of the monitoring board 53 receive the ID of the final frame and perform a CRC calculation on the received ID of the final frame.
  • the first slave processors 53a and 53b of the monitoring board 53 calculate the remainder when the ID of the final frame is divided by a predetermined constant (generator polynomial) as the CRC value for the ID. It then checks whether the calculated CRC value for ID matches the ID test data received from the notification board 54, and if the CRC value for ID matches the ID test data, it transmits information indicating that the transmission process was successful to the notification board 54. The process when the CRC value for ID does not match the ID test data is omitted here.
  • a predetermined constant generator polynomial
  • the master processors 54a and 54b of the notification board 54 transmit the fourth safety-related parameter together with the fourth test data to the sensor input board 52 (fourth transmission process).
  • the fourth safety-related parameter is a safety-related parameter among the second safety-related parameters that is used by the sensor input board 52.
  • the second slave processors 52a and 52b of the sensor input board 52 perform a CRC calculation on the received fourth safety-related parameter. Specifically, the second slave processors 52a and 52b of the sensor input board 52 calculate the remainder of dividing the fourth safety-related parameter by a predetermined constant (generator polynomial) as the fourth CRC value.
  • the master processors 54a and 54b of the notification board 54 send information to the main control board 51 indicating that deployment of safety-related parameters has been completed.
  • the robot control system 1 is in the startup mode. In this state, the robot control system 1 then executes the mode transition process of S400.
  • S400 first, in S401, the main control board 51 instructs the notification board 54 to transition from the current mode to the normal mode.
  • the master processors 54a and 54b of the notification board 54 instruct the operation input board 32 to transition to a mode
  • S403 instruct the monitoring board 53 to transition to a mode.
  • the first slave processors 53a and 53b of the monitoring board 53 instruct the sensor input board 52 to transition to a mode.
  • the first slave processors 53a and 53b of the monitoring board 53 transmit information to the notification board 54 indicating that they have successfully received the mode transition instruction.
  • the second slave processors 52a and 52b of the sensor input board 52 transmit information indicating that they have successfully received the mode transition instruction to the notification board 54.
  • the third slave processors 32a and 32b of the operation input board 32 transmit information indicating that they have successfully received the mode transition instruction to the notification board 54. This causes the robot control system 1 to transition to the normal mode.
  • the master processors 54a and 54b of the notification board 54 transmit a heartbeat to the sensor input board 52 in S408, transmit a heartbeat to the monitoring board 53 in S409, and transmit a heartbeat to the operation input board 32 in S410.
  • the first slave processors 53a and 53b of the monitoring board 53 transmit a signal indicating that they have received the heartbeat to the notification board 54.
  • the second slave processors 52a and 52b of the sensor input board 52 also transmit a signal indicating that they have received the heartbeat to the notification board 54.
  • the third slave processors 32a and 32b of the operation input board 32 also transmit a signal indicating that they have received the heartbeat to the notification board 54.
  • the master processors 54a and 54b of the notification board 54 transmit a heartbeat to the main control board 51.
  • the main control board 51 sends a signal to the notification board 54 indicating that a heartbeat has been received.
  • the operations of S408 to S415 are repeated at predetermined time intervals.
  • the robot control system 1 transitions from normal mode to setting change mode, in S501, the user inputs into the input unit 31 to specify safety-related parameters, and the operation input board 32 generates operation input information based on the input signal output by the input unit 31 and transmits it to the TP-side communication board 33.
  • the TP-side communication board 33 then transmits the fifth safety-related parameter and fifth test data specified by the user's input to the main control board 51 and sets them.
  • the main control board 51 transmits the fifth safety-related parameter and fifth test data to the notification board 54 (first transmission process) and also makes a request to erase/rewrite the parameters.
  • the master processors 54a and 54b of the notification board 54 receive the fifth safety-related parameter and the fifth test data transmitted in S502 from the main control board 51 (second transmission process), and perform a CRC calculation on the received fifth safety-related parameter. Specifically, the master processors 54a and 54b of the notification board 54 calculate the remainder obtained by dividing the fifth safety-related parameter by a predetermined constant (generator polynomial) as a fifth CRC value.
  • a predetermined constant generator polynomial
  • the master processors 54a and 54b of the notification board 54 send information to the main control board 51 indicating that the parameter erasure/rewriting has been completed.
  • the main control board 51 transmits the fifth safety-related parameter to the TP-side communication board 33.
  • the TP-side communication board 33 receives the safety-related parameters transmitted in S504 and displays them on the display unit 34.
  • the operation input board 32 generates operation input information based on the input signal output by the input unit 31 and transmits it to the TP-side communication board 33.
  • the TP-side communication board 33 transmits information indicating that the confirmation has been completed to the main control board 51.
  • the main control board 51 transmits information indicating that the confirmation has been completed to the notification board 54.
  • the master processors 54a and 54b of the notification board 54 transmit the fifth safety-related parameter and the test data stored in the non-volatile memories 54c and 54d to the monitoring board 53 (second transmission process).
  • the test data transmitted here is the CRC value at the time of reading (the CRC value that matches the fifth CRC value).
  • the first slave processors 53a and 53b of the monitoring board 53 receive the fifth safety-related parameter and the test data from the notification board 54 and perform a CRC calculation on the received fifth safety-related parameter.
  • the first slave processors 53a and 53b of the monitoring board 53 calculate the remainder of dividing the fifth safety-related parameter by a predetermined constant (generator polynomial) as the sixth CRC value. Then, it checks whether the calculated sixth CRC value matches the test data received from the notification board 54, and if it matches the sixth CRC value, it transmits information indicating that the transmission process was successful to the notification board 54. Then, in S509, the master processors 54a and 54b of the notification board 54 transmit information indicating that the transmission of the safety-related parameters has been completed to the main control board 51. Also, in S510, the TP-side communication board 33 transmits information indicating that the setting of the safety-related parameters has been completed to the main control board 51.
  • a predetermined constant generator polynomial
  • the robot control system 1 then executes the ready information sharing process of S200, the parameter sharing process of S300, and the mode transition process of S400 in that order.
  • the mode transition process of S400 the mode transition occurs from the setting change mode to the normal mode.
  • the parameter sharing process of S300 in FIG. 5, which is executed after S501 to S510, is executed by causing each unit to execute a program common to the parameter sharing process of S300 in FIG. 3, which is executed after S101 to S104.
  • the third transmission process, the fourth transmission process, and the fifth transmission process of S300 are executed by causing each unit to execute a program common to the parameter sharing process of S300 in FIG. 3, which is executed after S101 to S104, after the initial transmission process (S103) and after the second transmission process (S503).
  • the notification board 54 executes an initial transmission process in S103 to transmit safety-related parameters to the monitoring board 53.
  • the notification board 54 can execute this initial transmission process in S103 in parallel with the processes in S101 and S102 that are executed before the main control board 51, which is a non-safety-related part, starts communication with the notification board 54, which is a safety-related part. Therefore, in the parameter sharing process in S300, the notification board 54 does not need to transmit safety-related parameters to the monitoring board 53.
  • the notification board 54 transmits only predetermined dummy data to the monitoring board 53. Therefore, the preparation time required from when the power is turned on until the monitoring board 53, which is a safety-related part, can execute processing using safety-related parameters can be shortened.
  • the notification board 54 only transmits predetermined dummy data to the monitoring board 53, and does not transmit any safety-related parameters. Therefore, the time it takes for the robot control system 1 to transition from the normal mode to the setting change mode and then return to the normal mode can be shortened, compared to the case where all the safety-related parameters used by the monitoring board 53 are transmitted in the parameter sharing process of S300.
  • the safety-related parameters are transmitted from the master processors 54a and 54b to the first slave processors 53a and 53b, the second slave processors 52a and 52b, and the third slave processors 32a and 32b, it is not necessary to provide non-volatile memory for storing the safety-related parameters in the monitoring board 53, the sensor input board 52, and the operation input board 32. Therefore, compared to providing non-volatile memory in all of the notification board 54, the monitoring board 53, the sensor input board 52, and the operation input board 32, the risk of failure of the non-volatile memory can be reduced and costs can be reduced.
  • the monitoring board 53, the sensor input board 52, and the operation input board 32 are not provided with non-volatile memory for storing safety-related parameters, the user does not need to set the safety-related parameters or check whether the safety-related parameters have been correctly set in the non-volatile memory on the monitoring board 53, the sensor input board 52, and the operation input board 32. Therefore, the effort required for setting and checking the safety-related parameters can be reduced compared to when non-volatile memory is provided on all of the notification board 54, the monitoring board 53, the sensor input board 52, and the operation input board 32.
  • the control system disclosed herein can reduce the preparation time required from when the power is turned on until the slave board of the safety-related section can execute processing using safety-related parameters, and is useful as a control system for controlling equipment such as robots.
  • Robot control system 2.
  • Robot (equipment) 32
  • Operation input board (safety-related part, non-initial communication target slave board)
  • TP side communication board (non-safety related part)
  • Main control board (non-safety related parts)
  • Monitoring board (safety-related part, initial communication target slave board)
  • Sensor input board (safety-related part, non-initial communication target slave board)
  • Notification board safety-related parts, master board)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

The control system that controls equipment is provided with: a non-safety-related unit; and a safety-related unit that has a master board and a slave board for initial communication, complies with ISO13849-1 Category 3, and executes a predetermined process by using safety-related parameters. The master board is caused to execute an initial transmission process for transmitting the safety-related parameters to the slave board for initial communication from the time when power is applied to the non-safety-related unit and the safety-related unit to the time when communication between the non-safety-related unit and the safety-related unit starts.

Description

制御システムControl System
 本開示は、ロボット等の機器を制御する制御システムに関する。 This disclosure relates to a control system that controls equipment such as robots.
 特許文献1には、機器を制御する制御システムが開示されている。 Patent document 1 discloses a control system for controlling equipment.
特開2018-136715号公報JP 2018-136715 A
 ところで、機器を制御する制御システムにおいて、ISO13849-1のカテゴリー3等の規格に準拠する安全関連部として、マスタ基板及びスレーブ基板を設け、マスタ基板に保存された安全関連パラメータを、電源投入時にスレーブ基板に転送することが考えられる。このような構成を採用することにより、スレーブ基板に対する安全関連パラメータの設定作業を不要にできる。 In a control system that controls equipment, it is conceivable to provide a master board and a slave board as safety-related parts that comply with standards such as ISO 13849-1 Category 3, and to transfer safety-related parameters stored on the master board to the slave board when the power is turned on. By adopting such a configuration, it is possible to eliminate the need to set safety-related parameters on the slave board.
 しかし、このような制御システムでは、スレーブ基板によって使用される全ての安全関連パラメータを、非安全関連部と安全関連部との通信開始後にマスタ基板からスレーブ基板に送信するようにすると、電源投入から、スレーブ基板が安全関連パラメータを用いた処理を実行できるようになるまでにかかる準備時間が長くなる。 However, in such a control system, if all safety-related parameters used by the slave board are sent from the master board to the slave board after communication between the non-safety-related and safety-related parts has begun, the preparation time from when the power is turned on until the slave board is able to execute processing using the safety-related parameters will be long.
 本開示は、かかる点に鑑みてなされたものであり、その目的とするところは、非安全関連部と、マスタ基板及びスレーブ基板を有する安全関連部とを有する制御システムにおいて、電源投入から安全関連部のスレーブ基板が安全関連パラメータを用いた処理を実行できるようになるまでにかかる準備時間を短縮することにある。 This disclosure has been made in consideration of these points, and its purpose is to shorten the preparation time required from when the power is turned on until the slave board of the safety-related part is able to execute processing using safety-related parameters in a control system having a non-safety-related part and a safety-related part having a master board and a slave board.
 上記の目的を達成するため、本開示は、機器を制御する制御システムであって、非安全関連部と、マスタ基板及び初期通信対象スレーブ基板を有し、ISO13849-1のカテゴリー3に準拠し、安全関連パラメータを用いて所定の処理を実行する安全関連部とを備え、前記非安全関連部と前記安全関連部に電源を投入してから前記非安全関連部と前記安全関連部との通信を開始するまでの間に、前記マスタ基板が、前記初期通信対象スレーブ基板に安全関連パラメータを送信する初期送信処理を実行することを特徴とする。 In order to achieve the above object, the present disclosure provides a control system for controlling equipment, the system comprising a non-safety-related part, a master board, and an initial communication target slave board, the safety-related part conforming to Category 3 of ISO 13849-1 and executing a predetermined process using safety-related parameters, the master board executing an initial transmission process for transmitting safety-related parameters to the initial communication target slave board between the time when the non-safety-related part and the safety-related part are powered on and the time when communication between the non-safety-related part and the safety-related part starts.
 これにより、非安全関連部が安全関連部との通信を開始するまでに行う処理と並行して、安全関連部のマスタ基板が初期送信処理を実行できるので、電源投入から安全関連部の初期通信対象スレーブ基板が安全関連パラメータを用いた処理を実行できるようになるまでにかかる準備時間を短縮できる。 This allows the master board of the safety-related part to perform initial transmission processing in parallel with the processing performed before the non-safety-related part starts communicating with the safety-related part, shortening the preparation time required from power-on until the slave board with which the safety-related part is initially communicating can perform processing using safety-related parameters.
 本開示によると、電源投入から安全関連部のスレーブ基板が安全関連パラメータを用いた処理を実行できるようになるまでにかかる準備時間を短縮できる。 This disclosure makes it possible to reduce the preparation time required from when the power is turned on until the slave board in the safety-related section is able to execute processing using safety-related parameters.
図1は、本開示の実施形態に係るロボット制御システムの構成を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration of a robot control system according to an embodiment of the present disclosure. 図2は、本開示の実施形態に係るロボット制御システムの要部を示すブロック図である。FIG. 2 is a block diagram illustrating a main part of a robot control system according to an embodiment of the present disclosure. 図3は、本開示の実施形態に係るロボット制御システムの電源投入時における動作を説明する通信シーケンス図である。FIG. 3 is a communication sequence diagram illustrating an operation of the robot control system according to an embodiment of the present disclosure when the robot control system is powered on. 図4は、本開示の実施形態に係るロボット制御システムの電源投入時における図3に示す動作に続く動作を説明する通信シーケンス図である。FIG. 4 is a communication sequence diagram illustrating an operation subsequent to the operation shown in FIG. 3 when the robot control system according to the embodiment of the present disclosure is powered on. 図5は、本開示の実施形態に係るロボット制御システムの通常モードから設定変更モードに遷移した後における動作を説明する通信シーケンス図である。FIG. 5 is a communication sequence diagram illustrating an operation of a robot control system according to an embodiment of the present disclosure after transition from a normal mode to a setting change mode.
 以下、本開示の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。 The following describes in detail the embodiments of the present disclosure with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the present invention, its applications, or its uses.
 図1は、本開示の実施形態に係るロボット制御システム1の構成を示す。このロボット制御システム1は、機器としてのロボット2を制御する。 FIG. 1 shows the configuration of a robot control system 1 according to an embodiment of the present disclosure. This robot control system 1 controls a robot 2 as a device.
 ロボット制御システム1は、ティーチペンダント3と、エリアセンサ4と、コントローラ5とを有している。 The robot control system 1 has a teach pendant 3, an area sensor 4, and a controller 5.
 ロボット2は、9つのモータ21と、対応するモータ21の回転軸の位置をそれぞれ検出して出力する9つのエンコーダ22とを有している。図1において、一部のモータ21及びエンコーダ22の図示を省略している。各ロボット2は、6つの回転関節を有する6軸ロボットであり、9つのモータ21のうちの6つのモータ21は、回転関節を回転させるモータであり、3つのモータ21は外部軸(図示せず)のモータである。 The robot 2 has nine motors 21 and nine encoders 22 that detect and output the position of the rotation axis of the corresponding motor 21. Some of the motors 21 and encoders 22 are not shown in FIG. 1. Each robot 2 is a six-axis robot with six rotary joints, and six of the nine motors 21 are motors that rotate the rotary joints, and three motors 21 are motors for external axes (not shown).
 ティーチペンダント3は、入力部31と、非初期通信対象スレーブ基板としての操作入力用基板32と、TP側通信用基板33と、表示部34とを有している。 The teach pendant 3 has an input unit 31, an operation input board 32 as a non-initial communication target slave board, a TP side communication board 33, and a display unit 34.
 入力部31は、ユーザによる入力を受け付け、当該入力に応じた入力信号を出力する。 The input unit 31 accepts input from a user and outputs an input signal corresponding to the input.
 操作入力用基板32は、入力部31により出力された入力信号に基づいて、操作入力情報を生成し、IEC61784-3に規定された通信方式を用いてTP側通信用基板33に送信する。 The operation input board 32 generates operation input information based on the input signal output by the input unit 31, and transmits it to the TP side communication board 33 using the communication method specified in IEC 61784-3.
 TP側通信用基板33は、操作入力用基板32により送信された操作入力情報を受け取り、通信媒体Mを介してコントローラ5に送信する。TP側通信用基板33は、ISO13849-1のカテゴリー3等の規格に準拠せず、安全規格の認証を取得していない非安全関連部である。また、TP側通信用基板33は、表示部34に所定の表示をさせる。 The TP-side communication board 33 receives the operation input information sent by the operation input board 32 and sends it to the controller 5 via the communication medium M. The TP-side communication board 33 is a non-safety-related part that does not comply with standards such as ISO 13849-1 Category 3 and has not been certified for safety standards. In addition, the TP-side communication board 33 causes the display unit 34 to display a specified message.
 表示部34は、例えば液晶ディスプレイで構成されている。表示部34は、TP側通信用基板33からの信号に応じた表示画面を出力する。 The display unit 34 is configured, for example, with a liquid crystal display. The display unit 34 outputs a display screen according to a signal from the TP side communication board 33.
 エリアセンサ4は、人がロボット2の作業範囲内に入っているか否かを示す検知結果を出力する。 The area sensor 4 outputs a detection result indicating whether or not a person is within the working range of the robot 2.
 コントローラ5は、ロボット2を制御する。コントローラ5は、メイン制御基板51と、非初期通信対象スレーブ基板としてのセンサ入力用基板52と、初期通信対象スレーブ基板としての監視用基板53と、マスタ基板としての通知用基板54と、モータ制御部55と、9つのアンプ56とを備えている。 The controller 5 controls the robot 2. The controller 5 includes a main control board 51, a sensor input board 52 as a non-initial communication target slave board, a monitoring board 53 as an initial communication target slave board, a notification board 54 as a master board, a motor control unit 55, and nine amplifiers 56.
 メイン制御基板51には、ティーチペンダント3によって出力された信号が入力される。メイン制御基板51は、この信号に応じた安全関連パラメータを、図示しない不揮発性メモリによって記憶する。そして、メイン制御基板51は、不揮発性メモリに記憶した安全関連パラメータを出力する。メイン制御基板51は、ISO13849-1のカテゴリー3等の規格に準拠せず、安全規格の認証を取得していない非安全関連部である。 The main control board 51 receives the signal output by the teach pendant 3. The main control board 51 stores safety-related parameters corresponding to this signal in a non-volatile memory (not shown). The main control board 51 then outputs the safety-related parameters stored in the non-volatile memory. The main control board 51 is a non-safety-related part that does not comply with standards such as ISO 13849-1 Category 3 and has not been certified for safety standards.
 センサ入力用基板52は、エリアセンサ4により出力された検知結果を示すセンサ入力情報を生成する。 The sensor input board 52 generates sensor input information that indicates the detection results output by the area sensor 4.
 監視用基板53は、回転関節を回転させる9つのモータ21の回転軸の位置(角度)が安全領域内であり、かつ当該9つのモータ21の回転軸の速度が制限速度未満であるという安全条件が満たされているか否かを示す監視情報を、対応する9つのエンコーダ22の出力に基づいて生成して出力する。また、監視用基板53は、通知用基板54により出力される通知信号(後述)を参照し、通知信号がローレベルである場合には、アンプ56に停止信号を出力することにより、ロボット2を非常停止させる。 The monitoring board 53 generates and outputs monitoring information based on the output of the nine corresponding encoders 22, which indicates whether or not the safety conditions are met, that is, the positions (angles) of the rotation shafts of the nine motors 21 that rotate the rotary joints are within a safety area and the speeds of the rotation shafts of the nine motors 21 are less than the speed limit. The monitoring board 53 also refers to a notification signal (described below) output by the notification board 54, and if the notification signal is at a low level, outputs a stop signal to the amplifier 56, thereby bringing the robot 2 to an emergency stop.
 通知用基板54は、操作入力情報、センサ入力情報、及び監視情報を受信する受信処理と、これらの情報に基づいて、ロボット2に関する通知信号を生成して外部に出力する通知信号出力処理とを実行可能である。 The notification board 54 can perform a reception process to receive operation input information, sensor input information, and monitoring information, and a notification signal output process to generate a notification signal related to the robot 2 based on this information and output it to the outside.
 モータ制御部55は、9つのアンプ56を制御することにより9つのモータ21を制御する。 The motor control unit 55 controls the nine motors 21 by controlling the nine amplifiers 56.
 アンプ56は、監視用基板53により停止信号が出力されているとき、モータ21を停止させる。アンプ56は、監視用基板53により停止信号が出力されていないときには、モータ制御部55の制御によってモータ21を回転させることができる。 The amplifier 56 stops the motor 21 when a stop signal is output from the monitoring board 53. When a stop signal is not output from the monitoring board 53, the amplifier 56 can rotate the motor 21 under the control of the motor control unit 55.
 操作入力用基板32、センサ入力用基板52、監視用基板53、及び通知用基板54は、ISO13849-1のカテゴリー3に準拠し、安全関連パラメータを用いて所定の処理を実行する安全関連部である。操作入力用基板32、センサ入力用基板52、監視用基板53、及び通知用基板54は、ISO13849-1のカテゴリー3の認証を取得している。 The operation input board 32, the sensor input board 52, the monitoring board 53, and the notification board 54 are safety-related parts that comply with Category 3 of ISO 13849-1 and execute predetermined processing using safety-related parameters. The operation input board 32, the sensor input board 52, the monitoring board 53, and the notification board 54 are certified for Category 3 of ISO 13849-1.
 図2に示すように、通知用基板54は、2つのマスタプロセッサ54a,54bと、各マスタプロセッサ54a,54bに対応する不揮発性メモリ54c,54dと、各マスタプロセッサ54a,54bに対応する揮発性メモリ54e,54fとを有している。つまり、通知用基板54は、2つの不揮発性メモリ54c,54dを有している。各マスタプロセッサ54a,54bは、メイン制御基板51から前記安全関連パラメータを受信して当該マスタプロセッサ54a,54bに対応する不揮発性メモリ54c,54dに保存する。また、各マスタプロセッサ54a,54bは、前記不揮発性メモリ54c,54dから前記安全関連パラメータを読み出し、当該安全関連パラメータを、検査データを付与した状態で監視用基板53、センサ入力用基板52、及び操作入力用基板32に転送する。検査データは、CRC(Cyclic Redundancy Check)のCRC値である。また、各マスタプロセッサ54a,54bは、対応する不揮発性メモリ54c,54dに保存された安全関連パラメータの一部を用いて、第1演算処理を実行する。第1演算処理は、ロボット2を制御するための通知信号を生成する上述した通知信号出力処理を含む。 As shown in FIG. 2, the notification board 54 has two master processors 54a and 54b, non-volatile memories 54c and 54d corresponding to the master processors 54a and 54b, and volatile memories 54e and 54f corresponding to the master processors 54a and 54b. That is, the notification board 54 has two non-volatile memories 54c and 54d. Each master processor 54a and 54b receives the safety-related parameters from the main control board 51 and stores them in the non-volatile memories 54c and 54d corresponding to the master processors 54a and 54b. In addition, each master processor 54a and 54b reads the safety-related parameters from the non-volatile memories 54c and 54d, and transfers the safety-related parameters to the monitoring board 53, the sensor input board 52, and the operation input board 32 with the test data attached. The test data is a CRC value of a CRC (Cyclic Redundancy Check). Additionally, each of the master processors 54a and 54b executes a first calculation process using a portion of the safety-related parameters stored in the corresponding non-volatile memory 54c and 54d. The first calculation process includes the above-mentioned notification signal output process that generates a notification signal for controlling the robot 2.
 各マスタプロセッサ54a,54bは、さらに、第1演算処理において得られた第1算出値と他方のマスタプロセッサ54a,54bにより出力された第1算出値とが一致するか否かを判定する。第1算出値は、第1演算処理の結果、又は第1演算処理の過程で得られる算出値である。各マスタプロセッサ54a,54bは、当該マスタプロセッサ54a,54bにより得た第1算出値と、他方のマスタプロセッサ54a,54bにより得た第1算出値とが一致する場合には、そのまま処理を続ける一方、所定の回数一致しない場合には、ロボット2を停止させる。 Each master processor 54a, 54b further determines whether the first calculated value obtained in the first calculation process matches the first calculated value output by the other master processor 54a, 54b. The first calculated value is a result of the first calculation process, or a calculated value obtained during the first calculation process. If the first calculated value obtained by the master processor 54a, 54b matches the first calculated value obtained by the other master processor 54a, 54b, each master processor 54a, 54b continues processing as is, but if they do not match a predetermined number of times, it stops the robot 2.
 監視用基板53は、2つの第1スレーブプロセッサ53a,53bと、各第1スレーブプロセッサ53a,53bに対応する揮発性メモリ53c,53dとを有している。各第1スレーブプロセッサ53a,53bは、通知用基板54のマスタプロセッサ54a,54bにより転送された安全関連パラメータを検査データとともに受信する受信処理を実行し、受信処理で受信した安全関連パラメータを、対応する揮発性メモリ53c,53dに保存する。また、各第1スレーブプロセッサ53a,53bは、対応する揮発性メモリ53c,53dに保存された安全関連パラメータを用いた第2演算処理をさらに実行する。第2演算処理は、上述した監視情報の生成処理、及び通知用基板54からの前記通知信号に基づいて前記停止信号を生成する処理を含む。 The monitoring board 53 has two first slave processors 53a, 53b and volatile memories 53c, 53d corresponding to each of the first slave processors 53a, 53b. Each of the first slave processors 53a, 53b executes a reception process to receive the safety-related parameters transferred by the master processors 54a, 54b of the notification board 54 together with the inspection data, and stores the safety-related parameters received in the reception process in the corresponding volatile memory 53c, 53d. Each of the first slave processors 53a, 53b further executes a second calculation process using the safety-related parameters stored in the corresponding volatile memory 53c, 53d. The second calculation process includes the above-mentioned process of generating the monitoring information, and the process of generating the stop signal based on the notification signal from the notification board 54.
 各第1スレーブプロセッサ53a,53bは、さらに、第2演算処理において得られた第2算出値と他方の第1スレーブプロセッサ53a,53bにより出力された第2算出値とが一致するか否かを判定する。第2算出値は、第2演算処理の結果、又は第2演算処理の過程で得られる算出値である。各第1スレーブプロセッサ53a,53bは、当該第1スレーブプロセッサ53a,53bにより得た第2算出値と、他方の第1スレーブプロセッサ53a,53bにより得た第2算出値とが一致する場合には、そのまま処理を続ける一方、所定の回数一致しない場合には、ロボット2を停止させる。 Each first slave processor 53a, 53b further determines whether the second calculated value obtained in the second calculation process matches the second calculated value output by the other first slave processor 53a, 53b. The second calculated value is a result of the second calculation process, or a calculated value obtained during the second calculation process. Each first slave processor 53a, 53b continues processing if the second calculated value obtained by the first slave processor 53a, 53b matches the second calculated value obtained by the other first slave processor 53a, 53b, but stops the robot 2 if they do not match a predetermined number of times.
 センサ入力用基板52は、2つの第2スレーブプロセッサ52a,52bと、各第2スレーブプロセッサ52a,52bに対応する揮発性メモリ52c,52dとを有している。各第2スレーブプロセッサ52a,52bは、通知用基板54のマスタプロセッサ54a,54bにより転送された安全関連パラメータを検査データとともに受信する受信処理を実行し、受信処理で受信した安全関連パラメータを、対応する揮発性メモリ52c,52dに保存する。また、各第2スレーブプロセッサ52a,52bは、安全関連パラメータを用いた第3演算処理をさらに実行する。 The sensor input board 52 has two second slave processors 52a, 52b and volatile memories 52c, 52d corresponding to each of the second slave processors 52a, 52b. Each of the second slave processors 52a, 52b executes a reception process to receive the safety-related parameters transferred by the master processors 54a, 54b of the notification board 54 together with the inspection data, and stores the safety-related parameters received in the reception process in the corresponding volatile memory 52c, 52d. Each of the second slave processors 52a, 52b further executes a third calculation process using the safety-related parameters.
 各第2スレーブプロセッサ52a,52bは、さらに、第3演算処理において得られた第3算出値と他方の第2スレーブプロセッサ52a,52bにより出力された第3算出値とが一致するか否かを判定する。第3算出値は、第3演算処理の結果、又は第3演算処理の過程で得られる算出値である。各第2スレーブプロセッサ52a,52bは、当該第2スレーブプロセッサ52a,52bにより得た第3算出値と、他方の第2スレーブプロセッサ52a,52bにより得た第3算出値とが一致する場合には、そのまま処理を続ける一方、所定の回数一致しない場合には、ロボット2を停止させる。 Each second slave processor 52a, 52b further determines whether the third calculated value obtained in the third calculation process matches the third calculated value output by the other second slave processor 52a, 52b. The third calculated value is a result of the third calculation process, or a calculated value obtained during the third calculation process. Each second slave processor 52a, 52b continues processing if the third calculated value obtained by the second slave processor 52a, 52b matches the third calculated value obtained by the other second slave processor 52a, 52b, but stops the robot 2 if they do not match a predetermined number of times.
 操作入力用基板32は、2つの第3スレーブプロセッサ32a,32bと、各第3スレーブプロセッサ32a,32bに対応する揮発性メモリ32c,32dとを有している。各第3スレーブプロセッサ32a,32bは、通知用基板54のマスタプロセッサ54a,54bにより転送された安全関連パラメータを検査データとともにメイン制御基板51及びTP側通信用基板33を介して受信する受信処理を実行する。各第3スレーブプロセッサ32a,32bは、受信処理で受信した安全関連パラメータを、対応する揮発性メモリ32c,32dに保存する。また、各第3スレーブプロセッサ32a,32bは、安全関連パラメータを用いた第4演算処理をさらに実行する。 The operation input board 32 has two third slave processors 32a, 32b and volatile memories 32c, 32d corresponding to each of the third slave processors 32a, 32b. Each of the third slave processors 32a, 32b executes a reception process to receive the safety-related parameters transferred by the master processors 54a, 54b of the notification board 54 together with the inspection data via the main control board 51 and the TP side communication board 33. Each of the third slave processors 32a, 32b stores the safety-related parameters received in the reception process in the corresponding volatile memory 32c, 32d. Each of the third slave processors 32a, 32b further executes a fourth calculation process using the safety-related parameters.
 各第3スレーブプロセッサ32a,32bは、さらに、第4演算処理において得られた第4算出値と他方の第3スレーブプロセッサ32a,32bにより出力された第4算出値とが一致するか否かを判定する。第4算出値は、第4演算処理の結果、又は第4演算処理の過程で得られる算出値である。各第3スレーブプロセッサ32a,32bは、当該第3スレーブプロセッサ32a,32bにより得た第4算出値と、他方の第3スレーブプロセッサ32a,32bにより得た第4算出値とが一致する場合には、そのまま処理を続ける一方、所定の回数一致しない場合には、ロボット2を停止させる。 Each third slave processor 32a, 32b further determines whether the fourth calculated value obtained in the fourth calculation process matches the fourth calculated value output by the other third slave processor 32a, 32b. The fourth calculated value is a result of the fourth calculation process, or a calculated value obtained during the fourth calculation process. Each third slave processor 32a, 32b continues processing if the fourth calculated value obtained by that third slave processor 32a, 32b matches the fourth calculated value obtained by the other third slave processor 32a, 32b, but stops the robot 2 if they do not match a predetermined number of times.
 ここで、上述のように構成されたロボット制御システム1の電源投入時における動作を、図3及び図4の通信シーケンス図を参照して説明する。 The operation of the robot control system 1 configured as described above when it is powered on will now be described with reference to the communication sequence diagrams in Figures 3 and 4.
 まず、ティーチペンダント3及びコントローラ5に電源が投入されると、S101において、メイン制御基板51とモータ制御部55とが、お互いの通信を確立するために情報の送受信を行う。次いで、S102において、メイン制御基板51とTP側通信用基板33とが、お互いの通信を確立するために情報の送受信を行う。 First, when the power is turned on to the teach pendant 3 and the controller 5, in S101, the main control board 51 and the motor control unit 55 send and receive information to establish communication between them. Next, in S102, the main control board 51 and the TP side communication board 33 send and receive information to establish communication between them.
 一方、S101及びS102の処理と並行して、S103において、通知用基板54のマスタプロセッサ54a,54bが、監視用基板53の第1スレーブプロセッサ53a,53bに第1の安全関連パラメータを第1の検査データとともに送信する初期送信処理を実行する。第1の安全関連パラメータは、監視用基板53により用いられる安全関連パラメータである。そして、S104において、監視用基板53の第1スレーブプロセッサ53a,53bが、第1の安全関連パラメータを第1の検査データとともに受信し、受信した第1の安全関連パラメータに対し、CRCの計算を行う。具体的には、監視用基板53の第1スレーブプロセッサ53a,53bは、第1の安全関連パラメータを、定められた定数(生成多項式)で除算した余りを第1のCRC値として算出する。そして、算出した第1のCRC値が、通知用基板54のマスタプロセッサ54a,54bから受信した第1の検査データと一致するか否かをチェックし、第1のCRC値が第1の検査データと一致した場合には、送信処理に成功したことを示す情報を、通知用基板54のマスタプロセッサ54a,54bに送信する。第1のCRC値が検査データと一致しない場合の処理については、ここでは省略する。 Meanwhile, in parallel with the processes of S101 and S102, in S103, the master processors 54a and 54b of the notification board 54 execute an initial transmission process to transmit the first safety-related parameter together with the first inspection data to the first slave processors 53a and 53b of the monitoring board 53. The first safety-related parameter is a safety-related parameter used by the monitoring board 53. Then, in S104, the first slave processors 53a and 53b of the monitoring board 53 receive the first safety-related parameter together with the first inspection data, and perform a CRC calculation on the received first safety-related parameter. Specifically, the first slave processors 53a and 53b of the monitoring board 53 calculate the remainder when the first safety-related parameter is divided by a predetermined constant (generator polynomial) as the first CRC value. Then, it checks whether the calculated first CRC value matches the first test data received from the master processors 54a and 54b of the notification board 54, and if the first CRC value matches the first test data, it transmits information indicating that the transmission process was successful to the master processors 54a and 54b of the notification board 54. The process when the first CRC value does not match the test data is omitted here.
 S102の処理とS104の処理が終了すると、ロボット制御システム1は、S200のレディ情報共有処理を実行する。S200では、まず、S201において、メイン制御基板51が、メインレディ情報を通知用基板54に送信する。次いで、S202において、通知用基板54は、レディ情報を操作入力用基板32に送信する。これに応じて、S203において、操作入力用基板32は、操作入力用基板32のバージョン等を示す情報を、通知用基板54に返す。さらに、S204において、通知用基板54は、レディ情報を監視用基板53に送信する。これに応じて、S205において、監視用基板53は、監視用基板53のバージョン等を示す情報を、通知用基板54に返す。同様に、S206において、通知用基板54は、レディ情報をセンサ入力用基板52にも送信する。これに応じて、S207において、センサ入力用基板52は、センサ入力用基板52のバージョン等を示す情報を、通知用基板54に返す。その後、S208において、通知用基板54は、操作入力用基板32、監視用基板53、及びセンサ入力用基板52のバージョン等を示す情報をメイン制御基板51に返し、レディ情報共有処理が終了する。 When the processes of S102 and S104 are completed, the robot control system 1 executes a ready information sharing process of S200. In S200, first, in S201, the main control board 51 transmits main ready information to the notification board 54. Next, in S202, the notification board 54 transmits ready information to the operation input board 32. In response, in S203, the operation input board 32 returns information indicating the version of the operation input board 32 to the notification board 54. Furthermore, in S204, the notification board 54 transmits ready information to the monitoring board 53. In response, in S205, the monitoring board 53 returns information indicating the version of the monitoring board 53 to the notification board 54. Similarly, in S206, the notification board 54 also transmits ready information to the sensor input board 52. In response to this, in S207, the sensor input board 52 returns information indicating the version of the sensor input board 52, etc., to the notification board 54. Then, in S208, the notification board 54 returns information indicating the versions of the operation input board 32, the monitoring board 53, and the sensor input board 52, etc., to the main control board 51, and the ready information sharing process ends.
 次いで、ロボット制御システム1は、S300のパラメータ共有処理を実行する。S300では、まず、S301において、メイン制御基板51が、第2の安全関連パラメータを第2の検査データとともに通知用基板54に送信する。第2の安全関連パラメータは、操作入力用基板32により用いられる安全関連パラメータと、センサ入力用基板52により用いられる安全関連パラメータとを含む。次いで、S302において、通知用基板54のマスタプロセッサ54a,54bは、第2の安全関連パラメータを受信し、受信した第2の安全関連パラメータに対し、CRCの計算を行う。具体的には、通知用基板54のマスタプロセッサ54a,54bは、第2の安全関連パラメータを、定められた定数(生成多項式)で除算した余りを第2のCRC値として算出する。そして、算出した第2のCRC値が、メイン制御基板51から受信した第2の検査データと一致するか否かをチェックし、第2のCRC値が第2の検査データと一致した場合には、送信処理に成功したことを示す情報を、メイン制御基板51に送信する。第2のCRC値が第2の検査データと一致しない場合の処理については、ここでは省略する。次いで、S303において、メイン制御基板51は、第2の安全関連パラメータを、通知用基板54に送信する(第3送信処理)。 Next, the robot control system 1 executes a parameter sharing process of S300. In S300, first, in S301, the main control board 51 transmits the second safety-related parameters together with the second inspection data to the notification board 54. The second safety-related parameters include the safety-related parameters used by the operation input board 32 and the safety-related parameters used by the sensor input board 52. Next, in S302, the master processors 54a and 54b of the notification board 54 receive the second safety-related parameters and perform a CRC calculation on the received second safety-related parameters. Specifically, the master processors 54a and 54b of the notification board 54 calculate the remainder of dividing the second safety-related parameters by a predetermined constant (generator polynomial) as the second CRC value. Then, it checks whether the calculated second CRC value matches the second test data received from the main control board 51, and if the second CRC value matches the second test data, it transmits information indicating that the transmission process was successful to the main control board 51. The process when the second CRC value does not match the second test data is omitted here. Next, in S303, the main control board 51 transmits the second safety-related parameters to the notification board 54 (third transmission process).
 その後、S304において、通知用基板54のマスタプロセッサ54a,54bは、S303において送信された第2の安全関連パラメータをメイン制御基板51から受信する。そして、通知用基板54のマスタプロセッサ54a,54bは、第3の安全関連パラメータを第3の検査データとともに操作入力用基板32に送信する(第4送信処理)。第3の安全関連パラメータは、第2の安全関連パラメータのうち、操作入力用基板32により用いられる安全関連パラメータである。次いで、S305において、操作入力用基板32の第3スレーブプロセッサ32a,32bは、第3の安全関連パラメータを受信し、受信した第3の安全関連パラメータに対し、CRCの計算を行う。具体的には、操作入力用基板32の第3スレーブプロセッサ32a,32bは、第3の安全関連パラメータを、定められた定数(生成多項式)で除算した余りを第3のCRC値として算出する。そして、算出した第3のCRC値が、通知用基板54から受信した第3の検査データと一致するか否かをチェックし、第3のCRC値が第3の検査データと一致した場合には、送信処理に成功したことを示す情報を、通知用基板54に送信する。第3のCRC値が第3の検査データと一致しない場合の処理については、ここでは省略する。 Then, in S304, the master processors 54a and 54b of the notification board 54 receive the second safety-related parameter transmitted in S303 from the main control board 51. Then, the master processors 54a and 54b of the notification board 54 transmit the third safety-related parameter together with the third inspection data to the operation input board 32 (fourth transmission process). The third safety-related parameter is a safety-related parameter among the second safety-related parameters that is used by the operation input board 32. Next, in S305, the third slave processors 32a and 32b of the operation input board 32 receive the third safety-related parameter and perform a CRC calculation on the received third safety-related parameter. Specifically, the third slave processors 32a and 32b of the operation input board 32 calculate the remainder of dividing the third safety-related parameter by a predetermined constant (generator polynomial) as the third CRC value. Then, it checks whether the calculated third CRC value matches the third test data received from the notification board 54, and if the third CRC value matches the third test data, it transmits information indicating that the transmission process was successful to the notification board 54. The process when the third CRC value does not match the third test data is omitted here.
 次いで、S306において、通知用基板54のマスタプロセッサ54a,54bは、最終フレームのID(Identification)とID用の検査データとを、監視用基板53に送信する(第5送信処理)。最終フレームのIDは、予め定められたダミーのデータである。つまり、S306において通知用基板54により監視用基板53に送信されるデータは、初期送信処理で送信された安全関連パラメータを含まない。これに応じて、S307において、監視用基板53の第1スレーブプロセッサ53a,53bは、最終フレームのIDを受信し、受信した最終フレームのIDに対し、CRCの計算を行う。具体的には、監視用基板53の第1スレーブプロセッサ53a,53bは、最終フレームのIDを、定められた定数(生成多項式)で除算した余りをID用のCRC値として算出する。そして、算出したID用のCRC値が、通知用基板54から受信したID用の検査データと一致するか否かをチェックし、ID用のCRC値がID用の検査データと一致した場合には、送信処理に成功したことを示す情報を、通知用基板54に送信する。ID用のCRC値がID用の検査データと一致しない場合の処理については、ここでは省略する。 Next, in S306, the master processors 54a and 54b of the notification board 54 transmit the ID (Identification) of the final frame and the inspection data for the ID to the monitoring board 53 (fifth transmission process). The ID of the final frame is predetermined dummy data. In other words, the data transmitted by the notification board 54 to the monitoring board 53 in S306 does not include the safety-related parameters transmitted in the initial transmission process. In response to this, in S307, the first slave processors 53a and 53b of the monitoring board 53 receive the ID of the final frame and perform a CRC calculation on the received ID of the final frame. Specifically, the first slave processors 53a and 53b of the monitoring board 53 calculate the remainder when the ID of the final frame is divided by a predetermined constant (generator polynomial) as the CRC value for the ID. It then checks whether the calculated CRC value for ID matches the ID test data received from the notification board 54, and if the CRC value for ID matches the ID test data, it transmits information indicating that the transmission process was successful to the notification board 54. The process when the CRC value for ID does not match the ID test data is omitted here.
 次いで、S308において、通知用基板54のマスタプロセッサ54a,54bは、第4の安全関連パラメータを第4の検査データとともにセンサ入力用基板52に送信する(第4送信処理)。第4の安全関連パラメータは、第2の安全関連パラメータのうち、センサ入力用基板52により用いられる安全関連パラメータである。次いで、S309において、センサ入力用基板52の第2スレーブプロセッサ52a,52bは、受信した第4の安全関連パラメータに対し、CRCの計算を行う。具体的には、センサ入力用基板52の第2スレーブプロセッサ52a,52bは、第4の安全関連パラメータを、定められた定数(生成多項式)で除算した余りを第4のCRC値として算出する。そして、算出した第4のCRC値が、通知用基板54から受信した第4の検査データと一致するか否かをチェックし、第4のCRC値が第4の検査データと一致した場合には、送信処理に成功したことを示す情報を、通知用基板54に送信する。第4のCRC値が第4の検査データと一致しない場合の処理については、ここでは省略する。 Next, in S308, the master processors 54a and 54b of the notification board 54 transmit the fourth safety-related parameter together with the fourth test data to the sensor input board 52 (fourth transmission process). The fourth safety-related parameter is a safety-related parameter among the second safety-related parameters that is used by the sensor input board 52. Next, in S309, the second slave processors 52a and 52b of the sensor input board 52 perform a CRC calculation on the received fourth safety-related parameter. Specifically, the second slave processors 52a and 52b of the sensor input board 52 calculate the remainder of dividing the fourth safety-related parameter by a predetermined constant (generator polynomial) as the fourth CRC value. Then, it is checked whether the calculated fourth CRC value matches the fourth test data received from the notification board 54, and if the fourth CRC value matches the fourth test data, information indicating that the transmission process was successful is transmitted to the notification board 54. The process for when the fourth CRC value does not match the fourth check data will be omitted here.
 次に、S310において、通知用基板54のマスタプロセッサ54a,54bは、安全関連パラメータの展開が終了したことを示す情報をメイン制御基板51に対し、送信する。 Next, in S310, the master processors 54a and 54b of the notification board 54 send information to the main control board 51 indicating that deployment of safety-related parameters has been completed.
 このとき、ロボット制御システム1は、起動モードである。この状態で、次に、ロボット制御システム1は、S400のモード遷移処理を実行する。S400では、まず、S401において、メイン制御基板51が、現在のモードから通常モードへのモード遷移を通知用基板54に指示する。これに応じて、通知用基板54のマスタプロセッサ54a,54bが、S402において、モード遷移を操作入力用基板32に指示し、S403において、モード遷移を監視用基板53に指示する。また、S404において、監視用基板53の第1スレーブプロセッサ53a,53bが、モード遷移をセンサ入力用基板52に指示する。次いで、S405において、監視用基板53の第1スレーブプロセッサ53a,53bが、モード遷移の指示の受信に成功したことを示す情報を通知用基板54に送信する。また、S406において、センサ入力用基板52の第2スレーブプロセッサ52a,52bが、モード遷移の指示の受信に成功したことを示す情報を通知用基板54に送信する。さらに、S407において、操作入力用基板32の第3スレーブプロセッサ32a,32bが、モード遷移の指示の受信に成功したことを示す情報を通知用基板54に送信する。これにより、ロボット制御システム1が、通常モードに遷移する。 At this time, the robot control system 1 is in the startup mode. In this state, the robot control system 1 then executes the mode transition process of S400. In S400, first, in S401, the main control board 51 instructs the notification board 54 to transition from the current mode to the normal mode. In response, in S402, the master processors 54a and 54b of the notification board 54 instruct the operation input board 32 to transition to a mode, and in S403, instruct the monitoring board 53 to transition to a mode. In addition, in S404, the first slave processors 53a and 53b of the monitoring board 53 instruct the sensor input board 52 to transition to a mode. Next, in S405, the first slave processors 53a and 53b of the monitoring board 53 transmit information to the notification board 54 indicating that they have successfully received the mode transition instruction. In addition, in S406, the second slave processors 52a and 52b of the sensor input board 52 transmit information indicating that they have successfully received the mode transition instruction to the notification board 54. Furthermore, in S407, the third slave processors 32a and 32b of the operation input board 32 transmit information indicating that they have successfully received the mode transition instruction to the notification board 54. This causes the robot control system 1 to transition to the normal mode.
 通常モードでは、通知用基板54のマスタプロセッサ54a,54bが、S408において、センサ入力用基板52にハートビートを送信し、S409において、監視用基板53にハートビートを送信し、S410において、操作入力用基板32にハートビートを送信する。そして、S411において、監視用基板53の第1スレーブプロセッサ53a,53bが、ハートビートを受信したことを示す信号を通知用基板54に送信する。また、S412において、センサ入力用基板52の第2スレーブプロセッサ52a,52bも、ハートビートを受信したことを示す信号を通知用基板54に送信する。さらに、S413において、操作入力用基板32の第3スレーブプロセッサ32a,32bも、ハートビートを受信したことを示す信号を通知用基板54に送信する。その後、S414において、通知用基板54のマスタプロセッサ54a,54bが、メイン制御基板51に、ハートビートを送信する。これに応じて、S415において、メイン制御基板51は、通知用基板54にハートビートを受信したことを示す信号を送信する。通常モードにおいては、このようなS408~S415の動作が、所定時間毎に繰り返される。 In normal mode, the master processors 54a and 54b of the notification board 54 transmit a heartbeat to the sensor input board 52 in S408, transmit a heartbeat to the monitoring board 53 in S409, and transmit a heartbeat to the operation input board 32 in S410. Then, in S411, the first slave processors 53a and 53b of the monitoring board 53 transmit a signal indicating that they have received the heartbeat to the notification board 54. In addition, in S412, the second slave processors 52a and 52b of the sensor input board 52 also transmit a signal indicating that they have received the heartbeat to the notification board 54. Furthermore, in S413, the third slave processors 32a and 32b of the operation input board 32 also transmit a signal indicating that they have received the heartbeat to the notification board 54. Thereafter, in S414, the master processors 54a and 54b of the notification board 54 transmit a heartbeat to the main control board 51. In response, in S415, the main control board 51 sends a signal to the notification board 54 indicating that a heartbeat has been received. In normal mode, the operations of S408 to S415 are repeated at predetermined time intervals.
 また、通常モードから設定変更モードに遷移した後におけるロボット制御システム1の動作を、図5の通信シーケンス図を参照して説明する。 The operation of the robot control system 1 after transitioning from normal mode to setting change mode will be explained with reference to the communication sequence diagram in Figure 5.
 ロボット制御システム1が通常モードから設定変更モードに遷移した後、S501において、ユーザが、安全関連パラメータを指定する入力を入力部31に行い、操作入力用基板32は、入力部31により出力された入力信号に基づいて、操作入力情報を生成し、TP側通信用基板33に送信する。そして、TP側通信用基板33は、前記ユーザの入力により指定された第5の安全関連パラメータと第5の検査データとをメイン制御基板51に送信し、設定する。これに応じて、S502において、メイン制御基板51は、第5の安全関連パラメータと第5の検査データとを通知用基板54に送信する(第1送信処理)とともに、パラメータ消去/書き換え要求を行う。これに応じて、S503において、通知用基板54のマスタプロセッサ54a,54bは、S502で送信された第5の安全関連パラメータと第5の検査データとをメイン制御基板51から受信し(第2送信処理)、受信した第5の安全関連パラメータに対し、CRCの計算を行う。具体的には、通知用基板54のマスタプロセッサ54a,54bは、第5の安全関連パラメータを、定められた定数(生成多項式)で除算した余りを第5のCRC値として算出する。そして、算出した第5のCRC値が、メイン制御基板51から受信した第5の検査データと一致するか否かをチェックし、第5のCRC値が第5の検査データと一致した場合には、不揮発性メモリ54c,54dに記憶されている過去のパラメータを消去し、第5の安全関連パラメータを不揮発性メモリ54c,54dに書き込む。そして、通知用基板54のマスタプロセッサ54a,54bは、メイン制御基板51に、パラメータの消去/書き換えが完了したことを示す情報を送信する。 After the robot control system 1 transitions from normal mode to setting change mode, in S501, the user inputs into the input unit 31 to specify safety-related parameters, and the operation input board 32 generates operation input information based on the input signal output by the input unit 31 and transmits it to the TP-side communication board 33. The TP-side communication board 33 then transmits the fifth safety-related parameter and fifth test data specified by the user's input to the main control board 51 and sets them. In response, in S502, the main control board 51 transmits the fifth safety-related parameter and fifth test data to the notification board 54 (first transmission process) and also makes a request to erase/rewrite the parameters. In response to this, in S503, the master processors 54a and 54b of the notification board 54 receive the fifth safety-related parameter and the fifth test data transmitted in S502 from the main control board 51 (second transmission process), and perform a CRC calculation on the received fifth safety-related parameter. Specifically, the master processors 54a and 54b of the notification board 54 calculate the remainder obtained by dividing the fifth safety-related parameter by a predetermined constant (generator polynomial) as a fifth CRC value. Then, it is checked whether the calculated fifth CRC value matches the fifth test data received from the main control board 51, and if the fifth CRC value matches the fifth test data, the past parameters stored in the non-volatile memories 54c and 54d are erased, and the fifth safety-related parameter is written to the non-volatile memories 54c and 54d. Then, the master processors 54a and 54b of the notification board 54 send information to the main control board 51 indicating that the parameter erasure/rewriting has been completed.
 そして、S504において、メイン制御基板51は、第5の安全関連パラメータをTP側通信用基板33に送信する。これに応じて、S505において、TP側通信用基板33は、S504で送信された安全関連パラメータを受信し、表示部34に表示させる。ユーザは、表示部34に表示された安全関連パラメータが、S501で入力した安全関連パラメータと同一であることを確認すると、入力部31に所定の入力を行う。そして、操作入力用基板32は、入力部31により出力された入力信号に基づいて、操作入力情報を生成し、TP側通信用基板33に送信する。これに応じて、TP側通信用基板33は、確認が完了したことを示す情報をメイン制御基板51に送信する。次いで、S506において、メイン制御基板51は、確認が完了したことを示す情報を通知用基板54に送信する。すると、S507において、通知用基板54のマスタプロセッサ54a,54bは、不揮発性メモリ54c,54dに記憶された第5の安全関連パラメータと検査データとを、監視用基板53に送信する(第2送信処理)。ここで送信される検査データは、読み出し時のCRC値(第5のCRC値と一致するCRC値)である。これに応じて、S508において、監視用基板53の第1スレーブプロセッサ53a,53bは、第5の安全関連パラメータと検査データとを通知用基板54から受信し、受信した第5の安全関連パラメータに対し、CRCの計算を行う。具体的には、監視用基板53の第1スレーブプロセッサ53a,53bは、第5の安全関連パラメータを、定められた定数(生成多項式)で除算した余りを第6のCRC値として算出する。そして、算出した第6のCRC値が、通知用基板54から受信した検査データと一致するか否かをチェックし、第6のCRC値と一致した場合には、送信処理に成功したことを示す情報を、通知用基板54に送信する。その後、S509において、通知用基板54のマスタプロセッサ54a,54bは、安全関連パラメータの送信が終了したことを示す情報をメイン制御基板51に送信する。また、S510において、TP側通信用基板33は、安全関連パラメータの設定が終了したことを示す情報をメイン制御基板51に送信する。 Then, in S504, the main control board 51 transmits the fifth safety-related parameter to the TP-side communication board 33. In response, in S505, the TP-side communication board 33 receives the safety-related parameters transmitted in S504 and displays them on the display unit 34. When the user confirms that the safety-related parameters displayed on the display unit 34 are the same as the safety-related parameters input in S501, the user performs a predetermined input to the input unit 31. Then, the operation input board 32 generates operation input information based on the input signal output by the input unit 31 and transmits it to the TP-side communication board 33. In response, the TP-side communication board 33 transmits information indicating that the confirmation has been completed to the main control board 51. Next, in S506, the main control board 51 transmits information indicating that the confirmation has been completed to the notification board 54. Then, in S507, the master processors 54a and 54b of the notification board 54 transmit the fifth safety-related parameter and the test data stored in the non-volatile memories 54c and 54d to the monitoring board 53 (second transmission process). The test data transmitted here is the CRC value at the time of reading (the CRC value that matches the fifth CRC value). In response to this, in S508, the first slave processors 53a and 53b of the monitoring board 53 receive the fifth safety-related parameter and the test data from the notification board 54 and perform a CRC calculation on the received fifth safety-related parameter. Specifically, the first slave processors 53a and 53b of the monitoring board 53 calculate the remainder of dividing the fifth safety-related parameter by a predetermined constant (generator polynomial) as the sixth CRC value. Then, it checks whether the calculated sixth CRC value matches the test data received from the notification board 54, and if it matches the sixth CRC value, it transmits information indicating that the transmission process was successful to the notification board 54. Then, in S509, the master processors 54a and 54b of the notification board 54 transmit information indicating that the transmission of the safety-related parameters has been completed to the main control board 51. Also, in S510, the TP-side communication board 33 transmits information indicating that the setting of the safety-related parameters has been completed to the main control board 51.
 次いで、ロボット制御システム1は、S200のレディ情報共有処理と、S300のパラメータ共有処理と、S400のモード遷移処理とを順に実行する。S400のモード遷移処理では、設定変更モードから通常モードに遷移する。S501~S510の後に実行される図5におけるS300のパラメータ共有処理は、S101~S104の後に実行される図3におけるS300のパラメータ共有処理と共通のプログラムを各部に実行させることにより実行される。つまり、S300の前記第3送信処理、前記第4送信処理、及び前記第5送信処理は、初期送信処理(S103)の後と、第2送信処理(S503)の後とに共通のプログラムを各部に実行することによって実行される。 The robot control system 1 then executes the ready information sharing process of S200, the parameter sharing process of S300, and the mode transition process of S400 in that order. In the mode transition process of S400, the mode transition occurs from the setting change mode to the normal mode. The parameter sharing process of S300 in FIG. 5, which is executed after S501 to S510, is executed by causing each unit to execute a program common to the parameter sharing process of S300 in FIG. 3, which is executed after S101 to S104. In other words, the third transmission process, the fourth transmission process, and the fifth transmission process of S300 are executed by causing each unit to execute a program common to the parameter sharing process of S300 in FIG. 3, which is executed after S101 to S104, after the initial transmission process (S103) and after the second transmission process (S503).
 したがって、本実施形態によれば、上述のように、非安全関連部と安全関連部に電源を投入してから非安全関連部と安全関連部との通信を開始するまでの間に、S103で、通知用基板54が、監視用基板53に安全関連パラメータを送信する初期送信処理を実行する。通知用基板54は、このS103の初期送信処理を、非安全関連部であるメイン制御基板51が安全関連部である通知用基板54との通信を開始するまでに行うS101及びS102の処理と並行して実行できる。したがって、S300のパラメータ共有処理において、通知用基板54は監視用基板53に、安全関連パラメータを送信する必要がない。本実施形態では、S300のパラメータ共有処理において、通知用基板54は監視用基板53に、予め定められたダミーのデータだけを送信する。したがって、電源投入から安全関連部である監視用基板53が安全関連パラメータを用いた処理を実行できるようになるまでにかかる準備時間を短縮できる。 According to this embodiment, as described above, in the period between when the non-safety-related parts and the safety-related parts are powered on and when communication between the non-safety-related parts and the safety-related parts is started, the notification board 54 executes an initial transmission process in S103 to transmit safety-related parameters to the monitoring board 53. The notification board 54 can execute this initial transmission process in S103 in parallel with the processes in S101 and S102 that are executed before the main control board 51, which is a non-safety-related part, starts communication with the notification board 54, which is a safety-related part. Therefore, in the parameter sharing process in S300, the notification board 54 does not need to transmit safety-related parameters to the monitoring board 53. In this embodiment, in the parameter sharing process in S300, the notification board 54 transmits only predetermined dummy data to the monitoring board 53. Therefore, the preparation time required from when the power is turned on until the monitoring board 53, which is a safety-related part, can execute processing using safety-related parameters can be shortened.
 また、監視用基板53によって使用される安全関連パラメータだけをS501~S510の処理によって変更した後、S300のパラメータ共有処理において、通知用基板54は、監視用基板53に、予め定められたダミーのデータを送信するだけで、安全関連パラメータを送信しない。したがって、監視用基板53により使用されるすべての安全関連パラメータを、S300のパラメータ共有処理で送信する場合に比べ、ロボット制御システム1が通常モードから設定変更モードに遷移してから、通常モードに復帰するまでにかかる時間を短縮できる。 In addition, after only the safety-related parameters used by the monitoring board 53 are changed by the processes of S501 to S510, in the parameter sharing process of S300, the notification board 54 only transmits predetermined dummy data to the monitoring board 53, and does not transmit any safety-related parameters. Therefore, the time it takes for the robot control system 1 to transition from the normal mode to the setting change mode and then return to the normal mode can be shortened, compared to the case where all the safety-related parameters used by the monitoring board 53 are transmitted in the parameter sharing process of S300.
 また、マスタプロセッサ54a,54bから第1スレーブプロセッサ53a,53b、第2スレーブプロセッサ52a,52b及び第3スレーブプロセッサ32a,32bに安全関連パラメータが送信されるので、安全関連パラメータを記憶する不揮発性メモリを監視用基板53、センサ入力用基板52及び操作入力用基板32に設けなくてよい。したがって、通知用基板54、監視用基板53、センサ入力用基板52、及び操作入力用基板32の全部に不揮発性メモリを設けた場合に比べ、不揮発性メモリの故障のリスクを低減するとともに、コストを削減できる。 In addition, because the safety-related parameters are transmitted from the master processors 54a and 54b to the first slave processors 53a and 53b, the second slave processors 52a and 52b, and the third slave processors 32a and 32b, it is not necessary to provide non-volatile memory for storing the safety-related parameters in the monitoring board 53, the sensor input board 52, and the operation input board 32. Therefore, compared to providing non-volatile memory in all of the notification board 54, the monitoring board 53, the sensor input board 52, and the operation input board 32, the risk of failure of the non-volatile memory can be reduced and costs can be reduced.
 また、安全関連パラメータを記憶する不揮発性メモリを監視用基板53、センサ入力用基板52及び操作入力用基板32には設けないので、ユーザは、安全関連パラメータの設定作業や、安全関連パラメータが不揮発性メモリに正しく設定されているか否かの確認作業を、監視用基板53、センサ入力用基板52及び操作入力用基板32に対して行わなくてよくなる。したがって、通知用基板54、監視用基板53、センサ入力用基板52、及び操作入力用基板32の全部に不揮発性メモリを設けた場合に比べ、安全関連パラメータの設定作業や確認作業の手間を低減できる。 In addition, since the monitoring board 53, the sensor input board 52, and the operation input board 32 are not provided with non-volatile memory for storing safety-related parameters, the user does not need to set the safety-related parameters or check whether the safety-related parameters have been correctly set in the non-volatile memory on the monitoring board 53, the sensor input board 52, and the operation input board 32. Therefore, the effort required for setting and checking the safety-related parameters can be reduced compared to when non-volatile memory is provided on all of the notification board 54, the monitoring board 53, the sensor input board 52, and the operation input board 32.
 本開示の制御システムは、電源投入から安全関連部のスレーブ基板が安全関連パラメータを用いた処理を実行できるようになるまでにかかる準備時間を短縮でき、ロボット等の機器を制御する制御システムとして有用である。 The control system disclosed herein can reduce the preparation time required from when the power is turned on until the slave board of the safety-related section can execute processing using safety-related parameters, and is useful as a control system for controlling equipment such as robots.
1   ロボット制御システム 
2   ロボット(機器) 
32   操作入力用基板(安全関連部、非初期通信対象スレーブ基板)
33   TP側通信用基板(非安全関連部)
51   メイン制御基板(非安全関連部)
53   監視用基板(安全関連部、初期通信対象スレーブ基板) 
52   センサ入力用基板(安全関連部、非初期通信対象スレーブ基板) 
54   通知用基板(安全関連部、マスタ基板) 
1. Robot control system
2. Robot (equipment)
32 Operation input board (safety-related part, non-initial communication target slave board)
33 TP side communication board (non-safety related part)
51 Main control board (non-safety related parts)
53 Monitoring board (safety-related part, initial communication target slave board)
52 Sensor input board (safety-related part, non-initial communication target slave board)
54 Notification board (safety-related parts, master board)

Claims (2)

  1.  機器を制御する制御システムであって、
     非安全関連部と、
     マスタ基板及び初期通信対象スレーブ基板を有し、ISO13849-1のカテゴリー3に準拠し、安全関連パラメータを用いて所定の処理を実行する安全関連部とを備え、
     前記非安全関連部と前記安全関連部に電源を投入してから前記非安全関連部と前記安全関連部との通信を開始するまでの間に、前記マスタ基板が、前記初期通信対象スレーブ基板に安全関連パラメータを送信する初期送信処理を実行することを特徴とする制御システム。
    A control system for controlling an apparatus, comprising:
    Non-safety related departments,
    a safety-related unit that has a master board and an initial communication target slave board, complies with Category 3 of ISO 13849-1, and executes a predetermined process using safety-related parameters;
    A control system characterized in that the master board executes an initial transmission process to transmit safety-related parameters to the initial communication target slave board between the time when power is applied to the non-safety-related part and the safety-related part and the time when communication between the non-safety-related part and the safety-related part is started.
  2.  請求項1に記載の制御システムにおいて、
     前記安全関連部は、非初期通信対象スレーブ基板をさらに有し、
     安全関連パラメータを指定する入力をユーザが前記非安全関連部に行ったときに、前記非安全関連部は、前記入力により指定された安全関連パラメータを前記マスタ基板に送信する第1送信処理を実行し、
     前記マスタ基板は、前記第1送信処理が実行されたとき、当該第1送信処理において送信された安全関連パラメータを前記非安全関連部から受信して、前記初期通信対象スレーブ基板に送信する第2送信処理を実行し、
     前記初期送信処理の後、及び前記第2送信処理の後に、前記非安全関連部は、安全関連パラメータを前記マスタ基板に送信する第3送信処理を実行し、前記第3送信処理が実行されたとき、前記マスタ基板は、当該第3送信処理において送信された安全関連パラメータを前記非安全関連部から受信して前記非初期通信対象スレーブ基板に送信する第4送信処理と、前記初期送信処理で送信された安全関連パラメータを含まないデータを前記初期通信対象スレーブ基板に送信する第5送信処理とを実行し、
     前記第3送信処理、前記第4送信処理、及び前記第5送信処理は、前記初期送信処理の後と、前記第2送信処理の後とに共通のプログラムを実行することによって実行されることを特徴とする制御システム。
    2. The control system of claim 1,
    The safety-related unit further includes a non-initial communication target slave board,
    when a user inputs a safety-related parameter to the non-safety-related unit, the non-safety-related unit executes a first transmission process of transmitting the safety-related parameter designated by the input to the master board;
    When the first transmission process is executed, the master board executes a second transmission process to receive the safety-related parameters transmitted in the first transmission process from the non-safety-related part and transmit the safety-related parameters to the initial communication target slave board;
    After the initial transmission process and after the second transmission process, the non-safety-related unit executes a third transmission process of transmitting safety-related parameters to the master board, and when the third transmission process has been executed, the master board executes a fourth transmission process of receiving the safety-related parameters transmitted in the third transmission process from the non-safety-related unit and transmitting the same to the non-initial communication target slave board, and a fifth transmission process of transmitting data not including the safety-related parameters transmitted in the initial transmission process to the initial communication target slave board;
    a control system characterized in that the third transmission process, the fourth transmission process, and the fifth transmission process are executed by executing a common program after the initial transmission process and after the second transmission process.
PCT/JP2023/043605 2022-12-22 2023-12-06 Control system WO2024135360A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380015937.3A CN118541650A (en) 2022-12-22 2023-12-06 Control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-205465 2022-12-22
JP2022205465 2022-12-22

Publications (1)

Publication Number Publication Date
WO2024135360A1 true WO2024135360A1 (en) 2024-06-27

Family

ID=91588451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043605 WO2024135360A1 (en) 2022-12-22 2023-12-06 Control system

Country Status (2)

Country Link
CN (1) CN118541650A (en)
WO (1) WO2024135360A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510098A (en) * 2008-11-25 2012-04-26 ピルツ ゲーエムベーハー アンド コー.カーゲー Safety controller for controlling automated equipment and control method thereof
US20140059252A1 (en) * 2012-08-21 2014-02-27 Krohne Messtechnik Gmbh Method for configuring a field device and corresponding system for parameterization
JP2019191928A (en) * 2018-04-25 2019-10-31 株式会社日立産機システム Power conversion system and power conversion method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510098A (en) * 2008-11-25 2012-04-26 ピルツ ゲーエムベーハー アンド コー.カーゲー Safety controller for controlling automated equipment and control method thereof
US20140059252A1 (en) * 2012-08-21 2014-02-27 Krohne Messtechnik Gmbh Method for configuring a field device and corresponding system for parameterization
JP2019191928A (en) * 2018-04-25 2019-10-31 株式会社日立産機システム Power conversion system and power conversion method

Also Published As

Publication number Publication date
CN118541650A (en) 2024-08-23

Similar Documents

Publication Publication Date Title
JP6349805B2 (en) Communication unit, controller, control system, control method, and program
CN102163047B (en) Robot with learning control function
US20180257227A1 (en) Robot for controlling learning in view of operation in production line, and method of controlling the same
JP2017170581A (en) Robot system for controlling robot constituted of multiple mechanism units, said mechanism unit, and robot control device
JP6163748B2 (en) Communication coupler, communication system, control method, and program
CN110456707B (en) Control device
JP6720958B2 (en) Driving device, driving method, and program
US20150378333A1 (en) Information processing apparatus, information processing method, and non-transitory computer-readable storage medium
CN110505947B (en) Robot system and method for operating the same
EP4011568A1 (en) Control device, control system, robot system, and control method
JP6729746B2 (en) Control device
WO2024135360A1 (en) Control system
JP2016012173A (en) Programmable display
JP6136228B2 (en) Communication coupler, communication system, control method, and program
JP2006095672A (en) Control method for moving body, control system, and control program
US20140059252A1 (en) Method for configuring a field device and corresponding system for parameterization
TW202014278A (en) Data generating device, data generating method, data generating program, and remote operation system
WO2024070540A1 (en) Control system
JP6149393B2 (en) Communication coupler, information processing apparatus, control method, and program
JP2014216738A (en) Communication circuit, physical value measuring apparatus, electronic apparatus, mobile apparatus, and communication method
JP2018045406A (en) Measurement system, sensor device, control method of measurement system
JP7310271B2 (en) CONTROL DEVICE, CONTROL METHOD, AND ROBOT SYSTEM
JP2020019079A (en) Robot system
WO2024038747A1 (en) Processing device
WO2024089884A1 (en) Robot controller and method for comparing control software before and after update

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202380015937.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23906726

Country of ref document: EP

Kind code of ref document: A1