[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024135082A1 - Wiring board, positive photosensitive resin composition for forming light-blocking layer, light-blocking layer transfer film, and wiring board manufacturing method - Google Patents

Wiring board, positive photosensitive resin composition for forming light-blocking layer, light-blocking layer transfer film, and wiring board manufacturing method Download PDF

Info

Publication number
WO2024135082A1
WO2024135082A1 PCT/JP2023/038439 JP2023038439W WO2024135082A1 WO 2024135082 A1 WO2024135082 A1 WO 2024135082A1 JP 2023038439 W JP2023038439 W JP 2023038439W WO 2024135082 A1 WO2024135082 A1 WO 2024135082A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
shielding layer
forming
resin composition
pattern
Prior art date
Application number
PCT/JP2023/038439
Other languages
French (fr)
Japanese (ja)
Inventor
龍太郎 池田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024135082A1 publication Critical patent/WO2024135082A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a wiring board, a positive-type photosensitive resin composition for forming a light-shielding layer, a light-shielding layer transfer film, and a method for manufacturing a wiring substrate.
  • touch panels which have been widely used as input means, are composed of a display unit such as a liquid crystal panel and a touch panel sensor that detects information input at a specific position.
  • Transparent wiring electrodes have been generally used as wiring electrodes for touch panel sensors in order to make the wiring electrodes less visible, but in recent years, opaque wiring electrodes made of metal materials have become more widespread due to increased sensitivity and larger screens.
  • Opaque wiring electrodes made of metal materials have the problem of being easily visible due to their metallic luster.
  • a wiring board As a method for making the opaque wiring electrodes less visible, a wiring board has been proposed that has a transparent substrate, an opaque wiring electrode patterned on at least one side of the transparent substrate, and a transparent protective layer formed on the transparent substrate and the opaque wiring electrode, in which the internal reflectance R1 at the opaque wiring electrode formation portion measured from the transparent protective layer side of the wiring board is 0.1% or less, and the refractive index n1 of the transparent substrate and the refractive index n2 of the transparent protective layer satisfy a specific relationship, particularly a wiring board having a light-shielding layer on the top of the opaque wiring electrode (see, for example, Patent Document 1).
  • a photosensitive resin composition containing a pigment, a novolac resin, an acrylic resin having a carboxyl group, a photoacid generator, and an amine-based dispersant see, for example, Patent Document 2
  • a positive-type photosensitive resin composition containing an alkali-soluble resin (A) having an acrylic group and/or a methacrylic group in the side chain, a photosensitizer (B), and a colorant (C) see, for example, Patent Document 3
  • the light-shielding layers disclosed in Patent Documents 1 to 3 can reduce the visibility of the opaque wiring electrodes due to their metallic luster, but external light is easily reflected, particularly in bright locations such as in-vehicle applications, and light scattering on the surface of the wiring substrate tends to cause the laminated pattern-forming areas to appear whitish and cloudy compared to areas where the laminated pattern is not formed and decorative areas. In applications where jet black is required from a design perspective, there is a demand to reduce this whitish cloudiness, i.e., to improve design visibility.
  • the present invention aims to provide a wiring substrate with excellent design visibility and a positive-type photosensitive resin composition suitable for forming a light-shielding layer.
  • the present invention mainly has the following configuration. ⁇ 1> A wiring substrate having a laminated pattern of an opaque wiring electrode and a light-shielding layer containing a resin and a coloring component on a transparent substrate, the wiring substrate having an average internal diffuse reflectance R1 of 0.03 to 0.11% at a wavelength of 540 to 570 nm as measured from the light-shielding layer side of the laminated pattern forming portion.
  • a positive-type photosensitive resin composition for forming a light-shielding layer comprising (a) an alkali-soluble resin, (b) a quinone diazide compound, (c) metal nitride particles, and (d) a purple organic pigment.
  • the positive photosensitive resin composition for forming a light-shielding layer according to ⁇ 4> wherein the content of the (c) metal nitride particles is 2.0 to 6.0% by volume.
  • a step of forming an opaque wiring electrode on a transparent substrate A step of applying a positive photosensitive resin composition for forming a light-shielding layer according to any one of ⁇ 4> to ⁇ 7> to the opaque wiring electrode formation surface; and a step of exposing the photosensitive resin composition coating film from the side opposite to the coating side using the opaque wiring electrode as a mask, and developing the photosensitive resin composition coating film to pattern the photosensitive resin composition coating film to form a laminated pattern of the opaque wiring electrode and the light-shielding layer;
  • the method for producing a wiring substrate according to any one of ⁇ 1> to ⁇ 3>, ⁇ 11> A step of forming an opaque wiring electrode on a transparent substrate; A step of transferring a light-shielding layer of the light-shielding layer transfer film according to item ⁇ 8> or ⁇ 9> onto the opaque wiring electrode formation surface; and a step of exposing the light-shielding layer from a surface opposite to a transfer surface using the opaque wiring electrode as
  • the wiring substrate of the present invention has excellent design visibility.
  • a wiring substrate with excellent design visibility can be obtained.
  • FIG. 1 is a schematic diagram showing an example of a configuration of a wiring substrate of the present invention.
  • FIG. 4 is a schematic diagram showing another example of the configuration of the wiring substrate of the present invention.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a substrate for evaluating internal diffuse reflectance in the present invention.
  • FIG. 2 is a schematic diagram showing an electrode pattern for evaluating visibility used in the examples and comparative examples.
  • FIG. 2 is a schematic diagram of a mesh pattern of a negative mask used in the examples and comparative examples.
  • the wiring substrate of the present invention has an opaque wiring electrode on a transparent substrate, and a light-shielding layer at a portion corresponding to the opaque wiring electrode. That is, it has a laminated pattern of an opaque wiring electrode and a light-shielding layer.
  • the light-shielding layer may be on the opaque wiring electrode, or the opaque wiring electrode may be on the light-shielding layer.
  • the light-shielding layer has the effect of suppressing the light reflection and light scattering of the opaque wiring electrode, reproducing a jet black color with high designability, and improving the visibility of the design.
  • a transparent protective layer may be formed on these, and by having the transparent protective layer, the surface of the opaque wiring electrode and the light-shielding layer can be protected and scratches can be suppressed.
  • transparent means that the light transmittance at a wavelength of 550 nm is 50% or more
  • opaque means that the light transmittance at a wavelength of 550 nm is less than 50%.
  • the light transmittance at a wavelength of 550 nm can be measured using an ultraviolet-visible spectrophotometer (U-3310: manufactured by Hitachi High-Technologies Corporation).
  • Figure 1 shows a schematic diagram of an example of the configuration of a wiring substrate of the present invention.
  • the wiring substrate 4 has an opaque wiring electrode 2 on a transparent substrate 1, and a light-shielding layer 3 on the opaque wiring electrode 2.
  • Figure 2 shows another example of the configuration of a wiring substrate of the present invention.
  • the wiring substrate 4 has a light-shielding layer 3 on a transparent substrate 1, and a opaque wiring electrode 2 on the light-shielding layer 3.
  • the wiring substrate of the present invention has a laminated pattern of an opaque wiring electrode and a light-shielding layer containing a resin and a coloring component.
  • the average internal diffuse reflectance R1 at wavelengths of 540 to 570 nm measured from the light-shielding layer side of the laminated pattern forming portion is 0.03 to 0.11%.
  • the laminated pattern forming portion means the area in which the laminated pattern is formed, and includes the portion corresponding to the laminated pattern as well as the non-laminated pattern portion located between adjacent laminated patterns with a distance of less than 1 mm.
  • the portion corresponding to the striped laminated pattern with a pitch of less than 1 mm and the non-laminated pattern portion sandwiched between the laminated patterns are collectively referred to as the laminated pattern forming portion.
  • the laminated pattern forming portion for example, in the case of a mesh-shaped laminated pattern as shown in FIG. 5, the portion corresponding to the mesh-shaped laminated pattern with a mesh pitch of less than 1 mm (laminated pattern portion 12) and the non-laminated pattern portion (non-laminated pattern portion 13) surrounded by the laminated patterns are collectively referred to as the laminated pattern forming portion.
  • a non-laminated pattern portion where the distance between adjacent laminated patterns is 1 mm or more is defined as a laminated pattern non-forming portion.
  • the conventionally known light-shielding layer can suppress the visibility of the opaque wiring electrode due to its metallic luster, but the laminated pattern forming portion tends to look white and cloudy due to light scattering on the wiring substrate surface, especially in bright places.
  • the average internal diffuse reflectance R1 at wavelengths of 540 to 570 nm measured from the light-shielding layer side of the laminate pattern forming portion is an index of diffuse reflectance in a wavelength region with high visibility, and by making R1 0.03 or more, it is possible to prevent the boundary between the laminate pattern forming portion and the laminate pattern non-forming portion from being visible due to the difference in diffuse reflectance between the laminate pattern forming portion and the laminate pattern non-forming portion.
  • R1 is preferably 0.04 or more.
  • R1 0.11% or less it is possible to prevent the clouding of the laminate pattern forming portion due to light scattering on the wiring substrate surface even in particularly bright places, reproduce a highly decorative jet black, and improve design visibility.
  • FIG. 3 shows a schematic diagram of an example of the configuration of an internal diffuse reflectance evaluation substrate for evaluating the internal diffuse reflectance of a wiring substrate.
  • the wiring substrate 4 has a laminated pattern of an opaque wiring electrode 2 and a light-shielding layer 3 on a transparent substrate 1, and further has a transparent protective layer 6.
  • An anti-reflection film 8 is attached to the light-shielding layer forming surface of the wiring substrate (here, on the transparent protective layer 6) via an adhesive layer 7, and a black film 9 is attached to the surface of the transparent substrate 1 opposite the light-shielding layer via an adhesive layer 7 to prepare an internal diffuse reflectance evaluation substrate 16 in which reflection at the wiring substrate-air interface is reduced.
  • the wiring substrate is a transparent substrate and the laminated pattern of the light-shielding layer and the opaque wiring electrode has a light-shielding layer on the transparent substrate side
  • an anti-reflection film is attached to the transparent substrate via a transparent adhesive layer
  • a black film is attached to the transparent protective layer via an adhesive layer to reduce reflection at the interface between the wiring substrate and the air, to prepare a substrate for evaluating internal diffuse reflectance.
  • the diffuse reflectance at wavelengths of 540, 550, 560, and 570 nm is measured using a colorimetric system or the like from the light-shielding layer forming side, that is, from the anti-reflection film 8 side in the case of the configuration shown in FIG. 3, and the average value is calculated to calculate the average value R1 of the internal diffuse reflectance.
  • the diffuse reflectance is affected by the reflectance of the material forming the light-shielding layer itself, the line width, area, and uneven shape of the light-shielding layer. For example, when the area of the light-shielding layer is the same, the thinner the line width W, the closer the wiring substrate surface is to the diffusing surface, and the internal diffuse reflectance tends to be higher due to the uneven shape of the light-shielding layer.
  • Examples of methods for making R1 0.03 to 0.11% include a method in which the ratio of the laminate pattern area to the area of the laminate pattern forming part (laminated pattern area/laminate pattern forming part area, hereinafter "occupancy rate") S, the laminate pattern line width W, and the light-shielding layer thickness T1 are set to the preferred ranges described later, and a method in which the light-shielding layer is formed from the positive-type photosensitive resin composition for forming a light-shielding layer of the present invention described later are formed.
  • the method of forming the light-shielding layer from the positive-type photosensitive resin composition for forming a light-shielding layer of the present invention described later is preferred because there are fewer restrictions on the wiring pattern.
  • the average internal diffuse reflectance R1 [%], the average internal diffuse reflectance R2 [%] at a wavelength of 540 to 570 nm of the laminate pattern non-forming portion, and the occupancy rate S satisfy the relationship of the following formula (1). 0.0 ⁇ ((R1 ⁇ W) ⁇ (R2 ⁇ (1 ⁇ S)))/S ⁇ 7.0 (1)
  • the reflection and scattering of the wiring surface in the area ratio S (laminate pattern portion) and the reflection and scattering of the non-wiring surface in the area ratio (1-S) (non-laminate pattern portion) affect the diffuse reflectance.
  • the diffuse reflectance is affected by the area and unevenness of the light-shielding layer.
  • (R1 ⁇ W) in the above formula (1) is an index of diffuse reflectance in the laminated pattern forming portion excluding the influence of the line width.
  • the reflection and scattering of the non-wiring surface in the area ratio (1-S) affects the diffuse reflectance.
  • the average value R2 of the internal diffuse reflectance at wavelengths of 540 to 570 nm in the laminated pattern non-forming portion is an index of diffuse reflectance in a wavelength region with high visibility
  • (R2 ⁇ (1-S)) in the above formula (1) is an index of diffuse reflectance of the non-wiring surface in the laminated pattern forming portion.
  • the difference between them i.e., the diffuse reflection of the wiring surface in the laminate pattern forming portion
  • the area ratio S the difference between them
  • the diffuse reflection of the wiring surface per unit area was focused on.
  • the average value R2 of the internal diffuse reflectance at a wavelength of 540 to 570 nm of the laminate pattern non-forming portion can be calculated in the same manner as the above-mentioned R1 for the laminate pattern non-forming portion.
  • the value of ((R1 ⁇ W) ⁇ (R2 ⁇ (1 ⁇ S)))/S (hereinafter, sometimes referred to as “diffuse reflection per unit area”) is more preferably 6.0 or less.
  • the opaque wiring electrode preferably has a light transmittance of 25% or less at a wavelength of 550 nm. It is also preferable that the opaque wiring electrode has light-shielding properties against the exposure light used in the method for forming a light-shielding layer described below. Specifically, the light transmittance at a wavelength of 365 nm is preferably 15% or less. By making the light transmittance at a wavelength of 365 nm 15% or less, the function as a mask is improved in the method for forming a light-shielding layer described below, and the desired light-shielding layer can be formed with greater ease of processing.
  • the light transmittance of the opaque wiring electrode can be measured using a microsurface spectrophotometer (VSS 400: manufactured by Nippon Denshoku Industries Co., Ltd.) for a square opaque wiring electrode with a side length of 0.1 mm or more.
  • Materials constituting the opaque wiring electrode include, for example, metals such as silver, gold, copper, platinum, lead, tin, nickel, aluminum, tungsten, molybdenum, chromium, titanium, indium, etc., and conductive materials such as alloys of these. Two or more of these may be used. Among these, silver, copper, etc. are preferred from the viewpoint of conductivity.
  • the raw material used to form the opaque wiring electrode is preferably conductive particles containing the conductive material described above, and the shape of the particles is preferably spherical.
  • the average particle size of the conductive particles is preferably 0.03 ⁇ m or more from the viewpoint of improving the dispersibility of the conductive particles.
  • the average particle size of the conductive particles is preferably 1.0 ⁇ m or less from the viewpoint of making the edges of the pattern of the opaque wiring electrode sharp.
  • the average particle size of the conductive particles can be obtained by observing the conductive particles at a magnification of 15,000 times using a scanning electron microscope (SEM) or a transmission electron microscope (TEM), measuring the major axis length of each of 100 randomly selected conductive particles, and calculating the number average value.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the opaque wiring electrode may contain an organic component in addition to the aforementioned conductive material.
  • the opaque wiring electrode may be formed, for example, from a cured product of a photosensitive conductive composition containing conductive particles, an alkali-soluble resin, and a photopolymerization initiator, in which case the opaque wiring electrode contains the photopolymerization initiator and/or its photodecomposition product.
  • the photosensitive conductive composition may contain additives such as a heat curing agent and a leveling agent, as necessary.
  • Examples of the pattern shape of the opaque wiring electrode include a mesh shape and a stripe shape.
  • Examples of the mesh shape include a lattice shape whose unit shapes are triangles, squares, polygons, circles, etc., or a lattice shape consisting of a combination of these unit shapes.
  • the mesh shape is preferred from the viewpoint of making the conductivity of the pattern uniform. It is more preferable that the opaque wiring electrode is a metal mesh made of the above-mentioned metal and has a mesh-like pattern. When the opaque wiring electrode has a mesh-like pattern, the occupancy rate S can be reduced by increasing the mesh pitch.
  • the thickness T2 [ ⁇ m] of the opaque wiring electrode is preferably 0.1 or more, and more preferably 0.3 or more, from the viewpoint of improving electrical conductivity.
  • the thickness T2 [ ⁇ m] of the opaque wiring electrode is preferably 10 or less, more preferably 5.0 or less, and even more preferably 3.0 or less, from the viewpoint of forming finer wiring.
  • T2 can be measured using a stylus-type step gauge.
  • the line width of the pattern of the opaque wiring electrode is preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more, and even more preferably 2 ⁇ m or more, from the viewpoint of improving electrical conductivity.
  • the line width of the pattern of the opaque wiring electrode is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, from the viewpoint of further reducing the value of the internal diffuse reflectance R1 and further improving the design visibility, when the pattern shape is the same.
  • the line width of the pattern of the opaque wiring electrode can be obtained by magnifying and observing the laminated pattern formation part using an optical microscope, measuring the line width of the opaque wiring electrode at three randomly selected locations, and calculating the average value.
  • the wiring substrate of the present invention has a light-shielding layer that contains a resin and a coloring component.
  • the resin is preferably an alkali-soluble resin.
  • alkali-soluble resins include resins having hydroxyl groups and/or carboxyl groups. Among these, resins having phenolic hydroxyl groups are preferred.
  • resins having phenolic hydroxyl groups include novolac resins such as phenol novolac resin and cresol novolac resin, polymers of monomers having phenolic hydroxyl groups, and copolymers of monomers having phenolic hydroxyl groups with styrene, acrylonitrile, acrylic monomers, etc. Two or more of these may be included.
  • Coloring components include inorganic pigments, organic pigments, dyes, etc., with pigments being preferred due to their excellent weather resistance.
  • Organic pigments include soluble azo pigments, insoluble azo pigments, metal complex azo pigments, phthalocyanine pigments, condensed polycyclic pigments, black organic pigments such as C.I. Pigment Black 31 and 32, purple organic pigments such as C.I. Pigment Violet 19, 23, 29, 30, 32, 36, 37, 38, 39, 40, and 50, red organic pigments such as C.I.
  • Inorganic pigments include carbon black, graphite, metal nitride particles such as titanium nitride and zirconium nitride, pine soot, iron oxides such as black iron, hematite, goethite and magnetite, chromium, lead, and composites of these metals.
  • metal nitride particles are preferred because of their high transparency to the exposure light.
  • the coloring component preferably absorbs light at wavelengths of 540 to 570 nm, from the viewpoint of setting the average internal diffuse reflectance R1 in the aforementioned range.
  • coloring components that absorb light at wavelengths of 540 to 570 nm include metal nitride particles, red organic pigments, purple organic pigments, and blue organic pigments. Two or more of these may be contained. Among these, when a high-pressure mercury lamp is used as the exposure light source when forming the light-shielding layer, metal nitride particles, red organic pigments, purple organic pigments, and blue organic pigments are preferred, and when an LED lamp (365 nm) is used, metal nitride particles, red organic pigments, and purple organic pigments are preferred.
  • metal nitride particles and purple organic pigments which can further improve visibility after the light-shielding layer is formed while maintaining the photosensitivity when an LED lamp (365 nm) is used as the light source when forming the light-shielding layer.
  • the coloring component more preferably further contains a red organic pigment.
  • a red organic pigment By including a red organic pigment, it is possible to improve visibility after the light-shielding layer is formed while maintaining photosensitivity when an LED lamp (365 nm) is used as the light source during the formation of the light-shielding layer.
  • the thickness T1 [ ⁇ m] of the light-shielding layer is preferably 0.2 to 2.0.
  • T1 [ ⁇ m] 0.2 or more the increase in internal diffuse reflectance caused by the surface unevenness of the opaque wiring electrode can be further suppressed, and R1 can be easily adjusted within the aforementioned range.
  • T1 [ ⁇ m] 2.0 or less the unevenness on the transparent substrate can be reduced, and the generation of air bubbles caused by the unevenness when laminating the transparent protective layer can be suppressed.
  • T1 can be measured using a stylus-type step gauge.
  • the line width of the light-shielding layer is preferably equal to the line width of the opaque wiring electrode described above. Therefore, from the viewpoint of improving electrical conductivity, the line width W [ ⁇ m] of the laminated pattern is preferably 1 or more, more preferably 1.5 or more, and even more preferably 2 or more. On the other hand, in the case of the same pattern shape, the line width W [ ⁇ m] of the laminated pattern is preferably 10 or less, more preferably 8 or less, from the viewpoint of further reducing the value of the internal diffuse reflectance R1 and further improving the design visibility.
  • the line width W of the laminated pattern can be obtained by magnifying and observing the laminated pattern formation part with an optical microscope, measuring the line width of the laminated pattern at three randomly selected points, and calculating the average value.
  • the method for manufacturing the wiring substrate of the present invention preferably includes a step of forming an opaque wiring electrode on the transparent substrate (hereinafter, may be referred to as an "opaque wiring electrode forming step") and a step of forming a light-shielding layer containing a resin and a coloring component on the surface on which the opaque wiring electrode is formed to form a laminated pattern (hereinafter, may be referred to as a "laminate pattern forming step").
  • methods for forming the opaque wiring electrode include, for example, a method of forming a pattern by photolithography using the above-mentioned photosensitive conductive composition, a method of forming a pattern by screen printing, gravure printing, inkjet, etc. using a conductive composition, a method of forming a film of a metal, a metal composite, a composite of a metal and a metal compound, a metal alloy, etc., and forming it by photolithography using a resist, etc.
  • the pattern formed from the photosensitive conductive composition exhibits conductivity by heat curing, it is preferable to heat cure it at 140 to 500°C.
  • examples of the light-shielding layer forming process include a method of applying a positive-type photosensitive resin composition for forming a light-shielding layer of the second aspect of the present invention described later onto an opaque wiring electrode, exposing the positive-type photosensitive resin composition for forming a light-shielding layer coating film from the side opposite to the coating side using the opaque wiring electrode as a mask, and developing the film to pattern the positive-type photosensitive resin composition for forming a light-shielding layer, and a method of transferring a light-shielding layer onto an opaque wiring electrode using a light-shielding layer transfer film of the present invention described later, exposing the light-shielding layer from the side opposite to the transfer side using the opaque wiring electrode as a mask, and developing the light-shielding layer to pattern the light-shielding layer.
  • the latter method using a light-shielding layer transfer film is preferred.
  • a light-shielding layer that maintains its shape using a light-shielding layer transfer film, it is possible to suppress the film thickness of the non-opaque wiring electrode portion from increasing due to leveling of the light-shielding layer during film formation, which would otherwise increase the required exposure amount and development time.
  • a laminated pattern can be formed.
  • exposure light sources include mercury lamps, halogen lamps, xenon lamps, LED lamps (365 nm, 405 nm), semiconductor lasers, and KrF or ArF excimer lasers.
  • the i-line (wavelength 365 nm) of a mercury lamp and LED lamps (365 nm, 405 nm) are preferred, with LED lamps (365 nm) being even more preferred due to their high output.
  • the exposure light may be applied while the substrate is stationary, or may be applied while the substrate is transported over the light source in a direction in which the exposure light is applied to the surface opposite the surface on which the light-shielding layer is formed.
  • the developer used for development is preferably one that does not inhibit the conductivity of the electrode pattern, and is preferably an alkaline developer.
  • alkaline developers include those exemplified as developers in WO 2018/168325.
  • the development method include a method in which the developer is sprayed onto the surface of the resin layer while the substrate is stationary or rotated, a method in which the resin layer is immersed in the developer, and a method in which ultrasonic waves are applied to the resin layer while the resin layer is immersed in the developer.
  • the light-shielding layer pattern obtained by development may be subjected to a rinse treatment using a rinse liquid.
  • the rinse liquid include those exemplified as rinse liquids in WO 2018/168325.
  • the obtained wiring substrate may be further heated at 100 to 300°C. Heating increases the hardness of the resin layer, suppresses chipping or peeling due to contact with other members, and further improves adhesion to the substrate and wiring. Examples of heating methods include heating with an oven, inert oven, or hot plate, and heating with electromagnetic waves from an infrared heater, etc.
  • the positive-type photosensitive resin composition for forming a light-shielding layer of the present invention can be preferably used to form a light-shielding layer in the wiring substrate of the first embodiment of the present invention described above, and by forming a light-shielding layer from such a positive-type photosensitive resin composition for forming a light-shielding layer, the average value R1 of the internal diffuse reflectance can be easily adjusted to the aforementioned range.
  • the positive-type photosensitive resin composition for forming a light-shielding layer of the present invention contains (a) an alkali-soluble resin, (b) a quinone diazide compound, (c) metal nitride particles, and (d) a purple organic pigment.
  • positive-type photosensitivity refers to the property that the light-irradiated portion dissolves in the developer, and the unirradiated portion does not dissolve in the developer.
  • Examples of the alkali-soluble resin include those exemplified for the light-shielding layer in the wiring substrate of the first embodiment of the present invention.
  • the alkali-soluble resin (a) a resin having a phenolic hydroxyl group is preferable, and hydrogen bonding between the phenolic hydroxyl group and the quinone diazide compound (b) can further suppress the occurrence of film loss and peeling during development in unexposed areas, making it harder to see the opaque wiring electrode pattern.
  • examples of the resin having a phenolic hydroxyl group those described for the light-shielding layer in the wiring substrate of the first embodiment of the present invention can be used.
  • the content of the alkali-soluble resin (a) in the solid content of the positive photosensitive resin composition for forming the light-shielding layer is preferably 45 to 65 mass%.
  • Examples of the quinone diazide compound include those exemplified as quinone diazide compounds contained in the positive photosensitive composition in WO 2018/168325.
  • the content of the quinone diazide compound in the solid content of the positive photosensitive resin composition is preferably 5 to 25 mass%.
  • the positive-type photosensitive resin composition for forming a light-shielding layer of the present invention contains (c) metal nitride particles and (d) purple organic pigment that absorb light in the wavelength range of 540 to 570 nm, which has high visibility, and also absorbs visible light in the wavelength range of 570 to 640 nm. This makes it possible to improve the visibility of the design after the light-shielding layer is formed while maintaining the photosensitivity when an LED lamp (365 nm) is used as the light source during the formation of the light-shielding layer.
  • Examples of (c) metal nitride particles and (d) purple organic pigment include those described for the light-shielding layer in the wiring substrate of the first embodiment of the present invention.
  • the content of (c) metal nitride particles in the solid content of the positive photosensitive resin composition for forming a light-shielding layer is preferably 2.0% by volume or more, and more preferably 2.5% by volume or more, from the viewpoint of further improving the design visibility.
  • the content of metal nitride particles is preferably 6.0% by volume or less, and more preferably 5.0% by volume or less, from the viewpoint of photosensitivity.
  • the content of the purple organic pigment (d) in the solid content of the positive photosensitive resin composition for forming a light-shielding layer is preferably 1.0% by volume or more from the viewpoint of further improving the visibility of the design.
  • the content of the purple organic pigment (d) is preferably 8.0% by volume or less from the viewpoint of photosensitivity.
  • the positive-type photosensitive resin composition for forming a light-shielding layer of the present invention preferably further contains (e) a red organic pigment.
  • the red organic pigment absorbs light in the wavelength range of 460 to 540 nm and also absorbs visible light in the wavelength range of 570 to 640 nm, and therefore can improve the design visibility of the light-shielding layer while maintaining the photosensitivity when an LED lamp (365 nm) is used as the light source during the formation of the light-shielding layer.
  • the positive photosensitive resin composition for forming a light-shielding layer of the present invention contains (e) a red organic pigment
  • the total content of (c) the metal nitride particles, (d) the purple organic pigment, and (e) the red organic pigment in the solid content of the positive photosensitive resin composition is preferably 5.0% by volume or more from the viewpoint of bringing the diffuse reflection per unit area into the aforementioned preferred range and further improving visibility.
  • the total content of these is preferably 15.0% by volume or less.
  • the positive-type photosensitive resin composition for forming a light-shielding layer of the present invention may contain, as necessary, a monomer having an unsaturated double bond, a photopolymerization initiator, a photoacid generator, a thermal acid generator, a sensitizer, an adhesion improver, a surfactant, a thermal curing agent, a polymerization inhibitor, a rust inhibitor, a softener, a leveling agent, and the like.
  • the positive-type photosensitive resin composition for forming a light-shielding layer of the present invention can be obtained, for example, by mixing (a) an alkali-soluble resin, (b) a quinone diazide compound, (c) metal nitride particles, (d) a purple organic pigment, and other additives as necessary, and then dispersing the mixture using a dispersing machine or kneading machine.
  • dispersing machines and kneading machines include a jet mill, a bead mill, a ball mill, and a planetary ball mill.
  • the positive-type photosensitive resin composition for forming a light-shielding layer of the present invention can be preferably used in the light-shielding layer transfer film of the present invention, and such a light-shielding layer transfer film can be preferably used to form a light-shielding layer in the wiring substrate of the first embodiment of the present invention described above.
  • the light-shielding layer transfer film of the present invention has a light-shielding layer formed from the positive-type photosensitive resin composition for forming a light-shielding layer according to the second embodiment of the present invention described above on a release film.
  • the release film is preferably one that has a release layer on its surface.
  • the release agent forming the release layer may be, for example, a non-silicone release agent or a silicone release agent.
  • the non-silicone release agent include long-chain alkyl and fluorine-based release agents. Two or more of these may be used.
  • non-silicone release agents are preferred because, even if the release agent transfers during transfer, they are less likely to cause phenomena such as developer repelling in the subsequent process, particularly the development process, and can form a fine pattern while suppressing in-plane unevenness.
  • the thickness of the release layer is preferably 50 nm or more from the viewpoint of suppressing transfer unevenness during transfer. On the other hand, the thickness of the release layer is preferably 500 nm or less from the viewpoint of suppressing transfer of the release agent during transfer.
  • the peeling strength of the release film is preferably 500 mN/20 mm or more from the viewpoint of suppressing repelling during the formation of the light-shielding layer.
  • the peeling strength of the release film is preferably 5,000 mN/20 mm or less from the viewpoint of widening the process margin during the transfer of the light-shielding layer.
  • the peeling strength of the release film refers to the peeling strength when Nitto Denko Corporation's acrylic adhesive tape "31B" is applied to the surface on which the release layer is formed using a 2 kg roller, and after leaving it to stand for 30 minutes, it is peeled off under the conditions of a peeling angle of 180° and a peeling speed of 0.3 m/min.
  • Films used for the release film include, for example, films containing resins such as polyethylene terephthalate (PET), cycloolefin polymer, polycarbonate, polyimide, aramid, fluororesin, acrylic resin, and polyurethane resin. Two or more of these may be used. Among these, those that are transparent to the exposure light used in the aforementioned laminated pattern formation process are preferred, and films containing PET, cycloolefin polymer, and polycarbonate are preferred. By selecting a film that is transparent to the exposure light, exposure can be performed through the release film in the aforementioned laminated pattern formation process, and contamination of the photomask can be suppressed by placing a release film between the light-shielding layer and the photomask.
  • resins such as polyethylene terephthalate (PET), cycloolefin polymer, polycarbonate, polyimide, aramid, fluororesin, acrylic resin, and polyurethane resin. Two or more of these may be used.
  • the thickness of the release film is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more, from the viewpoint of improving transport stability during the formation of the light-shielding layer and suppressing unevenness in the thickness of the light-shielding layer.
  • the thickness of the release film is preferably 300 ⁇ m or less, and more preferably 200 ⁇ m or less, from the viewpoint of ease of handling during peeling.
  • the thickness T1' [ ⁇ m] of the light-shielding layer of the light-shielding layer transfer film is preferably 0.3 or more, more preferably 0.5 or more, from the viewpoint of making the opaque wiring electrode less visible.
  • the thickness T1' [ ⁇ m] of the light-shielding layer is preferably 2.0 or less, from the viewpoint of reducing the development time and further improving processability. Note that T1' can be measured using a stylus-type step gauge.
  • the thickness T1' of the light-shielding layer corresponds to the thickness T1, but may vary depending on the method of forming the light-shielding layer.
  • the light-shielding layer transfer film of the present invention can be obtained, for example, by applying a positive-type photosensitive resin composition for forming a light-shielding layer onto a release film.
  • Methods for applying the positive photosensitive resin composition for forming a light-shielding layer onto a release film include, for example, spin coating using a spinner, spray coating, roll coating, screen printing, or coating using a slit coater, blade coater, die coater, calendar coater, meniscus coater, or bar coater.
  • the coating thickness of the positive photosensitive resin composition for forming a light-shielding layer is preferably set so that the thickness T1 of the light-shielding layer falls within the preferred range described above.
  • the positive-type photosensitive resin composition for forming the light-shielding layer contains a solvent
  • the drying temperature is preferably 60 to 120°C, and the drying time is preferably 1 to 20 minutes.
  • the heating and drying device for example, an oven, a hot plate, etc. are preferable.
  • Phenol novolac resin WR-104 (manufactured by DIC Corporation).
  • the acid value of the resulting acrylic resin having a carboxy group was measured in accordance with JIS K 0070 (1992) to find that it was 103 mgKOH/g.
  • the weight average molecular weight of the resulting acrylic resin having a carboxy group was 17,000.
  • the mixture was heated and stirred at 80°C for another 6 hours to carry out a polymerization reaction. Thereafter, 1 g of hydroquinone monomethyl ether was added to terminate the polymerization reaction.
  • the acid value was measured in the same manner as in Production Example 2 and found to be 153 mgKOH/g.
  • the weight average molecular weight of the resulting acrylic resin having a phenolic hydroxyl group and a carboxyl group was 10,000.
  • CM-2500d a spectrophotometer manufactured by Konica Minolta Sensing Co., Ltd.
  • the diffuse reflectance SCE at wavelengths of 540, 550, 560, and 570 nm of the laminated pattern-formed portion of the internal diffuse reflectance evaluation substrate was measured, and the average value was taken as the average internal reflectance R1.
  • the diffuse reflectance SCE was measured at wavelengths of 540, 550, 560, and 570 nm of the non-layer pattern forming portion of the substrate for evaluating internal diffuse reflectance using a spectrophotometer (CM-2500d) manufactured by Konica Minolta Sensing Co., Ltd., and the average value was taken as the average internal reflectance R2.
  • Example 1 ⁇ Opaque Wiring Electrode Forming Process>
  • AN Wizus registered trademark
  • the photosensitive conductive paste (D-1) obtained in Production Example 4 was applied by spin coating so that the thickness after drying was 1 ⁇ m, and dried at 90 ° C. for 8 minutes.
  • an exposure device (PEM-6M; manufactured by Union Optical Co., Ltd.) was used to expose at an exposure dose of 150 mJ / cm 2 (converted to a wavelength of 365 nm).
  • the mesh-shaped pattern is a negative pattern having a mesh pitch 14 of 400 ⁇ m and a mesh angle 15 of 58 °, and an opening width of 4 ⁇ m, a laminated pattern portion (mask opening) 12, and a non-laminated pattern portion (mask light shielding portion) 13.
  • black and white are inverted for convenience of illustration.
  • the obtained positive photosensitive resin composition 1 for forming a light-shielding layer was spin-coated on the opaque wiring electrode surface formed in the ⁇ Opaque wiring electrode forming step> so that the film thickness after drying was 1.4 ⁇ m, and dried at 100 ° C. for 10 minutes.
  • an exposure device (PEM-6M) was used to expose from the opposite side of the opaque wiring electrode forming surface under the condition of an exposure amount (converted to a wavelength of 365 nm) of 10,000 mJ / cm 2 , and development was performed using a 2.38 mass% tetramethylammonium hydroxide aqueous solution as a developer until the transparent substrate of the exposed portion was exposed, forming a light-shielding layer pattern on the opaque wiring electrode, and forming a laminated pattern. Furthermore, it was heated in a box oven at 220 ° C. for 60 minutes.
  • the photosensitive insulating paste obtained in (Production Example 5) was spin-coated so that the film thickness after drying was 3.0 ⁇ m, and dried at 80 ° C. for 5 minutes.
  • an exposure device PEM-6M
  • the coated surface was exposed under the condition of an exposure amount (converted to a wavelength of 365 nm) of 100 mJ / cm 2 , and development was performed for 60 seconds using a 0.1 mass % tetramethylammonium hydroxide aqueous solution as a developer. Furthermore, it was heated in a box oven at 220 ° C. for 60 minutes to obtain a wiring substrate on which a transparent protective layer was formed.
  • Example 2 A wiring substrate was obtained in the same manner as in Example 1, except that the mesh pitch and occupancy rate S of the exposure mask in the ⁇ Opaque wiring electrode formation process> and the composition in (Preparation of positive-type photosensitive resin composition for forming light-shielding layer) were changed as shown in Table 1.
  • Examples 3 to 9 A wiring substrate was obtained in the same manner as in (Example 2), except that the composition in (Preparation of positive-type photosensitive resin composition for forming light-shielding layer) and the exposure dose in (Formation of light-shielding layer) were changed as shown in Tables 1 and 2.
  • Example 1 A wiring substrate was obtained in the same manner as in Example 3, except that (formation of a light-shielding layer) was not carried out.
  • Example 6 A wiring substrate was obtained in the same manner as in Example 2, except that the composition in (Preparation of positive-type photosensitive resin composition for forming light-shielding layer) and the exposure dose in (Formation of light-shielding layer) were changed as shown in Table 3.
  • Example 10 ⁇ Formation of Opaque Wiring Electrodes> In the same manner as in Example 2, a substrate with an opaque wiring electrode was obtained.
  • a non-silicone release agent AL-5 (manufactured by Lintec Corporation) was applied to one side of a PET film "Lumirror (registered trademark)" FB40 (manufactured by Toray Industries, Inc.) (thickness: 16 ⁇ m), and the film was heat-treated and dried to form a release layer having a thickness of 100 nm on the surface of the substrate, thereby obtaining a release film.
  • an acrylic adhesive tape "31B” manufactured by Nitto Denko Corporation was attached to the release layer-formed surface using a 2 kg roller, and the film was allowed to stand for 30 minutes. After that, the peel force was measured when the film was peeled off under the conditions of a peel angle of 180° and a peel speed of 0.3 m/min, and was found to be 1,480 mN/20 mm.
  • the positive-type photosensitive resin composition 2 for forming a light-shielding layer was applied to the release layer surface of the obtained release film using a coater so that the thickness after drying T1' was 1.4 ⁇ m, and the film was dried at 80° C. for 4 minutes to form a light-shielding layer, thereby obtaining a light-shielding layer transfer film.
  • the light-shielding layer transfer film obtained by ⁇ Preparation of light-shielding layer transfer film> was thermocompressed at 80°C and a speed of 0.1 m/min so that the light-shielding layer of the light-shielding layer transfer film obtained by ⁇ Preparation of light-shielding layer transfer film> was in contact with the opaque wiring electrode formed in the ⁇ Opaque wiring electrode formation process>, and the release film was peeled off.
  • the film was exposed from the opposite side of the opaque wiring electrode formation surface under the condition of an exposure amount (converted to a wavelength of 365 nm) of 100 mJ/cm 2 using an exposure device (PEM-6M), and development was performed using a 1.00 mass% sodium carbonate aqueous solution as a developer until the transparent substrate of the exposed portion was exposed, forming a light-shielding layer pattern on the opaque wiring electrode, and forming a laminated pattern. Further, the film was heated in a box oven at 220°C for 60 minutes.
  • a transparent protective layer was formed in the same manner as in Example 1 to obtain a wiring substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Filters (AREA)

Abstract

Provided are a wiring base material having excellent design visibility, and a positive photosensitive resin composition for forming a light-blocking layer suitable for the wiring base material. The wiring base material has, on a transparent base material, a multilayer pattern of an opaque wiring electrode and a light-blocking layer containing a resin and a colored component. An average value R1 of internal diffuse reflectance at a wavelength of 540-570 nm measured from the light-blocking layer side of a multilayer pattern forming portion is 0.03-0.11%.

Description

配線基板、遮光層形成用ポジ型感光性樹脂組成物、遮光層転写フィルムおよび配線基板の製造方法Wiring board, positive-type photosensitive resin composition for forming light-shielding layer, light-shielding layer transfer film, and method for manufacturing wiring board
 本発明は、配線基板、遮光層形成用ポジ型感光性樹脂組成物、遮光層転写フィルムおよび配線基材の製造方法に関する。 The present invention relates to a wiring board, a positive-type photosensitive resin composition for forming a light-shielding layer, a light-shielding layer transfer film, and a method for manufacturing a wiring substrate.
 近年、入力手段として広く用いられているタッチパネルは、液晶パネルなどの表示部と、特定の位置に入力された情報を検出するタッチパネルセンサー等から構成される。タッチパネルセンサーに用いられる配線電極としては、配線電極を見えにくくする観点から透明配線電極が用いられることが一般的であったが、近年、高感度化や画面の大型化により、金属材料を用いた不透明配線電極が広まっている。金属材料を用いた不透明配線電極は、金属光沢により視認されやすい課題があった。不透明配線電極を視認されにくくする方法として、透明基板、前記透明基板の少なくとも片面にパターニングされた不透明配線電極並びに前記透明基板及び前記不透明配線電極上に形成された透明保護層を有する配線基板であって、配線基板の前記透明保護層側から測定した前記不透明配線電極形成部における内部反射率R1が0.1%以下であり、前記透明基板の屈折率n1と前記透明保護層の屈折率n2が特定の関係を満足する配線基板、特に不透明配線電極上部に遮光層を有する配線基板(例えば、特許文献1参照)が提案されている。また、遮光層に用いられるポジ型感光性組成物として、顔料、ノボラック樹脂、カルボキシ基を有するアクリル樹脂、光酸発生剤、アミン系分散剤を含む感光性樹脂組成物(例えば、特許文献2参照)や、側鎖にアクリル基および/またはメタクリル基を有するアルカリ可溶性樹脂(A)、感光剤(B)及び着色剤(C)を含有するポジ型感光性樹脂組成物(例えば、特許文献3参照)が提案されている。 In recent years, touch panels, which have been widely used as input means, are composed of a display unit such as a liquid crystal panel and a touch panel sensor that detects information input at a specific position. Transparent wiring electrodes have been generally used as wiring electrodes for touch panel sensors in order to make the wiring electrodes less visible, but in recent years, opaque wiring electrodes made of metal materials have become more widespread due to increased sensitivity and larger screens. Opaque wiring electrodes made of metal materials have the problem of being easily visible due to their metallic luster. As a method for making the opaque wiring electrodes less visible, a wiring board has been proposed that has a transparent substrate, an opaque wiring electrode patterned on at least one side of the transparent substrate, and a transparent protective layer formed on the transparent substrate and the opaque wiring electrode, in which the internal reflectance R1 at the opaque wiring electrode formation portion measured from the transparent protective layer side of the wiring board is 0.1% or less, and the refractive index n1 of the transparent substrate and the refractive index n2 of the transparent protective layer satisfy a specific relationship, particularly a wiring board having a light-shielding layer on the top of the opaque wiring electrode (see, for example, Patent Document 1). In addition, as a positive-type photosensitive composition used in a light-shielding layer, a photosensitive resin composition containing a pigment, a novolac resin, an acrylic resin having a carboxyl group, a photoacid generator, and an amine-based dispersant (see, for example, Patent Document 2), and a positive-type photosensitive resin composition containing an alkali-soluble resin (A) having an acrylic group and/or a methacrylic group in the side chain, a photosensitizer (B), and a colorant (C) (see, for example, Patent Document 3) have been proposed.
国際公開第2022/130803号International Publication No. 2022/130803 特開2021-139971号公報JP 2021-139971 A 国際公開第2021/149410号International Publication No. 2021/149410
 特許文献1~3に開示される遮光層により、不透明配線電極の金属光沢による視認されやすさを抑制できるものの、特に車載用途など明るい場所においては外光が反射しやすく、配線基材表面の光散乱により積層パターン形成部が、積層パターン非形成部や加飾部に比べて白く曇って見える傾向にあり、意匠性の観点から漆黒が求められる用途においては、このような白曇りを抑制すること、すなわち意匠視認性の向上が求められている。 The light-shielding layers disclosed in Patent Documents 1 to 3 can reduce the visibility of the opaque wiring electrodes due to their metallic luster, but external light is easily reflected, particularly in bright locations such as in-vehicle applications, and light scattering on the surface of the wiring substrate tends to cause the laminated pattern-forming areas to appear whitish and cloudy compared to areas where the laminated pattern is not formed and decorative areas. In applications where jet black is required from a design perspective, there is a demand to reduce this whitish cloudiness, i.e., to improve design visibility.
 そこで、本発明は、意匠視認性に優れた配線基材と、それに適した遮光層形成用ポジ型感光性樹脂組成物を提供することを目的とする。 The present invention aims to provide a wiring substrate with excellent design visibility and a positive-type photosensitive resin composition suitable for forming a light-shielding layer.
 上記課題を解決するため、本発明は、主として以下の構成を有する。
<1>透明基材上に、不透明配線電極と、樹脂および着色成分を含む遮光層との積層パターンを有する配線基材であって、積層パターン形成部の遮光層側から測定した波長540~570nmにおける内部拡散反射率の平均値R1が0.03~0.11%である配線基材。
<2>前記積層パターン形成部の遮光層側から測定した波長540~570nmにおける内部拡散反射率の平均値R1[%]、積層パターン非形成部の波長540~570nmにおける内部拡散反射率の平均値R2[%]、積層パターンの線幅W[μm]、積層パターン形成部の面積に占める積層パターン面積の比(積層パターン面積/積層パターン形成部の面積)Sが下記式(1)の関係を満たす<1>に記載の配線基材。
0.0≦((R1×W)-(R2×(1-S)))/S≦7.0 (1)
<3>前記遮光層の厚みT1[μm]が0.2~2.0である、<1>または<2>に記載の配線基材。
<4>(a)アルカリ可溶性樹脂、(b)キノンジアジド化合物、(c)金属窒化物粒子および(d)紫色有機顔料を含有する遮光層形成用ポジ型感光性樹脂組成物。
<5>前記(c)金属窒化物粒子の含有量が2.0~6.0体積%である<4>に記載の遮光層形成用ポジ型感光性樹脂組成物。
<6>さらに(e)赤色有機顔料を含有する<4>または<5>に記載の遮光層形成用ポジ型感光性樹脂組成物。
<7>(c)金属窒化物粒子、(d)紫色有機顔料および(e)赤色有機顔料の合計含有量が5~15体積%である<6>に記載の遮光層形成用ポジ型感光性樹脂組成物。
<8>離型フィルム上に、<4>~<7>のいずれかに記載の遮光層形成用ポジ型感光性樹脂組成物から形成される遮光層を有する、遮光層転写フィルム。
<9>前記遮光層の厚みT1’[μm]が0.3~2.0である<8>に記載の遮光層転写フィルム。
<10>透明基材上に不透明配線電極を形成する工程、
前記不透明配線電極形成面に<4>~<7>のいずれかに記載の遮光層形成用ポジ型感光性樹脂組成物を塗布する工程、および、
前記不透明配線電極をマスクとして、感光性樹脂組成物塗布膜を、塗布面とは反対の面側から露光し、現像することにより、前記感光性樹脂組成物塗布膜をパターン加工して不透明配線電極と遮光層との積層パターンを形成する工程、
を有する<1>~<3>のいずれかに記載の配線基材の製造方法。
<11>透明基材上に不透明配線電極を形成する工程、
前記不透明配線電極形成面に<8>または<9>に記載の遮光層転写フィルムの遮光層を転写する工程、および、
前記不透明配線電極をマスクとして、前記遮光層を転写面とは反対の面側から露光し、現像することにより、前記遮光層をパターン加工して不透明配線電極と遮光層との積層パターンを形成する工程、
を有する<1>~<3>のいずれかに記載の配線基材の製造方法。
In order to solve the above problems, the present invention mainly has the following configuration.
<1> A wiring substrate having a laminated pattern of an opaque wiring electrode and a light-shielding layer containing a resin and a coloring component on a transparent substrate, the wiring substrate having an average internal diffuse reflectance R1 of 0.03 to 0.11% at a wavelength of 540 to 570 nm as measured from the light-shielding layer side of the laminated pattern forming portion.
<2> The wiring substrate according to <1>, wherein an average value R1 [%] of the internal diffuse reflectance at a wavelength of 540 to 570 nm measured from the light-shielding layer side of the laminate pattern forming portion, an average value R2 [%] of the internal diffuse reflectance at a wavelength of 540 to 570 nm of the laminate pattern non-forming portion, a line width W [μm] of the laminate pattern, and a ratio S of the laminate pattern area to the area of the laminate pattern forming portion (laminate pattern area/laminate pattern forming portion area) satisfy the relationship of the following formula (1).
0.0≦((R1×W)−(R2×(1−S)))/S≦7.0 (1)
<3> The wiring substrate according to <1> or <2>, wherein the thickness T1 [μm] of the light-shielding layer is 0.2 to 2.0 μm.
<4> A positive-type photosensitive resin composition for forming a light-shielding layer, comprising (a) an alkali-soluble resin, (b) a quinone diazide compound, (c) metal nitride particles, and (d) a purple organic pigment.
<5> The positive photosensitive resin composition for forming a light-shielding layer according to <4>, wherein the content of the (c) metal nitride particles is 2.0 to 6.0% by volume.
<6> The positive photosensitive resin composition for forming a light-shielding layer according to <4> or <5>, further comprising (e) a red organic pigment.
<7> The positive photosensitive resin composition for forming a light-shielding layer according to <6>, wherein the total content of (c) the metal nitride particles, (d) the purple organic pigment and (e) the red organic pigment is 5 to 15 volume %.
<8> A light-shielding layer transfer film having a light-shielding layer formed from the positive photosensitive resin composition for forming a light-shielding layer according to any one of <4> to <7> on a release film.
<9> The light-shielding layer transfer film according to <8>, wherein the thickness T1′ [μm] of the light-shielding layer is 0.3 to 2.0 μm.
<10> A step of forming an opaque wiring electrode on a transparent substrate;
A step of applying a positive photosensitive resin composition for forming a light-shielding layer according to any one of <4> to <7> to the opaque wiring electrode formation surface; and
a step of exposing the photosensitive resin composition coating film from the side opposite to the coating side using the opaque wiring electrode as a mask, and developing the photosensitive resin composition coating film to pattern the photosensitive resin composition coating film to form a laminated pattern of the opaque wiring electrode and the light-shielding layer;
The method for producing a wiring substrate according to any one of <1> to <3>,
<11> A step of forming an opaque wiring electrode on a transparent substrate;
A step of transferring a light-shielding layer of the light-shielding layer transfer film according to item <8> or <9> onto the opaque wiring electrode formation surface; and
a step of exposing the light-shielding layer from a surface opposite to a transfer surface using the opaque wiring electrode as a mask, and developing the light-shielding layer to pattern the light-shielding layer to form a laminated pattern of the opaque wiring electrode and the light-shielding layer;
The method for producing a wiring substrate according to any one of <1> to <3>,
 本発明の配線基材は、意匠視認性に優れる。本発明の遮光層形成用ポジ型感光性樹脂組成物によれば、意匠視認性に優れる配線基材を得ることができる。 The wiring substrate of the present invention has excellent design visibility. By using the positive photosensitive resin composition for forming a light-shielding layer of the present invention, a wiring substrate with excellent design visibility can be obtained.
本発明の配線基材の構成の一例を示す概略図である。1 is a schematic diagram showing an example of a configuration of a wiring substrate of the present invention. 本発明の配線基材の構成の別の一例を示す概略図である。FIG. 4 is a schematic diagram showing another example of the configuration of the wiring substrate of the present invention. 本発明における内部拡散反射率評価用基材の構成の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of the configuration of a substrate for evaluating internal diffuse reflectance in the present invention. 実施例および比較例において使用した視認性評価用電極パターンを示す概略図である。FIG. 2 is a schematic diagram showing an electrode pattern for evaluating visibility used in the examples and comparative examples. 実施例および比較例において使用したネガ型用マスクのメッシュパターンの概略図である。FIG. 2 is a schematic diagram of a mesh pattern of a negative mask used in the examples and comparative examples.
 まず、本発明の第一の態様として、配線基材について説明する。本発明の配線基材は、透明基材上に、不透明配線電極を有し、不透明配線電極に対応する部位に遮光層を有する。すなわち、不透明配線電極と遮光層との積層パターンを有する。不透明配線電極上に遮光層を有してもよいし、遮光層上に不透明配線電極を有してもよい。遮光層は、不透明配線電極の光反射や光散乱を抑制して意匠性の高い漆黒を再現し、意匠視認性を向上させる作用を有する。さらに、これらの上に透明保護層を有してもよく、透明保護層を有することにより、不透明配線電極および遮光層表面を保護し、傷などを抑制することができる。ここで、「透明」とは、波長550nmにおける光透過率が50%以上であることをいい、「不透明」とは、波長550nmにおける光透過率が50%未満であることをいう。なお、波長550nmにおける光透過率は、紫外可視分光光度計(U-3310:(株)日立ハイテクノロジーズ製)を用いて測定することができる。 First, the wiring substrate will be described as the first aspect of the present invention. The wiring substrate of the present invention has an opaque wiring electrode on a transparent substrate, and a light-shielding layer at a portion corresponding to the opaque wiring electrode. That is, it has a laminated pattern of an opaque wiring electrode and a light-shielding layer. The light-shielding layer may be on the opaque wiring electrode, or the opaque wiring electrode may be on the light-shielding layer. The light-shielding layer has the effect of suppressing the light reflection and light scattering of the opaque wiring electrode, reproducing a jet black color with high designability, and improving the visibility of the design. Furthermore, a transparent protective layer may be formed on these, and by having the transparent protective layer, the surface of the opaque wiring electrode and the light-shielding layer can be protected and scratches can be suppressed. Here, "transparent" means that the light transmittance at a wavelength of 550 nm is 50% or more, and "opaque" means that the light transmittance at a wavelength of 550 nm is less than 50%. The light transmittance at a wavelength of 550 nm can be measured using an ultraviolet-visible spectrophotometer (U-3310: manufactured by Hitachi High-Technologies Corporation).
 図1に、本発明の配線基材の構成の一例の概略図を示す。配線基材4は、透明基材1上に不透明配線電極2を有し、不透明配線電極2上に遮光層3を有する。図2に、本発明の配線基材の構成の別の一例を示す。配線基材4は、透明基材1上に遮光層3を有し、遮光層3上に不透明配線電極2を有する。 Figure 1 shows a schematic diagram of an example of the configuration of a wiring substrate of the present invention. The wiring substrate 4 has an opaque wiring electrode 2 on a transparent substrate 1, and a light-shielding layer 3 on the opaque wiring electrode 2. Figure 2 shows another example of the configuration of a wiring substrate of the present invention. The wiring substrate 4 has a light-shielding layer 3 on a transparent substrate 1, and a opaque wiring electrode 2 on the light-shielding layer 3.
 本発明の配線基材は、不透明配線電極と、樹脂および着色成分を含む遮光層との積層パターンを有する。そして、本発明において、積層パターン形成部の遮光層側から測定した波長540~570nmにおける内部拡散反射率の平均値R1は、0.03~0.11%である。ここで、積層パターン形成部とは、積層パターンが形成されている領域を意味し、積層パターンに対応する部位に加えて、隣り合う距離1mm未満の積層パターン間に位置する非積層パターン部位を含むものとする。より具体的には、例えば、ストライプ形状の積層パターンを有する場合、ピッチ1mm未満のストライプ形状の積層パターンに対応する部位と、それら積層パターンに挟まれた非積層パターン部位をあわせて積層パターン形成部とする。また、例えば、図5に示すメッシュ形状の積層パターンを有する場合、メッシュピッチ1mm未満ピッチのメッシュ形状の積層パターンに対応する部位(積層パターン部12)と、それら積層パターンに囲まれた非積層パターン部位(非積層パターン部13)をあわせて積層パターン形成部とする。一方、隣り合う積層パターンの距離が1mm以上となる非積層パターン部位を、積層パターン非形成部とする。前述のとおり、従来公知の遮光層により、不透明配線電極の金属光沢による視認されやすさは抑制できるものの、特に明るい場所においては配線基材表面の光散乱により積層パターン形成部が白く曇って見える傾向にあった。本発明者らの検討により、不透明配線電極に従来公知の遮光層を積層することにより、積層パターン形成部全反射率(SCI)を低くすることができるものの、ITOなどの透明配線電極に比べて拡散反射率(SCE)が高いことが明らかとなった。そこで、本発明者らは、配線基材表面の光散乱による意匠視認性の課題と拡散反射率との関係を検討し、視感度の高い波長540~570nmの領域における拡散反射率に着目した。積層パターン形成部の遮光層側から測定した波長540~570nmにおける内部拡散反射率の平均値R1は、視感度の高い波長領域における拡散反射率の指標であり、R1を0.03以上とすることにより、積層パターン形成部と積層パターン非形成部の拡散反射率の差により、積層パターン形成部と積層パターン非形成部の境界が視認されることを抑制することができる。R1は、0.04以上が好ましい。一方、R1を0.11%以下とすることにより、特に明るい場所においても配線基材表面の光散乱による積層パターン形成部の白曇りを抑制し、意匠性の高い漆黒を再現し、意匠視認性を向上させることができる。 The wiring substrate of the present invention has a laminated pattern of an opaque wiring electrode and a light-shielding layer containing a resin and a coloring component. In the present invention, the average internal diffuse reflectance R1 at wavelengths of 540 to 570 nm measured from the light-shielding layer side of the laminated pattern forming portion is 0.03 to 0.11%. Here, the laminated pattern forming portion means the area in which the laminated pattern is formed, and includes the portion corresponding to the laminated pattern as well as the non-laminated pattern portion located between adjacent laminated patterns with a distance of less than 1 mm. More specifically, for example, in the case of a striped laminated pattern, the portion corresponding to the striped laminated pattern with a pitch of less than 1 mm and the non-laminated pattern portion sandwiched between the laminated patterns are collectively referred to as the laminated pattern forming portion. In addition, for example, in the case of a mesh-shaped laminated pattern as shown in FIG. 5, the portion corresponding to the mesh-shaped laminated pattern with a mesh pitch of less than 1 mm (laminated pattern portion 12) and the non-laminated pattern portion (non-laminated pattern portion 13) surrounded by the laminated patterns are collectively referred to as the laminated pattern forming portion. On the other hand, a non-laminated pattern portion where the distance between adjacent laminated patterns is 1 mm or more is defined as a laminated pattern non-forming portion. As described above, the conventionally known light-shielding layer can suppress the visibility of the opaque wiring electrode due to its metallic luster, but the laminated pattern forming portion tends to look white and cloudy due to light scattering on the wiring substrate surface, especially in bright places. The inventors' study revealed that the total reflectance (SCI) of the laminated pattern forming portion can be reduced by laminating a conventionally known light-shielding layer on the opaque wiring electrode, but the diffuse reflectance (SCE) is higher than that of a transparent wiring electrode such as ITO. Therefore, the inventors studied the relationship between the design visibility problem due to light scattering on the wiring substrate surface and the diffuse reflectance, and focused on the diffuse reflectance in the wavelength range of 540 to 570 nm, where visibility is high. The average internal diffuse reflectance R1 at wavelengths of 540 to 570 nm measured from the light-shielding layer side of the laminate pattern forming portion is an index of diffuse reflectance in a wavelength region with high visibility, and by making R1 0.03 or more, it is possible to prevent the boundary between the laminate pattern forming portion and the laminate pattern non-forming portion from being visible due to the difference in diffuse reflectance between the laminate pattern forming portion and the laminate pattern non-forming portion. R1 is preferably 0.04 or more. On the other hand, by making R1 0.11% or less, it is possible to prevent the clouding of the laminate pattern forming portion due to light scattering on the wiring substrate surface even in particularly bright places, reproduce a highly decorative jet black, and improve design visibility.
 ここで、内部拡散反射率とは、配線基材表面と空気との界面における屈折率差に起因する反射を除去した拡散反射率に相当する。図3に、配線基材の内部拡散反射率を評価するための内部拡散反射率評価用基材の構成の一例の概略図を示す。配線基材4は、透明基材1上に、不透明配線電極2と遮光層3との積層パターンを有し、さらに透明保護層6を有する。配線基材の遮光層形成面(ここでは透明保護層6上)に粘着層7を介して反射防止フィルム8を貼付し、透明基材1の遮光層と反対側の表面に粘着層7を介して黒色フィルム9を貼付して、配線基材と空気界面における反射を低減させた、内部拡散反射率評価用基材16を準備する。なお、図示しないが、配線基材が透明基材上の、遮光層と不透明配線電極との積層パターンが、透明基材側に遮光層を有する場合は、透明基材に透明粘着層を介して反射防止フィルムを貼付し、透明保護層に粘着層を介して黒色フィルムを貼付して、配線基材と空気界面における反射を低減させた、内部拡散反射率評価用基材を準備する。得られた内部拡散反射率評価用基材の積層パターン形成部について、遮光層形成側、すなわち図3に示す構成の場合は反射防止フィルム8側から、測色系等を用いて、波長540、550、560、570nmにおける拡散反射率をそれぞれ測定し、その平均値を求めることにより、内部拡散反射率の平均値R1を算出することができる。 Here, the internal diffuse reflectance corresponds to the diffuse reflectance from which the reflection caused by the refractive index difference at the interface between the wiring substrate surface and air has been removed. FIG. 3 shows a schematic diagram of an example of the configuration of an internal diffuse reflectance evaluation substrate for evaluating the internal diffuse reflectance of a wiring substrate. The wiring substrate 4 has a laminated pattern of an opaque wiring electrode 2 and a light-shielding layer 3 on a transparent substrate 1, and further has a transparent protective layer 6. An anti-reflection film 8 is attached to the light-shielding layer forming surface of the wiring substrate (here, on the transparent protective layer 6) via an adhesive layer 7, and a black film 9 is attached to the surface of the transparent substrate 1 opposite the light-shielding layer via an adhesive layer 7 to prepare an internal diffuse reflectance evaluation substrate 16 in which reflection at the wiring substrate-air interface is reduced. Although not shown, when the wiring substrate is a transparent substrate and the laminated pattern of the light-shielding layer and the opaque wiring electrode has a light-shielding layer on the transparent substrate side, an anti-reflection film is attached to the transparent substrate via a transparent adhesive layer, and a black film is attached to the transparent protective layer via an adhesive layer to reduce reflection at the interface between the wiring substrate and the air, to prepare a substrate for evaluating internal diffuse reflectance. For the laminated pattern forming portion of the obtained substrate for evaluating internal diffuse reflectance, the diffuse reflectance at wavelengths of 540, 550, 560, and 570 nm is measured using a colorimetric system or the like from the light-shielding layer forming side, that is, from the anti-reflection film 8 side in the case of the configuration shown in FIG. 3, and the average value is calculated to calculate the average value R1 of the internal diffuse reflectance.
 拡散反射率は、遮光層を形成する材料自体の反射率や、遮光層の線幅や面積、凹凸形状などの影響を受ける。例えば、遮光層の面積が同じ場合、線幅Wがより細い方が、配線基材表面が拡散面に近い状態となり、遮光層の凹凸形状に起因して内部拡散反射率が高くなる傾向にある。R1を0.03~0.11%とする方法としては、例えば、積層パターン形成部の面積に占める積層パターン面積の比(積層パターン面積/積層パターン形成部の面積、以下、「占有率」)S、積層パターンの線幅Wや遮光層の厚みT1を後述する好ましい範囲にする方法、後述する本発明の遮光層形成用ポジ型感光性樹脂組成物により遮光層を形成する方法などが挙げられる。これらの中でも、配線パターンの制約が少ないことから、後述する本発明の遮光層形成用ポジ型感光性樹脂組成物により遮光層を形成する方法が好ましい。 The diffuse reflectance is affected by the reflectance of the material forming the light-shielding layer itself, the line width, area, and uneven shape of the light-shielding layer. For example, when the area of the light-shielding layer is the same, the thinner the line width W, the closer the wiring substrate surface is to the diffusing surface, and the internal diffuse reflectance tends to be higher due to the uneven shape of the light-shielding layer. Examples of methods for making R1 0.03 to 0.11% include a method in which the ratio of the laminate pattern area to the area of the laminate pattern forming part (laminated pattern area/laminate pattern forming part area, hereinafter "occupancy rate") S, the laminate pattern line width W, and the light-shielding layer thickness T1 are set to the preferred ranges described later, and a method in which the light-shielding layer is formed from the positive-type photosensitive resin composition for forming a light-shielding layer of the present invention described later are formed. Among these, the method of forming the light-shielding layer from the positive-type photosensitive resin composition for forming a light-shielding layer of the present invention described later is preferred because there are fewer restrictions on the wiring pattern.
 本発明の配線基材は、前述の内部拡散反射率の平均値R1[%]、積層パターン非形成部の波長540~570nmにおける内部拡散反射率の平均値R2[%]、占有率Sが下記式(1)の関係を満たすことが好ましい。
0.0≦((R1×W)-(R2×(1-S)))/S≦7.0 (1)
 積層パターン形成部においては、面積比Sの領域(積層パターン部)における配線表面の反射や散乱と、面積比(1-S)の領域(非積層パターン部)における非配線表面の反射や散乱が拡散反射率に影響する。また、前述のとおり、拡散反射率は、遮光層の面積や凹凸形状などの影響を受ける。上記式(1)における(R1×W)は、線幅の影響を排除した積層パターン形成部における拡散反射の指標である。一方、非積層パターン部においては、面積比(1-S)の領域における非配線表面の反射や散乱が拡散反射率に影響する。積層パターン非形成部の波長540~570nmにおける内部拡散反射率の平均値R2は、視感度の高い波長領域における拡散反射率の指標であり、上記式(1)における(R2×(1-S))は、積層パターン形成部における非配線表面の拡散反射の指標である。そして、これらの差(すなわち、積層パターン形成部における配線表面の拡散反射)を面積比Sで除した、単位面積あたりの配線表面の拡散反射に着目した。これらが上記式(1)の関係を満たすことにより、配線パターンの制約が少なく、意匠視認性をより向上させることができる。ここで、積層パターン非形成部の波長540~570nmにおける内部拡散反射率の平均値R2は、積層パターン非形成部について、前述のR1と同様に算出することができる。((R1×W)-(R2×(1-S)))/Sの値(以下、「単位面積あたりの拡散反射」と記載する場合がある)は、6.0以下がより好ましい。上記式(1)を満たす方法としては、例えば、後述する本発明の遮光層形成用ポジ型感光性樹脂組成物により遮光層を形成する方法などが挙げられる。
In the wiring substrate of the present invention, it is preferable that the average internal diffuse reflectance R1 [%], the average internal diffuse reflectance R2 [%] at a wavelength of 540 to 570 nm of the laminate pattern non-forming portion, and the occupancy rate S satisfy the relationship of the following formula (1).
0.0≦((R1×W)−(R2×(1−S)))/S≦7.0 (1)
In the laminated pattern forming portion, the reflection and scattering of the wiring surface in the area ratio S (laminate pattern portion) and the reflection and scattering of the non-wiring surface in the area ratio (1-S) (non-laminate pattern portion) affect the diffuse reflectance. As described above, the diffuse reflectance is affected by the area and unevenness of the light-shielding layer. (R1×W) in the above formula (1) is an index of diffuse reflectance in the laminated pattern forming portion excluding the influence of the line width. On the other hand, in the non-laminated pattern portion, the reflection and scattering of the non-wiring surface in the area ratio (1-S) affects the diffuse reflectance. The average value R2 of the internal diffuse reflectance at wavelengths of 540 to 570 nm in the laminated pattern non-forming portion is an index of diffuse reflectance in a wavelength region with high visibility, and (R2×(1-S)) in the above formula (1) is an index of diffuse reflectance of the non-wiring surface in the laminated pattern forming portion. Then, the difference between them (i.e., the diffuse reflection of the wiring surface in the laminate pattern forming portion) was divided by the area ratio S, and the diffuse reflection of the wiring surface per unit area was focused on. By these satisfying the relationship of the above formula (1), the wiring pattern is less restricted, and the design visibility can be further improved. Here, the average value R2 of the internal diffuse reflectance at a wavelength of 540 to 570 nm of the laminate pattern non-forming portion can be calculated in the same manner as the above-mentioned R1 for the laminate pattern non-forming portion. The value of ((R1×W)−(R2×(1−S)))/S (hereinafter, sometimes referred to as “diffuse reflection per unit area”) is more preferably 6.0 or less. As a method for satisfying the above formula (1), for example, a method of forming a light-shielding layer using the positive photosensitive resin composition for forming a light-shielding layer of the present invention described later can be mentioned.
 不透明配線電極は、波長550nmにおける光透過率が25%以下であることが好ましい。また、後述する遮光層の形成方法において用いられる露光光に対して遮光性を有することが好ましい。具体的には、波長365nmの光透過率は、15%以下が好ましい。波長365nmの光透過率を15%以下とすることにより、後述する遮光層の形成方法において、マスクとしての機能を向上させ、所望の遮光層をより加工性良く形成することができる。なお、不透明配線電極の光透過率は、一辺の長さ0.1mm以上の正方形の不透明配線電極について、微小面分光色差計(VSS 400:日本電色工業(株)製)を用いて測定することができる。 The opaque wiring electrode preferably has a light transmittance of 25% or less at a wavelength of 550 nm. It is also preferable that the opaque wiring electrode has light-shielding properties against the exposure light used in the method for forming a light-shielding layer described below. Specifically, the light transmittance at a wavelength of 365 nm is preferably 15% or less. By making the light transmittance at a wavelength of 365 nm 15% or less, the function as a mask is improved in the method for forming a light-shielding layer described below, and the desired light-shielding layer can be formed with greater ease of processing. The light transmittance of the opaque wiring electrode can be measured using a microsurface spectrophotometer (VSS 400: manufactured by Nippon Denshoku Industries Co., Ltd.) for a square opaque wiring electrode with a side length of 0.1 mm or more.
 不透明配線電極を構成する材料としては、例えば、銀、金、銅、白金、鉛、錫、ニッケル、アルミニウム、タングステン、モリブデン、クロム、チタン、インジウム等の金属や、これらの合金など導電性物質が挙げられる。これらを2種以上用いてもよい。これらの中でも、導電性の観点から、銀、銅などが好ましい。 Materials constituting the opaque wiring electrode include, for example, metals such as silver, gold, copper, platinum, lead, tin, nickel, aluminum, tungsten, molybdenum, chromium, titanium, indium, etc., and conductive materials such as alloys of these. Two or more of these may be used. Among these, silver, copper, etc. are preferred from the viewpoint of conductivity.
 不透明配線電極の形成に用いられる原料としては、前述の導電性物質を含む導電性粒子が好ましく、その形状は、球形が好ましい。導電性粒子の平均粒径は、導電性粒子の分散性を向上させる観点から、0.03μm以上が好ましい。一方、導電性粒子の平均粒径は、不透明配線電極のパターンの端部をシャープにする観点から、1.0μm以下が好ましい。なお、導電性粒子の平均粒径は、走査型電子顕微鏡(SEM)または透過型顕微鏡(TEM)を用いて、15,000倍の倍率で導電性粒子を拡大観察し、無作為に選択した100個の導電性粒子について、それぞれの長軸長を測定し、その数平均値を算出することにより求めることができる。 The raw material used to form the opaque wiring electrode is preferably conductive particles containing the conductive material described above, and the shape of the particles is preferably spherical. The average particle size of the conductive particles is preferably 0.03 μm or more from the viewpoint of improving the dispersibility of the conductive particles. On the other hand, the average particle size of the conductive particles is preferably 1.0 μm or less from the viewpoint of making the edges of the pattern of the opaque wiring electrode sharp. The average particle size of the conductive particles can be obtained by observing the conductive particles at a magnification of 15,000 times using a scanning electron microscope (SEM) or a transmission electron microscope (TEM), measuring the major axis length of each of 100 randomly selected conductive particles, and calculating the number average value.
 不透明配線電極は、前述の導電性物質とともに、有機成分を含有してもよい。不透明配線電極は、例えば、導電性粒子、アルカリ可溶性樹脂、光重合開始剤を含む感光性導電性組成物の硬化物から形成されていてもよく、この場合、不透明配線電極は、光重合開始剤および/またはその光分解物を含有する。感光性導電性組成物は、必要に応じて、熱硬化剤、レベリング剤などの添加剤を含有してもよい。 The opaque wiring electrode may contain an organic component in addition to the aforementioned conductive material. The opaque wiring electrode may be formed, for example, from a cured product of a photosensitive conductive composition containing conductive particles, an alkali-soluble resin, and a photopolymerization initiator, in which case the opaque wiring electrode contains the photopolymerization initiator and/or its photodecomposition product. The photosensitive conductive composition may contain additives such as a heat curing agent and a leveling agent, as necessary.
 不透明配線電極のパターン形状としては、例えば、メッシュ状、ストライプ状などが挙げられる。メッシュ状としては、例えば、単位形状が三角形、四角形、多角形、円形などの格子状またはこれらの単位形状の組み合わせからなる格子状等が挙げられる。これらの中でも、パターンの導電性を均一にする観点から、メッシュ状が好ましい。不透明配線電極は、前述の金属から構成され、メッシュ状のパターンを有するメタルメッシュであることがより好ましい。不透明配線電極がメッシュ状のパターンを有する場合、メッシュピッチを大きくすることで、占有率Sを低減することができる。 Examples of the pattern shape of the opaque wiring electrode include a mesh shape and a stripe shape. Examples of the mesh shape include a lattice shape whose unit shapes are triangles, squares, polygons, circles, etc., or a lattice shape consisting of a combination of these unit shapes. Among these, the mesh shape is preferred from the viewpoint of making the conductivity of the pattern uniform. It is more preferable that the opaque wiring electrode is a metal mesh made of the above-mentioned metal and has a mesh-like pattern. When the opaque wiring electrode has a mesh-like pattern, the occupancy rate S can be reduced by increasing the mesh pitch.
 不透明配線電極の厚みT2[μm]は、導電性を向上させる観点から、0.1以上が好ましく、0.3以上がより好ましい。一方、不透明配線電極の厚みT2[μm]は、より微細な配線を形成する観点から、10以下が好ましく、5.0以下がより好ましく、3.0以下がさらに好ましい。また、配線基材が透明保護層を有する場合、不透明配線電極の厚みT2[μm]を10以下とすることにより、透明基材上の凹凸段差を低減し、透明保護層積層時に段差に起因する気泡の発生を抑制することができる。なお、T2は、触針式段差計を用いて測定することができる。 The thickness T2 [μm] of the opaque wiring electrode is preferably 0.1 or more, and more preferably 0.3 or more, from the viewpoint of improving electrical conductivity. On the other hand, the thickness T2 [μm] of the opaque wiring electrode is preferably 10 or less, more preferably 5.0 or less, and even more preferably 3.0 or less, from the viewpoint of forming finer wiring. Furthermore, when the wiring substrate has a transparent protective layer, by setting the thickness T2 [μm] of the opaque wiring electrode to 10 or less, it is possible to reduce unevenness on the transparent substrate and suppress the generation of air bubbles due to the steps when the transparent protective layer is laminated. Note that T2 can be measured using a stylus-type step gauge.
 不透明配線電極のパターンの線幅は、導電性を向上させる観点から、1μm以上が好ましく、1.5μm以上がより好ましく、2μm以上がさらに好ましい。一方、不透明配線電極のパターンの線幅は、同一のパターン形状である場合、内部拡散反射率R1の値をより低減し、意匠視認性をより向上させる観点から、10μm以下が好ましく、8μm以下がより好ましい。ここで、不透明配線電極のパターンの線幅は、光学顕微鏡を用いて、積層パターン形成部を拡大観察し、無作為に選択した3箇所について不透明配線電極の線幅をそれぞれ測定し、その平均値を算出することにより求めることができる。 The line width of the pattern of the opaque wiring electrode is preferably 1 μm or more, more preferably 1.5 μm or more, and even more preferably 2 μm or more, from the viewpoint of improving electrical conductivity. On the other hand, the line width of the pattern of the opaque wiring electrode is preferably 10 μm or less, more preferably 8 μm or less, from the viewpoint of further reducing the value of the internal diffuse reflectance R1 and further improving the design visibility, when the pattern shape is the same. Here, the line width of the pattern of the opaque wiring electrode can be obtained by magnifying and observing the laminated pattern formation part using an optical microscope, measuring the line width of the opaque wiring electrode at three randomly selected locations, and calculating the average value.
 本発明の配線基材は、樹脂および着色成分を含む遮光層を有する。 The wiring substrate of the present invention has a light-shielding layer that contains a resin and a coloring component.
 樹脂としては、アルカリ可溶性樹脂が好ましい。ここで、アルカリ可溶性樹脂としては、例えば、水酸基および/またはカルボキシ基を有する樹脂等が挙げられる。これらの中でも、フェノール性水酸基を有する樹脂が好ましい。フェノール性水酸基を有する樹脂としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂などのノボラック樹脂、フェノール性水酸基を有するモノマーの重合体や、フェノール性水酸基を有するモノマーとスチレン、アクリロニトリル、アクリルモノマー等との共重合体などが挙げられる。これらを2種以上含有してもよい。 The resin is preferably an alkali-soluble resin. Here, examples of alkali-soluble resins include resins having hydroxyl groups and/or carboxyl groups. Among these, resins having phenolic hydroxyl groups are preferred. Examples of resins having phenolic hydroxyl groups include novolac resins such as phenol novolac resin and cresol novolac resin, polymers of monomers having phenolic hydroxyl groups, and copolymers of monomers having phenolic hydroxyl groups with styrene, acrylonitrile, acrylic monomers, etc. Two or more of these may be included.
 着色成分としては、無機顔料、有機顔料等の顔料、染料等が挙げられ、耐候性に優れることから、顔料が好ましい。 Coloring components include inorganic pigments, organic pigments, dyes, etc., with pigments being preferred due to their excellent weather resistance.
 有機顔料としては、溶性アゾ顔料、不溶性アゾ顔料、金属錯塩アゾ顔料、フタロシアニン顔料、縮合多環顔料、C.I.ピグメントブラック31、32等の黒色有機顔料、C.I.ピグメントバイオレット19、23、29、30、32、36、37、38、39、40、50等の紫色有機顔料、C.I.ピグメントレッド9、48、97、122、123、144、149、166、168、177、179、180、190、192、196、202、209、215、216、217、220、223、224、226、227、228、240、254、255、264、265等の赤色有機顔料、C.I.ピグメントブルー15、15:1、15:2、15:3、15:4、15:6、16、17、60、64、65、75、79、80等の青色有機顔料、C.I.ピグメントイエロー12、13、17、20、24、74、83、86、93、95、109、110、117、120、125、129、138、139、150、151、175、180、181、185、192、194、199等の黄色有機顔料、C.I.ピグメントグリーン7、36、37等の緑色有機顔料、C.I.ピグメントオレンジ1、5、13、14、16、17、24、34、36、38、40、43、46、49、51、55、59、61、63、64、71、73等の橙色有機顔料などが挙げられる。 Organic pigments include soluble azo pigments, insoluble azo pigments, metal complex azo pigments, phthalocyanine pigments, condensed polycyclic pigments, black organic pigments such as C.I. Pigment Black 31 and 32, purple organic pigments such as C.I. Pigment Violet 19, 23, 29, 30, 32, 36, 37, 38, 39, 40, and 50, red organic pigments such as C.I. Pigment Red 9, 48, 97, 122, 123, 144, 149, 166, 168, 177, 179, 180, 190, 192, 196, 202, 209, 215, 216, 217, 220, 223, 224, 226, 227, 228, 240, 254, 255, 264, and 265, and other organic pigments such as C.I. blue organic pigments such as C.I. Pigment Blue 15, 15:1, 15:2, 15:3, 15:4, 15:6, 16, 17, 60, 64, 65, 75, 79, 80, yellow organic pigments such as C.I. Pigment Yellow 12, 13, 17, 20, 24, 74, 83, 86, 93, 95, 109, 110, 117, 120, 125, 129, 138, 139, 150, 151, 175, 180, 181, 185, 192, 194, 199, green organic pigments such as C.I. Pigment Green 7, 36, 37, Examples of orange organic pigments include Pigment Orange 1, 5, 13, 14, 16, 17, 24, 34, 36, 38, 40, 43, 46, 49, 51, 55, 59, 61, 63, 64, 71, and 73.
 無機顔料としては、カーボンブラック、グラファイトや、窒化チタン、窒化ジルコニウムなどの金属窒化物粒子、松煙、又は、鉄黒、ヘマタイト、ゲーサイト、マグネタイトなどの酸化鉄、クロム、鉛、これらの金属複合系などが挙げられる。これらの中でも、露光光の透過性が高いことから金属窒化物粒子が好ましい。 Inorganic pigments include carbon black, graphite, metal nitride particles such as titanium nitride and zirconium nitride, pine soot, iron oxides such as black iron, hematite, goethite and magnetite, chromium, lead, and composites of these metals. Among these, metal nitride particles are preferred because of their high transparency to the exposure light.
 着色成分は、内部拡散反射率の平均値R1を前述の範囲にする観点から、波長540~570nmにおける光を吸収することが好ましい。波長540~570nmにおける光を吸収する着色成分としては、例えば、金属窒化物粒子、赤色有機顔料、紫色有機顔料、青色有機顔料等が挙げられる。これらを2種以上含有してもよい。これらの中でも、遮光層形成時における露光光源として、高圧水銀灯を用いる場合は、金属窒化物粒子、赤色有機顔料、紫色有機顔料、青色有機顔料が好ましく、LEDランプ(365nm)を用いる場合は、金属窒化物粒子、赤色有機顔料、紫色有機顔料が好ましい。金属窒化物粒子および紫色有機顔料を含むことがより好ましく、遮光層形成時にLEDランプ(365nm)を光源とした時の感光性を維持しながら、遮光層形成後の視認性をより向上させることができる。 The coloring component preferably absorbs light at wavelengths of 540 to 570 nm, from the viewpoint of setting the average internal diffuse reflectance R1 in the aforementioned range. Examples of coloring components that absorb light at wavelengths of 540 to 570 nm include metal nitride particles, red organic pigments, purple organic pigments, and blue organic pigments. Two or more of these may be contained. Among these, when a high-pressure mercury lamp is used as the exposure light source when forming the light-shielding layer, metal nitride particles, red organic pigments, purple organic pigments, and blue organic pigments are preferred, and when an LED lamp (365 nm) is used, metal nitride particles, red organic pigments, and purple organic pigments are preferred. It is more preferred to contain metal nitride particles and purple organic pigments, which can further improve visibility after the light-shielding layer is formed while maintaining the photosensitivity when an LED lamp (365 nm) is used as the light source when forming the light-shielding layer.
 着色成分は、さらに、赤色有機顔料を含むことがより好ましい。赤色有機顔料を含むことにより、遮光層形成時にLEDランプ(365nm)を光源とした時の感光性を維持しながら、遮光層形成後の視認性をより向上させることができる。 The coloring component more preferably further contains a red organic pigment. By including a red organic pigment, it is possible to improve visibility after the light-shielding layer is formed while maintaining photosensitivity when an LED lamp (365 nm) is used as the light source during the formation of the light-shielding layer.
 遮光層の厚みT1[μm]は0.2~2.0が好ましい。T1[μm]を0.2以上とすることにより、不透明配線電極の表面凹凸による内部拡散反射率の上昇をより抑制し、R1を前述の範囲により容易に調整することができる。一方、T1[μm]を2.0以下とすることにより、透明基材上の凹凸段差を低減し、透明保護層積層時に段差に起因する気泡の発生を抑制することができる。なお、T1は、触針式段差計を用いて測定することができる。 The thickness T1 [μm] of the light-shielding layer is preferably 0.2 to 2.0. By making T1 [μm] 0.2 or more, the increase in internal diffuse reflectance caused by the surface unevenness of the opaque wiring electrode can be further suppressed, and R1 can be easily adjusted within the aforementioned range. On the other hand, by making T1 [μm] 2.0 or less, the unevenness on the transparent substrate can be reduced, and the generation of air bubbles caused by the unevenness when laminating the transparent protective layer can be suppressed. Note that T1 can be measured using a stylus-type step gauge.
 遮光層の線幅は、前述の不透明配線電極の線幅と等しいことが好ましい。したがって、積層パターンの線幅W[μm]は、導電性を向上させる観点から、1以上が好ましく、1.5以上がより好ましく、2以上がさらに好ましい。一方、積層パターンの線幅W[μm]は、同一のパターン形状である場合、内部拡散反射率R1の値をより低減し、意匠視認性をより向上させる観点から、10以下が好ましく、8以下がより好ましい。ここで、積層パターンの線幅Wは、光学顕微鏡を用いて、積層パターン形成部を拡大観察し、無作為に選択した3箇所について積層パターンの線幅をそれぞれ測定し、その平均値を算出することにより求めることができる。 The line width of the light-shielding layer is preferably equal to the line width of the opaque wiring electrode described above. Therefore, from the viewpoint of improving electrical conductivity, the line width W [μm] of the laminated pattern is preferably 1 or more, more preferably 1.5 or more, and even more preferably 2 or more. On the other hand, in the case of the same pattern shape, the line width W [μm] of the laminated pattern is preferably 10 or less, more preferably 8 or less, from the viewpoint of further reducing the value of the internal diffuse reflectance R1 and further improving the design visibility. Here, the line width W of the laminated pattern can be obtained by magnifying and observing the laminated pattern formation part with an optical microscope, measuring the line width of the laminated pattern at three randomly selected points, and calculating the average value.
 次に、本発明の配線基材の製造方法について説明する。本発明の配線基材の製造方法としては、例えば、透明基材上に、不透明配線電極および遮光層をこの順に有する積層パターンを有する場合、透明基材上に不透明配線電極を形成する工程(以下、「不透明配線電極形成工程」と記載する場合がある)、不透明配線電極形成面に、樹脂および着色成分を含有する遮光層を形成して積層パターンを形成する工程(以下、「積層パターン形成工程」と記載する場合がある)を有することが好ましい。 Next, a method for manufacturing the wiring substrate of the present invention will be described. For example, when a laminated pattern having an opaque wiring electrode and a light-shielding layer in this order is formed on a transparent substrate, the method for manufacturing the wiring substrate of the present invention preferably includes a step of forming an opaque wiring electrode on the transparent substrate (hereinafter, may be referred to as an "opaque wiring electrode forming step") and a step of forming a light-shielding layer containing a resin and a coloring component on the surface on which the opaque wiring electrode is formed to form a laminated pattern (hereinafter, may be referred to as a "laminate pattern forming step").
 不透明配線電極形成工程において、不透明配線電極の形成方法としては、例えば、前述の感光性導電性組成物を用いてフォトリソグラフィー法によりパターン形成する方法、導電性組成物を用いてスクリーン印刷、グラビア印刷、インクジェット等によりパターン形成する方法、金属、金属複合体、金属と金属化合物との複合体、金属合金等の膜を形成し、レジストを用いてフォトリソグラフィー法により形成する方法等が挙げられる。感光性導電性組成物から形成したパターンが、加熱硬化により導電性を発現する場合、140~500℃で加熱硬化することが好ましい。 In the opaque wiring electrode forming process, methods for forming the opaque wiring electrode include, for example, a method of forming a pattern by photolithography using the above-mentioned photosensitive conductive composition, a method of forming a pattern by screen printing, gravure printing, inkjet, etc. using a conductive composition, a method of forming a film of a metal, a metal composite, a composite of a metal and a metal compound, a metal alloy, etc., and forming it by photolithography using a resist, etc. When the pattern formed from the photosensitive conductive composition exhibits conductivity by heat curing, it is preferable to heat cure it at 140 to 500°C.
 積層パターン形成工程において、遮光層の形成工程としては、例えば、不透明配線電極上に、後述する本発明の第二の態様の遮光層形成用ポジ型感光性樹脂組成物を塗布した後、不透明配線電極をマスクとして、遮光層形成用ポジ型感光性樹脂組成物塗布膜を、塗布面とは反対の面側から露光し、現像することにより、遮光層形成用ポジ型感光性樹脂組成物塗布膜をパターン加工する方法や、不透明配線電極上に、後述する本発明の遮光層転写フィルムにより遮光層を転写した後、不透明配線電極をマスクとして、遮光層を、転写面とは反対の面側から露光し、現像することにより、遮光層をパターン加工する方法などが挙げられる。これらの中でも、後者の遮光層転写フィルムを用いる方法が好ましい。遮光層転写フィルムを用いて、形状を保持した遮光層を転写することにより、成膜時における遮光層のレベリングによって不透明配線電極非形成部の膜厚が厚くなり、必要露光量や現像時間が増大することを抑制することができる。これらの方法によって不透明配線電極上に遮光層をパターン形成することにより、積層パターンを形成することができる。 In the laminated pattern forming process, examples of the light-shielding layer forming process include a method of applying a positive-type photosensitive resin composition for forming a light-shielding layer of the second aspect of the present invention described later onto an opaque wiring electrode, exposing the positive-type photosensitive resin composition for forming a light-shielding layer coating film from the side opposite to the coating side using the opaque wiring electrode as a mask, and developing the film to pattern the positive-type photosensitive resin composition for forming a light-shielding layer, and a method of transferring a light-shielding layer onto an opaque wiring electrode using a light-shielding layer transfer film of the present invention described later, exposing the light-shielding layer from the side opposite to the transfer side using the opaque wiring electrode as a mask, and developing the light-shielding layer to pattern the light-shielding layer. Among these, the latter method using a light-shielding layer transfer film is preferred. By transferring a light-shielding layer that maintains its shape using a light-shielding layer transfer film, it is possible to suppress the film thickness of the non-opaque wiring electrode portion from increasing due to leveling of the light-shielding layer during film formation, which would otherwise increase the required exposure amount and development time. By using these methods to pattern a light-shielding layer on an opaque wiring electrode, a laminated pattern can be formed.
 露光光源としては、例えば、水銀ランプ、ハロゲンランプ、キセノンランプ、LEDランプ(365nm、405nm)、半導体レーザー、KrFまたはArFエキシマレーザーなどが挙げられる。これらの中でも、水銀ランプのi線(波長365nm)、LEDランプ(365nm、405nm)が好ましく、出力が高いことから、LEDランプ(365nm)がさらに好ましい。露光光は、基材を静置させた状態で照射してもよく、光源上を遮光層形成面の反対面に露光光が照射される向きで搬送させながら照射してもよい。 Examples of exposure light sources include mercury lamps, halogen lamps, xenon lamps, LED lamps (365 nm, 405 nm), semiconductor lasers, and KrF or ArF excimer lasers. Among these, the i-line (wavelength 365 nm) of a mercury lamp and LED lamps (365 nm, 405 nm) are preferred, with LED lamps (365 nm) being even more preferred due to their high output. The exposure light may be applied while the substrate is stationary, or may be applied while the substrate is transported over the light source in a direction in which the exposure light is applied to the surface opposite the surface on which the light-shielding layer is formed.
 現像に使用する現像液としては、電極パターンの導電性を阻害しないものが好ましく、アルカリ現像液が好ましい。アルカリ現像液としては、例えば、国際公開第2018/168325号において現像液として例示したものが挙げられる。現像方法としては、例えば、基材を静置または回転させながら現像液を樹脂層の表面にスプレーする方法、樹脂層を現像液中に浸漬する方法、樹脂層を現像液中に浸漬しながら超音波をかける方法などが挙げられる。 The developer used for development is preferably one that does not inhibit the conductivity of the electrode pattern, and is preferably an alkaline developer. Examples of alkaline developers include those exemplified as developers in WO 2018/168325. Examples of the development method include a method in which the developer is sprayed onto the surface of the resin layer while the substrate is stationary or rotated, a method in which the resin layer is immersed in the developer, and a method in which ultrasonic waves are applied to the resin layer while the resin layer is immersed in the developer.
 現像により得られた遮光層パターンに、リンス液によるリンス処理を施しても構わない。リンス液としては、例えば、国際公開第2018/168325号においてリンス液として例示したものが挙げられる。 The light-shielding layer pattern obtained by development may be subjected to a rinse treatment using a rinse liquid. Examples of the rinse liquid include those exemplified as rinse liquids in WO 2018/168325.
 得られた配線基材を、さらに100~300℃で加熱してもよい。加熱により、樹脂層の硬度を高め、他の部材との接触による欠けや剥がれを抑制し、基材や配線との密着性をより向上させることができる。加熱方法としては、例えば、オーブン、イナートオーブン、ホットプレートによる加熱、赤外線ヒーター等の電磁波による加熱などが挙げられる。 The obtained wiring substrate may be further heated at 100 to 300°C. Heating increases the hardness of the resin layer, suppresses chipping or peeling due to contact with other members, and further improves adhesion to the substrate and wiring. Examples of heating methods include heating with an oven, inert oven, or hot plate, and heating with electromagnetic waves from an infrared heater, etc.
 次に、本発明の第二の態様として、遮光層形成用ポジ型感光性樹脂組成物について説明する。本発明の遮光層形成用ポジ型感光性樹脂組成物は、前述の本発明の第一の態様の配線基材における遮光層の形成に好ましく用いることができ、かかる遮光層形成用ポジ型感光性樹脂組成物から遮光層を形成することにより、内部拡散反射率の平均値R1を前述の範囲に容易に調整することができる。 Next, as a second embodiment of the present invention, a positive-type photosensitive resin composition for forming a light-shielding layer will be described. The positive-type photosensitive resin composition for forming a light-shielding layer of the present invention can be preferably used to form a light-shielding layer in the wiring substrate of the first embodiment of the present invention described above, and by forming a light-shielding layer from such a positive-type photosensitive resin composition for forming a light-shielding layer, the average value R1 of the internal diffuse reflectance can be easily adjusted to the aforementioned range.
 本発明の遮光層形成用ポジ型感光性樹脂組成物は、(a)アルカリ可溶性樹脂、(b)キノンジアジド化合物、(c)金属窒化物粒子および(d)紫色有機顔料を含む。ここで、ポジ型感光性とは、光照射部が現像液に溶解し、未照射部が現像液に溶解しない特性をいう。 The positive-type photosensitive resin composition for forming a light-shielding layer of the present invention contains (a) an alkali-soluble resin, (b) a quinone diazide compound, (c) metal nitride particles, and (d) a purple organic pigment. Here, positive-type photosensitivity refers to the property that the light-irradiated portion dissolves in the developer, and the unirradiated portion does not dissolve in the developer.
 (a)アルカリ可溶性樹脂としては、本発明の第一の態様の配線基材における遮光層について例示したものが挙げられる。(a)アルカリ可溶性樹脂としては、フェノール性水酸基を有する樹脂が好ましく、フェノール性水酸基と(b)キノンジアジド化合物との水素結合により、未露光部の現像膜減りや現像剥がれの発生をより抑制し、不透明配線電極パターンをより視認されにくくすることができる。フェノール性水酸基を有する樹脂としては、本発明の第一の態様の配線基材における遮光層について説明したものが挙げられる。遮光層形成用ポジ型感光性樹脂組成物の固形分中における(a)アルカリ可溶性樹脂の含有量は、45~65質量%が好ましい。 (a) Examples of the alkali-soluble resin include those exemplified for the light-shielding layer in the wiring substrate of the first embodiment of the present invention. As the alkali-soluble resin (a), a resin having a phenolic hydroxyl group is preferable, and hydrogen bonding between the phenolic hydroxyl group and the quinone diazide compound (b) can further suppress the occurrence of film loss and peeling during development in unexposed areas, making it harder to see the opaque wiring electrode pattern. As examples of the resin having a phenolic hydroxyl group, those described for the light-shielding layer in the wiring substrate of the first embodiment of the present invention can be used. The content of the alkali-soluble resin (a) in the solid content of the positive photosensitive resin composition for forming the light-shielding layer is preferably 45 to 65 mass%.
 (b)キノンジアジド化合物としては、国際公開第2018/168325号においてポジ型感光性組成物に含まれるキノンジアジド化合物として例示したものが挙げられる。ポジ型感光性樹脂組成物の固形分中におけるキノンジアジド化合物の含有量は、5~25質量%が好ましい。 (b) Examples of the quinone diazide compound include those exemplified as quinone diazide compounds contained in the positive photosensitive composition in WO 2018/168325. The content of the quinone diazide compound in the solid content of the positive photosensitive resin composition is preferably 5 to 25 mass%.
 本発明の遮光層形成用ポジ型感光性樹脂組成物は、視感度の高い波長540~570nmの領域における光を吸収するとともに、波長570~640nmの領域における可視光を吸収する(c)金属窒化物粒子および(d)紫色有機顔料を含有することにより、遮光層形成時にLEDランプ(365nm)を光源とした時の感光性を維持しながら、遮光層形成後の意匠視認性をより向上させることができる。(c)金属窒化物粒子および(d)紫色有機顔料としては、本発明の第一の態様の配線基材における遮光層について説明したものが挙げられる。 The positive-type photosensitive resin composition for forming a light-shielding layer of the present invention contains (c) metal nitride particles and (d) purple organic pigment that absorb light in the wavelength range of 540 to 570 nm, which has high visibility, and also absorbs visible light in the wavelength range of 570 to 640 nm. This makes it possible to improve the visibility of the design after the light-shielding layer is formed while maintaining the photosensitivity when an LED lamp (365 nm) is used as the light source during the formation of the light-shielding layer. Examples of (c) metal nitride particles and (d) purple organic pigment include those described for the light-shielding layer in the wiring substrate of the first embodiment of the present invention.
 遮光層形成用ポジ型感光性樹脂組成物の固形分中における(c)金属窒化物粒子の含有量は、意匠視認性をより向上させる観点から、2.0体積%以上が好ましく、2.5体積%以上がさらに好ましい。一方、金属窒化物粒子の含有量は、感光性の観点から、6.0体積%以下が好ましく、5.0体積%以下がさらに好ましい。 The content of (c) metal nitride particles in the solid content of the positive photosensitive resin composition for forming a light-shielding layer is preferably 2.0% by volume or more, and more preferably 2.5% by volume or more, from the viewpoint of further improving the design visibility. On the other hand, the content of metal nitride particles is preferably 6.0% by volume or less, and more preferably 5.0% by volume or less, from the viewpoint of photosensitivity.
 遮光層形成用ポジ型感光性樹脂組成物の固形分中における(d)紫色有機顔料の含有量は、意匠視認性をより向上させる観点から、1.0体積%以上が好ましい。一方、(d)紫色有機顔料の含有量は、感光性の観点から、8.0体積%以下が好ましい。 The content of the purple organic pigment (d) in the solid content of the positive photosensitive resin composition for forming a light-shielding layer is preferably 1.0% by volume or more from the viewpoint of further improving the visibility of the design. On the other hand, the content of the purple organic pigment (d) is preferably 8.0% by volume or less from the viewpoint of photosensitivity.
 本発明の遮光層形成用ポジ型感光性樹脂組成物は、さらに(e)赤色有機顔料を含有することが好ましい。(e)赤色有機顔料は、波長460~540nmの領域における光を吸収するとともに、波長570~640nmの領域における可視光を吸収することから、遮光層形成時にLEDランプ(365nm)を光源とした時の感光性を維持しながら、遮光層の意匠視認性をより向上させることができる。 The positive-type photosensitive resin composition for forming a light-shielding layer of the present invention preferably further contains (e) a red organic pigment. (e) The red organic pigment absorbs light in the wavelength range of 460 to 540 nm and also absorbs visible light in the wavelength range of 570 to 640 nm, and therefore can improve the design visibility of the light-shielding layer while maintaining the photosensitivity when an LED lamp (365 nm) is used as the light source during the formation of the light-shielding layer.
 本発明の遮光層形成用ポジ型感光性樹脂組成物が(e)赤色有機顔料を含有する場合、ポジ型感光性樹脂組成物の固形分中における(c)金属窒化物粒子、(d)紫色有機顔料および(e)赤色有機顔料の合計含有量は、単位面積あたりの拡散反射を前述の好ましい範囲にし、視認性をより向上させる観点から、5.0体積%以上が好ましい。一方、これらの合計含有量は、感光性の観点から、15.0体積%以下が好ましい。 When the positive photosensitive resin composition for forming a light-shielding layer of the present invention contains (e) a red organic pigment, the total content of (c) the metal nitride particles, (d) the purple organic pigment, and (e) the red organic pigment in the solid content of the positive photosensitive resin composition is preferably 5.0% by volume or more from the viewpoint of bringing the diffuse reflection per unit area into the aforementioned preferred range and further improving visibility. On the other hand, from the viewpoint of photosensitivity, the total content of these is preferably 15.0% by volume or less.
 本発明の遮光層形成用ポジ型感光性樹脂組成物には、必要に応じて、不飽和二重結合を有するモノマー、光重合開始剤、光酸発生剤、熱酸発生剤、増感剤、密着改良剤、界面活性剤、熱硬化剤、重合禁止剤、防錆剤、軟化剤、レベリング剤等を含有してもよい。 The positive-type photosensitive resin composition for forming a light-shielding layer of the present invention may contain, as necessary, a monomer having an unsaturated double bond, a photopolymerization initiator, a photoacid generator, a thermal acid generator, a sensitizer, an adhesion improver, a surfactant, a thermal curing agent, a polymerization inhibitor, a rust inhibitor, a softener, a leveling agent, and the like.
 本発明の遮光層形成用ポジ型感光性樹脂組成物は、例えば、(a)アルカリ可溶性樹脂、(b)キノンジアジド化合物、(c)金属窒化物粒子、(d)紫色有機顔料および必要に応じてその他添加剤を混合した後、分散機や混練機を用いて分散させることにより得ることができる。分散機や混練機としては、例えば、ジェットミル、ビーズミル、ボールミル、遊星式ボールミル等が挙げられる。 The positive-type photosensitive resin composition for forming a light-shielding layer of the present invention can be obtained, for example, by mixing (a) an alkali-soluble resin, (b) a quinone diazide compound, (c) metal nitride particles, (d) a purple organic pigment, and other additives as necessary, and then dispersing the mixture using a dispersing machine or kneading machine. Examples of dispersing machines and kneading machines include a jet mill, a bead mill, a ball mill, and a planetary ball mill.
 本発明の遮光層形成用ポジ型感光性樹脂組成物は、本発明の遮光層転写フィルムに好ましく用いることができ、かかる遮光層転写フィルムは、前述の本発明の第一の態様の配線基材における遮光層の形成に好ましく用いることができる。 The positive-type photosensitive resin composition for forming a light-shielding layer of the present invention can be preferably used in the light-shielding layer transfer film of the present invention, and such a light-shielding layer transfer film can be preferably used to form a light-shielding layer in the wiring substrate of the first embodiment of the present invention described above.
 本発明の遮光層転写フィルムは、離型性フィルム上に、前述の本発明の第二の態様の遮光層形成用ポジ型感光性樹脂組成物から形成される遮光層を有する。 The light-shielding layer transfer film of the present invention has a light-shielding layer formed from the positive-type photosensitive resin composition for forming a light-shielding layer according to the second embodiment of the present invention described above on a release film.
 離型性フィルムは、表面に離型層を有するフィルムが好ましい。 The release film is preferably one that has a release layer on its surface.
 離型層を形成する離型剤としては、例えば、非シリコーン系離型剤、シリコーン系離型剤が挙げられ、非シリコーン系離型剤としては、例えば、長鎖アルキル系、フッ素系離型剤などが挙げられる。これらを2種以上用いてもよい。これらの中でも、転写時に離型剤移りが生じた場合であっても、後工程、特に現像工程において、現像液のハジキなどの現象を生じにくく、面内ムラを抑制して微細パターンを形成することができることから、非シリコーン系離型剤が好ましい。離型層の厚みは、転写時の転写ムラを抑制する観点から、50nm以上が好ましい。一方、離型層の厚みは、転写時の離型剤写りを抑制する観点から、500nm以下が好ましい。 The release agent forming the release layer may be, for example, a non-silicone release agent or a silicone release agent. Examples of the non-silicone release agent include long-chain alkyl and fluorine-based release agents. Two or more of these may be used. Among these, non-silicone release agents are preferred because, even if the release agent transfers during transfer, they are less likely to cause phenomena such as developer repelling in the subsequent process, particularly the development process, and can form a fine pattern while suppressing in-plane unevenness. The thickness of the release layer is preferably 50 nm or more from the viewpoint of suppressing transfer unevenness during transfer. On the other hand, the thickness of the release layer is preferably 500 nm or less from the viewpoint of suppressing transfer of the release agent during transfer.
 離型性フィルムの剥離力は、遮光層形成時のハジキを抑制する観点から、500mN/20mm以上が好ましい。一方、離型性フィルムの剥離力は、遮光層の転写時のプロセスマージンを広くする観点から、5,000mN/20mm以下が好ましい。ここで、離型性フィルムの剥離力とは、離型層形成面に、2kgローラーを用いて、日東電工(株)製アクリル粘着テープ「31B」を貼付し、30分間静置した後に、剥離角度180°、剥離速度0.3m/分の条件で剥離したときの剥離力をいう。 The peeling strength of the release film is preferably 500 mN/20 mm or more from the viewpoint of suppressing repelling during the formation of the light-shielding layer. On the other hand, the peeling strength of the release film is preferably 5,000 mN/20 mm or less from the viewpoint of widening the process margin during the transfer of the light-shielding layer. Here, the peeling strength of the release film refers to the peeling strength when Nitto Denko Corporation's acrylic adhesive tape "31B" is applied to the surface on which the release layer is formed using a 2 kg roller, and after leaving it to stand for 30 minutes, it is peeled off under the conditions of a peeling angle of 180° and a peeling speed of 0.3 m/min.
 離型性フィルムに用いられるフィルムとしては、例えば、ポリエチレンテレフタレート(PET)、シクロオレフィンポリマー、ポリカーボネート、ポリイミド、アラミド、フッ素樹脂、アクリル系樹脂、ポリウレタン系樹脂などの樹脂を含むフィルムなどが挙げられる。これらを2種以上用いてもよい。これらの中でも前述の積層パターン形成工程において用いられる露光光に対して透過性を有するものが好ましく、PET、シクロオレフィンポリマー、ポリカーボネートを含むフィルムが好ましい。露光光に対して透過性を有するフィルムを選択することにより、前述の積層パターン形成工程において、離型性フィルムを介して露光することができ、遮光層とフォトマスクとの間に離型性フィルムを介することにより、フォトマスクの汚染を抑制することができる。 Films used for the release film include, for example, films containing resins such as polyethylene terephthalate (PET), cycloolefin polymer, polycarbonate, polyimide, aramid, fluororesin, acrylic resin, and polyurethane resin. Two or more of these may be used. Among these, those that are transparent to the exposure light used in the aforementioned laminated pattern formation process are preferred, and films containing PET, cycloolefin polymer, and polycarbonate are preferred. By selecting a film that is transparent to the exposure light, exposure can be performed through the release film in the aforementioned laminated pattern formation process, and contamination of the photomask can be suppressed by placing a release film between the light-shielding layer and the photomask.
 離型性フィルムの厚みは、遮光層形成時の搬送安定性を向上させ、遮光層の厚みムラを抑制する観点から、5μm以上が好ましく、10μm以上がより好ましい。一方、離型性フィルムの厚みは、剥離時の取扱い性の観点から、300μm以下が好ましく、200μm以下がより好ましい。 The thickness of the release film is preferably 5 μm or more, and more preferably 10 μm or more, from the viewpoint of improving transport stability during the formation of the light-shielding layer and suppressing unevenness in the thickness of the light-shielding layer. On the other hand, the thickness of the release film is preferably 300 μm or less, and more preferably 200 μm or less, from the viewpoint of ease of handling during peeling.
 遮光層転写フィルムの遮光層の厚みT1’[μm]は、不透明配線電極をより視認されにくくする観点から、0.3以上が好ましく、0.5以上がより好ましい。一方、遮光層の厚みT1’[μm]は、現像時間を低減して加工性をより向上させる観点から、2.0以下が好ましい。なお、T1’は、触針式段差計を用いて測定することができる。また、遮光層の厚みT1’は、これを転写して配線基材における遮光層を形成する場合には、その厚みT1と対応するが、遮光層の形成の方法によっては変化する場合がある。 The thickness T1' [μm] of the light-shielding layer of the light-shielding layer transfer film is preferably 0.3 or more, more preferably 0.5 or more, from the viewpoint of making the opaque wiring electrode less visible. On the other hand, the thickness T1' [μm] of the light-shielding layer is preferably 2.0 or less, from the viewpoint of reducing the development time and further improving processability. Note that T1' can be measured using a stylus-type step gauge. Furthermore, when this is transferred to form a light-shielding layer on a wiring substrate, the thickness T1' of the light-shielding layer corresponds to the thickness T1, but may vary depending on the method of forming the light-shielding layer.
 本発明の遮光層転写フィルムは、例えば、離型性フィルム上に遮光層形成用ポジ型感光性樹脂組成物を塗布することにより得られる。 The light-shielding layer transfer film of the present invention can be obtained, for example, by applying a positive-type photosensitive resin composition for forming a light-shielding layer onto a release film.
 離型性フィルム上に遮光層形成用ポジ型感光性樹脂組成物を塗布する方法としては、例えば、スピナーを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷、又は、スリットコーター、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター若しくはバーコーターを用いた塗布などが挙げられる。遮光層形成用ポジ型感光性樹脂組成物の塗布厚みは、遮光層の厚みT1が前述の好ましい範囲となるように設定することが好ましい。 Methods for applying the positive photosensitive resin composition for forming a light-shielding layer onto a release film include, for example, spin coating using a spinner, spray coating, roll coating, screen printing, or coating using a slit coater, blade coater, die coater, calendar coater, meniscus coater, or bar coater. The coating thickness of the positive photosensitive resin composition for forming a light-shielding layer is preferably set so that the thickness T1 of the light-shielding layer falls within the preferred range described above.
 遮光層形成用ポジ型感光性樹脂組成物が溶剤を含む場合、加熱乾燥することが好ましい。乾燥温度は60~120℃が好ましく、乾燥時間は1~20分間が好ましい。加熱乾燥装置としては、例えば、オーブン、ホットプレートなどが好ましい。 When the positive-type photosensitive resin composition for forming the light-shielding layer contains a solvent, it is preferable to heat-dry it. The drying temperature is preferably 60 to 120°C, and the drying time is preferably 1 to 20 minutes. As the heating and drying device, for example, an oven, a hot plate, etc. are preferable.
 以下、実施例を挙げて、本発明をさらに詳しく説明するが、本発明はこれによって限定されるものではない。各実施例で用いた材料は、以下の通りである。 The present invention will be explained in more detail below with reference to examples, but the present invention is not limited thereto. The materials used in each example are as follows.
 [(a)アルカリ可溶性樹脂]
・フェノールノボラック樹脂WR-104(DIC(株)製)。
[(a) Alkali-soluble resin]
Phenol novolac resin WR-104 (manufactured by DIC Corporation).
 [(b)キノンジアジド化合物]
 (製造例1:キノンジアジド化合物)
 乾燥窒素気流下、α,α,-ビス(4-ヒドロキシフェニル)-4-(4-ヒドロキシ-α,α-ジメチルジメチルベンジルエチルベンゼン(商品名TrisP-PA 本州化学工業(株)製)21.22g(0.05モル)と5-ナフトキノンジアジドスルホニル酸クロリド33.58g(0.125モル)を1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合したトリエチルアミン15.18gを、系内が35℃以上にならないように滴下した。滴下後30℃で2時間撹拌した。トリエチルアミン塩を濾過し、ろ液を水に投入した。その後、析出した沈殿をろ過で集めた。この沈殿を真空乾燥機で乾燥させ、キノンジアジド化合物を得た。
[(b) Quinone diazide compound]
(Production Example 1: Quinone diazide compound)
Under a dry nitrogen stream, 21.22 g (0.05 mol) of α,α,-bis(4-hydroxyphenyl)-4-(4-hydroxy-α,α-dimethyldimethylbenzylethylbenzene (trade name TrisP-PA, manufactured by Honshu Chemical Industry Co., Ltd.) and 33.58 g (0.125 mol) of 5-naphthoquinone diazide sulfonyl chloride were dissolved in 450 g of 1,4-dioxane and the solution was cooled to room temperature. 15.18 g of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the temperature in the system did not exceed 35° C. After the dropwise addition, the mixture was stirred at 30° C. for 2 hours. The triethylamine salt was filtered, and the filtrate was poured into water. The precipitate that had separated out was then collected by filtration. This precipitate was dried in a vacuum dryer to obtain a quinone diazide compound.
 [着色成分]
・(c)金属窒化物粒子:窒化チタン粒子(粒子径17nm)
・(d)紫色有機顔料:ピグメントバイオレット23(粒子径50nm)
・(e)赤色有機顔料:ピグメントレッド254(粒子径100nm)
・青色有機顔料:ピグメントブルー15:6(粒子径100nm)
・カーボンブラック:MA100(三菱化学(株)製)。
[Coloring ingredients]
(c) Metal nitride particles: titanium nitride particles (particle diameter 17 nm)
(d) Purple organic pigment: Pigment Violet 23 (particle diameter 50 nm)
(e) Red organic pigment: Pigment Red 254 (particle diameter 100 nm)
Blue organic pigment: Pigment Blue 15:6 (particle size 100 nm)
Carbon black: MA100 (manufactured by Mitsubishi Chemical Corporation).
 [その他]
 (製造例2:カルボキシ基を有するアクリル樹脂)
 窒素雰囲気の反応容器中に、150gのジエチレングリコールモノエチルエーテルアセタート(以下、「DMEA」)を仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのエチルアクリレート(以下、「EA」)、40gのメタクリル酸2-エチルへキシル(以下、「2-EHMA」)、20gのスチレン(以下、「St」)、15gのアクリル酸(以下、「AA」)、0.8gの2,2’-アゾビスイソブチロニトリルおよび10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間撹拌し、重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのグリシジルメタクリレート(以下、「GMA」)、1gのトリエチルベンジルアンモニウムクロライドおよび10gのDMEAからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間撹拌し、付加反応を行った。得られた反応溶液をメタノールで精製して未反応不純物を除去し、さらに24時間真空乾燥して共重合比率(質量基準):EA/2-EHMA/St/GMA/AA=20/40/20/5/15のカルボキシ基を有するアクリル樹脂を得た。得られたカルボキシ基を有するアクリル樹脂について、JIS K 0070(1992)に準じて酸価を測定したところ、103mgKOH/gであった。得られたカルボキシ基を有するアクリル樹脂の重量平均分子量は17,000であった。
[others]
(Production Example 2: Acrylic resin having a carboxy group)
In a reaction vessel in a nitrogen atmosphere, 150 g of diethylene glycol monoethyl ether acetate (hereinafter, "DMEA") was charged, and the temperature was raised to 80°C using an oil bath. A mixture consisting of 20 g of ethyl acrylate (hereinafter, "EA"), 40 g of 2-ethylhexyl methacrylate (hereinafter, "2-EHMA"), 20 g of styrene (hereinafter, "St"), 15 g of acrylic acid (hereinafter, "AA"), 0.8 g of 2,2'-azobisisobutyronitrile, and 10 g of DMEA was added dropwise over 1 hour. After the dropwise addition was completed, the mixture was stirred for another 6 hours to carry out a polymerization reaction. Then, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. Subsequently, a mixture consisting of 5 g of glycidyl methacrylate (hereinafter, "GMA"), 1 g of triethylbenzylammonium chloride, and 10 g of DMEA was added dropwise over 0.5 hours. After the dropwise addition was completed, the mixture was stirred for another 2 hours to carry out the addition reaction. The resulting reaction solution was purified with methanol to remove unreacted impurities, and then vacuum dried for another 24 hours to obtain an acrylic resin having a carboxy group with a copolymerization ratio (mass basis): EA/2-EHMA/St/GMA/AA=20/40/20/5/15. The acid value of the resulting acrylic resin having a carboxy group was measured in accordance with JIS K 0070 (1992) to find that it was 103 mgKOH/g. The weight average molecular weight of the resulting acrylic resin having a carboxy group was 17,000.
 (製造例3:フェノール性水酸基およびカルボキシ基を有するアクリル樹脂)
 窒素雰囲気の反応容器中に、150gの2-メトキシ-1-メチルエチルアセテート(以下、「PMA」)を仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのEA、20gの2-EHMA、20gの4-ヒドロキシスチレン(以下、「HS」)、15gのN-メチロールアクリルアミド(以下、「MAA」)、25gのAA、0.8gの2,2’-アゾビスイソブチロニトリルおよび10gのPMAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに80℃で6時間加熱撹拌し、重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。得られた反応溶液をメタノールで精製することにより未反応不純物を除去し、さらに24時間真空乾燥して、共重合比率(質量基準):EA/2-EHMA/HS/MAA/AA=20/20/20/15/25のフェノール性水酸基およびカルボキシ基を有するアクリル樹脂を得た。製造例2と同様に酸価を測定したところ、153mgKOH/gであった。得られたフェノール性水酸基およびカルボキシ基を有するアクリル樹脂の重量平均分子量は10,000であった。
(Production Example 3: Acrylic resin having a phenolic hydroxyl group and a carboxyl group)
In a reaction vessel in a nitrogen atmosphere, 150 g of 2-methoxy-1-methylethyl acetate (hereinafter, "PMA") was charged, and the temperature was raised to 80°C using an oil bath. To this, a mixture consisting of 20 g of EA, 20 g of 2-EHMA, 20 g of 4-hydroxystyrene (hereinafter, "HS"), 15 g of N-methylol acrylamide (hereinafter, "MAA"), 25 g of AA, 0.8 g of 2,2'-azobisisobutyronitrile, and 10 g of PMA was added dropwise over 1 hour. After completion of the dropwise addition, the mixture was heated and stirred at 80°C for another 6 hours to carry out a polymerization reaction. Thereafter, 1 g of hydroquinone monomethyl ether was added to terminate the polymerization reaction. The resulting reaction solution was purified with methanol to remove unreacted impurities, and then vacuum dried for 24 hours to obtain an acrylic resin having a phenolic hydroxyl group and a carboxyl group with a copolymerization ratio (mass basis): EA/2-EHMA/HS/MAA/AA=20/20/20/15/25. The acid value was measured in the same manner as in Production Example 2 and found to be 153 mgKOH/g. The weight average molecular weight of the resulting acrylic resin having a phenolic hydroxyl group and a carboxyl group was 10,000.
 (製造例4:感光性導電ペースト)
 100mLクリーンボトルに、3.0gの製造例2により得られたカルボキシ基を有するアクリル樹脂、0.3gの光重合開始剤N-1919((株)ADEK製)、1.2gのモノマー“ライトアクリレート“(登録商標)”BP-4EA、0.5gの分散剤“BYK(登録商標)”-LP21116(ビックケミー社製)および79.0gのプロピレングリコールモノメチルエーテルアセタート(以下、「PGMEA」)、16.0gの表面炭素被覆層の平均厚みが1nmで粒子径が40nmの銀微粒子(日清エンジニアリング(株)製)を入れ、“あわとり錬太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合し、100.0gの感光性導電ペーストを得た。得られた感光性導電ペーストについて、E型の粘度計を用いて、温度25℃、回転数100rpmの条件で粘度を測定したところ、3mPa・sであった。
(Production Example 4: Photosensitive conductive paste)
Into a 100 mL clean bottle, 3.0 g of the acrylic resin having a carboxy group obtained in Production Example 2, 0.3 g of a photopolymerization initiator N-1919 (manufactured by ADEK Corporation), 1.2 g of a monomer "Light Acrylate" (registered trademark) BP-4EA, 0.5 g of a dispersant "BYK (registered trademark)"-LP21116 (manufactured by BYK-Chemie Co., Ltd.), 79.0 g of propylene glycol monomethyl ether acetate (hereinafter, "PGMEA"), and 16.0 g of silver fine particles having an average thickness of a surface carbon coating layer of 1 nm and a particle size of 40 nm (manufactured by Nisshin Engineering Inc.) were placed and mixed using "Awatori Rentaro (registered trademark)" ARE-310 (manufactured by Thinky Corporation) to obtain 100.0 g of a photosensitive conductive paste. The viscosity of the obtained photosensitive conductive paste was measured using an E-type viscometer at a temperature of 25° C. and a rotation speed of 100 rpm, and was found to be 3 mPa·s.
 (製造例5:感光性絶縁ペースト)
 100mLクリーンボトルに、15.5gの製造例2により得られたカルボキシ基を有するアクリル樹脂、5.2gの“ライトアクリレート(登録商標)”BP-4EAL、0.3gの光重合開始剤N-1919、79.0gのPGMEAを入れ、自転-公転真空ミキサー“あわとり練太郎(登録商標)”ARE-310を用いて混合して、100.0gの感光性絶縁ペーストを得た。得られた感光性絶縁ペーストを4インチシリコーンウェハー上の塗布し、プリズムカプラ(メトリコン製、PC-2000)を用い、室温23℃において、波長550nmにおける屈折率を測定した結果、1.53であった。
(Production Example 5: Photosensitive Insulating Paste)
In a 100 mL clean bottle, 15.5 g of the acrylic resin having a carboxyl group obtained in Production Example 2, 5.2 g of "Light Acrylate (registered trademark)" BP-4EAL, 0.3 g of photopolymerization initiator N-1919, and 79.0 g of PGMEA were placed and mixed using a rotation-revolution vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 to obtain 100.0 g of photosensitive insulating paste. The obtained photosensitive insulating paste was applied onto a 4-inch silicone wafer, and the refractive index at a wavelength of 550 nm was measured at room temperature of 23° C. using a prism coupler (manufactured by Metricon, PC-2000), and was found to be 1.53.
 各実施例および比較例における評価は以下の方法により行った。 Evaluation of each example and comparative example was carried out using the following methods.
 (1)積層パターンの線幅W
 各実施例および比較例により得られた積層パターン形成後の基材について、光学顕微鏡を用いて、積層パターン形成部を拡大観察し、無作為に選択した3箇所について積層パターンの線幅をそれぞれ測定し、その平均値を積層パターンの線幅Wとした。
(1) Line width W of laminated pattern
For the substrate after the formation of the laminate pattern obtained in each Example and Comparative Example, the laminate pattern formation portion was magnified and observed using an optical microscope, and the line width of the laminate pattern was measured at three randomly selected locations, and the average value was taken as the line width W of the laminate pattern.
 (2)内部拡散反射率
 各実施例および比較例により得られた配線基材の透明保護層形成面に粘着層付き反射防止フィルムMTAR-3((株)美舘イメージング製)をゴムローラーにより貼り付けた。さらに、配線基材の積層パターン非形成面に粘着剤付き黒色PETフィルムくっきりミエール((株)巴川製紙所製)をゴムローラーにより貼り付け、図3に示す内部拡散反射率評価用基材16を作製した。コニカミノルタセンシング(株)製分光測色計(CM-2500d)を用いて、内部拡散反射率評価用基材の積層パターン形成部の波長540、550、560、570nmにおける拡散反射率SCEをそれぞれ測定し、その平均値を内部反射率の平均値R1とした。次に、拡散反射率SCEをコニカミノルタセンシング(株)製分光測色計(CM-2500d)を用いて、内部拡散反射率評価用基材の積層パターン非形成部の波長540、550、560、570nmにおける拡散反射率SCEをそれぞれ測定し、その平均値を内部反射率の平均値R2とした。
(2) Internal diffuse reflectance An anti-reflection film with an adhesive layer MTAR-3 (manufactured by Mitate Imaging Co., Ltd.) was attached to the transparent protective layer-formed surface of the wiring substrate obtained in each Example and Comparative Example with a rubber roller. Furthermore, a black PET film with an adhesive, Kukiri Miel (manufactured by Tomoegawa Paper Co., Ltd.) was attached to the laminated pattern-free surface of the wiring substrate with a rubber roller to prepare the internal diffuse reflectance evaluation substrate 16 shown in FIG. 3. Using a spectrophotometer (CM-2500d) manufactured by Konica Minolta Sensing Co., Ltd., the diffuse reflectance SCE at wavelengths of 540, 550, 560, and 570 nm of the laminated pattern-formed portion of the internal diffuse reflectance evaluation substrate was measured, and the average value was taken as the average internal reflectance R1. Next, the diffuse reflectance SCE was measured at wavelengths of 540, 550, 560, and 570 nm of the non-layer pattern forming portion of the substrate for evaluating internal diffuse reflectance using a spectrophotometer (CM-2500d) manufactured by Konica Minolta Sensing Co., Ltd., and the average value was taken as the average internal reflectance R2.
 (3)視認されにくさ
 各実施例、比較例により得られた配線基材について、不透明配線電極形成面とは反対側に黒色シートSuperBlackIR((株)システムズエンジニアリング製)を設置した後、投光機を用いて、不透明配線電極形成面に光を投射した。30cm離れた位置から10人がそれぞれ目視し、メッシュ状の不透明配線電極が視認できた人の数により、視認されにくさ性を評価した。
(3) Difficulty in Visibility For the wiring substrates obtained in each of the Examples and Comparative Examples, a black sheet SuperBlackIR (manufactured by Systems Engineering Co., Ltd.) was placed on the opposite side of the opaque wiring electrode formation surface, and then light was projected onto the opaque wiring electrode formation surface using a floodlight. Ten people visually inspected the surface from a position 30 cm away, and the difficulty in visibility was evaluated based on the number of people who could see the mesh-shaped opaque wiring electrode.
 (4)意匠視認性
 各実施例、比較例において、(2)内部拡散反射率で作製した内部拡散反射率評価用基材に対して、投光機を用いて、内部拡散反射率評価用基材の反射防止フィルム貼り付け面に光を投射した。100cm離れた位置から10人がそれぞれ目視し、積層パターン形成部10と積層パターン非形成部11の境界がはっきりと視認できた人の数により、意匠視認性を評価した。
(4) Design visibility In each Example and Comparative Example, a light projector was used to project light onto the anti-reflection film-attached surface of the substrate for evaluating internal diffuse reflectance prepared in (2) Internal Diffuse Reflectance. Ten people visually inspected the substrate from a distance of 100 cm, and the design visibility was evaluated based on the number of people who could clearly see the boundary between the laminate pattern forming portion 10 and the laminate pattern non-forming portion 11.
 (5)感光性
 各実施例および比較例において、<遮光層の形成>における露光装置を365nmLEDランプ(シーシーエス(株)製)に置き換え、500mJ/cm、800mJ/cm、1500mJ/cm、3000mJ/cmの各露光量で露光を行い、露光部が現像液に30秒以内に溶解する最低露光量を必要露光量として、感光性を評価した。なお、3000mJ/cmで30秒以内に溶解しなかった場合は3000<と評価した。
(5) Photosensitivity In each Example and Comparative Example, the exposure device in <Formation of light-shielding layer> was replaced with a 365 nm LED lamp (manufactured by CCS Inc.), exposure was performed at each of the exposure amounts of 500 mJ/ cm2 , 800 mJ/ cm2 , 1500 mJ/ cm2 , and 3000 mJ/ cm2 , and photosensitivity was evaluated by defining the minimum exposure amount at which the exposed area was dissolved in a developer within 30 seconds as the required exposure amount. Note that when the exposed area did not dissolve within 30 seconds at 3000 mJ/ cm2 , it was evaluated as 3000<.
 (実施例1)
 <不透明配線電極形成工程>
 無アルカリガラス“AN Wizus(登録商標)”(AGC(株)製波長365nmの透過率:91%、波長550nmの透過率:92%)の片面に、製造例4により得られた感光性導電ペースト(D-1)を、スピンコートにより、乾燥後厚みが1μmとなるように塗布し、90℃にて8分間乾燥した。図4に示す、メッシュ形状の積層パターン形成部10と積層パターン非形成部11を有する露光マスクを介して、露光装置(PEM-6M;ユニオン光学(株)製)を用いて、露光量150mJ/cm(波長365nm換算)で露光した。ここで、メッシュ形状のパターンは、図5に示すメッシュピッチ14が400μm、メッシュ角度15が58°であり、開口幅4μmの積層パターン部(マスク開口部)12および非積層パターン部(マスク遮光部)13を有するネガ型のパターンである。なお、図5においては、図示の都合上白黒反転している。その後、0.1質量%テトラメチルアンモニウムヒドロキシド水溶液を現像液として、露光部が溶解した時間の2倍の時間現像を行い、さらに、超純水で30秒間リンスしてから、220℃のボックスオーブンで60分間加熱硬化して、不透明配線電極を形成した。触針式段差計“サーフコム(登録商標)”1400((株)東京精密製)を用いて、不透明配線電極の厚みを測定した結果、0.5μmであった。
Example 1
<Opaque Wiring Electrode Forming Process>
On one side of alkali-free glass "AN Wizus (registered trademark)" (manufactured by AGC Co., Ltd., transmittance at wavelength 365 nm: 91%, transmittance at wavelength 550 nm: 92%), the photosensitive conductive paste (D-1) obtained in Production Example 4 was applied by spin coating so that the thickness after drying was 1 μm, and dried at 90 ° C. for 8 minutes. Through an exposure mask having a mesh-shaped laminated pattern forming portion 10 and a laminated pattern non-forming portion 11 shown in FIG. 4, an exposure device (PEM-6M; manufactured by Union Optical Co., Ltd.) was used to expose at an exposure dose of 150 mJ / cm 2 (converted to a wavelength of 365 nm). Here, the mesh-shaped pattern is a negative pattern having a mesh pitch 14 of 400 μm and a mesh angle 15 of 58 °, and an opening width of 4 μm, a laminated pattern portion (mask opening) 12, and a non-laminated pattern portion (mask light shielding portion) 13. In addition, in FIG. 5, black and white are inverted for convenience of illustration. Thereafter, development was performed using a 0.1% by mass aqueous solution of tetramethylammonium hydroxide as a developer for a time twice as long as the time it took for the exposed area to dissolve, and then the result was rinsed with ultrapure water for 30 seconds, followed by heating and curing for 60 minutes in a box oven at 220° C. to form an opaque wiring electrode. The thickness of the opaque wiring electrode was measured using a stylus-type step gauge "Surfcom (registered trademark)" 1400 (manufactured by Tokyo Seimitsu Co., Ltd.) and found to be 0.5 μm.
 <積層パターン形成工程>
 (遮光層形成用ポジ型感光性樹脂組成物の作製)
 100mLクリーンボトルに、(a)アルカリ可溶性樹脂として2.89gのフェルノボラック樹脂WR-104(DIC(株)製)、(b)キノンジアジド化合物として0.49gの製造例1により得られたキノンジアジド化合物、0.22gのカルボキシベンゾトリアゾール“VERZONE(登録商標)”C-BTA(大和化成(株)製)、0.01gのレベリング剤“BYK(登録商標)”-331(ビックケミー社製)、44.45gのPGMEAを入れ、自転-公転真空ミキサー“あわとり練太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合して、48.07gの樹脂溶液を得た。得られた48.07gの樹脂溶液、1.21gのカーボンブラックMA100(三菱化学(株)製)および0.72gの分散剤“BYK”-LP21116(ビックケミー社製)を混合し、0.10mmφジルコニアビーズ(東レ(株)製)を70体積%充填した遠心分離セパレーターを具備した、ウルトラアペックスミル(寿工業(株)製)を用いて混練し、50.0gの遮光層形成用ポジ型感光性樹脂組成物1を得た。
<Laminated Pattern Forming Process>
(Preparation of positive-type photosensitive resin composition for forming light-shielding layer)
Into a 100 mL clean bottle, (a) 2.89 g of ferrovolac resin WR-104 (manufactured by DIC Corporation) as an alkali-soluble resin, (b) 0.49 g of the quinone diazide compound obtained in Production Example 1 as a quinone diazide compound, 0.22 g of carboxybenzotriazole "VERZONE (registered trademark)" C-BTA (manufactured by Daiwa Kasei Co., Ltd.), 0.01 g of a leveling agent "BYK (registered trademark)"-331 (manufactured by BYK-Chemie Co., Ltd.), and 44.45 g of PGMEA were placed and mixed using a rotation-revolution vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 (manufactured by Thinky Corporation) to obtain 48.07 g of a resin solution. The obtained 48.07 g of the resin solution, 1.21 g of carbon black MA100 (manufactured by Mitsubishi Chemical Corporation) and 0.72 g of dispersant "BYK"-LP21116 (manufactured by BYK-Chemie) were mixed and kneaded using an Ultra Apex Mill (manufactured by Kotobuki Industries Co., Ltd.) equipped with a centrifugal separator filled with 70 volume % of 0.10 mmφ zirconia beads (manufactured by Toray Industries, Inc.) to obtain 50.0 g of a positive-type photosensitive resin composition 1 for forming a light-shielding layer.
 (遮光層の形成)
 <不透明配線電極形成工程>において形成した不透明配線電極面に、得られた遮光層形成用ポジ型感光性樹脂組成物1を、乾燥後膜厚が1.4μmとなるようにスピンコート塗布し、100℃にて10分間乾燥した。その後、不透明配線電極をマスクとして、露光装置(PEM-6M)を用いて、不透明配線電極形成面の反対面側から、露光量(波長365nm換算)10,000mJ/cmの条件で露光し、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液を現像液として、露光部の透明基材が露出するまで現像を行い、不透明配線電極上に遮光層パターンを形成し、積層パターンを形成した。さらに、220℃のボックスオーブンで60分間加熱した。
(Formation of light-shielding layer)
The obtained positive photosensitive resin composition 1 for forming a light-shielding layer was spin-coated on the opaque wiring electrode surface formed in the <Opaque wiring electrode forming step> so that the film thickness after drying was 1.4 μm, and dried at 100 ° C. for 10 minutes. Thereafter, using the opaque wiring electrode as a mask, an exposure device (PEM-6M) was used to expose from the opposite side of the opaque wiring electrode forming surface under the condition of an exposure amount (converted to a wavelength of 365 nm) of 10,000 mJ / cm 2 , and development was performed using a 2.38 mass% tetramethylammonium hydroxide aqueous solution as a developer until the transparent substrate of the exposed portion was exposed, forming a light-shielding layer pattern on the opaque wiring electrode, and forming a laminated pattern. Furthermore, it was heated in a box oven at 220 ° C. for 60 minutes.
 <透明保護層形成工程>
 <積層パターン形成工程>において得られた積層パターン付き基材上に、(製造例5)により得られた感光性絶縁ペーストを、乾燥後膜厚が3.0μmとなるようにスピンコート塗布し、80℃にて5分間乾燥した。露光装置(PEM-6M)を用いて、塗布面から、露光量(波長365nm換算)100mJ/cmの条件で露光し、0.1質量%テトラメチルアンモニウムヒドロキシド水溶液を現像液として、60秒間現像を行った。さらに、220℃のボックスオーブンで60分間加熱して、透明保護層を形成した配線基材を得た。
<Transparent Protective Layer Forming Process>
On the substrate with the laminated pattern obtained in the <Laminated Pattern Forming Step>, the photosensitive insulating paste obtained in (Production Example 5) was spin-coated so that the film thickness after drying was 3.0 μm, and dried at 80 ° C. for 5 minutes. Using an exposure device (PEM-6M), the coated surface was exposed under the condition of an exposure amount (converted to a wavelength of 365 nm) of 100 mJ / cm 2 , and development was performed for 60 seconds using a 0.1 mass % tetramethylammonium hydroxide aqueous solution as a developer. Furthermore, it was heated in a box oven at 220 ° C. for 60 minutes to obtain a wiring substrate on which a transparent protective layer was formed.
 (実施例2)
 <不透明配線電極形成工程>における露光マスクのメッシュピッチおよび占有率S、(遮光層形成用ポジ型感光性樹脂組成物の作製)における組成を表1に記載の通りに変更したこと以外は(実施例1)と同様にして配線基材を得た。
Example 2
A wiring substrate was obtained in the same manner as in Example 1, except that the mesh pitch and occupancy rate S of the exposure mask in the <Opaque wiring electrode formation process> and the composition in (Preparation of positive-type photosensitive resin composition for forming light-shielding layer) were changed as shown in Table 1.
 (実施例3~9)
 (遮光層形成用ポジ型感光性樹脂組成物の作製)における組成および(遮光層の形成)における露光量を表1~2に記載の通りに変更したこと以外は(実施例2)と同様にして配線基材を得た。
(Examples 3 to 9)
A wiring substrate was obtained in the same manner as in (Example 2), except that the composition in (Preparation of positive-type photosensitive resin composition for forming light-shielding layer) and the exposure dose in (Formation of light-shielding layer) were changed as shown in Tables 1 and 2.
 (比較例1)
 (遮光層の形成)を実施しなかったこと以外は(実施例3)と同様にして配線基材を得た。
(Comparative Example 1)
A wiring substrate was obtained in the same manner as in Example 3, except that (formation of a light-shielding layer) was not carried out.
 (比較例2~6)
 (遮光層形成用ポジ型感光性樹脂組成物の作製)における組成および(遮光層の形成)における露光量を表3に記載の通りに変更したこと以外は(実施例2)と同様にして配線基材を得た。
(Comparative Examples 2 to 6)
A wiring substrate was obtained in the same manner as in Example 2, except that the composition in (Preparation of positive-type photosensitive resin composition for forming light-shielding layer) and the exposure dose in (Formation of light-shielding layer) were changed as shown in Table 3.
 (実施例10)
 <不透明配線電極の形成>
 (実施例2)と同様にして、不透明配線電極付き基材を得た。
Example 10
<Formation of Opaque Wiring Electrodes>
In the same manner as in Example 2, a substrate with an opaque wiring electrode was obtained.
 <積層パターン形成工程>
 (遮光層形成用ポジ型感光性樹脂組成物の作製)
 100mLクリーンボトルに、0.77gのフェノールノボラック樹脂WR-104(DIC(株)製)、2.33gの製造例2により得られたフェノール性水酸基およびカルボキシ基を有するアクリル樹脂、0.77gの製造例1により得られたキノンジアジド化合物、0.19gのカルボキシベンゾトリアゾール“VERZONE(登録商標)”C-BTA(大和化成(株)製)、0.01gのレベリング剤“BYK(登録商標)”-331(ビックケミー社製)、44.28gのPGMEAを入れ、自転-公転真空ミキサー“あわとり錬太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合して、48.77gの樹脂溶液を得た。得られた48.77gの樹脂溶液、0.79gの窒化チタン粒子、0.32g紫色有機顔料、0.11gの赤色有機顔料および0.50gの分散剤“BYK(登録商標)”-LP21116(ビックケミー社製)を混ぜ合わせ、0.10mmφジルコニアビーズ(東レ(株)製)を70体積%充填した遠心分離セパレーターを具備した、ウルトラアペックスミル(寿工業(株)製)を用いて混練し、50.0gの遮光層形成用ポジ型感光性樹脂組成物2を得た。
<Laminated Pattern Forming Process>
(Preparation of positive-type photosensitive resin composition for forming light-shielding layer)
Into a 100 mL clean bottle, 0.77 g of phenol novolak resin WR-104 (manufactured by DIC Corporation), 2.33 g of the acrylic resin having a phenolic hydroxyl group and a carboxy group obtained in Production Example 2, 0.77 g of the quinone diazide compound obtained in Production Example 1, 0.19 g of carboxybenzotriazole "VERZONE (registered trademark)" C-BTA (manufactured by Daiwa Kasei Co., Ltd.), 0.01 g of leveling agent "BYK (registered trademark)"-331 (manufactured by BYK-Chemie Co., Ltd.), and 44.28 g of PGMEA were placed and mixed using a rotation-revolution vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 (manufactured by Thinky Corporation) to obtain 48.77 g of a resin solution. The obtained 48.77 g of resin solution, 0.79 g of titanium nitride particles, 0.32 g of purple organic pigment, 0.11 g of red organic pigment and 0.50 g of dispersant "BYK (registered trademark)"-LP21116 (manufactured by BYK-Chemie) were mixed and kneaded using an Ultra Apex Mill (manufactured by Kotobuki Industries Co., Ltd.) equipped with a centrifugal separator filled with 70 volume % of 0.10 mmφ zirconia beads (manufactured by Toray Industries, Inc.) to obtain 50.0 g of positive photosensitive resin composition 2 for forming a light-shielding layer.
 (遮光層転写フィルムの作製)
 PETフィルム“ルミラー(登録商標)”FB40(東レ(株)製)(厚み:16μm)の片面に、非シリコーン系離型剤AL-5(リンテック社(株)製)を塗布し、熱処理および乾燥して基材表面に厚さ100nmの離型層を形成し、離型性フィルムを得た。得られた離型性フィルムについて、離型層形成面に、2kgローラーを用いて、日東電工(株)製アクリル粘着テープ「31B」を貼付し、30分間静置した後に、剥離角度180°、剥離速度0.3m/分の条件で剥離したときの剥離力を測定したところ、1,480mN/20mmであった。
(Preparation of light-shielding layer transfer film)
A non-silicone release agent AL-5 (manufactured by Lintec Corporation) was applied to one side of a PET film "Lumirror (registered trademark)" FB40 (manufactured by Toray Industries, Inc.) (thickness: 16 μm), and the film was heat-treated and dried to form a release layer having a thickness of 100 nm on the surface of the substrate, thereby obtaining a release film. For the obtained release film, an acrylic adhesive tape "31B" manufactured by Nitto Denko Corporation was attached to the release layer-formed surface using a 2 kg roller, and the film was allowed to stand for 30 minutes. After that, the peel force was measured when the film was peeled off under the conditions of a peel angle of 180° and a peel speed of 0.3 m/min, and was found to be 1,480 mN/20 mm.
 得られた離型性フィルムの離型層面に、コーターを用いて、得られた遮光層形成用ポジ型感光性樹脂組成物2を、乾燥後の厚みT1’が1.4μmになるように塗布し、80℃で4分間乾燥して遮光層を形成し、遮光層転写フィルムを得た。 The positive-type photosensitive resin composition 2 for forming a light-shielding layer was applied to the release layer surface of the obtained release film using a coater so that the thickness after drying T1' was 1.4 μm, and the film was dried at 80° C. for 4 minutes to form a light-shielding layer, thereby obtaining a light-shielding layer transfer film.
 (遮光層の形成)
 <不透明配線電極形成工程>において形成した不透明配線電極上に<遮光層転写フィルムの作製>により得られた遮光層転写フィルムの遮光層が接するように、80℃、0.1m/分の速度で遮光層転写フィルムを熱圧着し、離型性フィルムを剥離した。その後、不透明配線電極をマスクとして、露光装置(PEM-6M)を用いて、不透明配線電極形成面の反対面側から、露光量(波長365nm換算)100mJ/cmの条件で露光し、1.00質量%炭酸ナトリウム水溶液を現像液として露光部の透明基材が露出するまで現像を行い、不透明配線電極上に遮光層パターンを形成し、積層パターンを形成した。さらに、220℃のボックスオーブンで60分間加熱した。
(Formation of light-shielding layer)
The light-shielding layer transfer film obtained by <Preparation of light-shielding layer transfer film> was thermocompressed at 80°C and a speed of 0.1 m/min so that the light-shielding layer of the light-shielding layer transfer film obtained by <Preparation of light-shielding layer transfer film> was in contact with the opaque wiring electrode formed in the <Opaque wiring electrode formation process>, and the release film was peeled off. Thereafter, using the opaque wiring electrode as a mask, the film was exposed from the opposite side of the opaque wiring electrode formation surface under the condition of an exposure amount (converted to a wavelength of 365 nm) of 100 mJ/cm 2 using an exposure device (PEM-6M), and development was performed using a 1.00 mass% sodium carbonate aqueous solution as a developer until the transparent substrate of the exposed portion was exposed, forming a light-shielding layer pattern on the opaque wiring electrode, and forming a laminated pattern. Further, the film was heated in a box oven at 220°C for 60 minutes.
 <透明保護層の形成>
 (実施例1)と同様に透明保護層を形成して配線基材を得た。
<Formation of Transparent Protective Layer>
A transparent protective layer was formed in the same manner as in Example 1 to obtain a wiring substrate.
 各実施例および比較例の主な構成と評価結果を表1~4に示す。 The main configurations and evaluation results of each example and comparative example are shown in Tables 1 to 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
1:透明基材
2:不透明配線電極
3:遮光層
4:配線基材
5:積層パターン
6:透明保護層
7:粘着層
8:反射防止フィルム
9:黒色フィルム
10:積層パターン形成部
11:積層パターン非形成部
12:積層パターン部(マスク開口部)
13:非積層パターン部(マスク遮光部)
14:メッシュピッチ
15:メッシュ角度
16:内部拡散反射率評価用基材
1: Transparent substrate 2: Opaque wiring electrode 3: Light-shielding layer 4: Wiring substrate 5: Laminated pattern 6: Transparent protective layer 7: Adhesive layer 8: Anti-reflection film 9: Black film 10: Laminated pattern forming portion 11: Laminated pattern non-forming portion 12: Laminated pattern portion (mask opening)
13: Non-laminated pattern portion (mask light shielding portion)
14: Mesh pitch 15: Mesh angle 16: Substrate for evaluating internal diffuse reflectance

Claims (11)

  1. 透明基材上に、不透明配線電極と、樹脂および着色成分を含む遮光層との積層パターンを有する配線基材であって、積層パターン形成部の遮光層側から測定した波長540~570nmにおける内部拡散反射率の平均値R1が0.03~0.11%である配線基材。 A wiring substrate having a laminated pattern of an opaque wiring electrode and a light-shielding layer containing a resin and a coloring component on a transparent substrate, in which the average internal diffuse reflectance R1 at wavelengths of 540 to 570 nm measured from the light-shielding layer side of the laminated pattern forming portion is 0.03 to 0.11%.
  2. 前記内部拡散反射率の平均値R1[%]、積層パターン非形成部の波長540~570nmにおける内部拡散反射率の平均値R2[%]、積層パターンの線幅W[μm]、積層パターン形成部の面積に占める積層パターン面積の比(積層パターン面積/積層パターン形成部の面積)Sが下記式(1)の関係を満たす請求項1に記載の配線基材。
    0.0≦((R1×W)-(R2×(1-S)))/S≦7.0 (1)
    The wiring substrate according to claim 1, wherein the average internal diffuse reflectance R1 [%], the average internal diffuse reflectance R2 [%] at a wavelength of 540 to 570 nm of the laminate pattern non-forming portion, the line width W [μm] of the laminate pattern, and the ratio S of the laminate pattern area to the area of the laminate pattern forming portion (laminated pattern area/laminated pattern forming portion area) satisfy the relationship of the following formula (1).
    0.0≦((R1×W)−(R2×(1−S)))/S≦7.0 (1)
  3. 前記遮光層の厚みT1[μm]が0.2~2.0である、請求項1または2に記載の配線基材。 The wiring substrate according to claim 1 or 2, wherein the thickness T1 [μm] of the light-shielding layer is 0.2 to 2.0 μm.
  4. (a)アルカリ可溶性樹脂、(b)キノンジアジド化合物、(c)金属窒化物粒子および(d)紫色有機顔料を含有する遮光層形成用ポジ型感光性樹脂組成物。 A positive-type photosensitive resin composition for forming a light-shielding layer, comprising (a) an alkali-soluble resin, (b) a quinone diazide compound, (c) metal nitride particles, and (d) a purple organic pigment.
  5. 前記(c)金属窒化物粒子の含有量が2.0~6.0体積%である請求項4に記載の遮光層形成用ポジ型感光性樹脂組成物。 The positive photosensitive resin composition for forming a light-shielding layer according to claim 4, wherein the content of the (c) metal nitride particles is 2.0 to 6.0 volume %.
  6. さらに(e)赤色有機顔料を含有する請求項4または5に記載の遮光層形成用ポジ型感光性樹脂組成物。 The positive-type photosensitive resin composition for forming a light-shielding layer according to claim 4 or 5, further comprising (e) a red organic pigment.
  7. (c)金属窒化物粒子、(d)紫色有機顔料および(e)赤色有機顔料の合計含有量が5.0~15.0体積%である請求項6に記載の遮光層形成用ポジ型感光性樹脂組成物。 The positive photosensitive resin composition for forming a light-shielding layer according to claim 6, wherein the total content of (c) metal nitride particles, (d) purple organic pigment, and (e) red organic pigment is 5.0 to 15.0 volume %.
  8. 離型フィルム上に、請求項4または5に記載の遮光層形成用ポジ型感光性樹脂組成物から形成される遮光層を有する、遮光層転写フィルム。 A light-shielding layer transfer film having a light-shielding layer formed from the positive-type photosensitive resin composition for forming a light-shielding layer according to claim 4 or 5 on a release film.
  9. 前記遮光層の厚みT1’[μm]が0.3~2.0である請求項8に記載の遮光層転写フィルム。 The light-shielding layer transfer film according to claim 8, wherein the thickness T1' [μm] of the light-shielding layer is 0.3 to 2.0.
  10. 請求項1または2に記載の配線基材の製造方法であって、
    透明基材上に不透明配線電極を形成する工程、
    前記不透明配線電極形成面に請求項4または5に記載の遮光層形成用ポジ型感光性樹脂組成物を塗布する工程、および、
    前記不透明配線電極をマスクとして、感光性樹脂組成物塗布膜を、塗布面とは反対の面側から露光し、現像することにより、前記感光性樹脂組成物塗布膜をパターン加工して不透明配線電極と遮光層との積層パターンを形成する工程、
    を有する配線基材の製造方法。
    A method for producing a wiring substrate according to claim 1 or 2, comprising the steps of:
    forming an opaque wiring electrode on a transparent substrate;
    A step of applying the positive photosensitive resin composition for forming a light-shielding layer according to claim 4 or 5 to the surface on which the opaque wiring electrode is formed; and
    a step of exposing the photosensitive resin composition coating film from the side opposite to the coating side using the opaque wiring electrode as a mask, and developing the photosensitive resin composition coating film to pattern the photosensitive resin composition coating film to form a laminated pattern of the opaque wiring electrode and the light-shielding layer;
    A method for producing a wiring substrate having the above structure.
  11. 請求項1または2に記載の配線基材の製造方法であって、
    透明基材上に不透明配線電極を形成する工程、
    前記不透明配線電極形成面に請求項8に記載の遮光層転写フィルムの遮光層を転写する工程、および、
    前記不透明配線電極をマスクとして、前記遮光層を転写面とは反対の面側から露光し、現像することにより、前記遮光層をパターン加工して不透明配線電極と遮光層との積層パターンを形成する工程、
    を有する配線基材の製造方法。
    A method for producing a wiring substrate according to claim 1 or 2, comprising the steps of:
    forming an opaque wiring electrode on a transparent substrate;
    A step of transferring the light-shielding layer of the light-shielding layer transfer film according to claim 8 onto the surface on which the opaque wiring electrode is formed; and
    a step of exposing the light-shielding layer from a surface opposite to a transfer surface using the opaque wiring electrode as a mask, and developing the light-shielding layer to pattern the light-shielding layer to form a laminated pattern of the opaque wiring electrode and the light-shielding layer;
    A method for producing a wiring substrate having the above structure.
PCT/JP2023/038439 2022-12-20 2023-10-25 Wiring board, positive photosensitive resin composition for forming light-blocking layer, light-blocking layer transfer film, and wiring board manufacturing method WO2024135082A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-202949 2022-12-20
JP2022202949 2022-12-20

Publications (1)

Publication Number Publication Date
WO2024135082A1 true WO2024135082A1 (en) 2024-06-27

Family

ID=91588557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038439 WO2024135082A1 (en) 2022-12-20 2023-10-25 Wiring board, positive photosensitive resin composition for forming light-blocking layer, light-blocking layer transfer film, and wiring board manufacturing method

Country Status (1)

Country Link
WO (1) WO2024135082A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197183A (en) * 2013-03-06 2014-10-16 日東電工株式会社 Image display unit
JP2015184958A (en) * 2014-03-25 2015-10-22 富士フイルム株式会社 Touch panel module and electronic apparatus
WO2020040054A1 (en) * 2018-08-23 2020-02-27 富士フイルム株式会社 Transfer film, laminate, and pattern forming method
WO2022130803A1 (en) * 2020-12-15 2022-06-23 東レ株式会社 Wiring board
JP2022112699A (en) * 2021-01-22 2022-08-03 東レ株式会社 Coloring resin composition, light blocking film, decorative substrate and decorative film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197183A (en) * 2013-03-06 2014-10-16 日東電工株式会社 Image display unit
JP2015184958A (en) * 2014-03-25 2015-10-22 富士フイルム株式会社 Touch panel module and electronic apparatus
WO2020040054A1 (en) * 2018-08-23 2020-02-27 富士フイルム株式会社 Transfer film, laminate, and pattern forming method
WO2022130803A1 (en) * 2020-12-15 2022-06-23 東レ株式会社 Wiring board
JP2022112699A (en) * 2021-01-22 2022-08-03 東レ株式会社 Coloring resin composition, light blocking film, decorative substrate and decorative film

Similar Documents

Publication Publication Date Title
TWI757548B (en) Colored resin composition, colored film, color filter, and liquid crystal display device
JP2004126600A (en) Photosensitive resin composition for adjusting dissolution characteristic and method of forming two-layered structure pattern using the same
TWI733001B (en) Method for manufacturing substrate with wiring electrode
JP5252919B2 (en) Photosensitive transfer material
JP2011207140A (en) Laminated film of fluoropolymer compound-containing layer and method for manufacturing substrate with surface liquid repellent pattern
WO2024135082A1 (en) Wiring board, positive photosensitive resin composition for forming light-blocking layer, light-blocking layer transfer film, and wiring board manufacturing method
JP7035437B2 (en) Manufacturing method of substrate with conductive pattern and substrate with conductive pattern
WO2022130803A1 (en) Wiring board
JP7472601B2 (en) Method for manufacturing substrate with wiring electrodes
JP4348226B2 (en) Metal compound fine particles and light shielding film using the same
WO2024190033A1 (en) Base material with wiring and method for producing same
WO2024004318A1 (en) Method for manufacturing substrate with wiring electrode
JP2024061122A (en) Manufacturing method of base material with wiring
JP4205840B2 (en) Positive photosensitive thermosetting resin composition, transfer material, and image forming method
WO2006132240A1 (en) Color filter and liquid crystal display device using same
WO2021193354A1 (en) Resin composition, wiring board and method for producing conductive pattern
JP7081696B2 (en) Positive photosensitive resin composition, cured film, laminate, substrate with conductive pattern, manufacturing method of laminate, touch panel and organic EL display device
JP7322753B2 (en) Photosensitive resin composition, light shielding layer and touch sensor panel
JPWO2019065234A1 (en) Manufacturing method of substrate with electrodes
JP2023123957A (en) Photosensitive resin composition, wiring board, and wiring board production method
JP2006337485A (en) Color filter, liquid crystal display element, and liquid crystal display apparatus
WO2020110453A1 (en) Photosensitive conductive paste, film for use in conductive pattern forming, and layered member
CN116602061A (en) Wiring substrate
JP2021152988A (en) Conductive paste, conductive pattern forming film, laminated member, and touch panel
JP2003315779A (en) Color filter for liquid crystal display and semitransmission type liquid crystal display using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23906457

Country of ref document: EP

Kind code of ref document: A1