[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024130777A1 - 一种可视化呼吸治疗仪、可视化处理方法及使用方法 - Google Patents

一种可视化呼吸治疗仪、可视化处理方法及使用方法 Download PDF

Info

Publication number
WO2024130777A1
WO2024130777A1 PCT/CN2022/143379 CN2022143379W WO2024130777A1 WO 2024130777 A1 WO2024130777 A1 WO 2024130777A1 CN 2022143379 W CN2022143379 W CN 2022143379W WO 2024130777 A1 WO2024130777 A1 WO 2024130777A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
patient
oxygen
pipeline
pressure
Prior art date
Application number
PCT/CN2022/143379
Other languages
English (en)
French (fr)
Inventor
刘庆平
林攀
赵帅
吴群
Original Assignee
江苏鱼跃医疗设备股份有限公司
南京鱼跃软件技术有限公司
苏州鱼跃医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏鱼跃医疗设备股份有限公司, 南京鱼跃软件技术有限公司, 苏州鱼跃医疗科技有限公司 filed Critical 江苏鱼跃医疗设备股份有限公司
Publication of WO2024130777A1 publication Critical patent/WO2024130777A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air

Definitions

  • the present application relates to the technical field of medical data visualization, and in particular to a visualization respiratory therapy device, a visualization processing method, and a use method.
  • High-flow nasal cannula oxygen therapy is a new respiratory support technology that has been widely used in clinical practice. Compared with traditional low-flow oxygen therapy, high-flow oxygen therapy can provide patients with high-flow gas with relatively constant oxygen concentration, temperature and humidity, and perform oxygen therapy through nasal congestion. Compared with non-invasive ventilation through a mask for respiratory support, this treatment method is more comfortable.
  • medical staff generally set the operating parameters to make the high-flow output device output a fixed high-flow airflow. Since it is difficult to monitor the patient's own respiratory parameters during the operation of the high-flow output device, it is difficult to control the user experience during the patient's use. At the same time, medical staff cannot understand the patient's treatment status in a timely manner, making the current use of high-flow output devices not smart enough.
  • the embodiments of the present application provide a visualized respiratory therapy device, a visualized processing method, and a method of use, which are used to solve the problem that the current high-flow output device cannot flexibly meet the usage needs of patients and medical staff during the use of the HFNC therapy device, and is not flexible and intelligent enough.
  • an embodiment of the present application provides a visual respiratory therapy device, the therapy device comprising a host and a patient interface, and a patient status display screen;
  • the main unit is provided with an air channel, an oxygen channel, an air-oxygen mixing portion and a mixed gas channel, and includes a flow sensor for monitoring the flow of the mixed gas and a pressure sensor for monitoring the pressure of the mixed gas;
  • the inlet of the air-oxygen mixing part is connected to the air channel and the oxygen channel respectively, and the outlet of the air-oxygen mixing part is connected to the mixed gas channel;
  • the patient interface is connected to the mixed gas channel through a pipeline; wherein the patient interface is a non-sealed patient interface;
  • the host is used to receive and process the monitoring data of the flow sensor and the pressure sensor to output high-flow oxygen therapy display information to the patient status display screen;
  • the patient status display screen includes a patient-end pressure dynamic display area and/or a patient inhalation flow dynamic display area, which are used to display the high-flow oxygen therapy display information.
  • the therapeutic apparatus further comprises a humidifier
  • the humidifier inlet is in gas communication with the mixed gas channel, and the humidifier outlet is in gas communication with the patient interface.
  • the patient interface is a nasal cannula
  • the pipeline and the patient interface are an integral or separate structure; the pipeline and the humidifier are detachably connected.
  • the patient status display screen also includes a patient capacity dynamic display area.
  • the patient-end pressure dynamic display area, the patient inhalation flow dynamic display area, and the patient capacity dynamic display area are located on the same display interface.
  • the oxygen channel further includes an oxygen source interface, an oxygen valve and an oxygen flow sensor for monitoring the oxygen flow.
  • the therapeutic apparatus further comprises: an airflow controller;
  • the airflow controller is connected to the oxygen valve and the air-oxygen mixing unit, and is used to generate an airflow control signal according to an adjustment instruction from a user interface, so as to control the oxygen valve and/or the air-oxygen mixing unit to adjust the output oxygen flow, oxygen concentration or mixed gas flow of the therapeutic device.
  • the air-oxygen mixing section comprises a turbine.
  • an embodiment of the present application further provides a visualization processing method of a visualization respiratory therapy device, the method comprising:
  • the patient interface pressure value of the current patient is determined through a preset pipeline pressure drop model; wherein the pipeline verification operation is that the patient interface is under atmospheric pressure, and multiple levels of step flow gas flow are output in sequence at intervals within a preset time; the collected data at least includes: the step flow values corresponding to the multiple levels of step flow, and the pressure values corresponding to each level of step flow;
  • the respiratory flow value of the current patient is determined in real time
  • high-flow oxygen therapy display information of the current patient is determined, and the high-flow oxygen therapy display information is sent to a patient status display screen to display the high-flow oxygen therapy display information.
  • a flow output control instruction is generated according to the multi-level step flow, and the flow output control instruction is sent to the flow control device, so that the flow control device sequentially outputs the airflow of the multi-level step flow at intervals within the preset time; wherein the sequentially interval output is the airflow of each level of step flow continuously output within each consecutive predetermined sub-time of the preset time; the predetermined sub-time corresponds to each level of step flow one by one;
  • the patient interface pressure value of the current patient is determined according to the pipeline pressure drop model and the delivery pressure value and the delivery flow value from the pressure sensor.
  • a linear equation group is established according to the pressure values corresponding to the stepped flow rates at each level, the multiple stepped flow values corresponding to the pressure values corresponding to the stepped flow rates at each level, and a preset formula;
  • the least square solution of the linear equation group is calculated, and the least square solution is used as the pipeline resistance coefficient.
  • the patient interface pressure value of the current patient within a predetermined number of breaths is subjected to absolute value square root processing and sign function operation to obtain an intermediate pressure value;
  • the respiratory flow value of the current patient is determined in real time.
  • a respiratory trigger signal of the current patient is identified, and the number of triggering times of the respiratory trigger signal is accumulated;
  • the respiratory flow value of the current patient is determined in real time.
  • a plurality of intermediate pressure values corresponding to the predetermined number of patient interface pressure values are determined.
  • the respiratory flow value of the current patient is determined in real time.
  • a cumulative starting point breath of the triggering number is determined
  • the accumulated starting breath of the triggering number is updated to the Nth breath after the accumulated starting breath; N is a natural number; N is the difference between the number of interval breaths and the predetermined number.
  • the high-flow oxygen therapy display information includes at least one or more of the following: patient interface pressure curve, respiratory flow curve, patient capacity curve, respiratory rate, tidal volume, minute ventilation, end-tidal pressure, peak inspiratory flow, and actual inspired oxygen concentration.
  • the first airflow capacity and the second airflow capacity corresponding to each breath are determined according to the respiratory flow value of each breath of the current patient and the corresponding delivery flow value; the first airflow capacity is the airflow capacity inhaled from the patient interface for each breath of the current patient; the second airflow capacity is the airflow capacity inhaled from the atmosphere for each breath of the current patient;
  • the output oxygen concentration, the first airflow capacity, the second airflow capacity, the preset atmospheric oxygen ratio and the total inhalation capacity are input into a preset inhaled oxygen concentration formula to calculate the actual inhaled oxygen concentration.
  • the embodiment of the present application further provides a method for using a visualized respiratory therapeutic apparatus, which is applied to the above-mentioned visualized respiratory therapeutic apparatus.
  • the method for using the therapeutic apparatus includes:
  • the patient interface is directly connected to the atmosphere.
  • the pipeline verification operation includes the step of testing a multi-level step flow, specifically including: generating a flow output control instruction according to the multi-level step flow, and sending the flow output control instruction to the flow control device, so that the flow control device sequentially outputs the airflow of the multi-level step flow at intervals within the preset time; wherein the sequentially interval output is the airflow of each level of step flow continuously output within each consecutive predetermined sub-time of the preset time; the predetermined sub-time corresponds to each level of step flow one by one;
  • the pipeline resistance coefficient of the pipeline pressure drop model is determined.
  • the visual respiratory therapy instrument and the pipeline pressure drop model are used to calibrate the pipeline resistance coefficient of the therapeutic instrument, and then the pipeline output leakage model is used to determine the user's respiratory flow in real time and obtain the patient interface pressure value, and further analyze and obtain respiratory related parameters.
  • Providing visual respiratory related waveforms and parameters can facilitate medical staff to timely grasp the pipeline wearing status and patient treatment effect during the treatment process based on these data.
  • FIG1 is a schematic diagram of the structure of a visual respiratory therapy device according to an embodiment of the present application.
  • FIG2 is a flow chart of a visualization processing method of a visualization respiratory therapy apparatus in an embodiment of the present application
  • FIG3 is a schematic diagram of the contents displayed on a patient status display screen of a visual respiratory therapy apparatus according to an embodiment of the present application
  • FIG. 4 is another flow chart of a visualization processing method of a visualization respiratory therapy device in an embodiment of the present application.
  • HFNC high-flow humidified nasal oxygen therapy
  • the therapeutic equipment to implement this technology mainly includes an air-oxygen mixing device, a heated humidifier, a high-flow nasal cannula, and a connected breathing circuit.
  • high-flow oxygen therapy can provide patients with high-flow gas with relatively constant oxygen concentration, temperature and humidity, and oxygen therapy is performed through nasal congestion. Compared with non-invasive ventilation through masks for respiratory support, this treatment method is more comfortable.
  • high-flow humidified oxygen therapy has clinical value in improving oxygenation, reducing respiratory dead space, improving alveolar ventilation, and facilitating secretion clearance. Therefore, it can be used as a pre- or post-invasive respiratory treatment for invasive or non-invasive ventilation.
  • the embodiments of the present application provide a visual respiratory therapy device, a visual processing method and a usage method, which are used to solve the problem that the current high-flow output device cannot flexibly meet the usage needs of patients and medical staff during the HFNC therapy process, and is not flexible and intelligent enough.
  • FIG1 is a schematic diagram of the structure of a visualized respiratory therapy device according to an embodiment of the present application.
  • the therapy device includes a host 100 , a patient interface 200 , and a patient status display screen 300 .
  • the host 100 is provided with an air channel 101, an oxygen channel 102, an air-oxygen mixing section 103 and a mixed gas channel 104, and includes a flow sensor 105 for monitoring the flow of the mixed gas and a pressure sensor 106 for monitoring the pressure of the mixed gas.
  • the inlet of the air-oxygen mixing section 103 is connected to the air path of the air channel 101 and the oxygen channel 102, respectively, and the outlet of the air-oxygen mixing section 103 is connected to the air path of the mixed gas channel 104.
  • the patient interface 200 is connected to the air path of the mixed gas channel 104 via a pipeline 107. Among them, the patient interface 200 is a non-sealed patient interface.
  • the host 100 is used to receive and process the monitoring data of the flow sensor 105 and the pressure sensor 106 to output high-flow oxygen therapy display information to the patient status display screen 300.
  • the patient status display screen 300 includes a patient-end pressure dynamic display area and/or a patient inhalation flow dynamic display area, which are used to display high-flow oxygen therapy display information.
  • the patient status display screen 300 provided in the embodiment of the present application can be a touch screen or a high-definition display screen, and the host 100 can be connected to an external input device. The user can interact with the host through the input device and the patient status display screen.
  • the therapeutic apparatus further includes a humidifier 108 .
  • the inlet of the humidifier 108 is in gas communication with the mixed gas channel 104
  • the outlet of the humidifier 108 is in gas communication with the patient interface 200 through the pipeline 107 .
  • the patient interface 200 is a nasal cannula
  • the tube 107 and the patient interface 200 are an integral or separate structure.
  • the tube 107 and the humidifier 108 are detachably connected.
  • the patient interface may not be limited to the nasal cannula.
  • This application takes the insertion of the patient interface into the patient's nasal cavity as an exemplary existence.
  • the patient status display screen 300 further includes a patient volume dynamic display area.
  • the patient-side pressure dynamic display area, the patient inhalation flow dynamic display area, and the patient capacity dynamic display area are located on the same display interface.
  • the oxygen channel 102 further includes an oxygen source interface 1, an oxygen valve 2, and an oxygen flow sensor 3 for monitoring the oxygen flow.
  • the therapeutic apparatus further includes an air flow controller 109 .
  • the airflow controller 109 is connected to the oxygen valve 2 and the air-oxygen mixing unit 103, and is used to generate an airflow control signal according to the adjustment instructions from the user interface (or user terminal) so as to control the oxygen valve 2 and/or the air-oxygen mixing unit 103 to adjust the output oxygen flow, oxygen concentration or mixed gas flow of the therapeutic apparatus.
  • the user interface can be a user interface composed of the above-mentioned input device and display screen, or a user interface displayed on the user terminal interface after the host establishes a wireless or wired connection with a user terminal, such as a mobile phone, a laptop, etc.
  • the user interface can trigger the generation of an adjustment instruction for adjusting the host.
  • the air-oxygen mixing section 103 includes a turbine.
  • the above-mentioned visualized respiratory therapy device can display relevant information of the patient's breathing in real time.
  • the air channel 101, oxygen channel 102, air-oxygen mixing part 103, mixed gas channel 104, flow sensor 105, and pressure sensor 106 constitute the gas path structure of the therapy device.
  • the patient status display screen 300 can be set to be integrated with the host.
  • the therapeutic apparatus of the present application after oxygen from a high-pressure oxygen source enters the therapeutic apparatus, passes through the oxygen source interface 1 of the oxygen channel 102, enters the oxygen valve 2, and after being adjusted by the oxygen valve 2, passes through the oxygen flow sensor 3 to enter the air-oxygen mixing part 103, i.e., the turbine. After air enters the therapeutic apparatus from the atmosphere, it is mixed with oxygen. After the mixed gas is pressurized by the turbine, it passes through the flow sensor 105 and the pressure sensor 106, and then output to the ventilation pipeline, in which there is a humidifier 108 for heating and humidifying the mixed gas. The heated and humidified mixed gas enters the patient's body through the patient interface (nasal catheter).
  • the air flow controller 109 can control the oxygen valve 2 to adjust the oxygen flow rate and oxygen concentration, and can also control the air-oxygen mixing part to control the total flow rate of the mixed gas.
  • the total flow rate is equal to the sum of the oxygen flow rate and the air flow rate. If the input oxygen flow rate exceeds the total flow rate, the excess oxygen will be output to the atmosphere through the air inlet.
  • the total flow target and oxygen concentration target controlled by the airflow controller are set by the user, such as through a human-machine interface composed of an input device and a display screen, or through a human-machine interface of a touch-operated patient status display screen.
  • the user sends the control target to the airflow controller through the human-machine interface and also receives feedback information returned by the airflow controller.
  • FIG. 2 is a flow chart of a visualization processing method of a visualization respiratory therapeutic device provided by an embodiment of the present application.
  • the visualization processing method is implemented with a software module in the host of the therapeutic device as the execution subject.
  • the software module can be located on the processor of the host and its storage medium. As shown in Figure 2, the method includes steps S201-S203:
  • the patient interface pressure value of the current patient is determined through a preset pipeline pressure drop model.
  • the pipeline verification operation is that the patient interface is under atmospheric pressure, and multiple step flow airflows are output in sequence at intervals within a preset time.
  • the collected data at least includes: the step flow values corresponding to the multiple step flow rates, and the pressure values corresponding to each step flow rate.
  • the pipeline verification operation is a verification operation that needs to be performed when changing patients or replacing certain parts of the treatment device or when using it for the first time.
  • the patient interface is not connected to the patient's nasal cavity and is in the atmosphere to verify the air resistance of the pipeline.
  • a nasal cannula for ventilation Before the patient wears a nasal cannula for ventilation, first connect the machine to all the pipeline components to be ventilated, including but not limited to bacterial filters, ventilation pipelines, humidifiers, and nasal cannulas, to ensure that the nasal cannula (patient interface) is exposed to the atmosphere and that there are no leaks or blockages at the connections of the pipeline.
  • the patient interface pressure value of the current patient is determined by a preset pipeline pressure drop model, specifically including:
  • a flow output control instruction is generated, and the flow output control instruction is sent to the flow control device, so that the flow control device outputs the airflow of the multi-level step flow in sequence and at intervals within a preset time.
  • the airflows of each level of step flow are outputted in sequence and at intervals and are continuously outputted within each consecutive predetermined sub-time of the preset time.
  • the predetermined sub-time corresponds to each level of step flow.
  • the storage medium of the therapeutic apparatus pre-stores multiple step flow rates such as Qvent1_ca, Qvent2_ca, ..., Qventn_ca, and the flow value of each level of the multiple step flow rates is different.
  • the software can generate a flow output control instruction, and the flow control device sequentially outputs the airflow of the multiple step flow rates at intervals within a preset time.
  • the flow control device can be a partial device composed of an airflow controller and an air-oxygen mixing unit.
  • the preset time is 2 seconds
  • each level of step flow lasts for 2 seconds
  • the pressure value corresponding to each level of step flow in 2 seconds is recorded until the corresponding pressures Pvent1_ca, Pvent2_ca,..., Pventn_ca of n step flow points are recorded; where n is a natural number.
  • the pipeline resistance coefficient of the pipeline pressure drop model is determined.
  • a linear equation system is established according to the pressure values corresponding to each level of step flow, multiple step flow values corresponding to the pressure values corresponding to each level of step flow, and a preset formula, and the least squares solution of the linear equation system is calculated, and the least squares solution is used as the pipeline resistance coefficient.
  • the preset formula is as follows:
  • Pventi_ca is the pressure value corresponding to the i-th step flow.
  • Rtube represents the pipeline resistance coefficient.
  • Qventi_ca is the i-th step flow value, and each step flow corresponds to a unique pressure value.
  • the patient interface pressure value of the current patient is determined according to the pipeline pressure drop model and the delivery pressure value and delivery flow value from the pressure sensor.
  • the pipeline pressure drop model is as follows:
  • Pnose is the patient interface pressure value
  • Pvent is the delivery pressure value
  • Qvent is the delivery flow value.
  • Step S201 is a step for the therapeutic device to measure the pipeline resistance coefficient in an offline state, and to perform online nasal pressure Pnose according to the pipeline resistance coefficient. Since the patient's interface is not blocked during the high-flow gas delivery process when the patient actually uses the therapeutic device of this application, gas leakage will occur. In order to ensure the accuracy of the patient's respiratory flow value obtained during high-flow oxygen therapy, this application provides the following embodiment step S202.
  • the current patient's respiratory flow value is determined in real time.
  • the predetermined number of times is pre-set, such as 3 times, 5 times, etc.
  • the predetermined number of breaths is used to determine the leakage model parameters of the pipeline output leakage model.
  • the current patient's respiratory flow value is determined in real time, specifically including:
  • the absolute value square root processing and sign function operation are performed on the patient interface pressure value of the current patient within a predetermined number of breaths to obtain the intermediate value of the pressure value.
  • the flow rate Qleak leaking to the atmosphere through the unblocked part of the nasal catheter is proportional to the nasal pressure Pnose.
  • the pipeline output leakage model is as follows:
  • Qleak is the flow value leaked into the atmosphere
  • Kleak is the leakage model parameter
  • Sgn is a positive and negative function, and in the embodiment of the present application, the Sgn function is negative when Pnose is lower than the atmospheric pressure, and vice versa.
  • the intermediate pressure value and the delivery flow rate value are integrated at the start and end times of breathing, respectively.
  • the quotient of the intermediate amount of the pressure value after the integral operation and the delivery flow value after the integral operation is calculated, and the quotient is used as a leakage model parameter of the pipeline output leakage model.
  • N is a natural number.
  • N can be 1, which refers to the preset number of times, that is, the quotient of the intermediate amount of the pressure value after the integral operation and the delivery flow value after the integral operation; t0 is the breathing start time, and te is the breathing end time.
  • the formula also contains the integral amount of the patient's respiratory flow Qpatient. Since the patient's inhaled air volume is approximately equal to the exhaled air volume per breath, in one breath, the integral amount of the patient's respiratory flow is 0 and is not considered in the above formula.
  • the current patient's respiratory flow value is determined in real time.
  • the leakage model parameters obtained by the preset number of breaths and the real-time measured patient interface pressure value are input into the pipeline output leakage model to obtain the flow value leaked to the atmosphere by the patient for each breath.
  • the current patient's respiratory flow value is determined in real time, specifically including:
  • the software module of the therapeutic device can identify the patient's breathing.
  • the identification can be based on the instantaneous change of pressure Pnose or Qpatient exceeding a certain threshold (the falling mutation point of Pnose or the rising mutation point of Qpatient marks the beginning of the patient's inhalation), or it can be combined with the turbine speed or control current change, etc.
  • the present application does not specifically limit the specific method of identification.
  • leakage model parameters are determined, specifically including:
  • N in the above formula for calculating the leakage model parameters of the present application is a preset number, wherein N is more appropriately 3-5 during actual use.
  • the method further includes:
  • a respiratory trigger signal of the current patient When a respiratory trigger signal of the current patient is identified, a cumulative starting point breath of the trigger times is determined.
  • the accumulated starting breath of the triggering number is updated to be the Nth breath after the accumulated starting breath.
  • N is a natural number.
  • N is the difference between the interval breath number and the predetermined number.
  • N refers to the difference between the number of interval breaths and the predetermined number.
  • the predetermined number is 3, and the Ath breath is taken as the cumulative starting breath.
  • the B and C breaths after the Ath breath reach the predetermined number.
  • the software should calculate the leakage model parameters with the A, B, and C breaths, and calculate the respiratory flow value of the Dth breath.
  • the cumulative starting breath of the updated trigger number is the Nth breath after the cumulative starting breath, that is, the cumulative starting breath of the updated trigger number is the first breath B after the A breath. That is, B is taken as the cumulative starting breath.
  • the leakage model parameters can be updated in a rolling manner, and each update is based on the delivery pressure value and delivery flow value of the previous predetermined number of breaths. In this way, when the position of the nasal cannula worn by the patient changes, it can also adapt to the change in time.
  • the software can generate a corresponding patient interface pressure value curve and a respiratory flow curve based on the patient interface pressure value and respiratory flow value obtained in real time.
  • the patient capacity curve can also be obtained by integrating the respiratory flow curve.
  • the high-flow oxygen therapy display information includes at least one or more of the following: patient interface pressure curve (nasal pressure), respiratory flow curve (patient flow), patient capacity curve, respiratory rate (respiration rate, RR), tidal volume (Tidal volume, VT), minute ventilation volume (minute ventilation volume, MV), Positive End Expiratory Pressure (Positive End Expiratory Pressure, PEEP), peak inspiratory flow (peak inspiratory flow, represented by Fpeak in the figure), and actual inspired oxygen concentration (represented by FiO2_real in the figure).
  • HFT stands for high-flow oxygen therapy.
  • the actual inspired oxygen concentration can be determined according to the following examples, as follows.
  • the first airflow capacity and the second airflow capacity corresponding to each breath are determined.
  • the first airflow capacity is the airflow capacity inhaled from the patient interface for each breath of the current patient.
  • the second airflow capacity is the airflow capacity inhaled from the atmosphere for each breath of the current patient.
  • the total inhaled volume is determined based on the respiratory flow value of each breath of the current patient.
  • the oxygen flow rate data from the oxygen flow rate sensor is obtained, and the output oxygen concentration is determined based on the oxygen flow rate data.
  • the output oxygen concentration, the first airflow capacity, the second airflow capacity, the preset atmospheric oxygen percentage and the total inhalation capacity are input into the preset inhaled oxygen concentration formula to calculate the actual inhaled oxygen concentration.
  • the preset inspired oxygen concentration formula is as follows:
  • FiO2_real (V1 ⁇ FiO2_vent+V2 ⁇ 21%)/V3
  • FiO2_vent is the output oxygen concentration
  • V1 is the first airflow capacity
  • V2 is the second airflow capacity
  • V3 is the total inhalation capacity
  • V1 refers to the cumulative capacity of the patient flow in one inhalation where the inhalation flow is lower than the therapeutic device air flow
  • V2 refers to the cumulative capacity of the patient flow in one inhalation where the inhalation flow exceeds the therapeutic device air flow
  • V3 refers to the cumulative capacity of the total patient flow in one inhalation.
  • the oxygen concentration of the inhaled air is 21%.
  • the moving average of the previous multiple breathing frequencies can be used as the respiratory frequency RR.
  • the tidal volume VT is reset to zero, and Qpatient is accumulated again to calculate the patient volume Vpatient.
  • the moving average of the tidal volumes of the previous multiple breaths can be used as the tidal volume VT.
  • the end-expiratory pressure PEEP is calculated at the beginning of each inhalation, and the average value of the patient interface pressure value Pnose in the period before this moment (50 milliseconds ⁇ 100 milliseconds) is used as the monitoring value of PEEP.
  • the inspiratory peak flow rate Fpeak may be the highest point value of the Qpatient waveform detected in each breath, which serves as the inspiratory peak monitoring value Fpeak.
  • This application can obtain the offline pipeline resistance coefficient through the pipeline pressure drop model constructed above, and then calculate the online patient interface pressure value Pnose, and calculate the leakage model parameters online through the pipeline output leakage model. Based on the two models and their parameter calculation results, the patient interface pressure waveform and patient respiratory flow waveform of the patient treated by the therapeutic device can be monitored in real time, which is convenient for medical staff to timely grasp the pipeline wearing status and patient treatment effect during the treatment process according to the waveform.
  • the present application can also analyze the patient interface pressure waveform and the patient respiratory flow waveform to obtain several relevant parameters of breathing. Medical staff can accurately titrate high-flow treatment setting parameters, such as flow targets, based on the monitored respiratory parameters.
  • the visual respiratory therapy device provided by the present application provides a more comprehensive decision-making support tool for medical staff to set treatment parameters when using the high-flow mode, avoiding blind settings and enabling users to better control the trend of sequential treatment. This ensures that the use needs of patients and medical staff can be flexibly met during the use of the HFNC therapy device, making the HFNC therapy device more flexible and intelligent, and improving the user experience.
  • the visualization processing method implemented by the software model of the present application includes the following steps, as shown in FIG4 , specifically including:
  • the software module can send the obtained waveforms and parameters to the display screen for display, and prompt abnormal information during the patient's breathing process or the operation of the therapeutic device.
  • the present application also provides a method for using a visualized respiratory therapy apparatus, which is applied to the above-mentioned visualized respiratory therapy apparatus.
  • the method for using the visualized respiratory therapy apparatus includes:
  • a circuit calibration procedure to measure the circuit resistance coefficient between the patient interface and the circuit after replacing the patient interface and/or the circuit.
  • the patient interface is directly connected to the atmosphere.
  • the pipeline verification operation also includes the step of test driving a multi-level step flow, specifically including: generating a flow output control instruction according to the multi-level step flow, and sending the flow output control instruction to the flow control device, so that the flow control device sequentially outputs the airflow of the multi-level step flow at intervals within the preset time.
  • the airflow of each level of step flow output sequentially and at intervals is continuously output within each consecutive predetermined sub-time of the preset time.
  • the predetermined sub-time corresponds to each level of step flow one by one.
  • the patient interface can be inserted into the patient's nasal cavity to perform normal use of the therapeutic device.
  • the specific embodiment of the above-mentioned visualization processing method can be referred to, and no further description is given here.
  • the embodiments of this specification may be provided as methods, systems, or computer program products. Therefore, the embodiments of this specification may be in the form of complete hardware embodiments, complete software embodiments, or embodiments in combination with software and hardware. Moreover, the embodiments of this specification may be in the form of a computer program product implemented in one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • a computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
  • processors CPU
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-permanent storage in a computer-readable medium, in the form of random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer readable media include permanent and non-permanent, removable and non-removable media that can be implemented by any method or technology to store information.
  • Information can be computer readable instructions, data structures, program modules or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disk read-only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary computer readable media (transitory media), such as modulated data signals and carrier waves.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • This specification may also be practiced in distributed computing environments where tasks are performed by remote processing devices connected through a communication network.
  • program modules may be located in local and remote computer storage media, including storage devices.

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种可视化呼吸治疗仪,包括主机(100)和患者接口(200)、患者状态显示屏(300)。主机(100)设有空气通道(101)、氧气通道(102)、空氧混合部(103)以及混合气体通道(104),并包括用于监测混合气体流量的流量传感器(105)和用于监测混合气体压力的压力传感器(106)。空氧混合部(103)入口分别与空气通道(101)、氧气通道(102)气路联通,空氧混合部(103)出口与混合气体通道(104)气路联通。患者接口(200)经管路(107)与混合气体通道(104)气路联通。主机(100)用于接收并处理流量传感器(105)以及压力传感器(106)的监测数据,以输出高流量氧疗展示信息至患者状态显示屏(300)。患者状态显示屏(300)包括患者端压力动态显示区和/或患者吸入流量动态显示区,用于展示高流量氧疗展示信息。

Description

一种可视化呼吸治疗仪、可视化处理方法及使用方法
本申请要求于2022年12月23日提交中国专利局、申请号为202211668073.9、发明名称为"一种可视化呼吸治疗仪、可视化处理方法及使用方法"的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗数据可视化技术领域,尤其涉及一种可视化呼吸治疗仪、可视化处理方法及使用方法。
背景技术
经鼻高流量湿化氧疗(High-flow nasal cannula oxygen therapy,HFNC)作为一种新的呼吸支持技术在临床中得到广泛应用,与传统的低流量氧疗相比,高流量氧疗能够给患者提供相对恒定的吸氧浓度、温度和湿度的高流量气体,并且通过鼻塞进行氧疗,与通过面罩进行呼吸支持的无创通气相比,此治疗方式更舒适。
目前,HFNC的使用过程中,一般由医护人员设定运行参数后,使高流量输出设备输出固定的高流量气流。由于高流量输出设备运行过程中,难以监测患者自身的呼吸参数,对于患者使用过程中的使用体验难以把控,同时医护人员也不能及时了解患者的被治疗情况,使目前高流量输出设备的使用不够智能。
发明内容
本申请实施例提供了一种可视化呼吸治疗仪、可视化处理方法及使用方法,用于解决HFNC治疗仪使用过程中,目前的高流量输出设备无法灵活满足患者及医护人员的使用需求,不够灵活且智能的问题。
一方面,本申请实施例提供了一种可视化呼吸治疗仪,所述治疗仪包括主机和患者接口、患者状态显示屏;
所述主机设有空气通道、氧气通道、空氧混合部以及混合气体通道,并包括用于监测混合气体流量的流量传感器和用于监测混合气体压力的压力传感器;
所述空氧混合部入口分别与所述空气通道、所述氧气通道气路联通,所述空氧混合部出口与所述混合气体通道气路联通;
所述患者接口经管路与所述混合气体通道气路联通;其中,所述患者接口为非密封式患者接口;
所述主机用于接收并处理所述流量传感器以及所述压力传感器的监测数据,以输出高流量氧疗展示信息至所述患者状态显示屏;
所述患者状态显示屏包括患者端压力动态显示区和/或患者吸入流量动态显示区,用于展示所述高流量氧疗展示信息。
优选地,所述治疗仪还包括湿化器;
所述湿化器入口与所述混合气体通道气路联通,所述湿化器出口与所述患者接口气路联通。
优选地,所述患者接口为鼻插管,所述管路与所述患者接口为一体或分体结构;所述管路与所述湿化器可拆卸连接。
优选地,所述患者状态显示屏还包括患者容量动态显示区。
优选地,所述患者端压力动态显示区、患者吸入流量动态显示区、患者容量动态显示 区位于同一显示界面。
优选地,所述氧气通道还包括氧气源接口、氧气阀及用于监测氧流量的氧流量传感器。
优选地,所述治疗仪还包括:气流控制器;
所述气流控制器连接所述氧气阀及所述空氧混合部,用于根据来自用户界面的调节指令,生成气流控制信号,以便控制所述氧气阀和/或所述空氧混合部,调节所述治疗仪的输出氧流量、氧浓度或混合气体流量。
优选地,所述空氧混合部包括涡轮。
另一方面,本申请实施例还提供了一种可视化呼吸治疗仪的可视化处理方法,所述方法包括:
基于管路校验操作对应的采集数据及来自流量传感器的混合气体的输送流量值,通过预设管路压降模型,确定当前患者的患者接口压力值;其中,所述管路校验操作为患者接口处于大气压下,预设时间内依次间隔输出多级阶梯流量的气流;所述采集数据至少包括:所述多级阶梯流量分别对应的阶梯流量值、各级阶梯流量对应的压力值;
基于所述当前患者预定次数呼吸内,所述患者接口压力值及相应的所述输送流量值、预设的管路输出泄漏模型,实时确定所述当前患者的呼吸流量值;
基于所述患者接口压力值、所述呼吸流量值,确定所述当前患者的高流量氧疗展示信息,并将所述高流量氧疗展示信息发送至患者状态显示屏,以展示所述高流量氧疗展示信息。
在本申请的一种实现方式中,根据所述多级阶梯流量,生成流量输出控制指令,并将所述流量输出控制指令发送至流量控制设备,以使所述流量控制设备在所述预设时间内,依次间隔输出多级阶梯流量的气流;其中,所述依次间隔输出为各级阶梯流量的气流在所述预设时间的连续的各预定子时间内持续输出;所述预定子时间与各级阶梯流量一一对应;
获取来自压力传感器的各级阶梯流量对应的压力值;
基于所述各级阶梯流量对应的压力值及与其对应的所述阶梯流量值,确定所述管路压降模型的管路阻力系数;
在所述患者接口接通所述当前患者的通气端的情况下,根据所述管路压降模型及来自所述压力传感器的输送压力值、所述输送流量值,确定所述当前患者的所述患者接口压力值。
在本申请的一种实现方式中,根据所述各级阶梯流量对应的压力值、所述各级阶梯流量对应的压力值对应的多个所述阶梯流量值以及预设公式,建立线性方程组;
计算所述线性方程组的最小二乘解,并将所述最小二乘解作为所述管路阻力系数。
在本申请的一种实现方式中,根据所述管路输出泄露模型,对所述当前患者在预定次数呼吸内所述患者接口压力值进行绝对值开方处理及符号函数运算,得到压力值中间量;
分别对所述压力值中间量、所述输送流量值进行积分运算;
计算积分运算后的所述压力值中间量与积分运算后的所述输送流量值的除商值,并将所述除商值作为所述管路输出泄漏模型的泄漏模型参数;
基于所述泄漏模型参数、所述患者接口压力值、所述管路输出泄漏模型及所述输送流量值,实时确定所述当前患者的呼吸流量值。
在本申请的一种实现方式中,识别所述当前患者的呼吸触发信号,并累加所述呼吸触发信号的触发次数;
在所述触发次数大于或等于所述预定次数的情况下,确定各次呼吸内的所述患者接口压力值及相应的所述输送流量值;
基于所述预定次数个所述患者接口压力值及相应的所述输送流量值,确定所述泄漏模型参数;
基于所述泄漏模型参数、所述患者接口压力值、所述管路输出泄漏模型及所述输送流量值,实时确定所述当前患者的呼吸流量值。
在本申请的一种实现方式中,确定所述预定次数个所述患者接口压力值相应的多个所述压力值中间量;以及
确定与多个所述压力中间量相对应的多个所述输送流量值;
分别对多个所述压力值中间量、多个所述输送流量值进行积分求和运算;
计算积分求和运算后的多个所述压力值中间量与积分求和运算后的多个所述输送流量值的除商值,并将所述除商值作为所述管路输出泄漏模型的泄漏模型参数;
基于所述泄漏模型参数、所述患者接口压力值、所述管路输出泄漏模型及所述输送流量值,实时确定所述当前患者的呼吸流量值。
在本申请的一种实现方式中,在识别到所述当前患者的呼吸触发信号的情况下,确定所述触发次数的累加起点呼吸;
根据所述累加起点呼吸与当前呼吸的间隔呼吸次数及所述预定次数,更新所述触发次数的累加起点呼吸为所述累加起点呼吸后的第N次呼吸;所述N为自然数;所述N为间隔呼吸次数与所述预定次数的差值。
在本申请的一种实现方式中,所述高流量氧疗展示信息至少包括以下一项或多项:患者接口压力曲线、呼吸流量曲线、患者容量曲线、呼吸频率、潮气量、分钟通气量、呼吸终末压力、吸气峰流量、实际吸入氧浓度。
在本申请的一种实现方式中,根据所述当前患者各次呼吸的所述呼吸流量值及相应的所述输送流量值,确定所述各次呼吸对应的第一气流容量及第二气流容量;所述第一气流容量为所述当前患者的各次呼吸从所述患者接口吸入气流容量;所述第二气流容量为所述当前患者的各次呼吸从大气中吸入气流容量;
根据所述当前患者的各次呼吸的呼吸流量值,确定吸入总容量;
获取来自氧流量传感器的氧流量数据,并根据所述氧流量数据,确定输出氧浓度;
将所述输出氧浓度、所述第一气流容量、所述第二气流容量、预设大气氧占比及所述吸入总容量,输入预设吸入氧浓度公式,计算所述实际吸入氧浓度。
再一方面,本申请实施例还提供了一种可视化呼吸治疗仪的使用方法,应用于上述可视化呼吸治疗仪,所述治疗仪的使用方法包括:
在更换患者接口和/或管路后测量所述患者接口与所述管路之间的管路阻力系数的管路校验操作步骤。
优选地,测定所述管路阻力系数时所述患者接口直接与大气接通。
优选地,所述管路校验操作包括试驾多级阶梯流量的步骤,具体包括:根据所述多级阶梯流量,生成流量输出控制指令,并将所述流量输出控制指令发送至流量控制设备,以使所述流量控制设备在所述预设时间内,依次间隔输出多级阶梯流量的气流;其中,所述依次间隔输出为各级阶梯流量的气流在所述预设时间的连续的各预定子时间内持续输出;所述预定子时间与各级阶梯流量一一对应;
获取来自压力传感器的各级阶梯流量对应的压力值;
基于所述各级阶梯流量对应的压力值及与其对应的所述阶梯流量值,确定所述管路压降模型的管路阻力系数。
通过上述方案,利用可视化呼吸治疗仪及管路压降模型,对治疗仪进行管路阻力系数的校验,然后利用管路输出泄露模型,实时地确定使用者的呼吸流量并得到患者接口压力值,进一步分析得到呼吸相关参数。提供可视的呼吸相关波形及参数,可以便于医护人员根据这些数据,及时掌握治疗过程中,管路佩戴状态和患者治疗效果。
同时,为医护人员使用高流量模式时设定治疗参数提供了更全面的决策支持工具,避 免了盲目的设置,并使用户能更好的把控序贯治疗的趋势。实现了HFNC治疗仪使用过程中,能够灵活满足患者及医护人员的使用需求,使HFNC治疗仪更加灵活且智能,提高用户的使用体验。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例中一种可视化呼吸治疗仪的结构示意图;
图2为本申请实施例中一种可视化呼吸治疗仪的可视化处理方法的一种流程示意图;
图3为本申请实施例中一种可视化呼吸治疗仪的患者状态显示屏所展示内容的一种示意图;
图4为本申请实施例中一种可视化呼吸治疗仪的可视化处理方法的的另一种流程示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
近年来,经鼻高流量湿化氧疗(HFNC)作为一种新的呼吸支持技术在临床中得到广泛应用,实现该技术的治疗设备主要包括空氧混合装置、加热湿化器、高流量鼻导管以及连接的呼吸管路。
与传统的低流量氧疗相比,高流量氧疗能够给患者提供相对恒定的吸氧浓度、温度和湿度的高流量气体,并且通过鼻塞进行氧疗,与通过面罩进行呼吸支持的无创通气相比,此治疗方式更舒适。大量的临床试验已经表明,高流量湿化氧疗具有改善氧合、降低呼吸死腔、改善肺泡通气、利于分泌物清除的临床价值,因此可以作为有创或无创通气的前序或是后续呼吸治疗方式。
随着高流量疗法被临床认可,市场上也出现了越来越多的专用高流量治疗设备,除了这些专用高流量治疗设备以外,几乎所有新上市的呼吸机也开始集成此种治疗模式。然而,目前的高流量设备或是集成呼吸机的高流量模式,只是输出固定设定流量(1~100L/min)的混氧(氧浓度21%~100%)气流,对于呼吸相关参数无法进行监测和控制。患者的呼吸相关参数,对于医护人员而言十分重要,不仅能够了解高流量氧疗的治疗效果,还能够及时关注到患者是否出现异常状态。无法监测和控制呼吸相关参数,使得目前的设备无法灵活满足患者及医护人员的使用需求,不够灵活且智能。
基于此,本申请实施例提供了一种可视化呼吸治疗仪、可视化处理方法及使用方法,用于解决HFNC治疗仪过程中,目前的高流量输出设备无法灵活满足患者及医护人员的使用需求,不够灵活且智能的问题。
以下结合附图,详细说明本申请的各个实施例。
图1为本申请实施例提供一种可视化呼吸治疗仪的结构示意图,该治疗仪包括主机100和患者接口200、患者状态显示屏300。
主机100设有空气通道101、氧气通道102、空氧混合部103以及混合气体通道104,并包括用于监测混合气体流量的流量传感器105和用于监测混合气体压力的压力传感器106。空氧混合部103入口分别与空气通道101、氧气通道102气路联通,空氧混合部103出口与混合气体通道104气路联通。患者接口200经管路107与混合气体通道104气路联通。其 中,患者接口200为非密封式患者接口。主机100用于接收并处理流量传感器105以及压力传感器106的监测数据,以输出高流量氧疗展示信息至患者状态显示屏300。患者状态显示屏300包括患者端压力动态显示区和/或患者吸入流量动态显示区,用于展示高流量氧疗展示信息。
本申请实施例提供的患者状态显示屏300,可以是触摸屏、也可以是高清显示屏,主机100可以与外接输入设备连接。用户可以通过输入设备及患者状态显示屏,与主机进行人机交互。
在一个示例中,治疗仪还包括湿化器108。湿化器108入口与混合气体通道104气路联通,湿化器108出口通过管路107与患者接口200气路联通。
在一个示例中,患者接口200为鼻插管,管路107与患者接口200为一体或分体结构。管路107与湿化器108可拆卸连接。
在实际使用过程中,随着技术的发展及进步,患者接口可不在局限于鼻插管,本申请将患者接口从患者鼻腔插入作为一个示例性存在。
在一个示例中,患者状态显示屏300还包括患者容量动态显示区。
在一个示例中,患者端压力动态显示区、患者吸入流量动态显示区、患者容量动态显示区位于同一显示界面。
在一个示例中,氧气通道102还包括氧气源接口1、氧气阀2及用于监测氧流量的氧流量传感器3。
在一个示例中,治疗仪还包括:气流控制器109。
气流控制器109连接氧气阀2及空氧混合部103,用于根据来自用户界面(或用户终端)的调节指令,生成气流控制信号,以便控制氧气阀2和/或空氧混合部103,调节治疗仪的输出氧流量、氧浓度或混合气体流量。
用户界面可以是上述的输入设备与显示屏组成的用户界面,也可以是主机与用户终端,如手机、笔记本电脑等建立无线或有线连接后,展示在用户终端界面的用户界面。该用户界面能够触发产生调节主机的调节指令。
在一个示例中,空氧混合部103包括涡轮。
通过上述可视化呼吸治疗仪,可以实时展示患者呼吸的相关信息,空气通道101、氧气通道102、空氧混合部103、混合气体通道104、流量传感器105、压力传感器106,组成了治疗仪的气路结构。患者状态显示屏300可以设置为与主机一体的。
本申请的治疗仪,在来自高压氧气源氧气进入治疗仪,经过氧气通道102的氧气源接口1,进入氧气阀2,在被氧气阀2调节后,经过氧流量传感器3进入空氧混合部103即涡轮。空气从大气进入治疗仪后,与氧气混合。混合气体被涡轮加压后,经过流量传感器105、压力传感器106,然后输出到通气管路,通气管路中有湿化器108,用于对混合气体进行加温、加湿。加温加湿后的混合其他通过患者接口(鼻导管)进入患者体内。
此外,气流控制器109可以控制氧气阀2,实现氧流量和氧浓度的调节,也可以控制空氧混合部,实现对混合气体总流量的控制。其中,总流量等于氧气流流量和空气流量之和,如果输入的氧流量超过总流量,则超出的氧气会通过空气的入口输出到大气中。
气流控制器控制的总流量目标和氧浓度目标,是用户设定的,如通过输入设备与显示屏组成的人机交互界面设定,或者通过可触摸操作的患者状态显示屏的人机交互界面设定。用户通过人机交互界面向气流控制器发送控制目标,也接收气流控制器返回的反馈信息。
目前的高流量输出设备无法灵活满足患者及医护人员的使用需求,不够灵活且智能,主要原因为治疗仪不能够监测患者呼吸相关参数,同时也不能进行参数数据的可视化展示。图2为本申请实施例提供的一种可视化呼吸治疗仪的可视化处理方法的流程示意图,可视化处理方法以治疗仪的主机中的软件模块为执行主体实现,软件模块可处于主机的处理器 及其存储介质上,如图2所示,该方法包括步骤S201-S203,:
S201,基于管路校验操作对应的采集数据及来自流量传感器的混合气体的输送流量值,通过预设管路压降模型,确定当前患者的患者接口压力值。
其中,管路校验操作为患者接口处于大气压下,预设时间内依次间隔输出多级阶梯流量的气流。采集数据至少包括:多级阶梯流量分别对应的阶梯流量值、各级阶梯流量对应的压力值。
管路校验操作为更换患者或者更换治疗仪的某些部分或初次使用时,需要进行的校验操作。管路校验操作下,患者接口不连接患者鼻腔,处于大气中,对管路的气阻进行校验。在给患者佩戴鼻导管通气前,先将机器与所有的要通气的管路器件连接好,这些器件包括但不限于细菌过滤器、通气管路、湿化器、鼻导管,保证鼻导管(患者接口)对大气,并且保证管路没有连接处泄漏和阻塞处。
在本申请实施例中,基于管路校验操作对应的采集数据及来自流量传感器的混合气体的输送流量值,通过预设管路压降模型,确定当前患者的患者接口压力值,具体包括:
根据多级阶梯流量,生成流量输出控制指令,并将流量输出控制指令发送至流量控制设备,以使流量控制设备在预设时间内,依次间隔输出多级阶梯流量的气流。
其中,依次间隔输出为各级阶梯流量的气流在预设时间的连续的各预定子时间内持续输出。预定子时间与各级阶梯流量一一对应。
换言之,在进行管路校验操作之前,治疗仪的存储介质中预先存储有多级阶梯流量如Qvent1_ca,Qvent2_ca,......,Qventn_ca,多级阶梯流量每一级的流量值不同。软件可以生成流量输出控制指令,并由流量控制设备在预设时间内,依次间隔输出多级阶梯流量的气流。流量控制设备可以是包含气流控制器、空氧混合部在内所组成的部分设备。
接着,获取来自压力传感器的各级阶梯流量对应的压力值。
例如,预设时间为2秒,每一级阶梯流量持续2秒,记录2秒下,每一级阶梯流量对应的压力值,直到记录下n个阶梯流量点的对应压力Pvent1_ca,Pvent2_ca,......,Pventn_ca;其中,n为自然数。
然后,基于各级阶梯流量对应的压力值及与其对应的阶梯流量值,确定管路压降模型的管路阻力系数。
具体地,根据各级阶梯流量对应的压力值、各级阶梯流量对应的压力值对应的多个阶梯流量值以及预设公式,建立线性方程组。并计算线性方程组的最小二乘解,并将最小二乘解作为管路阻力系数。
预设公式如下:
Pventi_ca=Rtube×Qventi_ca 2
其中,Pventi_ca为第i级阶梯流量对应的压力值。Rtube表示管路阻力系数。Qventi_ca为第i级阶梯流量值,每一级阶梯流量对应唯一的压力值。
线性方程组如下:
Figure PCTCN2022143379-appb-000001
根据上述线性方程组,可以得到下述公式,计算得出的最小二乘解,即为管路阻力系数Rtube。
Figure PCTCN2022143379-appb-000002
至此,完成了管路阻力系数即气阻的确定,需要说明的是,每次新换患者或是管路后, 都应重新执行一番管路校验操作。
在患者接口接通当前患者的通气端,也就是患者开始使用治疗仪的情况下,根据管路压降模型及来自压力传感器的输送压力值、输送流量值,确定当前患者的患者接口压力值。
管路压降模型如下:
Pnose=Pvent-Rtube×Qvent 2
其中,Pnose为患者接口压力值,Pvent为输送压力值,Qvent为输送流量值。
步骤S201,为治疗仪在离线状态下测定管路阻力系数,并根据管路阻力系数进行在线鼻端压力Pnose的步骤。由于患者在实际使用本申请治疗仪的过程中,高流量送气过程中,患者接口并非鼻塞,将出现气体泄露的情况发生。为保证高流量氧疗时,得到的患者呼吸流量值的准确度,本申请提供了以下实施例步骤S202。
S202,基于当前患者预定次数呼吸内,患者接口压力值及相应的输送流量值、预设的管路输出泄漏模型,实时确定当前患者的呼吸流量值。
预定次数为预先设定的,例如3次、5次等,该预定次数呼吸用于测定管路输出泄露模型的泄漏模型参数。
在本申请实施例中,基于当前患者预定次数呼吸内,患者接口压力值及相应的输送流量值、预设的管路输出泄漏模型,实时确定当前患者的呼吸流量值,具体包括:
首先,根据管路输出泄露模型,对当前患者在预定次数呼吸内患者接口压力值进行绝对值开方处理及符号函数运算,得到压力值中间量。
经鼻导管未堵处泄漏到大气的流量Qleak与鼻端压力Pnose成正比,管路输出泄露模型如下:
Figure PCTCN2022143379-appb-000003
其中,Qleak为泄露到大气中的流量值,Kleak为泄漏模型参数,Sgn为取正负函数,在本申请实施例中,Sgn函数在Pnose低于大气压,则为负,反之则为正。
也就是说,根据上述管路输出泄露模型,以及当前患者在预定次数呼吸内每次呼吸患者接口压力值,求解
Figure PCTCN2022143379-appb-000004
得到压力值中间量。
接着,分别对压力值中间量、输送流量值进行积分运算。
即,以呼吸起始时刻、终止时刻,分别对压力值中间量、输送流量值进行积分运算。
随后,计算积分运算后的压力值中间量与积分运算后的输送流量值的除商值,并将除商值作为管路输出泄漏模型的泄漏模型参数。
即,
Figure PCTCN2022143379-appb-000005
其中,N为自然数,在上述实施例对应的公式中N可以为1,指代预设次数,即计算积分运算后的压力值中间量与积分运算后的输送流量值的除商值;t0为呼吸起始时刻,te为呼吸终止时刻。在实际使用过程中,公式还存在患者呼吸流量Qpatient的积分量,由于患者每次呼吸吸入气量近似等于呼出气量,在一次呼吸中吗,患者呼吸流量的积分量为0,不考虑进上述公式。
紧接着,基于泄漏模型参数、患者接口压力值、管路输出泄漏模型及输送流量值,实时确定当前患者的呼吸流量值。
将预设次数呼吸得到的泄露模型参数,实时测得的患者接口压力值,输入管路输出泄露模型,得到患者每次呼吸泄露到大气中的流量值。根据输送流量值与该流量值的差值,即Qpatient=Qvent-Qleak,计算当前患者的呼吸流量值。
在本申请实施例中,基于当前患者预定次数呼吸内,患者接口压力值及相应的输送流量值、预设的管路输出泄漏模型,实时确定当前患者的呼吸流量值,具体还包括:
识别当前患者的呼吸触发信号,并累加呼吸触发信号的触发次数。在触发次数大于或 等于预定次数的情况下,确定各次呼吸内的患者接口压力值及相应的输送流量值。基于预定次数个患者接口压力值及相应的输送流量值,确定泄漏模型参数。基于泄漏模型参数、患者接口压力值、管路输出泄漏模型及输送流量值,实时确定当前患者的呼吸流量值。
换言之,治疗仪的软件模块,可以对患者呼吸进行识别,识别可以以压力Pnose或是Qpatient的瞬间改变超出某一阈值来识别(Pnose的下降突变点或是Qpatient的上升突变点标志患者吸气开始),也可以结合涡轮的转速或是控制电流改变等进行识别,本申请对于识别的具体方式不作具体限定。
泄露模型参数及呼吸流量值的计算参考上述实施例,在此不再赘述。
其中,基于预定次数个患者接口压力值及相应的输送流量值,确定泄漏模型参数,具体包括:
确定预定次数个患者接口压力值相应的多个压力值中间量。以及确定与多个压力中间量相对应的多个输送流量值。分别对多个压力值中间量、多个输送流量值进行积分求和运算。计算积分求和运算后的多个压力值中间量与积分求和运算后的多个输送流量值的除商值,并将除商值作为管路输出泄漏模型的泄漏模型参数。基于泄漏模型参数、患者接口压力值、管路输出泄漏模型及输送流量值,实时确定当前患者的呼吸流量值。
换言之,本申请上述用于计算泄漏模型参数的公式中的N为预设次数个,其中,N在实际使用过程中,取3-5较合适。
在本申请的一个实施例中,基于预定次数个患者接口压力值及相应的输送流量值,确定泄漏模型参数之后,还包括:
在识别到当前患者的呼吸触发信号的情况下,确定触发次数的累加起点呼吸。
根据累加起点呼吸与当前呼吸的间隔呼吸次数及预定次数,更新触发次数的累加起点呼吸为累加起点呼吸后的第N次呼吸。N为自然数。N为间隔呼吸次数与预定次数的差值。
此处的N指的是间隔呼吸次数与预定次数的差值。例如,预定次数为3,以第A次呼吸为累加起点呼吸,A次呼吸后的B、C次呼吸达到了预定次数,在第D次呼吸时,软件应以A、B、C次呼吸,计算出了泄漏模型参数,并计算第D次呼吸的呼吸流量值。累加起点呼吸为A,其至当前呼吸D的间隔呼吸次数为4,大于预定次数,且N=1。更新触发次数的累加起点呼吸为累加起点呼吸后的第N次呼吸,即更新触发次数的累加起点呼吸为A呼吸后的第1次呼吸B。即以B为累加起点呼吸。
通过上述累加起点呼吸的更新,可以对泄露模型参数进行滚动更新,每次更新都基于前预定次数次呼吸的输送压力值及输送流量值。这样当患者佩戴的鼻导管位置发生改变时,也能够及时适应其改变。
S203,基于患者接口压力值、呼吸流量值,确定当前患者的高流量氧疗展示信息,并将高流量氧疗展示信息发送至患者状态显示屏,以展示高流量氧疗展示信息。
在本申请实施例中,软件根据实时得到的患者接口压力值及呼吸流量值,可以产生相应的患者接口压力值曲线及呼吸流量曲线。对呼吸流量曲线积分计算,也可以得到患者容量曲线。如图3所示,高流量氧疗展示信息至少包括以下一项或多项:患者接口压力曲线(鼻端压力)、呼吸流量曲线(患者流量)、患者容量曲线、呼吸频率(respiration rate,RR)、潮气量(Tidal volume,VT)、分钟通气量(minute ventilation volume,MV)、呼吸终末压力(Positive End Expiratory Pressure,PEEP)、吸气峰流量(peak inspiratory flow,图中用Fpeak表示)、实际吸入氧浓度(图中用FiO2_real表示)。HFT表示高流量氧疗。
实际吸入氧浓度可以根据以下实施例确定,具体如下。
首先,根据当前患者各次呼吸的呼吸流量值及相应的输送流量值,确定各次呼吸对应的第一气流容量及第二气流容量。第一气流容量为当前患者的各次呼吸从患者接口吸入气流容量。第二气流容量为当前患者的各次呼吸从大气中吸入气流容量。
接着,根据当前患者的各次呼吸的呼吸流量值,确定吸入总容量。
然后,获取来自氧流量传感器的氧流量数据,并根据氧流量数据,确定输出氧浓度。
最后,将输出氧浓度、第一气流容量、第二气流容量、预设大气氧占比及吸入总容量,输入预设吸入氧浓度公式,计算实际吸入氧浓度。
预设吸入氧浓度公式如下:
FiO2_real=(V1×FiO2_vent+V2×21%)/V3
其中,FiO2_vent为输出氧浓度,V1为第一气流容量,V2第二气流容量,V3为吸入总容量,V1指一次吸气中吸气流量低于治疗仪送气流量的那部分患者流量的累计容量,V2指一次吸气中吸气流量超出治疗仪送气流量的那部分患者流量的累计容量,V3指一次吸气中总的患者流量的累计容量。其中,吸气空气的氧浓度为21%。
在本申请的一个实施例中,呼吸频率RR在每次吸气开始的时刻t0(也就是前次呼吸的结束时刻te),计算前一次呼吸的时长Tie=te-t0,再将一次呼吸时长Tie(单位秒)的倒数乘以60,即为本次呼吸算得的当前频率RRi,前多次呼吸频率取移动平均,可作为呼吸频率RR。
在本申请的一个实施例中,潮气量VT每次吸气开始,对容量清零,并重新开始对Qpatient进行累加,以计算患者容量Vpatient,在下一次吸气开始时,算得本次吸气的最大容量Vmax和最小容量Vmin,则本次呼吸的潮气量即为VTi=(2×Vmax-Vmin)/2。前多次呼吸的潮气量取移动平均可作为潮气量VT。
在本申请的一个实施例中,分钟通气量MV可以在每次呼吸更新一次,MV=VT×RR。
在本申请的一个实施例中,呼气末压力PEEP为在每次吸气开始时刻,计算此时刻之前(50毫秒—>100毫秒)时段的患者接口压力值Pnose平均值,作为PEEP的监测值。
在本申请的一个实施例中,吸气峰值流量Fpeak可以是每次呼吸中,检测Qpatient波形的最高点数值,作为吸气峰值监测值Fpeak。
本申请通过上述构建的管路压降模型,能够得到离线的管路阻力系数,然后在线患者接口压力值计算Pnose,以及通过管路输出泄露模型,进行在线计算泄露模型参数的计算。基于该两个模型及其参数计算结果,可以实时监测治疗仪所治疗患者的患者接口压力波形、患者呼吸流量波形,便于医护人员根据波形,及时掌握治疗过程中,管路佩戴状态和患者治疗效果。
本申请还能够对患者接口压力波形、患者呼吸流量波形进行分析,得到呼吸的若干相关参数,医护人员可以根据监测的呼吸参数精确地滴定高流量治疗设置参数,如流量目标。本申请提供的可视化呼吸治疗仪,为医护人员使用高流量模式时设定治疗参数提供了更全面的决策支持工具,避免了盲目的设置,并使用户能更好的把控序贯治疗的趋势。从而实现了HFNC治疗仪使用过程中,能够灵活满足患者及医护人员的使用需求,使HFNC治疗仪更加灵活且智能,提高用户的使用体验。
本申请的软件模型所实现的可视化处理方法,包括如下步骤,如图4所示,具体包括:
S401,离线管道阻力系数计算Rtube;
S402,在线鼻端压力计算Pnose;
S403,在线鼻导管泄露系数计算Kleak;
S404,患者流量计算Qpatient;
S405,呼吸参数计算RR、VT、MV、PEEP、Fpeak、FiO2_real;
S406,波形和参数信息显示以及异常信息提示。
软件模块可以将得到的波形及参数,发送至显示屏上进行显示,并对患者呼吸过程中或治疗仪运行过程中的异常信息进行提示。
本申请实施例还提供了一种可视化呼吸治疗仪的使用方法,应用于上述可视化呼吸治疗仪,可视化呼吸治疗仪的使用方法包括:
在更换患者接口和/或管路后测量患者接口与管路之间的管路阻力系数的管路校验操作步骤。
其中,管路校验操作在测定管路阻力系数时患者接口直接与大气接通。
管路校验操作还包括试驾多级阶梯流量的步骤,具体包括:根据多级阶梯流量,生成流量输出控制指令,并将流量输出控制指令发送至流量控制设备,以使流量控制设备在预设时间内,依次间隔输出多级阶梯流量的气流。其中,依次间隔输出为各级阶梯流量的气流在预设时间的连续的各预定子时间内持续输出。预定子时间与各级阶梯流量一一对应。获取来自压力传感器的各级阶梯流量对应的压力值。基于各级阶梯流量对应的压力值及与其对应的阶梯流量值,确定管路压降模型的管路阻力系数。
在结束管路校验操作后,即可将患者接口插入患者鼻腔,进行治疗仪的正常使用。可以参考上述可视化处理方法的具体实施例,在此不再赘述。
本领域内的技术人员应明白,本说明书实施例可提供为方法、系统、或计算机程序产品。因此,本说明书实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本说明书实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书是参照根据本说明书实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本说明书可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本说明书,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于治疗仪、使用方法实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
以上所述仅为本说明书的一个或多个实施例而已,并不用于限制本说明书。对于本领域技术人员来说,本说明书的一个或多个实施例可以有各种更改和变化。凡在本说明书的一个或多个实施例的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本说明书的权利要求范围之内。

Claims (20)

  1. 一种可视化呼吸治疗仪,其特征在于,所述治疗仪包括主机和患者接口、患者状态显示屏;
    所述主机设有空气通道、氧气通道、空氧混合部以及混合气体通道,并包括用于监测混合气体流量的流量传感器和用于监测混合气体压力的压力传感器;
    所述空氧混合部入口分别与所述空气通道、所述氧气通道气路联通,所述空氧混合部出口与所述混合气体通道气路联通;
    所述患者接口经管路与所述混合气体通道气路联通;其中,所述患者接口为非密封式患者接口;
    所述主机用于接收并处理所述流量传感器以及所述压力传感器的监测数据,以输出高流量氧疗展示信息至所述患者状态显示屏;
    所述患者状态显示屏包括患者端压力动态显示区和/或患者吸入流量动态显示区,用于展示所述高流量氧疗展示信息。
  2. 根据权利要求1所述的可视化呼吸治疗仪,其特征在于,所述治疗仪还包括湿化器;
    所述湿化器入口与所述混合气体通道气路联通,所述湿化器出口与所述患者接口气路联通。
  3. 根据权利要求2所述的可视化呼吸治疗仪,其特征在于,所述患者接口为鼻插管,所述管路与所述患者接口为一体或分体结构;所述管路与所述湿化器可拆卸连接。
  4. 根据权利要求1所述的可视化呼吸治疗仪,其特征在于,所述患者状态显示屏还包括患者容量动态显示区。
  5. 根据权利要求4所述的可视化呼吸治疗仪,其特征在于,所述患者端压力动态显示区、患者吸入流量动态显示区、患者容量动态显示区位于同一显示界面。
  6. 根据权利要求1所述的可视化呼吸治疗仪,其特征在于,所述氧气通道还包括氧气源接口、氧气阀及用于监测氧流量的氧流量传感器。
  7. 根据权利要求6所述的可视化呼吸治疗仪,其特征在于,所述治疗仪还包括:气流控制器;
    所述气流控制器连接所述氧气阀及所述空氧混合部,用于根据来自用户界面的调节指令,生成气流控制信号,以便控制所述氧气阀和/或所述空氧混合部,调节所述治疗仪的输出氧流量、氧浓度或混合气体流量。
  8. 根据权利要求7所述的可视化呼吸治疗仪,其特征在于,所述空氧混合部包括涡轮。
  9. 一种可视化呼吸治疗仪的可视化处理方法,其特征在于,所述方法包括:
    基于管路校验操作对应的采集数据及来自流量传感器的混合气体的输送流量值,通过预设管路压降模型,确定当前患者的患者接口压力值;其中,所述管路校验操作为患者接口处于大气压下,预设时间内依次间隔输出多级阶梯流量的气流;所述采集数据至少包括:所述多级阶梯流量分别对应的阶梯流量值、各级阶梯流量对应的压力值;
    基于所述当前患者预定次数呼吸内,所述患者接口压力值及相应的所述输送流量值、预设的管路输出泄漏模型,实时确定所述当前患者的呼吸流量值;
    基于所述患者接口压力值、所述呼吸流量值,确定所述当前患者的高流量氧疗展示信息,并将所述高流量氧疗展示信息发送至患者状态显示屏,以展示所述高流量氧疗展示信息。
  10. 根据权利要求9所述方法,其特征在于,基于管路校验操作对应的采集数据及来自流量传感器的混合气体的输送流量值,通过预设管路压降模型,确定当前患者的患者接口压力值,具体包括:
    根据所述多级阶梯流量,生成流量输出控制指令,并将所述流量输出控制指令发送至流量控制设备,以使所述流量控制设备在所述预设时间内,依次间隔输出多级阶梯流量的 气流;其中,所述依次间隔输出为各级阶梯流量的气流在所述预设时间的连续的各预定子时间内持续输出;所述预定子时间与各级阶梯流量一一对应;
    获取来自压力传感器的各级阶梯流量对应的压力值;
    基于所述各级阶梯流量对应的压力值及与其对应的所述阶梯流量值,确定所述管路压降模型的管路阻力系数;
    在所述患者接口接通所述当前患者的通气端的情况下,根据所述管路压降模型及来自所述压力传感器的输送压力值、所述输送流量值,确定所述当前患者的所述患者接口压力值。
  11. 根据权利要求10所述方法,其特征在于,基于所述各级阶梯流量对应的压力值及与其对应的所述阶梯流量值,确定所述管路压降模型的管路阻力系数,具体包括:
    根据所述各级阶梯流量对应的压力值、所述各级阶梯流量对应的压力值对应的多个所述阶梯流量值以及预设公式,建立线性方程组;
    计算所述线性方程组的最小二乘解,并将所述最小二乘解作为所述管路阻力系数。
  12. 根据权利要求9所述方法,其特征在于,基于所述当前患者预定次数呼吸内,所述患者接口压力值及相应的所述输送流量值、预设的管路输出泄漏模型,实时确定所述当前患者的呼吸流量值,具体包括:
    根据所述管路输出泄露模型,对所述当前患者在预定次数呼吸内所述患者接口压力值进行绝对值开方处理及符号函数运算,得到压力值中间量;
    分别对所述压力值中间量、所述输送流量值进行积分运算;
    计算积分运算后的所述压力值中间量与积分运算后的所述输送流量值的除商值,并将所述除商值作为所述管路输出泄漏模型的泄漏模型参数;
    基于所述泄漏模型参数、所述患者接口压力值、所述管路输出泄漏模型及所述输送流量值,实时确定所述当前患者的呼吸流量值。
  13. 根据权利要求12所述方法,其特征在于,基于所述当前患者预定次数呼吸内,所述患者接口压力值及相应的所述输送流量值、预设的管路输出泄漏模型,实时确定所述当前患者的呼吸流量值,具体还包括:
    识别所述当前患者的呼吸触发信号,并累加所述呼吸触发信号的触发次数;
    在所述触发次数大于或等于所述预定次数的情况下,确定各次呼吸内的所述患者接口压力值及相应的所述输送流量值;
    基于所述预定次数个所述患者接口压力值及相应的所述输送流量值,确定所述泄漏模型参数;
    基于所述泄漏模型参数、所述患者接口压力值、所述管路输出泄漏模型及所述输送流量值,实时确定所述当前患者的呼吸流量值。
  14. 根据权利要求13所述方法,其特征在于,基于所述预定次数个所述患者接口压力值及相应的所述输送流量值,确定所述泄漏模型参数,具体包括:
    确定所述预定次数个所述患者接口压力值相应的多个所述压力值中间量;以及
    确定与多个所述压力中间量相对应的多个所述输送流量值;
    分别对多个所述压力值中间量、多个所述输送流量值进行积分求和运算;
    计算积分求和运算后的多个所述压力值中间量与积分求和运算后的多个所述输送流量值的除商值,并将所述除商值作为所述管路输出泄漏模型的泄漏模型参数;
    基于所述泄漏模型参数、所述患者接口压力值、所述管路输出泄漏模型及所述输送流量值,实时确定所述当前患者的呼吸流量值。
  15. 根据权利要求13所述方法,其特征在于,基于所述预定次数个所述患者接口压力值及相应的所述输送流量值,确定所述泄漏模型参数之后,所述方法还包括:
    在识别到所述当前患者的呼吸触发信号的情况下,确定所述触发次数的累加起点呼吸;
    根据所述累加起点呼吸与当前呼吸的间隔呼吸次数及所述预定次数,更新所述触发次数的累加起点呼吸为所述累加起点呼吸后的第N次呼吸;所述N为自然数;所述N为间隔呼吸次数与所述预定次数的差值。
  16. 根据权利要求9所述方法,其特征在于,所述高流量氧疗展示信息至少包括以下一项或多项:患者接口压力曲线、呼吸流量曲线、患者容量曲线、呼吸频率、潮气量、分钟通气量、呼吸终末压力、吸气峰流量、实际吸入氧浓度。
  17. 根据权利要求16所述方法,其特征在于,所述方法还包括:
    根据所述当前患者各次呼吸的所述呼吸流量值及相应的所述输送流量值,确定所述各次呼吸对应的第一气流容量及第二气流容量;所述第一气流容量为所述当前患者的各次呼吸从所述患者接口吸入气流容量;所述第二气流容量为所述当前患者的各次呼吸从大气中吸入气流容量;
    根据所述当前患者的各次呼吸的呼吸流量值,确定吸入总容量;
    获取来自氧流量传感器的氧流量数据,并根据所述氧流量数据,确定输出氧浓度;
    将所述输出氧浓度、所述第一气流容量、所述第二气流容量、预设大气氧占比及所述吸入总容量,输入预设吸入氧浓度公式,计算所述实际吸入氧浓度。
  18. 一种可视化呼吸治疗仪的使用方法,其特征在于,应用于如权利要求1-8任一项所述的可视化呼吸治疗仪,所述呼吸治疗仪的使用方法包括:
    在更换患者接口和/或管路后测量所述患者接口与所述管路之间的管路阻力系数的管路校验操作步骤。
  19. 根据权利要求18所述的治疗仪的使用方法,其特征在于,测定所述管路阻力系数时所述患者接口直接与大气接通。
  20. 根据权利要求18所述的治疗仪的使用方法,其特征在于,所述管路校验操作包括试驾多级阶梯流量的步骤,具体包括:根据所述多级阶梯流量,生成流量输出控制指令,并将所述流量输出控制指令发送至流量控制设备,以使所述流量控制设备在预设时间内,依次间隔输出多级阶梯流量的气流;其中,所述依次间隔输出为各级阶梯流量的气流在所述预设时间的连续的各预定子时间内持续输出;所述预定子时间与各级阶梯流量一一对应;
    获取来自压力传感器的各级阶梯流量对应的压力值;
    基于所述各级阶梯流量对应的压力值及与其对应的阶梯流量值,确定管路压降模型的管路阻力系数。
PCT/CN2022/143379 2022-12-23 2022-12-29 一种可视化呼吸治疗仪、可视化处理方法及使用方法 WO2024130777A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211668073.9 2022-12-23
CN202211668073 2022-12-23

Publications (1)

Publication Number Publication Date
WO2024130777A1 true WO2024130777A1 (zh) 2024-06-27

Family

ID=91587606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143379 WO2024130777A1 (zh) 2022-12-23 2022-12-29 一种可视化呼吸治疗仪、可视化处理方法及使用方法

Country Status (1)

Country Link
WO (1) WO2024130777A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010099373A1 (en) * 2009-02-27 2010-09-02 Nellcor Puritan Bennett Llc Leak-compensated respiratory mechanics estimation in medical ventilators
US20150107584A1 (en) * 2013-10-18 2015-04-23 Covidien Lp Methods and systems for leak estimation
CN107735133A (zh) * 2015-07-07 2018-02-23 皇家飞利浦有限公司 用于无创通气的患者气道和泄漏流量估计的方法和系统
CN109303959A (zh) * 2018-10-26 2019-02-05 北京怡和嘉业医疗科技股份有限公司 通气治疗设备及通气治疗设备的控制方法
US20190344032A1 (en) * 2018-05-14 2019-11-14 General Electric Company Method and systems for executing nasal high flow therapy with settings determined from flow outputs during a previous ventilation mode
CN111603641A (zh) * 2020-03-31 2020-09-01 湖南万脉医疗科技有限公司 一种基于无创呼吸机的肺泡通气量监控系统与控制方法
CN111821552A (zh) * 2020-08-14 2020-10-27 华氧医疗科技(大连)有限公司 一种用于医院和家庭环境的多功能呼吸治疗系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010099373A1 (en) * 2009-02-27 2010-09-02 Nellcor Puritan Bennett Llc Leak-compensated respiratory mechanics estimation in medical ventilators
US20150107584A1 (en) * 2013-10-18 2015-04-23 Covidien Lp Methods and systems for leak estimation
CN107735133A (zh) * 2015-07-07 2018-02-23 皇家飞利浦有限公司 用于无创通气的患者气道和泄漏流量估计的方法和系统
US20190344032A1 (en) * 2018-05-14 2019-11-14 General Electric Company Method and systems for executing nasal high flow therapy with settings determined from flow outputs during a previous ventilation mode
CN109303959A (zh) * 2018-10-26 2019-02-05 北京怡和嘉业医疗科技股份有限公司 通气治疗设备及通气治疗设备的控制方法
CN111603641A (zh) * 2020-03-31 2020-09-01 湖南万脉医疗科技有限公司 一种基于无创呼吸机的肺泡通气量监控系统与控制方法
CN111821552A (zh) * 2020-08-14 2020-10-27 华氧医疗科技(大连)有限公司 一种用于医院和家庭环境的多功能呼吸治疗系统及方法

Similar Documents

Publication Publication Date Title
US11033700B2 (en) Leak determination in a breathing assistance system
US20230240555A1 (en) Systems and methods for missed breath detection and indication
US11235114B2 (en) Methods and systems for leak estimation
US8881724B2 (en) Device and method for graphical mechanical ventilator setup and control
US10207069B2 (en) System and method for determining ventilator leakage during stable periods within a breath
AU2011218803B2 (en) A method for estimating at least one parameter at a patient circuit wye in a medical ventilator providing ventilation to a patient
US20140000606A1 (en) Methods and systems for mimicking fluctuations in delivered flow and/or pressure during ventilation
US20240001060A1 (en) Device for supplying therapeutic gas particularly no or n2o to a patient
CA2920624C (en) Systems and methods for providing ventilation
US11202875B2 (en) Cough assistance and measurement system and method
US20210052839A1 (en) Anterior interface pressure monitoring during ventilation
WO2024130777A1 (zh) 一种可视化呼吸治疗仪、可视化处理方法及使用方法
US20230169888A1 (en) System for simulating the breathing of a living being
US20220096764A1 (en) Synchronized high-flow system
CN116407718A (zh) 一种可视化呼吸治疗仪、可视化处理方法及使用方法
WO2024148611A1 (zh) 一种医疗设备、通气设备以及通气调控方法
WO2016103145A1 (en) Systems and methods for ventilator control including determination of patient fatigue and pressure support ventilation (psv) level

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22969064

Country of ref document: EP

Kind code of ref document: A1