WO2024127577A1 - Refrigeration cycle device and compressor - Google Patents
Refrigeration cycle device and compressor Download PDFInfo
- Publication number
- WO2024127577A1 WO2024127577A1 PCT/JP2022/046177 JP2022046177W WO2024127577A1 WO 2024127577 A1 WO2024127577 A1 WO 2024127577A1 JP 2022046177 W JP2022046177 W JP 2022046177W WO 2024127577 A1 WO2024127577 A1 WO 2024127577A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- group
- compressor
- compound
- refrigeration cycle
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/32—Esters
- C10M105/38—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/20—Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
- C10M107/22—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M107/24—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol, aldehyde, ketonic, ether, ketal or acetal radical
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/20—Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
- C10M107/30—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M107/32—Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
- C10M107/34—Polyoxyalkylenes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/30—Refrigerators lubricants or compressors lubricants
Definitions
- This disclosure relates to a refrigeration cycle device and a compressor.
- R-410A that was mainly used in the past is being replaced with refrigerants that have a lower Global Warming Potential (GWP) than R-410A.
- R-410A is a mixed refrigerant that is a mixture of 50% by mass of R-32 (difluoromethane) and 50% by mass of R-125 (pentafluoroethane), and the GWP of R-410A is 2088.
- R-466A a refrigerant announced in June 2018, has a GWP of 733, which is lower than R-410A, and is classified as non-flammable (Class 1) in ANSI/ASHRAE Standard 34-2019.
- the mixing ratios of R-32, R-125 and R-13I1 are 49.0 mass% (composition tolerance: +0.5/-2.0), 11.5 mass% (composition tolerance: +2.0/-0.5) and 39.5 mass% (composition tolerance: +2.0/-0.5), respectively.
- Patent Document 1 JP Patent Publication No. 2020-034260
- Patent Document 2 JP Patent Publication No. 2020-034261 disclose a refrigeration cycle device that uses R-466A as a refrigerant.
- Halogenated hydrocarbons such as R-13I1, which are non-flammable refrigerants with low GWP, are those that are bonded to halogens other than fluorine.
- the above-mentioned R-466A uses R-13I1, but because the GWPs of R-32 and R-125 are high, the GWP of R-466A is 733.
- R-13I1 In order to further reduce the GWP of a mixed refrigerant containing R-13I1, it is preferable to mix R-13I1 with a refrigerant that has a smaller GWP and high cooling performance.
- refrigerants with low GWP and high cooling performance include HFO (hydrofluoroolefin) refrigerants.
- Patent Document 3 JP Patent Publication No. 2010-509489 discloses a refrigerant that is a mixture of hydrofluoroalkene and iodocarbon.
- the hydrofluoroalkene is an HFO-based refrigerant
- the iodocarbon is R-13I1.
- the present disclosure aims to provide a refrigeration cycle device and compressor that can ensure reliability even when using a mixed refrigerant that contains a halogenated hydrocarbon bonded to a halogen other than fluorine and an HFO-based refrigerant.
- the refrigeration cycle device comprises: A refrigerant; A compressor that compresses the refrigerant; A refrigeration cycle apparatus comprising: a refrigeration oil for lubricating a sliding part of the compressor,
- the refrigerant includes a first refrigerant and a second refrigerant,
- the first refrigerant is a hydrofluoroolefin refrigerant,
- the second refrigerant is a halogenated hydrocarbon containing at least one element selected from the group consisting of chlorine, bromine, and iodine;
- the refrigerating machine oil contains one or both of a first compound and a second compound, the first compound comprises a first alkyl group having at least one tertiary carbon;
- the second compound is a refrigeration cycle device including an oxygen atom and a second alkyl group having a primary carbon or a secondary carbon adjacent to the oxygen atom.
- the refrigeration cycle device comprises: A refrigerant; A compressor that compresses the refrigerant; Refrigeration oil for lubricating sliding parts of the compressor; A refrigerant pipe through which the refrigerant passes,
- the refrigerant includes a first refrigerant and a third refrigerant,
- the first refrigerant is a hydrofluoroolefin refrigerant,
- the third refrigerant is a refrigerant containing at least one element selected from the group consisting of chlorine, bromine, and iodine,
- the refrigerating machine oil contains one or both of a first compound and a second compound, the first compound comprises a first alkyl group having at least one tertiary carbon; the second compound comprises an oxygen atom and a second alkyl group having a primary or secondary carbon adjacent to the oxygen atom;
- the compressor and/or the refrigerant piping are obtained by reusing an existing compressor and/or an existing refrigerant piping in
- the compressor according to the present disclosure comprises: A compressor for use in a refrigeration cycle device,
- the refrigeration cycle device includes: A refrigerant; A compressor that compresses the refrigerant; and a refrigeration oil for lubricating a sliding part of the compressor.
- the refrigerant includes a first refrigerant and a second refrigerant,
- the first refrigerant is a hydrofluoroolefin refrigerant,
- the second refrigerant is a halogenated hydrocarbon containing at least one element selected from the group consisting of chlorine, bromine, and iodine;
- the refrigerating machine oil contains one or both of a first compound and a second compound, the first compound comprises a first alkyl group having at least one tertiary carbon;
- the second compound is a compressor that includes an oxygen atom and a second alkyl group having a primary or secondary carbon adjacent to the oxygen atom.
- the compressor according to the present disclosure comprises: A compressor for use in a refrigeration cycle device,
- the refrigeration cycle device includes: A refrigerant; A compressor that compresses the refrigerant; Refrigeration oil for lubricating sliding parts of the compressor; a refrigerant pipe through which the refrigerant passes,
- the refrigerant includes a first refrigerant and a third refrigerant,
- the first refrigerant is a hydrofluoroolefin refrigerant
- the third refrigerant is a refrigerant containing at least one element selected from the group consisting of chlorine, bromine, and iodine
- the refrigerating machine oil contains one or both of a first compound and a second compound, the first compound comprises a first alkyl group having at least one tertiary carbon; the second compound comprises an oxygen atom and a second alkyl group having a primary or secondary carbon adjacent to the oxygen atom;
- a refrigeration cycle device and compressor that can ensure reliability even when using a mixed refrigerant that contains a halogenated hydrocarbon bonded with a halogen other than fluorine and an HFO-based refrigerant.
- 1 is a configuration diagram of a refrigeration cycle device according to an embodiment
- 1 is a cross-sectional view showing a cross section parallel to the axial direction of a main shaft of a motor of a compressor according to an embodiment.
- 3 is a cross-sectional view showing a cross section AA in FIG. 2 of a rotor included in the compressor according to the embodiment.
- 4 is a cross-sectional view showing a cross section taken along line BB in FIG. 3 of the magnet included in the compressor according to the embodiment.
- the C-I bond in R-13I1 has low bond energy, so the bond breaks easily and radicals (CF3.) are easily generated.
- the magnet 44 is a neodymium magnet or if the refrigeration cycle device is equipped with parts made of brass, the bond breaks more easily when R-13I1 comes into contact with a neodymium magnet or parts made of brass.
- the decomposition of R-13I1 when it comes into contact with a neodymium magnet is shown in the following reaction formula (1).
- the radical ( CF3 .) generated in the above reaction formula (1) acts as a radical polymerization initiator for HFO-based refrigerants containing multiple bonds.
- the CF3 . radical has a small molecular size and is easily accessible to double bonds, so it is easy to polymerize refrigerants containing double bonds.
- the radical polymerization caused by the radical ( CF3 .) and a refrigerant containing a double bond is shown in the following reaction formula (2).
- R 1 , R 2 and R 3 each represent an alkyl group, fluorine or hydrogen.
- Radical polymerization is a reaction similar to that which occurs when synthesizing polyethylene, etc. Free radicals are generated that initiate polymerization, and these free radicals react with molecules containing double bonds, radicalizing the molecules containing double bonds. The radicalized molecules then react with other molecules containing double bonds, extending their chain length. Ultimately, the radicals react with each other, and the polymerization reaction stops. It is believed that this series of reactions takes place mainly in the sliding parts, which become hot, and in the refrigerant discharge parts of compressors.
- the refrigerant containing double bonds becomes a fluororesin-like compound.
- Fluororesin is extremely stable and has low solubility, so it does not dissolve in refrigeration oil or refrigerant. For this reason, there is a problem that the fluororesin-like compound produced by radical polymerization turns into sludge and clogs the refrigerant piping, reducing the reliability of the refrigeration cycle. This problem is one that the inventors have newly discovered.
- FIG. 1 is a configuration diagram of a refrigeration cycle device according to a first embodiment.
- the refrigeration cycle device of this embodiment includes a compressor 1, a condenser 2, an expansion valve 3, and an evaporator 4. These are connected by refrigerant pipes 5a to 5d to form a refrigerant circuit 5.
- Gaseous refrigerant flows through the refrigerant circuit 5, and is compressed by the compressor 1.
- the gaseous refrigerant compressed by the compressor 1 is cooled to become a high-pressure liquid refrigerant or a two-phase gas-liquid refrigerant.
- the high-pressure liquid refrigerant or the two-phase gas-liquid refrigerant is depressurized.
- the evaporator 4 the depressurized refrigerant is heated to become a low-pressure gaseous refrigerant.
- the compressor 1 sucks in the refrigerant that has become low-pressure gaseous by the evaporator 4 and compresses it again. In this way, the refrigerant circulates within the refrigerant circuit 5 of the refrigeration cycle device 100.
- the condenser blower 6 is a component that sends air to the condenser 2, and is provided to promote the refrigerant flowing through the condenser 2 to exchange heat with the air and absorb or release heat.
- the evaporator blower 7 is a component that sends air to the evaporator 4, and is provided to promote the refrigerant flowing through the evaporator 4 to exchange heat with the air and absorb or release heat.
- the refrigeration cycle device may be, for example, a device capable of both cooling and heating, a device capable of only cooling, or a device capable of only heating, and can be applied to various types of refrigeration and air conditioning devices.
- FIG. 2 is a cross-sectional view showing an example of a compressor of a refrigeration cycle device according to this embodiment.
- compressor (electric refrigerant compressor) 200 has a shell 8.
- the shell has a compression mechanism 9 therein, and is connected to a suction pipe 10 for allowing the refrigerant to flow into the inside and a discharge pipe 11 for allowing the refrigerant to flow out to the outside.
- the compression mechanism 9 is configured to compress the refrigerant that has entered the shell 8 from the suction pipe 10 and discharge it from the discharge pipe 11.
- the compressor 1 is equipped with a motor section having a shaft 12, a rotor 17, and a stator 18.
- the compression mechanism 9 is driven by this motor section.
- Refrigeration oil (lubricating oil) for lubricating the sliding parts in the compression mechanism 9 and the motor section is stored in the oil reservoir section 13.
- FIG. 3 is a cross-sectional view showing the A-A cross section in FIG. 2 of the rotor of the compressor according to the embodiment.
- the rotor 17 has a rotor core 43 and a plurality of magnets 44.
- the rotor core 43 is formed by stacking multiple disk-shaped steel plates.
- multiple magnet insertion holes 43a, multiple refrigerant passage holes 43b, and a shaft hole 43c are formed in the rotor core 43 so as to penetrate in the stacking direction of the steel plates. Magnets 44 are inserted into the magnet insertion holes 43a.
- the refrigerant passage hole 43b is a hole through which the refrigerant compressed by the compression mechanism 9 passes, and after passing through here, the refrigerant is discharged into the refrigerant pipe 5a via the discharge pipe 11.
- the shaft 12 is inserted into the shaft hole 43c.
- FIG. 4 is a cross-sectional view showing the B-B cross section in FIG. 3 of the magnet 44 according to the embodiment.
- a coating 45 is provided on the surface of the magnet 44.
- the coating 45 is formed so as to cover the entire surface of the magnet 44. Note that the surface of the magnet 44 on the front side of the page in FIG. 4 and the surface of the magnet 44 on the back side of the page are also covered with the coating 45.
- the thickness of the coating 45 There are no particular limitations on the thickness of the coating 45, and for example, the coating 45 is formed to a thickness of 100 ⁇ m or less.
- the coating 45 is preferably an inorganic coating with excellent heat resistance and oil resistance.
- the coating 45 preferably contains at least aluminum (Al) and silicon (Si), and more preferably contains aluminum (Al), silicon (Si) and magnesium (Mg). It is even more preferable that the coating 45 does not contain phosphorus (P).
- the coating 45 can prevent contact between the refrigerant and magnets (especially neodymium magnets), and therefore can prevent decomposition of the refrigerant to which halogens other than fluorine are bonded due to contact between the refrigerant and magnets. However, the coating 45 is not uniform in some places, and part of the magnet 44 is exposed, making it difficult to completely prevent decomposition of the refrigerant.
- the method for forming the coating 45 on the magnet 44 is not particularly limited, and existing coating formation methods can be used. For example, sputtering, chemical vapor deposition (CVD), vapor deposition, ion plating, ion beam vapor deposition, dip coating, spin coating, spray coating, plating, and other methods can be appropriately selected.
- the stator 18 has an insulating film made of, for example, polyester.
- polyester include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polytrimethylene terephthalate (PTT), poly-1,4-cyclohexanedimethylene terephthalate (PCT), or copolymers or composite materials thereof.
- the refrigeration cycle device 100 includes a refrigerant and a compressor that compresses the refrigerant.
- the compressor includes refrigeration oil that lubricates the sliding parts of the compressor. The refrigerant and refrigeration oil are described below.
- the refrigerant used in this embodiment includes a first refrigerant and a second refrigerant.
- the first refrigerant is a hydrofluoroolefin (HFO)-based refrigerant.
- the second refrigerant is a halogenated hydrocarbon containing at least one element selected from the group consisting of chlorine, bromine, and iodine.
- HFO refrigerants that are the first refrigerant include hydrofluoroethylenes such as HFO-1141, R-1132a, HFO-1132(E), HFO-1132(Z), and HFO-1123; hydrofluoropropylenes such as HFO-1225ye(Z), HFO-1225ye(E), HFO-1225zc, R-1234yf, R-1234ze(E), HFO-1234ze(Z), HFO-1234ye(Z), HFO-1234ye(E), HFO-1243zf, HFO-1252zf, and HFO-1261yf; ), HFO-1336ze(Z), HFO-1336ze(E), HFO-1336yf, HFO-1336pyy, HFO-1327cze, HFO-1327et, HFO-1327, HFO-1345czf, HFO-1345fyc, HFO-1345cye, HFO-1345cyf, HFO-1345eye, HFO-1345pyz, HFO-1345pyy
- the first refrigerant is hydrofluoroethylene or hydrofluoropropylene.
- the first refrigerant is R-1132a, HFO-1132(E), HFO-1132(Z), HFO-1123, HFO-1225ye(Z), HFO-1225ye(E), HFO-1225zc, R-1234yf, R-1234ze(E), HFO-1234ze(Z), HFO-1234ye(Z), HFO-1234ye(E), and HFO-1243zf.
- the second refrigerant which is a halogenated hydrocarbon containing at least one element selected from the group consisting of chlorine, bromine, and iodine, includes R-13I1, R-1130(E), R-1224yd(Z), and R-1233zd(E). Among them, it is preferable that the second refrigerant is R-13I1.
- R-13I1 has an extremely low GWP of 0.4, and is classified as non-flammable (Class 1) in ANSI/ASHRAE Standard 34-2019. Therefore, refrigerants containing R-13I1 can have low GWP and low flammability.
- Hydrochlorofluoropropylenes such as R-1224yd(Z) and R-1233zd(E) contain chlorine, so they may polymerize only with these refrigerants.
- the refrigerant used in this embodiment may further include an HFC refrigerant in addition to the first and second refrigerants.
- HFC refrigerants include HFC-23, HFC-32, HFC-41, HFC-125, HFC-134, HFC-134a, HFC-143, HFC-143a, HFC-152, HFC-152a, and HFC-161.
- the refrigerant may further include a halogen-free refrigerant such as propane, isobutane, or carbon dioxide.
- the content of the first refrigerant and the content of the second refrigerant can be set appropriately, taking into consideration the balance between GWP and cooling performance.
- the GWP of the refrigerant used in this embodiment is preferably 750 or less.
- Refrigerants with a GWP of 750 or less are environmentally friendly and highly compliant with legal regulations.
- refrigerants with a GWP of 750 or less can be used as refrigeration cycle devices not only in refrigerators but also in air conditioners.
- the GWP value (100-year value) in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on climate Change (IPCC) is used.
- the GWP of refrigerants not listed in AR5 may be a value listed in other publicly known documents, or a value calculated or measured using a publicly known method.
- the refrigerant used in this embodiment is preferably classified as non-flammable in the flammability classification in ANSI/ASHRAE Standard 34-2019.
- Refrigerants classified as non-flammable eliminate the need for a means, equipment, or structure for diffusing refrigerant leaked into the refrigeration cycle device, a sensor for detecting refrigerant leakage, and an alarm device for issuing an alarm when the sensor detects a refrigerant leakage.
- refrigerants classified as non-flammable can be used in areas where the use of flammable refrigerants is not permitted by legal regulations.
- the refrigeration oil used in the present embodiment includes one or both of a first compound and a second compound.
- the first compound includes a first alkyl group having at least one tertiary carbon.
- the second compound includes an oxygen atom and a second alkyl group having a primary carbon or a secondary carbon adjacent to the oxygen atom.
- the refrigeration oil includes the first compound.
- Tertiary carbon means a carbon in which three of the four bonds of the carbon are bonded to carbon. The remaining one is generally bonded to hydrogen.
- the first compound can be an ester oil or an ether oil.
- the carbon at the ⁇ position corresponds to a tertiary carbon.
- R 4 , R 5 and R 6 are each an alkyl group or hydrogen.
- Examples of a primary alkyl group having at least one tertiary carbon include an isobutyl group, a sec-butyl group, a cyclobutyl group, an isopropyl group, a 2-methylhexyl group, a 2-ethylpentyl group, a 2-ethylhexyl group, and a 3,5,5-trimethylhexyl group.
- the first compound may be a polyol ester, which is an ester of a diol or polyol and a fatty acid.
- the polyol ester may be used alone or in combination of two or more kinds.
- the fatty acid used in the synthesis of the polyol ester includes isobutyric acid, 2-methylhexanoic acid, 2-ethylpentanoic acid, 2-ethylhexanoic acid, 3,5,5-trimethylhexanoic acid, etc. If the fatty acid used in the synthesis contains these fatty acids, it may further contain a straight-chain fatty acid.
- the diol or polyol used in the synthesis of the polyol ester is preferably a diol such as neopentyl glycol, or a polyol such as trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-(pentaerythritol), or tri-(pentaerythritol).
- the first alkyl group can be an isopropyl group, a 2-methylhexyl group, a 2-ethylpentyl group, a 2-ethylhexyl group, a 3,5,5-trimethylhexyl group, or the like.
- the first compound may be an ether oil.
- ether oil a typical structure of polyvinyl ether is shown below.
- R 1 , R 2 , R 3 and R 4 correspond to alkyl groups.
- the alkyl group contains a tertiary carbon
- the alkyl group is an isobutyl group, a sec-butyl group, a cyclobutyl group, an isopropyl group, or the like.
- the first compound may be a polyvinyl ether.
- the polyvinyl ether may be used alone or in combination of two or more kinds.
- the first alkyl group is preferably an isobutyl group, a sec-butyl group, a cyclobutyl group, or an isopropyl group.
- the first compound may be a polyalkylene glycol.
- a preferred example of a polyalkylene glycol is a compound having a homopolymer chain of propylene oxide or a copolymer chain of propylene oxide and ethylene oxide, at least one of both ends of which is blocked with an ether bond, and in which the alkyl group bonded to the blocked ether bond contains a tertiary carbon.
- alkyl groups containing a tertiary carbon include an isopropyl group, an isobutyl group, a sec-butyl group, and a cyclobutyl group.
- the polyalkylene glycol is preferably a polypropylene glycol with both ends capped.
- the refrigeration oil used in this embodiment may contain a first compound.
- the content of the first compound in the refrigeration oil may be set appropriately taking into account compatibility with the refrigerant.
- radical polymerization can be suppressed when a first compound containing a first alkyl group having at least one tertiary carbon is used as a refrigerating machine oil is described below.
- the CF3 . radical abstracts a hydrogen atom from the first compound, as shown in the following reaction formula (3).
- the enthalpy change of the reaction when the abstraction of a hydrogen atom occurs at the ⁇ position is ⁇ 45 KJ/mol.
- the enthalpy change of the reaction when the abstraction of a hydrogen atom occurs at the ⁇ position is ⁇ 63 KJ/mol.
- the enthalpy change of the reaction when the abstraction of a hydrogen atom occurs at the ⁇ position is ⁇ 32 KJ/mol. It is confirmed that the enthalpy change in the case of the ⁇ position is very large.
- the ester oil contains a tertiary carbon
- the hydrogen atom bonded to the carbon atom at the ⁇ position is selectively donated to the CF3 ⁇ radical to become CF3H , and the function of the CF3 ⁇ radical as a radical polymerization initiator disappears, and it is presumed that the polymerization of the HFO-based refrigerant containing a double bond is suppressed.
- the radicals derived from the refrigeration oil (first compound) generated by abstracting hydrogen atoms from the first compound have a large molecular size, and are therefore presumed not to contribute to the polymerization of HFO-based refrigerants.
- the radicals derived from the refrigeration oil (first compound) may abstract hydrogen from nearby refrigeration oil.
- the radicals derived from the refrigeration oil generated in this manner are not low in solubility in refrigeration oil, unlike fluororesins. Therefore, even if such radicals derived from refrigeration oil are present, their impact on the reliability of the refrigeration cycle is small.
- Patent Document 3 JP Patent Publication 2010-509489 discloses that in order to suppress the decomposition of R-13I1, at least one lubricant is selected that has at least one hydrogen atom and at least one carbon atom, and 17% or less of the total number of hydrogen atoms bonded to carbon atoms are tertiary hydrogen atoms.
- Patent Document 3 describes that the decomposition of the refrigerant can be suppressed by selecting a lubricant that has a small amount of tertiary hydrogen atoms (paragraph 0006 of the specification). Since hydrogen is a monovalent atom, there is no tertiary hydrogen. Therefore, the lubricant used in Patent Document 3 is unknown. If it is interpreted that tertiary hydrogen is a typographical error and that the correct meaning is tertiary carbon, Patent Document 3 shows that the refrigerant is stabilized by selecting a lubricant that has a small amount of tertiary hydrogen atoms.
- Patent Document 3 is completely opposite to the technical idea of the present invention, which is to suppress radical polymerization of the refrigerant and stabilize the refrigerant by using a first compound containing a first alkyl group having at least one tertiary carbon as a refrigeration oil.
- the refrigeration oil may contain other base oils and additives in addition to one or both of the first compound and the second compound.
- the type of base oil is not particularly limited, but examples include polyol ester oil, polyvinyl ether oil, polyalkylene glycol oil, alkylbenzene oil, alkylnaphthalene oil, mineral oil, poly- ⁇ -olefin oil, and mixtures thereof. It is desirable to control the moisture content of the refrigeration oil. In particular, it is desirable to control the moisture content of ester oil, polyvinyl ether oil, and polyalkylene glycol oil to 600 ppm or less. This is because these refrigeration oils are polar and tend to contain moisture. If the moisture content is high, there is a risk of hydrolysis of PET and the like used in the stator 18 ( Figure 2). It is desirable to control the moisture content of ester oil to 300 ppm or less.
- esters oil is hydrolyzable.
- acids such as hydrogen chloride, which are generated by decomposition of a refrigerant containing at least one of chlorine, bromine, and iodine, act synergistically with moisture to corrode metal parts such as the magnet 44.
- the refrigeration oil may contain additives such as radical polymerization inhibitors, antioxidants, acid scavengers, extreme pressure agents (antiwear agents), and oxygen scavengers. Details of the additives will be described in the third embodiment below.
- the compressor includes a rotor with a neodymium magnet, or if the refrigeration cycle device includes parts made of brass, halogenated hydrocarbons bonded to halogens other than fluorine are likely to decompose when they come into contact with the neodymium magnet or brass. Even if the refrigeration cycle circuit of this embodiment includes parts made of neodymium magnets or brass, the polymerization of HFO-based refrigerants can be suppressed by using the above-mentioned refrigeration oil, and a highly reliable refrigeration cycle device and compressor can be realized.
- Embodiment 2 The refrigeration cycle device of the second embodiment can have the same configuration as the refrigeration cycle device of the first embodiment, except that the refrigeration oil contains the second compound. In the second embodiment, a case where the refrigeration oil contains the second compound will be described.
- the second compound is described below.
- the second compound contains an oxygen atom and a second alkyl group having a primary or secondary carbon adjacent to the oxygen atom.
- the second compound is a polyvinyl ether, and the portion of the second alkyl group that bonds to the oxygen is preferably a methylene group or a methine group, and the other portion can be adjusted to adjust the solubility and lubricity of the refrigerant.
- the refrigeration oil used in this embodiment may contain a second compound.
- the content of the second compound in the refrigeration oil may be set appropriately taking into account compatibility with the refrigerant.
- radical polymerization can be suppressed when a second compound containing an oxygen atom and a second alkyl group having a primary carbon or secondary carbon adjacent to the oxygen atom is used as the refrigeration oil is described below.
- an ether oil containing an oxygen atom and a second alkyl group having a primary carbon adjacent to the oxygen atom is used as the second compound, as shown in the following reaction formula (4), the CF3 . radical abstracts a hydrogen atom from the carbon atom (primary carbon) adjacent to the oxygen atom in the second compound.
- R4, R5 and R6 are each an alkyl group or hydrogen.
- the carbon atom when one hydrogen atom is bonded to the carbon atom bonded to the oxygen atom, the carbon atom is a secondary carbon, but appears to be a tertiary carbon.
- the reaction enthalpy change is approximately -60 KJ/mol. Therefore, even if one hydrogen atom is bonded to the carbon atom bonded to the oxygen atom, the hydrogen atom is likely to bond with CF3 . in the same way as a hydrogen atom bonded to a tertiary carbon.
- the refrigeration oil may contain additives, such as a radical polymerization inhibitor, an antiwear agent, an acid scavenger, an antioxidant, and an oxygen scavenger.
- additives such as a radical polymerization inhibitor, an antiwear agent, an acid scavenger, an antioxidant, and an oxygen scavenger.
- radical polymerization inhibitor can prevent polymerization of the refrigeration oil itself following the radicalization of the refrigeration oil. This can suppress changes in the properties of the refrigeration oil, improving the stability of the refrigeration cycle device compared to when a radical polymerization inhibitor is not added.
- the radical polymerization inhibitor may be a phenol, hydroquinone, or amine. Of these, phenols are preferred, with 2,6-di-tert-butyl-4-methylphenol and 2,6-di-tert-butyl-4-ethylphenol being most preferred.
- the content of the radical polymerization inhibitor in the refrigeration oil is preferably 0.1% by mass or more and 3% by mass or less, and more preferably 0.5% by mass or more and 2% by mass or less. If the content of the radical polymerization inhibitor in the refrigeration oil is less than 0.1% by mass, it may not be possible to obtain sufficient effects. If the content of the radical polymerization inhibitor in the refrigeration oil exceeds 3% by mass, it may not be possible to obtain sufficient performance such as lubricity.
- anti-wear agents can improve the sliding condition.
- the sliding parts are prone to becoming hot due to frictional heat, which can easily cause decomposition of refrigerants that contain iodine, etc., and polymerization of HFO-based refrigerants due to the radicals generated by this decomposition.
- using an appropriate anti-wear agent together with the base oil of the present invention can prevent heat generation in the sliding parts, leading to further stabilization of the refrigeration cycle device.
- Anti-wear agents include phosphate esters, phosphites, and thiophosphates. Phosphate esters are the best because they have less of an adverse effect on the refrigeration cycle.
- Phosphate ester-based anti-wear agents include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, etc.
- the content of the phosphate ester-based anti-wear agent in the refrigeration oil is preferably 0.1% by mass or more and 10% by mass or less. This allows the anti-wear agent to be efficiently adsorbed to the sliding surface, forming a film with low shear force on the sliding surface, providing anti-wear effects and suppressing heat generation in the sliding part. If the content of the phosphate ester-based anti-wear agent in the refrigeration oil is less than 0.1% by mass, there is a risk that a sufficient effect will not be obtained. If the content of the phosphate ester-based anti-wear agent in the refrigeration oil exceeds 10% by mass, there is a risk of corrosive wear occurring.
- an epoxy-based compound can be used as an acid scavenger.
- the epoxy-based compound is preferably at least one of a glycidyl ether type epoxy and a glycidyl ester type epoxy.
- the acid scavenger content of the refrigeration oil is preferably 0.1% by mass or more and 5% by mass or less. This allows the acid scavenger to capture the acids generated by the decomposition of various refrigerants, preventing corrosion of metals in the refrigeration cycle device and preventing deterioration of organic materials. If the acid scavenger content of the refrigeration oil is less than 0.1% by mass, there is a possibility that sufficient effect will not be obtained. If the acid scavenger content of the refrigeration oil exceeds 5% by mass, epoxy may polymerize and produce sludge.
- antioxidants examples include phenolic antioxidants such as 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, and 2,2'-methylenebis(4-methyl-6-tert-butylphenol), and amine antioxidants such as phenyl- ⁇ -naphthylamine and N.N'-diphenyl-p-phenylenediamine.
- Oxygen scavengers include sulfur-containing aromatic compounds, various olefins, aliphatic unsaturated compounds (dienes, trienes, etc.), and cyclic terpenes with unsaturated bonds.
- Sulfur-containing aromatic compounds include 4,4'-thiobis(3-methyl-6-tert-butylphenol), diphenyl sulfide, dioctyldiphenyl sulfide, dialkyldiphenylene sulfide, benzothiophene, dibenzothiophene, phenothiazine, benzothiapyran, thiapyran, thianthrene, dibenzothiapyran, and diphenylene disulfide.
- Cyclic terpenes with unsaturated bonds include ⁇ -pinene, ⁇ -pinene, limonene, phellandrene, etc. Aliphatic unsaturated compounds and cyclic terpenes with unsaturated bonds are particularly preferred.
- the quinone additive can capture radicals generated by decomposition of R-13I1 and inactivate the radicals, so that its addition to the refrigeration oil is being considered.
- the refrigeration cycle devices of the first to third embodiments by using a refrigeration oil containing one or both of the first and second compounds, the radicals generated by decomposition of R-13I1 and the like react with the first and second compounds.
- the function of the radical as a polymerization initiator is suppressed, and the polymerization of the HFO refrigerant is suppressed. Therefore, the refrigeration oil used in this embodiment can be one that does not contain a quinone additive.
- the refrigeration cycle device of the fourth embodiment is a refrigeration cycle device including a refrigerant, a compressor 1 that compresses the refrigerant, a refrigeration oil that lubricates the sliding parts of the compressor 1, and a refrigerant pipe 5 through which the refrigerant passes.
- the refrigerant includes a first refrigerant and a third refrigerant.
- the first refrigerant is a hydrofluoroolefin-based refrigerant
- the third refrigerant is a refrigerant containing at least one element selected from the group consisting of chlorine, bromine, and iodine.
- the third refrigerant is not limited to cases where it is used intentionally, but also includes cases where it remains in an existing compressor or pipe, and is reused and mixed into a newly introduced refrigeration cycle device.
- the refrigeration oil includes one or both of a first compound and a second compound.
- the first compound includes a first alkyl group having at least one tertiary carbon
- the second compound includes an oxygen atom and a second alkyl group having a primary or secondary carbon adjacent to the oxygen atom.
- One or both of the compressor 1 and the refrigerant pipe 5 are reused one or both of an existing compressor and an existing refrigerant pipe in a refrigeration cycle device that has a history of using the third refrigerant.
- the polymerization reaction of the HFO refrigerant is suppressed and sludge formation is prevented, so that the reliability of the refrigeration cycle apparatus can be ensured. The reason for this will be described below.
- radicals which are decomposition products of halogenated hydrocarbons (second refrigerant) containing at least one element selected from the group consisting of chlorine, bromine, and iodine, and which are used in combination with the HFO -based refrigerant (first refrigerant), has been assumed.
- second refrigerant halogenated hydrocarbons
- problems similar to those occurring when the halogenated hydrocarbon is contained may occur.
- the existing compressor and refrigerant piping may be reused.
- a conventionally used chlorine-based refrigerant may be mixed into a newly introduced air conditioner using an HFO-based refrigerant.
- refrigerants that may cause the above problems are chlorine-based refrigerants regulated by the Montreal Protocol on Substances Depleting the Ozone Layer, such as HCFC22, HCFC123, and CFC12.
- HCFC22, HCFC123 and CFC12 generate radicals by easily releasing chlorine. Therefore, when HCFC22, HCFC123, CFC12, etc. are mixed into an HFO refrigerant, the radicals generated from HCFC22, HCFC123, CFC12, etc. cause polymerization of the HFO refrigerant. In order to suppress this polymerization reaction, it is necessary to use the refrigeration oil described in the first to third embodiments. By using the refrigeration oil described in the first to third embodiments, it is possible to prevent a decrease in the reliability of the refrigeration cycle device due to the polymerization products of the HFO refrigerant.
- Refrigerant piping buried in walls often branches out to multiple indoor units, resulting in a complex flow path.
- the flow path changes as the number of indoor units increases or decreases, and there are many refrigerant piping that are not used partway through, known as dead-end pipes. In such refrigerant piping with one end blocked, there is no refrigerant flow, so even if you pump down, the refrigerant is likely to remain dissolved in the refrigeration oil.
- the refrigerant oil that was previously used remains in the existing refrigerant piping, and the refrigerant dissolved in the remaining refrigerant oil is difficult to remove by vacuuming, making it highly likely to be mixed into the new refrigerant. Even if the new refrigerant does not contain the conventional chlorine-based refrigerants that could cause problems, the end result will be a mixture of the conventional chlorine-based refrigerant and the HFO-based refrigerant.
- the refrigeration cycle devices of embodiments 1 to 3 are provided with refrigerant piping through which the refrigerant passes, and one or both of the compressor and the refrigerant piping are reused compressors and refrigerant piping in a refrigeration cycle device using a third refrigerant
- the third refrigerant can be a refrigerant containing at least one element selected from the group consisting of chlorine, bromine, and iodine.
- the third refrigerant corresponds to an existing refrigerant.
- the amount of existing refrigeration oil mixed into the new refrigeration oil cannot be generalized because it depends on the complexity of the piping, the method of replacement work, and the skill level of the replacement worker.
- the mass ratio of the amount of existing refrigeration oil M2 to the amount of new refrigeration oil M1 is said to be around 10 to 50% in many cases.
- Refrigerant dissolved in refrigeration oil is difficult to remove by vacuum alone, and there is a high possibility that it will remain in the refrigerant circuit.
- the mass ratio of the amount of existing refrigeration oil M2 to the amount of new refrigeration oil M1 is said to be around 1 to 25% in many cases. For this reason, when changing to an HFO refrigerant in a refrigeration cycle device model that used HCFC22, there is a possibility that HCFC22 dissolved in the existing refrigeration oil will be mixed into the HFO refrigerant.
- the amount of existing refrigeration oil M2 corresponds to the difference between the amount of existing refrigeration oil charged and the amount of existing refrigeration oil recovered. Therefore, by dividing the amount of newly charged refrigeration oil M1 by the difference M2 between the amount of existing refrigeration oil charged and the amount of existing refrigeration oil recovered, it is possible to obtain the mass ratio M1/M2 of the amount of existing refrigeration oil M2 to the amount of new refrigeration oil M1.
- the system is operated for a sufficient period of time, and the amount of existing refrigeration oil contained in the refrigeration oil extracted after operation can be determined using an analytical device.
- a liquid chromatograph or gas chromatograph is suitable as the analytical device. Based on the specific gravity of the refrigeration oil extracted after operation, the amount of existing refrigeration oil in the refrigeration oil can be determined.
- the amount of existing refrigeration oil in the new refrigeration oil exceeds 1 mass%, the compatibility of the newly introduced HFO refrigerant with the new refrigeration oil will deteriorate, and the amount of existing refrigeration oil remaining will increase, promoting polymerization of the HFO refrigerant.
- Refrigerant oil containing the conventional refrigerant cannot be removed by pumping down alone, and pumping down is also not possible if the compressor is broken. For this reason, technology is being considered to clean the refrigerant piping to reduce the amount of refrigerant oil remaining in the refrigerant piping.
- a method is being considered to reduce the amount of refrigerant oil remaining in the refrigerant piping by repeatedly replacing the refrigerant with the refrigerant oil (JP Patent Publication 7-83545).
- the refrigerant oil remaining in the refrigerant piping is mineral oil that was used with HCFC22.
- the refrigerant used for repeated cleaning is an HFC refrigerant
- the refrigerant oil used in this case is an ester oil or ether oil that is compatible with HFC refrigerants. Since mineral oil is insoluble in HFC refrigerants, the mineral oil remaining inside the piping remains even if the piping is repeatedly cleaned with an HFC refrigerant. It is also known that ester oil mixed with mineral oil is also insoluble in HFC refrigerants.
- the cleaning solution When cleaning refrigerant piping with a cleaning solution, if the cleaning solution is a halogen-based compound other than fluorine, the cleaning solution will remain in the refrigerant piping and will become the starting point for polymerization of the HFO refrigerant.
- Compounds that contain halogens other than fluorine include methylene chloride, 1-bromopropane, HCFC141b, and HCFC225. If there is a history of cleaning the inside of the refrigerant piping with these cleaning solutions, there is a high possibility that the cleaning solution will remain in the refrigerant piping even if a chlorine-free refrigerant is used after cleaning.
- the following describes an example of a case where the compressor to be replaced has a history of using chlorine-based refrigerants and the newly charged refrigerant is an HFO-based refrigerant.
- the refrigerant is recovered into the outdoor unit by pump-down operation.
- the recovered refrigerant is a single chlorine-based refrigerant or a refrigerant mixed with chlorine-based refrigerants.
- the outdoor unit is removed and an outdoor unit filled with refrigeration oil to be used with the HFO-based refrigerant is connected. In this case, the indoor unit, etc. are replaced as necessary.
- the refrigeration oil used at this time is a refrigeration oil containing one or both of the first compound and the second compound described in the first to third embodiments.
- a vacuum is drawn and a refrigerant containing at least an HFO-based refrigerant is charged.
- the other refrigerant is an HFC-based refrigerant.
- the compressor according to embodiment 5 is a compressor used in a refrigeration cycle apparatus, the refrigeration cycle apparatus including a refrigerant, a compressor that compresses the refrigerant, and a refrigeration oil that lubricates sliding parts of the compressor, the refrigerant including a first refrigerant and a second refrigerant, the first refrigerant is a hydrofluoroolefin-based refrigerant, the second refrigerant is a halogenated hydrocarbon containing at least one element selected from the group consisting of chlorine, bromine and iodine, the refrigeration oil includes one or both of a first compound and a second compound, the first compound includes a first alkyl group having at least one tertiary carbon, and the second compound includes an oxygen atom and a second alkyl group having a primary carbon or a secondary carbon adjacent to the oxygen atom.
- the refrigeration oil used in the compressor of embodiment 5 has the same configuration as the refrigeration oil described in embodiments 1 to 3. Therefore, in a refrigeration cycle device using the compressor of embodiment 5, the polymerization reaction of the HFO refrigerant is suppressed and sludge formation is prevented, ensuring the reliability of the refrigeration cycle device.
- the compressor according to embodiment 6 is a compressor used in a refrigeration cycle apparatus, the refrigeration cycle apparatus comprising: a refrigerant, a compressor that compresses the refrigerant, refrigeration oil that lubricates sliding parts of the compressor, and refrigerant piping through which the refrigerant passes, the refrigerant including a first refrigerant and a third refrigerant, the first refrigerant is a hydrofluoroolefin-based refrigerant, the third refrigerant is a refrigerant containing at least one element selected from the group consisting of chlorine, bromine and iodine, the refrigeration oil includes one or both of a first compound and a second compound, the first compound includes a first alkyl group having at least one tertiary carbon, the second compound includes an oxygen atom and a second alkyl group having a primary carbon or a secondary carbon adjacent to the oxygen atom, and one or both of the compressor and the refrigerant
- the refrigeration oil used in the compressor of embodiment 6 has the same composition as the refrigeration oil described in embodiments 1 to 3. Therefore, in a refrigeration cycle device using the compressor of embodiment 6, the polymerization reaction of the HFO refrigerant is suppressed and sludge formation is prevented, ensuring the reliability of the refrigeration cycle device.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Lubricants (AREA)
Abstract
Description
本開示は、冷凍サイクル装置および圧縮機に関する。 This disclosure relates to a refrigeration cycle device and a compressor.
地球温暖化防止のために、気候変動に対する種々の方策が国際的に報じられている。モントリオール議定書等の冷媒規制に対応する為、低GWP冷媒の実用化が進められている。 Various measures to combat climate change have been reported internationally to prevent global warming. In order to comply with refrigerant regulations such as the Montreal Protocol, efforts are underway to commercialize low GWP refrigerants.
冷凍サイクル装置に用いられる冷媒については、従来主に用いられていたR-410Aから、R-410Aより地球温暖化係数(GWP:Global Warming Potential)が低い冷媒への置き換えが進められている。なお、R-410Aは、50質量%のR-32(ジフルオロメタン)と50質量%のR-125(ペンタフルオロエタン)とが混合された混合冷媒であり、R-410AのGWPは2088である。 Regarding the refrigerants used in refrigeration cycle equipment, the R-410A that was mainly used in the past is being replaced with refrigerants that have a lower Global Warming Potential (GWP) than R-410A. R-410A is a mixed refrigerant that is a mixture of 50% by mass of R-32 (difluoromethane) and 50% by mass of R-125 (pentafluoroethane), and the GWP of R-410A is 2088.
R-410A代替となり得る低GWP冷媒の組成物の例としては、R-32(GWP=675)、R-1234yf(GWP<1)等の微燃性(ANSI/ASHRAE Standard 34―2019におけるClass 2L)冷媒、R-290(GWP=3)等の強燃性(ANSI/ASHRAE Standard 34―2019におけるClass 3)冷媒が挙げられる。
Examples of low GWP refrigerant compositions that can replace R-410A include mildly flammable (Class 2L in ANSI/ASHRAE Standard 34-2019) refrigerants such as R-32 (GWP = 675) and R-1234yf (GWP < 1), and highly flammable (
冷媒は、GWPが低いことに加えて、安全性の観点から燃焼性が低いことが望ましい。2018年6月に発表された冷媒であるR-466Aは、GWPが733であり、R-410AよりもGWPが低く、且つANSI/ASHRAE Standard 34―2019において、燃焼性区分が不燃性(Class 1)に分類される。 In addition to having a low GWP, it is desirable for a refrigerant to have low flammability from a safety standpoint. R-466A, a refrigerant announced in June 2018, has a GWP of 733, which is lower than R-410A, and is classified as non-flammable (Class 1) in ANSI/ASHRAE Standard 34-2019.
R-466Aは、R-32(ジフルオロメタン、GWP=675)、R-125(ペンタフルオロエタン、GWP=3500)およびR-13I1(トリフルオロヨードメタン、CF3I、GWP=0.5)の混合冷媒である。R-32、R-125およびR-13I1の混合比率は、それぞれ49.0質量%(組成公差:+0.5/-2.0)、11.5質量%(組成公差:+2.0/-0.5)および39.5質量%(組成公差:+2.0/-0.5)である。 R-466A is a mixed refrigerant of R-32 (difluoromethane, GWP=675), R-125 (pentafluoroethane, GWP=3500) and R-13I1 (trifluoroiodomethane, CF 3 I, GWP=0.5). The mixing ratios of R-32, R-125 and R-13I1 are 49.0 mass% (composition tolerance: +0.5/-2.0), 11.5 mass% (composition tolerance: +2.0/-0.5) and 39.5 mass% (composition tolerance: +2.0/-0.5), respectively.
特許文献1(特開2020-034260号公報)および特許文献2(特開2020-034261号公報)には、R-466Aを冷媒として用いた冷凍サイクル装置が開示されている。 Patent Document 1 (JP Patent Publication No. 2020-034260) and Patent Document 2 (JP Patent Publication No. 2020-034261) disclose a refrigeration cycle device that uses R-466A as a refrigerant.
冷媒の要求特性である、低燃焼性と低GWPと良好な冷却性能をすべて満たすには、不燃性で低GWPの冷媒と、低GWPで冷却性能が高い冷媒とを組み合わせることが好適である。 To meet all the required characteristics of a refrigerant - low flammability, low GWP, and good cooling performance - it is preferable to combine a non-flammable, low GWP refrigerant with a low GWP refrigerant with good cooling performance.
不燃性で低GWPの冷媒としては、R-13I1のようにフッ素以外のハロゲンが結合したハロゲン化炭化水素が挙げられる。上述のR-466AはR-13I1を用いているが、R-32およびR-125のGWPが大きいため、R-466AのGWPは733となっている。 Halogenated hydrocarbons such as R-13I1, which are non-flammable refrigerants with low GWP, are those that are bonded to halogens other than fluorine. The above-mentioned R-466A uses R-13I1, but because the GWPs of R-32 and R-125 are high, the GWP of R-466A is 733.
R-13I1を含む混合冷媒において、GWPを更に小さくするためには、R-13I1に、GWPがより小さく、冷却性能が高い冷媒を混合することが好ましい。低GWP、かつ、冷却性能が高い冷媒としては、HFO(ハイドロフルオロオレフィン)系冷媒が挙げられる。 In order to further reduce the GWP of a mixed refrigerant containing R-13I1, it is preferable to mix R-13I1 with a refrigerant that has a smaller GWP and high cooling performance. Examples of refrigerants with low GWP and high cooling performance include HFO (hydrofluoroolefin) refrigerants.
特許文献3(特表2010-509489号公報)には、ハイドロフルオロアルケンとヨードカーボンを混合した冷媒が開示されている。ここで、ハイドロフルオロアルケンはHFO系冷媒であり、ヨードカーボンはR-13I1である。 Patent Document 3 (JP Patent Publication No. 2010-509489) discloses a refrigerant that is a mixture of hydrofluoroalkene and iodocarbon. Here, the hydrofluoroalkene is an HFO-based refrigerant, and the iodocarbon is R-13I1.
フッ素以外のハロゲン、具体的には、塩素、臭素およびヨウ素の少なくともいずれかが結合したハロゲン化炭化水素は、ハロゲンと炭素との化学結合が熱的に不安定であり、冷凍サイクル装置の使用に伴う高温条件下では、ラジカルが生成する。該ラジカルは、HFO系冷媒の重合開示剤となる。このため、フッ素以外のハロゲンが結合したハロゲン化炭化水素と、HFO系冷媒とを含む混合冷媒では、冷凍サイクル装置の使用に伴い、HFO系冷媒のラジカル重合が進行する可能性がある。HFO系冷媒のラジカル重合が進行するとスラッジ化して、冷媒配管が閉塞し、冷凍サイクル装置の信頼性が低下する可能性がある。 Halogenated hydrocarbons that are bonded with halogens other than fluorine, specifically at least one of chlorine, bromine, and iodine, have a thermally unstable chemical bond between the halogen and carbon, and radicals are generated under the high temperature conditions associated with the use of a refrigeration cycle device. These radicals act as polymerization initiators for HFO-based refrigerants. For this reason, in a mixed refrigerant that contains a halogenated hydrocarbon that is bonded with a halogen other than fluorine and an HFO-based refrigerant, radical polymerization of the HFO-based refrigerant may progress as the refrigeration cycle device is used. If radical polymerization of the HFO-based refrigerant progresses, it may turn into sludge, causing blockage of the refrigerant piping and reducing the reliability of the refrigeration cycle device.
本開示は、上記の課題に鑑み、フッ素以外のハロゲンが結合したハロゲン化炭化水素と、HFO系冷媒とを含む混合冷媒を用いた場合においても、信頼性を確保できる冷凍サイクル装置および圧縮機を提供することを目的とする。 In view of the above problems, the present disclosure aims to provide a refrigeration cycle device and compressor that can ensure reliability even when using a mixed refrigerant that contains a halogenated hydrocarbon bonded to a halogen other than fluorine and an HFO-based refrigerant.
本開示に係る冷凍サイクル装置は、
冷媒と、
前記冷媒を圧縮する圧縮機と、
前記圧縮機の摺動部を潤滑する冷凍機油と、を備える冷凍サイクル装置であって、
前記冷媒は、第1冷媒と、第2冷媒と、を含み、
前記第1冷媒は、ハイドロフルオロオレフィン系冷媒であり、
前記第2冷媒は、塩素、臭素およびヨウ素からなる群より選ばれる少なくとも1種の元素を含むハロゲン化炭化水素であり、
前記冷凍機油は、第1化合物および第2化合物の一方または両方を含み、
前記第1化合物は、第三級炭素を少なくとも1つ有する第1アルキル基を含み、
前記第2化合物は、酸素原子と、前記酸素原子に隣接する第一級炭素または第二級炭素を有する第2アルキル基と、を含む、冷凍サイクル装置である。
The refrigeration cycle device according to the present disclosure comprises:
A refrigerant;
A compressor that compresses the refrigerant;
A refrigeration cycle apparatus comprising: a refrigeration oil for lubricating a sliding part of the compressor,
The refrigerant includes a first refrigerant and a second refrigerant,
The first refrigerant is a hydrofluoroolefin refrigerant,
the second refrigerant is a halogenated hydrocarbon containing at least one element selected from the group consisting of chlorine, bromine, and iodine;
The refrigerating machine oil contains one or both of a first compound and a second compound,
the first compound comprises a first alkyl group having at least one tertiary carbon;
The second compound is a refrigeration cycle device including an oxygen atom and a second alkyl group having a primary carbon or a secondary carbon adjacent to the oxygen atom.
本開示に係る冷凍サイクル装置は、
冷媒と、
前記冷媒を圧縮する圧縮機と、
前記圧縮機の摺動部を潤滑する冷凍機油と、
前記冷媒が通過する冷媒配管と、を備える冷凍サイクル装置であって、
前記冷媒は、第1冷媒と、第3冷媒と、を含み、
前記第1冷媒は、ハイドロフルオロオレフィン系冷媒であり、
前記第3冷媒は、塩素、臭素およびヨウ素からなる群より選ばれる少なくとも1種の元素を含む冷媒であり、
前記冷凍機油は、第1化合物および第2化合物の一方または両方を含み、
前記第1化合物は、第三級炭素を少なくとも1つ有する第1アルキル基を含み、
前記第2化合物は、酸素原子と、前記酸素原子に隣接する第一級炭素または第二級炭素を有する第2アルキル基と、を含み、
前記圧縮機および前記冷媒配管の一方または両方は、前記第3冷媒を用いた履歴を有する冷凍サイクル装置における既設の圧縮機および既設の冷媒配管の一方または両方を再利用したものである、冷凍サイクル装置である。
The refrigeration cycle device according to the present disclosure comprises:
A refrigerant;
A compressor that compresses the refrigerant;
Refrigeration oil for lubricating sliding parts of the compressor;
A refrigerant pipe through which the refrigerant passes,
The refrigerant includes a first refrigerant and a third refrigerant,
The first refrigerant is a hydrofluoroolefin refrigerant,
The third refrigerant is a refrigerant containing at least one element selected from the group consisting of chlorine, bromine, and iodine,
The refrigerating machine oil contains one or both of a first compound and a second compound,
the first compound comprises a first alkyl group having at least one tertiary carbon;
the second compound comprises an oxygen atom and a second alkyl group having a primary or secondary carbon adjacent to the oxygen atom;
The compressor and/or the refrigerant piping are obtained by reusing an existing compressor and/or an existing refrigerant piping in a refrigeration cycle apparatus that has a history of using the third refrigerant.
本開示に係る圧縮機は、
冷凍サイクル装置に使用される圧縮機であって、
前記冷凍サイクル装置は、
冷媒と、
前記冷媒を圧縮する圧縮機と、
前記圧縮機の摺動部を潤滑する冷凍機油と、を備え、
前記冷媒は、第1冷媒と、第2冷媒と、を含み、
前記第1冷媒は、ハイドロフルオロオレフィン系冷媒であり、
前記第2冷媒は、塩素、臭素およびヨウ素からなる群より選ばれる少なくとも1種の元素を含むハロゲン化炭化水素であり、
前記冷凍機油は、第1化合物および第2化合物の一方または両方を含み、
前記第1化合物は、第三級炭素を少なくとも1つ有する第1アルキル基を含み、
前記第2化合物は、酸素原子と、前記酸素原子に隣接する第一級炭素または第二級炭素を有する第2アルキル基と、を含む、圧縮機である。
The compressor according to the present disclosure comprises:
A compressor for use in a refrigeration cycle device,
The refrigeration cycle device includes:
A refrigerant;
A compressor that compresses the refrigerant;
and a refrigeration oil for lubricating a sliding part of the compressor.
The refrigerant includes a first refrigerant and a second refrigerant,
The first refrigerant is a hydrofluoroolefin refrigerant,
the second refrigerant is a halogenated hydrocarbon containing at least one element selected from the group consisting of chlorine, bromine, and iodine;
The refrigerating machine oil contains one or both of a first compound and a second compound,
the first compound comprises a first alkyl group having at least one tertiary carbon;
The second compound is a compressor that includes an oxygen atom and a second alkyl group having a primary or secondary carbon adjacent to the oxygen atom.
本開示に係る圧縮機は、
冷凍サイクル装置に使用される圧縮機であって、
前記冷凍サイクル装置は、
冷媒と、
前記冷媒を圧縮する圧縮機と、
前記圧縮機の摺動部を潤滑する冷凍機油と、
前記冷媒が通過する冷媒配管と、を備え、
前記冷媒は、第1冷媒と、第3冷媒と、を含み、
前記第1冷媒は、ハイドロフルオロオレフィン系冷媒であり、
前記第3冷媒は、塩素、臭素およびヨウ素からなる群より選ばれる少なくとも1種の元素を含む冷媒であり、
前記冷凍機油は、第1化合物および第2化合物の一方または両方を含み、
前記第1化合物は、第三級炭素を少なくとも1つ有する第1アルキル基を含み、
前記第2化合物は、酸素原子と、前記酸素原子に隣接する第一級炭素または第二級炭素を有する第2アルキル基と、を含み、
前記圧縮機および前記冷媒配管の一方または両方は、前記第3冷媒を用いた履歴を有する冷凍サイクル装置における既設の圧縮機および既設の冷媒配管を再利用したものである、圧縮機である。
The compressor according to the present disclosure comprises:
A compressor for use in a refrigeration cycle device,
The refrigeration cycle device includes:
A refrigerant;
A compressor that compresses the refrigerant;
Refrigeration oil for lubricating sliding parts of the compressor;
a refrigerant pipe through which the refrigerant passes,
The refrigerant includes a first refrigerant and a third refrigerant,
The first refrigerant is a hydrofluoroolefin refrigerant,
The third refrigerant is a refrigerant containing at least one element selected from the group consisting of chlorine, bromine, and iodine,
The refrigerating machine oil contains one or both of a first compound and a second compound,
the first compound comprises a first alkyl group having at least one tertiary carbon;
the second compound comprises an oxygen atom and a second alkyl group having a primary or secondary carbon adjacent to the oxygen atom;
Either or both of the compressor and the refrigerant piping are compressors that reuse an existing compressor and an existing refrigerant piping in a refrigeration cycle apparatus that has a history of using the third refrigerant.
本開示によれば、フッ素以外のハロゲンが結合したハロゲン化炭化水素と、HFO系冷媒とを含む混合冷媒を用いた場合においても、信頼性を確保できる冷凍サイクル装置および圧縮機を提供することが可能である。 According to the present disclosure, it is possible to provide a refrigeration cycle device and compressor that can ensure reliability even when using a mixed refrigerant that contains a halogenated hydrocarbon bonded with a halogen other than fluorine and an HFO-based refrigerant.
まず、本開示の理解を深めるために、フッ素以外のハロゲンが結合したハロゲン化炭化水素と、HFO系冷媒とを含む混合冷媒を用いた場合に、該混合冷媒で生じるHFO系冷媒のラジカル重合について説明する。以下では、フッ素以外のハロゲンが結合したハロゲン化炭化水素として、R-13I1を用いた場合について説明する。 First, to deepen understanding of this disclosure, we will explain the radical polymerization of HFO-based refrigerants that occurs in a mixed refrigerant containing a halogenated hydrocarbon bonded to a halogen other than fluorine and an HFO-based refrigerant. Below, we will explain the case where R-13I1 is used as the halogenated hydrocarbon bonded to a halogen other than fluorine.
R-13I1のC-I結合は結合エネルギーが低いために結合が切れやすく、ラジカル(CF3・)が生成しやすい。特に磁石44がネオジム磁石の場合や、冷凍サイクル装置が真鍮からなる部品を備える場合、R-13I1がネオジム磁石や真鍮からなる部品と接触すると、結合がより切れやすくなる。R-13I1がネオジム磁石と接触した場合の分解は、以下の反応式(1)で示される。
The C-I bond in R-13I1 has low bond energy, so the bond breaks easily and radicals (CF3.) are easily generated. In particular, if the
上記の反応式(1)で発生したラジカル(CF3・)は、多重結合を含むHFO系冷媒のラジカル重合開始剤として作用する。CF3・ラジカルは分子の大きさが小さく、ラジカルが二重結合に接近しやすいため、二重結合を含む冷媒を重合させやすい。ラジカル(CF3・)と、二重結合を含む冷媒とにより生じるラジカル重合は、以下の反応式(2)で示される。 The radical ( CF3 .) generated in the above reaction formula (1) acts as a radical polymerization initiator for HFO-based refrigerants containing multiple bonds. The CF3 . radical has a small molecular size and is easily accessible to double bonds, so it is easy to polymerize refrigerants containing double bonds. The radical polymerization caused by the radical ( CF3 .) and a refrigerant containing a double bond is shown in the following reaction formula (2).
上記反応式(2)において、R1、R2およびR3は、それぞれアルキル基、フッ素または水素を示す。 In the above reaction formula (2), R 1 , R 2 and R 3 each represent an alkyl group, fluorine or hydrogen.
ラジカル重合はポリエチレン等を合成する際のラジカル重合と同様の反応である。重合を開始するフリーラジカルが生じ、該フリーラジカルが二重結合を含む分子と反応することで、二重結合を含む分子をラジカル化する。ラジカル化した分子はさらに別の二重結合を含む分子と反応し鎖長を伸ばしていく。最終的にはラジカル同士が反応して重合反応は停止する。一連の反応は主に高温となる摺動部や圧縮機の冷媒吐出部で進行していくものと推察される。 Radical polymerization is a reaction similar to that which occurs when synthesizing polyethylene, etc. Free radicals are generated that initiate polymerization, and these free radicals react with molecules containing double bonds, radicalizing the molecules containing double bonds. The radicalized molecules then react with other molecules containing double bonds, extending their chain length. Ultimately, the radicals react with each other, and the polymerization reaction stops. It is believed that this series of reactions takes place mainly in the sliding parts, which become hot, and in the refrigerant discharge parts of compressors.
上記のラジカル重合が進行する結果、二重結合を含む冷媒はフッ素樹脂様化合物となる。フッ素樹脂は極めて安定であり、また溶解性が低いため、冷凍機油や冷媒と溶解しない。このため、ラジカル重合により生成されたフッ素樹脂様化合物はスラッジ化し、冷媒配管を閉塞して冷凍サイクルの信頼性を低下させるという課題がある。このような課題は、本発明者等が新たに見出した課題である。 As the above radical polymerization progresses, the refrigerant containing double bonds becomes a fluororesin-like compound. Fluororesin is extremely stable and has low solubility, so it does not dissolve in refrigeration oil or refrigerant. For this reason, there is a problem that the fluororesin-like compound produced by radical polymerization turns into sludge and clogs the refrigerant piping, reducing the reliability of the refrigeration cycle. This problem is one that the inventors have newly discovered.
本発明者等は、上記の課題を解決するために鋭意検討の結果、フッ素以外のハロゲンが結合したハロゲン化炭化水素と、HFO系冷媒とを含む混合冷媒を用いた場合において、特定の冷凍機油を用いることにより、HFO系冷媒のラジカル重合を抑制でき、信頼性を確保できる冷凍サイクル装置および圧縮機を提供できることを新たに見出した。 As a result of intensive research into solving the above problems, the inventors have newly discovered that when using a mixed refrigerant containing a halogenated hydrocarbon bonded with a halogen other than fluorine and an HFO-based refrigerant, it is possible to provide a refrigeration cycle device and compressor that can suppress radical polymerization of the HFO-based refrigerant and ensure reliability by using a specific refrigeration oil.
以下に、本開示の実施の形態に係る冷凍サイクル装置および圧縮機について図面に基づいて説明する。なお、本開示は以降の実施の形態のみに限定されることはなく、本開示の趣旨を逸脱しない範囲で変形または省略することが可能である。また、各図において共通する要素には同一の符号を付して重複する説明を省略する。 Below, a refrigeration cycle device and a compressor according to an embodiment of the present disclosure will be described with reference to the drawings. Note that the present disclosure is not limited to the following embodiment, and modifications or omissions can be made without departing from the spirit of the present disclosure. In addition, common elements in each drawing will be given the same reference numerals, and duplicate explanations will be omitted.
実施の形態1.
<冷凍サイクル装置>
図1は、実施の形態1に係る冷凍サイクル装置の構成図である。
<Refrigeration cycle device>
FIG. 1 is a configuration diagram of a refrigeration cycle device according to a first embodiment.
図1に示されるように、本実施の形態の冷凍サイクル装置は、圧縮機1、凝縮器2、膨張弁3および蒸発器4を備える。これらが冷媒配管5a~5dによって接続されて、冷媒回路5が形成される。
As shown in FIG. 1, the refrigeration cycle device of this embodiment includes a
冷媒回路5には、ガス状の冷媒が流れており、圧縮機1で冷媒が圧縮される。凝縮器2では、圧縮機1で圧縮したガス状の冷媒が冷却され、高圧液状の冷媒または気液2相の冷媒となる。膨張弁3では、高圧液状の冷媒または気液2相の冷媒が減圧される。蒸発器4では、減圧された冷媒が加熱されて低圧ガス状の冷媒となる。圧縮機1は、蒸発器4によって低圧ガス状となった冷媒を吸引して、再度圧縮する。このようにして、冷凍サイクル装置100の冷媒回路5内を冷媒が循環する。
Gaseous refrigerant flows through the
凝縮器送風機6は、凝縮器2に空気を送る構成要素であり、凝縮器2に流れる冷媒が空気と熱交換して熱を吸収または放出することを促進するために設けられている。蒸発器送風機7は、蒸発器4に空気を送る構成要素であり、蒸発器4に流れる冷媒が空気と熱交換して熱を吸収または放出することを促進するために設けられている。
The
冷凍サイクル装置は、例えば、冷房および暖房の両方が実施可能な装置、冷房のみが実施可能な装置、または、暖房のみが実施可能な装置のいずれであってもよく、各種の冷凍空調装置に適用可能である。 The refrigeration cycle device may be, for example, a device capable of both cooling and heating, a device capable of only cooling, or a device capable of only heating, and can be applied to various types of refrigeration and air conditioning devices.
図2は、本実施の形態に係る冷凍サイクル装置の圧縮機の一例を示す断面図である。図2に示されるように、圧縮機(電動冷媒圧縮機)200は、シェル8を備える。シェルは内部に圧縮機構9を備え、冷媒を内部に流入させるための吸入管10と外部に流出させるための吐出管11が接続されている。圧縮機構9は吸入管10からシェル8に入った冷媒を圧縮して、吐出管11から吐出するように構成されている。
FIG. 2 is a cross-sectional view showing an example of a compressor of a refrigeration cycle device according to this embodiment. As shown in FIG. 2, compressor (electric refrigerant compressor) 200 has a
圧縮機1は、シャフト12と回転子17と固定子18とを有するモータ部を備えている。圧縮機構9は、このモータ部によって駆動される。圧縮機構9およびモータ部における摺動部を潤滑するための冷凍機油(潤滑油)が、油溜部13に貯留されている。
The
図3は、実施の形態に係る圧縮機が有する回転子の図2におけるA-A断面を示す断面図である。図3に示されるように、回転子17は、回転子コア43と、複数個の磁石44とを有する。
FIG. 3 is a cross-sectional view showing the A-A cross section in FIG. 2 of the rotor of the compressor according to the embodiment. As shown in FIG. 3, the
回転子コア43は円盤状の鋼板を複数枚積層させて形成される。また、回転子コア43には複数個の磁石挿入孔43aと複数個の冷媒通過孔43bとシャフト孔43cとが鋼板の積層方向に貫通するように形成される。磁石挿入孔43aには磁石44が挿入される。
The
冷媒通過孔43bは、圧縮機構9にて圧縮された冷媒が通過するための孔であり、冷媒は、ここを通過した後、吐出管11を介して冷媒配管5aへ吐出される。シャフト孔43cにはシャフト12が挿入される。
The
図4は、実施の形態に係る磁石44の図3におけるB-B断面を示す断面図である。図4に示されるように、磁石44の表面には皮膜45が設けられることが好ましい。皮膜45は磁石44の表面全体を覆うように形成される。なお、図4において紙面手前側の磁石44の表面および紙面奥側の磁石44の表面も皮膜45に覆われている。皮膜45の膜厚は特に限定されず、例えば100μm以下の膜厚の皮膜45が形成される。
FIG. 4 is a cross-sectional view showing the B-B cross section in FIG. 3 of the
皮膜45は耐熱性および耐油性に優れた無機系皮膜であることがより好ましい。皮膜45は、少なくともアルミニウム(Al)およびケイ素(Si)を含むことが好ましく、アルミニウム(Al)、ケイ素(Si)およびマグネシウム(Mg)を含むことがより好ましい。なお、皮膜45は、リン(P)を含まないことがさらに好ましい。被膜45により冷媒と磁石(特にネオジム磁石)との接触を防ぐことができるため、冷媒と磁石との接触によるフッ素以外のハロゲンが結合した冷媒の分解を防ぐことができる。しかし皮膜45は、均一に形成されていない場所があり、磁石44の一部が露出しているため、該冷媒の分解を完全に防ぐことは困難である。
The
磁石44に皮膜45を形成する方法としては、特に限定されず、既存の皮膜形成方法を用いることができる。例えば、スパッタリング、化学的気相堆積法(CVD)、蒸着、イオンプレーティング、イオンビーム蒸着、ディップコート、スピンコート、スプレーコート、メッキおよびその他の方法を適宜選択することができる。
The method for forming the
固定子18(図2)は、例えば、ポリエステル製の絶縁フィルムを有する。ここで、ポリエステルとしては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリトリメチレンテレフタレート(PTT)、ポリ-1,4-シクロヘキサンジメチレンテレフタレート(PCT)、または、それらの共重合体もしくは複合材料などが挙げられる。 The stator 18 (Fig. 2) has an insulating film made of, for example, polyester. Examples of polyester include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polytrimethylene terephthalate (PTT), poly-1,4-cyclohexanedimethylene terephthalate (PCT), or copolymers or composite materials thereof.
本実施の形態において、冷凍サイクル装置100は、冷媒と、冷媒を圧縮する圧縮機とを備える。圧縮機は、圧縮機の摺動部を潤滑する冷凍機油を備える。以下、冷媒および冷凍機油について説明する。
In this embodiment, the
<冷媒>
本実施の形態で用いられる冷媒は、第1冷媒と、第2冷媒と、を含む。第1冷媒は、ハイドロフルオロオレフィン(HFO)系冷媒である。第2冷媒は、塩素、臭素およびヨウ素からなる群より選ばれる少なくとも1種の元素を含むハロゲン化炭化水素である。
<Refrigerant>
The refrigerant used in this embodiment includes a first refrigerant and a second refrigerant. The first refrigerant is a hydrofluoroolefin (HFO)-based refrigerant. The second refrigerant is a halogenated hydrocarbon containing at least one element selected from the group consisting of chlorine, bromine, and iodine.
第1冷媒であるHFO系冷媒としては、HFO-1141、R-1132a、HFO-1132(E)、HFO-1132(Z)、HFO-1123等のハイドロフルオロエチレン、HFO-1225ye(Z)、HFO-1225ye(E)、HFO-1225zc、R-1234yf、R-1234ze(E)、HFO-1234ze(Z)、HFO-1234ye(Z)、HFO-1234ye(E)、HFO-1243zf、HFO-1252zf、HFO-1261yf等のハイドロフルオロプロピレン、R-1336mzz(E)、R-1336mzz(Z)、HFO-1336ze(Z)、HFO-1336ze(E)、HFO-1336yf、HFO-1336pyy、HFO-1327cze、HFO-1327et、HFO-1327、HFO-1345czf、HFO-1345fyc、HFO-1345cye、HFO-1345cyf、HFO-1345eye、HFO-1345pyz、HFO-1345pyy(E)、HFO-1345pyy(Z)、HFO-1345zy(E)、HFO-1345zy(Z)等のハイドロフルオロブテン、PFO-1216等のパーフルオロオレフィン等が挙げられる。 HFO refrigerants that are the first refrigerant include hydrofluoroethylenes such as HFO-1141, R-1132a, HFO-1132(E), HFO-1132(Z), and HFO-1123; hydrofluoropropylenes such as HFO-1225ye(Z), HFO-1225ye(E), HFO-1225zc, R-1234yf, R-1234ze(E), HFO-1234ze(Z), HFO-1234ye(Z), HFO-1234ye(E), HFO-1243zf, HFO-1252zf, and HFO-1261yf; ), HFO-1336ze(Z), HFO-1336ze(E), HFO-1336yf, HFO-1336pyy, HFO-1327cze, HFO-1327et, HFO-1327, HFO-1345czf, HFO-1345fyc, HFO-1345cye, HFO-1345cyf, HFO-1345eye, HFO-1345pyz, HFO-1345pyy(E), HFO-1345pyy(Z), HFO-1345zy(E), HFO-1345zy(Z), and other hydrofluorobutenes, and perfluoroolefins such as PFO-1216.
冷媒をR-410Aに近い動作圧力を有する混合冷媒とする観点から、第1冷媒は、ハイドロフルオロエチレンまたはハイドロフルオロプロピレンであることが好ましい。中でも、第1冷媒は、R-1132a、HFO-1132(E)、HFO-1132(Z)、HFO-1123、HFO-1225ye(Z)、HFO-1225ye(E)、HFO-1225zc、R-1234yf、R-1234ze(E)、HFO-1234ze(Z)、HFO-1234ye(Z)、HFO-1234ye(E)、および、HFO-1243zfがより好ましい。 From the viewpoint of making the refrigerant a mixed refrigerant having an operating pressure close to that of R-410A, it is preferable that the first refrigerant is hydrofluoroethylene or hydrofluoropropylene. Among them, it is more preferable that the first refrigerant is R-1132a, HFO-1132(E), HFO-1132(Z), HFO-1123, HFO-1225ye(Z), HFO-1225ye(E), HFO-1225zc, R-1234yf, R-1234ze(E), HFO-1234ze(Z), HFO-1234ye(Z), HFO-1234ye(E), and HFO-1243zf.
第2冷媒である、塩素、臭素およびヨウ素からなる群より選ばれる少なくとも1種の元素を含むハロゲン化炭化水素としては、R-13I1、R-1130(E)、R-1224yd(Z)、および、R-1233zd(E)等が挙げられる。中でも、第2冷媒はR-13I1であることが好ましい。R-13I1は、GWPが0.4と極めて低く、ANSI/ASHRAE Standard 34―2019において、燃焼性区分が不燃性(Class 1)に分類される。したがって、R-13I1を含む冷媒は、低GWPと低い燃焼性とを有することができる。R-1224yd(Z)、R-1233zd(E)等のハイドロクロロフルオロプロピレンは塩素を含むため、これらの冷媒のみで重合する可能性がある。 The second refrigerant, which is a halogenated hydrocarbon containing at least one element selected from the group consisting of chlorine, bromine, and iodine, includes R-13I1, R-1130(E), R-1224yd(Z), and R-1233zd(E). Among them, it is preferable that the second refrigerant is R-13I1. R-13I1 has an extremely low GWP of 0.4, and is classified as non-flammable (Class 1) in ANSI/ASHRAE Standard 34-2019. Therefore, refrigerants containing R-13I1 can have low GWP and low flammability. Hydrochlorofluoropropylenes such as R-1224yd(Z) and R-1233zd(E) contain chlorine, so they may polymerize only with these refrigerants.
本実施の形態で用いられる冷媒は、第1冷媒および第2冷媒に加えて、さらにHFC系冷媒を含むこともできる。HFC系冷媒としては、HFC-23、HFC-32、HFC-41、HFC-125、HFC-134、HFC-134a、HFC-143、HFC-143a、HFC-152、HFC-152a、HFC-161等が挙げられる。冷媒は、さらに、プロパン、イソブタン、二酸化炭素のようにハロゲンを含まない冷媒も含むことができる。 The refrigerant used in this embodiment may further include an HFC refrigerant in addition to the first and second refrigerants. Examples of HFC refrigerants include HFC-23, HFC-32, HFC-41, HFC-125, HFC-134, HFC-134a, HFC-143, HFC-143a, HFC-152, HFC-152a, and HFC-161. The refrigerant may further include a halogen-free refrigerant such as propane, isobutane, or carbon dioxide.
本実施の形態で用いられる冷媒において、第1冷媒の含有率および第2冷媒の含有率は、GWPと冷却性能とのバランスを考慮して適宜設定することができる。 In the refrigerants used in this embodiment, the content of the first refrigerant and the content of the second refrigerant can be set appropriately, taking into consideration the balance between GWP and cooling performance.
本実施の形態で用いられる冷媒のGWPは、750以下であることが好ましい。GWPが750以下である冷媒は環境性能に優れた冷媒であり、法令上の規制に対する適合性が高い。また、GWPが750以下である冷媒は冷凍サイクル装置として冷凍機のみでなく、空気調和機にも使用可能となる。なお、GWPは、気候変動に関する政府間パネル(IPCC)第五次評価報告書(AR5)の値(100年値)が用いられる。また、AR5に記載されていない冷媒のGWPは、他の公知文献に記載された値を用いてもよいし、公知の方法を用いて算出または測定した値を用いてもよい。 The GWP of the refrigerant used in this embodiment is preferably 750 or less. Refrigerants with a GWP of 750 or less are environmentally friendly and highly compliant with legal regulations. In addition, refrigerants with a GWP of 750 or less can be used as refrigeration cycle devices not only in refrigerators but also in air conditioners. The GWP value (100-year value) in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) is used. In addition, the GWP of refrigerants not listed in AR5 may be a value listed in other publicly known documents, or a value calculated or measured using a publicly known method.
本実施の形態で用いられる冷媒は、ANSI/ASHRAE Standard 34―2019において燃焼性区分が不燃性に分類される冷媒であることが好ましい。不燃性に分類される冷媒は、冷凍サイクル装置に漏洩した冷媒を拡散させる手段、設備または構造と、冷媒漏洩を検知するセンサと、センサが冷媒漏洩を検知した時に発報する発報装置と、を設ける必要がなくなる。また、不燃性に分類される冷媒は、法令上の規制で可燃性冷媒の使用が認められていない地域でも使用可能である。 The refrigerant used in this embodiment is preferably classified as non-flammable in the flammability classification in ANSI/ASHRAE Standard 34-2019. Refrigerants classified as non-flammable eliminate the need for a means, equipment, or structure for diffusing refrigerant leaked into the refrigeration cycle device, a sensor for detecting refrigerant leakage, and an alarm device for issuing an alarm when the sensor detects a refrigerant leakage. In addition, refrigerants classified as non-flammable can be used in areas where the use of flammable refrigerants is not permitted by legal regulations.
<冷凍機油>
本実施の形態で用いられる冷凍機油は、第1化合物および第2化合物の一方または両方を含む。第1化合物は、第三級炭素を少なくとも1つ有する第1アルキル基を含む。第2化合物は、酸素原子と、該酸素原子に隣接する第一級炭素または第二級炭素を有する第2アルキル基と、を含む。実施の形態1では、冷凍機油が第1化合物を含む場合について説明する。
<Refrigerating machine oil>
The refrigeration oil used in the present embodiment includes one or both of a first compound and a second compound. The first compound includes a first alkyl group having at least one tertiary carbon. The second compound includes an oxygen atom and a second alkyl group having a primary carbon or a secondary carbon adjacent to the oxygen atom. In the first embodiment, a case in which the refrigeration oil includes the first compound will be described.
第1化合物について説明する。第三級炭素とは、炭素の四本の結合のうち三本が炭素と結合した炭素を意味する。残りの一本は、一般的に水素と結合している。第1化合物としては、エステル油またはエーテル油が挙げられる。例えば、以下に示される構造のエステル油では、β位の炭素が第三級炭素に該当する。以下の式において、R4、R5およびR6は、それぞれアルキル基または水素である。 The first compound will be described. Tertiary carbon means a carbon in which three of the four bonds of the carbon are bonded to carbon. The remaining one is generally bonded to hydrogen. The first compound can be an ester oil or an ether oil. For example, in the ester oil having the structure shown below, the carbon at the β position corresponds to a tertiary carbon. In the following formula, R 4 , R 5 and R 6 are each an alkyl group or hydrogen.
第三級炭素を少なくとも1つ有する第1アルキル基としては、イソブチル基、sec-ブチル基、シクロブチル基、イソプロピル基、2-メチルヘキシル基、2-エチルペンチル基、2-エチルヘキシル基、3,5,5-トリメチルヘキシル基等が挙げられる。 Examples of a primary alkyl group having at least one tertiary carbon include an isobutyl group, a sec-butyl group, a cyclobutyl group, an isopropyl group, a 2-methylhexyl group, a 2-ethylpentyl group, a 2-ethylhexyl group, and a 3,5,5-trimethylhexyl group.
第1化合物は、ジオールまたはポリオールと、脂肪酸とのエステルであるポリオールエステルであってもよい。該ポリオールエステルは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The first compound may be a polyol ester, which is an ester of a diol or polyol and a fatty acid. The polyol ester may be used alone or in combination of two or more kinds.
第1化合物がポリオールエステルである場合、該ポリオールエステルの合成に用いられる脂肪酸は、イソ酪酸、2-メチルヘキサン酸、2-エチルペンタン酸、2-エチルヘキサン酸、3,5,5-トリメチルヘキサン酸等が該当する。合成に用いられる脂肪酸は、これらの脂肪酸を含んでいれば、さらに直鎖の脂肪酸を含んでいてもよい。 When the first compound is a polyol ester, the fatty acid used in the synthesis of the polyol ester includes isobutyric acid, 2-methylhexanoic acid, 2-ethylpentanoic acid, 2-ethylhexanoic acid, 3,5,5-trimethylhexanoic acid, etc. If the fatty acid used in the synthesis contains these fatty acids, it may further contain a straight-chain fatty acid.
第1化合物がポリオールエステルである場合、該ポリオールエステルの合成に用いられるジオールまたはポリオールは、ネオペンチルグリコール等のジオール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジ-(ペンタエリスリトール)、トリ-(ペンタエリスリトール)等のポリオール等が好ましい。 When the first compound is a polyol ester, the diol or polyol used in the synthesis of the polyol ester is preferably a diol such as neopentyl glycol, or a polyol such as trimethylolethane, trimethylolpropane, trimethylolbutane, di-(trimethylolpropane), tri-(trimethylolpropane), pentaerythritol, di-(pentaerythritol), or tri-(pentaerythritol).
第1化合物がポリオールエステルである場合、第1アルキル基は、イソプロピル基、2-メチルヘキシル基、2-エチルペンチル基、2-エチルヘキシル基、3,5,5-トリメチルヘキシル基等が該当する。 When the first compound is a polyol ester, the first alkyl group can be an isopropyl group, a 2-methylhexyl group, a 2-ethylpentyl group, a 2-ethylhexyl group, a 3,5,5-trimethylhexyl group, or the like.
第1化合物は、エーテル油であってもよい。エーテル油として、ポリビニルエーテルの典型的な構造を以下に示す。該構造を有するエーテル油では、R1、R2、R3およびR4がアルキル基に該当する。 The first compound may be an ether oil. As the ether oil, a typical structure of polyvinyl ether is shown below. In the ether oil having this structure, R 1 , R 2 , R 3 and R 4 correspond to alkyl groups.
アルキル基が第三級炭素を含む場合、該アルキル基は、イソブチル基、sec-ブチル基、シクロブチル基、または、イソプロピル基等である。 If the alkyl group contains a tertiary carbon, the alkyl group is an isobutyl group, a sec-butyl group, a cyclobutyl group, an isopropyl group, or the like.
第1化合物は、ポリビニルエーテルであってもよい。該ポリビニルエーテルは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The first compound may be a polyvinyl ether. The polyvinyl ether may be used alone or in combination of two or more kinds.
第1化合物がポリビニルエーテルである場合、第1アルキル基は、イソブチル基、sec-ブチル基、シクロブチル基、または、イソプロピル基が好ましい。 When the first compound is a polyvinyl ether, the first alkyl group is preferably an isobutyl group, a sec-butyl group, a cyclobutyl group, or an isopropyl group.
第1化合物は、ポリアルキレングリコールであってもよい。ポリアルキレングリコールの好ましい例として、プロピレンオキサイドの単独重合鎖またはプロピレンオキサイドとエチレンオキサイドの共重合鎖を有し、その両末端の少なくとも一方がエーテル結合で封鎖された化合物であって、封鎖されたエーテル結合に結合したアルキル基に第三級炭素が含まれる場合を挙げることができる。第三級炭素が含まれるアルキル基は、イソプロピル基、イソブチル基、secブチル基、シクロブチル基等が得られる。 The first compound may be a polyalkylene glycol. A preferred example of a polyalkylene glycol is a compound having a homopolymer chain of propylene oxide or a copolymer chain of propylene oxide and ethylene oxide, at least one of both ends of which is blocked with an ether bond, and in which the alkyl group bonded to the blocked ether bond contains a tertiary carbon. Examples of alkyl groups containing a tertiary carbon include an isopropyl group, an isobutyl group, a sec-butyl group, and a cyclobutyl group.
第1化合物がポリアルキレングリコールである場合、該ポリアルキレングリコールは、両末端が封鎖されたポリプロピレングリコールが好ましい。 When the first compound is a polyalkylene glycol, the polyalkylene glycol is preferably a polypropylene glycol with both ends capped.
上記のポリビニルエーテルの構造式において、R1とR2のいずれか一方の位置に、アルキル基でなく水素が存在する場合、R1とR2と結合する炭素が第三級炭素となる。このように主鎖に第三級炭素が含まれても良い。 In the above structural formula of polyvinyl ether, when hydrogen is present at either R1 or R2 instead of an alkyl group, the carbon bonded to R1 and R2 becomes a tertiary carbon. In this way, the main chain may contain a tertiary carbon.
本実施の形態で用いられる冷凍機油は第1化合物を含むことができる。この場合、冷凍機油中の第1化合物の含有率は、冷媒との適合性を考慮して適宜設定することができる。 The refrigeration oil used in this embodiment may contain a first compound. In this case, the content of the first compound in the refrigeration oil may be set appropriately taking into account compatibility with the refrigerant.
冷凍機油として、第三級炭素を少なくとも1つ有する第1アルキル基を含む第1化合物を用いた場合に、ラジカル重合を抑制できるメカニズムについて、以下に説明する。第1化合物として、アルキル基のβ位に第三級炭素があるエステル油を用いた場合、下記反応式(3)で示されるように、CF3・ラジカルは、第1化合物から水素原子を引き抜く。 The mechanism by which radical polymerization can be suppressed when a first compound containing a first alkyl group having at least one tertiary carbon is used as a refrigerating machine oil is described below. When an ester oil having a tertiary carbon at the β-position of the alkyl group is used as the first compound, the CF3 . radical abstracts a hydrogen atom from the first compound, as shown in the following reaction formula (3).
β位に第三級炭素がある場合において、CF3・ラジカルによる、α位の炭素原子に結合する水素原子、β位の炭素原子に結合する水素原子およびγ位の炭素原子に結合する水素原子の引き抜きやすさを、反応のエンタルピーを用いて説明する。ここで、α位およびγ位の炭素原子は、いずれも第二級炭素である。 In the case where there is a tertiary carbon at the β-position, the ease with which the CF3 · radical abstracts the hydrogen atom bonded to the carbon atom at the α-position, the hydrogen atom bonded to the carbon atom at the β-position, and the hydrogen atom bonded to the carbon atom at the γ-position is explained using the enthalpy of the reaction. Here, the carbon atoms at the α-position and the γ-position are both secondary carbons.
分子軌道計算の結果、α位で水素原子の引き抜きが生じた場合の反応のエンタルピー変化は-45KJ/molである。β位で水素原子の引き抜きが生じた場合の反応のエンタルピー変化は-63KJ/molである。γ位で水素原子の引き抜きが生じた場合の反応のエンタルピー変化は-32KJ/molである。β位の場合のエンタルピー変化が非常に大きいことが確認される。このため、エステル油が第三級炭素を含む場合は、選択的にβ位の炭素原子に結合する水素原子が、CF3・ラジカルに供与されてCF3Hとなり、CF3・ラジカルのラジカル重合開始剤としての機能が消滅し、二重結合を含むHFO系冷媒の重合が抑制されると推察される。 As a result of molecular orbital calculation, the enthalpy change of the reaction when the abstraction of a hydrogen atom occurs at the α position is −45 KJ/mol. The enthalpy change of the reaction when the abstraction of a hydrogen atom occurs at the β position is −63 KJ/mol. The enthalpy change of the reaction when the abstraction of a hydrogen atom occurs at the γ position is −32 KJ/mol. It is confirmed that the enthalpy change in the case of the β position is very large. Therefore, when the ester oil contains a tertiary carbon, the hydrogen atom bonded to the carbon atom at the β position is selectively donated to the CF3· radical to become CF3H , and the function of the CF3 · radical as a radical polymerization initiator disappears, and it is presumed that the polymerization of the HFO-based refrigerant containing a double bond is suppressed.
また、第1化合物から水素原子が引き抜かれて生成された冷凍機油(第1化合物)由来のラジカルは、分子サイズが大きいため、HFO系冷媒の重合には寄与しないと推察される。なお、冷凍機油(第1化合物)由来のラジカルは、近傍の冷凍機油の水素を引き抜く可能性がある。しかし、このようにして生成した冷凍機油由来のラジカルは、フッ素樹脂のように冷凍機油等に対する溶解性が低いものではない。よって、このような冷凍機油由来のラジカルが存在していても、冷凍サイクルの信頼性に及ぼす影響は小さい。 Furthermore, the radicals derived from the refrigeration oil (first compound) generated by abstracting hydrogen atoms from the first compound have a large molecular size, and are therefore presumed not to contribute to the polymerization of HFO-based refrigerants. The radicals derived from the refrigeration oil (first compound) may abstract hydrogen from nearby refrigeration oil. However, the radicals derived from the refrigeration oil generated in this manner are not low in solubility in refrigeration oil, unlike fluororesins. Therefore, even if such radicals derived from refrigeration oil are present, their impact on the reliability of the refrigeration cycle is small.
冷凍機油として、第三級炭素を少なくとも1つ有する第1アルキル基を含む第1化合物を用いることにより、ラジカル重合を抑制でき、信頼性を確保できる冷凍サイクル装置および圧縮機を提供できることは、本発明者等が新たに見出した知見である。なお、特許文献3(特表2010-509489)には、R-13I1の分解を抑制するために、少なくとも1つの水素原子および少なくとも1つの炭素原子を有し炭素原子と結合した水素原子の総数の17%以下が第三級水素原子である少なくとも1つの潤滑剤を選択することが開示されている。さらに、特許文献3には、少ない量の第三級水素原子を有する潤滑剤を選択することで冷媒の分解を抑制できると記載されている(明細書段落0006)。水素は一価の原子であるため、第三級水素は存在しない。よって、特許文献3で用いられる潤滑剤は、不明である。なお、第三級水素は誤記であり、正しくは第三級炭素であると解釈すると、特許文献3は、少ない量の第三級水素原子を有する潤滑剤を選択することにより、冷媒を安定化させること示している。特許文献3のこのような技術的思想は、冷凍機油として、第三級炭素を少なくとも1つ有する第1アルキル基を含む第1化合物を用いることにより、冷媒のラジカル重合を抑制し、冷媒を安定化させるという本願発明の技術的思想とは全く逆である。
The inventors have newly discovered that by using a first compound containing a first alkyl group having at least one tertiary carbon as a refrigeration oil, radical polymerization can be suppressed and a refrigeration cycle device and compressor that can ensure reliability can be provided. Patent Document 3 (JP Patent Publication 2010-509489) discloses that in order to suppress the decomposition of R-13I1, at least one lubricant is selected that has at least one hydrogen atom and at least one carbon atom, and 17% or less of the total number of hydrogen atoms bonded to carbon atoms are tertiary hydrogen atoms. Furthermore,
冷凍機油は、第1化合物および第2化合物の一方または両方に加えて、その他の基油や添加剤を含むことができる。 The refrigeration oil may contain other base oils and additives in addition to one or both of the first compound and the second compound.
基油の種類は特に限定されないが、例えば、ポリオールエステル油、ポリビニルエーテル油、ポリアルキレングリコール油、アルキルベンゼン油、アルキルナフタレン油、鉱物油、ポリα―オレフィン油、または、それらの混合物が挙げられる。冷凍機油は、水分量を管理することが望ましい。特にエステル油やポリビニルエーテル油やポリアルキレングリコール油は600ppm以下の水分量に管理することが望ましい。これらの冷凍機油は極性があり水分を含有しやすいからである。水分量が多いと固定子18(図2)に使用されているPET等が加水分解する虞がある。エステル油は300ppm以下の水分量に管理することが望ましい。エステル油が加水分解性を有するからである。また、塩素、臭素、およびヨウ素を少なくとも一つ含む冷媒が分解して生成する塩化水素等の酸が、水分と相乗して磁石44等の金属部品を腐食するからである。
The type of base oil is not particularly limited, but examples include polyol ester oil, polyvinyl ether oil, polyalkylene glycol oil, alkylbenzene oil, alkylnaphthalene oil, mineral oil, poly-α-olefin oil, and mixtures thereof. It is desirable to control the moisture content of the refrigeration oil. In particular, it is desirable to control the moisture content of ester oil, polyvinyl ether oil, and polyalkylene glycol oil to 600 ppm or less. This is because these refrigeration oils are polar and tend to contain moisture. If the moisture content is high, there is a risk of hydrolysis of PET and the like used in the stator 18 (Figure 2). It is desirable to control the moisture content of ester oil to 300 ppm or less. This is because ester oil is hydrolyzable. In addition, acids such as hydrogen chloride, which are generated by decomposition of a refrigerant containing at least one of chlorine, bromine, and iodine, act synergistically with moisture to corrode metal parts such as the
冷凍機油は、添加剤として、ラジカル重合抑制剤、酸化防止剤、酸捕捉剤、極圧剤(摩耗防止剤)、酸素捕捉剤などを含んでいてもよい。添加剤の詳細については、後述の実施の形態3において説明する。 The refrigeration oil may contain additives such as radical polymerization inhibitors, antioxidants, acid scavengers, extreme pressure agents (antiwear agents), and oxygen scavengers. Details of the additives will be described in the third embodiment below.
圧縮機がネオジム磁石を有する回転子を含む場合や、冷凍サイクル装置が真鍮からなる部品を備える場合、フッ素以外のハロゲンが結合したハロゲン化炭化水素がネオジム磁石や真鍮に接触して、分解されやすい。本実施の形態の冷凍サイクル回路は、ネオジム磁石や真鍮からなる部品を備える場合であっても、上述の冷凍機油を用いることにより、HFO系冷媒の重合を抑制でき、信頼性の高い冷凍サイクル装置および圧縮機を実現できる。 If the compressor includes a rotor with a neodymium magnet, or if the refrigeration cycle device includes parts made of brass, halogenated hydrocarbons bonded to halogens other than fluorine are likely to decompose when they come into contact with the neodymium magnet or brass. Even if the refrigeration cycle circuit of this embodiment includes parts made of neodymium magnets or brass, the polymerization of HFO-based refrigerants can be suppressed by using the above-mentioned refrigeration oil, and a highly reliable refrigeration cycle device and compressor can be realized.
実施の形態2.
実施の形態2の冷凍サイクル装置は、冷凍機油として、第2化合物を含む点以外は、実施の形態1の冷凍サイクル装置と同一の構成とすることができる。実施の形態2では、冷凍機油が第2化合物を含む場合について説明する。
The refrigeration cycle device of the second embodiment can have the same configuration as the refrigeration cycle device of the first embodiment, except that the refrigeration oil contains the second compound. In the second embodiment, a case where the refrigeration oil contains the second compound will be described.
第2化合物について説明する。第2化合物は、酸素原子と、該酸素原子に隣接する第一級炭素または第二級炭素を有する第2アルキル基と、を含む。第2化合物は、ポリビニルエーテルであり、第2アルキル基で酸素と結合する部分は、メチレン基やメチン基であることが好ましく、その他の部分は冷媒との溶解性や潤滑性で調節することができる。 The second compound is described below. The second compound contains an oxygen atom and a second alkyl group having a primary or secondary carbon adjacent to the oxygen atom. The second compound is a polyvinyl ether, and the portion of the second alkyl group that bonds to the oxygen is preferably a methylene group or a methine group, and the other portion can be adjusted to adjust the solubility and lubricity of the refrigerant.
本実施の形態で用いられる冷凍機油は第2化合物を含むことができる。この場合、冷凍機油中の第2化合物の含有率は、冷媒との適合性を考慮して適宜設定することができる。 The refrigeration oil used in this embodiment may contain a second compound. In this case, the content of the second compound in the refrigeration oil may be set appropriately taking into account compatibility with the refrigerant.
冷凍機油として、酸素原子と、該酸素原子に隣接する第一級炭素または第二級炭素を有する第2アルキル基と、を含む第2化合物を用いた場合に、ラジカル重合を抑制できるメカニズムについて、以下に説明する。第2化合物として、酸素原子と、該酸素原子に隣接する第一級炭素を有する第2アルキル基と、を含むエーテル油を用いた場合、下記反応式(4)で示されるように、CF3・ラジカルは、第2化合物中の酸素原子に隣接した炭素原子(第一級炭素)から水素原子を引き抜く。下記の反応式において、R4、R5およびR6は、それぞれアルキル基または水素である。 The mechanism by which radical polymerization can be suppressed when a second compound containing an oxygen atom and a second alkyl group having a primary carbon or secondary carbon adjacent to the oxygen atom is used as the refrigeration oil is described below. When an ether oil containing an oxygen atom and a second alkyl group having a primary carbon adjacent to the oxygen atom is used as the second compound, as shown in the following reaction formula (4), the CF3 . radical abstracts a hydrogen atom from the carbon atom (primary carbon) adjacent to the oxygen atom in the second compound. In the following reaction formula, R4, R5 and R6 are each an alkyl group or hydrogen.
上記反応式(4)の通り、酸素原子に結合する炭素に結合した水素は、CF3・ラジカルに水素を供与してCF3・ラジカルを安定化させやすい。上記反応式(4)に示される第2化合物のように、酸素原子と結合する炭素原子に二つの水素原子が結合した場合、該炭素原子は第一級炭素であるが、見かけ上は第二級炭素となる。該炭素原子に結合する水素の引き抜きが生じた場合の反応エンタルピー変化は-52KJ/molである。この反応エンタルピー変化の値は、上記式(3)に示される第1化合物のγ位で水素の引き抜きが生じた場合の反応のエンタルピー変化(-32KJ/mol)よりも小さい。したがって、酸素原子と結合する炭素原子に水素が二つ結合していたとしても、該水素原子は第三級炭素と結合する水素原子と同様にCF3・と結合しやすい。 As shown in the above reaction formula (4), hydrogen bonded to the carbon bonded to the oxygen atom easily donates hydrogen to the CF3 . radical to stabilize the CF3 . radical. When two hydrogen atoms are bonded to the carbon atom bonded to the oxygen atom, as in the second compound shown in the above reaction formula (4), the carbon atom is a primary carbon, but appears to be a secondary carbon. The reaction enthalpy change when hydrogen bonded to the carbon atom is abstracted is -52 KJ/mol. This reaction enthalpy change value is smaller than the enthalpy change (-32 KJ/mol) of the reaction when hydrogen is abstracted at the γ position of the first compound shown in the above formula (3). Therefore, even if two hydrogen atoms are bonded to the carbon atom bonded to the oxygen atom, the hydrogen atom is likely to bond to CF3 . as well as a hydrogen atom bonded to a tertiary carbon.
第2化合物において、酸素原子と結合する炭素原子に一つの水素原子が結合した場合、該炭素原子は第二級炭素であるが、見かけ上は第三級炭素となる。該炭素原子に結合する水素原子の引き抜きが生じた場合の反応エンタルピー変化は概ね-60KJ/molである。したがって、酸素原子と結合する炭素原子に水素が一つ結合していたとしても、該水素原子は第三級炭素と結合する水素原子と同様にCF3・と結合しやすい。 In the second compound, when one hydrogen atom is bonded to the carbon atom bonded to the oxygen atom, the carbon atom is a secondary carbon, but appears to be a tertiary carbon. When the hydrogen atom bonded to the carbon atom is abstracted, the reaction enthalpy change is approximately -60 KJ/mol. Therefore, even if one hydrogen atom is bonded to the carbon atom bonded to the oxygen atom, the hydrogen atom is likely to bond with CF3 . in the same way as a hydrogen atom bonded to a tertiary carbon.
第2化合物の酸素原子と結合する炭素原子に結合する水素原子が、CF3・ラジカルに供与されてCF3Hとなり、CF3・ラジカルのラジカル重合開始剤としての機能が消滅し、二重結合を含むHFO系冷媒の重合が抑制されると推察される。 It is presumed that the hydrogen atom bonded to the carbon atom bonded to the oxygen atom of the second compound is donated to the CF3 · radical to become CF3H , causing the CF3 · radical to lose its function as a radical polymerization initiator, thereby suppressing the polymerization of the HFO-based refrigerant containing a double bond.
実施の形態3.
実施の形態1および実施形態2の冷凍サイクル装置において、冷凍機油は、添加剤を含むことができる。添加剤としては、ラジカル重合抑制剤、摩耗防止剤、酸捕捉剤、酸化防止剤、酸素捕捉剤等が挙げられる。
In the refrigeration cycle devices of the first and second embodiments, the refrigeration oil may contain additives, such as a radical polymerization inhibitor, an antiwear agent, an acid scavenger, an antioxidant, and an oxygen scavenger.
ラジカル重合抑制剤を用いると、冷凍機油のラジカル化に続く冷凍機油同士の重合を防止できる。これにより、冷凍機油の性状の変化を抑制でき、ラジカル重合抑制剤を添加しない場合よりも、冷凍サイクル装置の安定性が向上する。 The use of a radical polymerization inhibitor can prevent polymerization of the refrigeration oil itself following the radicalization of the refrigeration oil. This can suppress changes in the properties of the refrigeration oil, improving the stability of the refrigeration cycle device compared to when a radical polymerization inhibitor is not added.
ラジカル重合抑制剤はフェノール類、ヒドロキノン類、アミン類を用いることができる。この中でフェノール類が好ましく、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノールが最も好ましい。 The radical polymerization inhibitor may be a phenol, hydroquinone, or amine. Of these, phenols are preferred, with 2,6-di-tert-butyl-4-methylphenol and 2,6-di-tert-butyl-4-ethylphenol being most preferred.
冷凍機油のラジカル重合抑制剤の含有量は0.1質量%以上3質量%以下が好ましく、0.5質量%以上2質量%以下がより好ましい。冷凍機油のラジカル重合抑制剤の含有量が0.1質量%未満であると、十分な効果を得られない可能性がある。冷凍機油のラジカル重合抑制剤の含有量が3質量%を超えると、十分な潤滑性等の性能を得られない可能性がある。 The content of the radical polymerization inhibitor in the refrigeration oil is preferably 0.1% by mass or more and 3% by mass or less, and more preferably 0.5% by mass or more and 2% by mass or less. If the content of the radical polymerization inhibitor in the refrigeration oil is less than 0.1% by mass, it may not be possible to obtain sufficient effects. If the content of the radical polymerization inhibitor in the refrigeration oil exceeds 3% by mass, it may not be possible to obtain sufficient performance such as lubricity.
摩耗防止剤を用いると、摺動状態を改善することができる。摺動部は摩擦熱によって高温になりやすく、このためにヨウ素等を含む冷媒の分解や、その分解で生成するラジカルに起因するHFO系冷媒の重合も起こりやすい。このため、適切な摩耗防止剤を本発明にかかる基油とともに用いることは摺動部の発熱を防止し、一層の冷凍サイクル装置の安定化につながる。 The use of anti-wear agents can improve the sliding condition. The sliding parts are prone to becoming hot due to frictional heat, which can easily cause decomposition of refrigerants that contain iodine, etc., and polymerization of HFO-based refrigerants due to the radicals generated by this decomposition. For this reason, using an appropriate anti-wear agent together with the base oil of the present invention can prevent heat generation in the sliding parts, leading to further stabilization of the refrigeration cycle device.
摩耗防止剤は、リン酸エステル系、亜リン酸エステル系、チオリン酸塩系等がある。冷凍サイクルに悪影響を及ぼしにくいリン酸エステル系が最適である。 Anti-wear agents include phosphate esters, phosphites, and thiophosphates. Phosphate esters are the best because they have less of an adverse effect on the refrigeration cycle.
リン酸エステル系の摩耗防止剤としては、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート等が挙げられる。 Phosphate ester-based anti-wear agents include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, etc.
冷凍機油のリン酸エステル系摩耗防止剤の含有率は、0.1質量%以上10質量%以下が好ましい。これによると、摺動部表面に効率的に摩耗防止剤が吸着して、摺動面でせん断力の小さな膜が形成され、摩耗防止効果と摺動部の発熱を抑える効果が得られる。冷凍機油のリン酸エステル系摩耗防止剤の含有率が0.1質量%未満であると、十分な効果を得られない可能性がある。冷凍機油のリン酸エステル系摩耗防止剤の含有率が10質量%を超えると、腐食摩耗を生ずる可能性がある。 The content of the phosphate ester-based anti-wear agent in the refrigeration oil is preferably 0.1% by mass or more and 10% by mass or less. This allows the anti-wear agent to be efficiently adsorbed to the sliding surface, forming a film with low shear force on the sliding surface, providing anti-wear effects and suppressing heat generation in the sliding part. If the content of the phosphate ester-based anti-wear agent in the refrigeration oil is less than 0.1% by mass, there is a risk that a sufficient effect will not be obtained. If the content of the phosphate ester-based anti-wear agent in the refrigeration oil exceeds 10% by mass, there is a risk of corrosive wear occurring.
酸捕捉剤を用いると、酸捕捉剤が種々の冷媒の分解で生成する酸を捕捉し、冷凍サイクル装置内の金属の腐食の防止や、有機材料の劣化の防止を図ることができる。生成する酸は主にハロゲン化水素である。 The acid scavenger can be used to capture the acids generated by the decomposition of various refrigerants, preventing corrosion of metals in the refrigeration cycle device and deterioration of organic materials. The acids generated are mainly hydrogen halides.
酸捕捉剤として、エポキシ系化合物を用いることができる。エポキシ系化合物はグリシジルエーテル型エポキシ、および、グリシジルエステル型エポキシ、の少なくともいずれかであることが好ましい。 As an acid scavenger, an epoxy-based compound can be used. The epoxy-based compound is preferably at least one of a glycidyl ether type epoxy and a glycidyl ester type epoxy.
エポキシは水分も捕捉するため、冷凍機油がエポキシ系化合物を含む場合、冷凍機油の飽和水分量は、冷媒の飽和水分量よりも高いことが望ましい。冷媒中の水分を冷凍機油に取り込み、冷凍機油中に存在するエポキシによって効率的に水分を除去できる。 Since epoxy also captures moisture, when the refrigeration oil contains an epoxy compound, it is desirable for the saturated moisture content of the refrigeration oil to be higher than the saturated moisture content of the refrigerant. The moisture in the refrigerant is absorbed into the refrigeration oil, and the epoxy present in the refrigeration oil can efficiently remove the moisture.
冷凍機油の酸捕捉剤の含有率は、0.1質量%以上5質量%以下が好ましい。これによると、酸捕捉剤が種々の冷媒の分解で生成する酸を捕捉し、冷凍サイクル装置内の金属の腐食の防止や、有機材料の劣化の防止を図ることができる。冷凍機油の酸捕捉剤の含有率が0.1質量%未満であると、十分な効果を得られない可能性がある。冷凍機油の酸捕捉剤の含有率が5質量%を超えると、エポキシが重合してスラッジを生ずる可能性がある。 The acid scavenger content of the refrigeration oil is preferably 0.1% by mass or more and 5% by mass or less. This allows the acid scavenger to capture the acids generated by the decomposition of various refrigerants, preventing corrosion of metals in the refrigeration cycle device and preventing deterioration of organic materials. If the acid scavenger content of the refrigeration oil is less than 0.1% by mass, there is a possibility that sufficient effect will not be obtained. If the acid scavenger content of the refrigeration oil exceeds 5% by mass, epoxy may polymerize and produce sludge.
酸化防止剤としては、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)等のフェノール系、フェニル-α-ナフチルアミン、および、N.N’-ジ-フェニル-p-フェニレンジアミン等のアミン系が挙げられる。 Examples of antioxidants include phenolic antioxidants such as 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, and 2,2'-methylenebis(4-methyl-6-tert-butylphenol), and amine antioxidants such as phenyl-α-naphthylamine and N.N'-diphenyl-p-phenylenediamine.
酸素捕捉剤としては、含硫黄芳香族化合物、各種オレフィン、脂肪族不飽和化合物(ジエン、トリエン等)、不飽和結合を有する環式テルペン類等が挙げられる。 Oxygen scavengers include sulfur-containing aromatic compounds, various olefins, aliphatic unsaturated compounds (dienes, trienes, etc.), and cyclic terpenes with unsaturated bonds.
含硫黄芳香族化合物としては、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、ジフェニルスルフィド、ジオクチルジフェニルスルフィド、ジアルキルジフェニレンスルフィド、ベンゾチオフェン、ジベンゾチオフェン、フェノチアジン、ベンゾチアピラン、チアピラン、チアントレン、ジベンゾチアピラン、ジフェニレンジスルフィド等が挙げられる。 Sulfur-containing aromatic compounds include 4,4'-thiobis(3-methyl-6-tert-butylphenol), diphenyl sulfide, dioctyldiphenyl sulfide, dialkyldiphenylene sulfide, benzothiophene, dibenzothiophene, phenothiazine, benzothiapyran, thiapyran, thianthrene, dibenzothiapyran, and diphenylene disulfide.
不飽和結合を有する環式テルペン類としては、α-ピネン、β-ピネン、リモネン、フェランドレン等が挙げられる。特に、脂肪族不飽和化合物、不飽和結合を有する環式テルペン類等が好ましい。 Cyclic terpenes with unsaturated bonds include α-pinene, β-pinene, limonene, phellandrene, etc. Aliphatic unsaturated compounds and cyclic terpenes with unsaturated bonds are particularly preferred.
冷凍機油は、キノン添加剤を含まないものとすることができる。キノン添加剤は、1,4-ベンゾキノン、1,2-ベンゾキノン、2-メチル-1,4-ベンゾキノン、2-フェニル-1,4-ベンゾキノン、2-tert-ブチル-1,4-ベンゾキノン、1,4-ナフトキノン、1,2-ナフトキノン、2,6-ナフトキノン、2-ヒドロキシ-1,4-ナフトキノン、および、1,4-アントラキノンからなる群から選択される少なくとも1種である。キノン添加剤は、R-13I1の分解により生成するラジカルを捕捉し、ラジカルを不活化することができるため、冷凍機油への添加が検討されている。一方、実施形態1~実施形態3の冷凍サイクル装置では、第1化合物および第2化合物の一方または両方を含む冷凍機油を用いることにより、R-13I1等の分解により生成するラジカルが第1化合物および第2化合物と反応する。その結果、該ラジカルの重合開始剤としての機能が抑制され、HFO系冷媒の重合が抑制される。よって、本実施の形態で用いられる冷凍機油は、キノン添加剤を含まないものとすることができる。 The refrigeration oil may be free of quinone additives. The quinone additive is at least one selected from the group consisting of 1,4-benzoquinone, 1,2-benzoquinone, 2-methyl-1,4-benzoquinone, 2-phenyl-1,4-benzoquinone, 2-tert-butyl-1,4-benzoquinone, 1,4-naphthoquinone, 1,2-naphthoquinone, 2,6-naphthoquinone, 2-hydroxy-1,4-naphthoquinone, and 1,4-anthraquinone. The quinone additive can capture radicals generated by decomposition of R-13I1 and inactivate the radicals, so that its addition to the refrigeration oil is being considered. On the other hand, in the refrigeration cycle devices of the first to third embodiments, by using a refrigeration oil containing one or both of the first and second compounds, the radicals generated by decomposition of R-13I1 and the like react with the first and second compounds. As a result, the function of the radical as a polymerization initiator is suppressed, and the polymerization of the HFO refrigerant is suppressed. Therefore, the refrigeration oil used in this embodiment can be one that does not contain a quinone additive.
実施の形態4.
実施の形態4の冷凍サイクル装置は、冷媒と、冷媒を圧縮する圧縮機1と、圧縮機1の摺動部を潤滑する冷凍機油と、冷媒が通過する冷媒配管5と、を備える冷凍サイクル装置である。冷媒は、第1冷媒と、第3冷媒と、を含む。第1冷媒は、ハイドロフルオロオレフィン系冷媒であり、第3冷媒は、塩素、臭素およびヨウ素からなる群より選ばれる少なくとも1種の元素を含む冷媒である。第3冷媒は意図的に使用する場合に限らず、既設の圧縮機や配管に残留することで、それらを再利用して新たに導入される冷凍サイクル装置に混入する場合も含まれる。冷凍機油は、第1化合物および第2化合物の一方または両方を含む。第1化合物は、第三級炭素を少なくとも1つ有する第1アルキル基を含み、第2化合物は、酸素原子と、酸素原子に隣接する第一級炭素または第二級炭素を有する第2アルキル基と、を含む。圧縮機1および冷媒配管5の一方または両方は、第3冷媒を用いた履歴を有する冷凍サイクル装置における既設の圧縮機および既設の冷媒配管の一方または両方を再利用したものである。実施形態4の冷凍サイクル装置では、HFO系冷媒の重合反応が抑制されスラッジ化しないために冷凍サイクル装置の信頼性を確保できる。その理由について以下の説明する。
Embodiment 4.
The refrigeration cycle device of the fourth embodiment is a refrigeration cycle device including a refrigerant, a
実施の形態1~実施の形態3までは、HFO系冷媒(第1冷媒)と混合して使用される、塩素、臭素およびヨウ素からなる群より選ばれる少なくとも1種の元素を含むハロゲン化炭化水素(第2冷媒)の分解物であるCF3・ラジカルによるHFO系冷媒の重合を想定してきた。しかし、空調機等の買い替え需要においては、新たに使用される冷媒が、塩素、臭素およびヨウ素からなる群より選ばれる少なくとも1種の元素を含むハロゲン化炭化水素(第2冷媒)を含んでいなくても、該ハロゲン化炭化水素が含まれている場合と同様の問題が生じうる。例えば、空調機を買い替える場合に、既設の圧縮機や冷媒配管を再利用することがある。この場合、従来使用されていた塩素系等の冷媒が、新たに導入されるHFO系冷媒を用いた空調機等に混入することがある。従来使用されていた冷媒のうち、上記の問題を生じるうる冷媒は、オゾン層を破壊する物質に関するモントリオール議定書で規制された塩素系冷媒であって、例えばHCFC22、HCFC123やCFC12等が該当する。 In the first to third embodiments, polymerization of the HFO-based refrigerant by CF3. radicals, which are decomposition products of halogenated hydrocarbons (second refrigerant) containing at least one element selected from the group consisting of chlorine, bromine, and iodine, and which are used in combination with the HFO -based refrigerant (first refrigerant), has been assumed. However, in the demand for replacement of air conditioners, etc., even if the newly used refrigerant does not contain a halogenated hydrocarbon (second refrigerant) containing at least one element selected from the group consisting of chlorine, bromine, and iodine, problems similar to those occurring when the halogenated hydrocarbon is contained may occur. For example, when replacing an air conditioner, the existing compressor and refrigerant piping may be reused. In this case, a conventionally used chlorine-based refrigerant may be mixed into a newly introduced air conditioner using an HFO-based refrigerant. Among conventionally used refrigerants, refrigerants that may cause the above problems are chlorine-based refrigerants regulated by the Montreal Protocol on Substances Depleting the Ozone Layer, such as HCFC22, HCFC123, and CFC12.
HCFC22、HCFC123やCFC12は、塩素が容易に脱離してラジカルを生成する。したがって、HFO系冷媒に、HCFC22、HCFC123やCFC12等が混入すると、HCFC22、HCFC123やCFC12等から生成されたラジカルによって、HFO系冷媒の重合が進行する。この重合反応を抑制するためには、実施の形態1~実施の形態3に記載の冷凍機油を用いる必要がある。実施の形態1~実施の形態3に記載の冷凍機油を用いることで、HFO系冷媒の重合生成物による冷凍サイクル装置の信頼性の低下を防ぐことができる。フッ素以外のハロゲン(塩素等)を含む冷媒を使用した履歴のある冷凍サイクル装置からHFO系冷媒を含む冷媒を使用する冷凍サイクル装置に代替する場合に、実施の形態1~実施の形態3に記載の冷凍機油を用いることにより、代替時に再利用する既設配管等に残った冷媒の分解によるHFO系冷媒のラジカル重合を抑制し、信頼性の高い冷凍サイクル装置および圧縮機が実現できる。 HCFC22, HCFC123 and CFC12 generate radicals by easily releasing chlorine. Therefore, when HCFC22, HCFC123, CFC12, etc. are mixed into an HFO refrigerant, the radicals generated from HCFC22, HCFC123, CFC12, etc. cause polymerization of the HFO refrigerant. In order to suppress this polymerization reaction, it is necessary to use the refrigeration oil described in the first to third embodiments. By using the refrigeration oil described in the first to third embodiments, it is possible to prevent a decrease in the reliability of the refrigeration cycle device due to the polymerization products of the HFO refrigerant. When replacing a refrigeration cycle device that has a history of using a refrigerant containing a halogen other than fluorine (chlorine, etc.) with a refrigeration cycle device that uses a refrigerant containing an HFO refrigerant, by using the refrigeration oil described in the first to third embodiments, it is possible to suppress radical polymerization of the HFO refrigerant due to the decomposition of the refrigerant remaining in the existing piping, etc., that is reused during the replacement, and to realize a highly reliable refrigeration cycle device and compressor.
HCFC22等の従来の塩素系冷媒が、新たに導入されるHFO系冷媒を含む冷媒に混入する理由について、ビル用空調機を例として説明する。ビル用空調機等の買い替えに際しては、壁に埋設された既設の冷媒配管をそのまま使用することが多い。冷媒配管に冷凍機油が残留していると、冷媒が冷凍機油に溶解したままで残留する場合が多い。 The reason why conventional chlorine-based refrigerants such as HCFC22 become mixed with newly introduced refrigerants containing HFO-based refrigerants is explained using an example of a building air conditioner. When replacing a building air conditioner, the existing refrigerant piping buried in the wall is often used as is. If refrigeration oil remains in the refrigerant piping, the refrigerant often remains dissolved in the refrigeration oil.
ビル用空調機において、旧冷媒から新冷媒に変更する場合は、新冷媒に適合した新冷凍機油に変更することが一般的である。この場合はポンプダウン運転によってこれまで使用されてきた冷媒と冷凍機油を室外機等に回収し、室外機と室内機を新たな冷媒に適合したものに変更するといった手順で新冷媒に代替する。ポンプダウン運転の一例としては特開昭62-280548号公報に記載の方法を用いることができる。ポンプダウン運転で旧冷媒と旧冷凍機油を室外機等に回収したのちに室外機を取り外し、新冷凍機油が封入された室外機に交換する。その後に真空引きを行って、新冷媒を冷媒配管に封入することが一般的である。 When changing from an old refrigerant to a new refrigerant in a building air conditioner, it is common to change to a new refrigeration oil that is compatible with the new refrigerant. In this case, the refrigerant and refrigeration oil that have been used up until now are recovered in the outdoor unit by pump-down operation, and the outdoor unit and indoor unit are changed to ones that are compatible with the new refrigerant, and the new refrigerant is replaced by this procedure. One example of pump-down operation is the method described in JP 62-280548 A. After the old refrigerant and old refrigeration oil are recovered in the outdoor unit by pump-down operation, the outdoor unit is removed and replaced with an outdoor unit filled with new refrigeration oil. It is common to then perform a vacuum and fill the refrigerant piping with the new refrigerant.
壁に埋設された冷媒配管は複数の室内機へと分岐するため流路が複雑となることが多い。また、室内機の増減によって流路が変更となり、途中から使用されない冷媒配管、いわゆる盲腸管等も多く存在する。このような一端が閉塞された冷媒配管では、冷媒の流通がないためにポンプダウンをしても冷媒が溶け込んだまま冷凍機油が残留しやすい。 Refrigerant piping buried in walls often branches out to multiple indoor units, resulting in a complex flow path. In addition, the flow path changes as the number of indoor units increases or decreases, and there are many refrigerant piping that are not used partway through, known as dead-end pipes. In such refrigerant piping with one end blocked, there is no refrigerant flow, so even if you pump down, the refrigerant is likely to remain dissolved in the refrigeration oil.
既設の冷媒配管には、従来使用されていた冷凍機油が残留し、残留した冷凍機油に溶解した冷媒は真空引きでは除去されにくく、新たな冷媒に混入する可能性が極めて高い。新冷媒が、問題を生じうる従来の塩素系冷媒を含んでいなくても、結果として従来の塩素系冷媒と、HFO系冷媒との混合冷媒となってしまう。 The refrigerant oil that was previously used remains in the existing refrigerant piping, and the refrigerant dissolved in the remaining refrigerant oil is difficult to remove by vacuuming, making it highly likely to be mixed into the new refrigerant. Even if the new refrigerant does not contain the conventional chlorine-based refrigerants that could cause problems, the end result will be a mixture of the conventional chlorine-based refrigerant and the HFO-based refrigerant.
上記は、ポンプダウン運転が可能な場合で説明したが、圧縮機が故障している場合はポンプダウン運転ができない。このような状況では、さらに冷凍機油の残留量が増大し、冷凍機油に溶解して残留する従来の塩素系冷媒の量も多くなる。従来の塩素系冷媒は、塩素を含むものであればよく、GWPやODPの制限を受けるものではない。このような冷媒を使用していた時期は、GWPやODPで規制されていたわけではないか、規制が現在よりも緩やかであったからである。 The above was explained in the case where pump-down operation is possible, but if the compressor is broken, pump-down operation cannot be performed. In such a situation, the amount of residual refrigeration oil increases further, and the amount of conventional chlorine-based refrigerant that remains dissolved in the refrigeration oil also increases. Conventional chlorine-based refrigerants are sufficient as long as they contain chlorine, and are not subject to GWP or ODP restrictions. This is because, at the time when such refrigerants were used, they were not regulated by GWP or ODP, or the regulations were more relaxed than they are today.
買い替え後に用いる冷媒がHFO系冷媒を含む場合は、該冷媒が塩素、臭素、またはヨウ素を有する冷媒を含んでいなくても、これまで述べた場合と同様にHFO系冷媒の重合が発生する虞がある。このため、ビル用空調機等であって、HCFC22等の塩素系冷媒を用いた履歴があって、買い替え後にHFO系冷媒を含む冷媒を用いる場合は、実施の形態1~実施の形態3に記載の冷凍機油を用いることで、HFO系冷媒の重合を抑制することができ、冷凍サイクルの安定化を図ることができる。よって、実施形態1~実施形態3の冷凍サイクル装置は、冷媒が通過する冷媒配管を備え、圧縮機および冷媒配管の一方または両方は、第3冷媒を用いた冷凍サイクル装置における圧縮機および冷媒配管を再利用したものであり、第3冷媒は、塩素、臭素およびヨウ素からなる群より選ばれる少なくとも1種の元素を含む冷媒とすることができる。ここで、第3冷媒は、既存の冷媒に該当する。
If the refrigerant used after replacement contains an HFO-based refrigerant, polymerization of the HFO-based refrigerant may occur as in the cases described above, even if the refrigerant does not contain a refrigerant containing chlorine, bromine, or iodine. For this reason, in a building air conditioner or the like that has a history of using a chlorine-based refrigerant such as HCFC22 and uses a refrigerant containing an HFO-based refrigerant after replacement, polymerization of the HFO-based refrigerant can be suppressed by using the refrigeration oil described in
新たな冷凍機油への既存冷凍機油の混入量は、配管の複雑さや交換作業の方法、交換作業者の練度によるので一概には言えない。一般的には、新たな冷凍機油の量M1に対する、既存の冷凍機油の量M2の質量基準の割合は、10~50%程度の場合が多いとされている。冷凍機油に溶解した冷媒は、真空引きだけでは除去しにくく、冷媒回路に残留する可能性が高い。HCFC22からHFC系冷媒に変更したのちにHFO系冷媒に変更した場合は、新たな冷凍機油の量M1に対する、既存の冷凍機油の量M2の質量基準の割合は、1~25%程度の場合が多いとされている。このため、HCFC22を用いていた冷凍サイクル装置の機種において、HFO系冷媒に変更した場合は、既存の冷凍機油に溶解していたHCFC22が、HFO系冷媒に混入する可能性がある。 The amount of existing refrigeration oil mixed into the new refrigeration oil cannot be generalized because it depends on the complexity of the piping, the method of replacement work, and the skill level of the replacement worker. In general, the mass ratio of the amount of existing refrigeration oil M2 to the amount of new refrigeration oil M1 is said to be around 10 to 50% in many cases. Refrigerant dissolved in refrigeration oil is difficult to remove by vacuum alone, and there is a high possibility that it will remain in the refrigerant circuit. When changing from HCFC22 to an HFC refrigerant and then to an HFO refrigerant, the mass ratio of the amount of existing refrigeration oil M2 to the amount of new refrigeration oil M1 is said to be around 1 to 25% in many cases. For this reason, when changing to an HFO refrigerant in a refrigeration cycle device model that used HCFC22, there is a possibility that HCFC22 dissolved in the existing refrigeration oil will be mixed into the HFO refrigerant.
既存の冷凍機油の量M2は、既存の冷凍機油の封入量と既存の冷凍機油の回収量との差に該当する。よって、新たに封入する冷凍機油の量M1を、既存の冷凍機油の封入量と既存の冷凍機油の回収量との差M2で除することで、新たな冷凍機油の量M1に対する、既存の冷凍機油の量M2の質量基準の割合M1/M2を求めることができる。 The amount of existing refrigeration oil M2 corresponds to the difference between the amount of existing refrigeration oil charged and the amount of existing refrigeration oil recovered. Therefore, by dividing the amount of newly charged refrigeration oil M1 by the difference M2 between the amount of existing refrigeration oil charged and the amount of existing refrigeration oil recovered, it is possible to obtain the mass ratio M1/M2 of the amount of existing refrigeration oil M2 to the amount of new refrigeration oil M1.
既存の冷凍機油の封入量が不明である場合は、新たな冷凍機油と冷媒を封入したのちに十分な時間で運転を行い、その運転後に抜き出した冷凍機油に含まれる既存の冷凍機油の量を分析装置によって求めることができる。分析装置は液体クロマトグラフやガスクロマトグラフが好適である。運転後に抜き出した冷凍機油の比重に基づき、該冷凍機油中の既存の冷凍機油の量を求めることができる。 If the amount of existing refrigeration oil is unknown, new refrigeration oil and refrigerant are charged, then the system is operated for a sufficient period of time, and the amount of existing refrigeration oil contained in the refrigeration oil extracted after operation can be determined using an analytical device. A liquid chromatograph or gas chromatograph is suitable as the analytical device. Based on the specific gravity of the refrigeration oil extracted after operation, the amount of existing refrigeration oil in the refrigeration oil can be determined.
どの程度の残留があればHFO系冷媒の重合を促進するかについて、予測することは困難である。残留した冷媒の種類や、新たに使用するHFO系冷媒の反応性に依存するだけでなく、新たに導入する圧縮機の温度にも依存するからである。このため、問題があるか否かの試験は煩雑となり現実的ではない。問題が起こる冷媒の使用履歴があれば、実施の形態1~実施の形態3に記載の冷凍機油を用いるべきである。強いて既存の冷凍機油の混入量について基準を設けるとすれば、新たな冷凍機油中の濃度として1質量%以下となる。新たな冷凍機油中の既存の冷凍機油の量が1質量%を超えると、新たに導入したHFO系冷媒と新たな冷凍機油との相溶性が悪化し、既存の冷凍機油の残留が多くなり、HFO系冷媒の重合が促進されるからである。
It is difficult to predict how much residual refrigerant will promote polymerization of HFO refrigerants. This is because it depends not only on the type of residual refrigerant and the reactivity of the newly used HFO refrigerant, but also on the temperature of the newly introduced compressor. For this reason, testing to see if there is a problem is complicated and unrealistic. If there is a history of use of a problematic refrigerant, the refrigeration oil described in
従来使用されていた冷媒を含む冷凍機油はポンプダウンだけでは除去できず、また圧縮機が故障していた場合はポンプダウンもできない。このために、冷媒配管を洗浄して冷媒配管に残留する冷凍機油を減ずる技術も検討されている。冷媒と冷凍機油の交換を複数回繰り返すことで、冷媒配管に残留する冷凍機油を減ずる方法が検討されている(特開平7-83545号公報)。一般的に、冷媒配管に残留する冷凍機油はHCFC22とともに用いられていた鉱油である。繰り返しの洗浄に用いられている冷媒はHFC系冷媒でありこの際に用いられる冷凍機油はHFC系冷媒と相溶性があるエステル油やエーテル油である。鉱油はHFC系冷媒には不溶であるため、HFC系冷媒で洗浄を繰り返したとしても配管内部に残留する鉱油は残留する。また、鉱油が混入したエステル油等も、HFC系冷媒に不溶となることが知られている。 Refrigerant oil containing the conventional refrigerant cannot be removed by pumping down alone, and pumping down is also not possible if the compressor is broken. For this reason, technology is being considered to clean the refrigerant piping to reduce the amount of refrigerant oil remaining in the refrigerant piping. A method is being considered to reduce the amount of refrigerant oil remaining in the refrigerant piping by repeatedly replacing the refrigerant with the refrigerant oil (JP Patent Publication 7-83545). In general, the refrigerant oil remaining in the refrigerant piping is mineral oil that was used with HCFC22. The refrigerant used for repeated cleaning is an HFC refrigerant, and the refrigerant oil used in this case is an ester oil or ether oil that is compatible with HFC refrigerants. Since mineral oil is insoluble in HFC refrigerants, the mineral oil remaining inside the piping remains even if the piping is repeatedly cleaned with an HFC refrigerant. It is also known that ester oil mixed with mineral oil is also insoluble in HFC refrigerants.
HFC系冷媒で鉱油が洗浄できると仮定すると、冷媒配管に残留する冷凍機油が少なくなり、塩素系冷媒の混入も少なくなるはずである。しかしながら、ハロゲンを含む冷媒は単にラジカル反応開始剤として働くにすぎず、HFO系冷媒の重合の起点になれば足りるので、微量の残存で問題が起こり得る。このため、冷媒配管を洗浄したとしても、HFO系冷媒の重合の抑制効果を十分に得ることはできない。 Assuming that mineral oil can be washed away with HFC refrigerants, there should be less refrigeration oil remaining in the refrigerant piping, and less contamination with chlorine-based refrigerants. However, refrigerants that contain halogens merely act as radical reaction initiators, and only need to act as the starting point for the polymerization of HFO refrigerants, so even a small amount remaining can cause problems. For this reason, even if the refrigerant piping is washed, it is not possible to fully suppress the polymerization of HFO refrigerants.
冷媒配管を洗浄液で洗浄する場合、洗浄液にフッ素以外のハロゲン系の化合物を用いた場合は、冷媒配管内に洗浄液が残留し、それが起点となってHFO系冷媒の重合が起こる。フッ素以外のハロゲンを含む化合物は、塩化メチレン、1-ブロモプロパン、HCFC141bやHCFC225等が該当する。これらの洗浄液で冷媒配管内を洗浄した履歴がある場合は、洗浄後に塩素を含まない冷媒を用いたとしても、洗浄液が冷媒配管内に残留している可能性が高い。 When cleaning refrigerant piping with a cleaning solution, if the cleaning solution is a halogen-based compound other than fluorine, the cleaning solution will remain in the refrigerant piping and will become the starting point for polymerization of the HFO refrigerant. Compounds that contain halogens other than fluorine include methylene chloride, 1-bromopropane, HCFC141b, and HCFC225. If there is a history of cleaning the inside of the refrigerant piping with these cleaning solutions, there is a high possibility that the cleaning solution will remain in the refrigerant piping even if a chlorine-free refrigerant is used after cleaning.
交換の対象となる圧縮機に、塩素系冷媒が使用された経歴がある場合であって、新たに充填する冷媒がHFO系冷媒である場合の一例について述べる。まずはポンプダウン運転によって冷媒を室外機内に回収する。回収された冷媒は単一の塩素系冷媒、または、塩素系冷媒が混入している冷媒である。次に室外機を取り外し、HFO系冷媒とともに用いる冷凍機油が充填された室外機を接続する。この場合、必要に応じて室内機等を交換する。この時に用いる冷凍機油は、実施の形態1~実施の形態3に記載の第1化合物および第2化合物の一方または両方を含む冷凍機油である。その後、真空引きを行い、少なくともHFO系冷媒を含む冷媒を充填する。HFO系冷媒に加えて他の冷媒が含まれる場合は、他の冷媒は、HFC系冷媒であることが好ましい。さらに、短時間の運転後に冷媒や冷凍機油を交換し、従来使用していた塩素系冷媒等の残留量を減らすことを試みても良い。実施の形態1~実施の形態3に記載の冷凍機油を用いることで、塩素系冷媒が残留していたとしてもHFO系冷媒の重合反応が抑制されスラッジ化しないために冷凍サイクル装置の信頼性を確保できる。 The following describes an example of a case where the compressor to be replaced has a history of using chlorine-based refrigerants and the newly charged refrigerant is an HFO-based refrigerant. First, the refrigerant is recovered into the outdoor unit by pump-down operation. The recovered refrigerant is a single chlorine-based refrigerant or a refrigerant mixed with chlorine-based refrigerants. Next, the outdoor unit is removed and an outdoor unit filled with refrigeration oil to be used with the HFO-based refrigerant is connected. In this case, the indoor unit, etc. are replaced as necessary. The refrigeration oil used at this time is a refrigeration oil containing one or both of the first compound and the second compound described in the first to third embodiments. After that, a vacuum is drawn and a refrigerant containing at least an HFO-based refrigerant is charged. If other refrigerants are contained in addition to the HFO-based refrigerant, it is preferable that the other refrigerant is an HFC-based refrigerant. Furthermore, it is possible to replace the refrigerant or refrigeration oil after a short period of operation in order to reduce the amount of residual chlorine-based refrigerants that were previously used. By using the refrigeration oil described in the first to third embodiments, the polymerization reaction of the HFO-based refrigerant is suppressed and sludge does not form even if chlorine-based refrigerants remain, so the reliability of the refrigeration cycle device can be ensured.
実施の形態5.
<圧縮機>
実施の形態5に係る圧縮機は、冷凍サイクル装置に使用される圧縮機であって、冷凍サイクル装置は、冷媒と、冷媒を圧縮する圧縮機と、圧縮機の摺動部を潤滑する冷凍機油と、を備え、冷媒は、第1冷媒と、第2冷媒と、を含み、第1冷媒は、ハイドロフルオロオレフィン系冷媒であり、第2冷媒は、塩素、臭素およびヨウ素からなる群より選ばれる少なくとも1種の元素を含むハロゲン化炭化水素であり、冷凍機油は、第1化合物および第2化合物の一方または両方を含み、第1化合物は、第三級炭素を少なくとも1つ有する第1アルキル基を含み、第2化合物は、酸素原子と、酸素原子に隣接する第一級炭素または第二級炭素を有する第2アルキル基と、を含む、圧縮機である。
<Compressor>
The compressor according to
実施の形態5の圧縮機に用いられる冷凍機油は、実施の形態1~実施の形態3に記載の冷凍機油と同一の構成である。よって、実施の形態5の圧縮機を用いた冷凍サイクル装置では、HFO系冷媒の重合反応が抑制されスラッジ化しないために冷凍サイクル装置の信頼性を確保できる。
The refrigeration oil used in the compressor of
実施の形態6.
<圧縮機>
実施の形態6に係る圧縮機は、冷凍サイクル装置に使用される圧縮機であって、冷凍サイクル装置は、冷媒と、冷媒を圧縮する圧縮機と、圧縮機の摺動部を潤滑する冷凍機油と、冷媒が通過する冷媒配管と、を備え、冷媒は、第1冷媒と、第3冷媒と、を含み、第1冷媒は、ハイドロフルオロオレフィン系冷媒であり、第3冷媒は、塩素、臭素およびヨウ素からなる群より選ばれる少なくとも1種の元素を含む冷媒であり、冷凍機油は、第1化合物および第2化合物の一方または両方を含み、第1化合物は、第三級炭素を少なくとも1つ有する第1アルキル基を含み、第2化合物は、酸素原子と、酸素原子に隣接する第一級炭素または第二級炭素を有する第2アルキル基と、を含み、圧縮機および冷媒配管の一方または両方は、第3冷媒を用いた履歴を有する冷凍サイクル装置における既設の圧縮機および既設の冷媒配管を再利用したものである、圧縮機である。
<Compressor>
The compressor according to
実施の形態6の圧縮機に用いられる冷凍機油は、実施の形態1~実施の形態3に記載の冷凍機油と同一の構成である。よって、実施の形態6の圧縮機を用いた冷凍サイクル装置では、HFO系冷媒の重合反応が抑制されスラッジ化しないために冷凍サイクル装置の信頼性を確保できる。
The refrigeration oil used in the compressor of
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed herein should be considered to be illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the claims, not the above description, and is intended to include all modifications within the meaning and scope of the claims.
1 圧縮機、2 凝縮器、3 膨張弁、4 蒸発器、5 冷媒配管、5a~5d 冷媒配管、6 凝縮器送風機、7 蒸発器送風機、8 シェル、9 圧縮機構、10 吸入管、11 吐出管、12 シャフト、13 油溜部、14 給油孔、15 短軸受け、16 長軸受け、17 回転子、18 固定子、100 冷凍サイクル装置、200 電動冷媒圧縮機、41 固定子、42 回転子、43 回転子コア、43a 磁石挿入孔、43b 冷媒通過孔、43c 軸孔、44 磁石、45 皮膜。 1 compressor, 2 condenser, 3 expansion valve, 4 evaporator, 5 refrigerant piping, 5a to 5d refrigerant piping, 6 condenser blower, 7 evaporator blower, 8 shell, 9 compression mechanism, 10 suction pipe, 11 discharge pipe, 12 shaft, 13 oil reservoir, 14 oil supply hole, 15 short bearing, 16 long bearing, 17 rotor, 18 stator, 100 refrigeration cycle device, 200 electric refrigerant compressor, 41 stator, 42 rotor, 43 rotor core, 43a magnet insertion hole, 43b refrigerant passage hole, 43c shaft hole, 44 magnet, 45 coating.
Claims (14)
前記冷媒を圧縮する圧縮機と、
前記圧縮機の摺動部を潤滑する冷凍機油と、を備える冷凍サイクル装置であって、
前記冷媒は、第1冷媒と、第2冷媒と、を含み、
前記第1冷媒は、ハイドロフルオロオレフィン系冷媒であり、
前記第2冷媒は、塩素、臭素およびヨウ素からなる群より選ばれる少なくとも1種の元素を含むハロゲン化炭化水素であり、
前記冷凍機油は、第1化合物および第2化合物の一方または両方を含み、
前記第1化合物は、第三級炭素を少なくとも1つ有する第1アルキル基を含み、
前記第2化合物は、酸素原子と、前記酸素原子に隣接する第一級炭素または第二級炭素を有する第2アルキル基と、を含む、冷凍サイクル装置。 A refrigerant;
A compressor that compresses the refrigerant;
A refrigeration cycle apparatus comprising: a refrigeration oil for lubricating a sliding part of the compressor,
The refrigerant includes a first refrigerant and a second refrigerant,
The first refrigerant is a hydrofluoroolefin refrigerant,
the second refrigerant is a halogenated hydrocarbon containing at least one element selected from the group consisting of chlorine, bromine, and iodine;
The refrigerating machine oil contains one or both of a first compound and a second compound,
the first compound comprises a first alkyl group having at least one tertiary carbon;
The second compound includes an oxygen atom and a second alkyl group having a primary carbon or a secondary carbon adjacent to the oxygen atom.
前記冷媒を圧縮する圧縮機と、
前記圧縮機の摺動部を潤滑する冷凍機油と、
前記冷媒が通過する冷媒配管と、を備える冷凍サイクル装置であって、
前記冷媒は、第1冷媒と、第3冷媒と、を含み、
前記第1冷媒は、ハイドロフルオロオレフィン系冷媒であり、
前記第3冷媒は、塩素、臭素およびヨウ素からなる群より選ばれる少なくとも1種の元素を含む冷媒であり、
前記冷凍機油は、第1化合物および第2化合物の一方または両方を含み、
前記第1化合物は、第三級炭素を少なくとも1つ有する第1アルキル基を含み、
前記第2化合物は、酸素原子と、前記酸素原子に隣接する第一級炭素または第二級炭素を有する第2アルキル基と、を含み、
前記圧縮機および前記冷媒配管の一方または両方は、前記第3冷媒を用いた履歴を有する冷凍サイクル装置における既設の圧縮機および既設の冷媒配管の一方または両方を再利用したものである、冷凍サイクル装置。 A refrigerant;
A compressor that compresses the refrigerant;
Refrigeration oil for lubricating sliding parts of the compressor;
A refrigerant pipe through which the refrigerant passes,
The refrigerant includes a first refrigerant and a third refrigerant,
The first refrigerant is a hydrofluoroolefin refrigerant,
The third refrigerant is a refrigerant containing at least one element selected from the group consisting of chlorine, bromine, and iodine,
The refrigerating machine oil contains one or both of a first compound and a second compound,
the first compound comprises a first alkyl group having at least one tertiary carbon;
the second compound comprises an oxygen atom and a second alkyl group having a primary or secondary carbon adjacent to the oxygen atom;
the compressor and/or the refrigerant piping are obtained by reusing an existing compressor and/or an existing refrigerant piping in a refrigeration cycle apparatus having a history of using the third refrigerant.
前記第1アルキル基は、イソプロピル基、2-メチルヘキシル基、2-エチルペンチル基、2-エチルヘキシル基、または、3,5,5-トリメチルヘキシル基である、請求項1から請求項5のいずれか1項に記載の冷凍サイクル装置。 the first compound is a polyol ester;
The refrigeration cycle device according to any one of claims 1 to 5, wherein the first alkyl group is an isopropyl group, a 2-methylhexyl group, a 2-ethylpentyl group, a 2-ethylhexyl group, or a 3,5,5-trimethylhexyl group.
前記第1アルキル基は、イソブチル基、sec-ブチル基、シクロブチル基、または、イソプロピル基である、請求項1から請求項5のいずれか1項に記載の冷凍サイクル装置。 the first compound is a polyvinyl ether;
The refrigeration cycle device according to any one of claims 1 to 5, wherein the first alkyl group is an isobutyl group, a sec-butyl group, a cyclobutyl group, or an isopropyl group.
前記冷凍サイクル装置は、
冷媒と、
前記冷媒を圧縮する圧縮機と、
前記圧縮機の摺動部を潤滑する冷凍機油と、を備え、
前記冷媒は、第1冷媒と、第2冷媒と、を含み、
前記第1冷媒は、ハイドロフルオロオレフィン系冷媒であり、
前記第2冷媒は、塩素、臭素およびヨウ素からなる群より選ばれる少なくとも1種の元素を含むハロゲン化炭化水素であり、
前記冷凍機油は、第1化合物および第2化合物の一方または両方を含み、
前記第1化合物は、第三級炭素を少なくとも1つ有する第1アルキル基を含み、
前記第2化合物は、酸素原子と、前記酸素原子に隣接する第一級炭素または第二級炭素を有する第2アルキル基と、を含む、圧縮機。 A compressor for use in a refrigeration cycle device,
The refrigeration cycle device includes:
A refrigerant;
A compressor that compresses the refrigerant;
and a refrigeration oil for lubricating a sliding part of the compressor.
The refrigerant includes a first refrigerant and a second refrigerant,
The first refrigerant is a hydrofluoroolefin refrigerant,
the second refrigerant is a halogenated hydrocarbon containing at least one element selected from the group consisting of chlorine, bromine, and iodine;
The refrigerating machine oil contains one or both of a first compound and a second compound,
the first compound comprises a first alkyl group having at least one tertiary carbon;
the second compound includes an oxygen atom and a second alkyl group having a primary or secondary carbon adjacent to the oxygen atom.
前記冷凍サイクル装置は、
冷媒と、
前記冷媒を圧縮する圧縮機と、
前記圧縮機の摺動部を潤滑する冷凍機油と、
前記冷媒が通過する冷媒配管と、を備え、
前記冷媒は、第1冷媒と、第3冷媒と、を含み、
前記第1冷媒は、ハイドロフルオロオレフィン系冷媒であり、
前記第3冷媒は、塩素、臭素およびヨウ素からなる群より選ばれる少なくとも1種の元素を含む冷媒であり、
前記冷凍機油は、第1化合物および第2化合物の一方または両方を含み、
前記第1化合物は、第三級炭素を少なくとも1つ有する第1アルキル基を含み、
前記第2化合物は、酸素原子と、前記酸素原子に隣接する第一級炭素または第二級炭素を有する第2アルキル基と、を含み、
前記圧縮機および前記冷媒配管の一方または両方は、前記第3冷媒を用いた履歴を有する冷凍サイクル装置における既設の圧縮機および既設の冷媒配管を再利用したものである、圧縮機。 A compressor for use in a refrigeration cycle device,
The refrigeration cycle device includes:
A refrigerant;
A compressor that compresses the refrigerant;
Refrigeration oil for lubricating sliding parts of the compressor;
a refrigerant pipe through which the refrigerant passes,
The refrigerant includes a first refrigerant and a third refrigerant,
The first refrigerant is a hydrofluoroolefin refrigerant,
The third refrigerant is a refrigerant containing at least one element selected from the group consisting of chlorine, bromine, and iodine,
The refrigerating machine oil contains one or both of a first compound and a second compound,
the first compound comprises a first alkyl group having at least one tertiary carbon;
the second compound comprises an oxygen atom and a second alkyl group having a primary or secondary carbon adjacent to the oxygen atom;
The compressor, wherein one or both of the compressor and the refrigerant piping are obtained by reusing an existing compressor and an existing refrigerant piping in a refrigeration cycle apparatus that has a history of using the third refrigerant.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023534184A JP7453480B1 (en) | 2022-12-15 | 2022-12-15 | Refrigeration cycle equipment and compressor |
PCT/JP2022/046177 WO2024127577A1 (en) | 2022-12-15 | 2022-12-15 | Refrigeration cycle device and compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/046177 WO2024127577A1 (en) | 2022-12-15 | 2022-12-15 | Refrigeration cycle device and compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024127577A1 true WO2024127577A1 (en) | 2024-06-20 |
Family
ID=90273484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/046177 WO2024127577A1 (en) | 2022-12-15 | 2022-12-15 | Refrigeration cycle device and compressor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7453480B1 (en) |
WO (1) | WO2024127577A1 (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008105366A1 (en) * | 2007-02-27 | 2008-09-04 | Nippon Oil Corporation | Refrigerator oil and working fluid composition for refrigerator |
WO2009066722A1 (en) * | 2007-11-22 | 2009-05-28 | Idemitsu Kosan Co., Ltd. | Lubricating oil composition for refrigerating machine |
WO2009133859A1 (en) * | 2008-04-30 | 2009-11-05 | サンデン株式会社 | Freezing circuit |
JP2009298918A (en) * | 2008-06-13 | 2009-12-24 | Mitsubishi Electric Corp | Liquid composition and refrigeration cycle apparatus using same |
WO2013038706A1 (en) * | 2011-09-16 | 2013-03-21 | パナソニック株式会社 | Refrigeration device |
JP2017218508A (en) * | 2016-06-08 | 2017-12-14 | 旭硝子株式会社 | Working medium for heat cycle, composition for heat cycle system and heat cycle system |
JP2019534927A (en) * | 2016-10-10 | 2019-12-05 | ザ ルブリゾル コーポレイションThe Lubrizol Corporation | Lubricant for low global warming potential cooling system |
WO2021044613A1 (en) * | 2019-09-06 | 2021-03-11 | 東芝キヤリア株式会社 | Refrigeration cycle device |
WO2021214972A1 (en) * | 2020-04-24 | 2021-10-28 | 三菱電機株式会社 | Refrigeration cycle apparatus and compressor |
JP6976494B1 (en) * | 2021-02-09 | 2021-12-08 | 三菱電機株式会社 | Refrigeration cycle device and compressor |
WO2022118467A1 (en) * | 2020-12-04 | 2022-06-09 | 三菱電機株式会社 | Refrigeration cycle device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8734671B2 (en) | 2010-11-19 | 2014-05-27 | Honeywell International Inc. | Azeotrope-like compositions comprising 1-chloro-3,3,3-trifluoropropene |
-
2022
- 2022-12-15 JP JP2023534184A patent/JP7453480B1/en active Active
- 2022-12-15 WO PCT/JP2022/046177 patent/WO2024127577A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008105366A1 (en) * | 2007-02-27 | 2008-09-04 | Nippon Oil Corporation | Refrigerator oil and working fluid composition for refrigerator |
WO2009066722A1 (en) * | 2007-11-22 | 2009-05-28 | Idemitsu Kosan Co., Ltd. | Lubricating oil composition for refrigerating machine |
WO2009133859A1 (en) * | 2008-04-30 | 2009-11-05 | サンデン株式会社 | Freezing circuit |
JP2009298918A (en) * | 2008-06-13 | 2009-12-24 | Mitsubishi Electric Corp | Liquid composition and refrigeration cycle apparatus using same |
WO2013038706A1 (en) * | 2011-09-16 | 2013-03-21 | パナソニック株式会社 | Refrigeration device |
JP2017218508A (en) * | 2016-06-08 | 2017-12-14 | 旭硝子株式会社 | Working medium for heat cycle, composition for heat cycle system and heat cycle system |
JP2019534927A (en) * | 2016-10-10 | 2019-12-05 | ザ ルブリゾル コーポレイションThe Lubrizol Corporation | Lubricant for low global warming potential cooling system |
WO2021044613A1 (en) * | 2019-09-06 | 2021-03-11 | 東芝キヤリア株式会社 | Refrigeration cycle device |
WO2021214972A1 (en) * | 2020-04-24 | 2021-10-28 | 三菱電機株式会社 | Refrigeration cycle apparatus and compressor |
WO2022118467A1 (en) * | 2020-12-04 | 2022-06-09 | 三菱電機株式会社 | Refrigeration cycle device |
JP6976494B1 (en) * | 2021-02-09 | 2021-12-08 | 三菱電機株式会社 | Refrigeration cycle device and compressor |
Also Published As
Publication number | Publication date |
---|---|
JPWO2024127577A1 (en) | 2024-06-20 |
JP7453480B1 (en) | 2024-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7029095B2 (en) | Refrigeration equipment | |
EP3421797B1 (en) | Refrigeration apparatus | |
EP2267311B1 (en) | Freezing device | |
US8992793B2 (en) | Refrigeration apparatus | |
JP5466772B2 (en) | Compressor for refrigeration and air-conditioning equipment | |
WO2013146683A1 (en) | Working fluid composition for refrigerator | |
WO2013051271A1 (en) | Refrigeration device | |
US20160032209A1 (en) | Lubricant defoaming additives and compositions | |
JP2009225636A (en) | Refrigerating apparatus | |
JP2009222033A (en) | Refrigerating apparatus | |
JP2009222351A (en) | Refrigerating device | |
WO2022172314A1 (en) | Refrigeration cycle device and compressor | |
JP7453480B1 (en) | Refrigeration cycle equipment and compressor | |
JP5671695B2 (en) | Refrigeration equipment | |
EP2531785B1 (en) | Refrigeration apparatus | |
WO2017146100A1 (en) | Refrigeration device | |
JP2009222358A (en) | Refrigerating device | |
JP5149714B2 (en) | Refrigerator oil composition | |
JPH0971796A (en) | Working medium for refrigerator and refrigerating apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023534184 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22968488 Country of ref document: EP Kind code of ref document: A1 |