[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024122538A1 - Thermally conductive sheet - Google Patents

Thermally conductive sheet Download PDF

Info

Publication number
WO2024122538A1
WO2024122538A1 PCT/JP2023/043462 JP2023043462W WO2024122538A1 WO 2024122538 A1 WO2024122538 A1 WO 2024122538A1 JP 2023043462 W JP2023043462 W JP 2023043462W WO 2024122538 A1 WO2024122538 A1 WO 2024122538A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive sheet
thermally conductive
cut
sheet according
cuts
Prior art date
Application number
PCT/JP2023/043462
Other languages
French (fr)
Japanese (ja)
Inventor
和幸 五十嵐
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2024122538A1 publication Critical patent/WO2024122538A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a thermally conductive sheet.
  • Heat sinks and other devices are used to cool electronic components.
  • Thermally conductive sheets are also used to efficiently transfer heat from the electronic components to cooling parts such as heat sinks. If an electronic component and a heat sink are placed in direct contact with each other, air will be present at the interface, hindering thermal transfer. In contrast, by using a thermally conductive sheet, heat can be transferred more efficiently.
  • Patent Document 1 discloses a silicone thermally conductive sheet that has multiple holes penetrating through it in the thickness direction in order to reduce the reaction force against surface compression while ensuring high heat dissipation.
  • thermally conductive sheets mainly contain inorganic fillers and silicone resins, and contain a considerable amount of inorganic filler in order to improve thermal conductivity. Therefore, the higher the thermal conductivity of a thermally conductive sheet, the lower its flexibility tends to be. This reduction in flexibility reduces the ability to conform to and adhere to electronic components and heat sinks, and actually leads to a decrease in heat dissipation efficiency. Furthermore, the higher the inorganic filler content of a thermally conductive sheet, the harder it becomes and the greater the reaction force against surface compression. Therefore, the higher the thermal conductivity of a thermally conductive sheet, the more difficult it is to use it at a high compression rate.
  • the present invention was made in consideration of the above problems, and aims to provide a thermally conductive sheet with high adhesion and low compression load.
  • the inventors conducted extensive research to find a solution to the above problem. As a result, they discovered that the above problem could be solved by making a first cut obliquely in the planar direction of the thermally conductive sheet, which led to the completion of the present invention.
  • the present invention is as follows.
  • Thermally conductive sheet [2] The first cut is a continuous cut in a first direction on the surface. The thermally conductive sheet according to [1]. [3] The tensile elongation at break L2 in the direction perpendicular to the first direction is larger than the tensile elongation at break L1 in the first direction. The thermally conductive sheet according to [2]. [4] The surface has a second cut perpendicular to the surface direction. The thermally conductive sheet according to any one of [1] to [3]. [5] the second cut is a continuous cut in a second direction on the surface; The thermally conductive sheet according to [4].
  • [11] Contains a silicone resin and an inorganic filler, The thermally conductive sheet according to any one of [1] to [10].
  • the inorganic filler is 50 to 99% by volume.
  • the method further includes a second incision step of forming a second incision perpendicular to a surface direction on a surface of the thermal conductive sheet, After the first cutting step, the second cutting step is carried out.
  • the present invention provides a thermally conductive sheet with high adhesion and low compression load.
  • FIG. 1 is a perspective view showing one aspect of a thermally conductive sheet according to an embodiment of the present invention.
  • 3 is a schematic diagram illustrating distribution of force when the thermally conductive sheet 10 of the present embodiment is compressed in the thickness direction z.
  • FIG. 1 is a schematic diagram illustrating distribution of force when a thermally conductive sheet 10 having cuts in the thickness direction z is compressed in the thickness direction z.
  • FIG. 1 is a diagram showing the measurement results of tensile elongation at break.
  • the present embodiment an embodiment of the present invention (hereinafter referred to as "the present embodiment") will be described in detail with reference to the drawings as necessary, but the present invention is not limited to this, and various modifications are possible without departing from the gist of the invention.
  • the same elements are given the same reference numerals, and duplicated explanations will be omitted.
  • positional relationships such as up, down, left, and right will be based on the positional relationships shown in the drawings.
  • the dimensional ratios of the drawings are not limited to those shown in the drawings.
  • Thermally conductive sheet The thermally conductive sheet 10 of this embodiment has a surface having a first incision 11 oblique to the plane direction.
  • Fig. 1 shows a perspective view of the thermally conductive sheet 10 of this embodiment.
  • Fig. 2A shows a schematic diagram explaining the distribution of force when the thermally conductive sheet 10 of this embodiment is compressed in the thickness direction z
  • Fig. 2B shows a schematic diagram explaining the distribution of force when the thermally conductive sheet 10 having an incision in the thickness direction z is compressed in the thickness direction z.
  • the thermally conductive sheet 10 of this embodiment when the thermally conductive sheet 10 of this embodiment is compressed with a force F1 in the thickness direction z, the first notches 11 oblique to the surface direction can release the compressive stress in the surface direction F3.
  • the effect of releasing such compressive stress by the first notches 11 is greater than that of notches perpendicular to the surface direction. Therefore, by having the first notches 11, it is possible to further reduce the compressive load F2 during compression without changing the composition of the thermally conductive sheet 10, such as by reducing the content of inorganic filler, etc.
  • the thermally conductive sheet 10 of this embodiment can achieve both high thermal conductivity and low compressive load.
  • the thermally conductive sheet 10 can conform to the object 20 and adhere closely to it, wrapping it around. In particular, the thermally conductive sheet 10 can easily adhere to the side portions S1 and S2 of the object 20.
  • the diagonal first cut 11 falls in the direction F4 due to its own weight.
  • a force is generated that brings the side of the object 20 and the thermally conductive sheet 10 into contact in the planar direction.
  • a strong compressive stress acts on the part S2' of the diagonal first cut 11 that is pressed in strongly, and a restoring force that tries to return to its original shape acts in the direction F5 perpendicular to the diagonal direction of the first cut 11. This is because a force is generated on the side portion S2 side as well that brings the side of the object 20 and the thermally conductive sheet 10 into contact in the planar direction.
  • the adhesion of the thermally conductive sheet 10 to the side portions S3 and S4 of the object 20 becomes relatively low.
  • the thermally conductive sheet 10 of this embodiment has a first cut 11 that is oblique to the surface direction on the surface that comes into contact with the object 20, and therefore can exhibit high adhesion and low compressive load even when highly packed with inorganic filler to improve thermal conductivity.
  • the shape of the first cut 11 as viewed from the surface direction is not limited to a straight line, and may be a wavy line such as a sine wave, sawtooth wave, rectangular wave, trapezoidal wave, or triangular wave, or may be a circle or ellipse, or may be any polygon such as a triangle, square, pentagon, hexagon, or star shape.
  • the first cuts 11 may be continuous cuts in the first direction on the surface, or may be intermittent cuts in the first direction.
  • a “continuous cut” refers to a cut that extends linearly
  • an “intermittent cut” refers to a cut that extends, for example, in the form of a perforation or a broken line.
  • it is preferable that the first cuts 11 are continuous cuts in the first direction on the surface.
  • the first direction is not particularly limited as long as it is any direction, and in FIG. 1, it may be the y direction.
  • the thermally conductive sheet 10 of this embodiment may have only a first notch 11 extending in a first direction, or may have a first notch 11 extending in the first direction and a first notch 11 extending in another direction non-parallel to the first direction.
  • the other direction may be one or more.
  • Figure 1 shows an embodiment having a first notch 11 extending in a first direction and a second notch 12 extending in a second direction.
  • the first cuts 11 may be non-penetrating or may partially penetrate from one surface to the other surface. Of these, it is preferable that the first cuts 11 are non-penetrating. This tends to further improve the strength and durability of the thermally conductive sheet 10.
  • the ratio (h1/h) of the depth h1 of the non-penetrating first cut 11 to the sheet thickness h may preferably be 2-90%, 10-80%, 20-70%, 30-60%, or 40-60%.
  • the compressive load tends to be lower and the adhesion and thermal conductivity tend to be improved.
  • the depth ratio of the first cut 11 is the ratio ((h11+h12)/h) of the sum (h11+h12) of the cut depth on one side (h11) and the cut depth on the other side (h12) to the sheet thickness h.
  • the depth h1 of the first cut 11 is the depth in the thickness direction z as shown in FIG. 1, and is not the total length of the first cut 11 itself, which is formed at an angle in the surface direction.
  • the length (h-h1) of the non-penetrating portion of the first cut 11 may preferably be 0.1 to 6.0 mm, 0.2 to 5.0 mm, 0.5 to 4.0 mm, or 1.0 to 3.0 mm.
  • the thickness h of the thermally conductive sheet 10 may preferably be 0.3 to 15 mm, 0.5 to 10 mm, or 1.0 to 5.0 mm. By having the thickness h within the above range, adhesion tends to be further improved.
  • the thermally conductive sheet 10 may be in contact with the surface of the first cut 11 in the thickness direction.
  • the first cut 11 is not a wide groove such as a U-shape, but a slit as shown in Figures 1 and 2A.
  • the width of the first cut 11 may preferably be 300 ⁇ m or less, 100 ⁇ m or less, 50 ⁇ m or less, or 0 ⁇ m.
  • Such a first cut 11 can be formed by passing a blade through the thermally conductive sheet 10 in any direction. More specifically, the first cut 11 may be formed by pushing the cutting blade into the thermally conductive sheet 10 from an oblique direction relative to the surface direction of the sheet. In this case, the cutting blade may be pushed into the sheet while moving it in a specified direction. In addition, when forming a polygonal, circular, star-shaped, or other shape without penetrating the sheet, a die corresponding to that shape may be used.
  • the acute angle ⁇ 1 between the first cut 11 and the surface direction may preferably be 10 to 80°, 20 to 70°, 30 to 60°, or 40 to 50°.
  • its pitch p1 may preferably be 0.1 to 2.5 mm, 0.3 to 2.0 mm, or 0.5 to 1.5 mm.
  • the pitch p1 2.5 mm or less the compressive load tends to be lower and the adhesion and thermal conductivity tend to be improved.
  • the pitch p1 0.1 mm or more the thermally conductive sheet 10 can be manufactured more easily.
  • the surface of the thermally conductive sheet 10 of this embodiment may have a second cut 12 perpendicular to the surface direction, as shown in FIG. 1.
  • the acute angle ⁇ 2 between the second cut 12 and the surface direction is 90°.
  • the second cuts 12 may be continuous cuts in the second direction of the surface, or may be discontinuous cuts in the second direction. Of these, it is preferable that the second cuts 12 are continuous cuts in the second direction of the surface. This tends to further reduce the compressive load and further improve adhesion and thermal conductivity.
  • the second direction is not particularly limited as long as it is an arbitrary direction, and in FIG. 1, it may be the x direction.
  • the second cuts 12 may be non-penetrating or may partially penetrate from one surface to the other surface. Of these, it is preferable that the second cuts 12 are non-penetrating. This tends to further improve the strength and durability of the thermally conductive sheet 10.
  • the pitch p2 may preferably be 0.1 to 2.5 mm, 0.3 to 2.0 mm, or 0.5 to 1.5 mm.
  • the compression load tends to be lower and the adhesion and thermal conductivity tend to be improved.
  • the pitch p2 0.1 mm or more the thermally conductive sheet 10 can be manufactured more easily.
  • the acute angle ⁇ 3 between the first cut 11 and the second cut 12 in the extension direction may be 30 to 90°, 45 to 90°, 60 to 90°, or 75 to 90°. This tends to reduce the compression load and improve adhesion and thermal conductivity.
  • the first notch 11 and the second notch 12 may be formed on one surface or on both surfaces.
  • the surface of the thermally conductive sheet 10 may have multiple sections 13 created by first cuts 11 in two or more directions, or multiple sections 13 created by first cuts 11 and second cuts 12.
  • first cuts 11 in two or more directions
  • second cuts 12 By having sections in this way, the compressive load tends to be further reduced and the adhesion and thermal conductivity tend to be further improved.
  • the shape of the sections is not particularly limited, but examples include polygonal, circular, and elliptical shapes.
  • the number of sections per cm2 of sheet area is preferably 4 to 400/ cm2 , 9 to 225/ cm2 , 16 to 100/ cm2 , or 25 to 49/ cm2 .
  • the number of sections per cm2 of sheet area is 4/ cm2 or more, the compression load tends to be lower and the adhesion and thermal conductivity tend to be improved.
  • the number of sections per cm2 of sheet area is 400/ cm2 or less, a decrease in productivity of the thermal conductive sheet 10 due to unintended cutting during the formation of the incisions can be suppressed.
  • the area of each section is preferably 0.25 to 25 mm 2 , 0.50 to 12 mm 2 , or 1.0 to 8.0 mm 2 .
  • the area of each section is 25 mm 2 or less, the compressive load is further reduced, and the adhesion and thermal conductivity tend to be further improved.
  • the area of each section is 0.25 mm 2 or more, it is possible to suppress a decrease in productivity of the thermal conductive sheet 10 due to unintended cutting occurring when forming the incisions.
  • the thermal conductive sheet 10 of this embodiment tends to have a larger tensile fracture elongation L2 in the direction perpendicular to the first direction than the tensile fracture elongation L1 in the first direction.
  • the Asker C hardness of the thermally conductive sheet 10 of this embodiment may preferably be 40 or less, 0 to 35, 2 to 30, or 5 to 25.
  • Asker C hardness of 40 or less the compressive load tends to be lower and the adhesion and thermal conductivity tend to be improved.
  • the higher the Asker C hardness the more the handleability of the thermally conductive sheet 10 tends to be improved.
  • the thermally conductive sheet 10 of the present embodiment is not particularly limited, but preferably contains, for example, a silicone resin and an inorganic filler, and may contain a silane coupling agent, etc., as necessary. This reduces the compressive load and tends to improve adhesion and thermal conductivity.
  • the silicone resin is not particularly limited, but examples thereof include dimethyl silicone, diphenyl silicone, and methylphenyl silicone. Furthermore, these silicone resins may have organic groups introduced into their side chains and/or ends.
  • Such silicone resins are not particularly limited, but examples thereof include non-reactive silicones such as long-chain alkyl-modified silicone, polyether-modified silicone, aralkyl-modified silicone, fatty acid ester-modified silicone, and fatty acid amide-modified silicone; and reactive silicones such as vinyl-modified silicone, hydrosilyl-modified silicone, amine-modified silicone, epoxy-modified silicone, mercapto-modified silicone, carboxyl-modified silicone, and carbinol-modified silicone.
  • the silicone resin content may be preferably 1.0 mass% or more, 2.5 mass% or more, or 5.0 mass% or more, based on the total amount of the thermally conductive sheet.
  • the silicone resin content may be preferably 50 mass% or less, 40 mass% or less, 30 mass% or less, 20 mass% or less, 15 mass% or less, or 10 mass% or less, based on the total amount of the thermally conductive sheet.
  • the silicone resin content is 1.0 mass% or more, the compressive load is further reduced and adhesion tends to be further improved.
  • thermal conductivity tends to be further improved.
  • Inorganic fillers include, but are not limited to, aluminum oxide, aluminum nitride, boron nitride, silicon nitride, zinc oxide, aluminum hydroxide, metallic aluminum, magnesium oxide, diamond, carbon, indium, gallium, copper, silver, iron, nickel, gold, tin, and metallic silicon.
  • the average particle size of the inorganic filler may preferably be 300 ⁇ m or less, 250 ⁇ m or less, 200 ⁇ m or less, 175 ⁇ m or less, 150 ⁇ m or less, 125 ⁇ m or less, 100 ⁇ m or less, 75 ⁇ m or less, or 50 ⁇ m or less.
  • the average particle size of the inorganic filler may preferably be 5 ⁇ m or more, 10 ⁇ m or more, or 15 ⁇ m or more.
  • the content of the inorganic filler may be preferably 99 mass% or less, 97.5 mass% or less, or 95 mass% or less, relative to the total volume of the thermally conductive sheet 10.
  • the content of the inorganic filler may be preferably 50 mass% or more, 60 mass% or more, 70 mass% or more, 80 mass% or more, 85 mass% or more, or 90 mass% or more, relative to the total volume of the thermally conductive sheet.
  • the content of the inorganic filler is 99 mass% or less, the compressive load is further reduced and the adhesion tends to be further improved.
  • the content of the inorganic filler is 50 mass% or more, the thermal conductivity tends to be further improved.
  • the manufacturing method of the thermally conductive sheet of the present embodiment includes a sheet forming step of forming a thermally conductive sheet, and a first cutting step of forming a first incision on the surface of the thermally conductive sheet, the first incision being oblique to the surface direction, and may further include a second cutting step of forming a second incision on the surface of the thermally conductive sheet, the second incision being perpendicular to the surface direction, as necessary.
  • the sheet molding process is a process for molding a thermally conductive sheet.
  • the raw materials can be mixed using a mixer such as a roll mill, a kneader, or a Banbury mixer.
  • the resin composition used as the raw material can be molded into a sheet by using a doctor blade method, an extrusion method, an injection method, a press method, or a calendar roll method.
  • the raw material can include the above-mentioned resins and fillers.
  • the temperature for heat curing in the sheet molding process may be, for example, 50 to 200°C.
  • the heat curing time may be, for example, 2 to 14 hours.
  • There are no particular limitations on the heating method but for example, a hot air dryer, far-infrared dryer, microwave dryer, etc. can be used.
  • the first cutting step is a step of forming the first cuts 11 on the surface of the thermal conductive sheet, the first cuts 11 being oblique to the surface direction.
  • the first cuts 11 may be formed so as to extend in a predetermined first direction.
  • the first cuts 11 may be formed in a plurality of directions.
  • the second cutting step is a step of forming second cuts 12 perpendicular to the surface direction on the surface of the thermal conductive sheet.
  • Preparation Resin compositions were obtained by mixing the components according to Formulation Examples 1 to 3 shown in Table 1 below. The resin compositions obtained were molded into sheets having a thickness of 3 mm using a doctor blade method, and then heat cured at 170 to 190°C for 10 minutes. Various thermally conductive sheets were thus produced.
  • Example 1 As shown in FIG. 1, a first cut extending in the y direction (first direction) was formed on the thermally conductive sheet obtained using Blending Example 2, and a second cut extending in the x direction (second direction) was formed to obtain the thermally conductive sheet of Example 1. At that time, the angle ⁇ 1 of the first cut was 45°, the pitch p1 was 1 mm, and the cut depth h1 was 1.5 mm. The angle ⁇ 2 of the second cut was 90°, the pitch p2 was 1 mm, and the cut depth h2 was 1.5 mm. Furthermore, the angle ⁇ 2 between the first cut and the second cut was 90°.
  • the hardness of the thermally conductive sheet obtained as described above was measured at 25°C using an Asker C-type spring hardness tester conforming to SRIS0101.
  • the Asker C hardness measured using an Asker Rubber Hardness Tester Type C manufactured by Kobunshi Keiki Co., Ltd. was 10.
  • Comparative Example 1 The thermally conductive sheet of Comparative Example 1 was obtained in the same manner as in Example 1, except that instead of the first cut, a second cut was provided with an angle ⁇ 2 of 90°, a pitch p2 of 1 mm, and a cut depth h2 of 1.5 mm. That is, the thermally conductive sheet of Comparative Example 1 is stretched through the second cuts in the x and y directions, and the second cuts are perpendicular to each other.
  • the Asker C hardness measured with an Asker Rubber Hardness Tester Type C manufactured by Kobunshi Keiki Co., Ltd. was 13.
  • Adhesion 2 A washer having a thickness of 1.5 mm and a diameter of 17 mm and a metal plate having a thickness of 1.5 mm, a length of 10 mm and a width of 50 mm were placed on the surface where the incisions were formed of each of the thermally conductive sheets of Example 1, Comparative Example 1, and Reference Example 1. Then, the sheet was compressed by 30% from above with a transparent acrylic plate, so that the thickness became 2.1 mm. The edges of the washer and the metal plate at this time were visually inspected, and the adhesion of the edges was evaluated according to the following evaluation criteria. (Evaluation criteria) ⁇ : Both sides of the washer and metal plate were in contact with the thermally conductive sheet, and no gaps were observed. ⁇ : There were portions on both the side surfaces of the washer and the metal plate that were not in contact with the thermally conductive sheet, and gaps were observed.
  • thermally conductive sheets obtained in the same manner were prepared using formulation examples 1 and 3.
  • a thermally conductive sheet with the same cuts as in Example 1, a thermally conductive sheet with the same cuts as in Comparative Example 1, and a thermally conductive sheet without cuts as in Reference Example 1 were prepared.
  • These thermally conductive sheets were also evaluated for compressive stress, tensile elongation at break, and adhesion using the same method as above, and the results showed a correspondence relationship with a similar tendency to the relative correspondence relationship observed in Example 1, Comparative Example 1, and Reference Example 1 for each effect.
  • the thermally conductive sheet of the present invention has industrial applicability as a sheet for dissipating heat from electronic components, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This thermally conductive sheet includes a surface having first cuts which are inclined with respect to the surface direction.

Description

熱伝導性シートThermally conductive sheet
 本発明は、熱伝導性シートに関する。 The present invention relates to a thermally conductive sheet.
 電子部品の冷却にはヒートシンクなどが使用される。さらに電子部品からヒートシンク等の冷却部へ効率よく熱を伝えるために熱伝導性シートが使用される。電子部品とヒートシンクをそのまま接触させると、その界面には空気が存在し熱伝導の障害となる。これに対して、熱伝導性シートを使用することにより、効率よく熱を伝えることができる。 Heat sinks and other devices are used to cool electronic components. Thermally conductive sheets are also used to efficiently transfer heat from the electronic components to cooling parts such as heat sinks. If an electronic component and a heat sink are placed in direct contact with each other, air will be present at the interface, hindering thermal transfer. In contrast, by using a thermally conductive sheet, heat can be transferred more efficiently.
 例えば、特許文献1には、高い放熱性を確保しつつ、面圧縮に対する反力を小さくすることを目的として、厚さ方向に貫通した複数の孔が設けられるシリコーン熱伝導性シートが開示されている。 For example, Patent Document 1 discloses a silicone thermally conductive sheet that has multiple holes penetrating through it in the thickness direction in order to reduce the reaction force against surface compression while ensuring high heat dissipation.
特開2015-092534号公報JP 2015-092534 A
 ところで、熱伝導性シートは、主に無機フィラー及びシリコーン樹脂などを含み、熱伝導性を向上する観点から無機フィラーを相当程度含む。そのため、熱伝導性シートは熱伝導性が高いほど、柔軟性が低下する傾向にある。このような柔軟性の低下は、電子部品やヒートシンクに対する追従性や密着性を低下させ、かえって放熱効率の低下を招く。また、熱伝導性シートは無機フィラー含量が多いほど、硬くなり、面圧縮に対する反力が大きくなる。そのため、熱伝導性シートは熱伝導性が高いほど、高い圧縮率で使用することが難しい。 By the way, thermally conductive sheets mainly contain inorganic fillers and silicone resins, and contain a considerable amount of inorganic filler in order to improve thermal conductivity. Therefore, the higher the thermal conductivity of a thermally conductive sheet, the lower its flexibility tends to be. This reduction in flexibility reduces the ability to conform to and adhere to electronic components and heat sinks, and actually leads to a decrease in heat dissipation efficiency. Furthermore, the higher the inorganic filler content of a thermally conductive sheet, the harder it becomes and the greater the reaction force against surface compression. Therefore, the higher the thermal conductivity of a thermally conductive sheet, the more difficult it is to use it at a high compression rate.
 本発明は、上記問題点に鑑みてなされたものであり、高密着性及び低圧縮荷重を有する熱伝導性シートを提供することを目的とする。 The present invention was made in consideration of the above problems, and aims to provide a thermally conductive sheet with high adhesion and low compression load.
 本発明者らは、上記課題を解決するために鋭意検討した。その結果、熱伝導性シートの面方向に対して斜めの第1切込みを入れることで、上記課題を解決し得ることを見出し、本発明を完成するに至った。 The inventors conducted extensive research to find a solution to the above problem. As a result, they discovered that the above problem could be solved by making a first cut obliquely in the planar direction of the thermally conductive sheet, which led to the completion of the present invention.
 すなわち、本発明は以下のとおりである。 In other words, the present invention is as follows.
〔1〕
 面方向に対して斜めの第1切込みを有する表面を有する、
 熱伝導性シート。
〔2〕
 前記第1切込みが、表面の第1方向に連続した切り込みである、
 〔1〕に記載の熱伝導性シート。
〔3〕
 前記第1方向の引張破断伸度L1に対して、前記第1方向に直行する方向の引張破断伸度L2が大きい、
 〔2〕に記載の熱伝導性シート。
〔4〕
 前記表面が、前記面方向に対して垂直の第2切込みを有する、
 〔1〕~〔3〕のいずれか一項に記載の熱伝導性シート。
〔5〕
 前記第2切込みが、表面の第2方向に連続した切り込みである、
 〔4〕に記載の熱伝導性シート。
〔6〕
 前記表面が、前記第1切込み及び前記第2切込みにより生じた複数の区分を有する、
 〔4〕又は〔5〕に記載の熱伝導性シート。
〔7〕
 前記第1切込みと前記面方向のなす鋭角が、10~80°である、
 〔1〕~〔6〕のいずれか一項に記載の熱伝導性シート。
〔8〕
 前記第1切込みは未貫通である、
 〔1〕~〔7〕のいずれか一項に記載の熱伝導性シート。
〔9〕
 前記第1切込みの深さの割合は、シート厚みの2~90%である、
 〔1〕~〔8〕のいずれか一項に記載の熱伝導性シート。
〔10〕
 アスカーC硬度が、40以下である、
 〔1〕~〔9〕のいずれか一項に記載の熱伝導性シート。
〔11〕
 シリコーン樹脂及び無機フィラーを含む、
 〔1〕~〔10〕のいずれか一項に記載の熱伝導性シート。
〔12〕
 前記無機フィラーが、50~99体積%である、
 〔11〕に記載の熱伝導性シート。
〔13〕
 熱伝導性シートを成形するシート成形工程と、
 前記熱伝導性シートの表面に、面方向に対して斜めの第1切込みを形成する第1切込工程と、を有する、
 熱伝導性シートの製造方法。
〔14〕
 前記熱伝導性シートの表面に、面方向に対して垂直の第2切込みを形成する第2切込工程をさらに有し、
 前記第1切込工程後に、前記第2切込工程を実施する、
 〔13〕に記載の熱伝導性シートの製造方法。
[1]
A surface having a first cut oblique to a surface direction.
Thermally conductive sheet.
[2]
The first cut is a continuous cut in a first direction on the surface.
The thermally conductive sheet according to [1].
[3]
The tensile elongation at break L2 in the direction perpendicular to the first direction is larger than the tensile elongation at break L1 in the first direction.
The thermally conductive sheet according to [2].
[4]
The surface has a second cut perpendicular to the surface direction.
The thermally conductive sheet according to any one of [1] to [3].
[5]
the second cut is a continuous cut in a second direction on the surface;
The thermally conductive sheet according to [4].
[6]
the surface having a plurality of sections created by the first cut and the second cut;
The thermally conductive sheet according to [4] or [5].
[7]
The acute angle between the first cut and the surface direction is 10 to 80 degrees.
The thermally conductive sheet according to any one of [1] to [6].
[8]
The first cut is a non-through cut.
The thermally conductive sheet according to any one of [1] to [7].
[9]
The depth of the first cut is 2 to 90% of the sheet thickness.
The thermally conductive sheet according to any one of [1] to [8].
[10]
Asker C hardness is 40 or less.
The thermally conductive sheet according to any one of [1] to [9].
[11]
Contains a silicone resin and an inorganic filler,
The thermally conductive sheet according to any one of [1] to [10].
[12]
The inorganic filler is 50 to 99% by volume.
The thermally conductive sheet according to [11].
[13]
a sheet forming step of forming a thermally conductive sheet;
A first incision process is provided for forming a first incision on the surface of the thermal conductive sheet, the first incision being oblique to a surface direction.
A method for manufacturing a thermally conductive sheet.
[14]
The method further includes a second incision step of forming a second incision perpendicular to a surface direction on a surface of the thermal conductive sheet,
After the first cutting step, the second cutting step is carried out.
A method for producing a thermally conductive sheet according to [13].
 本発明によれば、高密着性及び低圧縮荷重を有する熱伝導性シートを提供することができる。 The present invention provides a thermally conductive sheet with high adhesion and low compression load.
本実施形態の熱伝導性シートの一態様を示す斜視図である。FIG. 1 is a perspective view showing one aspect of a thermally conductive sheet according to an embodiment of the present invention. 本実施形態の熱伝導性シート10を厚さ方向zに圧縮したときの力の分散を説明する概略図である。3 is a schematic diagram illustrating distribution of force when the thermally conductive sheet 10 of the present embodiment is compressed in the thickness direction z. FIG. 厚さ方向zに切込みを有する熱伝導性シート10を厚さ方向zに圧縮したときの力の分散を説明する概略図である。1 is a schematic diagram illustrating distribution of force when a thermally conductive sheet 10 having cuts in the thickness direction z is compressed in the thickness direction z. FIG. 引張破断伸度の測定結果を示す図である。FIG. 1 is a diagram showing the measurement results of tensile elongation at break.
 以下、必要に応じて図面を参照しつつ、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右などの位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。 Below, an embodiment of the present invention (hereinafter referred to as "the present embodiment") will be described in detail with reference to the drawings as necessary, but the present invention is not limited to this, and various modifications are possible without departing from the gist of the invention. Note that in the drawings, the same elements are given the same reference numerals, and duplicated explanations will be omitted. Furthermore, unless otherwise specified, positional relationships such as up, down, left, and right will be based on the positional relationships shown in the drawings. Furthermore, the dimensional ratios of the drawings are not limited to those shown in the drawings.
1.熱伝導性シート
 本実施形態の熱伝導性シート10は、面方向に対して斜めの第1切込み11を有する表面を有する。図1に、本実施形態の熱伝導性シート10の斜視図を示す。また、図2Aに、本実施形態の熱伝導性シート10を厚さ方向zに圧縮したときの力の分散を説明する概略図を示し、図2Bに、厚さ方向zに切込みを有する熱伝導性シート10を厚さ方向zに圧縮したときの力の分散を説明する概略図を示す。
1. Thermally conductive sheet The thermally conductive sheet 10 of this embodiment has a surface having a first incision 11 oblique to the plane direction. Fig. 1 shows a perspective view of the thermally conductive sheet 10 of this embodiment. Fig. 2A shows a schematic diagram explaining the distribution of force when the thermally conductive sheet 10 of this embodiment is compressed in the thickness direction z, and Fig. 2B shows a schematic diagram explaining the distribution of force when the thermally conductive sheet 10 having an incision in the thickness direction z is compressed in the thickness direction z.
 図2Aに示すように、本実施形態の熱伝導性シート10を厚さ方向zに力F1で圧縮すると、面方向に対して斜めの第1切込み11が面方向F3に圧縮応力を逃がすことができる。第1切込み11によるこのような圧縮応力を逃がす効果は、面方向に対して垂直な切込みよりも高いものとなる。そのため、無機フィラーなどの含有量を低下するなど熱伝導性シート10の組成を変更することなく、第1切込み11を有することにより圧縮時における圧縮荷重F2をより低減することが可能となる。これにより、本実施形態の熱伝導性シート10は高熱伝導性と低圧縮荷重を両立することができる。 As shown in FIG. 2A, when the thermally conductive sheet 10 of this embodiment is compressed with a force F1 in the thickness direction z, the first notches 11 oblique to the surface direction can release the compressive stress in the surface direction F3. The effect of releasing such compressive stress by the first notches 11 is greater than that of notches perpendicular to the surface direction. Therefore, by having the first notches 11, it is possible to further reduce the compressive load F2 during compression without changing the composition of the thermally conductive sheet 10, such as by reducing the content of inorganic filler, etc. As a result, the thermally conductive sheet 10 of this embodiment can achieve both high thermal conductivity and low compressive load.
 また、図2Aに示すように、第1切込み11を有することにより、対象物20と熱伝導性シート10とを接触した際に、その界面に入り込む空気を逃がすことができる。そのため、空気が入り込むことによる熱伝導性の低下を抑制することができる。 Also, as shown in FIG. 2A, by having the first cut 11, air that gets into the interface when the object 20 and the thermally conductive sheet 10 come into contact with each other can be allowed to escape. This makes it possible to suppress a decrease in thermal conductivity caused by air getting in.
 また、圧縮荷重が低下することで、対象物を熱伝導性シート10に対して押し込んだときに、熱伝導性シート10は対象物20に追従して対象物を包み込むように密着することが可能となる。特に、対象物20の側面部分S1,S2に対して熱伝導性シート10が密着しやすくなる。 In addition, by reducing the compressive load, when an object is pressed against the thermally conductive sheet 10, the thermally conductive sheet 10 can conform to the object 20 and adhere closely to it, wrapping it around. In particular, the thermally conductive sheet 10 can easily adhere to the side portions S1 and S2 of the object 20.
 具体的には、側面部分S1側では、斜めの第1切込み11が自重で方向F4に倒れ込む。これにより、側面部分S1側では、対象物20の側面と熱伝導性シート10とが面方向に接触する力が生じる。他方、側面部分S2側では、斜めの第1切込み11のうち強く押し込まれる部分S2’では圧縮応力が強く作用し、元の形状に戻ろうとする復元力が、第1切込み11の斜め方向と直行する方向F5に働く。これにより、側面部分S2側でも、対象物20の側面と熱伝導性シート10とが平面方向に接触する力が生じるためである。 Specifically, on the side portion S1 side, the diagonal first cut 11 falls in the direction F4 due to its own weight. As a result, on the side portion S1 side, a force is generated that brings the side of the object 20 and the thermally conductive sheet 10 into contact in the planar direction. On the other hand, on the side portion S2 side, a strong compressive stress acts on the part S2' of the diagonal first cut 11 that is pressed in strongly, and a restoring force that tries to return to its original shape acts in the direction F5 perpendicular to the diagonal direction of the first cut 11. This is because a force is generated on the side portion S2 side as well that brings the side of the object 20 and the thermally conductive sheet 10 into contact in the planar direction.
 これに対して、図2Bに示すように、厚さ方向に切込み11’を有する熱伝導性シート10’を厚さ方向zに力F1で圧縮すると、図2Aに示すように面方向に圧縮応力を逃がすことができない。そのため、圧縮荷重F2は図2Aの態様よりも、より強くなる。 In contrast, as shown in FIG. 2B, when a thermally conductive sheet 10' having cuts 11' in the thickness direction is compressed in the thickness direction z with a force F1, the compressive stress cannot be released in the planar direction as shown in FIG. 2A. Therefore, the compressive load F2 becomes stronger than in the embodiment of FIG. 2A.
 また、厚さ方向の切込み11’を有する場合、対象物20の側面部分S3,S4に対する熱伝導性シート10の密着性は相対的に低くなる。 In addition, when there are cuts 11' in the thickness direction, the adhesion of the thermally conductive sheet 10 to the side portions S3 and S4 of the object 20 becomes relatively low.
 具体的には、側面部分S3のように、2つの切込み11’の間に対象物20の側面が位置すると、区分14には、対象物20により部分的に押し込まれた部分と、押し込まれていない部分が生じる。区分14の押し込まれていない部分は、方向F6に向けて立ち上がる。この際、熱伝導性シート10の区分14の押し込まれていない部分は、対象物20の側面部分S3から離れるように、立ち上がりやすい。これにより、側面部分S3には隙間が生じやすくなる。特に、熱伝導性シート10が無機フィラーを有することで熱伝導性が高くなり硬くなるほど、この隙間が生じやすい。図2Bの態様と図2Aの態様との最も大きな違いは、厚さ方向の切込み11’の場合には、面方向に対象物20の側面と熱伝導性シート10とが密着する力が生じないため、隙間が埋まりにくい点にある。 Specifically, when the side of the object 20 is located between two cuts 11', as in the side portion S3, a portion of section 14 is partially pressed in by the object 20 and a portion is not pressed in. The portion of section 14 that is not pressed in rises in the direction F6. At this time, the portion of section 14 of the thermally conductive sheet 10 that is not pressed in tends to rise up so as to move away from the side portion S3 of the object 20. This makes it easier for gaps to form in the side portion S3. In particular, the harder the thermally conductive sheet 10 is, the more likely this gap is to form, as the thermal conductivity of the sheet increases due to the inorganic filler. The biggest difference between the embodiment of FIG. 2B and the embodiment of FIG. 2A is that in the case of the cut 11' in the thickness direction, no force is generated to bring the side of the object 20 and the thermally conductive sheet 10 into contact in the surface direction, so that the gap is difficult to fill.
 また、側面部分S4のように、切込み11’があるところにちょうど対象物20の側面が位置するとしても、図2Aの態様のように、面方向に対象物20の側面と熱伝導性シート10とが密着する力が生じるわけではないため、空気が入り込みやすく、隙間が埋まりにくい。そのため、側面部分S4においても、対象物20の側面と熱伝導性シート10との密着性は劣る。 Also, even if the side of the object 20 is located exactly where the cut 11' is located, as in the side portion S4, there is no force that brings the side of the object 20 and the thermally conductive sheet 10 into contact in the planar direction, as in the embodiment of FIG. 2A, so air easily gets in and the gap is difficult to fill. Therefore, even in the side portion S4, the adhesion between the side of the object 20 and the thermally conductive sheet 10 is poor.
 以上のように、本実施形態の熱伝導性シート10は、対象物20が接触する面において、面方向に対して斜めの第1切込み11を有することにより、熱伝導性の向上の点から無機フィラーを高充填した場合であっても、高い密着性と低い圧縮荷重を発揮することができる。 As described above, the thermally conductive sheet 10 of this embodiment has a first cut 11 that is oblique to the surface direction on the surface that comes into contact with the object 20, and therefore can exhibit high adhesion and low compressive load even when highly packed with inorganic filler to improve thermal conductivity.
1.1.切込み
 表面の面方向から見た第1切込み11の形状は、直線に限られず、正弦波、のこぎり波、矩形波、台形波、三角波などの波線であってもよいし、円形や楕円形であってもよいし、三角形、四角形、五角形、六角形、星型形などの任意の多角形であってもよい。
The shape of the first cut 11 as viewed from the surface direction is not limited to a straight line, and may be a wavy line such as a sine wave, sawtooth wave, rectangular wave, trapezoidal wave, or triangular wave, or may be a circle or ellipse, or may be any polygon such as a triangle, square, pentagon, hexagon, or star shape.
 また、第1切込み11は、表面の第1方向に連続した切り込みであってもよいし、第1方向に断続的な切込みであってもよい。「連続した切り込み」とは、線状に切込みが延伸している状態を言い、「断続的な切込み」とは、例えば、ミシン目状、破線状に切込みが延伸している状態を言う。このなかでも、第1切込み11は表面の第1方向に連続した切り込みであることが好ましい。第1切込み11が直線状に形成されることにより、熱伝導性シート10をより容易に製造することができる。なお、第1方向は任意の方向であれば特に制限されず、図1においては、y方向であってもよい。 The first cuts 11 may be continuous cuts in the first direction on the surface, or may be intermittent cuts in the first direction. A "continuous cut" refers to a cut that extends linearly, and an "intermittent cut" refers to a cut that extends, for example, in the form of a perforation or a broken line. Of these, it is preferable that the first cuts 11 are continuous cuts in the first direction on the surface. By forming the first cuts 11 in a linear shape, the thermally conductive sheet 10 can be manufactured more easily. The first direction is not particularly limited as long as it is any direction, and in FIG. 1, it may be the y direction.
 本実施形態の熱伝導性シート10は、第1方向に延伸した第1切込み11のみを有していてもよいし、第1方向に延伸した第1切込み11と第1方向にとは非平行の他の方向に延伸した第1切込み11とを有していてもよい。ここで、他の方向は一つであってもよいし複数あってもよい。図1には、第1方向に延伸した第1切込み11と、第2方向に延伸した第2切込み12と、を有する態様を示す。 The thermally conductive sheet 10 of this embodiment may have only a first notch 11 extending in a first direction, or may have a first notch 11 extending in the first direction and a first notch 11 extending in another direction non-parallel to the first direction. Here, the other direction may be one or more. Figure 1 shows an embodiment having a first notch 11 extending in a first direction and a second notch 12 extending in a second direction.
 第1切込み11は、未貫通でも、一方の表面から他方の表面へと部分的に貫通していてもよい。このなかでも、第1切込み11は、未貫通であることが好ましい。これにより、熱伝導性シート10の強度や耐久性がより向上する傾向にある。 The first cuts 11 may be non-penetrating or may partially penetrate from one surface to the other surface. Of these, it is preferable that the first cuts 11 are non-penetrating. This tends to further improve the strength and durability of the thermally conductive sheet 10.
 また、シート厚みhに対する未貫通の第1切込み11の深さh1の割合(h1/h)は、好ましくは、2~90%、10~80%、20~70%、30~60%、40~60%であってもよい。割合(h1/h)が上記範囲内であることにより、圧縮荷重がより低下し、密着性と熱伝導性がより向上する傾向にある。なお、この第1切込み11の深さ割合は、第1切込み11が両面にある場合には、シート厚みhに対する、片面の切り込み深さ(h11)ともう片面の切り込み深さ(h12)の合計値(h11+h12)の割合((h11+h12)/h)となる。 The ratio (h1/h) of the depth h1 of the non-penetrating first cut 11 to the sheet thickness h may preferably be 2-90%, 10-80%, 20-70%, 30-60%, or 40-60%. By having the ratio (h1/h) within the above range, the compressive load tends to be lower and the adhesion and thermal conductivity tend to be improved. Note that, when the first cut 11 is on both sides, the depth ratio of the first cut 11 is the ratio ((h11+h12)/h) of the sum (h11+h12) of the cut depth on one side (h11) and the cut depth on the other side (h12) to the sheet thickness h.
 なお、本実施形態において、第1切込み11の深さh1は、図1に示すように、厚さ方向zにおける深さであり、面方向に斜めに形成された第1切込み11自体の全長ではない。 In this embodiment, the depth h1 of the first cut 11 is the depth in the thickness direction z as shown in FIG. 1, and is not the total length of the first cut 11 itself, which is formed at an angle in the surface direction.
 第1切込み11における未貫通部分の長さ(h-h1)は、好ましくは、0.1~6.0mm、0.2~5.0mm、0.5~4.0mm、1.0~3.0mmであってもよい。未貫通部分の長さ(h-h1)が上記範囲内であることにより、圧縮荷重がより低下し、密着性と熱伝導性がより向上する傾向にある。 The length (h-h1) of the non-penetrating portion of the first cut 11 may preferably be 0.1 to 6.0 mm, 0.2 to 5.0 mm, 0.5 to 4.0 mm, or 1.0 to 3.0 mm. By having the length (h-h1) of the non-penetrating portion within the above range, the compressive load tends to be further reduced, and adhesion and thermal conductivity tend to be further improved.
 また、熱伝導性シート10の厚みhは、好ましくは、0.3~15mm、0.5~10mm、1.0~5.0mmであってもよい。厚みhが上記範囲内であることにより、密着性がより向上する傾向にある。 The thickness h of the thermally conductive sheet 10 may preferably be 0.3 to 15 mm, 0.5 to 10 mm, or 1.0 to 5.0 mm. By having the thickness h within the above range, adhesion tends to be further improved.
 第1切込み11の厚さ方向の面において、熱伝導性シート10は接触していてもよい。言い換えると、第1切込み11は、U字状のような幅のある溝ではなく、図1や図2Aに示すような、切れ目である。このような観点から、第1切込み11の幅は、好ましくは、300μm以下、100μm以下、50μm以下、0μmであってもよい。 The thermally conductive sheet 10 may be in contact with the surface of the first cut 11 in the thickness direction. In other words, the first cut 11 is not a wide groove such as a U-shape, but a slit as shown in Figures 1 and 2A. From this perspective, the width of the first cut 11 may preferably be 300 μm or less, 100 μm or less, 50 μm or less, or 0 μm.
 このような第1切込み11は、熱伝導性シート10に対して、任意の方向に刃を通すことにより形成することができる。より具体的には、熱伝導性シート10の面方向に対して斜めの方向から切り込み刃を押し込んで第1切込み11を設けてもよい。この際、切込み場は、所定の方向に切り込み刃を移動させながら切り込み刃を押し込んでもよい。また、多角形状、円形状、星型形状等の形状を未貫通で設ける場合、その形状に応じた抜き型を用いてもよい。 Such a first cut 11 can be formed by passing a blade through the thermally conductive sheet 10 in any direction. More specifically, the first cut 11 may be formed by pushing the cutting blade into the thermally conductive sheet 10 from an oblique direction relative to the surface direction of the sheet. In this case, the cutting blade may be pushed into the sheet while moving it in a specified direction. In addition, when forming a polygonal, circular, star-shaped, or other shape without penetrating the sheet, a die corresponding to that shape may be used.
 第1切込み11と面方向のなす鋭角θ1は、好ましくは、10~80°、20~70°、30~60°、40~50°であってもよい。鋭角θ1が上記範囲内であることにより、圧縮荷重がより低下し、密着性と熱伝導性がより向上する傾向にある。 The acute angle θ1 between the first cut 11 and the surface direction may preferably be 10 to 80°, 20 to 70°, 30 to 60°, or 40 to 50°. By having the acute angle θ1 within the above range, the compressive load tends to be further reduced, and adhesion and thermal conductivity tend to be further improved.
 第1切込み11が直線である場合、そのピッチp1は、好ましくは、0.1~2.5mm、0.3~2.0mm、0.5~1.5mmであってもよい。ピッチp1が2.5mm以下であることにより、圧縮荷重がより低下し、密着性と熱伝導性がより向上する傾向にある。また、ピッチp1が0.1mm以上であることにより、熱伝導性シート10をより容易に製造することができる。 When the first cut 11 is a straight line, its pitch p1 may preferably be 0.1 to 2.5 mm, 0.3 to 2.0 mm, or 0.5 to 1.5 mm. By making the pitch p1 2.5 mm or less, the compressive load tends to be lower and the adhesion and thermal conductivity tend to be improved. In addition, by making the pitch p1 0.1 mm or more, the thermally conductive sheet 10 can be manufactured more easily.
 本実施形態の熱伝導性シート10の表面は、図1に示すように、面方向に対して垂直な第2切込み12を有してもよい。第2切込み12と面方向のなす鋭角θ2は、90°である。 The surface of the thermally conductive sheet 10 of this embodiment may have a second cut 12 perpendicular to the surface direction, as shown in FIG. 1. The acute angle θ2 between the second cut 12 and the surface direction is 90°.
 第2切込み12は、表面の第2方向に連続した切り込みであってもよいし、第2方向に断続的な切込みであってもよい。このなかでも、第2切込み12は表面の第2方向に連続した切り込みであることが好ましい。これにより、圧縮荷重がより低下し、密着性と熱伝導性がより向上する傾向にある。第2方向は任意の方向であれば特に制限されず、図1においては、x方向であってもよい。 The second cuts 12 may be continuous cuts in the second direction of the surface, or may be discontinuous cuts in the second direction. Of these, it is preferable that the second cuts 12 are continuous cuts in the second direction of the surface. This tends to further reduce the compressive load and further improve adhesion and thermal conductivity. The second direction is not particularly limited as long as it is an arbitrary direction, and in FIG. 1, it may be the x direction.
 第2切込み12は、未貫通でも、一方の表面から他方の表面へと部分的に貫通していてもよい。このなかでも、第2切込み12は、未貫通であることが好ましい。これにより、熱伝導性シート10の強度や耐久性がより向上する傾向にある。 The second cuts 12 may be non-penetrating or may partially penetrate from one surface to the other surface. Of these, it is preferable that the second cuts 12 are non-penetrating. This tends to further improve the strength and durability of the thermally conductive sheet 10.
 第2切込み12が直線である場合、そのピッチp2は、好ましくは、0.1~2.5mm、0.3~2.0mm、0.5~1.5mmであってもよい。ピッチp2が2.5mm以下であることにより、圧縮荷重がより低下し、密着性と熱伝導性がより向上する傾向にある。また、ピッチp2が0.1mm以上であることにより、熱伝導性シート10をより容易に製造することができる。 When the second cuts 12 are straight lines, the pitch p2 may preferably be 0.1 to 2.5 mm, 0.3 to 2.0 mm, or 0.5 to 1.5 mm. By making the pitch p2 2.5 mm or less, the compression load tends to be lower and the adhesion and thermal conductivity tend to be improved. In addition, by making the pitch p2 0.1 mm or more, the thermally conductive sheet 10 can be manufactured more easily.
 第1切込み11と第2切込み12の延伸方向のなす鋭角θ3は、30~90°、45~90°、60~90°、75~90°であってもよい。これにより、圧縮荷重がより低下し、密着性と熱伝導性がより向上する傾向にある。 The acute angle θ3 between the first cut 11 and the second cut 12 in the extension direction may be 30 to 90°, 45 to 90°, 60 to 90°, or 75 to 90°. This tends to reduce the compression load and improve adhesion and thermal conductivity.
 第1切込み11や第2切込み12は、一方の表面に形成されていても、両方の表面に形成されていてもよい。 The first notch 11 and the second notch 12 may be formed on one surface or on both surfaces.
 図1や図2Aに示すように、熱伝導性シート10の表面は、2方向以上の第1切込み11により生じた複数の区分13や、第1切込み11及び第2切込み12により生じた複数の区分13を有してもよい。このように、区分を有することにより、圧縮荷重がより低下し、密着性と熱伝導性がより向上する傾向にある。区分の形状は、特に限定されないが、例えば、多角形状、円形状、楕円形状等が挙げられる。 As shown in Figures 1 and 2A, the surface of the thermally conductive sheet 10 may have multiple sections 13 created by first cuts 11 in two or more directions, or multiple sections 13 created by first cuts 11 and second cuts 12. By having sections in this way, the compressive load tends to be further reduced and the adhesion and thermal conductivity tend to be further improved. The shape of the sections is not particularly limited, but examples include polygonal, circular, and elliptical shapes.
 シート面積1cm当たりの区分の数は、好ましくは、4~400個/1cm、9~225個/1cm、16~100個/1cm、25~49個/1cmである。シート面積1cm当たりの区分の数が4個/1cm以上であることにより、圧縮荷重がより低下し、密着性と熱伝導性がより向上する傾向にある。また、シート面積1cm当たりの区分の数が400個/1cm以下であることにより、切込み形成時に、意図しない切断が生じることによる、熱伝導性シート10の生産性低下を抑制できる。 The number of sections per cm2 of sheet area is preferably 4 to 400/ cm2 , 9 to 225/ cm2 , 16 to 100/ cm2 , or 25 to 49/ cm2 . When the number of sections per cm2 of sheet area is 4/ cm2 or more, the compression load tends to be lower and the adhesion and thermal conductivity tend to be improved. In addition, when the number of sections per cm2 of sheet area is 400/ cm2 or less, a decrease in productivity of the thermal conductive sheet 10 due to unintended cutting during the formation of the incisions can be suppressed.
 1区分の面積は、好ましくは、0.25~25mm、0.50~12mm、1.0~8.0mmである。1区分の面積が25mm以下であることにより、圧縮荷重がより低下し、密着性と熱伝導性がより向上する傾向にある。また、1区分の面積が0.25mm以上であることにより、切込み形成時に、意図しない切断が生じることによる、熱伝導性シート10の生産性低下を抑制できる。 The area of each section is preferably 0.25 to 25 mm 2 , 0.50 to 12 mm 2 , or 1.0 to 8.0 mm 2 . When the area of each section is 25 mm 2 or less, the compressive load is further reduced, and the adhesion and thermal conductivity tend to be further improved. In addition, when the area of each section is 0.25 mm 2 or more, it is possible to suppress a decrease in productivity of the thermal conductive sheet 10 due to unintended cutting occurring when forming the incisions.
1.2.物性
 切込みが延在する方向に直行する方向に引っ張った場合、面方向に対して斜めの第1切込み11は、面方向に対して垂直の切込みよりも、切込み部分が開きにくい。そのため、本実施形態の熱伝導性シート10は、第1方向の引張破断伸度L1に対して、第1方向に直行する方向の引張破断伸度L2が大きくなる傾向にある。
1.2 Physical Properties When pulled in a direction perpendicular to the direction in which the incisions extend, the first incisions 11 that are oblique to the surface direction are less likely to open than incisions that are perpendicular to the surface direction. Therefore, the thermal conductive sheet 10 of this embodiment tends to have a larger tensile fracture elongation L2 in the direction perpendicular to the first direction than the tensile fracture elongation L1 in the first direction.
 本実施形態の熱伝導性シート10のアスカーC硬度は、好ましくは、40以下、0~35、2~30、5~25であってもよい。アスカーC硬度が40以下であることにより、圧縮荷重がより低下し、密着性と熱伝導性がより向上する傾向にある。また、アスカーC硬度が高いほど、熱伝導性シート10のハンドリング性がより向上する傾向にある。 The Asker C hardness of the thermally conductive sheet 10 of this embodiment may preferably be 40 or less, 0 to 35, 2 to 30, or 5 to 25. By having an Asker C hardness of 40 or less, the compressive load tends to be lower and the adhesion and thermal conductivity tend to be improved. In addition, the higher the Asker C hardness, the more the handleability of the thermally conductive sheet 10 tends to be improved.
1.3.組成
 本実施形態の熱伝導性シート10は、特に限定されないが、例えば、シリコーン樹脂及び無機フィラーを含むことが好ましく、必要に応じて、シランカップリング剤などを含んでもよい。これにより、圧縮荷重がより低下し、密着性と熱伝導性がより向上傾向にある。
1.3 Composition The thermally conductive sheet 10 of the present embodiment is not particularly limited, but preferably contains, for example, a silicone resin and an inorganic filler, and may contain a silane coupling agent, etc., as necessary. This reduces the compressive load and tends to improve adhesion and thermal conductivity.
 シリコーン樹脂としては、特に限定されないが、例えば、ジメチルシリコーン、ジフェニルシリコーン、メチルフェニルシリコーンが挙げられる。また、これらシリコーン樹脂は、その側鎖及び/又は末端に、有機基が導入されていてもよい。そのようなシリコーン樹脂としては、特に限定されないが、例えば、長鎖アルキル変性シリコーン、ポリエーテル変性シリコーン、アラルキル変性シリコーン、脂肪酸エステル変性シリコーン、脂肪酸アミド変性シリコーンなどの非反応性シリコーン;ビニル変性シリコーン、ヒドロシリル変性シリコーン、アミン変性シリコーン、エポキシ変性シリコーン、メルカプト変性シリコーン、カルボキシル変性シリコーン、カルビノール変性シリコーンなどの反応性シリコーンが挙げられる。 The silicone resin is not particularly limited, but examples thereof include dimethyl silicone, diphenyl silicone, and methylphenyl silicone. Furthermore, these silicone resins may have organic groups introduced into their side chains and/or ends. Such silicone resins are not particularly limited, but examples thereof include non-reactive silicones such as long-chain alkyl-modified silicone, polyether-modified silicone, aralkyl-modified silicone, fatty acid ester-modified silicone, and fatty acid amide-modified silicone; and reactive silicones such as vinyl-modified silicone, hydrosilyl-modified silicone, amine-modified silicone, epoxy-modified silicone, mercapto-modified silicone, carboxyl-modified silicone, and carbinol-modified silicone.
 シリコーン樹脂の含有量は、熱伝導性シートの総量に対して、好ましくは、1.0質量%以上、2.5質量%以上、5.0質量%以上であってもよい。また、シリコーン樹脂の含有量は、熱伝導性シートの総量に対して、好ましくは、50質量%以下、40質量%以下、30質量%以下、20質量%以下、15質量%以下、10質量%以下であってもよい。シリコーン樹脂の含有量が1.0質量%以上であることにより、圧縮荷重がより低下し、密着性がより向上傾向にある。シリコーン樹脂の含有量が50質量%以下であることにより、熱伝導性がより向上傾向にある。 The silicone resin content may be preferably 1.0 mass% or more, 2.5 mass% or more, or 5.0 mass% or more, based on the total amount of the thermally conductive sheet. The silicone resin content may be preferably 50 mass% or less, 40 mass% or less, 30 mass% or less, 20 mass% or less, 15 mass% or less, or 10 mass% or less, based on the total amount of the thermally conductive sheet. When the silicone resin content is 1.0 mass% or more, the compressive load is further reduced and adhesion tends to be further improved. When the silicone resin content is 50 mass% or less, thermal conductivity tends to be further improved.
 無機フィラーとしては、特に限定されないが、例えば、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、酸化亜鉛、水酸化アルミニウム、金属アルミニウム、酸化マグネシウム、ダイヤモンド、カーボン、インジウム、ガリウム、銅、銀、鉄、ニッケル、金、錫、金属ケイ素が挙げられる。 Inorganic fillers include, but are not limited to, aluminum oxide, aluminum nitride, boron nitride, silicon nitride, zinc oxide, aluminum hydroxide, metallic aluminum, magnesium oxide, diamond, carbon, indium, gallium, copper, silver, iron, nickel, gold, tin, and metallic silicon.
 無機フィラーの平均粒径は、好ましくは、300μm以下、250μm以下、200μm以下、175μm以下、150μm以下、125μm以下、100μm以下、75μm以下、50μm以下であってもよい。無機フィラーの平均粒径は、好ましくは、5μm以上、10μm以上、15μm以上であってもよい。無機フィラーの平均粒径が300μm以下であることにより、圧縮荷重がより低下し、密着性がより向上傾向にある。また、無機フィラーの平均粒径が5μm以上であることにより、熱伝導性がより向上傾向にある。 The average particle size of the inorganic filler may preferably be 300 μm or less, 250 μm or less, 200 μm or less, 175 μm or less, 150 μm or less, 125 μm or less, 100 μm or less, 75 μm or less, or 50 μm or less. The average particle size of the inorganic filler may preferably be 5 μm or more, 10 μm or more, or 15 μm or more. By having the average particle size of the inorganic filler be 300 μm or less, the compressive load is further reduced and the adhesion tends to be further improved. Furthermore, by having the average particle size of the inorganic filler be 5 μm or more, the thermal conductivity tends to be further improved.
 無機フィラーの含有量は、熱伝導性シート10の総体積に対して、好ましくは、99質量%以下、97.5質量%以下、95質量%以下であってもよい。また、無機フィラーの含有量は、熱伝導性シートの総量に対して、好ましくは、50質量%以上、60質量%以上、70質量%以上、80質量%以上、85質量%以上、90質量%以上であってもよい。無機フィラーの含有量が99質量%以下であることにより、圧縮荷重がより低下し、密着性がより向上傾向にある。また、無機フィラーの含有量が50質量%以上であることにより、熱伝導性がより向上傾向にある。 The content of the inorganic filler may be preferably 99 mass% or less, 97.5 mass% or less, or 95 mass% or less, relative to the total volume of the thermally conductive sheet 10. The content of the inorganic filler may be preferably 50 mass% or more, 60 mass% or more, 70 mass% or more, 80 mass% or more, 85 mass% or more, or 90 mass% or more, relative to the total volume of the thermally conductive sheet. When the content of the inorganic filler is 99 mass% or less, the compressive load is further reduced and the adhesion tends to be further improved. When the content of the inorganic filler is 50 mass% or more, the thermal conductivity tends to be further improved.
2.熱伝導性シートの製造方法
 本実施形態の熱伝導性シートの製造方法は、熱伝導性シートを成形するシート成形工程と、前記熱伝導性シートの表面に、面方向に対して斜めの第1切込みを形成する第1切込工程と、を有し、必要に応じて、熱伝導性シートの表面に、面方向に対して垂直の第2切込みを形成する第2切込工程をさらに有してもよい。
2. Manufacturing method of thermally conductive sheet The manufacturing method of the thermally conductive sheet of the present embodiment includes a sheet forming step of forming a thermally conductive sheet, and a first cutting step of forming a first incision on the surface of the thermally conductive sheet, the first incision being oblique to the surface direction, and may further include a second cutting step of forming a second incision on the surface of the thermally conductive sheet, the second incision being perpendicular to the surface direction, as necessary.
2.1.シート成形工程
 シート成形工程は、熱伝導性シートを成形する工程である。原料の混合は、ロールミル、ニーダー、バンバリーミキサー等の混合機を用いることができる。
2.1 Sheet Molding Process The sheet molding process is a process for molding a thermally conductive sheet. The raw materials can be mixed using a mixer such as a roll mill, a kneader, or a Banbury mixer.
 また、シートへの成形は、原料となる樹脂組成物を、ドクターブレード法、押出法、射出法、プレス法、又はカレンダーロール法が挙げられる。原料としては、上述の樹脂やフィラー等を含むことができる。 The resin composition used as the raw material can be molded into a sheet by using a doctor blade method, an extrusion method, an injection method, a press method, or a calendar roll method. The raw material can include the above-mentioned resins and fillers.
 シート成形工程において熱硬化する場合の温度は、例えば、50~200℃であってもよい。また、熱硬化時間は、例えば、2~14時間であってもよい。加熱には、特に限定されないが、例えば、熱風乾燥機、遠赤外乾燥機、マイクロ波乾燥機等を用いることができる。 The temperature for heat curing in the sheet molding process may be, for example, 50 to 200°C. The heat curing time may be, for example, 2 to 14 hours. There are no particular limitations on the heating method, but for example, a hot air dryer, far-infrared dryer, microwave dryer, etc. can be used.
2.2.第1切込工程
 第1切込工程は、熱伝導性シートの表面に、面方向に対して斜めの第1切込み11を形成する工程である。第1切込み11は、所定の第1方向に延伸するように成形してもよい。また、第1切込工程においては、複数方向の第1切込み11を作成してもよい。
2.2. First Cutting Step The first cutting step is a step of forming the first cuts 11 on the surface of the thermal conductive sheet, the first cuts 11 being oblique to the surface direction. The first cuts 11 may be formed so as to extend in a predetermined first direction. In the first cutting step, the first cuts 11 may be formed in a plurality of directions.
2.3.第2切込工程
 第2切込工程は、熱伝導性シートの表面に、面方向に対して垂直の第2切込み12を形成する工程である。ここで、第1切込工程後に、第2切込工程を実施することが好ましい。これにより、加工精度(形状、深さ)がより向上する傾向にある。
2.3. Second Cutting Step The second cutting step is a step of forming second cuts 12 perpendicular to the surface direction on the surface of the thermal conductive sheet. Here, it is preferable to perform the second cutting step after the first cutting step. This tends to further improve the processing accuracy (shape, depth).
 以下、本発明を実施例及び比較例を用いてより具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。 The present invention will be explained in more detail below using examples and comparative examples. The present invention is not limited in any way by the following examples.
1.調製
 下記表1に示す配合例1~3に基づいて各成分を混合して、樹脂組成物を得た。得られた樹脂組成物を、ドクターブレード法を用いて、厚さ3mmのシートに成形し、その後、170~190℃で10分加熱硬化を行った。これにより、各種の熱伝導性シートを作製した。
1. Preparation Resin compositions were obtained by mixing the components according to Formulation Examples 1 to 3 shown in Table 1 below. The resin compositions obtained were molded into sheets having a thickness of 3 mm using a doctor blade method, and then heat cured at 170 to 190°C for 10 minutes. Various thermally conductive sheets were thus produced.
Figure JPOXMLDOC01-appb-T000001
  SE-1885(A)及び(B):東レダウコーニング社製、二液付加反応型シリコーン
 DAW45S:デンカ社製、球状アルミナ、平均粒子径45μm
 DAW05 :デンカ社製、球状アルミナ、平均粒子径5μm
 SFG-32:モメンティブ社製、白金触媒
 顔料    :レジノカラー工業株式会社製
Figure JPOXMLDOC01-appb-T000001
SE-1885 (A) and (B): Two-component addition reaction type silicone manufactured by Dow Corning Toray Co., Ltd. DAW45S: Spherical alumina manufactured by Denka Co., Ltd., average particle size 45 μm
DAW05: Denka, spherical alumina, average particle size 5 μm
SFG-32: Momentive, platinum catalyst Pigment: Resino Color Kogyo Co., Ltd.
2.切込み
2.1.実施例1
 配合例2を用いて得られた熱伝導性シートに対して、図1に示すように、y方向(第1方向)に延伸する第1切込みを形成し、x方向(第2方向)に延伸する第2切込みを形成して、実施例1の熱伝導性シートを得た。その際、第1切込みの角度θ1は45°とし、ピッチp1は1mmとし、切込み深さh1は1.5mmとした。また、第2切込みの角度θ2は90°、ピッチp2は1mmとし、切込み深さh2は1.5mmとした。さらに、第1切込みと第2切込みのなす角θ2は90°とした。
2. Cutting 2.1. Example 1
As shown in FIG. 1, a first cut extending in the y direction (first direction) was formed on the thermally conductive sheet obtained using Blending Example 2, and a second cut extending in the x direction (second direction) was formed to obtain the thermally conductive sheet of Example 1. At that time, the angle θ1 of the first cut was 45°, the pitch p1 was 1 mm, and the cut depth h1 was 1.5 mm. The angle θ2 of the second cut was 90°, the pitch p2 was 1 mm, and the cut depth h2 was 1.5 mm. Furthermore, the angle θ2 between the first cut and the second cut was 90°.
 上記のようにして得られた熱伝導性シートの硬さについて、25℃のSRIS0101に準拠するアスカーCタイプのスプリング式硬度計で測定した。高分子計器株式会社製「アスカーゴム硬度計C型」で測定したアスカーC硬度は、10であった。 The hardness of the thermally conductive sheet obtained as described above was measured at 25°C using an Asker C-type spring hardness tester conforming to SRIS0101. The Asker C hardness measured using an Asker Rubber Hardness Tester Type C manufactured by Kobunshi Keiki Co., Ltd. was 10.
2.2.比較例1
 第1切込みに代えて、角度θ2は90°、ピッチp2は1mmとし、切込み深さh2は1.5mmとした第2切込みを設けたこと以外は、実施例1と同様にして、比較例1の熱伝導性シートを得た。すなわち、比較例1の熱伝導性シートは、x方向とy方向に第2切込み延伸し、それら第2切込みが直交したものである。高分子計器株式会社製「アスカーゴム硬度計C型」で測定したアスカーC硬度は、13であった。
2.2. Comparative Example 1
The thermally conductive sheet of Comparative Example 1 was obtained in the same manner as in Example 1, except that instead of the first cut, a second cut was provided with an angle θ2 of 90°, a pitch p2 of 1 mm, and a cut depth h2 of 1.5 mm. That is, the thermally conductive sheet of Comparative Example 1 is stretched through the second cuts in the x and y directions, and the second cuts are perpendicular to each other. The Asker C hardness measured with an Asker Rubber Hardness Tester Type C manufactured by Kobunshi Keiki Co., Ltd. was 13.
2.3.参考例1
 参考例1においては、切込みを設けず、配合例2を用いて得られた熱伝導性シートをそのまま用いた。高分子計器株式会社製「アスカーゴム硬度計C型」で測定したアスカーC硬度は、15であった。
2.3. Reference Example 1
In Reference Example 1, no cuts were made, and the thermally conductive sheet obtained in Blend Example 2 was used as is. The Asker C hardness measured with an Asker Rubber Hardness Tester C type manufactured by Kobunshi Keiki Co., Ltd. was: The answer was 15.
3.評価
3.1.圧縮応力
 上記のようにして得られた各熱伝導性シートを、下記表2に記載の任意の速度で、70%圧縮し、厚さが0.9mmとなったときの圧縮応力のピーク値と、その応力が緩和して定常になったときの応力値と、参考例1に対する圧縮応力のピーク値の減少率を示す。測定には、島津製作所製EZ-LXを用いた。
3. Evaluation 3.1. Compressive stress Each thermally conductive sheet obtained as described above was compressed by 70% at any speed shown in Table 2 below, and the peak value of the compressive stress when the thickness reached 0.9 mm, the stress value when the stress relaxed to a steady state, and the reduction rate of the peak value of the compressive stress compared to Reference Example 1 are shown. For the measurement, an EZ-LX manufactured by Shimadzu Corporation was used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
3.2.引張破断伸度
 JISK6251に従って、実施例1の第1方向の引張破断伸度L1と、第1方向に直行する第2方向の引張破断伸度L2とを測定した。その結果を、図3に示す。
Tensile elongation at break L1 in a first direction and tensile elongation at break L2 in a second direction perpendicular to the first direction of Example 1 were measured according to JIS K 6251. The results are shown in FIG.
3.3.密着性1
 実施例1、比較例1、参考例1のそれぞれの熱伝導性シートを透明なアクリルプレートで上方から40%圧縮し、厚さを、1.8mmとした。この時の熱伝導性シートとアクリルプレートとの間の気泡を目視にて確認し、下記評価基準にて、脱気泡に関する密着性を評価した。
(評価基準)
 〇: 気泡は認められなかった。
 ×: 気泡が相当程度認められた。
3.3. Adhesion 1
Each of the thermally conductive sheets of Example 1, Comparative Example 1, and Reference Example 1 was compressed 40% from above with a transparent acrylic plate to a thickness of 1.8 mm. Air bubbles between the thermally conductive sheet and the acrylic plate at this time were visually confirmed, and the adhesion regarding degassing was evaluated according to the following evaluation criteria.
(Evaluation criteria)
A: No air bubbles were observed.
×: A considerable amount of air bubbles were observed.
3.4.密着性2
 実施例1、比較例1、参考例1のそれぞれの熱伝導性シートの切込みが形成された面に、厚さ1.5mm,直径17mmのワッシャーと、厚さ1.5mm,縦10mm、横50mmの金属板を、置いた。そして、透明なアクリルプレートで上方から30%圧縮し、厚さを、2.1mmとした。この時のワッシャーと金属板の縁を目視にて確認し、下記評価基準にて、エッジの密着性を評価した。
(評価基準)
 〇: ワッシャーと金属板の両方の側面が、熱伝導性シートと接触しており、隙間は認められなかった。
 ×: ワッシャーと金属板の両方の側面において、熱伝導性シートと接触しない部分があり、隙間が認められた。
3.4. Adhesion 2
A washer having a thickness of 1.5 mm and a diameter of 17 mm and a metal plate having a thickness of 1.5 mm, a length of 10 mm and a width of 50 mm were placed on the surface where the incisions were formed of each of the thermally conductive sheets of Example 1, Comparative Example 1, and Reference Example 1. Then, the sheet was compressed by 30% from above with a transparent acrylic plate, so that the thickness became 2.1 mm. The edges of the washer and the metal plate at this time were visually inspected, and the adhesion of the edges was evaluated according to the following evaluation criteria.
(Evaluation criteria)
◯: Both sides of the washer and metal plate were in contact with the thermally conductive sheet, and no gaps were observed.
×: There were portions on both the side surfaces of the washer and the metal plate that were not in contact with the thermally conductive sheet, and gaps were observed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、配合例2を用いて得られた熱伝導性シートに代えて、配合例1、3を用いて同様にして得られた熱伝導性シートを作製した。そして、実施例1と同様の切込みを設けた熱伝導性シートと、比較例1と同様の切込みを設けた熱伝導性シートと、参考例1のように切込みを設けないと熱伝導性シートをそれぞれ用意した。これら熱伝導性シートに対しても、上記と同様の手法により、圧縮応力、引張破断伸度、及び密着性について評価をしたところ、各効果について、実施例1、比較例1、参考例1で認められた相対的な対応関係と同様の傾向の対応関係を示す結果が得られた。すなわち、配合例1、3を用いて同様にして得られた熱伝導性シートに実施例1と同様の切込みを設けた場合には、密着性1の評価では気泡が認められず、密着性2の評価においてもワッシャーと金属板の両方の側面と、熱伝導性シートとの隙間は認められなかった。また、配合例1~3を比べると、フィラー充填量が多いほど、より高熱伝導性を有する。 In addition, instead of the thermally conductive sheet obtained using formulation example 2, thermally conductive sheets obtained in the same manner were prepared using formulation examples 1 and 3. A thermally conductive sheet with the same cuts as in Example 1, a thermally conductive sheet with the same cuts as in Comparative Example 1, and a thermally conductive sheet without cuts as in Reference Example 1 were prepared. These thermally conductive sheets were also evaluated for compressive stress, tensile elongation at break, and adhesion using the same method as above, and the results showed a correspondence relationship with a similar tendency to the relative correspondence relationship observed in Example 1, Comparative Example 1, and Reference Example 1 for each effect. In other words, when the thermally conductive sheet obtained in the same manner using formulation examples 1 and 3 was provided with the same cuts as in Example 1, no air bubbles were observed in the evaluation of adhesion 1, and no gaps were observed between the thermally conductive sheet and the sides of both the washer and the metal plate in the evaluation of adhesion 2. In addition, when comparing formulation examples 1 to 3, the higher the filler loading amount, the higher the thermal conductivity.
 本発明の熱伝導性シートは、電子部品等を放熱するためのシートとして産業上の利用可能性を有する。 The thermally conductive sheet of the present invention has industrial applicability as a sheet for dissipating heat from electronic components, etc.
 10…熱伝導性シート、11…第1切込み、11’…厚さ方向の切込み、12…第2切込み、13,14…区分、20…対象物 10...thermal conductive sheet, 11...first cut, 11'...thickness direction cut, 12...second cut, 13, 14...section, 20...object

Claims (14)

  1.  面方向に対して斜めの第1切込みを有する表面を有する、
     熱伝導性シート。
    A surface having a first cut oblique to a surface direction.
    Thermally conductive sheet.
  2.  前記第1切込みが、表面の第1方向に連続した切り込みである、
     請求項1に記載の熱伝導性シート。
    The first cut is a continuous cut in a first direction on the surface.
    The thermally conductive sheet according to claim 1 .
  3.  前記第1方向の引張破断伸度L1に対して、前記第1方向に直行する方向の引張破断伸度L2が大きい、
     請求項2に記載の熱伝導性シート。
    The tensile elongation at break L2 in the direction perpendicular to the first direction is larger than the tensile elongation at break L1 in the first direction.
    The thermally conductive sheet according to claim 2 .
  4.  前記表面が、前記面方向に対して垂直の第2切込みを有する、
     請求項1に記載の熱伝導性シート。
    The surface has a second cut perpendicular to the surface direction.
    The thermally conductive sheet according to claim 1 .
  5.  前記第2切込みが、表面の第2方向に連続した切り込みである、
     請求項4に記載の熱伝導性シート。
    The second cut is a continuous cut in a second direction on the surface.
    The thermally conductive sheet according to claim 4 .
  6.  前記表面が、前記第1切込み及び前記第2切込みにより生じた複数の区分を有する、
     請求項4に記載の熱伝導性シート。
    the surface having a plurality of sections created by the first cut and the second cut;
    The thermally conductive sheet according to claim 4 .
  7.  前記第1切込みと前記面方向のなす鋭角が、10~80°である、
     請求項1に記載の熱伝導性シート。
    The acute angle between the first cut and the surface direction is 10 to 80 degrees.
    The thermally conductive sheet according to claim 1 .
  8.  前記第1切込みは未貫通である、
     請求項1に記載の熱伝導性シート。
    The first cut is a non-through cut.
    The thermally conductive sheet according to claim 1 .
  9.  前記第1切込みの深さの割合は、シート厚みの2~90%である、
     請求項1に記載の熱伝導性シート。
    The depth of the first cut is 2 to 90% of the sheet thickness.
    The thermally conductive sheet according to claim 1 .
  10.  アスカーC硬度が、40以下である、
     請求項1に記載の熱伝導性シート。
    Asker C hardness is 40 or less.
    The thermally conductive sheet according to claim 1 .
  11.  シリコーン樹脂及び無機フィラーを含む、
     請求項1に記載の熱伝導性シート。
    Contains a silicone resin and an inorganic filler,
    The thermally conductive sheet according to claim 1 .
  12.  前記無機フィラーが、50~99体積%である、
     請求項11に記載の熱伝導性シート。
    The inorganic filler is 50 to 99% by volume.
    The thermally conductive sheet according to claim 11.
  13.  熱伝導性シートを成形するシート成形工程と、
     前記熱伝導性シートの表面に、面方向に対して斜めの第1切込みを形成する第1切込工程と、を有する、
     熱伝導性シートの製造方法。
    a sheet forming step of forming a thermally conductive sheet;
    A first incision process is provided for forming a first incision on the surface of the thermal conductive sheet, the first incision being oblique to a surface direction.
    A method for manufacturing a thermally conductive sheet.
  14.  前記熱伝導性シートの表面に、面方向に対して垂直の第2切込みを形成する第2切込工程をさらに有し、
     前記第1切込工程後に、前記第2切込工程を実施する、
     請求項13に記載の熱伝導性シートの製造方法。
    The method further includes a second incision step of forming a second incision perpendicular to a surface direction on the surface of the thermal conductive sheet,
    After the first cutting step, the second cutting step is carried out.
    A method for producing the thermally conductive sheet according to claim 13.
PCT/JP2023/043462 2022-12-05 2023-12-05 Thermally conductive sheet WO2024122538A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022194445 2022-12-05
JP2022-194445 2022-12-05

Publications (1)

Publication Number Publication Date
WO2024122538A1 true WO2024122538A1 (en) 2024-06-13

Family

ID=91379454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043462 WO2024122538A1 (en) 2022-12-05 2023-12-05 Thermally conductive sheet

Country Status (1)

Country Link
WO (1) WO2024122538A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224386A (en) * 2002-01-31 2003-08-08 Toyota Motor Corp Electronic device for automobile and housing for electronic device of vehicle
JP2014041953A (en) * 2012-08-23 2014-03-06 Polymatech Japan Co Ltd Heat conductive sheet
JP2015153743A (en) * 2014-02-19 2015-08-24 日立建機株式会社 Power storage device, and work machine mounting the same
WO2018190233A1 (en) * 2017-04-12 2018-10-18 デンカ株式会社 Heat-conductive sheet and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224386A (en) * 2002-01-31 2003-08-08 Toyota Motor Corp Electronic device for automobile and housing for electronic device of vehicle
JP2014041953A (en) * 2012-08-23 2014-03-06 Polymatech Japan Co Ltd Heat conductive sheet
JP2015153743A (en) * 2014-02-19 2015-08-24 日立建機株式会社 Power storage device, and work machine mounting the same
WO2018190233A1 (en) * 2017-04-12 2018-10-18 デンカ株式会社 Heat-conductive sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
CN110945647B (en) Heat conducting fin
CN108495897B (en) Heat conductive resin molded article
KR101715988B1 (en) Thermally conductive sheet and process for producing same
CN107871721B (en) Thermal conductive sheet, method for producing same, and semiconductor device
JP7387823B2 (en) Thermal conductive sheet and its manufacturing method
TWI637050B (en) Heat conductive molded article
JP7384560B2 (en) Thermal conductive sheets, mounting methods for thermal conductive sheets, manufacturing methods for electronic devices
WO2020153346A1 (en) Method for producing thermally conductive sheet
EP3826052A1 (en) Heat-conductive sheet, method for manufacturing same, and method for mounting heat-conductive sheet
WO2020149335A1 (en) Heat-conductive sheet
WO2024122538A1 (en) Thermally conductive sheet
EP4307363A1 (en) Thermally conductive resin sheet
JP4514344B2 (en) Thermally conductive resin molding and its use
CN110945082B (en) Heat conductive resin molded article
JP7542317B2 (en) Thermally conductive resin sheet
JP2022182791A (en) Thermally conductive sheet and method for producing thermally conductive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23900653

Country of ref document: EP

Kind code of ref document: A1