[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024122469A1 - Method for producing graphite intercalation compound - Google Patents

Method for producing graphite intercalation compound Download PDF

Info

Publication number
WO2024122469A1
WO2024122469A1 PCT/JP2023/043163 JP2023043163W WO2024122469A1 WO 2024122469 A1 WO2024122469 A1 WO 2024122469A1 JP 2023043163 W JP2023043163 W JP 2023043163W WO 2024122469 A1 WO2024122469 A1 WO 2024122469A1
Authority
WO
WIPO (PCT)
Prior art keywords
gic
graphite
intercalation
producing
layers
Prior art date
Application number
PCT/JP2023/043163
Other languages
French (fr)
Japanese (ja)
Inventor
彰 伊豫
洋 永崎
拓 荻野
茂之 石田
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2024122469A1 publication Critical patent/WO2024122469A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general

Definitions

  • the present invention relates to a method for producing graphite intercalation compounds.
  • GICs Graphite intercalation compounds
  • Such GICs exhibit a variety of properties depending on the type of atoms or molecules inserted between the graphite layers and the position (staging) between the graphite layers at which they are inserted. They are expected to have a wide range of applications, including as battery electrode materials, superconducting materials, gas storage materials, thermoelectric conversion materials, magnetic materials, and conductive materials.
  • Patent Document 1 discloses a method for producing GICs by contacting an intercalation compound with graphite in the presence of a supercritical fluid that easily penetrates between graphite layers (layer planes).
  • the intercalation compound is inserted between the graphite layers at a predetermined temperature and pressure that indicates the supercritical state of the supercritical fluid, and then the temperature and pressure are returned to normal.
  • This makes it possible to extract the graphite intercalation compound from the compounds that made up the supercritical fluid.
  • This method is said to be able to uniformly insert the intercalation compound or ions derived from it between the graphite layers, making it easy to produce GICs with uniform quality.
  • the method for producing graphite intercalation compounds according to the present invention is characterized by reacting an intercalation material with graphite in the presence of Na. This feature makes it possible to easily synthesize large quantities of homogeneous GIC.
  • the above-mentioned invention may be characterized in that the reaction is carried out by heating to a predetermined temperature of 250°C or less. This characteristic makes it possible to efficiently synthesize large amounts of homogeneous GIC without the need for high temperatures that make it difficult to obtain a pure sample.
  • the above-mentioned invention may be characterized by including a step of removing Na after mixing. With this feature, it is possible to efficiently synthesize a large amount of homogeneous GIC.
  • FIG. 3 is a photograph showing a step of a method for producing a graphite intercalation compound as an example of the present invention.
  • 1 is a photograph showing the appearance of a GIC synthesized using Li as an intercalation material.
  • 1 shows XRD patterns illustrating the reaction processes of Li-GIC.
  • 1 is an X-ray diffraction (XRD) pattern showing the relationship between the composition of the raw materials of Li-GIC and the stage.
  • FIG. 1 is a diagram illustrating the stages of GIC. 1 is an XRD pattern showing the relationship between the composition of raw materials of K-GIC and the stage.
  • FIG. 1 shows XRD patterns of (a) a product containing Na-GIC (NaC y ) previously obtained, (b) a product obtained by adding Li to this, and (c) a product obtained by adding K.
  • FIG. 1 is a partial enlarged overlay of XRD patterns of products containing Na-GIC obtained by changing the formulation.
  • XRD patterns of products with Ca, Sr, and Ba as intercalation materials, where the black circles are diffraction peaks due to graphite intercalation compounds such as CaC6 .
  • 1 is a graph showing the temperature dependence of magnetic susceptibility of CaC6 .
  • FIG. 1 is a side cross-sectional view of a die used to remove Na. 1 is a photograph showing the appearance of a quartz tube used for removing Na.
  • 1 shows XRD patterns of products with Sm, Eu, and Yb as intercalation materials, where the black circles are diffraction peaks due to graphite intercalation compounds such as SmC6
  • GIC graphite intercalation compound
  • the method for producing a GIC in this embodiment involves reacting graphite and an intercalate in the presence of Na.
  • Sodium 12 can be added as chunks of metal pieces since it can be ground in the mortar 10.
  • mixing is performed in an inert gas atmosphere such as nitrogen or argon, or in a vacuum to prevent oxidation of Na.
  • the mortar 10 was placed inside a glove box and used for production.
  • a sealable ball mill or the like can be used.
  • This predetermined temperature may be about 300 to 400°C, but synthesis is possible in a sufficiently short time even at a low temperature of 250°C or less. In general, it is preferable that the temperature is 100°C or higher, taking into account the synthesis time. For example, if mixing and heating are repeated at 250°C, the reaction between the raw materials is generally completed in a total of about several hours.
  • the synthesis time required to obtain GIC can be anywhere from a few minutes to a few hours at most, which is significantly shorter than the conventional synthesis time of GIC, which takes several days to a few weeks.
  • high temperatures that make it difficult to obtain a pure sample are not required, and as mentioned above, GIC can be synthesized by heating at room temperature to about 250°C.
  • the above manufacturing method uses Na, so Na remains mixed in the synthesized GIC. If Na is not necessary, a step of removing Na can be added. For example, there is a method of melting the Na by heating and then centrifuging, a method of forming a powder containing GIC into a pellet while heating it and then pushing out the liquid Na (details will be described later), and a method of heating the resulting pellet to evaporate the Na (details will be described later).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Provided is a method for producing a GIC whereby a given insertion material can be easily inserted between layers of graphite. The insertion material is reacted with graphite in the presence of Na. The insertion material may be an alkali metal, an alkaline earth metal, and lanthanide.

Description

黒鉛層間化合物の製造方法Method for producing graphite intercalation compound
 本発明は、黒鉛層間化合物の製造方法に関する。 The present invention relates to a method for producing graphite intercalation compounds.
 層状構造の黒鉛層間に、原子や分子を挿入した黒鉛層間化合物(GIC:Graphite Intercalation Compounds)が知られている。かかるGICは、黒鉛層間に挿入される原子や分子の種類、又、その挿入される黒鉛層間の位置(ステージング)によって様々な性質を示し、電池の電極材料、超伝導材料、ガス吸蔵材料、熱電変換材料、磁性材料、導電性材料など、多岐に亘る応用が期待されている。 Graphite intercalation compounds (GICs) are known in which atoms or molecules are inserted between the graphite layers of a layered structure. Such GICs exhibit a variety of properties depending on the type of atoms or molecules inserted between the graphite layers and the position (staging) between the graphite layers at which they are inserted. They are expected to have a wide range of applications, including as battery electrode materials, superconducting materials, gas storage materials, thermoelectric conversion materials, magnetic materials, and conductive materials.
 一方、GICは、特殊(高価)な黒鉛を使った長時間に亘る気相反応法や溶融塩法、純粋試料を得にくい高温、例えば、500℃程度での固相反応を経て製造される方法など考案されてきた。しかしながら、原料の一部にしかGICが生じなかったり少量のGICしか得られなかったりと、均質かつ大量のGICを効率的に合成することは難しかった。 Meanwhile, methods have been devised for producing GIC, including a long-term gas-phase reaction method using special (expensive) graphite, the molten salt method, and a method of producing GIC via a solid-phase reaction at high temperatures, such as around 500°C, where it is difficult to obtain a pure sample. However, it has been difficult to efficiently synthesize large quantities of homogeneous GIC, as GIC is produced only in a portion of the raw material or only small amounts of GIC are obtained.
 例えば、特許文献1では、黒鉛の層間(層面間)に侵入しやすい超臨界流体の存在下にて黒鉛に挿入化合物を接触させGICを製造する方法を開示している。超臨界流体を構成する化合物が常温且つ常圧にて気体である場合には、該超臨界流体の超臨界を示す所定の温度且つ圧力下で黒鉛の層間に挿入化合物を挿入後、常温且つ常圧に戻すことで。超臨界流体を構成していた化合物中から黒鉛層間化合物を取り出すことができる。かかる方法によれば、黒鉛の層間に挿入化合物又はこれに由来するイオンを均一に挿入させて、均一な品質を有するGICを容易に製造することができるとしている。 For example, Patent Document 1 discloses a method for producing GICs by contacting an intercalation compound with graphite in the presence of a supercritical fluid that easily penetrates between graphite layers (layer planes). When the compounds that make up the supercritical fluid are in a gaseous state at room temperature and pressure, the intercalation compound is inserted between the graphite layers at a predetermined temperature and pressure that indicates the supercritical state of the supercritical fluid, and then the temperature and pressure are returned to normal. This makes it possible to extract the graphite intercalation compound from the compounds that made up the supercritical fluid. This method is said to be able to uniformly insert the intercalation compound or ions derived from it between the graphite layers, making it easy to produce GICs with uniform quality.
特開2011-213583号公報JP 2011-213583 A
 上記したように、均質かつ大量のGICを効率的に合成し得る製造方法が求められる。 As mentioned above, there is a need for a manufacturing method that can efficiently synthesize large amounts of homogeneous GIC.
 本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、任意の挿入材料を黒鉛の層間に簡易に挿入できるGICの製造方法の提供にある。 The present invention was made in consideration of the above circumstances, and its purpose is to provide a method for manufacturing a GIC that allows any intercalation material to be easily inserted between the graphite layers.
 本発明による黒鉛層間化合物の製造方法は、Naの存在下で黒鉛に挿入材料を反応させることを特徴とする。かかる特徴によれば、均質かつ大量のGICを簡易に合成し得るのである。 The method for producing graphite intercalation compounds according to the present invention is characterized by reacting an intercalation material with graphite in the presence of Na. This feature makes it possible to easily synthesize large quantities of homogeneous GIC.
 上記した発明において、前記黒鉛は粉体であることを特徴としてもよい。かかる特徴によれば、均質かつ大量のGICをより効率的に合成し得るのである。 In the above-mentioned invention, the graphite may be in the form of a powder. This feature makes it possible to synthesize a large amount of homogeneous GIC more efficiently.
 上記した発明において、前記挿入材料はアルカリ金属であって、前記黒鉛と混合して反応させることを特徴としてもよい。または、前記挿入材料はアルカリ土類金属及びランタノイドのいずれかからなり、前記黒鉛と混合し加熱して反応させることを特徴としてもよい。かかる特徴によれば、所定の挿入材料を挿入した高品質なGICを効率的に合成し得るのである。 In the above-mentioned invention, the insertion material may be an alkali metal, which is mixed with the graphite and reacted. Alternatively, the insertion material may be either an alkaline earth metal or a lanthanoid, which is mixed with the graphite and heated to react. With these features, it is possible to efficiently synthesize high-quality GICs with a specified insertion material inserted.
 上記した発明において、250℃以下の所定温度に加熱して反応させることを特徴としてもよい。かかる特徴によれば、純粋試料を得にくい高温を必要とせず、均質かつ大量のGICを効率的に合成し得るのである。 The above-mentioned invention may be characterized in that the reaction is carried out by heating to a predetermined temperature of 250°C or less. This characteristic makes it possible to efficiently synthesize large amounts of homogeneous GIC without the need for high temperatures that make it difficult to obtain a pure sample.
 上記した発明において、混合後、Naを除去する工程を含むことを特徴としてもよい。かかる特徴によれば、均質かつ大量のGICを効率的に合成し得るのである。 The above-mentioned invention may be characterized by including a step of removing Na after mixing. With this feature, it is possible to efficiently synthesize a large amount of homogeneous GIC.
本発明による実施例としての黒鉛層間化合物の製造方法の一工程を示す写真である。3 is a photograph showing a step of a method for producing a graphite intercalation compound as an example of the present invention. Liを挿入材料として合成されたGICの外観写真である。1 is a photograph showing the appearance of a GIC synthesized using Li as an intercalation material. Li-GICの各反応過程を示すXRDパターンである。1 shows XRD patterns illustrating the reaction processes of Li-GIC. Li-GICの原料の配合とステージとの関係を示すX線回折(XRD)パターンである。1 is an X-ray diffraction (XRD) pattern showing the relationship between the composition of the raw materials of Li-GIC and the stage. GICのステージを説明する図である。FIG. 1 is a diagram illustrating the stages of GIC. K-GICの原料の配合とステージとの関係を示すXRDパターンである。1 is an XRD pattern showing the relationship between the composition of raw materials of K-GIC and the stage. (a)予め得たNa-GIC(NaC)を含む生成物、これに(b)Liを加えて得た生成物、(c)Kを加えて得た生成物のXRDパターンである。1 shows XRD patterns of (a) a product containing Na-GIC (NaC y ) previously obtained, (b) a product obtained by adding Li to this, and (c) a product obtained by adding K. 配合を変えて得たNa-GICを含む生成物のXRDパターンの部分拡大の重ね合わせ図である。FIG. 1 is a partial enlarged overlay of XRD patterns of products containing Na-GIC obtained by changing the formulation. Ca、Sr、Baを挿入材料とした生成物のXRDパターンである。ここで、黒丸は、CaCなどのグラファイト層間化合物による回折ピークである。XRD patterns of products with Ca, Sr, and Ba as intercalation materials, where the black circles are diffraction peaks due to graphite intercalation compounds such as CaC6 . CaCの磁化率の温度依存性を示すグラフである。1 is a graph showing the temperature dependence of magnetic susceptibility of CaC6 . Naの除去に使用するダイスの側断面図である。FIG. 1 is a side cross-sectional view of a die used to remove Na. Naの除去に使用した石英管の外観写真である。1 is a photograph showing the appearance of a quartz tube used for removing Na. Sm、Eu、Ybを挿入材料とした生成物のXRDパターンである。ここで、黒丸は、SmCなどのグラファイト層間化合物による回折ピークである。1 shows XRD patterns of products with Sm, Eu, and Yb as intercalation materials, where the black circles are diffraction peaks due to graphite intercalation compounds such as SmC6 .
 以下に、本発明による1つの実施例であるGIC(黒鉛層間化合物)の製造方法について、図1を用いて説明する。 Below, a method for producing GIC (graphite intercalation compound), which is one embodiment of the present invention, will be explained with reference to FIG. 1.
 本実施例によるGICの製造方法は、Naの存在下で黒鉛(グラファイト)及び挿入材料(インターカレート)を反応させることである。 The method for producing a GIC in this embodiment involves reacting graphite and an intercalate in the presence of Na.
 例えば、図1に示すように、乳鉢10の中に、黒鉛11とナトリウム12(Na)と挿入材料13を入れ、これらを反応させるように、軟金属であるナトリウムに黒鉛と挿入材料を練り込むように混合することでGICを合成できる。 For example, as shown in FIG. 1, graphite 11, sodium 12 (Na), and intercalation material 13 are placed in a mortar 10, and the graphite and intercalation material are kneaded into the sodium, which is a soft metal, to synthesize a GIC.
 このとき、黒鉛11は粉末であると効率的にGICを合成できて好ましい。なお、黒鉛11としては、特段に高純度であったり高配向性であったりするような特殊で高価なものを使用する必要はなく、例えば、純度99.99%程度の市販品でも十分である。 In this case, it is preferable that the graphite 11 is in powder form, since this allows for efficient synthesis of GIC. Note that there is no need to use special, expensive graphite 11 that is particularly high in purity or highly oriented; for example, a commercially available product with a purity of about 99.99% is sufficient.
 ナトリウム12は、乳鉢10ですりつぶすことができるため塊状の金属片として投入してよい。なお、「Naの存在下」の状態を維持するため、Naの酸化を防止するように窒素やアルゴンなどの不活性ガス雰囲気中や真空中で混合を行う。本実施例においてはグローブボックス内に乳鉢10を配置して製造に用いた。工業的な製造においては密閉可能なボールミル等が使用可能である。 Sodium 12 can be added as chunks of metal pieces since it can be ground in the mortar 10. To maintain the state of "in the presence of Na," mixing is performed in an inert gas atmosphere such as nitrogen or argon, or in a vacuum to prevent oxidation of Na. In this example, the mortar 10 was placed inside a glove box and used for production. For industrial production, a sealable ball mill or the like can be used.
 挿入材料13は、グラフェンの積層により構成される黒鉛11においてグラフェン層間(以降、単に層間と称する)に挿入させる材料であり、例えば、アルカリ金属、アルカリ土類金属、及びランタノイドのいずれか又はこれらの組み合わせとし得る。 The intercalation material 13 is a material that is inserted between graphene layers (hereinafter simply referred to as between layers) in the graphite 11 that is composed of stacked graphene layers, and can be, for example, any one of an alkali metal, an alkaline earth metal, and a lanthanide, or a combination of these.
 アルカリ金属としては、Li、Na、K、Rb、Csを好適に使用し得る。また、アルカリ金属は柔らかいため、塊状の金属片として乳鉢10に投入し、乳棒を使って練ることで混合できる。原料としての純度は99%程度でよい。これらを挿入材料として用いた場合、室温での混合によってGICを合成できる。 As the alkali metal, Li, Na, K, Rb, and Cs can be suitably used. In addition, since the alkali metal is soft, it can be mixed by putting it into the mortar 10 as a lump metal piece and kneading it with a pestle. The purity of the raw material can be about 99%. When these are used as the insertion material, GIC can be synthesized by mixing at room temperature.
 アルカリ土類金属としては、Ca、Sr、Baを好適に使用し得る。また、ランタノイドとしては、Sm、Eu、Ybを好適に使用し得る。アルカリ土類金属及びランタノイドは、比較的硬く、塊から乳棒ですりつぶすことは難しい。そこで、ヤスリ等によって直径100μm程度の粉状体に破砕してから乳鉢10に投入するとよい。原料としての純度は99%程度でよい。また、これらを挿入材料として用いた場合、原料を混合した上で反応を進行させ得る所定温度に加熱した環境下での保持によってGICを合成し得る。なお、この所定温度は300~400℃程度であってもよいが、250℃以下の低温でも十分に短時間にて合成が可能である。一般的には、合成時間を考慮して100℃以上であることが好ましい。例えば、250℃として混合と加熱を繰り返せば、合計数時間程度で原料同士の反応は概ね完了する。 As alkaline earth metals, Ca, Sr, and Ba can be preferably used. As lanthanides, Sm, Eu, and Yb can be preferably used. Alkaline earth metals and lanthanides are relatively hard, and it is difficult to grind them from a lump with a pestle. Therefore, it is recommended to crush them into powder with a diameter of about 100 μm using a file or the like and then put them into the mortar 10. The purity of the raw material can be about 99%. When these are used as the insertion material, GIC can be synthesized by mixing the raw materials and holding them in an environment where they are heated to a predetermined temperature that can cause the reaction to proceed. This predetermined temperature may be about 300 to 400°C, but synthesis is possible in a sufficiently short time even at a low temperature of 250°C or less. In general, it is preferable that the temperature is 100°C or higher, taking into account the synthesis time. For example, if mixing and heating are repeated at 250°C, the reaction between the raw materials is generally completed in a total of about several hours.
 上記したいずれの場合においても、GICを得るために必要な合成時間は数分間から長くとも数時間程度とすることが可能であり、数日から数週間を要する従来のGICの合成時間に比べて格段に短くなる。また、純粋試料を得にくいような高温を必要とせず、上記したように、室温~250℃程度の加熱でのGICの合成を可能とする。加えて、従来法で必要であった精密な温度や組成の制御を必要とせず、複雑な工程や特殊な器具も必要としない。これらのように簡便に短時間で効率的な合成ができ、均質かつ大量のGICを合成することが可能となるため工業的なGIC製造にも都合が良い。 In any of the above cases, the synthesis time required to obtain GIC can be anywhere from a few minutes to a few hours at most, which is significantly shorter than the conventional synthesis time of GIC, which takes several days to a few weeks. Furthermore, high temperatures that make it difficult to obtain a pure sample are not required, and as mentioned above, GIC can be synthesized by heating at room temperature to about 250°C. In addition, there is no need for precise temperature and composition control, as was necessary in conventional methods, and no complicated processes or special equipment are required. As a result, synthesis can be performed simply and efficiently in a short time, and it is possible to synthesize homogeneous and large quantities of GIC, making it convenient for industrial GIC production.
 上記した製造方法では、Naを使用するため、合成されるGICにはNaが混合された状態で残留する。Naを不要とする場合には、Naを除去する工程を追加し得る。例えば、加熱によりNaを溶融させて遠心分離を行う方法や、GICを含む粉体を加熱しつつペレットに成形して液体のNaを押し出す方法(詳細は後述する)、得られたペレットを加熱してNaを蒸発させる方法(詳細は後述する)などがある。 The above manufacturing method uses Na, so Na remains mixed in the synthesized GIC. If Na is not necessary, a step of removing Na can be added. For example, there is a method of melting the Na by heating and then centrifuging, a method of forming a powder containing GIC into a pellet while heating it and then pushing out the liquid Na (details will be described later), and a method of heating the resulting pellet to evaporate the Na (details will be described later).
 以降、実際にGICを合成した結果について説明する。 The following describes the results of actually synthesizing GIC.
[実施例1]
 図2に示すように、挿入材料としてLiを用いて黒鉛及びNaとの混合を行った。原料の配合をモル比でLi:C:Na=1:6:2とするように秤量して乳鉢に投入した。そして、乳棒で混錬するように混合を行った。すると、最初に黒鉛の色である黒色を主として呈していた原料は、反応を生じて徐々に金属光沢を帯びてきた。この金属光沢は、初めは銀色であり、混合を進めるに連れ、徐々にLiCの特色である黄色味を帯びてきた。
[Example 1]
As shown in Figure 2, Li was used as an intercalation material and mixed with graphite and Na. The raw materials were weighed out so that the molar ratio of Li:C:Na was 1:6:2, and were put into a mortar. Then, mixing was performed by kneading with a pestle. Then, the raw materials, which were initially mainly black, the color of graphite, reacted and gradually took on a metallic luster. This metallic luster was initially silver, and as mixing proceeded, it gradually took on a yellowish hue, which is a characteristic of LiC6 .
 図3に示すように、このLiCを合成するまでの各過程において、生成物についてのX線回折法(XRD)による分析を行った。すると、以下のように反応を進行させることが判った。つまり、混合初期においては、LiC、LiC12、NaCが生成し、未反応のC、Li、Naも併せて存在している。反応が進むと、未反応のC、Liが減少しかつNaCも減少し、LiC及LiC12が増加する。反応が進行すると、LiC12が減少に転じて、LiCが増加し、最終的にはLiCとNaの混合物となり反応が概ね完了した。なお、約0.1gの原料を用いた場合、反応が完了するまでに要した時間は約20分間であった。なお、同図において、2θは回折角度である。また、Cuα1を用いたX線源を示す。 As shown in FIG. 3, the products were analyzed by X-ray diffraction (XRD) in each process until the synthesis of LiC6 . It was found that the reaction proceeds as follows. That is, in the initial stage of mixing, LiC6 , LiC12 , and NaCy are produced, and unreacted C, Li, and Na are also present. As the reaction proceeds, unreacted C and Li decrease, NaCy also decreases, and LiC6 and LiC12 increase. As the reaction proceeds, LiC12 starts to decrease, LiC6 increases, and finally the mixture becomes LiC6 and Na, and the reaction is almost completed. When about 0.1 g of raw material was used, the time required for the reaction to be completed was about 20 minutes. In the figure, 2θ is the diffraction angle. Also, an X-ray source using Cuα1 is shown.
 このように、挿入材料であるLiを黒鉛に挿入させる反応において、Naは反応を加速させる触媒の如く機能しているものと考えられる。本実施例においては、従来の製造方法と比較して、GICの製造に必要とされる時間が非常に短くなっている。その理由として、NaとCの反応により生じるNaCが触媒反応における反応中間体として働き、黒鉛の層間への挿入材料の挿入のための活性化エネルギーを低下させていることが考えられる。また、例えば、KをNaの代わりに用いてLiを混合してみてもKCを生じるのみで、Liを挿入材料とするGIC(Li-GIC)を合成できなかった。このことから、Naが特異に働いていると言える。Naは黒鉛との反応でGICを生成しやすいため、混合によりまずNa-GIC(NaC)を生じるが、他のGICに比べて不安定であるため、周囲にLiや他の挿入材料が存在する場合、それらの元素と入れ替わってより安定なLiCなどのGICを生成するものと考えられる。 Thus, in the reaction in which the intercalation material Li is intercalated into graphite, Na is thought to function like a catalyst that accelerates the reaction. In this embodiment, the time required to manufacture GIC is very short compared to conventional manufacturing methods. The reason for this is thought to be that NaC y produced by the reaction of Na and C acts as a reaction intermediate in the catalytic reaction, lowering the activation energy for the intercalation of the intercalation material between the layers of graphite. In addition, for example, even if K is used instead of Na and Li is mixed, only KC 6 is produced, and GIC (Li-GIC) in which Li is the intercalation material could not be synthesized. From this, it can be said that Na works uniquely. Since Na easily produces GIC by reacting with graphite, Na-GIC (NaC y ) is first produced by mixing, but since Na is unstable compared to other GICs, it is thought that when Li or other intercalation materials are present in the vicinity, it replaces those elements to produce more stable GIC such as LiC 6 .
 また、このようなNaの機能を鑑みるに、原料として用いるNaの量は少なくても時間をかけることで同様にGICを合成できるものと推察される。他方、Naの量を増やすと、ある程度まではGICの合成効率を上昇させ得るが、その効果は飽和するものと考えられる。Naを取り除くことも考慮すると、バランスの良いNaの量を選択することも肝要であると言える。 In addition, in light of these functions of Na, it is surmised that even if a small amount of Na is used as a raw material, it is possible to synthesize GIC over a period of time. On the other hand, increasing the amount of Na can increase the efficiency of GIC synthesis to a certain extent, but this effect is thought to saturate. Taking into account the need to remove Na, it is also important to select a well-balanced amount of Na.
 また、図4に示すように、原料の配合を変えて合成したLi-GICを含む試料について、X線回折法(XRD)による成分分析を行った。ここでは、原料を約0.1gとして、約20分間の混合を行っている。その結果、原料の配合をモル比でLi:C:Na=1:6:1とした場合(同図下段)においてGICとしてLiCを生成し、この比を1:12:2とした場合(同図上段)においてGICとしてLiC12を生成した。LiCはステージ1の構造を有し、LiC12はステージ2の構造を有する。このように、挿入材料と黒鉛との量を得ようとする構造の元素比率となるように配合することで、ステージを操作することが可能である。ここでは、Li-GICにおいて、原料の配合によってステージ1及びステージ2の構造を制御できることを示した。 In addition, as shown in FIG. 4, a component analysis was performed by X-ray diffraction (XRD) on a sample containing Li-GIC synthesized by changing the composition of the raw materials. Here, about 0.1 g of raw materials were mixed for about 20 minutes. As a result, when the raw materials were mixed in a molar ratio of Li:C:Na=1:6:1 (lower part of the figure), LiC 6 was generated as GIC, and when this ratio was 1:12:2 (upper part of the figure), LiC 12 was generated as GIC. LiC 6 has a stage 1 structure, and LiC 12 has a stage 2 structure. In this way, it is possible to manipulate the stage by mixing the amount of the intercalation material and graphite so that it becomes the element ratio of the structure to be obtained. Here, it was shown that in Li-GIC, the stage 1 and stage 2 structures can be controlled by the composition of the raw materials.
 なお、図5に示すように、ステージnの構造とは、黒鉛11のグラフェン21による層間のうち、挿入材料13の挿入される層間同士の間にグラフェン21の層がn層配置される構造のことをいう(同図(a)参照)。例えば、ステージ1の構造は、全てのグラフェン21の層間に挿入材料13が挿入された結果、グラフェン21の挿入された層間と層間との間にグラフェン21の層を1層配置した構造となる(同図(b)参照)。また、ステージ2の構造は、挿入材料13の挿入される層間同士の間にグラフェン21の層を2層配置させた構造となる(同図(c)参照)。ステージ3では挿入される層間同士の間にグラフェン21の層を3層配置させる構造となる(同図(d)参照)。 5, the structure of stage n refers to a structure in which n layers of graphene 21 are arranged between the layers of graphene 21 of graphite 11 into which the intercalation material 13 is inserted (see FIG. 5(a)). For example, the structure of stage 1 is a structure in which, as a result of the intercalation material 13 being inserted between all the graphene 21 layers, one layer of graphene 21 is arranged between the intercalation layers of graphene 21 (see FIG. 5(b)). The structure of stage 2 is a structure in which two layers of graphene 21 are arranged between the intercalation layers into which the intercalation material 13 is inserted (see FIG. 5(c)). Stage 3 is a structure in which three layers of graphene 21 are arranged between the intercalation layers (see FIG. 5(d)).
[実施例2]
 図6に示すように、K-GICについて、ステージの操作ができるか確認した。ここでは、K:C:Na=1:x:x/6となるように配合した約0.1gの原料を、上記と同様に、室温で約20分間混合してK-GICを合成した。x=8のときにKC(ステージ1)、x=24のときにKC24(ステージ2)、x=36のときにKC36(ステージ3)、x=48のときにKC48(ステージ4)のK-GICを得られることが確認された。つまり、K-GICにおいても、原料の配合によってステージ1乃至ステージ4の構造を制御できることが示された。
[Example 2]
As shown in FIG. 6, it was confirmed whether the stages of K-GIC could be manipulated. Here, about 0.1 g of raw materials blended to give K:C:Na=1:x:x/6 were mixed at room temperature for about 20 minutes in the same manner as above to synthesize K-GIC. It was confirmed that K-GIC of KC 8 (stage 1) could be obtained when x=8, KC 24 (stage 2) when x=24, KC 36 (stage 3) when x=36, and KC 48 (stage 4) when x=48 could be obtained. In other words, it was shown that the structure of stages 1 to 4 can be controlled in K-GIC by blending the raw materials.
[実施例3]
 次に、原料の投入順序を変更した場合について確認を行った。
[Example 3]
Next, the case where the order of feeding ingredients was changed was examined.
 図7(a)に示すように、予めC:Na=3:1となるよう秤量した原料を乳鉢で混合したところ、Na-GIC(NaC)とNaの混合物を得た。そして、同図(b)に示すように、Na-GICとNaの混合物にさらにLiを追加してLi:C:Na=1:6:2となるようにして混合したところ、LiCが得られた。また、同図(c)に示すように、Na-GICとNaの混合物にさらにKを追加して、K:C:Na=1:8:2.67となるようにして混合したところ、KCが得られた。このように、Na-GICを予め生成しておいて挿入材料を後から追加しても、各挿入材料によるGICを合成することができた。これは、上記したように、Na-GICが触媒反応の中間反応体となり、より安定なLi-GICやK-GICを生成させるという反応過程を示すものである。 As shown in FIG. 7(a), when the raw materials previously weighed so that C:Na=3:1 were mixed in a mortar, a mixture of Na-GIC (NaC y ) and Na was obtained. Then, as shown in FIG. 7(b), Li was further added to the mixture of Na-GIC and Na to make Li:C:Na=1:6:2, and LiC 6 was obtained. Also, as shown in FIG. 7(c), when K was further added to the mixture of Na-GIC and Na to make K:C:Na=1:8:2.67, KC 8 was obtained. In this way, even if Na-GIC was generated in advance and the insertion material was added later, GIC could be synthesized from each insertion material. This shows the reaction process in which Na-GIC becomes an intermediate reactant in the catalytic reaction, and more stable Li-GIC and K-GIC are generated, as described above.
 なお、上記にて予め生成されたNa-GIC、すなわちNaCであるが、yの値を見積もるため、原料であるCとNaとの混合比C:Na=z:1のzの値を変えて生成物を調査した。 In addition, in order to estimate the value of y for the previously generated Na-GIC, i.e., NaCy , the product was investigated by changing the value of z in the mixture ratio of the raw materials C and Na, C:Na=z:1.
 図8に示すように、得られた生成物のXRDパターンのうち、20≦2θ≦40の範囲を拡大し重ねたところ、z=32ではNaCのピークが見られず、z=14~16でようやくNaCのピークが現れはじめ、z=12でほぼNaCのピークが主要となった。z=10では、Naのピークのみが大きくなることから、y=z=12となる比率程度までは、Naは、回折ピークとしては観測されない形態で黒鉛と反応していると考えられる。NaCは、ハイステージ(n=6~8でありy=48~64である)のGICが安定であるとされることを考えると、Naは黒鉛の層間に挿入される以外に、黒鉛表面に吸着されているものも存在すると考えられる。なお、NaCのピークは、Cのピークに比べて幅を広くしていることから、ステージの異なるNaCが混在しているものと考えられる。 As shown in FIG. 8, when the XRD patterns of the obtained product were enlarged and overlapped in the range of 20≦2θ≦40, no NaC y peak was observed at z=32, and finally began to appear at z=14-16, and at z=12, the NaC y peak was predominant. At z=10, only the Na peak became large, so it is considered that Na reacts with graphite in a form that is not observed as a diffraction peak up to the ratio of y=z=12. Considering that high-stage GIC (n=6-8 and y=48-64) of NaC y is considered to be stable, it is considered that Na is not only inserted between the graphite layers, but also adsorbed on the graphite surface. The NaC y peak is wider than the C peak, so it is considered that NaC y of different stages is mixed.
 [実施例4]
 挿入材料としてアルカリ土類金属(AE)、ここではCa、Sr、Baを選択した場合について、AE:C:Na=1:6:2となるよう秤量した原料を混合し、ペレット状に成型し、石英管内に真空封入した。さらに、ペレットの入った石英管を250℃で2時間加熱した。
[Example 4]
In the case where alkaline earth metals (AE), Ca, Sr, and Ba were selected as the insertion material, the raw materials were weighed so that AE:C:Na=1:6:2, mixed, molded into pellets, and vacuum sealed in a quartz tube. Furthermore, the quartz tube containing the pellets was heated at 250° C. for 2 hours.
 図9には、上記したようにして得られた各生成物のXRDパターンを示した。これから判るように、250℃での加熱によってそれぞれCaC、SrC、BaCの各化合物を生成していた。なお、CaCを生成した試料において、未反応のCaとNaCが存在するが、ペレットの破砕・混合と熱処理を数回繰り返すことでCaとNaCのほぼ全量を反応させることもできた。 Figure 9 shows the XRD patterns of the products obtained as described above. As can be seen from these, the compounds CaC6 , SrC6 , and BaC6 were produced by heating at 250°C. In the sample that produced CaC6 , unreacted Ca and NaCy were present, but by repeating the pellet crushing, mixing, and heat treatment several times, it was possible to react almost all of the Ca and NaCy .
 なお、図10に示すように、上記のようにして得られたCaCの磁化率の温度依存性を測定した。一般に、CaCは、11.5KというGICの中でも最も超伝導臨界温度の高い超伝導体として知られる。上記方法で得られたCaCは、同図から明らかなように、11.5K付近で超伝導転移を示している。つまり、このCaCは、これまで報告されてきたCaCと同等の物質であることが確認された。 As shown in FIG. 10, the temperature dependence of the magnetic susceptibility of CaC6 obtained as described above was measured. In general, CaC6 is known as a superconductor with the highest superconducting critical temperature of 11.5K among GICs. As is clear from the figure, CaC6 obtained by the above method shows a superconducting transition at about 11.5K. In other words, it was confirmed that this CaC6 is a material equivalent to the CaC6 previously reported.
[Naの除去について]
 上記した通り、本実施例による方法でGICを合成した場合、生成物にNaが含まれる。そこで、Naを除去する工程について、以下、2つの例を説明する。
[Removal of Na]
As described above, when GIC is synthesized by the method according to this embodiment, the product contains Na. Therefore, two examples of the process for removing Na will be described below.
 図11を参照し、GICを合成して得られたGIC及びNaを含む生成物25をペレットに成形する際に、ペレットからNaを流出させる方法について説明する。詳細には、生成物25をダイス31内に保持し、圧縮棒32とともにホットプレートなどでNaの融点(98℃)以上の温度まで加熱する。加熱温度は例えば200℃とし得る。次いで、これらについてスペーサリング34を載せたプレス台33の上に載置し、圧縮棒32で生成物25を圧縮する。すると、Naの溶融物26がダイス31、圧縮棒32の隙間からスペーサリング34の内側や、ダイス31の上端側へ流出し、生成物25からNaを除去することができる。このような工程を追加することで、生成物25に残留したNaの約9割を除去したGICの焼結ペレットを得ることができる。 Referring to FIG. 11, a method of causing Na to flow out of a pellet when forming a product 25 containing GIC and Na obtained by synthesizing GIC into a pellet will be described. In detail, the product 25 is held in a die 31 and heated together with a compression rod 32 to a temperature equal to or higher than the melting point of Na (98°C) using a hot plate or the like. The heating temperature can be, for example, 200°C. Next, these are placed on a press table 33 on which a spacer ring 34 is placed, and the product 25 is compressed by the compression rod 32. Then, the molten Na 26 flows out from the gap between the die 31 and the compression rod 32 to the inside of the spacer ring 34 and the upper end side of the die 31, and Na can be removed from the product 25. By adding such a process, a sintered pellet of GIC can be obtained from which about 90% of the Na remaining in the product 25 has been removed.
 図12に示すように、加熱によってNaを蒸発させ、除去することもできる。詳細には、石英管40の一端の加熱部41の内部に生成物25を載置するように真空封入し、Naの蒸発する温度、例えば250℃で加熱する。このとき、他端側を室温に保つことで、蒸発したNaが他端側の凝縮部42で凝縮する。これによって、加熱部41に載置した生成物25からNaを除去できる。このような方法によれば、生成物25に残留したNaのほとんどを除去することができる。 As shown in FIG. 12, Na can also be evaporated and removed by heating. In detail, the product 25 is placed inside the heating section 41 at one end of the quartz tube 40, which is vacuum sealed and heated to a temperature at which Na evaporates, for example 250°C. At this time, the other end is kept at room temperature, and the evaporated Na condenses in the condensation section 42 at the other end. This makes it possible to remove Na from the product 25 placed on the heating section 41. With this method, it is possible to remove most of the Na remaining in the product 25.
 [実施例5]
 挿入材料としてランタノイド(Ln)、ここではSm、Eu、Ybを選択した場合について、Ln:C:Na=1:6:2となるよう秤量した原料を混合し、ペレット状に成型し、ここではステンレス製の管内に封入した。さらに、実施例4と同様に、ペレットの入った管を加熱するが、アルカリ土類金属に比べ反応しにくいため、275℃で6時間加熱し、さらに、純良性を高めるために試料をもう1度混合して、さらに275℃で6時間加熱した。
[Example 5]
In the case where lanthanoids (Ln), Sm, Eu, and Yb were selected as the intercalation material, the raw materials were weighed so that Ln:C:Na=1:6:2, mixed, molded into pellets, and sealed in a stainless steel tube. In addition, the tube containing the pellets was heated in the same manner as in Example 4, but since it is less reactive than alkaline earth metals, it was heated at 275°C for 6 hours, and further, in order to increase the purity, the sample was mixed once more and heated at 275°C for another 6 hours.
 図13には、得られた各生成物から上記した方法でNaを除去した後のXRDパターンを示した。ここでも、それぞれSmC、EuC、YbCの各化合物を生成していた。 13 shows the XRD patterns after removing Na from each of the products obtained by the above-mentioned method. Here, too, the compounds SmC6 , EuC6 , and YbC6 were produced, respectively.
 以上のように、Naの存在下で黒鉛及び挿入材料を反応させる製造方法によれば、任意の挿入材料を黒鉛の層間に簡易に挿入してGICを合成することができる。 As described above, by using a manufacturing method in which graphite and an intercalation material are reacted in the presence of Na, any intercalation material can be easily inserted between the graphite layers to synthesize a GIC.
 以上、本発明による代表的な実施例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 The above describes representative embodiments of the present invention, but the present invention is not necessarily limited to these, and a person skilled in the art will be able to find various alternative embodiments and modifications without departing from the spirit of the present invention or the scope of the appended claims.
 10 乳鉢
 11 黒鉛
 12 ナトリウム
 13 挿入材料
10 Mortar 11 Graphite 12 Sodium 13 Insertion material

Claims (6)

  1.  Naの存在下で黒鉛に挿入材料を反応させることを特徴とする黒鉛層間化合物の製造方法。 A method for producing graphite intercalation compounds, characterized by reacting an intercalation material with graphite in the presence of Na.
  2.  前記黒鉛は粉体であることを特徴とする請求項1記載の黒鉛層間化合物の製造方法。 The method for producing a graphite intercalation compound according to claim 1, characterized in that the graphite is in powder form.
  3.  前記挿入材料はアルカリ金属であって、前記黒鉛と混合して反応させることを特徴とする請求項1又は2に記載の黒鉛層間化合物の製造方法。 The method for producing a graphite intercalation compound according to claim 1 or 2, characterized in that the intercalation material is an alkali metal, which is mixed with and reacted with the graphite.
  4.  前記挿入材料はアルカリ土類金属及びランタノイドのいずれかからなり、前記黒鉛と混合し加熱して反応させることを特徴とする請求項2記載の黒鉛層間化合物の製造方法。 The method for producing a graphite intercalation compound according to claim 2, characterized in that the intercalation material is made of either an alkaline earth metal or a lanthanide, and is mixed with the graphite and heated to cause a reaction.
  5.  250℃以下の所定温度に加熱して反応させることを特徴とする請求項4記載の黒鉛層間化合物の製造方法。 The method for producing a graphite intercalation compound according to claim 4, characterized in that the reaction is carried out by heating to a predetermined temperature of 250°C or less.
  6.  混合後、Naを除去する工程を含むことを特徴とする請求項1記載の黒鉛層間化合物の製造方法。
     
    2. The method for producing a graphite intercalation compound according to claim 1, further comprising the step of removing Na after the mixing.
PCT/JP2023/043163 2022-12-08 2023-12-01 Method for producing graphite intercalation compound WO2024122469A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-196143 2022-12-08
JP2022196143 2022-12-08

Publications (1)

Publication Number Publication Date
WO2024122469A1 true WO2024122469A1 (en) 2024-06-13

Family

ID=91379423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043163 WO2024122469A1 (en) 2022-12-08 2023-12-01 Method for producing graphite intercalation compound

Country Status (1)

Country Link
WO (1) WO2024122469A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507319A (en) * 1995-05-05 1999-06-29 エチエンヌ、ラクロワ、トゥー、ザルティフィス、ソシエテ、アノニム Insertion compounds, their preparation, and their use, especially in pyrotechnics
JP2000302423A (en) * 1999-04-15 2000-10-31 Sanyo Electric Co Ltd Material which can store and release hydrogen
JP2020035632A (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Positive electrode active material for alkaline earth metal secondary battery and alkaline earth metal secondary battery using the same
CN114105136A (en) * 2021-09-10 2022-03-01 广东工业大学 A kind of amorphous two-dimensional nanomaterial and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507319A (en) * 1995-05-05 1999-06-29 エチエンヌ、ラクロワ、トゥー、ザルティフィス、ソシエテ、アノニム Insertion compounds, their preparation, and their use, especially in pyrotechnics
JP2000302423A (en) * 1999-04-15 2000-10-31 Sanyo Electric Co Ltd Material which can store and release hydrogen
JP2020035632A (en) * 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Positive electrode active material for alkaline earth metal secondary battery and alkaline earth metal secondary battery using the same
CN114105136A (en) * 2021-09-10 2022-03-01 广东工业大学 A kind of amorphous two-dimensional nanomaterial and preparation method thereof

Similar Documents

Publication Publication Date Title
Sinha et al. Carbothermal route for preparation of boron carbide powder from boric acid–citric acid gel precursor
AU2007215394B2 (en) Crystalline ternary ceramic precursors
JP4259806B2 (en) Production method of superconducting wire and strip
Orthner et al. Reaction sintering of titanium carbide and titanium silicide prepared by high-energy milling
Zhai et al. Abnormal phase transition in BiNbO4 powders prepared by a citrate method
Avcioglu et al. Effect of elemental nano boron on the transformation and morphology of boron carbide (B4C) powders synthesized from polymeric precursors
Li et al. Preparation and characterization of Ti3SiC2 powder
CN113149659A (en) Nitrogen-containing medium-entropy or high-entropy MAX phase material and preparation method and application thereof
Niu et al. Salt-assisted combustion synthesis of β-SiAlON fine powders
Park et al. Effect of processing route on the crystal structure and physical properties of bixbyite high-entropy oxides
CN114180969A (en) Preparation methods and uses of nitrogen-containing new MAX phase materials and two-dimensional materials
WO2024122469A1 (en) Method for producing graphite intercalation compound
CN100404712C (en) A method for preparing anti-perovskite manganese-based nitride
WO2007147219A1 (en) Superconducting materials and methods of synthesis
JP3951005B2 (en) Rare earth borocarbide and its production method
JP2004075467A (en) Boron suboxide powder and method for producing sintered compact thereof
JP6221752B2 (en) Ca deficient calcium silicide powder and method for producing the same
US20100143230A1 (en) Method for preparation of new superhard b-c-n material and material made therefrom
RU2356842C1 (en) Method of obtaining sodium ferrate (vi)
JP2001220130A (en) Rare earth polyborides containing carbon and nitrogen and method for producing the same
CN1225308C (en) High temperature and high pressure synthesis method of cubic phase boron carbon nitrogen crystal under the action of catalyst
Ananta Effects of starting precursor and calcination condition on phase formation characteristics of Mg4Nb2O9 powders
JPS63239104A (en) Method for producing β-phase containing silicon nitride fine powder
Kulinich et al. On some alkali-and alkaline-earth-metal boron nitrides, unsaturated with boron
Emadi et al. INFLUENCES OF FLUORINE AND CHLORINE IONS ON THE FORMATION OF NANOSTRUCTURE FORSTERITE DURING MECHANICAL ACTIVATION OF TALC AND PERICLASE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23900584

Country of ref document: EP

Kind code of ref document: A1