[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024122071A1 - Optical device and optical device positioning method - Google Patents

Optical device and optical device positioning method Download PDF

Info

Publication number
WO2024122071A1
WO2024122071A1 PCT/JP2022/045575 JP2022045575W WO2024122071A1 WO 2024122071 A1 WO2024122071 A1 WO 2024122071A1 JP 2022045575 W JP2022045575 W JP 2022045575W WO 2024122071 A1 WO2024122071 A1 WO 2024122071A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
optical
alignment
optical waveguide
output optical
Prior art date
Application number
PCT/JP2022/045575
Other languages
French (fr)
Japanese (ja)
Inventor
優生 倉田
義弘 小木曽
健太 杉浦
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/045575 priority Critical patent/WO2024122071A1/en
Priority to JP2024562556A priority patent/JPWO2024122071A1/ja
Publication of WO2024122071A1 publication Critical patent/WO2024122071A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means

Definitions

  • This disclosure relates to an optical device in which an optical functional element having an optical waveguide and the optical functional element are flip-chip mounted on a substrate.
  • optical circuits include quartz-based planar lightwave circuits (PLCs) and silicon photonics-based optical circuits (System in Package: SiPs).
  • PLCs are waveguide-type optical devices that have low loss, high reliability, and high design freedom
  • PLCs that integrate functions such as multiplexers/demultiplexers, branchers, and couplers are installed in transmission equipment at the optical communication transmission end.
  • SiPs are inferior to PLCs in terms of low loss, they have high design freedom and are optical devices that can realize even smaller optical circuits due to their small optical waveguide bending radius.
  • optical devices also include photodiodes (PDs) that convert optical and electrical signals, laser diodes (LDs), and optical functional elements such as optical modulators.
  • PDs photodiodes
  • LDs laser diodes
  • optical functional elements such as optical modulators.
  • Non-Patent Document 1 To further expand communication capacity, there is a demand for high-performance optoelectronic integrated devices that integrate optical waveguides such as PLCs that perform optical signal processing with optical devices such as PDs. These optical devices are made of InP-based materials and perform high-speed photoelectric conversion. PLCs and SiPs are promising platforms for such integrated optical devices, and integrated optical devices that hybridly integrate an InP optical modulator chip and a PLC chip have been proposed. Such integrated optical devices are described, for example, in Non-Patent Document 1.
  • Non-Patent Document 1 a method is adopted in which a phase modulator is integrated on an InP chip, a polarization rotator and a polarization beam combiner are integrated on a PLC, and the two chips are optically coupled via a lens.
  • the method of using a PLC as a polarization Mux chip requires a smaller mounting area than the conventional method of constructing polarization synthesis using a spatial optical system, and optical axis alignment can be simplified by integrating it into an optical circuit.
  • This form of optical coupling by combining an optical circuit element such as PLC and InP has advantages in terms of device miniaturization and freedom of optical circuit design.
  • Alignment is performed by adjusting the end face of the glass fiber block to which the fiber is fixed and the end face of the PLC so that they are parallel, and then aligning the optical output position from the fiber with the input optical waveguide of the PLC while inputting light into the fiber, and adjusting the position so that optimal optical coupling is obtained while monitoring the output from the output optical waveguide connected to the input optical waveguide.
  • a UV-curing adhesive is filled in the adjusted position, and the adhesive is hardened in a short time by irradiating it with UV light, and the two are bonded together.
  • butt-connecting method can be used to integrate optical functional elements made of Si or InP using the optical circuit of the PLC as a platform, or to integrate optical functional elements made of InP using the SiP as an optical circuit platform, it will be possible to provide a smaller integrated optical device.
  • a configuration in which the IC and optical functional element are mounted on a substrate using a flip-chip technique allows the IC and optical functional element to be connected over a short distance, and is suitable for transmitting signals with low loss.
  • a small, high-speed optical device can be realized by using a SiP that integrates an optical circuit that controls polarization as an optical circuit element and connecting it to a flip-chip phase modulator using a dissimilar material.
  • optical waveguides of the optical functional element in order to align the input/output optical waveguides of the optical functional element and the input/output optical waveguides of the optical circuit element, it is necessary to pre-align them to a rough position where the light intensity of both can be confirmed.
  • the optical waveguide surface is on the wiring board side, so the optical waveguide is not visible and cannot be observed from above, making it difficult to pre-align the optical waveguides.
  • the present disclosure has been made in consideration of the above points, and aims to provide an optical device that is applicable to the integration of an optical functional element having an optical waveguide input/output structure and an optical circuit element having an optical waveguide input/output structure for inputting/outputting optical signals between the optical circuit element, and that realizes end-face optical coupling by a structure that enables simple alignment when inputting/outputting optical signals between the optical element and the optical circuit by end-face connection.
  • an optical device includes a wiring board, and an optical functional element having an input/output optical waveguide for an optical signal and flip-chip mounted on the wiring board, wherein an end face of the input/output optical waveguide in the optical functional element is butt-coupled to an end face of another input/output optical waveguide, and the wiring board includes an alignment through hole penetrating the wiring board, Whether the position of the end face of the input/output optical waveguide coincides with the position of the end face of the other input/output optical waveguide can be visually confirmed via the alignment through hole.
  • the method for aligning an optical device includes a wiring board and an optical functional element having an input/output optical waveguide for an optical signal and flip-chip mounted on the wiring board, an end face of the input/output optical waveguide in the optical functional element is butt-coupled to an end face of another input/output optical waveguide, the wiring board includes a through-hole for alignment that penetrates the wiring board, and the match or mismatch between the position of the end face of the input/output optical waveguide and the position of the end face of the other input/output optical waveguide can be visually confirmed through the through-hole for alignment, and after adjusting the X-axis and Y-axis of the input/output optical waveguide and the other input/output optical waveguide while visually confirming the end face of the input/output optical waveguide and the end face of the other input/output optical waveguide through the through-hole for alignment, a light intensity profile transmitted through the input/output optical waveguide and the other input/output optical waveguide
  • the above embodiment is applicable to the integration of an optical functional element having an optical waveguide input/output structure and an optical circuit element having an optical waveguide input/output structure for inputting/outputting optical signals between the optical circuit element, and can provide an optical device that realizes end-face optical coupling by a structure that enables simple alignment when inputting/outputting optical signals between the optical element and the optical circuit by end-face connection.
  • FIG. 1 is a diagram showing a comparative example of the present disclosure.
  • FIG. 13 is a diagram showing another comparative example of the present disclosure.
  • 13A and 13B are diagrams showing another comparative example of the present disclosure.
  • 13A and 13B are diagrams showing another comparative example of the present disclosure.
  • 1A, 1B, and 1C are plan views illustrating an optical device according to a first embodiment of the present disclosure.
  • 13A and 13B are plan views illustrating an optical device according to a second embodiment of the present disclosure.
  • 13A and 13B are plan views illustrating an optical device according to a second embodiment of the present disclosure.
  • FIG. 13 is a diagram showing an output light intensity profile obtained after performing pre-alignment according to the present embodiment.
  • FIG. 13 is a diagram showing an output light intensity profile of a comparative example.
  • FIG. 1 is a diagram showing a comparative example of the present disclosure, and shows a state in which an optical functional element 11 and an optical circuit element 12 are connected with different materials.
  • the optical functional element 11 shown in FIG. 1 is a phase modulation chip, which is made of InP integrating Mach-Zehnder interferometers 112 and 113 as phase modulators, and includes an optical waveguide 111 that connects the Mach-Zehnder interferometers 112 and 113.
  • the optical circuit element 12 is a polarization control chip, which integrates a polarization rotor 122, a polarization beam combiner (Polarization Beam Combiner: PBC) 123, and an optical waveguide 121.
  • PBC Polarization Beam Combiner
  • the surface on which the Mach-Zehnder interferometers 112 and 113 shown in FIG. 2 are formed is referred to as the front surface of the optical functional element 11, and the surface on which the polarization rotor 122 and the polarization beam combiner 123 are mounted is referred to as the front surface of the optical circuit element 12.
  • the surface opposite to the front surface is referred to as the back surface.
  • TE polarization transverse electric field polarization
  • TM polarization transverse magnetic field polarization
  • Fig. 2 is a plan view showing a known structure in which a driver IC 20, optical functional element 11, and optical circuit element 12 are integrated on a substrate 10. In the structure shown in Fig.
  • the optical functional element 11 and the driver IC 20 are mounted face-up and connected by wire bonding, but the wire 21 needs to be several hundred ⁇ m long, and it is difficult to design a signal line suitable for high frequencies, which causes a problem of large losses in the band of 50 GHz or more.
  • the configuration shown in FIG. 3(a) can connect the optical functional element 11 to the wiring board 30 over a short distance. Furthermore, the width and pitch of the wiring 31 on the wiring board 30 can be designed to suit high frequencies, making it suitable for transmitting signals with low loss.
  • the optical functional element 11 is a phase modulator, and is mounted on the wiring board 30 by flip-chip mounting together with the driver IC 20, making it possible to connect the two with ideal electrical wiring. Furthermore, the configuration shown in FIG. 3(a) can realize a small, high-speed optical device by integrating optical circuit elements together.
  • FIG. 4(a) and 4(b) are diagrams for explaining the connection of the optical circuit element 12 to the configuration shown in FIG. 3(a).
  • FIG. 4(a) is a plan view of the configuration shown in FIG. 3(a) and the optical circuit element 12 as viewed from the front side of the wiring board 30.
  • FIG. 3(b) is a plan view of the configuration shown in FIG. 3(a) as viewed from the back side of the wiring board 30.
  • the surface on which the input/output optical waveguide is formed faces the front side of the wiring board 30, and the input/output optical waveguide cannot be seen from the top.
  • the alignment shown in FIG. 4(a) and FIG. 4(b) makes it difficult to pre-align the input/output optical waveguides with each other because the input/output optical waveguides cannot be observed from the top.
  • alignment marks indicating the connection positions on the back surface of the substrate for the optical functional element 11 and the optical circuit element 12, and perform pre-alignment without checking the positions of the input and output optical waveguides.
  • forming alignment marks on the back surface of the substrate requires the addition of an additional process to the processing steps on the surface of the substrate, which makes the manufacturing process more complicated and increases costs.
  • the input/output optical waveguide of the optical circuit element 12 it is possible to design the input/output optical waveguide of the optical circuit element 12 so that it is located outside the wiring board 30.
  • the input/output optical waveguide is not hidden by the wiring board 30, and pre-alignment can be performed while checking the position of the input/output optical waveguide.
  • the chip of the optical circuit element 12 cannot be placed in the center of the wiring board 30, and the degree of freedom in design is reduced. This becomes a problem when placing chips at high density.
  • a flip chip when hybrid-integrating an optical functional element such as an optical modulator with an optical circuit element such as a PLC or SiP that integrates a polarization control circuit, a flip chip is suitable for inputting and outputting high-speed signals.
  • the challenge is to simply butt-couple the input and output optical waveguides.
  • This disclosure has been made with a focus on this point, and aims to provide an optical device that butt-couples, in a simple manner, the input and output optical waveguides of an optical functional element and an optical circuit element that are flip-chip mounted on a wiring board, thereby achieving highly efficient optical coupling.
  • the optical device according to this embodiment includes a wiring board 53, an optical functional element 51, an optical circuit element 52, and a driver IC 55.
  • the optical functional element 51 and the driver IC 55 are connected by a wire 56.
  • the optical functional element 51 may have a configuration similar to that of the phase modulation chip shown in FIG. 1, for example, and includes an input/output optical waveguide for an optical signal whose end face is located at the end of the optical circuit element 51.
  • the optical circuit element 52 may be a polarization control chip similar to that of the optical circuit element 12 shown in FIG.
  • FIG. 5(a) shows the back side of the surface on which the input/output optical waveguides of the optical functional element 51, the optical circuit element 52, and the IC driver 55 are formed, and shows the front side on which the wiring of the wiring board 53 is formed.
  • FIG. 5(b) shows the state in which the configuration shown in FIG. 5(a) is rotated 180 degrees toward the front about the Z axis.
  • FIG. 5(b) shows the back side of the wiring board 53, and the optical functional element 51, the optical circuit element 52, and the driver IC 55 arranged below the wiring board 53.
  • the optical functional element 51 and the optical circuit element 52 are flip-chip mounted so that their front surfaces are in contact with the wiring board 53.
  • the wiring board 53 has three alignment through holes 531 penetrating the wiring board 53.
  • FIG. 5(c) is an enlarged view of the alignment through hole 531 shown in FIG. 5(b).
  • the end face of the input/output optical waveguide in the optical functional element 51 is butted against and coupled to the end face of the other input/output optical waveguide.
  • the other input/output optical waveguide is the input/output optical waveguide of the optical circuit element 52.
  • the butted portion between the end face of the input/output optical waveguide of the optical functional element 51 and the end face of the input/output optical waveguide of the optical circuit element 52 is visible through the through hole for core alignment 531.
  • the "butted portion" in the first and second embodiments refers to the position where the end faces come into contact before being fixed with an adhesive or the like.
  • the butted portion C of the input/output optical waveguide 511 provided on the optical functional element 51 side and the input/output optical waveguide 521 provided on the optical circuit element 52 side can be observed from the through hole for core alignment 531.
  • “visible” here means that the state can be seen visually from above the through hole for core alignment 531 or by a camera.
  • the optical device of the first embodiment can confirm and pre-align the input/output optical waveguide 511 of the optical functional element 11 and the input/output optical waveguide 521 of the optical circuit element 52 from the wiring board 53 side through the alignment through hole 531.
  • the surface on which the input/output optical waveguides of the optical functional element 51 are provided is covered by the wiring board 53.
  • the alignment through hole 531 is provided corresponding to the coupling position of the input/output optical waveguides 511 and 512, the positions of the input/output optical waveguides 511 and 512 can be confirmed, and pre-alignment can be performed in the same manner as with known input/output optical waveguides that are not flip-chip mounted.
  • the configuration of the first embodiment allows the input/output optical waveguide 511 of the optical functional element 51 and the input/output optical waveguide 521 of the optical circuit element 52 to be aligned in advance at positions that facilitate alignment. Therefore, according to the first embodiment, it is possible to initially align the optical functional element 51 to a position close to the position that will be aligned during alignment performed while inputting signal light and monitoring the output light.
  • the first embodiment allows for highly accurate alignment with a simple configuration and procedure, even for an optical functional element 11 flip-chip mounted on a wiring board 53.
  • an optical functional element is flip-chip mounted on a wiring board, an input/output optical waveguide is provided on the optical functional element, and an alignment through-hole is provided at a position on the wiring board corresponding to the position of the input/output optical waveguide.
  • flip-chip mounting makes it easy to easily check the positions of the input and output optical waveguides covered by the wiring board. This can be used to pre-align the optical waveguide positions to positions that are easy to align. Aligning the optical waveguides to be pre-aligned in close positions is desirable because it makes it possible to reduce the time required for fine adjustments during subsequent alignment while monitoring the optical output of the signal light. As a result, butt coupling to a flip-chip mounted optical functional element can be achieved with a simple procedure.
  • the cross-sectional structure of a PLC is formed by depositing a thin film of SiO 2 of about 20 ⁇ m as an undercladding, 3 ⁇ m to 10 ⁇ m as a core, and about 20 ⁇ m as an overcladding on a substrate of Si or SiO 2.
  • the first embodiment assumes a PLC formed on a Si substrate.
  • a few ⁇ m of SiO 2 forming an SOI layer as an undercladding, a few hundred nm of Si as a core, and a few ⁇ m of SiO 2 as an overcladding are deposited on a Si substrate.
  • an optical functional element using InP as a substrate has an InP substrate as an undercladding, a few hundred nm of a compound semiconductor as a core, InP as an overcladding, and SiN or SiO 2 as a passivation.
  • Metal patterns as electrodes are provided on the front and back surfaces.
  • the optical waveguide formed in the end surface region of the substrate is assumed to be an input/output optical waveguide for inputting and outputting optical signals.
  • the input/output optical waveguide is optically coupled to other input/output optical waveguides by the mode field at the end surface.
  • the wiring board is used to input and output electrical signals to and from the chip.
  • Such a wiring board may be a ceramic board made of ceramic material such as aluminum nitride or aluminum oxide, or an organic board based on epoxy or the like, on which a metal wiring pattern is provided and laminated. Conduction between each layer of the laminate is achieved by conductive vias provided by providing through holes in each board and coating or filling the surface with a conductive material.
  • the alignment through-hole is formed by providing a through-hole at a position on the wiring board where the part that serves as the marker for the optical functional element can be confirmed during pre-alignment for alignment.
  • a typical through-hole via is a conductive via filled with a conductive material that does not transmit light in order to electrically connect the front and back surfaces of the board.
  • the alignment through-hole of the first embodiment is preferably not filled with a conductive material or filled with a light-transmitting material in order to confirm the surface of the optical functional element.
  • the alignment through-hole is preferably located at the input/output optical waveguide position of the optical functional element.
  • the alignment through-hole may be formed in the process of forming the conductive via, and used as the alignment through-hole without being filled with a conductive material, simplifying the manufacturing process.
  • the first embodiment is devised to provide an alignment through hole in the wiring board at the position of the input/output optical waveguide of the optical functional element flip-chip mounted on the wiring board in an optical device in which optical functional elements and optical circuit elements are hybridly integrated. Therefore, in the first embodiment, the butt optical coupling with the optical functional element or optical fiber can be performed by confirming the optical waveguide position from the wiring board side, pre-aligning to a rough alignment position, and then transitioning to alignment by optical signal. Therefore, the first embodiment makes it possible to efficiently align the butt coupling, and makes it possible to provide an optical device achieved by simple butt optical coupling.
  • the first embodiment in order to obtain the above-mentioned effects, there is no need to provide a marker on the back surface of the optical functional element as a guide for alignment, nor is there any need to restrict the mounting position of the optical functional element in order to check the input/output optical waveguide.
  • the first embodiment is superior to the previously mentioned known techniques.
  • the second embodiment differs from the first embodiment in that alignment markers corresponding to both the optical functional element and the optical circuit element are provided, and alignment through holes are formed in the wiring board at positions corresponding to the alignment markers. In this configuration, the alignment markers can be observed from the alignment through holes.
  • FIGS. 6(a), 6(b), 7(a), and 7(b) are plan views for explaining the optical device of the second embodiment.
  • the optical device of the second embodiment includes a wiring board 63, an optical functional element 61, and an optical circuit element 62.
  • FIG. 6(a) is a diagram showing the state in which the optical functional element 61 and the optical circuit element 62 are mounted on the surface of the wiring board 63.
  • the optical functional element 61 and the optical circuit element 62 are flip-chip mounted on the wiring board 63, and their surfaces are in contact with the wiring board 63.
  • the optical circuit element 62 includes optical waveguides for inputting and outputting optical signals, and corresponding input/output optical waveguides for butt coupling.
  • FIG. 6(b) is a diagram showing the wiring board 63 as viewed from the back side.
  • FIG. 7(a) is a diagram showing the wiring board 63 and the optical functional element 61 and the optical circuit element 62 under the wiring board 63 as viewed from the back side of the wiring board 63.
  • Figure 7(b) is a view from the front of an optical device in which an optical functional element 61 and an optical circuit element 62 are butt-coupled.
  • the optical device shown in Figure 7(b) is a connection test device in the second embodiment, and has a configuration in which the phase modulation section, polarization rotator, and polarization beam combiner are removed from the optical functional element of the integrated optical modulation device (shown in Figure 1).
  • the optical circuit element 62 has an input optical waveguide 621a and an output optical waveguide 621c for the signal light, and corresponding input/output optical waveguides 621b and 621d for butt coupling.
  • the optical function element 61 has butt-coupled optical waveguides 611a and 611b that butt-couple with the butt-coupled input/output optical waveguides 621b and 621d.
  • the optical function element 61 and the optical circuit element 62 are flip-chip mounted on the wiring board 63 as shown in FIG. 6(a) and FIG. 7(a).
  • the wiring board 63 inputs and outputs electrical signals between the optical function element 61 and the optical circuit element 62.
  • the optical device of the second embodiment may be an optical modulation device in which an optical function element 61 and an optical circuit element 62 are coupled together.
  • the optical function element 61 is composed of a phase modulation optical waveguide that changes the phase of light by inputting an electrical signal from the wiring board 63 and an optical waveguide for butt coupling, and the input/output optical waveguides 611a and 611b are arranged on one end surface by a U-shaped optical waveguide arrangement.
  • the light input to the butt input/output optical waveguides 621b and 621d of the optical circuit element 62 is optically coupled to the side of the optical function element 61 through the butt coupling section, and then converted into an optical signal phase-modulated by the phase modulation optical waveguide, optically coupled to the optical circuit element 62 again through the butt coupling section, and output after polarization synthesis by the polarization rotator and the polarization beam combiner.
  • connection pads 613 for flip-chip mounting on the wiring board 63.
  • the surface of the wiring board 63 is provided with connection pads 633 that are electrically connected to the connection pads 613.
  • the optical functional element 61 and the optical circuit element 62 are electrically connected to the wiring board 63 via the connection pads 613, 633.
  • four alignment through holes 632 are formed, as in the first embodiment. As in the first embodiment, the alignment through holes 632 are through holes that penetrate the wiring board 63.
  • a SiP chip measuring 2.5 mm in length and 2.0 mm in width can be used as a platform for the optical circuit element 62.
  • the second embodiment uses a Si photonics chip in which a SiO2 underclad with a thickness of 3.0 ⁇ m, a Si core with a thickness of 0.22 ⁇ m and a width of 0.5 ⁇ m, and a SiO2 overclad with a thickness of 1.5 ⁇ m are formed on a Si substrate with a thickness of 0.625 mm.
  • the optical circuit element 62 inputs and outputs signal light from one long side, and connects the other long side to the optical function element 61.
  • the connection surface is polished for connection.
  • the optical waveguide structure from the input optical waveguide 621a to the butting input/output optical waveguide 621b and from the output optical waveguide 621c to the butting input/output optical waveguide 621d is S-shaped. Markers 625 are provided near the butting input/output optical waveguides 621b and 621d. The markers 625 serve as guides when the optical circuit element 62 is aligned with the optical function element 61.
  • the optical functional element 61 is an InP chip measuring 2.5 mm in length, 4.0 mm in width, and 0.25 mm in substrate thickness.
  • the InP chip has an InP substrate as the underclad, a compound semiconductor with a width of 2.0 ⁇ m and a thickness of 0.3 ⁇ m as the core, and an InP overclad with 2.0 ⁇ m of InP deposited on it.
  • Input/output optical waveguides 611a and 611b for butting are provided on the short side.
  • Markers 615 are provided near the input/output optical waveguides 611a and 611b for butting.
  • Marker 615 is paired with marker 625 of optical circuit element 62, and serves as a guide when aligning with optical circuit element 62. Markers 615 and 625 are collectively referred to as alignment markers 65.
  • the wiring board 63 is an aluminum nitride ceramic substrate measuring 4.0 mm in length, 8.0 mm in width, and 0.45 mm thick, on which connection pads 633 and alignment through holes 632 are formed.
  • the connection pads 633 are gold pads.
  • the alignment through holes 632 are through holes with a diameter of 150 ⁇ m that penetrate the substrate.
  • a gold bump approximately 20 ⁇ m in height is formed on the connection pad 633 of the wiring board 63 using the ball formation function of a wire bonder.
  • the flip-chip optical functional element 61 is mounted onto the wiring board 63 by connecting the connection pads 633 and 613 via the gold bumps by thermocompression bonding.
  • the alignment through holes 632 of the wiring board 63 are formed at positions corresponding to the alignment markers 65 or the butt portions of the butt input/output optical waveguides of the optical function element 61 and the optical circuit element 62. Therefore, as shown in FIG. 6(a), the alignment markers 65 can be seen from the back surface of the wiring board 63 through the alignment through holes 632. Note that in the second embodiment, as in the first embodiment, the butt portions of the butt input/output optical waveguides of the optical function element 61 and the optical circuit element 62 can be seen through the alignment through holes 632.
  • the marker 615 formed on the optical functional element 61 side and the marker 625 formed on the optical circuit element 62 side are arranged so as to be visible from the alignment through hole 632.
  • the optical functional element 61 and the optical circuit element 62 are pre-aligned by adjusting their positions so that the markers 615, 625 properly form the alignment marker 65.
  • the markers 615, 625 are linearly symmetrical with respect to an axis perpendicular to the opposing direction of the optical functional element 61 and the optical circuit element 62, and have the same shape. This is because it is easy to visually determine whether the shape formed by butting the markers 615, 625 together is proper.
  • a transparent material that transmits visible light is provided on the back surface of the wiring board 63 at a position that covers the alignment through-hole 632.
  • the "cover" here is not limited to a configuration in which the alignment through-hole 632 is covered with a transparent material, but may be a configuration in which the alignment through-hole 632 is filled with a transparent material.
  • the transparent material is a thin-film glass substrate 635 with a thickness of 0.03 ⁇ m. With this configuration, the second embodiment can prevent thermally conductive adhesive from entering the alignment through-hole 632 even when the wiring board 63 is attached to another substrate with a thermally conductive adhesive or the like.
  • the optical functional element of this example is a test device in which the polarization rotator and polarization beam combiner are removed from the phase modulation chip, as described in the second embodiment.
  • the optical functional element of this example includes a signal light input and output optical waveguide and an input and output optical waveguide for butt-coupled.
  • the optical functional element is an InP chip
  • the optical circuit element is a SiP chip.
  • connection end faces of the SiP chip and the InP chip are observed from the back side of the wiring board through the alignment through holes, and the end faces of the input and output optical waveguides are brought close to each other.
  • the worker observes the two alignment through holes and pre-aligns them by adjusting the wiring board horizontally so that the input and output optical waveguides match at each point.
  • the end faces are aligned using one of the two alignment through holes, but not the other, it is determined that the Z-axis rotation is misaligned, and the Z-axis rotation is adjusted so that they are aligned.
  • the subsequent alignment is performed by inputting light with a wavelength of 1.55 ⁇ m from the signal light input optical waveguide of the SiP chip, propagating it through the InP chip, and monitoring the light intensity output from the signal light output optical waveguide.
  • the output light intensity profile in the Y-axis is obtained, and the position is adjusted so that the output light intensity peaks, thereby adjusting to a rough alignment position.
  • the alignment is completed by aligning the X-axis and Y-axis so that the output light intensity is maximized, and adjusting the Z-axis rotation, and adjusting the gap between the end faces to the design position (1 ⁇ m).
  • Pre-alignment using the alignment marker is also performed by observing the alignment marker through the alignment through-hole, and adjusting the X-axis and Z-axis rotation so that the alignment markers of the InP chip and the SiP chip are in their designed positions.
  • This type of alignment allows pre-alignment to be performed in the same way as pre-alignment performed by observing the end faces of the input and output optical waveguides.
  • the butt joint of the SiP chip and the InP chip is fixed by filling the space between the SiP chip and the InP chip with a UV-curable adhesive that is transparent in the infrared region, and then irradiating UV light to harden the adhesive.
  • an anti-reflection film that corresponds to the refractive index of the resin to be filled is provided on the end face of the input/output optical waveguide of the InP chip.
  • the discloser of this embodiment separately prepared a wiring board that does not have an alignment through hole, and confirmed the difference in the complexity of alignment depending on whether or not there is an alignment through hole.
  • Figure 8 shows the output light intensity profile in the Y-axis direction obtained after observing the input/output optical waveguide using the alignment through-hole and performing pre-alignment according to the above procedure, and the output light intensity profile in the Y-axis direction obtained after observing the alignment marker through the alignment through-hole and performing pre-alignment.
  • the profile shown by the solid line in the figure shows the result of alignment performed while visually observing the butt joint of the input/output optical waveguide through the alignment through-hole.
  • the profile shown by the dashed line shows the result of alignment performed while visually observing the alignment marker through the alignment through-hole. Note that the two profiles were obtained by first performing alignment using the butt joint, then releasing the chip once, and then using the alignment marker.
  • the horizontal axis of Figure 8 shows the scan position on the Y-axis, and the vertical axis shows the light intensity obtained at the scan position.
  • Figure 9 shows the light intensity profile for comparison with this embodiment.
  • the horizontal axis of Figure 9 indicates the Y-axis scan position, and the vertical axis indicates the light intensity obtained at the scan position.
  • the SiP chip and InP chip are observed from the back side and placed in their approximate positions. After this, signal light is input from the SiP chip, and the Y-axis profile is obtained while moving away from the initial position by ⁇ 2 ⁇ m on the X-axis to search for the peak position.
  • Figure 9 shows the Y-axis profile for each movement amount from the initial X-axis position.
  • the profile shown by the solid line in Figure 9 is 0 ⁇ m from the X-axis position, the profile shown by the dashed line is -16 ⁇ m, the profile shown by the dashed line is -18 ⁇ m, and the profile shown by the two-dot chain line is -20 ⁇ m.
  • the optical functional element flip-chip mounted on the wiring board provided with the alignment through-holes of this embodiment allows the optical waveguide and markers to be observed from the wiring board side through the alignment through-holes when butt-coupled with the optical circuit element. Therefore, even when the markers cannot be confirmed from the back side due to flip-chip mounting on the wiring board, pre-alignment is possible, making it possible to provide an optical device that allows easy butt-coupling optical coupling.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The present invention comprises a wiring substrate (53) and an optically functional element (51) that has an input/output optical waveguide (511) for an optical signal and is flip-chip mounted on the wiring substrate (53), an end surface of the input/output optical waveguide (511) in the optically functional element (51) is butted and coupled with an end surface of another input/output optical waveguide (521), the wiring substrate (53) comprises aligning through-holes (531) that penetrate through the wiring substrate (53), and consistency or inconsistency between the position of the end surface of the input/output optical waveguide (511) and the position of the end surface of the other input/output optical waveguide (521) can be visually recognized via the alignment through-holes (531).

Description

光デバイス、光デバイスの位置合わせ方法Optical device and method for aligning optical device

 本開示は、光導波路を有する光機能素子と光機能素子とを基板にフリップチップで実装した光デバイスに関する。 This disclosure relates to an optical device in which an optical functional element having an optical waveguide and the optical functional element are flip-chip mounted on a substrate.

 近年、光ファイバを使った光信号伝送の普及に伴い、多数の光回路を高密度に集積する技術が求められている。このような光回路の一つとして、石英系平面光波回路(Planar Lightwave Circuit:PLC)やシリコンフォトニクスによる光回路(System in Package:SiP)が知られている。PLCは、低損失、高信頼性と共に、高い設計自由度を有する導波路型光デバイスであり、合分波器、分岐・結合器等の機能を集積したPLCが光通信伝送端における伝送装置に搭載されている。SiPは低損失性の点でPLCに及ばないものの、高い設計自由度を有し、小さい光導波路曲げ半径によってさらに小型の光回路が実現可能な光デバイスである。また、伝送装置内にはPLCやSiP以外の光デバイスとして、光と電気の信号を変換するフォトダイオード(Photo Diode:PD)や、レーザーダイオード(Laser Diode:LD)、あるいは光変調器等の光機能素子も搭載されている。 In recent years, with the spread of optical signal transmission using optical fibers, there is a demand for technology to integrate a large number of optical circuits at high density. Known examples of such optical circuits include quartz-based planar lightwave circuits (PLCs) and silicon photonics-based optical circuits (System in Package: SiPs). PLCs are waveguide-type optical devices that have low loss, high reliability, and high design freedom, and PLCs that integrate functions such as multiplexers/demultiplexers, branchers, and couplers are installed in transmission equipment at the optical communication transmission end. Although SiPs are inferior to PLCs in terms of low loss, they have high design freedom and are optical devices that can realize even smaller optical circuits due to their small optical waveguide bending radius. In addition to PLCs and SiPs, optical devices also include photodiodes (PDs) that convert optical and electrical signals, laser diodes (LDs), and optical functional elements such as optical modulators.

 さらなる通信容量の拡大に向けて、光信号処理を行うPLC等の光導波路と、PD等の光デバイスを集積した高機能な光電子集積型デバイスが求められている。この光デバイスは、InP系の材料により構成された高速な光電変換を行うものである。このような集積型光デバイスのプラットフォームとしてはPLCやSiPが有望であり、InP光変調器チップとPLCチップをハイブリッドに集積した集積型光デバイスが提案されている。このような集積型光デバイスは、例えば、非特許文献1に記載されている。 To further expand communication capacity, there is a demand for high-performance optoelectronic integrated devices that integrate optical waveguides such as PLCs that perform optical signal processing with optical devices such as PDs. These optical devices are made of InP-based materials and perform high-speed photoelectric conversion. PLCs and SiPs are promising platforms for such integrated optical devices, and integrated optical devices that hybridly integrate an InP optical modulator chip and a PLC chip have been proposed. Such integrated optical devices are described, for example, in Non-Patent Document 1.

 非特許文献1に記載の集積型光デバイスにおいては、位相変調器をInPチップ上に集積し、偏波ローテータと偏波ビームコンバイナをPLC上に集積し、レンズを介して両チップを光結合する方法が採用されている。PLCを偏波Muxチップとして用いる方法は、従来の偏波合成を空間光学系で構築する方法と比較して実装面積が小さく、光回路に集積されることで光軸合わせを簡略化可能である。このようなPLCとInP等の光回路素子を組み合わせて光結合する形態は、デバイスの小型化及び光回路の設計の自由度の面で利点がある。また通信容量の拡大に向けてInP系材料による広帯域化に適した導波路構造を有するPDや、高速な位相変調機能を有する光位相変調器等を含む集積デバイスが開発されている。さらに近年では更なる小型化に向けて、レンズを介することなく光回路素子同士を直接接続した集積型光デバイスが求められている。 In the integrated optical device described in Non-Patent Document 1, a method is adopted in which a phase modulator is integrated on an InP chip, a polarization rotator and a polarization beam combiner are integrated on a PLC, and the two chips are optically coupled via a lens. The method of using a PLC as a polarization Mux chip requires a smaller mounting area than the conventional method of constructing polarization synthesis using a spatial optical system, and optical axis alignment can be simplified by integrating it into an optical circuit. This form of optical coupling by combining an optical circuit element such as PLC and InP has advantages in terms of device miniaturization and freedom of optical circuit design. In addition, integrated devices including PDs with a waveguide structure suitable for broadbanding using InP-based materials and optical phase modulators with high-speed phase modulation functions have been developed in order to expand communication capacity. Furthermore, in recent years, there has been a demand for integrated optical devices in which optical circuit elements are directly connected to each other without using lenses in order to achieve further miniaturization.

E. Yamada et al., "112-Gb/s InP DP-QPSK modulator integrated with a silica-PLC polarization multiplexing circuit", Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf., Mar. 2012.)E. Yamada et al., "112-Gb/s InP DP-QPSK modulator integrated with a silica-PLC polarization multiplexing circuit", Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf., Mar. 2012.)

 ここで、例えばPLCとInP系の光機能素子を接続するため、それぞれの入出力光導波路を突き合わせて結合することを想定すると、片方の光素子に入力して接続面を経由した光の強度をモニタしながら光導波路同士を調芯し、固定する必要がある。例えば、光ファイバとPLCの突合せ接続では、調芯を行う必要がある。調芯は、ファイバを固定したガラス製のファイバブロックの端面とPLC端面とを平行に調整した後、ファイバに光入力しながらファイバからの光出力位置をPLCの入力光導波路に合わせ、その入力光導波路と接続される出力光導波路からの出力をモニタしながら最適な光結合が得られるように位置調整することによって行われる。その後、調整後の位置にUV硬化接着剤を充填し、UV光で照射することによって短時間のうちに硬化させ、両者を接着する。このような突合せ結合方法を用いてPLCの光回路をプラットフォームとしたSiまたはInPからなる光機能素子の集積、あるいはSiPを光回路プラットフォームとしたInPからなる光機能素子との集積が実現できれば、より小型な集積型光デバイスを提供することが可能になる。 Here, for example, in order to connect a PLC and an InP-based optical functional element, if we assume that the input and output optical waveguides of each are butted together and coupled, it is necessary to align and fix the optical waveguides while monitoring the intensity of the light input to one of the optical elements and passing through the connection surface. For example, in butt-connecting an optical fiber and a PLC, it is necessary to perform alignment. Alignment is performed by adjusting the end face of the glass fiber block to which the fiber is fixed and the end face of the PLC so that they are parallel, and then aligning the optical output position from the fiber with the input optical waveguide of the PLC while inputting light into the fiber, and adjusting the position so that optimal optical coupling is obtained while monitoring the output from the output optical waveguide connected to the input optical waveguide. After that, a UV-curing adhesive is filled in the adjusted position, and the adhesive is hardened in a short time by irradiating it with UV light, and the two are bonded together. If such a butt-connecting method can be used to integrate optical functional elements made of Si or InP using the optical circuit of the PLC as a platform, or to integrate optical functional elements made of InP using the SiP as an optical circuit platform, it will be possible to provide a smaller integrated optical device.

 また、またデバイスの高速化のため、光機能素子に電気信号を入出力するICとの間の電気配線を短距離化することも高速な信号を低損失に伝送するために必要になる。ICと光機能素子を基板上にフリップチップで搭載する構成は、ICと光機能素子を短距離で接続でき、低損失で信号を伝送するのに適している。さらに、偏波制御する光回路を集積したSiPを光回路素子として、フリップチップした位相変調器へ異種材料接続することで、小型かつ高速な光デバイスを実現することができる。 Furthermore, to increase the speed of devices, it is necessary to shorten the electrical wiring between the IC that inputs and outputs electrical signals to the optical functional element in order to transmit high-speed signals with low loss. A configuration in which the IC and optical functional element are mounted on a substrate using a flip-chip technique allows the IC and optical functional element to be connected over a short distance, and is suitable for transmitting signals with low loss. Furthermore, a small, high-speed optical device can be realized by using a SiP that integrates an optical circuit that controls polarization as an optical circuit element and connecting it to a flip-chip phase modulator using a dissimilar material.

 しかしながら、光機能素子へ光回路素子や光ファイバを接続する場合、光機能素子の入出力光導波路と光回路素子の入出力光導波路をアライメントするために、両方が光強度を確認できる程度の大まかな位置まで予めプリアライメントする必要がある。上記のフリップチップした位相変調器の場合、光導波路面が配線基板側になるため光導波路が見えなくなり、上面からの観察ができず、光導波路同士をプリアライメントすることが困難になる。 However, when connecting optical circuit elements or optical fibers to optical functional elements, in order to align the input/output optical waveguides of the optical functional element and the input/output optical waveguides of the optical circuit element, it is necessary to pre-align them to a rough position where the light intensity of both can be confirmed. In the case of the flip-chip phase modulator described above, the optical waveguide surface is on the wiring board side, so the optical waveguide is not visible and cannot be observed from above, making it difficult to pre-align the optical waveguides.

 本開示は、上記の点に鑑みてなされたものであり、光導波路入出力構造を有する光機能素子と、光回路素子との間で光信号を入出力する光導波路入出力構造を有する光回路素子との集積に適用可能であって、端面接続によって光素子と光回路間で光信号入出力を行う際に、簡便なアライメントを可能にする構造により端面光結合を実現した光デバイスを提供することを目的とする。 The present disclosure has been made in consideration of the above points, and aims to provide an optical device that is applicable to the integration of an optical functional element having an optical waveguide input/output structure and an optical circuit element having an optical waveguide input/output structure for inputting/outputting optical signals between the optical circuit element, and that realizes end-face optical coupling by a structure that enables simple alignment when inputting/outputting optical signals between the optical element and the optical circuit by end-face connection.

 上記目的を達成するために本開示の一形態の光デバイスは、配線基板と、光信号の入出力光導波路を有し、前記配線基板にフリップチップ搭載される光機能素子と、を備え、前記光機能素子における前記入出力光導波路の端面が他の入出力光導波路の端面と突き合わせ結合され、前記配線基板は、前記配線基板を貫通する調芯用スルーホールを備え、
 前記調芯用スルーホールを介して前記入出力光導波路の端面の位置と、前記他の入出力光導波路の端面の位置と、の一致、不一致を視認可能である。
In order to achieve the above object, an optical device according to one embodiment of the present disclosure includes a wiring board, and an optical functional element having an input/output optical waveguide for an optical signal and flip-chip mounted on the wiring board, wherein an end face of the input/output optical waveguide in the optical functional element is butt-coupled to an end face of another input/output optical waveguide, and the wiring board includes an alignment through hole penetrating the wiring board,
Whether the position of the end face of the input/output optical waveguide coincides with the position of the end face of the other input/output optical waveguide can be visually confirmed via the alignment through hole.

 また、本開示の一形態の光デバイスの位置合わせ方法は、配線基板と、光信号の入出力光導波路を有し、前記配線基板にフリップチップ搭載される光機能素子と、を備え、前記光機能素子における前記入出力光導波路の端面が他の入出力光導波路の端面と突き合わせ結合され、前記配線基板が前記配線基板を貫通する調芯用スルーホールを備え、前記調芯用スルーホールを介して前記入出力光導波路の端面の位置と、前記他の入出力光導波路の端面の位置と、の一致、不一致を視認可能である光デバイスにおいて行われる位置合わせ方法であって、前記調芯用スルーホールを介して前記入出力光導波路の端面と前記他の入出力光導波路の端面とを視認しながら前記入出力光導波路と前記他の入出力光導波路とのX軸及びY軸を調整した後、前記入出力光導波路及び前記他の入出力光導波路を透過する光強度プロファイルを取得して光強度プロファイルのピークをY軸方向に位置合わせすることによりプリアライメントする。 In addition, the method for aligning an optical device according to one embodiment of the present disclosure includes a wiring board and an optical functional element having an input/output optical waveguide for an optical signal and flip-chip mounted on the wiring board, an end face of the input/output optical waveguide in the optical functional element is butt-coupled to an end face of another input/output optical waveguide, the wiring board includes a through-hole for alignment that penetrates the wiring board, and the match or mismatch between the position of the end face of the input/output optical waveguide and the position of the end face of the other input/output optical waveguide can be visually confirmed through the through-hole for alignment, and after adjusting the X-axis and Y-axis of the input/output optical waveguide and the other input/output optical waveguide while visually confirming the end face of the input/output optical waveguide and the end face of the other input/output optical waveguide through the through-hole for alignment, a light intensity profile transmitted through the input/output optical waveguide and the other input/output optical waveguide is obtained, and the peak of the light intensity profile is aligned in the Y-axis direction to perform pre-alignment.

 以上の形態によれば、光導波路入出力構造を有する光機能素子と、光回路素子との間で光信号を入出力する光導波路入出力構造を有する光回路素子との集積に適用可能であって、端面接続によって光素子と光回路間で光信号入出力を行う際に、簡便なアライメントを可能にする構造により端面光結合を実現した光デバイスを提供することができる。 The above embodiment is applicable to the integration of an optical functional element having an optical waveguide input/output structure and an optical circuit element having an optical waveguide input/output structure for inputting/outputting optical signals between the optical circuit element, and can provide an optical device that realizes end-face optical coupling by a structure that enables simple alignment when inputting/outputting optical signals between the optical element and the optical circuit by end-face connection.

本開示の比較例を示す図である。FIG. 1 is a diagram showing a comparative example of the present disclosure. 本開示の他の比較例を示す図である。FIG. 13 is a diagram showing another comparative example of the present disclosure. (a)、(b)は、本開示の他の比較例を示す図である。13A and 13B are diagrams showing another comparative example of the present disclosure. (a)、(b)は、本開示の他の比較例を示す図である。13A and 13B are diagrams showing another comparative example of the present disclosure. (a)、(b)及び(c)は、本開示の第1の実施形態の光デバイスを説明するための平面図である。1A, 1B, and 1C are plan views illustrating an optical device according to a first embodiment of the present disclosure. (a)、(b)は、本開示の第2の実施形態の光デバイスを説明するための平面図である。13A and 13B are plan views illustrating an optical device according to a second embodiment of the present disclosure. (a)、(b)は、本開示の第2の実施形態の光デバイスを説明するための平面図である。13A and 13B are plan views illustrating an optical device according to a second embodiment of the present disclosure. 本実施形態のプリアライメントを実施した後に得た出力光強度プロファイルを示す図である。FIG. 13 is a diagram showing an output light intensity profile obtained after performing pre-alignment according to the present embodiment. 比較例の出力光強度プロファイルを示す図である。FIG. 13 is a diagram showing an output light intensity profile of a comparative example.

 本開示の説明に先立って、以下、本開示の比較例について図面を用いて説明する。本開示の図面は、本開示の構成、各部の位置関係、作用、機能及び技術思想を説明するための図面であって、本開示の具体的な形状を限定するものでなく、また、その縦横比等を正確に表すものとは限らない。 Prior to explaining the present disclosure, comparative examples of the present disclosure will be explained below using drawings. The drawings of the present disclosure are intended to explain the configuration, positional relationships of each part, action, function, and technical concept of the present disclosure, and do not limit the specific shape of the present disclosure, nor do they necessarily accurately represent the aspect ratio, etc.

[比較例]
 図1は、本開示の比較例を示す図であって、光機能素子11と光回路素子12とを異種材料接続した状態を示す図である。図1に示す光機能素子11は位相変調チップであり、位相変調器であるマッハツェンダー干渉計112、113を集積したInPで構成され、マッハツェンダー干渉計112、113を接続する光導波路111を備えている。光回路素子12は偏波制御チップであり、偏波ロータ122、偏波ビームコンバイナ(Polarization Beam Combiner:PBC)123及び光導波路121を集積している。比較例、実施形態共に、以降の説明において、図2に示すマッハツェンダー干渉計112、113が形成された面を光機能素子11の表面、偏波ロータ122、偏波ビームコンバイナ123が実装された面を光回路素子12の表面とする。そして、表面に対する反対側の面を裏面と記す。
[Comparative Example]
FIG. 1 is a diagram showing a comparative example of the present disclosure, and shows a state in which an optical functional element 11 and an optical circuit element 12 are connected with different materials. The optical functional element 11 shown in FIG. 1 is a phase modulation chip, which is made of InP integrating Mach-Zehnder interferometers 112 and 113 as phase modulators, and includes an optical waveguide 111 that connects the Mach-Zehnder interferometers 112 and 113. The optical circuit element 12 is a polarization control chip, which integrates a polarization rotor 122, a polarization beam combiner (Polarization Beam Combiner: PBC) 123, and an optical waveguide 121. In the following description of both the comparative example and the embodiment, the surface on which the Mach-Zehnder interferometers 112 and 113 shown in FIG. 2 are formed is referred to as the front surface of the optical functional element 11, and the surface on which the polarization rotor 122 and the polarization beam combiner 123 are mounted is referred to as the front surface of the optical circuit element 12. The surface opposite to the front surface is referred to as the back surface.

 光導波路121から信号光(TE偏波(横電界偏波))が入力し、マッハツェンダー干渉計112、113を通ってそれぞれ偏波ロータ122、偏波ビームコンバイナ123に入力する。偏波ロータ122に入力したTE偏波はTM偏波(横磁界偏波)に変換されて偏波ビームコンバイナ123に入力する。偏波ビームコンバイナ123からはTE偏波及びTM偏波が信号光として出力される。 Signal light (TE polarization (transverse electric field polarization)) is input from optical waveguide 121 and passes through Mach-Zehnder interferometers 112 and 113 to polarization rotor 122 and polarization beam combiner 123, respectively. The TE polarization input to polarization rotor 122 is converted to TM polarization (transverse magnetic field polarization) and input to polarization beam combiner 123. The TE polarization and TM polarization are output from polarization beam combiner 123 as signal light.

 また、デバイスの高速化のため、光機能素子11自体の高速化だけでなく、光機能素子11に接続して電気信号を入出力するドライバIC20との間のワイヤ(電気配線)21を短距離化することも高速な信号を低損失に伝送するために必要になる。図2は、基板10にドライバIC20、光機能素子11及び光回路素子12を集積した公知の構造を示す平面図である。図2に示す構造は、光機能素子11とドライバIC20をフェイスアップで搭載し、ワイヤボンディングで接続する構造が用いられるが、ワイヤ21に数百μmの長さが必要であり、高周波に合わせた信号線設計も難しいことから、50GHz以上の帯域では損失が大きいことが問題になる。 Furthermore, to increase the speed of the device, it is necessary not only to increase the speed of the optical functional element 11 itself, but also to shorten the wire (electrical wiring) 21 between the optical functional element 11 and the driver IC 20 that connects to the optical functional element 11 and inputs and outputs electrical signals, in order to transmit high-speed signals with low loss. Fig. 2 is a plan view showing a known structure in which a driver IC 20, optical functional element 11, and optical circuit element 12 are integrated on a substrate 10. In the structure shown in Fig. 2, the optical functional element 11 and the driver IC 20 are mounted face-up and connected by wire bonding, but the wire 21 needs to be several hundred μm long, and it is difficult to design a signal line suitable for high frequencies, which causes a problem of large losses in the band of 50 GHz or more.

 図2に示す構造は、ワイヤ21の長さのばらつきがチャンネルごとに伝送特性のばらつきが発生する要因になる。この点に考慮し、図3(a)に示すように、ドライバIC20と光機能素子11を、配線31を備えた基板上30にフリップチップで搭載する構造がある。図3(a)に示す構造は、光機能素子11の表面を配線基板30の配線31が形成されている表面に向けて接続して構成される。図3(b)は、図3(a)に示す光機能素子11及びドライバIC20が配線基板30に接続された状態を示している。上面視において、光機能素子11は裏面が見えている。 In the structure shown in Figure 2, variations in the length of the wires 21 are a cause of variations in the transmission characteristics for each channel. Taking this into consideration, there is a structure in which the driver IC 20 and the optical functional element 11 are flip-chip mounted on a substrate 30 having wiring 31, as shown in Figure 3(a). The structure shown in Figure 3(a) is configured by connecting the surface of the optical functional element 11 toward the surface of the wiring substrate 30 on which the wiring 31 is formed. Figure 3(b) shows the state in which the optical functional element 11 and driver IC 20 shown in Figure 3(a) are connected to the wiring substrate 30. When viewed from above, the back surface of the optical functional element 11 is visible.

 接続は、金属バンプ32、あるいは半田を使って行われる。このため、図3(a)に示す構成は、光機能素子11を配線基板30と短距離で接続できる。さらに、配線基板上30の配線31は、幅やピッチを高周波に合わせて設計可能なため、低損失で信号を伝送するのに適している。図3に示す例は、光機能素子11を位相変調器とし、ドライバIC20とフリップチップで配線基板上30へ搭載することで、理想的な電気配線で両者を接続することが可能になる。さらに、図3(a)に示す構成は、光回路素子を併せて集積することによって小型かつ高速な光デバイスを実現することができる。 The connection is made using metal bumps 32 or solder. Therefore, the configuration shown in FIG. 3(a) can connect the optical functional element 11 to the wiring board 30 over a short distance. Furthermore, the width and pitch of the wiring 31 on the wiring board 30 can be designed to suit high frequencies, making it suitable for transmitting signals with low loss. In the example shown in FIG. 3, the optical functional element 11 is a phase modulator, and is mounted on the wiring board 30 by flip-chip mounting together with the driver IC 20, making it possible to connect the two with ideal electrical wiring. Furthermore, the configuration shown in FIG. 3(a) can realize a small, high-speed optical device by integrating optical circuit elements together.

 図4(a)、図4(b)は、図3(a)に示す構成に光回路素子12を接続することを説明するための図である。図4(a)は、図3(a)に示す構成と光回路素子12とを配線基板30の表面から見た平面図である。図3(b)は、図3(a)に示した構成を配線基板30の裏面から見た平面図である。光機能素子11への光回路素子12や光ファイバの接続では、光機能素子11の入出力光導波路と光回路素子12の入出力光導波路をアライメントするために、両方が光強度を確認できる程度の大まかな位置まで予めプリアライメントする必要がある。上記のフリップチップされた位相変調器の光機能素子11の場合、入出力光導波路が形成された面が配線基板30の表面の側に向き、上面から入出力光導波路が見えなくなる。このため、図4(a)、図4(b)に示すアライメントは、上面から入出力光導波路を観察ができず、入出力光導波路同士をプリアライメントすることが困難になる。 4(a) and 4(b) are diagrams for explaining the connection of the optical circuit element 12 to the configuration shown in FIG. 3(a). FIG. 4(a) is a plan view of the configuration shown in FIG. 3(a) and the optical circuit element 12 as viewed from the front side of the wiring board 30. FIG. 3(b) is a plan view of the configuration shown in FIG. 3(a) as viewed from the back side of the wiring board 30. When connecting the optical circuit element 12 or optical fiber to the optical functional element 11, in order to align the input/output optical waveguide of the optical functional element 11 and the input/output optical waveguide of the optical circuit element 12, it is necessary to pre-align them to a rough position where the light intensity of both can be confirmed. In the case of the optical functional element 11 of the flip-chip phase modulator described above, the surface on which the input/output optical waveguide is formed faces the front side of the wiring board 30, and the input/output optical waveguide cannot be seen from the top. For this reason, the alignment shown in FIG. 4(a) and FIG. 4(b) makes it difficult to pre-align the input/output optical waveguides with each other because the input/output optical waveguides cannot be observed from the top.

 上記の点を解消するため、光機能素子11や光回路素子12の基板裏面に接続位置を示すアライメントマークを設け、入出力光導波路の位置を確認することなくプリアライメントすることが考えられる。しかし、アライメントマークを基板の裏面に形成することは、基板表面における加工の工程に別途プロセスの追加が必要になるため、製造工程の煩雑化、高コスト化を招くことになる。 To solve the above problem, it is conceivable to provide alignment marks indicating the connection positions on the back surface of the substrate for the optical functional element 11 and the optical circuit element 12, and perform pre-alignment without checking the positions of the input and output optical waveguides. However, forming alignment marks on the back surface of the substrate requires the addition of an additional process to the processing steps on the surface of the substrate, which makes the manufacturing process more complicated and increases costs.

 また、上記の点を解消するための別の構成として、光回路素子12の入出力光導波路が配線基板30の外部に位置するように設計することが考えられる。このような構成によれば、入出力光導波路が配線基板30で隠れることがなく、入出力光導波路の位置を確認しながらプリアライメントすることができる。しかし、このような構成は、光回路素子12のチップを配線基板30の中央に配置することができず、設計上の自由度が低下する。この点は、チップを高密度に配置する際の問題となる。さらに、配線基板30にフリップチップで光機能素子11や光回路素子12を半田で搭載する場合、光機能素子11と光回路素子12とを接続した後に配線基板30に搭載すると、半田加熱による熱で接着剤が劣化するという問題もある。 As another configuration to solve the above problem, it is possible to design the input/output optical waveguide of the optical circuit element 12 so that it is located outside the wiring board 30. With this configuration, the input/output optical waveguide is not hidden by the wiring board 30, and pre-alignment can be performed while checking the position of the input/output optical waveguide. However, with this configuration, the chip of the optical circuit element 12 cannot be placed in the center of the wiring board 30, and the degree of freedom in design is reduced. This becomes a problem when placing chips at high density. Furthermore, when the optical functional element 11 and the optical circuit element 12 are mounted on the wiring board 30 by flip chip soldering, there is also the problem that the adhesive deteriorates due to heat caused by heating the solder when the optical functional element 11 and the optical circuit element 12 are mounted on the wiring board 30 after being connected.

 上記のように、光変調器等の光機能素子と、偏波制御回路等を集積したPLCやSiP等の光回路素子とのハイブリッド集積する際に、フリップチップは高速な信号を入出力することに好適である。このとき、入出力光導波路同士を簡便に突き合わせ結合することが課題であった。本開示は、この点に着目してなされたものであり、配線基板上にフリップチップ搭載された光機能素子と光回路素子との入出力光導波路を簡便な方法で突き合わせ結合し、高効率な光結合を実現する光デバイスを提供することを目的とする。 As described above, when hybrid-integrating an optical functional element such as an optical modulator with an optical circuit element such as a PLC or SiP that integrates a polarization control circuit, a flip chip is suitable for inputting and outputting high-speed signals. In this case, the challenge is to simply butt-couple the input and output optical waveguides. This disclosure has been made with a focus on this point, and aims to provide an optical device that butt-couples, in a simple manner, the input and output optical waveguides of an optical functional element and an optical circuit element that are flip-chip mounted on a wiring board, thereby achieving highly efficient optical coupling.

[第1の実施形態]
 図5(a)、図5(b)及び図5(c)は、本開示の第1の実施形態の光デバイスを説明するための平面図である。本実施形態の光デバイスは、配線基板53と、光機能素子51と、光回路素子52と、ドライバIC55と、を備えている。光機能素子51とドライバIC55とはワイヤ56によって接続されている。光機能素子51は、例えば図1に示した位相変調チップと同様の構成であってもよく、その端部に端面が位置する光信号の入出力光導波路を備えている。また、光回路素子52は、例えば図1に示した光回路素子12と同様の偏波制御チップであってもよく、その端部に端面が位置する光信号の入出力光導波路を備えている。図5(a)から図5(c)の説明は、紙面手前の側を「上」、奥の側を「下」として行う。
[First embodiment]
5(a), 5(b), and 5(c) are plan views for explaining an optical device according to a first embodiment of the present disclosure. The optical device according to this embodiment includes a wiring board 53, an optical functional element 51, an optical circuit element 52, and a driver IC 55. The optical functional element 51 and the driver IC 55 are connected by a wire 56. The optical functional element 51 may have a configuration similar to that of the phase modulation chip shown in FIG. 1, for example, and includes an input/output optical waveguide for an optical signal whose end face is located at the end of the optical circuit element 51. The optical circuit element 52 may be a polarization control chip similar to that of the optical circuit element 12 shown in FIG. 1, for example, and includes an input/output optical waveguide for an optical signal whose end face is located at the end of the optical circuit element 52. In the explanation of FIGS. 5(a) to 5(c), the side in front of the paper is referred to as "upper" and the side in the back is referred to as "lower".

 図5(a)は、光機能素子51、光回路素子52及びICドライバ55の入出力光導波路が形成されている表面に対する裏面を示し、配線基板53の配線が形成されている表面を示している。図5(b)は、図5(a)に示す構成を、Z軸を回転軸にして手前に180度回転させた状態を示している。図5(b)においては、配線基板53の裏面と、配線基板53の下方に配置された光機能素子51、光回路素子52及びドライバIC55を示している。光機能素子51及び光回路素子52は、配線基板53に表面が接するようにフリップチップ搭載されている。図5(a)、図5(b)に示すように、配線基板53は、配線基板53を貫通する調芯用スルーホール531を3個備えている。図5(c)は、図5(b)に示す調芯用スルーホール531を拡大して示す図である。 FIG. 5(a) shows the back side of the surface on which the input/output optical waveguides of the optical functional element 51, the optical circuit element 52, and the IC driver 55 are formed, and shows the front side on which the wiring of the wiring board 53 is formed. FIG. 5(b) shows the state in which the configuration shown in FIG. 5(a) is rotated 180 degrees toward the front about the Z axis. FIG. 5(b) shows the back side of the wiring board 53, and the optical functional element 51, the optical circuit element 52, and the driver IC 55 arranged below the wiring board 53. The optical functional element 51 and the optical circuit element 52 are flip-chip mounted so that their front surfaces are in contact with the wiring board 53. As shown in FIG. 5(a) and FIG. 5(b), the wiring board 53 has three alignment through holes 531 penetrating the wiring board 53. FIG. 5(c) is an enlarged view of the alignment through hole 531 shown in FIG. 5(b).

 光機能素子51における入出力光導波路の端面は、他の入出力光導波路の端面と突き合わせ結合される。図5(a)、図5(b)に示す例では、他の入出力光導波路が光回路素子52の入出力光導波路である。図5(c)に示すように、光機能素子51の入出力光導波路の端面と、光回路素子52の入出力光導波路の端面との突き合わせ部分は、調芯用スルーホール531を介して視認可能になっている。なお、第1の実施形態、第2の実施形態の「突き合わせ部分」は、端面同士が接着剤等により固定される以前に当接する位置をいう。すなわち、調芯用スルーホール531からは、光機能素子51の側に設けられた入出力光導波路511、光回路素子52の側に設けられた入出力光導波路521の突き合わせ部分Cが観察可能になっている。なお、ここで、視認可能とは、調芯用スルーホール531の上方から目視、またはカメラによって状態を見ることが可能であることをいう。 The end face of the input/output optical waveguide in the optical functional element 51 is butted against and coupled to the end face of the other input/output optical waveguide. In the example shown in FIG. 5(a) and FIG. 5(b), the other input/output optical waveguide is the input/output optical waveguide of the optical circuit element 52. As shown in FIG. 5(c), the butted portion between the end face of the input/output optical waveguide of the optical functional element 51 and the end face of the input/output optical waveguide of the optical circuit element 52 is visible through the through hole for core alignment 531. Note that the "butted portion" in the first and second embodiments refers to the position where the end faces come into contact before being fixed with an adhesive or the like. That is, the butted portion C of the input/output optical waveguide 511 provided on the optical functional element 51 side and the input/output optical waveguide 521 provided on the optical circuit element 52 side can be observed from the through hole for core alignment 531. Note that "visible" here means that the state can be seen visually from above the through hole for core alignment 531 or by a camera.

 上記のように、第1の実施形態の光デバイスは、調芯用スルーホール531を通して配線基板53の側から光機能素子11の入出力光導波路511と、光回路素子52の入出力光導波路521を確認してプリアライメントすることができる。配線基板53へのフリップチップ搭載により、光機能素子51の入出力光導波路が設けられた面は配線基板53によって覆われてしまうも。しかし、第1の実施形態によれば、入出力光導波路511、512の結合位置に対応して調芯用スルーホール531があるため、入出力光導波路511、512の位置を確認することができ、フリップチップ搭載しない公知の入出力光導波路同士と同様の手順によるプリアライメントが可能になる。 As described above, the optical device of the first embodiment can confirm and pre-align the input/output optical waveguide 511 of the optical functional element 11 and the input/output optical waveguide 521 of the optical circuit element 52 from the wiring board 53 side through the alignment through hole 531. By flip-chip mounting on the wiring board 53, the surface on which the input/output optical waveguides of the optical functional element 51 are provided is covered by the wiring board 53. However, according to the first embodiment, since the alignment through hole 531 is provided corresponding to the coupling position of the input/output optical waveguides 511 and 512, the positions of the input/output optical waveguides 511 and 512 can be confirmed, and pre-alignment can be performed in the same manner as with known input/output optical waveguides that are not flip-chip mounted.

 第1の実施形態の構成により、光機能素子51の入出力光導波路511と光回路素子52の入出力光導波路521とを予め調芯しやすい位置の合わせておくことができる。このため、第1の実施形態によれば、信号光を入力し、出力光をモニタしながら行う調芯で位置合わせされる位置に近い位置に最初から位置合わせすることができる。第1の実施形態は、配線基板53上にフリップチップ搭載された光機能素子11においても、簡便な構成と手順で精度の高い調芯をすることができる。 The configuration of the first embodiment allows the input/output optical waveguide 511 of the optical functional element 51 and the input/output optical waveguide 521 of the optical circuit element 52 to be aligned in advance at positions that facilitate alignment. Therefore, according to the first embodiment, it is possible to initially align the optical functional element 51 to a position close to the position that will be aligned during alignment performed while inputting signal light and monitoring the output light. The first embodiment allows for highly accurate alignment with a simple configuration and procedure, even for an optical functional element 11 flip-chip mounted on a wiring board 53.

 以上説明したように、第1の実施形態は、配線基板上に光機能素子がフリップチップされ、その光機能素子に入出力光導波路が設けられ、配線基板の側の入出力光導波路位置に対応する位置に調芯用スルーホールが設けられる。このような構成により、入出力光導波路の調芯は、配線基板の裏面側から調芯用スルーホールを介して入出力光導波路位置を確認しながら行うことができる。この点が第1の実施形態の最大の特長である。 As explained above, in the first embodiment, an optical functional element is flip-chip mounted on a wiring board, an input/output optical waveguide is provided on the optical functional element, and an alignment through-hole is provided at a position on the wiring board corresponding to the position of the input/output optical waveguide. With this configuration, the alignment of the input/output optical waveguide can be performed from the back side of the wiring board while checking the position of the input/output optical waveguide via the alignment through-hole. This is the greatest feature of the first embodiment.

 第1の実施形態は、フリップチップ搭載により配線基板に覆われる入出力光導波路の位置を簡便に確認することが容易になる。これを利用して光導波路位置を調芯しやすい位置に予め調整するプリアライメントが可能になる。予め調芯する光導波路同士を近い位置に位置合わせすることは、その後の信号光の光出力をモニタしながらの調芯において、微調整による時間を短縮することが可能になるため望ましい。このような結果、フリップチップ搭載された光機能素子への突合せ結合を簡便な手順で実現することができる。 In the first embodiment, flip-chip mounting makes it easy to easily check the positions of the input and output optical waveguides covered by the wiring board. This can be used to pre-align the optical waveguide positions to positions that are easy to align. Aligning the optical waveguides to be pre-aligned in close positions is desirable because it makes it possible to reduce the time required for fine adjustments during subsequent alignment while monitoring the optical output of the signal light. As a result, butt coupling to a flip-chip mounted optical functional element can be achieved with a simple procedure.

 一般的にPLCの断面構造は、SiやSiO2の基板上に、SiO2の薄膜がアンダークラッドとして約20μm、コアとして3μmから10μm、オーバークラッドとして約20μm堆積されて構成されている。第1の実施形態は、Si基板上に形成されたPLCを想定している。またSiフォトニクスの光回路素子では、Si基板上に、アンダークラッドとしてSOI層をなすSiO2が数μm、コアとなるSiが数百nm、オーバークラッドとなるSiO2が数μm堆積されている。またInPを基板とする光機能素子は、InP基板をアンダークラッドとし、コアとなる化合物半導体が数百nm、オーバークラッドとなるInPやパッシベーションとなるSiNあるいはSiO2が堆積されている。その表面や裏面には、電極となる金属パターンが設けられている。 In general, the cross-sectional structure of a PLC is formed by depositing a thin film of SiO 2 of about 20 μm as an undercladding, 3 μm to 10 μm as a core, and about 20 μm as an overcladding on a substrate of Si or SiO 2. The first embodiment assumes a PLC formed on a Si substrate. In addition, in an optical circuit element of Si photonics, a few μm of SiO 2 forming an SOI layer as an undercladding, a few hundred nm of Si as a core, and a few μm of SiO 2 as an overcladding are deposited on a Si substrate. In addition, an optical functional element using InP as a substrate has an InP substrate as an undercladding, a few hundred nm of a compound semiconductor as a core, InP as an overcladding, and SiN or SiO 2 as a passivation. Metal patterns as electrodes are provided on the front and back surfaces.

 また、第1の実施形態は、基板の端面領域に形成された光導波路を、光信号の入出力を行う入出力光導波路として想定している。入出力光導波路は、他の入出力光導波路と端面におけるモードフィールドにより光結合される。配線基板は、チップに対して電気信号を入出力するために用いられる。このような配線基板は、窒化アルミや酸化アルミ等のセラミック材を材料とするセラミック基板、エポキシ等をベースとした有機基板上に金属の配線パターン設けて積層化した基板であってもよい。積層した各層間の導通は、各基板にスルーホールを設け、導通材料で表面をコーティングあるいは埋めることで設けられた導電ビアで行われる。 In the first embodiment, the optical waveguide formed in the end surface region of the substrate is assumed to be an input/output optical waveguide for inputting and outputting optical signals. The input/output optical waveguide is optically coupled to other input/output optical waveguides by the mode field at the end surface. The wiring board is used to input and output electrical signals to and from the chip. Such a wiring board may be a ceramic board made of ceramic material such as aluminum nitride or aluminum oxide, or an organic board based on epoxy or the like, on which a metal wiring pattern is provided and laminated. Conduction between each layer of the laminate is achieved by conductive vias provided by providing through holes in each board and coating or filling the surface with a conductive material.

 調芯用スルーホールは、配線基板における、調芯のプリアライメント時に光機能素子の目印となる部分を確認できる位置にスルーホールを設けることで形成される。一般的なスルーホールビアは、基板の表面と裏面とを電気的に接続する目的で光を透過しない導電性の材料で充填される導電ビアである。それに対し、第1の実施形態の調芯用スルーホールは、光機能素子の表面を確認するため、導電性材料を充填しない、あるいは光透過性の材料で充填することが望ましい。調芯用スルーホールの位置は、光機能素子の入出力光導波路位置にあるのが望ましい。ただし、第1の実施形態は、導電ビアを形成する工程で調芯用スルーホールを形成し、これを導電材料で埋め込まずに調芯用スルーホールとして利用し、製造工程を簡易化するようにしてもよい。 The alignment through-hole is formed by providing a through-hole at a position on the wiring board where the part that serves as the marker for the optical functional element can be confirmed during pre-alignment for alignment. A typical through-hole via is a conductive via filled with a conductive material that does not transmit light in order to electrically connect the front and back surfaces of the board. In contrast, the alignment through-hole of the first embodiment is preferably not filled with a conductive material or filled with a light-transmitting material in order to confirm the surface of the optical functional element. The alignment through-hole is preferably located at the input/output optical waveguide position of the optical functional element. However, in the first embodiment, the alignment through-hole may be formed in the process of forming the conductive via, and used as the alignment through-hole without being filled with a conductive material, simplifying the manufacturing process.

 このように、第1の実施形態は、光機能素子と光回路素子とをハイブリッド集積した光デバイスにおいて、配線基板上にフリップチップ搭載された光機能素子の入出力光導波路の位置の配線基板に調芯用スルーホールを設けるよう工夫した。このため、第1の実施形態は、光機能素子や光ファイバとの突合せ光結合を、配線基板側から光導波路位置を確認して大まかな調芯位置へプリアライメントして光信号による調芯へ移行することができる。このため、第1の実施形態は、突合せ結合において効率よく位置合わせすることが可能になり、簡便な突合せ光結合によりなされた光デバイスを提供することが可能となる。 In this way, the first embodiment is devised to provide an alignment through hole in the wiring board at the position of the input/output optical waveguide of the optical functional element flip-chip mounted on the wiring board in an optical device in which optical functional elements and optical circuit elements are hybridly integrated. Therefore, in the first embodiment, the butt optical coupling with the optical functional element or optical fiber can be performed by confirming the optical waveguide position from the wiring board side, pre-aligning to a rough alignment position, and then transitioning to alignment by optical signal. Therefore, the first embodiment makes it possible to efficiently align the butt coupling, and makes it possible to provide an optical device achieved by simple butt optical coupling.

 また、第1の実施形態によれば、上記の効果を得るために、光機能素子の裏面に調芯用の目印となるマーカを設けることがなく、あるいは入出力光導波路を確認するために光機能素子の搭載位置を制限することがない。この点により、第1の実施形態は、先に挙げた公知の技術よりも優れている。 Furthermore, according to the first embodiment, in order to obtain the above-mentioned effects, there is no need to provide a marker on the back surface of the optical functional element as a guide for alignment, nor is there any need to restrict the mounting position of the optical functional element in order to check the input/output optical waveguide. In this respect, the first embodiment is superior to the previously mentioned known techniques.

[第2の実施形態]
 第2の実施形態は、光機能素子、光回路素子の両方に対応する調芯用マーカを設け、配線基板の調芯用マーカに対応する位置に調芯用スルーホールを形成する点で第1の実施形態と相違する。このような構成においては、調芯用スルーホールから調芯用マーカが観察可能である。
Second Embodiment
The second embodiment differs from the first embodiment in that alignment markers corresponding to both the optical functional element and the optical circuit element are provided, and alignment through holes are formed in the wiring board at positions corresponding to the alignment markers. In this configuration, the alignment markers can be observed from the alignment through holes.

 図6(a)、図6(b)、図7(a)、図7(b)は、第2の実施形態の光デバイスを説明するための平面図である。第2の実施形態の光デバイスは、配線基板63と、光機能素子61と、光回路素子62と、を備えている。図6(a)は、配線基板63の表面に光機能素子61と光回路素子62とが搭載されている状態を示す図である。光機能素子61と光回路素子62は配線基板63にフリップチップされ、配線基板63と表面同士が接触している。光回路素子62は、光信号の入力用及び出力用光導波路と、それに対応する突合せ結合用の入出力用光導波路を備えている。図6(b)は、配線基板63を裏面から見た状態を示す図である。図7(a)は、配線基板63と、配線基板63下の光機能素子61及び光回路素子62を配線基板63の裏面から見た状態を示す図である。図7(b)は、光機能素子61と光回路素子62とを突き合わせ結合した光デバイスを表面から見た図である。ただし、図7(b)に示す光デバイスは、第2の実施形態における接続テスト用デバイスであり、集積型光変調デバイスの光機能素子(図1に示す)から位相変調部、偏波ローテータ及び偏波ビームコンバイナを除いた構成である。 FIGS. 6(a), 6(b), 7(a), and 7(b) are plan views for explaining the optical device of the second embodiment. The optical device of the second embodiment includes a wiring board 63, an optical functional element 61, and an optical circuit element 62. FIG. 6(a) is a diagram showing the state in which the optical functional element 61 and the optical circuit element 62 are mounted on the surface of the wiring board 63. The optical functional element 61 and the optical circuit element 62 are flip-chip mounted on the wiring board 63, and their surfaces are in contact with the wiring board 63. The optical circuit element 62 includes optical waveguides for inputting and outputting optical signals, and corresponding input/output optical waveguides for butt coupling. FIG. 6(b) is a diagram showing the wiring board 63 as viewed from the back side. FIG. 7(a) is a diagram showing the wiring board 63 and the optical functional element 61 and the optical circuit element 62 under the wiring board 63 as viewed from the back side of the wiring board 63. Figure 7(b) is a view from the front of an optical device in which an optical functional element 61 and an optical circuit element 62 are butt-coupled. However, the optical device shown in Figure 7(b) is a connection test device in the second embodiment, and has a configuration in which the phase modulation section, polarization rotator, and polarization beam combiner are removed from the optical functional element of the integrated optical modulation device (shown in Figure 1).

 図7(b)に示すように、光回路素子62は、信号光の入力用光導波路621a、出力用光導波路621c、それぞれに対応する突合せ結合用入出力用光導波路621b、621dを備えている。光機能素子61は、突き合わせ用入出力光導波路621b、621dと突合せ結合する突き合わせ用光導波路611a、611bを備えている。光機能素子61及び光回路素子62は、図6(a)、図7(a)に示すように配線基板63にフリップチップで搭載される。配線基板63は、光機能素子61と光回路素子62との間で電気信号を入出力する。 As shown in FIG. 7(b), the optical circuit element 62 has an input optical waveguide 621a and an output optical waveguide 621c for the signal light, and corresponding input/output optical waveguides 621b and 621d for butt coupling. The optical function element 61 has butt-coupled optical waveguides 611a and 611b that butt-couple with the butt-coupled input/output optical waveguides 621b and 621d. The optical function element 61 and the optical circuit element 62 are flip-chip mounted on the wiring board 63 as shown in FIG. 6(a) and FIG. 7(a). The wiring board 63 inputs and outputs electrical signals between the optical function element 61 and the optical circuit element 62.

 第2の実施形態の光デバイスは、光機能素子61と光回路素子62とを結合した光変調デバイスであってもよい。第2の実施形態の光デバイスを光変調デバイスとする場合、光機能素子61は、配線基板63から電気信号の入力により光の位相を変化させる位相変調光導波路と突合せ結合用光導波路で構成され、コの字型の光導波路配置により入出力光導波路611a、611bが片端面に配置される。第2の実施形態の光デバイスを光変調デバイスとした場合、光回路素子62の突き合わせ用入出力用光導波路621b、621dに入力された光が突合せ結合部を介して光機能素子61の側に光結合されたのち、位相変調光導波路により位相変調された光信号へ変換され、再び突合せ結合部を介して光回路素子62に光結合され、偏波ローテータと偏波ビームコンバイナにより偏波合成されて出力される。 The optical device of the second embodiment may be an optical modulation device in which an optical function element 61 and an optical circuit element 62 are coupled together. When the optical device of the second embodiment is an optical modulation device, the optical function element 61 is composed of a phase modulation optical waveguide that changes the phase of light by inputting an electrical signal from the wiring board 63 and an optical waveguide for butt coupling, and the input/output optical waveguides 611a and 611b are arranged on one end surface by a U-shaped optical waveguide arrangement. When the optical device of the second embodiment is an optical modulation device, the light input to the butt input/output optical waveguides 621b and 621d of the optical circuit element 62 is optically coupled to the side of the optical function element 61 through the butt coupling section, and then converted into an optical signal phase-modulated by the phase modulation optical waveguide, optically coupled to the optical circuit element 62 again through the butt coupling section, and output after polarization synthesis by the polarization rotator and the polarization beam combiner.

 図7(b)に示すように、光機能素子61の表面には配線基板63へフリップチップで搭載するための接続用パッド613が設けられている。図6(b)に示すように、配線基板63の表面には、接続用パッド613と電気的に接続される接続用パッド633が設けられている。図6(a)に示すように、光機能素子61及び光回路素子62と配線基板63は、接続用パッド613、633を介して電気的に接続する。また、配線基板63には、第1の実施形態と同様に、調芯用スルーホール632が4つ形成されている。調芯用スルーホール632は、第1の実施形態と同様に、配線基板63を貫通する貫通孔である。 As shown in FIG. 7(b), the surface of the optical functional element 61 is provided with connection pads 613 for flip-chip mounting on the wiring board 63. As shown in FIG. 6(b), the surface of the wiring board 63 is provided with connection pads 633 that are electrically connected to the connection pads 613. As shown in FIG. 6(a), the optical functional element 61 and the optical circuit element 62 are electrically connected to the wiring board 63 via the connection pads 613, 633. Also, in the wiring board 63, four alignment through holes 632 are formed, as in the first embodiment. As in the first embodiment, the alignment through holes 632 are through holes that penetrate the wiring board 63.

 光回路素子62のプラットフォームとしては、サイズが縦2.5mm、横2.0mmのSiPチップが適用できる。第2の実施形態は、膜厚が3.0μmのSiO2アンダークラッドと、膜厚が0.22μm、幅0.5μmのSiコアと、膜厚1.5μmのSiO2のオーバークラッドとが板厚0.625mmのSi基板上に形成されているSiフォトニクスチップを用いた。 A SiP chip measuring 2.5 mm in length and 2.0 mm in width can be used as a platform for the optical circuit element 62. The second embodiment uses a Si photonics chip in which a SiO2 underclad with a thickness of 3.0 μm, a Si core with a thickness of 0.22 μm and a width of 0.5 μm, and a SiO2 overclad with a thickness of 1.5 μm are formed on a Si substrate with a thickness of 0.625 mm.

 光回路素子62は、一方の長辺の側から信号光を入出力し、他方の長辺側を光機能素子61と接続する。接続のため、接続面は研磨されている。入力用光導波路621aから突合せ用入出力光導波路621b、出力用光導波路621cから突合せ用入出力光導波路621dに至るまでの間の光導波路構造はS字型になっている。また、突合せ用入出力光導波路621b、621dの近傍にはマーカ625が設けられている。マーカ625は、光回路素子62が光機能素子61と調芯される際の目印となる The optical circuit element 62 inputs and outputs signal light from one long side, and connects the other long side to the optical function element 61. The connection surface is polished for connection. The optical waveguide structure from the input optical waveguide 621a to the butting input/output optical waveguide 621b and from the output optical waveguide 621c to the butting input/output optical waveguide 621d is S-shaped. Markers 625 are provided near the butting input/output optical waveguides 621b and 621d. The markers 625 serve as guides when the optical circuit element 62 is aligned with the optical function element 61.

 光機能素子61は、サイズが縦2.5mm、横4.0mm、基板厚0.25mmのInPチップである。InPチップは、InP基板をアンダークラッドとし、幅が2.0μm、厚さが0.3μmの化合物半導体がコア、InPが2.0μm堆積されたInPがオーバークラッドとなっている。短辺側に突合せ用入出力光導波路611a、611bが設けられる。また突合せ用入出力光導波路611a、611bの近傍には、マーカ615が設けられている。マーカ615は、光回路素子62のマーカ625と対となり、光回路素子62との調芯の際の目印となる。マーカ615、マーカ625を併せて調芯用マーカ65と記す。 The optical functional element 61 is an InP chip measuring 2.5 mm in length, 4.0 mm in width, and 0.25 mm in substrate thickness. The InP chip has an InP substrate as the underclad, a compound semiconductor with a width of 2.0 μm and a thickness of 0.3 μm as the core, and an InP overclad with 2.0 μm of InP deposited on it. Input/output optical waveguides 611a and 611b for butting are provided on the short side. Markers 615 are provided near the input/output optical waveguides 611a and 611b for butting. Marker 615 is paired with marker 625 of optical circuit element 62, and serves as a guide when aligning with optical circuit element 62. Markers 615 and 625 are collectively referred to as alignment markers 65.

 配線基板63は、サイズが縦4.0mm、横8.0mm、基板厚0.45mmの窒化アルミのセラミック基板上に、接続用パッド633及び調芯用スルーホール632が形成されている。接続用パッド633は、金パッドである。調芯用スルーホール632は、基板を貫通するφ150μmのスルーホールである。 The wiring board 63 is an aluminum nitride ceramic substrate measuring 4.0 mm in length, 8.0 mm in width, and 0.45 mm thick, on which connection pads 633 and alignment through holes 632 are formed. The connection pads 633 are gold pads. The alignment through holes 632 are through holes with a diameter of 150 μm that penetrate the substrate.

 配線基板63への光機能素子61のフリップチップ搭載においては、配線基板63の接続用パッド633にワイヤボンダのボール形成機能を用いて高さ約20μmの金バンプが形成される。フリップチップされた光機能素子61は、金バンプを介して接続用パッド633、613を熱圧着により接続することで配線基板63へ搭載される。 When flip-chip mounting the optical functional element 61 onto the wiring board 63, a gold bump approximately 20 μm in height is formed on the connection pad 633 of the wiring board 63 using the ball formation function of a wire bonder. The flip-chip optical functional element 61 is mounted onto the wiring board 63 by connecting the connection pads 633 and 613 via the gold bumps by thermocompression bonding.

 配線基板63の調芯用スルーホール632は、調芯用マーカ65、または光機能素子61、光回路素子62の突き合わせ用入出力光導波路の突き合わせ部分に対応した位置に形成されている。このため、図6(a)に示すように、配線基板63の裏面から調芯用スルーホール632を介して調芯用マーカ65が視認できる。なお、第2の実施形態においても、第1の実施形態と同様に、調芯用スルーホール632を介して光機能素子61、光回路素子62の突き合わせ用入出力光導波路同士の突き合わせ部分が視認可能である。 The alignment through holes 632 of the wiring board 63 are formed at positions corresponding to the alignment markers 65 or the butt portions of the butt input/output optical waveguides of the optical function element 61 and the optical circuit element 62. Therefore, as shown in FIG. 6(a), the alignment markers 65 can be seen from the back surface of the wiring board 63 through the alignment through holes 632. Note that in the second embodiment, as in the first embodiment, the butt portions of the butt input/output optical waveguides of the optical function element 61 and the optical circuit element 62 can be seen through the alignment through holes 632.

 第2の実施形態では、光機能素子61の側に形成されたマーカ615と光回路素子62の側に形成されたマーカ625とを調芯用スルーホール632から視認可能なように配置する。そして、光機能素子61及び光回路素子62は、マーカ615、625が適正に調芯用マーカ65を形作るように位置調整されてプリアライメントされる。このような工程では、マーカ615、625が光機能素子61、光回路素子62の対向方向と直交する軸に線対称であって、かつ同様の形状を有することが好ましい。マーカ615、625を突き合わせて形成される形状が適正であるか否かを視認により判断し易いからである。 In the second embodiment, the marker 615 formed on the optical functional element 61 side and the marker 625 formed on the optical circuit element 62 side are arranged so as to be visible from the alignment through hole 632. The optical functional element 61 and the optical circuit element 62 are pre-aligned by adjusting their positions so that the markers 615, 625 properly form the alignment marker 65. In such a process, it is preferable that the markers 615, 625 are linearly symmetrical with respect to an axis perpendicular to the opposing direction of the optical functional element 61 and the optical circuit element 62, and have the same shape. This is because it is easy to visually determine whether the shape formed by butting the markers 615, 625 together is proper.

 なお、第2の実施形態では、配線基板63の裏面であって、かつ調芯用スルーホール632をカバーする位置に可視光を透過する透明材料が設けられている。なお、ここで「カバー」は、調芯用スルーホール632を透明材料が覆う構成に限定されず、調芯用スルーホール632に透明材料が充填されるものでもよい。第2の実施形態は、透明材料を厚さ0.03μmの薄膜ガラス基板635とする。このような構成により、第2の実施形態は、配線基板63を熱導電性接着剤等で別基板に取り付けた場合でも、調芯用スルーホール632に熱導電性接着剤が入り込まないようにすることができる。 In the second embodiment, a transparent material that transmits visible light is provided on the back surface of the wiring board 63 at a position that covers the alignment through-hole 632. Note that the "cover" here is not limited to a configuration in which the alignment through-hole 632 is covered with a transparent material, but may be a configuration in which the alignment through-hole 632 is filled with a transparent material. In the second embodiment, the transparent material is a thin-film glass substrate 635 with a thickness of 0.03 μm. With this configuration, the second embodiment can prevent thermally conductive adhesive from entering the alignment through-hole 632 even when the wiring board 63 is attached to another substrate with a thermally conductive adhesive or the like.

 次に、本開示の実施例を説明する。本実施例は、配線基板上にフリップチップ搭載された光機能素子と光回路素子との突合せ結合の調芯において、光信号による調芯が可能な位置へそれぞれの入出力光導波路の位置を合わせるプリアライメントに適用される。本実施例は、調芯用スルーホールを介して入出力光導波路を観察し、プリアライメントの可否を評価した。なお、本実施例の光機能素子は、第2の実施形態で説明したように、位相変調チップから偏波ローテータ、偏波ビームコンバイナを除いたテストデバイスである。本実施例の光機能素子は、信号光入出力光導波路と、突合せ結合用入出力光導波路とを備えている。本実施例は、光機能素子をInPチップ、光回路素子をSiPチップとする。 Next, an example of the present disclosure will be described. This example is applied to pre-alignment, in which the positions of the input and output optical waveguides are adjusted to positions where alignment by optical signals is possible in the alignment of butt-coupled optical functional elements and optical circuit elements flip-chip mounted on a wiring board. In this example, the input and output optical waveguides were observed through the alignment through holes to evaluate whether pre-alignment was possible. Note that the optical functional element of this example is a test device in which the polarization rotator and polarization beam combiner are removed from the phase modulation chip, as described in the second embodiment. The optical functional element of this example includes a signal light input and output optical waveguide and an input and output optical waveguide for butt-coupled. In this example, the optical functional element is an InP chip, and the optical circuit element is a SiP chip.

 InPチップに対するSiPチップの突合せ結合は、SiPチップとInPチップの接続端面を配線基板の裏面側から調芯用スルーホールを介して観察し、入出力光導波路の端面同士を近接させる。この後、作業者は、二か所の調芯用スルーホールを観察し、それぞれにおいて入出力光導波路同士が一致するように配線基板を水平方向に調整することでプリアライメントする。 To butt-couple the SiP chip to the InP chip, the connection end faces of the SiP chip and the InP chip are observed from the back side of the wiring board through the alignment through holes, and the end faces of the input and output optical waveguides are brought close to each other. After this, the worker observes the two alignment through holes and pre-aligns them by adjusting the wiring board horizontally so that the input and output optical waveguides match at each point.

 このとき、二か所のうちの一方の調芯用スルーホールで端面同士を一致させた際、他方が一致しない場合はZ軸回転がずれていると判定し、一致するようにZ軸回転を調整する。後の調芯は、SiPチップの信号光入力用光導波路から波長1.55μmの光を入力し、InPチップを介して伝搬させ、信号光出力用光導波路から出力される光強度をモニタしながら行われる。この調芯においては、先ず、Y軸方向の出力光強度プロファイルを取得し、出力光強度がピークをとるよう位置合わせすることで大まかな調芯位置まで調整する。その後、調芯は、出力光強度が最大になるようX軸とY軸を合わせたアライメントとZ軸回転の調整を行い、端面間のギャップを設計位置(1μm)まで調整することで完了する。 If the end faces are aligned using one of the two alignment through holes, but not the other, it is determined that the Z-axis rotation is misaligned, and the Z-axis rotation is adjusted so that they are aligned. The subsequent alignment is performed by inputting light with a wavelength of 1.55 μm from the signal light input optical waveguide of the SiP chip, propagating it through the InP chip, and monitoring the light intensity output from the signal light output optical waveguide. In this alignment, first, the output light intensity profile in the Y-axis is obtained, and the position is adjusted so that the output light intensity peaks, thereby adjusting to a rough alignment position. After that, the alignment is completed by aligning the X-axis and Y-axis so that the output light intensity is maximized, and adjusting the Z-axis rotation, and adjusting the gap between the end faces to the design position (1 μm).

 また、調芯用マーカによるプリアライメントも、調芯用スルーホールを介して調芯用マーカを観察し、InPチップとSiPチップの調芯用マーカ同士が設計位置になるようにX軸とZ軸回転を調整する。このような調芯により、入出力光導波路の端面を観察して行うプリアライメントと同様にプリアライメントすることができる。 Pre-alignment using the alignment marker is also performed by observing the alignment marker through the alignment through-hole, and adjusting the X-axis and Z-axis rotation so that the alignment markers of the InP chip and the SiP chip are in their designed positions. This type of alignment allows pre-alignment to be performed in the same way as pre-alignment performed by observing the end faces of the input and output optical waveguides.

 SiPチップとInPチップの突合せ結合の固定は、赤外領域で透明なUV硬化型接着剤でSiPチップとInPチップ間を充填し、UV光を照射して接着剤を硬化することによって行われる。このとき、InPチップの入出力光導波路の端面には、充填する樹脂の屈折率に対応した反射防止膜が設けられている。このような光デバイスと共に、本実施例の開示者は、調芯用スルーホールを設けない配線基板を別途用意し、調芯用スルーホールの有無による調芯の煩雑さの違いを確認した。 The butt joint of the SiP chip and the InP chip is fixed by filling the space between the SiP chip and the InP chip with a UV-curable adhesive that is transparent in the infrared region, and then irradiating UV light to harden the adhesive. At this time, an anti-reflection film that corresponds to the refractive index of the resin to be filled is provided on the end face of the input/output optical waveguide of the InP chip. Along with such an optical device, the discloser of this embodiment separately prepared a wiring board that does not have an alignment through hole, and confirmed the difference in the complexity of alignment depending on whether or not there is an alignment through hole.

 図8は、上記の手順により調芯用スルーホールを用いて入出力用光導波路を観察してプリアライメントを実施した後に取得したY軸方向の出力光強度プロファイルと、調芯用スルーホールを介して調芯マーカを観察してプリアライメントした後に取得したY軸方向の出力光強度プロファイルと、を示している。図中に実線で示すプロファイルは、入出力用光導波路の突き合わせ部を、調芯用スルーホールを介して視認しながら行った調芯の結果を示す。破線で示すプロファイルは、調芯用マーカを、調芯用スルーホールを介して視認しながら行った調芯の結果を示す。なお、二つのプロファイルは、先に突き合わせ部を使って調芯をした後、一度チップを離した後に調芯用マーカを使って行って取得された。図8の横軸はY軸のスキャン位置を示し、縦軸はスキャン位置において取得された光強度を示している。 Figure 8 shows the output light intensity profile in the Y-axis direction obtained after observing the input/output optical waveguide using the alignment through-hole and performing pre-alignment according to the above procedure, and the output light intensity profile in the Y-axis direction obtained after observing the alignment marker through the alignment through-hole and performing pre-alignment. The profile shown by the solid line in the figure shows the result of alignment performed while visually observing the butt joint of the input/output optical waveguide through the alignment through-hole. The profile shown by the dashed line shows the result of alignment performed while visually observing the alignment marker through the alignment through-hole. Note that the two profiles were obtained by first performing alignment using the butt joint, then releasing the chip once, and then using the alignment marker. The horizontal axis of Figure 8 shows the scan position on the Y-axis, and the vertical axis shows the light intensity obtained at the scan position.

 図8によれば、初期のY軸方向の位置はピークからずれているものの、プリアライメントによりX軸方向とZ軸方回転向の位置合わせがほぼあっているため、Y軸のプロファイルを1回取得するだけで出力光強度のピーク位置を確認できる。本実施例によれば、その後、さらにアライメントとZ軸回転の調整を行って速やかに調芯を完了することができる。 According to Figure 8, although the initial position in the Y-axis direction is off from the peak, the pre-alignment has almost achieved alignment in the X-axis direction and Z-axis rotation direction, so the peak position of the output light intensity can be confirmed by simply acquiring the Y-axis profile once. According to this embodiment, further adjustments to the alignment and Z-axis rotation can then be made to quickly complete the alignment.

 図9は、本実施例と比較するための光強度のプロファイルを示す図である。図9の横軸はY軸のスキャン位置を示し、縦軸はスキャン位置において取得された光強度を示している。調芯用スルーホールを用いない場合、SiPチップとInPチップを裏面側から観察し、凡その位置に配置する。この後、SiPチップから信号光を入力し、初期位置からX軸の±2μmずつ離しつつY軸方向のプロファイルを取得してピーク位置の探索を行う。図9は、それぞれ初期のX軸位置からの移動量におけるY軸プロファイルを示す。図9中に実線で示すプロファイルは、X軸位置からの移動量が0μm、破線で示すプロファイルは移動量が-16μm、一点鎖線で示すプロファイルは移動量が-18μm、二点鎖線で示すプロファイルは移動量が-20μmのものである。 Figure 9 shows the light intensity profile for comparison with this embodiment. The horizontal axis of Figure 9 indicates the Y-axis scan position, and the vertical axis indicates the light intensity obtained at the scan position. When no alignment through-hole is used, the SiP chip and InP chip are observed from the back side and placed in their approximate positions. After this, signal light is input from the SiP chip, and the Y-axis profile is obtained while moving away from the initial position by ±2 μm on the X-axis to search for the peak position. Figure 9 shows the Y-axis profile for each movement amount from the initial X-axis position. The profile shown by the solid line in Figure 9 is 0 μm from the X-axis position, the profile shown by the dashed line is -16 μm, the profile shown by the dashed line is -18 μm, and the profile shown by the two-dot chain line is -20 μm.

 図9に示すように、Y軸が0μmではピークが見られなかったものの、X軸の移動を繰り返して初期位置から-16μm離したところで初めてピークを確認でき、-18μmで最大ピークが得られ、調芯へ移行することができた。このように調芯用スルーホールが無い場合は、X軸を移動させながら光強度プロファイルを何度も取得してようやくピークを確認することができるため、プロセスが煩雑化する。これに対し、調芯用スルーホールを用いる場合、図8に示すように、X軸の調芯位置を凡その位置まで予め合わせることができ、1回のプロファイル取得でピークを確認し、簡便な手順で調芯することが可能になる。 As shown in Figure 9, no peak was observed when the Y axis was at 0 μm, but the peak was first confirmed when the X axis was moved repeatedly to a position -16 μm away from the initial position, and the maximum peak was obtained at -18 μm, allowing the transition to alignment. In this way, without an alignment through-hole, the light intensity profile must be acquired multiple times while moving the X axis before the peak can be confirmed, making the process complicated. In contrast, when an alignment through-hole is used, as shown in Figure 8, the alignment position on the X axis can be adjusted to the approximate position in advance, the peak can be confirmed with a single profile acquisition, and alignment can be performed with a simple procedure.

 以上のように本実施例の調芯用スルーホールを設けた配線基板へフリップチップ搭載された光機能素子は、光回路素子との突合せ結合において光導波路やマーカを配線基板側から調芯用スルーホールを通して観察することができる。このため、配線基板上にフリップチップ搭載されて裏面側から目印を確認できない場合でも、プリアライメントすることが可能となり、突合せ光結合が簡便な光デバイスを提供することができる。 As described above, the optical functional element flip-chip mounted on the wiring board provided with the alignment through-holes of this embodiment allows the optical waveguide and markers to be observed from the wiring board side through the alignment through-holes when butt-coupled with the optical circuit element. Therefore, even when the markers cannot be confirmed from the back side due to flip-chip mounting on the wiring board, pre-alignment is possible, making it possible to provide an optical device that allows easy butt-coupling optical coupling.

10,30 基板
11,51,61 光機能素子
12,52,62 光回路素子
20,55 ドライバIC
21,56 ワイヤ
30,53,63 配線基板
31 配線
32 金属バンプ
65 調芯用マーカ
111,121 光導波路
112,113 マッハツェンダー干渉計
122 偏波ロータ
123 偏波ビームコンバイナ
511,512,521 入出力光導波路
531 調芯用スルーホール
611a,611b,621b,621d 突き合わせ用光導波路
613 接続用パッド
621a 入力用光導波路
621c 出力用光導波路
615,625 マーカ
632 調芯用スルーホール
633 接続用パッド
635 薄膜ガラス基板
10, 30: Substrate 11, 51, 61: Optical functional element 12, 52, 62: Optical circuit element 20, 55: Driver IC
Reference Signs List 21, 56 Wires 30, 53, 63 Wiring board 31 Wiring 32 Metal bump 65 Alignment markers 111, 121 Optical waveguides 112, 113 Mach-Zehnder interferometer 122 Polarization rotor 123 Polarization beam combiner 511, 512, 521 Input/output optical waveguides 531 Alignment through holes 611a, 611b, 621b, 621d Butt optical waveguide 613 Connection pads 621a Input optical waveguide 621c Output optical waveguides 615, 625 Marker 632 Alignment through holes 633 Connection pads 635 Thin-film glass substrate

Claims (6)

 配線基板と、
 光信号の入出力光導波路を有し、前記配線基板にフリップチップ搭載される光機能素子と、を備え、
 前記光機能素子における前記入出力光導波路の端面が他の入出力光導波路の端面と突き合わせ結合され、
 前記配線基板は、前記配線基板を貫通する調芯用スルーホールを備え、
 前記調芯用スルーホールを介して前記入出力光導波路の端面の位置と、前記他の入出力光導波路の端面の位置との一致、不一致が視認可能である、
 光デバイス。
A wiring board;
an optical functional element having an input/output optical waveguide for an optical signal and being flip-chip mounted on the wiring substrate;
an end face of the input/output optical waveguide in the optical functional element is butt-coupled to an end face of another input/output optical waveguide;
the wiring board includes an alignment through hole penetrating the wiring board,
whether the position of the end face of the input/output optical waveguide coincides with the position of the end face of the other input/output optical waveguide can be visually confirmed through the alignment through hole;
Optical devices.
 前記調芯用スルーホールを介して前記入出力光導波路の端面と前記他の入出力光導波路の端面との結合部分が視認可能である、請求項1に記載の光デバイス。 The optical device according to claim 1, wherein the coupling portion between the end face of the input/output optical waveguide and the end face of the other input/output optical waveguide is visible through the alignment through hole.  前記調芯用スルーホールを介して前記入出力光導波路の端面を示す調芯用マーカと、前記他の入出力光導波路の端面を示す調芯用マーカとが視認可能である、請求項1に記載の光デバイス。 The optical device according to claim 1, in which an alignment marker indicating the end face of the input/output optical waveguide and an alignment marker indicating the end face of the other input/output optical waveguide are visible through the alignment through hole.  前記調芯用マーカは、前記入出力光導波路が形成される素子と、前記他の入出力光導波路が形成される素子とにそれぞれ設けられ、前記入出力導波路と前記他の入出力光導波路との対向方向と直交する軸に線対称であって、かつ同様の形状を有する2つのマーカで構成される、請求項3に記載の光デバイス。 The optical device according to claim 3, wherein the alignment marker is provided on an element on which the input/output optical waveguide is formed and on an element on which the other input/output optical waveguide is formed, and is composed of two markers that are linearly symmetrical with respect to an axis perpendicular to the opposing direction between the input/output waveguide and the other input/output optical waveguide and have the same shape.  前記調芯用スルーホールは、可視光を透過する材料でカバーされている、請求項1に記載の光デバイス。 The optical device of claim 1, wherein the alignment through-hole is covered with a material that transmits visible light.  配線基板と、光信号の入出力光導波路を有し、前記配線基板にフリップチップ搭載される光機能素子と、を備え、前記光機能素子における前記入出力光導波路の端面が他の入出力光導波路の端面と突き合わせ結合され、前記配線基板が前記配線基板を貫通する調芯用スルーホールを備え、前記調芯用スルーホールを介して前記入出力光導波路の端面の位置と、前記他の入出力光導波路の端面の位置との一致、不一致が視認可能である光デバイスにおいて行われる位置合わせ方法であって、
 前記調芯用スルーホールを介して前記入出力光導波路の端面と前記他の入出力光導波路の端面とを視認しながら前記入出力光導波路と前記他の入出力光導波路とのX軸及びY軸を調整した後、前記入出力光導波路及び前記他の入出力光導波路を透過する光強度プロファイルを取得して光強度プロファイルのピークをY軸方向に位置合わせすることによりプリアライメントする、
光デバイスの位置合わせ方法。
1. An alignment method for an optical device comprising: a wiring board; and an optical functional element having input and output optical waveguides for optical signals and flip-chip mounted on the wiring board, an end face of the input and output optical waveguide in the optical functional element is butt-coupled to an end face of another input and output optical waveguide, the wiring board has an alignment through hole penetrating the wiring board, and a match or mismatch between a position of the end face of the input and output optical waveguide and a position of the end face of the other input and output optical waveguide can be visually confirmed via the alignment through hole,
adjusting the X-axis and Y-axis of the input/output optical waveguide and the other input/output optical waveguide while visually checking the end face of the input/output optical waveguide and the end face of the other input/output optical waveguide through the alignment through hole, and then acquiring a light intensity profile transmitted through the input/output optical waveguide and the other input/output optical waveguide, and aligning the peak of the light intensity profile in the Y-axis direction, thereby performing pre-alignment.
A method for aligning optical devices.
PCT/JP2022/045575 2022-12-09 2022-12-09 Optical device and optical device positioning method WO2024122071A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/045575 WO2024122071A1 (en) 2022-12-09 2022-12-09 Optical device and optical device positioning method
JP2024562556A JPWO2024122071A1 (en) 2022-12-09 2022-12-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/045575 WO2024122071A1 (en) 2022-12-09 2022-12-09 Optical device and optical device positioning method

Publications (1)

Publication Number Publication Date
WO2024122071A1 true WO2024122071A1 (en) 2024-06-13

Family

ID=91379038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045575 WO2024122071A1 (en) 2022-12-09 2022-12-09 Optical device and optical device positioning method

Country Status (2)

Country Link
JP (1) JPWO2024122071A1 (en)
WO (1) WO2024122071A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332984A (en) * 1997-06-04 1998-12-18 Japan Aviation Electron Ind Ltd Optical integrated device
JPH1126784A (en) * 1997-07-03 1999-01-29 Nec Corp Optical semiconductor module and manufacture thereof
JP2013083894A (en) * 2011-10-12 2013-05-09 Fujitsu Component Ltd Optical connector and signal processor
US20140185978A1 (en) * 2012-12-28 2014-07-03 Futurewei Technologies, Inc. Hybrid integration using folded mach-zehnder modulator array block
JP2017003670A (en) * 2015-06-05 2017-01-05 日本電信電話株式会社 Hybrid integrated optical transmitter
WO2019171806A1 (en) * 2018-03-09 2019-09-12 パナソニックIpマネジメント株式会社 Optical device and optical detection system
WO2019244560A1 (en) * 2018-06-22 2019-12-26 日本電信電話株式会社 Connection structure for optical waveguide chip

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332984A (en) * 1997-06-04 1998-12-18 Japan Aviation Electron Ind Ltd Optical integrated device
JPH1126784A (en) * 1997-07-03 1999-01-29 Nec Corp Optical semiconductor module and manufacture thereof
JP2013083894A (en) * 2011-10-12 2013-05-09 Fujitsu Component Ltd Optical connector and signal processor
US20140185978A1 (en) * 2012-12-28 2014-07-03 Futurewei Technologies, Inc. Hybrid integration using folded mach-zehnder modulator array block
JP2017003670A (en) * 2015-06-05 2017-01-05 日本電信電話株式会社 Hybrid integrated optical transmitter
WO2019171806A1 (en) * 2018-03-09 2019-09-12 パナソニックIpマネジメント株式会社 Optical device and optical detection system
WO2019244560A1 (en) * 2018-06-22 2019-12-26 日本電信電話株式会社 Connection structure for optical waveguide chip

Also Published As

Publication number Publication date
JPWO2024122071A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
US11137544B2 (en) Method and system for grating couplers incorporating perturbed waveguides
US10466433B2 (en) Optical module including silicon photonics chip and coupler chip
KR101054174B1 (en) Semiconductor Chip Modules & Modules
US20180188459A1 (en) Method And System For A Chip-On-Wafer-On-Substrate Assembly
US7092603B2 (en) Optical bridge for chip-to-board interconnection and methods of fabrication
US11611004B2 (en) Opto-electronic integrated circuit and computing apparatus
TWI624705B (en) Optical module including silicon photonics chip and coupler chip
JP4060023B2 (en) Optical waveguide transceiver module
KR19980030121A (en) Optical module with lens aligned in V-groove and manufacturing method thereof
KR20070085080A (en) Electro-optical module manufacturing system and method
JP2024167291A (en) Optical semiconductor module and manufacturing method thereof
Lamprecht et al. Electronic‐photonic board as an integration platform for Tb/s multi‐chip optical communication
JP7617474B2 (en) Integrated optical device and method for manufacturing the same
US20240411096A1 (en) Optoelectronic package structure
WO2024122071A1 (en) Optical device and optical device positioning method
JPH1195062A (en) Optical connection structure
JPH1152198A (en) Optical connection structure
WO2024013944A1 (en) Integrated optical device and alignment method for integrated optical device
US20230350140A1 (en) Photonic chip, method for assembling an optical part and said photonic chip, and photonic component resulting therefrom
Nieweglowski et al. Demonstration of board-level optical link with ceramic optoelectronic multi-chip module
US20240159969A1 (en) Optical connecting structure, package structure, optical module and manufacturing method for package structure
WO2022264321A1 (en) Package structure of optical circuit device and method for manufacturing same
WO2022003794A1 (en) Integrated-type optical device
JP2024060736A (en) Optical connection structure and optical module
WO2022208662A1 (en) Optical connection structure, package structure, and optical module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22967913

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024562556

Country of ref document: JP