[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024121978A1 - Collision avoidance assistance device - Google Patents

Collision avoidance assistance device Download PDF

Info

Publication number
WO2024121978A1
WO2024121978A1 PCT/JP2022/045118 JP2022045118W WO2024121978A1 WO 2024121978 A1 WO2024121978 A1 WO 2024121978A1 JP 2022045118 W JP2022045118 W JP 2022045118W WO 2024121978 A1 WO2024121978 A1 WO 2024121978A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
collision
oncoming
deceleration
host vehicle
Prior art date
Application number
PCT/JP2022/045118
Other languages
French (fr)
Japanese (ja)
Inventor
健太 軍司
聡 松田
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/045118 priority Critical patent/WO2024121978A1/en
Publication of WO2024121978A1 publication Critical patent/WO2024121978A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a collision avoidance support device that supports the driving operation of a vehicle to avoid collisions with surrounding objects or to reduce damage caused by collisions.
  • Patent Document 1 The technology described in Patent Document 1 is an example of a collision avoidance support device for an oncoming vehicle traveling in the opposite lane when the vehicle turns right at an intersection.
  • the collision avoidance support device described in Patent Document 1 determines the possibility of the vehicle colliding with an oncoming vehicle based on the path of the vehicle turning right and the position of the oncoming vehicle, and if it determines that there is a possibility of a collision, it applies the brakes to avoid a collision with the oncoming vehicle.
  • Patent Document 1 the direction of the vehicle when the vehicle switches its turn signal to the on state is used as a reference, and the deflection angle, which is the angle of change in the direction of the vehicle turning in the direction of the on state of the turn signal, is equal to or greater than a threshold value, and the operation of collision avoidance control is inhibited.
  • the collision avoidance assistance device when there is an oncoming vehicle (hereinafter referred to as the first oncoming vehicle) traveling in the oncoming lane closest to the vehicle (hereinafter referred to as the first oncoming lane) as seen from the vehicle at an intersection with multiple oncoming lanes (hereinafter referred to as the first oncoming vehicle) and an oncoming vehicle (hereinafter referred to as the second oncoming vehicle) traveling in the oncoming lane further back from the vehicle (hereinafter referred to as the second oncoming lane), if it is determined that the vehicle has already entered the first oncoming lane and is likely to collide only with the second oncoming vehicle that is closer to the vehicle than the first oncoming vehicle, if the threshold value for comparing with the deflection angle is small, the operation of the brakes for the second oncoming vehicle is suppressed, so there is a possibility of collision with the second oncoming vehicle.
  • the first oncoming vehicle traveling in the oncoming lane closest to the vehicle (hereinafter referred to as the first oncoming lane) as seen
  • the vehicle will stop before entering the second oncoming lane by applying the brakes, avoiding a collision with the second oncoming vehicle.
  • applying the brakes at the above timing will cause the vehicle to stop in the first oncoming lane, meaning that there is a possibility that the first oncoming vehicle, which would not have been a collision with the vehicle after avoiding a collision with the second oncoming vehicle, may collide with the side of the vehicle, which could potentially cause secondary damage.
  • the present invention has been made in consideration of the above problems, and aims to provide a collision avoidance support device that avoids a collision with a second oncoming vehicle even when the vehicle has already entered the first oncoming lane, while also avoiding being hit by the first oncoming vehicle after avoiding a collision with the second oncoming vehicle.
  • the present invention aims to provide a collision avoidance support device that can avoid a collision with the second oncoming vehicle without stopping the vehicle by using a braking force or deceleration smaller than the braking force or deceleration required for the vehicle to stop in front of the second oncoming lane when there is a possibility of the vehicle colliding with the second oncoming vehicle, while avoiding a collision with the first vehicle without stopping the vehicle in the first oncoming lane and preventing secondary damage by releasing the braking force or deceleration instructed to the vehicle after avoiding a collision with the second oncoming vehicle.
  • the present invention comprises a surrounding environment recognition unit that detects information about targets around the host vehicle, a collision prediction unit that calculates a collision margin time, which is the time until a collision occurs between the host vehicle and one of the targets that is approaching the host vehicle when the host vehicle crosses an oncoming lane, a control judgment unit that calculates a timing to decelerate the host vehicle by a first deceleration if the collision margin time is equal to or less than a braking operation judgment threshold, and an oncoming lane situation judgment unit that judges whether the oncoming lane has two or more lanes based on an input from the surrounding environment recognition unit and distinguishes vehicles traveling in two of the oncoming lanes, and the oncoming lane situation judgment unit determines the lane in front of the host vehicle as a first driving lane among the oncoming lanes, and judges whether a vehicle traveling in the first driving lane is traveling in the oncoming lane.
  • the vehicle traveling on the opposite lane is defined as a first traveling vehicle
  • the lane on the far side of the host vehicle as viewed from the host vehicle is defined as a second traveling lane
  • the vehicle traveling on the second traveling lane is defined as a second traveling vehicle
  • the collision prediction unit calculates a second collision margin time, which is the time until the host vehicle collides with the second traveling vehicle, based on the result of the oncoming lane situation judgment unit, and calculates a predicted passing time, which is the time required for the second traveling vehicle to pass an intersection area between the predicted course of the second traveling vehicle and the predicted course of the host vehicle
  • the control judgment unit sets the deceleration for decelerating the host vehicle to a second deceleration that is smaller than the first deceleration based on the second collision margin time and the predicted passing time.
  • the host vehicle avoids a collision with the second oncoming vehicle, while also avoiding being hit by the first oncoming vehicle after avoiding the collision with the second oncoming vehicle.
  • the host vehicle avoids a collision with the second oncoming vehicle without stopping the host vehicle by using a braking force or deceleration smaller than the braking force or deceleration required for the host vehicle to stop in front of the second oncoming vehicle lane, and after avoiding the collision with the second oncoming vehicle, the host vehicle avoids a collision with the first vehicle without stopping in the first oncoming lane, thereby preventing secondary damage.
  • 1 is a configuration diagram of an example of a vehicle equipped with an embodiment of a collision avoidance support device to which the present invention is applied; 1 is a functional block diagram of an embodiment of a collision avoidance support device to which the present invention is applied; 3 is an example of a flowchart of collision avoidance assistance in an embodiment of a collision avoidance assistance device to which the present invention is applied.
  • An example of free space calculation. 13 shows an example of the positions of the host vehicle 10 and a second oncoming vehicle according to a predicted overlap rate. 13 illustrates an example of a second collision region according to a predicted overlap ratio. 13 is an example of a flowchart of a second control execution determination.
  • 13 shows an example of the positions of the host vehicle 10 and the first oncoming vehicle according to the first oncoming lane passing time and the first collision margin time. 13 shows an example of the positions of the host vehicle 10 and a second oncoming vehicle according to the predicted collision position arrival time and the total time for passing through the second collision area.
  • FIG. 1 is a schematic diagram of a vehicle equipped with an embodiment of a collision avoidance support device according to the present invention.
  • the collision avoidance support device is a device that is mounted on a vehicle (own vehicle) 10 and supports the avoidance of collisions with obstacles around the vehicle 10.
  • the vehicle 10 is composed of a front camera 2F (hereinafter sometimes simply referred to as camera 2) mounted on the front of the vehicle, a radar 3, a right front wheel speed sensor 5FR that detects the wheel speed of the right front wheel 4FR, a right rear wheel speed sensor 5RR that detects the wheel speed of the right rear wheel 4RR, a left rear wheel speed sensor 5RL that detects the wheel speed of the left rear wheel 4RL, a left front wheel speed sensor 5FL that detects the wheel speed of the left front wheel 4FL, a steering angle sensor 6, a yaw rate sensor 7, a meter 8, a buzzer 9, a collision avoidance support device 11, a braking control device 12, etc.
  • a front camera 2F hereinafter sometimes simply referred to as camera 2
  • a radar 3 a right front wheel speed sensor 5FR that detects the wheel speed of the right front wheel 4FR
  • a right rear wheel speed sensor 5RR that detects the wheel speed of the right rear wheel 4RR
  • a left rear wheel speed sensor 5RL that detect
  • the front camera 2F is equipped with a lens and an image sensor, and is appropriately positioned so that it can capture images of the environment surrounding the vehicle 10.
  • the images captured by the front camera 2F are transmitted to the collision avoidance support device 11, where they are processed.
  • the collision avoidance support device 11 identifies the object type of the object (hereinafter referred to as the object as appropriate) around the vehicle 10 based on the images transmitted from the front camera 2F.
  • object types include automobiles, pedestrians, motorcycles, driving paths, lanes such as white and yellow lines, traffic signals, traffic signs, and obstacles.
  • one camera 2 is disposed to capture images of the environment surrounding the vehicle 10, but multiple cameras may be disposed.
  • the camera 2 may be a monocular camera or a stereo camera, and the type of camera and the functions of the camera may be changed as necessary.
  • the radars 3 are installed at the four corners of the vehicle 10, and each radar 3, for example, emits electromagnetic waves and receives reflected waves from surrounding targets to measure the position and speed of targets around the vehicle 10, and transmits the measurement results to the collision avoidance support device 11.
  • the radar 3 may be, for example, a millimeter wave radar or a laser radar, or an ultrasonic sensor instead of a radar.
  • a combination of multiple sensors may be used to measure the speed and position of targets.
  • a combination of the camera 2 and the radar 3 is used, but, for example, a combination of a lidar may be used instead of the radar 3, or multiple sensors may be used.
  • the number and installation locations of the radars 3 may be changed as necessary.
  • Right front wheel 4FR, right rear wheel 4RR, left rear wheel 4RL, and left front wheel 4FL are arranged on the front, rear, left and right sides of the vehicle body of vehicle 10, and each of these wheels 4FR, 4RR, 4RL, and 4FL is provided with a right front wheel speed sensor 5FR, right rear wheel speed sensor 5RR, left rear wheel speed sensor 5RL, and left front wheel speed sensor 5FL.
  • Each wheel speed sensor 5FR, 5RR, 5RL, and 5FL detects the respective wheel speed and transmits each wheel speed to collision avoidance support device 11.
  • Collision avoidance support device 11 calculates the speed of vehicle 10 based on the information on each wheel speed.
  • the right front wheel 4FR, right rear wheel 4RR, left rear wheel 4RL, and left front wheel 4FL will be referred to as wheels 4, and the right front wheel speed sensor 5FR, right rear wheel speed sensor 5RR, left rear wheel speed sensor 5RL, and left front wheel speed sensor 5FL will be referred to as wheel speed sensors 5.
  • the steering angle sensor 6 is a sensor that detects the rotation angle (steering angle) of the steering wheel of the vehicle 10, and the steering angle detected by the steering angle sensor 6 is transmitted to the collision avoidance support device 11.
  • the yaw rate sensor 7 detects the yaw rate of the vehicle 10, and the yaw rate detected by the yaw rate sensor 7 is transmitted to the collision avoidance support device 11.
  • the meter 8 displays a warning image to inform the driver of the high possibility of a collision.
  • the meter 8 is provided as an example of a means for displaying a warning image, but instead of the meter 8, for example, a part of a car navigation system may be used, or an image may be displayed using a head-up display.
  • the buzzer 9 sounds a warning sound to inform the driver of the high possibility of a collision, for example, when the collision avoidance support device 11 determines that there is a high possibility of a collision between the vehicle 10 and a target.
  • the buzzer 9 is provided as an example of a means for sounding a warning sound, but instead of the buzzer 9, for example, it may be part of a car navigation system, or the warning sound may be sounded from a speaker.
  • the collision avoidance support device 11 is configured to be capable of performing a collision avoidance support operation to avoid a collision between the vehicle 10 and a target or to reduce damage from the collision.
  • the collision avoidance support device 11 is configured to be capable of outputting control signals for activating the meter 8, the buzzer 9, and the brake control device 12 based on information received from the above-mentioned multiple sensors.
  • the collision avoidance support device 11 is configured as, for example, an ECU (Electric Control Unit) mounted on the vehicle 10, and assists in any or all of the following to realize the collision avoidance support operation: displaying a warning screen on the meter 8, sounding an alarm on the buzzer 9, and automatically activating the brakes via the brake control device 12.
  • the brake control device 12 controls the brake device of the vehicle 10.
  • the brake control device 12 is a component that can adjust the braking force of the brake device in response to a control signal output from the collision avoidance support device 11, and includes brake actuators such as a hydraulic pump and a valve unit.
  • FIG. 2 shows the internal functional block configuration of the collision avoidance support device 11 shown in FIG. 1.
  • Such functional blocks are realized by hardware, software, or a combination of these.
  • the collision avoidance support device 11 includes a vehicle information recognition unit 201, a surrounding environment recognition unit 202, an intersection crossing prediction unit 203 for the vehicle, an oncoming lane situation judgment unit 204, a collision prediction unit 205, and a collision determination unit 206.
  • the vehicle information recognition unit 201 calculates information about the host vehicle 10, such as the turning radius and acceleration of the host vehicle 10, based on the speed of the host vehicle 10 obtained from the wheel speed sensor 5 and the yaw rate of the host vehicle 10 obtained from the yaw rate sensor 7, to be used by the intersection crossing prediction unit 203, the collision prediction unit 205, and the collision determination unit 206.
  • the yaw rate may also be obtained from the steering angle of the host vehicle 10 obtained from the steering angle sensor 6.
  • the surrounding environment recognition unit 202 determines the type of object, such as a vehicle, bicycle, or pedestrian, based on the obstacle information acquired from the camera 2 and radar 3, and unifies the current object position and speed information into a format and coordinate system used by the collision avoidance support device 11.
  • the coordinate system used in this embodiment has the center of the front end of the vehicle 10 as the origin, and determines the object position and speed with the overall length of the vehicle 10 as the vertical direction and the overall width as the horizontal direction.
  • the current object position and object speed may be determined taking into account the forward/backward and left/right errors of the camera 2 and radar 3.
  • object information required for the oncoming lane situation determination unit 204 and collision prediction unit 205 such as the acceleration of the object, is calculated.
  • the surrounding environment recognition unit 202 obtains the position, angle, and number of oncoming lanes from the conditions of the road on which the vehicle is traveling and the conditions of oncoming lanes obtained from camera 2.
  • the intersection crossing prediction unit 203 determines whether the vehicle 10 is turning right or left at the intersection based on information about the vehicle 10 and information calculated by the vehicle information recognition unit 201, and determines whether the vehicle 10 is entering the first oncoming lane based on the positional relationship of the oncoming lane acquired by the surrounding environment recognition unit 202.
  • the oncoming lane situation judgment unit 204 is composed of an oncoming vehicle judgment unit 204A and a free space detection unit 204B.
  • the oncoming vehicle determination unit 204A determines whether there are multiple oncoming lanes (two or more lanes) based on the target position, target speed, target acceleration, and oncoming lane information acquired from the surrounding environment recognition unit 202, and if there are multiple oncoming lanes, determines which oncoming lane the target is traveling in (distinguishes the vehicle traveling in the oncoming lane).
  • the lane in front of the vehicle 10 is determined as the first driving lane, and a vehicle traveling in the first oncoming lane is determined as the first oncoming vehicle (first traveling vehicle), and the lane in the farthest from the vehicle 10 is determined as the second driving lane, and a vehicle traveling in the second oncoming lane is determined as the second oncoming vehicle (second traveling vehicle).
  • the free space detection unit 204B calculates (detects) a section in the first oncoming lane where there is no oncoming vehicle (hereinafter referred to as a free space) based on information about the road shape and the first oncoming lane.
  • the collision prediction unit 205 is composed of a collision prediction time calculation unit 205A and a collision area passage time calculation unit 205B.
  • the collision prediction time calculation unit 205A predicts the paths of the host vehicle 10 and the first and second oncoming vehicles based on information about the host vehicle 10, the first and second oncoming vehicles, and the road shape. Based on the predicted paths of the host vehicle 10, the first and second oncoming vehicles, it determines whether there is a possibility that the host vehicle 10 will collide with the first and second oncoming vehicles, and calculates the time until a collision with the host vehicle 10 is predicted (hereinafter referred to as the collision margin). As a result, the collision prediction time calculation unit 205A calculates the collision margin, which is the time until a collision (the time until a collision is predicted) with a vehicle approaching the host vehicle 10 among the targets detected by the surrounding environment recognition unit 202 when the host vehicle 10 crosses the oncoming lane.
  • the collision area passing time calculation unit 205B calculates the area where a collision between the host vehicle 10 and the second oncoming vehicle is predicted based on the time until a collision with the host vehicle 10 is predicted, in other words, the intersection area between the predicted path of the second oncoming vehicle and the predicted path of the host vehicle 10 (hereinafter referred to as the second collision area), and calculates the time required for the second oncoming vehicle to pass through the second collision area (intersection area) from its current position.
  • the collision determination unit 206 is composed of a collision avoidance operation determination unit 206A and a control instruction unit 206B.
  • the collision avoidance operation decision unit 206A requests the first oncoming vehicle and the second oncoming vehicle to issue a warning and apply the brakes based on the calculation results of the collision prediction unit 205.
  • the control instruction unit 206B requests the meter 8 to display a warning screen and requests the buzzer 9 to sound an alarm based on the alarm activation request obtained from the collision avoidance operation decision unit 206A.
  • control instruction unit 206B outputs a control command value required to avoid a collision with a target to the brake control device 12 based on the braking operation request acquired from the collision avoidance operation decision unit 206A.
  • the control instruction unit 206B outputs a control command value to the brake control device 12 for decelerating the host vehicle 10 to avoid a collision with a target.
  • the control instruction unit 206B is capable of outputting a first deceleration or a first braking force, and a second deceleration or a second braking force, where the second deceleration is smaller than the first deceleration and the second braking force is also smaller than the first braking force.
  • control instruction unit 206B switches between the first deceleration and the second deceleration or the first braking force and the second braking force in response to an operation request from the collision avoidance operation determination unit 206A.
  • FIG. 3 is an example of a flowchart for collision avoidance assistance in an embodiment of the present invention when a first oncoming lane and a second oncoming lane exist and the vehicle 10 has already entered the first oncoming lane.
  • the method for determining whether the vehicle 10 has entered the first oncoming lane may be based on the positional relationship between the oncoming lane position acquired from the surrounding environment recognition unit 202 and the vehicle 10, and is not limited to the method described in this embodiment.
  • step S401 of FIG. 3 it is determined whether the host vehicle 10 is turning right or left at the intersection based on information from the vehicle information recognition unit 201.
  • a determination method it may be determined that the host vehicle 10 is turning right or left at the intersection based on the yaw rate, turning radius, or both the yaw rate and turning radius of the host vehicle 10, or the host vehicle 10 may be decelerated based on the speed information of the host vehicle 10 to add to the determination conditions. It may also be determined that the host vehicle 10 is traveling within the intersection based on road signs acquired from the camera 2.
  • step S401 If it is determined in step S401 that the host vehicle 10 is turning right or left at the intersection, the process proceeds to step S402, and if the host vehicle 10 is not turning right or left, the process after step S401 is not performed.
  • collision avoidance support is performed when the host vehicle 10 is turning right or left, but collision avoidance support may be performed in the conventional manner even if the host vehicle 10 is not turning right or left.
  • This step S401 is executed by the intersection crossing prediction unit 203.
  • step S402 the free space of the first oncoming lane is calculated.
  • the free space is calculated based on information about the first oncoming vehicle obtained from the surrounding environment recognition unit 202.
  • FIG. 4 shows the free space when the first oncoming vehicle is not detected (row (A) of FIG. 4), when the first oncoming vehicle is located away from the vehicle 10 (row (B) of FIG. 4), and when the first oncoming vehicle is located close to the vehicle 10 (row (C) of FIG. 4).
  • 1000 indicates the white line of the road
  • the area 1001 surrounded by the white line 1000 indicates the first oncoming lane
  • the area 1002 indicates the second oncoming lane.
  • the arrow 1010 indicates the travel trajectory of the vehicle 10.
  • Area 1003 indicates the free space calculated in step S402, and the free space is an area on the first oncoming lane where no oncoming vehicle exists.
  • 1004 indicates the length of the free space based on the current position of the vehicle 10. As in FIG. 4(A), if the first oncoming vehicle cannot be detected, the vertical length 1004 of the free space may be set to the limit distance that the sensor can detect, or a collision determination with the first oncoming vehicle may not be performed after step S402. As in FIG. 4(B) and FIG.
  • the vertical length of the free space may be calculated based on the current position of the vehicle 10, and information about the free space may be used when determining a collision with the first oncoming vehicle after step S402.
  • This step S402 is executed by the free space detection unit 204B of the oncoming lane situation determination unit 204.
  • step S403 the possibility of collision between the host vehicle 10 and the first oncoming vehicle is determined (hereinafter referred to as the first collision determination) from information regarding the host vehicle 10, the first oncoming vehicle, and the second oncoming vehicle, and the information regarding the free space calculated in step S402, and the possibility of collision between the host vehicle 10 and the second oncoming vehicle is determined (hereinafter referred to as the second collision determination).
  • the first collision determination the positions of the host vehicle 10 and the first oncoming vehicle after a predetermined time are predicted, and if there is an overlapping area between the predicted positions of the host vehicle 10 and the first oncoming vehicle and the host vehicle 10, it is determined that there is a possibility of collision between the host vehicle 10 and the second oncoming vehicle.
  • the second collision determination if there is an overlapping area between the predicted positions of the host vehicle 10 and the second oncoming vehicle and the host vehicle 10, it is determined that there is a possibility of collision between the host vehicle 10 and the second oncoming vehicle.
  • the predicted position may be calculated assuming that the behavior of the host vehicle 10 is a steady turn with constant speed and yaw rate, or the predicted position may be calculated taking into account the change in the host vehicle's acceleration and yaw rate, and the method of calculating the predicted position of the host vehicle 10 is not limited to the method of this embodiment.
  • the predicted positions may be calculated assuming that the behavior of the oncoming vehicles is a constant-speed linear motion, or the predicted positions may be calculated taking into account the acceleration of the first and second oncoming vehicles, and the method of calculating the predicted positions of the first and second oncoming vehicles is not limited to the method of this embodiment.
  • the first collision margin time the time that will elapse until a collision between the host vehicle 10 and the first oncoming vehicle is predicted. Based on the first collision margin time, the position of the host vehicle 10 at the time when a collision between the host vehicle 10 and the first oncoming vehicle is predicted (hereinafter referred to as the first collision margin position) and the position of the first oncoming vehicle (hereinafter referred to as the first oncoming vehicle collision margin position) are calculated.
  • the second collision margin time the time that will elapse until a collision between the host vehicle 10 and the second oncoming vehicle is predicted. Based on the second collision margin time, the position of the host vehicle 10 at the time when a collision between the host vehicle 10 and the second oncoming vehicle is predicted (hereinafter referred to as the second collision predicted position) and the position of the second oncoming vehicle (hereinafter referred to as the second oncoming vehicle collision predicted position) are calculated.
  • the first collision margin time is calculated as the time it takes for the first oncoming vehicle to reach the second predicted collision position from its current position.
  • the judgment is made based on information about the host vehicle 10 and the first oncoming vehicle, but the judgment may also be made based on information about the free space. For example, in step S402, if the length of the free space is longer than a predetermined distance, it may be determined that there is no first oncoming vehicle that may collide with the host vehicle 10, and the first collision margin time may be set to a large value, or the length of the free space may be set to the time required for the first oncoming vehicle to travel at a previously set maximum expected speed.
  • the second collision margin time is also set to a large value.
  • This step S403 is executed by the collision prediction time calculation unit 205A of the collision prediction unit 205.
  • step S404 the process from step S404 onwards is switched based on the result of the first collision determination. If the result of the first collision determination indicates that there is a possibility of a collision with the first oncoming vehicle, the process proceeds to step S409, and if the result indicates that there is no possibility of a collision with the first oncoming vehicle, the process proceeds to step S405.
  • step S405 the process after step S405 is switched based on the result of the second collision judgment. If it is determined that there is a possibility of a collision with the second oncoming vehicle as a result of the second collision judgment, the process proceeds to step S406. If it is determined that there is no possibility of a collision with the second oncoming vehicle, deceleration is not requested because there is no possibility of a collision with the first oncoming vehicle or the second oncoming vehicle.
  • the host vehicle 10 When the host vehicle 10 is decelerating due to the second deceleration or braking force, if the deceleration of the host vehicle 10 eliminates the possibility of a collision with the second oncoming vehicle (at the point when the possibility of a collision with the second oncoming vehicle becomes low), the request for the second deceleration or braking force is cancelled. Cancelling the request for the deceleration or braking force in the above case allows the host vehicle 10 to quickly pass through the first oncoming lane without stopping, and prevents the host vehicle 10 from being hit by the first oncoming vehicle after avoiding a collision with the second oncoming vehicle.
  • step S406 if it is determined that there is a possibility that the host vehicle 10 will collide with the second oncoming vehicle, the time that will pass until the second oncoming vehicle passes the second collision area (hereinafter referred to as the second collision area predicted passing time) is calculated based on the second collision predicted position and the second oncoming vehicle collision predicted position.
  • This step S406 is executed by the collision area passing time calculation unit 205B of the collision prediction unit 205.
  • the second collision area is an intersection area between the predicted path of the second oncoming vehicle and the predicted path of the vehicle 10, and the size of the second collision area is calculated based on the positional relationship between the second predicted collision position and the predicted collision position of the second oncoming vehicle.
  • a margin distance may be set that takes into account the vehicle speed, or the speed of the second oncoming vehicle, or the detection accuracy of the sensor.
  • the predicted passage time through the second collision area varies depending on the overlap ratio (hereinafter referred to as the predicted overlap rate) between the vehicle 10 and the second oncoming vehicle at the point where the collision between the vehicle 10 and the second oncoming vehicle is predicted (second collision area), so the predicted passage time through the second collision area may be calculated based on the predicted overlap rate.
  • 1110 indicates the host vehicle 10 at the second predicted collision position.
  • 1112A and 1112B indicate the second predicted collision position with an oncoming vehicle.
  • 1102 indicates the second collision area.
  • a position where the paths of the right and left sides of the host vehicle 10 and the path of the second oncoming vehicle intersect is calculated from the positions of the right and left sides of the host vehicle 10 at the second predicted collision position, and points 1115 and 1116 are used as vertices to form a rectangle parallel to the overall length and width of the second oncoming vehicle at the second predicted collision position with the second oncoming vehicle.
  • Arrows 1101A and 1101B indicate the length of the second oncoming vehicle entering the second collision area, and the predicted overlap rate is the percentage of 1101A or 1101B relative to the overall length of the second oncoming vehicle in the second collision area.
  • the vehicle 10 collides with the second oncoming vehicle from the bottom left to the top right, but for example, if the vehicle 10 collides perpendicularly with the second oncoming vehicle, the overall length of the second oncoming vehicle in the second collision area will be equal to the overall width of the vehicle 10, and so the calculated predicted overlap rate will be the percentage relative to the overall width of the vehicle 10.
  • 1117 indicates the second oncoming vehicle when it passes through the second collision area.
  • Lengths 1104A and 1104B indicate the travel distance required for all of the second oncoming vehicles to pass through the second collision area, and can be calculated based on the predicted overlap rate and the overall length of the second oncoming vehicle. The length from the front end of the second oncoming vehicle to point 1116 at the predicted collision position of the second oncoming vehicle is calculated from the predicted overlap rate, and lengths 1104A and 1104B are calculated by adding the overall length of the second oncoming vehicle to the calculated length.
  • step S406 the predicted time to pass through the second collision area is calculated based on the lengths of 1104A and 1104B.
  • the calculation may be performed assuming that the speed of the second oncoming vehicle is constant at the current speed, or the calculation may be performed taking into account the acceleration of the second traveling vehicle.
  • the travel distance (1104A and 1104B) required for all of the second oncoming vehicles to pass through the second collision area varies depending on the predicted overlap rate. Therefore, by calculating the predicted time to pass through the second collision area based on the calculated predicted overlap rate, it becomes possible to calculate the predicted time to pass through the second collision area according to the positional relationship and state of the vehicle 10 and the second oncoming vehicle.
  • the predicted passing time of the second collision area is calculated based on the calculated predicted overlap rate, but the predicted passing time of the second collision area may be calculated using a method different from the method described in this embodiment.
  • step S406 if the speed of the second oncoming vehicle is fast or if the distance from the vehicle 10 to the second oncoming vehicle is long, it is assumed that the detection information of the second oncoming vehicle detected by the sensor, such as the speed and position, contains a large error. If the second collision area predicted passing time calculated based on the information detected by the sensor is shorter than the second collision area predicted passing time calculated based on the actual position of the second oncoming vehicle, it may be erroneously determined that the second oncoming vehicle is passing through the second collision area, resulting in a collision with the second oncoming vehicle.
  • the collision of the vehicle 10 with the second oncoming vehicle may be prevented by adding a predetermined time to the second collision area predicted passing time.
  • the above-mentioned predetermined speed and predetermined distance may be variable depending on the speed and positional relationship between the host vehicle 10 and the second oncoming vehicle.
  • the predicted second collision zone passing time may be calculated taking into account the current deceleration of the second oncoming vehicle, or a margin may be added to the predicted second collision zone passing time in advance, taking into account that the second oncoming vehicle will decelerate at a constant deceleration.
  • step S407 the time that will elapse until the host vehicle 10 reaches the second predicted collision position when decelerated by the second deceleration or braking force (hereinafter referred to as the predicted collision position arrival time) is calculated from the current position and speed of the host vehicle 10. If the travel distance to the second predicted collision position is longer than the distance that the host vehicle 10 travels before stopping by the second deceleration or braking force, the host vehicle 10 will stop before reaching the second predicted collision position, so in the above case, as an example, the predicted collision position arrival time is set to 0.
  • This step S407 is executed by the collision prediction unit 205.
  • step S408 based on the first collision margin time and the second collision area predicted passage time and collision position arrival time, it is determined that a collision with the second oncoming vehicle can be avoided by the second deceleration or braking force, and that a collision with the first oncoming vehicle will not occur if the host vehicle 10 is decelerated by the second deceleration or braking force (hereinafter referred to as the second control implementation determination).
  • step S408 If the second control execution determination is true in step S408, the operation timing of the second deceleration or braking force is determined in step S410. If the second control execution determination is false in step S408, the process proceeds to step S409, where the operation timing of the first deceleration or braking force is determined.
  • Steps S408 and after are executed by the collision determination unit 206.
  • FIG. 7 is an example of a flowchart for determining whether to perform the second control.
  • step S501 it is determined whether a collision can be avoided by applying the second deceleration or braking force depending on the state of the host vehicle 10 and the second oncoming vehicle.
  • the speed of the host vehicle 10 is slower than the predetermined speed, there is a possibility that the host vehicle 10 will stop before reaching the second predicted collision position if it is decelerated by the second deceleration or braking force, so collision avoidance is not performed by using the second deceleration or braking force.
  • the deceleration or braking force is not changed from the first deceleration or braking force to the second deceleration or braking force (the deceleration or braking force is not switched from the first to the second).
  • the above predetermined speed may be set based on the current state of the host vehicle 10, and is not limited to the method described in this embodiment.
  • the distance from the current position of the vehicle 10 to the second predicted collision position (hereinafter referred to as the second distance) is calculated from the speed of the vehicle 10 and the second collision margin time, the minimum speed of the vehicle 10 required to travel the second distance without stopping when the vehicle 10 decelerates at the second deceleration or braking force is calculated, and the minimum speed calculated by the above method is set as the predetermined speed.
  • the second oncoming vehicle may stop or turn right or left in the second collision area, so collision avoidance is not performed by applying the second deceleration or braking force.
  • the deceleration or braking force is not changed from the first deceleration or braking force to the second deceleration or braking force (the deceleration or braking force is not switched from the first to the second).
  • step S502 based on the second collision margin time and the second collision area predicted passage time and collision position predicted arrival time, it is determined whether the second oncoming vehicle will be able to pass the second collision area before the host vehicle 10 when the host vehicle 10 decelerates due to the second deceleration or braking force.
  • the time required for the second oncoming vehicle to pass through the second collision area from its current position can be calculated as the sum of the second collision margin time, which is the time required for the second oncoming vehicle to reach the second collision area from its current position, and the predicted second collision area passing time, which is the time required for the second oncoming vehicle to pass through the second collision area after reaching it (hereinafter referred to as the total time to pass through the second collision area).
  • the second oncoming vehicle will have already passed through the second collision area when the vehicle 10 reaches the second predicted collision position, and so the process proceeds to step S503.
  • the time to reach the predicted collision position is less than the total time to pass through the second collision area
  • the second oncoming vehicle will be in the second collision area (cannot pass through the second collision area) when the vehicle 10 reaches the second predicted collision position, and so a collision with the second oncoming vehicle cannot be avoided by the second deceleration or braking force. Therefore, the vehicle 10 is stopped in front of the second oncoming lane by the first deceleration or braking force, and a collision with the second oncoming vehicle is avoided.
  • step S503 based on the first collision margin time and the time required for the host vehicle 10 to pass the first oncoming lane when decelerating at the second deceleration or braking force (hereinafter referred to as the first oncoming lane passing time), it is determined whether or not a collision with the first oncoming vehicle can be avoided when the host vehicle 10 decelerates at the second deceleration or braking force.
  • the first oncoming lane passing time is the sum of the predicted collision position arrival time and the time required for the host vehicle 10 to pass the full length of the host vehicle 10 at the speed of the host vehicle 10 after the predicted collision position arrival time when the host vehicle 10 is decelerated by the second deceleration or braking force.
  • Figure 8 shows the positional relationship between the host vehicle 10 and the first oncoming vehicle when the host vehicle 10 decelerates at the second deceleration or braking force and passes through the first oncoming lane in the case where the first oncoming lane passing time is shorter than the first collision margin time (row (A) of Figure 8) and in the case where the first oncoming lane passing time is longer than the first collision margin time (row (B) of Figure 8).
  • the speeds of the host vehicle 10 and the first oncoming vehicle are the same in rows (A) and (B) of Figure 8.
  • 10 indicates the current position of the vehicle 10.
  • 11A and 11B indicate the current positions of the first oncoming vehicle in cases (A) and (B), with the first oncoming vehicle being closer to the vehicle 10 in row (B) than in row (A).
  • the definitions of 1000, 1001, and 1002 are the same as in FIG. 5.
  • 1231 is a coordinate system with the origin at the center of the front end of the first oncoming vehicle of 11A and 11B, and defines the overall length direction of the first oncoming vehicle as the longitudinal position and the overall width direction as the lateral position.
  • the longitudinal position of 1231 is defined as being positive in front of the first oncoming vehicle, and the lateral position is defined as being positive to the left of the first oncoming vehicle.
  • the dotted line in 1210 indicates the vertical position of the second predicted collision position in the coordinate system in 1231.
  • 1211A and 1211B indicate the position of the first oncoming vehicle in rows (A) and (B) when the vehicle 10 passes through the first oncoming lane.
  • 1210A and 1210B indicate the position of the vehicle 10 after the first collision margin time in rows (A) and (B).
  • the first oncoming vehicle passes the longitudinal position of the second predicted collision position in the 1231 coordinate system after the host vehicle 10 passes the first oncoming lane, and therefore the host vehicle 10 and the first oncoming vehicle will not collide when decelerating with the second deceleration or braking force, and therefore collision avoidance by the second deceleration or braking force is possible.
  • the first oncoming lane passing time is longer than the first collision margin time, the first oncoming vehicle reaches the longitudinal position of the second predicted collision position in the 1231 coordinate system before the host vehicle 10 passes the first oncoming lane.
  • the host vehicle 10 If the host vehicle 10 decelerates with the second deceleration or braking force, it will collide with the first oncoming vehicle, so in the above case, the host vehicle 10 is stopped in front of the second oncoming lane with the first deceleration or braking force.
  • the first collision margin time is set to a large value, and a second deceleration or braking force is required (row (A) in Figure 8).
  • a threshold value for determining the activation timing of collision avoidance assistance using the first deceleration or braking force (hereinafter referred to as the first braking operation determination threshold value) is calculated, and it is determined that the host vehicle 10 has reached the activation timing of the first deceleration or braking force from the first collision margin time and the second collision margin time.
  • the first braking operation determination threshold value is calculated by calculating the distance required for the host vehicle 10 to stop using the first deceleration or the first braking force, and the calculated distance is set as the time that elapses when the host vehicle 10 is currently traveling.
  • first collision margin time is equal to or less than the first braking action determination threshold, a first deceleration or braking force is requested to stop the host vehicle 10 before it collides with the first oncoming vehicle.
  • the second collision margin time is equal to or less than the first braking operation determination threshold, a first deceleration or braking force is requested so that the host vehicle 10 stops before colliding with the second oncoming vehicle, and the host vehicle 10 stops in the first oncoming lane.
  • step S410 if the second control execution determination is established, it is determined whether the timing has arrived for the host vehicle 10 to start decelerating using the second deceleration or braking force.
  • the time to reach the predicted collision position is compared with the total time to pass through the second collision area to determine whether the timing has arrived to start decelerating.
  • the host vehicle 10 can avoid a collision with the first oncoming vehicle while avoiding a collision with the second oncoming vehicle, but the second deceleration or braking force may be requested after a predetermined time has elapsed from the above timing.
  • FIG. 9 shows the position of the second oncoming vehicle when the vehicle 10 reaches the second collision area in the cases where the vehicle 10 starts decelerating when the second control execution determination is established (row (A) of FIG. 9) and where the vehicle 10 starts decelerating when a predetermined time has elapsed since the second control execution determination was established and the collision predicted position arrival time is equal to the total time of passing the second collision area (row (B) of FIG. 9).
  • the speed of the vehicle 10 and the second oncoming vehicle in row (A) of FIG. 9 is the same as the speed of the vehicle 10 and the second oncoming vehicle in row (B).
  • 10A and 10B show the current position of the vehicle 10 in row (A) and row (B), with 10B being closer to the second oncoming vehicle than 10A.
  • 12C shows the current position of the second oncoming vehicle, which is the same position in rows (A) and (B).
  • the definitions of 1000, 1001, and 1002 are the same as in FIG. 5.
  • 1310A indicates the position of the host vehicle 10 when the host vehicle 10 reaches the second collision area when the host vehicle 10 decelerates from the position 10A at the second deceleration or braking force.
  • 1310B indicates the position of the host vehicle 10 when the host vehicle 10 reaches the second collision area when the host vehicle 10 decelerates from the position 10B at the second deceleration or braking force.
  • 1312A indicates the position of the second oncoming vehicle when the host vehicle 10 reaches the second collision area when the host vehicle 10 decelerates from the position 10A at the second deceleration or braking force.
  • 1312B indicates the position of the second oncoming vehicle when the host vehicle 10 reaches the second collision area when the host vehicle 10 decelerates from the position 10B at the second deceleration or braking force.
  • the collision predicted position arrival time is longer than the total time to pass the second collision area, so when the host vehicle 10 reaches the second collision area, the second oncoming vehicle has already passed the second collision area, but when the host vehicle 10 reaches the second collision area, the second oncoming vehicle is in a position away from the host vehicle 10.
  • the first oncoming lane passing time is equal to the first collision margin time, so when the host vehicle 10 reaches the second collision area, the second oncoming vehicle passes the second collision area.
  • the host vehicle 10 starts to decelerate when the distance from the host vehicle 10 to the second oncoming vehicle is shorter, so the recognition accuracy of the second oncoming vehicle in the sensor and the prediction accuracy of the path of the host vehicle 10 and the second oncoming vehicle are improved, and therefore excessive operation can be suppressed in the case of row (B).
  • the predetermined time from when the second control implementation determination is made until the second deceleration or braking force is requested may be adjustable based on the state of the vehicle 10 and the second oncoming vehicle. If adjustment is possible as described above, the adjustment is made within a range in which the time to reach the predicted collision position does not become greater than the total time to pass through the second collision area.
  • step S411 the deceleration or braking force (deceleration command value) requested by the collision avoidance assistance device 11 to the brake control device 12 is determined based on the result of the first braking operation determination in step S409 and the result of the second braking operation determination in step S410. Since deceleration or braking force is not requested simultaneously from the first braking operation determination and the second braking operation determination, if the host vehicle 10 is not applying the brakes, the deceleration or braking force requested by the first braking operation determination or the second braking operation determination is requested of the brake control device 12.
  • step S411 if the host vehicle 10 detects deceleration of the second oncoming vehicle while decelerating at the second deceleration or braking force, the host vehicle 10 may stop just before the second oncoming vehicle lane and avoid a collision with the second oncoming vehicle by requesting a deceleration greater than the first deceleration or a braking force greater than the first braking force.
  • the host vehicle 10 can pass through the intersection without stopping in the first oncoming lane after avoiding a collision with the second oncoming vehicle, thereby avoiding a collision with the first oncoming vehicle and preventing secondary damage.
  • the host vehicle 10 may be requested to decelerate or apply braking force so as to stop just before the first oncoming lane, thereby avoiding a collision between the second oncoming vehicle and the first oncoming vehicle.
  • the host vehicle 10 may request a first deceleration or braking force at a timing when it can stop just before the first oncoming lane, or a collision may be avoided by a conventional method.
  • the collision avoidance support device 11 of this embodiment includes a surrounding environment recognition unit 202 that detects information about targets around the host vehicle, a collision prediction unit 205 that calculates a collision margin time, which is the time until a collision (time until a collision is predicted) with a vehicle among the targets approaching the host vehicle when the host vehicle crosses an oncoming lane, a control judgment unit (collision judgment unit 206) that calculates the timing to decelerate the host vehicle by a first deceleration if the collision margin time is equal to or less than a braking operation judgment threshold, and an oncoming lane situation judgment unit 204 that judges whether the oncoming lane has two or more lanes based on an input from the surrounding environment recognition unit 202 and distinguishes vehicles traveling in two of the oncoming lanes, and the oncoming lane situation judgment unit 204 determines the lane in front of the host vehicle as a first driving lane among the oncoming lanes, and judges whether the lane in front of the host vehicle as viewed from the host vehicle is a first
  • the vehicle traveling on the opposite lane is the first traveling vehicle (first oncoming vehicle), the lane on the far side of the host vehicle is the second traveling lane, and the vehicle traveling on the second traveling lane is the second traveling vehicle (second oncoming vehicle).
  • the collision prediction unit 205 calculates a second collision margin time, which is the time until the host vehicle collides with the second traveling vehicle, based on the result of the oncoming lane situation determination unit 204, and calculates a predicted passing time (second collision area predicted passing time), which is the time required for the second traveling vehicle to pass through an intersection area (second collision area) between the predicted course of the second traveling vehicle and the predicted course of the host vehicle.
  • the control determination unit sets the deceleration for decelerating the host vehicle to a second deceleration that is smaller than the first deceleration based on the second collision margin time and the predicted passing time (second collision area predicted passing time) (step S502).
  • the collision prediction unit 205 calculates a first collision margin time, which is the time until a collision occurs between the host vehicle and the first traveling vehicle (longer than the second collision margin time), and the control determination unit (collision determination unit 206) sets the deceleration to a second deceleration smaller than the first deceleration, taking into account the first collision margin time (step S503).
  • the control determination unit does not change the deceleration from the first deceleration to the second deceleration when the vehicle speed is lower than a predetermined vehicle speed (step S501).
  • the control determination unit does not change the deceleration from the first deceleration to the second deceleration when the vehicle speed of the second traveling vehicle is lower than a predetermined vehicle speed (step S501).
  • the collision prediction unit 205 calculates a predicted overlap rate, which is the ratio of overlap between the host vehicle and the second traveling vehicle in the intersection area (second collision area) between the predicted path of the second traveling vehicle and the predicted path of the host vehicle, and calculates the predicted passing time (second collision area predicted passing time) based on the predicted overlap rate.
  • the vehicle has a free space detection unit 204B that detects a free space in the first travel lane, which is a space where no obstacles exist, and the collision prediction unit 205 calculates the first collision margin time between the vehicle and the first travel vehicle based on the information on the free space.
  • the control determination unit cancels the request for the second deceleration when the possibility of a collision with the second traveling vehicle becomes low.
  • the deceleration of the host vehicle is increased (more than the second deceleration or the first deceleration) based on the vehicle speed of the second traveling vehicle (if deceleration is detected).
  • the host vehicle avoids a collision with the second oncoming vehicle, while also avoiding being hit by the first oncoming vehicle after avoiding the collision with the second oncoming vehicle.
  • the host vehicle avoids a collision with the second oncoming vehicle without stopping the host vehicle by using a braking force or deceleration smaller than the braking force or deceleration required for the host vehicle to stop in front of the second oncoming vehicle lane, and after avoiding the collision with the second oncoming vehicle, the host vehicle avoids a collision with the first vehicle without stopping in the first oncoming lane, thereby preventing secondary damage.
  • the present invention is not limited to the above-described embodiment, but includes various modified forms.
  • the above-described embodiment has been described in detail to clearly explain the present invention, and is not necessarily limited to having all of the configurations described.
  • each of the above-mentioned configurations, functions, processing units, processing means, etc. may be realized in hardware, for example by designing a part or all of them as an integrated circuit, or may be realized in software by a processor interpreting and executing a program that realizes each function.
  • Information such as programs, tables, and files that realize each function can be stored in storage devices such as memory, hard disks, and SSDs (Solid State Drives), or in recording media such as IC cards, SD cards, and DVDs.
  • storage devices such as memory, hard disks, and SSDs (Solid State Drives), or in recording media such as IC cards, SD cards, and DVDs.
  • control lines and information lines shown are those considered necessary for explanation, and do not necessarily represent all control lines and information lines necessary for implementation. In reality, it is safe to assume that almost all components are interconnected.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

In the present invention, a collision with a second oncoming vehicle is avoided even when a host vehicle has already entered a first oncoming lane, and, after having avoiding a collision with the second oncoming vehicle, having a collision with a first oncoming vehicle is also avoided. Specifically, when there is a possibility of the host vehicle colliding with the second oncoming vehicle, a collision with the second oncoming vehicle is avoided without stopping the host vehicle by using a braking force or deceleration that is less than the braking force or deceleration necessary to stop the host vehicle in front of the second oncoming lane, and, after avoiding a collision with the second oncoming vehicle, it is possible to avoid a collision with the first vehicle without stopping the host vehicle in the first oncoming lane by canceling the braking force or deceleration instructed to the host vehicle, allowing secondary damage to be minimized.

Description

衝突回避支援装置Collision avoidance support device
 本発明は、周辺の対象物との衝突を回避または衝突の被害を軽減するために車両の運転操作を支援する衝突回避支援装置に関する。 The present invention relates to a collision avoidance support device that supports the driving operation of a vehicle to avoid collisions with surrounding objects or to reduce damage caused by collisions.
 自車両が交差点を右折する際に対向車線を走行する対向車に対する衝突回避支援装置の一例として、特許文献1に記載の技術がある。特許文献1に記載の衝突回避支援装置では、右折する自車両の進路と対向車の位置に基づいて自車両が対向車に衝突する可能性を判定し、衝突する可能性があると判定した場合には制動を作動することで対向車との衝突を回避する。 The technology described in Patent Document 1 is an example of a collision avoidance support device for an oncoming vehicle traveling in the opposite lane when the vehicle turns right at an intersection. The collision avoidance support device described in Patent Document 1 determines the possibility of the vehicle colliding with an oncoming vehicle based on the path of the vehicle turning right and the position of the oncoming vehicle, and if it determines that there is a possibility of a collision, it applies the brakes to avoid a collision with the oncoming vehicle.
 自車両が交差点を走破して直進走行に切り替わる直前では、右折先の進路の対向車と自車両の衝突する可能性を誤って判定している可能性が高いことから、特許文献1では、自車両が方向指示器を点灯状態に切り換えたときの自車両の向きを基準として、点灯状態の方向指示器の方向に旋回する自車両の向きの変化角度である偏向角が閾値以上であるときには衝突回避制御の作動を抑止する。 Just before the vehicle has passed the intersection and is about to switch to straight-ahead driving, there is a high possibility that the vehicle may erroneously determine the possibility of a collision with an oncoming vehicle on the right turn route. Therefore, in Patent Document 1, the direction of the vehicle when the vehicle switches its turn signal to the on state is used as a reference, and the deflection angle, which is the angle of change in the direction of the vehicle turning in the direction of the on state of the turn signal, is equal to or greater than a threshold value, and the operation of collision avoidance control is inhibited.
特開2018-165253号公報JP 2018-165253 A
 前記の衝突回避支援装置では、対向車線が複数車線ある交差点において自車両からみて一番手前側の対向車線(以下、第1対向車線と記載)を走行する対向車(以下、第1対向車と記載)と、自車両からみて奥側の対向車線(以下、第2対向車線と記載)を走行する対向車(以下、第2対向車と記載)がいる場合に、自車両が既に第1対向車線内に進入し、第1対向車よりも自車両により接近している第2対向車に対してのみ衝突する可能性があると判定した場合に、偏向角と比較する閾値が小さい場合では第2対向車に対する制動の作動を抑止するため、第2対向車と衝突する可能性がある。 In the collision avoidance assistance device, when there is an oncoming vehicle (hereinafter referred to as the first oncoming vehicle) traveling in the oncoming lane closest to the vehicle (hereinafter referred to as the first oncoming lane) as seen from the vehicle at an intersection with multiple oncoming lanes (hereinafter referred to as the first oncoming vehicle) and an oncoming vehicle (hereinafter referred to as the second oncoming vehicle) traveling in the oncoming lane further back from the vehicle (hereinafter referred to as the second oncoming lane), if it is determined that the vehicle has already entered the first oncoming lane and is likely to collide only with the second oncoming vehicle that is closer to the vehicle than the first oncoming vehicle, if the threshold value for comparing with the deflection angle is small, the operation of the brakes for the second oncoming vehicle is suppressed, so there is a possibility of collision with the second oncoming vehicle.
 一方で偏向角と比較する閾値を大きくする場合では、制動を作動することで第2対向車線に進入する手前で停車し、第2対向車との衝突を回避するが、上記のタイミングで制動を作動すると自車両は第1対向車線内で停車するため、第2対向車との衝突を回避した後に衝突する可能性がなかった第1対向車から自車両の側面に衝突される可能性があることから、2次被害を誘発する課題がある。 On the other hand, if the threshold value for comparison with the deflection angle is increased, the vehicle will stop before entering the second oncoming lane by applying the brakes, avoiding a collision with the second oncoming vehicle. However, applying the brakes at the above timing will cause the vehicle to stop in the first oncoming lane, meaning that there is a possibility that the first oncoming vehicle, which would not have been a collision with the vehicle after avoiding a collision with the second oncoming vehicle, may collide with the side of the vehicle, which could potentially cause secondary damage.
 したがって、自車両が既に第1対向車線内に進入している場合では、前記の衝突回避支援装置で、第2対向車との衝突を回避しつつ、第1対向車との衝突を回避することは困難である。 Therefore, if the vehicle has already entered the first oncoming lane, it is difficult for the collision avoidance assistance device to avoid a collision with the first oncoming vehicle while also avoiding a collision with the second oncoming vehicle.
 本発明は、上記の課題を鑑みてなされたもので、自車両が既に第1対向車線内に進入した場合でも、第2対向車との衝突を回避しつつ、第2対向車との衝突を回避した後に第1対向車から衝突されることも回避する衝突回避支援装置を提供することを目的とする。具体的には、自車両が第2対向車と衝突する可能性がある場合に、自車両が第2対向車線の手前で停車するために必要な制動力、または減速度よりも小さな制動力、または減速度によって自車両を停車させずに第2対向車との衝突を回避しつつ、第2対向車との衝突を回避した後に自車両に指示した制動力、または減速度を解除することで、自車両を第1対向車線内で停車させずに第1車両との衝突を回避し、2次被害も抑止できる衝突回避支援装置を提供することを目的とする。 The present invention has been made in consideration of the above problems, and aims to provide a collision avoidance support device that avoids a collision with a second oncoming vehicle even when the vehicle has already entered the first oncoming lane, while also avoiding being hit by the first oncoming vehicle after avoiding a collision with the second oncoming vehicle. Specifically, the present invention aims to provide a collision avoidance support device that can avoid a collision with the second oncoming vehicle without stopping the vehicle by using a braking force or deceleration smaller than the braking force or deceleration required for the vehicle to stop in front of the second oncoming lane when there is a possibility of the vehicle colliding with the second oncoming vehicle, while avoiding a collision with the first vehicle without stopping the vehicle in the first oncoming lane and preventing secondary damage by releasing the braking force or deceleration instructed to the vehicle after avoiding a collision with the second oncoming vehicle.
 上記目的を達成するため、本発明は次のように構成される。すなわち、自車両周辺の物標の情報を検知する周辺環境認識部と、前記自車両が対向車線を横切る際、前記物標のうちに前記自車両に向かってくる車両との衝突までの時間である衝突余裕時間を演算する衝突予測部と、前記衝突余裕時間が制動作動判定閾値以下の場合、第1の減速度により前記自車両を減速させるタイミングを演算する制御判定部と、前記周辺環境認識部の入力に基づき前記対向車線が2車線以上あるか否かを判定し、前記対向車線のうち2車線を走行する車両を判別する対向車線状況判断部と、を備え、前記対向車線状況判断部は、前記対向車線のうち前記自車両からみて手前の車線を第1走行車線として前記第1走行車線を走行する車両を第1走行車両とし、前記対向車線のうち前記自車両からみて奥側の車線を第2走行車線として前記第2走行車線を走行する車両を第2走行車両とし、前記衝突予測部は、前記対向車線状況判断部の結果に基づき、前記自車両と前記第2走行車両とが衝突するまでの時間である第2衝突余裕時間を演算し、前記第2走行車両の予測進路と前記自車両の予測進路との交差領域を、前記第2走行車両が通過するまでに要する時間である予測通過時間を演算し、前記制御判定部は、前記第2衝突余裕時間および前記予測通過時間に基づき前記自車両を減速させる減速度を前記第1の減速度よりも小さな第2の減速度とすることを特徴とする。 In order to achieve the above object, the present invention is configured as follows. That is, the present invention comprises a surrounding environment recognition unit that detects information about targets around the host vehicle, a collision prediction unit that calculates a collision margin time, which is the time until a collision occurs between the host vehicle and one of the targets that is approaching the host vehicle when the host vehicle crosses an oncoming lane, a control judgment unit that calculates a timing to decelerate the host vehicle by a first deceleration if the collision margin time is equal to or less than a braking operation judgment threshold, and an oncoming lane situation judgment unit that judges whether the oncoming lane has two or more lanes based on an input from the surrounding environment recognition unit and distinguishes vehicles traveling in two of the oncoming lanes, and the oncoming lane situation judgment unit determines the lane in front of the host vehicle as a first driving lane among the oncoming lanes, and judges whether a vehicle traveling in the first driving lane is traveling in the oncoming lane. The vehicle traveling on the opposite lane is defined as a first traveling vehicle, the lane on the far side of the host vehicle as viewed from the host vehicle is defined as a second traveling lane, and the vehicle traveling on the second traveling lane is defined as a second traveling vehicle, and the collision prediction unit calculates a second collision margin time, which is the time until the host vehicle collides with the second traveling vehicle, based on the result of the oncoming lane situation judgment unit, and calculates a predicted passing time, which is the time required for the second traveling vehicle to pass an intersection area between the predicted course of the second traveling vehicle and the predicted course of the host vehicle, and the control judgment unit sets the deceleration for decelerating the host vehicle to a second deceleration that is smaller than the first deceleration based on the second collision margin time and the predicted passing time.
 本発明によれば、自車両は第2対向車との衝突を回避しつつ、第2対向車との衝突を回避した後に第1対向車から衝突されることも回避する。具体的には、自車両が第2対向車と衝突する可能性がある場合に、自車両が第2対向車線の手前で停車するために必要な制動力、または減速度よりも小さな制動力、または減速度によって自車両を停車させずに第2対向車との衝突を回避しつつ、第2対向車との衝突を回避した後に自車両に指示した制動力、または減速度を解除することで、自車両を第1対向車線内で停車させずに第1車両との衝突を回避し、2次被害も抑止できる。  According to the present invention, the host vehicle avoids a collision with the second oncoming vehicle, while also avoiding being hit by the first oncoming vehicle after avoiding the collision with the second oncoming vehicle. Specifically, when there is a possibility that the host vehicle will collide with the second oncoming vehicle, the host vehicle avoids a collision with the second oncoming vehicle without stopping the host vehicle by using a braking force or deceleration smaller than the braking force or deceleration required for the host vehicle to stop in front of the second oncoming vehicle lane, and after avoiding the collision with the second oncoming vehicle, the host vehicle avoids a collision with the first vehicle without stopping in the first oncoming lane, thereby preventing secondary damage.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。  Problems, configurations and advantages other than those mentioned above will become clear from the description of the embodiments below.
本発明が適用された衝突回避支援装置の一実施形態を搭載した車両の構成図の一例。1 is a configuration diagram of an example of a vehicle equipped with an embodiment of a collision avoidance support device to which the present invention is applied; 本発明が適用された衝突回避支援装置の一実施形態の機能ブロック図の一例。1 is a functional block diagram of an embodiment of a collision avoidance support device to which the present invention is applied; 本発明が適用された衝突回避支援装置の一実施形態における衝突回避支援のフローチャートの一例。3 is an example of a flowchart of collision avoidance assistance in an embodiment of a collision avoidance assistance device to which the present invention is applied. フリースペースの算出の一例。An example of free space calculation. 予測オーバーラップ率に応じた自車両10と第2対向車の位置の一例。13 shows an example of the positions of the host vehicle 10 and a second oncoming vehicle according to a predicted overlap rate. 予測オーバーラップ率に応じた第2衝突領域の一例。13 illustrates an example of a second collision region according to a predicted overlap ratio. 第2制御実施判定のフローチャートの一例。13 is an example of a flowchart of a second control execution determination. 第1対向車線通過時間と第1衝突余裕時間に応じた自車両10と第1対向車の位置の一例。13 shows an example of the positions of the host vehicle 10 and the first oncoming vehicle according to the first oncoming lane passing time and the first collision margin time. 衝突予測位置到達時間と第2衝突領域通過合計時間に応じた自車両10と第2対向車の位置の一例。13 shows an example of the positions of the host vehicle 10 and a second oncoming vehicle according to the predicted collision position arrival time and the total time for passing through the second collision area.
 以下、本発明の実施形態を図面を参照して説明する。なお、実施形態を説明するための全図において、同一の機能を有する部分には同一の符号を付し、その繰り返し説明は省略する場合がある。 Below, an embodiment of the present invention will be described with reference to the drawings. In all drawings used to explain the embodiment, parts having the same functions are given the same reference numerals, and repeated description of such parts may be omitted.
 図1は、本発明に係る衝突回避支援装置の一実施形態を搭載した車両を概略的に示したものである。衝突回避支援装置は、車両(自車両)10に搭載され、車両10周辺の障害物との衝突回避を支援する装置である。車両10は、車両前方に搭載された前方カメラ2F(以下、単にカメラ2と記載する場合がある)、レーダー3、右前車輪4FRの車輪速を検知する右前車輪速センサ5FR、右後車輪4RRの車輪速を検知する右後車輪速センサ5RR、左後車輪4RLの車輪速を検知する左後車輪速センサ5RL、左前車輪4FLの車輪速を検知する左前車輪速センサ5FL、舵角センサ6、ヨーレートセンサ7、メータ8、ブザー9、衝突回避支援装置11、制動制御装置12等から構成される。 FIG. 1 is a schematic diagram of a vehicle equipped with an embodiment of a collision avoidance support device according to the present invention. The collision avoidance support device is a device that is mounted on a vehicle (own vehicle) 10 and supports the avoidance of collisions with obstacles around the vehicle 10. The vehicle 10 is composed of a front camera 2F (hereinafter sometimes simply referred to as camera 2) mounted on the front of the vehicle, a radar 3, a right front wheel speed sensor 5FR that detects the wheel speed of the right front wheel 4FR, a right rear wheel speed sensor 5RR that detects the wheel speed of the right rear wheel 4RR, a left rear wheel speed sensor 5RL that detects the wheel speed of the left rear wheel 4RL, a left front wheel speed sensor 5FL that detects the wheel speed of the left front wheel 4FL, a steering angle sensor 6, a yaw rate sensor 7, a meter 8, a buzzer 9, a collision avoidance support device 11, a braking control device 12, etc.
 前方カメラ2Fはレンズと撮像素子を備え、自車両10の周辺環境を撮像できるように適切に配置されている。前方カメラ2Fの撮像画像は衝突回避支援装置11に送信されて画像処理が行われる。衝突回避支援装置11では、前方カメラ2Fから送信された撮像画像をもとに、自車両10周辺の対象物(以下、適宜物標と記載する)の物標種別を特定する。物標種別の例としては、自動車、歩行者、二輪車、走行路、白線や黄色線などの車線、交通信号、交通標識、障害物などがある。本実施形態では、自車両10の周辺環境を撮像するために、カメラ2を1つ配置したが、複数配置してもよい。カメラ2は単眼カメラでもステレオカメラでもよく、カメラの種類やカメラに備わる機能は必要に応じて変更してもよい。 The front camera 2F is equipped with a lens and an image sensor, and is appropriately positioned so that it can capture images of the environment surrounding the vehicle 10. The images captured by the front camera 2F are transmitted to the collision avoidance support device 11, where they are processed. The collision avoidance support device 11 identifies the object type of the object (hereinafter referred to as the object as appropriate) around the vehicle 10 based on the images transmitted from the front camera 2F. Examples of object types include automobiles, pedestrians, motorcycles, driving paths, lanes such as white and yellow lines, traffic signals, traffic signs, and obstacles. In this embodiment, one camera 2 is disposed to capture images of the environment surrounding the vehicle 10, but multiple cameras may be disposed. The camera 2 may be a monocular camera or a stereo camera, and the type of camera and the functions of the camera may be changed as necessary.
 レーダー3は車両10の4隅に設置されており、各レーダー3は、例えば電磁波を発し、上記電磁波が周囲の物標から反射した反射波を受信することにより、自車両10周辺の物標の位置、および速度を測定し、その測定結果を衝突回避支援装置11に送信する。レーダー3は、例えばミリ波レーダーやレーザーレーダーを用いてもよいし、レーダーの代わりに超音波センサを用いてもよい。更に、複数のセンサ類を組み合わせて用いて、物標の速度、および位置を測定してもよい。本実施形態では、一例として自車両10周辺の物標の情報を取得する手段として、カメラ2とレーダー3を組み合わせて用いているが、例えばレーダー3の代わりにライダーを組み合わせてもよいし複数のセンサを用いてもよい。また、レーダー3の個数や設置箇所は必要に応じて変更してもよい。 The radars 3 are installed at the four corners of the vehicle 10, and each radar 3, for example, emits electromagnetic waves and receives reflected waves from surrounding targets to measure the position and speed of targets around the vehicle 10, and transmits the measurement results to the collision avoidance support device 11. The radar 3 may be, for example, a millimeter wave radar or a laser radar, or an ultrasonic sensor instead of a radar. Furthermore, a combination of multiple sensors may be used to measure the speed and position of targets. In this embodiment, as an example of a means for acquiring information about targets around the vehicle 10, a combination of the camera 2 and the radar 3 is used, but, for example, a combination of a lidar may be used instead of the radar 3, or multiple sensors may be used. Furthermore, the number and installation locations of the radars 3 may be changed as necessary.
 自車両10の車体の前後左右には、右前車輪4FR、右後車輪4RR、左後車輪4RL、左前車輪4FLが配置されており、それら各車輪4FR、4RR、4RL、4FLには、右前車輪速センサ5FR、右後車輪速センサ5RR、左後車輪速センサ5RL、左前車輪速センサ5FLが設けられている。各車輪速センサ5FR、5RR、5RL、5FLはそれぞれの車輪速を検知し、各車輪速を衝突回避支援装置11に送信する。衝突回避支援装置11は、前記各車輪速の情報をもとに自車両10の速度を演算する。以下、特に区別しない場合、右前車輪4FR、右後車輪4RR、左後車輪4RL、左前車輪4FLを車輪4と呼び、右前車輪速センサ5FR、右後車輪速センサ5RR、左後車輪速センサ5RL、左前車輪速センサ5FLを車輪速センサ5と記載する。 Right front wheel 4FR, right rear wheel 4RR, left rear wheel 4RL, and left front wheel 4FL are arranged on the front, rear, left and right sides of the vehicle body of vehicle 10, and each of these wheels 4FR, 4RR, 4RL, and 4FL is provided with a right front wheel speed sensor 5FR, right rear wheel speed sensor 5RR, left rear wheel speed sensor 5RL, and left front wheel speed sensor 5FL. Each wheel speed sensor 5FR, 5RR, 5RL, and 5FL detects the respective wheel speed and transmits each wheel speed to collision avoidance support device 11. Collision avoidance support device 11 calculates the speed of vehicle 10 based on the information on each wheel speed. Hereinafter, unless otherwise specified, the right front wheel 4FR, right rear wheel 4RR, left rear wheel 4RL, and left front wheel 4FL will be referred to as wheels 4, and the right front wheel speed sensor 5FR, right rear wheel speed sensor 5RR, left rear wheel speed sensor 5RL, and left front wheel speed sensor 5FL will be referred to as wheel speed sensors 5.
 舵角センサ6は、自車両10のステアリングホイールの回転角度(操舵角)を検出するセンサであり、舵角センサ6で検知した操舵角は衝突回避支援装置11に送信される。 The steering angle sensor 6 is a sensor that detects the rotation angle (steering angle) of the steering wheel of the vehicle 10, and the steering angle detected by the steering angle sensor 6 is transmitted to the collision avoidance support device 11.
 ヨーレートセンサ7は、自車両10のヨーレートを検出し、ヨーレートセンサ7で検出したヨーレートは衝突回避支援装置11に送信される。 The yaw rate sensor 7 detects the yaw rate of the vehicle 10, and the yaw rate detected by the yaw rate sensor 7 is transmitted to the collision avoidance support device 11.
 メータ8は、例えば衝突回避支援装置11が自車両10と物標の衝突する可能性が高いと判断した場合に、運転手に対して衝突の可能性が高いことを報知するための警告画像を表示する。本実施形態では、警告画像を表示する手段の一例としてメータ8を配置したが、メータ8の代わりに例えばカーナビゲーションシステムの一部であってもよいし、ヘッドアップディスプレイを用いて画像を表示してもよい。 For example, when the collision avoidance support device 11 determines that there is a high possibility of a collision between the vehicle 10 and a target, the meter 8 displays a warning image to inform the driver of the high possibility of a collision. In this embodiment, the meter 8 is provided as an example of a means for displaying a warning image, but instead of the meter 8, for example, a part of a car navigation system may be used, or an image may be displayed using a head-up display.
 ブザー9は、例えば衝突回避支援装置11が自車両10と物標の衝突する可能性が高いと判断した場合に、運転手に対して衝突の可能性が高いことを報知するための警告音を鳴動する。本実施形態では、警告音を鳴動する手段の一例としてブザー9を配置したが、ブザー9の代わりとして例えばカーナビゲーションシステムの一部であってもよいし、スピーカーから警告音を鳴動してもよい。 The buzzer 9 sounds a warning sound to inform the driver of the high possibility of a collision, for example, when the collision avoidance support device 11 determines that there is a high possibility of a collision between the vehicle 10 and a target. In this embodiment, the buzzer 9 is provided as an example of a means for sounding a warning sound, but instead of the buzzer 9, for example, it may be part of a car navigation system, or the warning sound may be sounded from a speaker.
 衝突回避支援装置11は、自車両10と物標との衝突を回避または衝突の被害を軽減する衝突回避支援動作を実行可能な構成とする。衝突回避支援装置11は、上述した複数のセンサから受信した情報をもとに、メータ8およびブザー9、および制動制御装置12を作動するための制御信号を出力可能な構成となっている。本実施形態では、衝突回避支援装置11は、例えば自車両10に搭載されるECU(Electric Control Unit)として構成されており、衝突回避支援動作を実現するためにメータ8に警告画面を表示させることや、ブザー9に警報音を鳴動させること、または制動制御装置12を介して自動で制動を作動させることの何れかまたは全てを支援する。 The collision avoidance support device 11 is configured to be capable of performing a collision avoidance support operation to avoid a collision between the vehicle 10 and a target or to reduce damage from the collision. The collision avoidance support device 11 is configured to be capable of outputting control signals for activating the meter 8, the buzzer 9, and the brake control device 12 based on information received from the above-mentioned multiple sensors. In this embodiment, the collision avoidance support device 11 is configured as, for example, an ECU (Electric Control Unit) mounted on the vehicle 10, and assists in any or all of the following to realize the collision avoidance support operation: displaying a warning screen on the meter 8, sounding an alarm on the buzzer 9, and automatically activating the brakes via the brake control device 12.
 制動制御装置12は、自車両10のブレーキ装置を制御する。制動制御装置12は、衝突回避支援装置11から出力された制御信号に応じて、ブレーキ装置による制動力を調整可能な構成部であり、例えば液圧ポンプやバルブユニットなどのブレーキアクチュエータを含んでいる。 The brake control device 12 controls the brake device of the vehicle 10. The brake control device 12 is a component that can adjust the braking force of the brake device in response to a control signal output from the collision avoidance support device 11, and includes brake actuators such as a hydraulic pump and a valve unit.
 図2は、図1に示す衝突回避支援装置11の内部の機能ブロック構成を示したものである。このような機能ブロックは、ハードウェア、ソフトウェア、またはこれらを組み合わせたものによって実現される。 FIG. 2 shows the internal functional block configuration of the collision avoidance support device 11 shown in FIG. 1. Such functional blocks are realized by hardware, software, or a combination of these.
 図2に示すように、衝突回避支援装置11は、車両情報認識部201、周辺環境認識部202、自車両の交差点横断予測部203、対向車線状況判断部204、衝突予測部205、衝突判定部206を備える。 As shown in FIG. 2, the collision avoidance support device 11 includes a vehicle information recognition unit 201, a surrounding environment recognition unit 202, an intersection crossing prediction unit 203 for the vehicle, an oncoming lane situation judgment unit 204, a collision prediction unit 205, and a collision determination unit 206.
 車両情報認識部201では、車輪速センサ5から取得した自車両10の速度と、ヨーレートセンサ7から取得した自車両10のヨーレートに基づいて、自車両10の旋回半径や加速度など、交差点横断予測部203と衝突予測部205と衝突判定部206で使用する自車両10に関する情報を演算する。なお、舵角センサ6から取得した自車両10の操舵角からヨーレートを取得してもよい。 The vehicle information recognition unit 201 calculates information about the host vehicle 10, such as the turning radius and acceleration of the host vehicle 10, based on the speed of the host vehicle 10 obtained from the wheel speed sensor 5 and the yaw rate of the host vehicle 10 obtained from the yaw rate sensor 7, to be used by the intersection crossing prediction unit 203, the collision prediction unit 205, and the collision determination unit 206. The yaw rate may also be obtained from the steering angle of the host vehicle 10 obtained from the steering angle sensor 6.
 周辺環境認識部202では、カメラ2およびレーダー3のそれぞれから取得した障害物の情報をもとに、車両や自転車、歩行者といった物標種別を決定し、現在の物標の位置と速度情報を衝突回避支援装置11で使用する形式や座標系に統一する。本実施形態で使用する座標系は、一例として自車両10の前端の中心を原点とし、自車両10の全長方向を縦方向、全幅方向を横方向として物標の位置と速度を決定する。同一の物標に対して上記の複数のセンサで検知した場合は、カメラ2およびレーダー3の前後、左右方向の誤差を考慮して、物標現在位置と物標速度を決定してもよい。また、前記の物標の加速度など、対向車線状況判断部204と衝突予測部205に必要な物標情報を算出する。 The surrounding environment recognition unit 202 determines the type of object, such as a vehicle, bicycle, or pedestrian, based on the obstacle information acquired from the camera 2 and radar 3, and unifies the current object position and speed information into a format and coordinate system used by the collision avoidance support device 11. As an example, the coordinate system used in this embodiment has the center of the front end of the vehicle 10 as the origin, and determines the object position and speed with the overall length of the vehicle 10 as the vertical direction and the overall width as the horizontal direction. When the same object is detected by the above-mentioned multiple sensors, the current object position and object speed may be determined taking into account the forward/backward and left/right errors of the camera 2 and radar 3. In addition, object information required for the oncoming lane situation determination unit 204 and collision prediction unit 205, such as the acceleration of the object, is calculated.
 上記に加えて周辺環境認識部202では、カメラ2から取得した自車が走行する道路の状況、および対向車線の状況から、対向車線の位置や角度、および車線数を取得する。 In addition to the above, the surrounding environment recognition unit 202 obtains the position, angle, and number of oncoming lanes from the conditions of the road on which the vehicle is traveling and the conditions of oncoming lanes obtained from camera 2.
 交差点横断予測部203では、自車両10に関する情報および車両情報認識部201が算出した情報をもとに自車両10が交差点を右左折していることを判定し、周辺環境認識部202で取得した対向車線の位置関係から自車両10が第1対向車線に進入しているかを判定する。 The intersection crossing prediction unit 203 determines whether the vehicle 10 is turning right or left at the intersection based on information about the vehicle 10 and information calculated by the vehicle information recognition unit 201, and determines whether the vehicle 10 is entering the first oncoming lane based on the positional relationship of the oncoming lane acquired by the surrounding environment recognition unit 202.
 対向車線状況判断部204は、対向車判断部204Aとフリースペース検出部204Bから構成される。 The oncoming lane situation judgment unit 204 is composed of an oncoming vehicle judgment unit 204A and a free space detection unit 204B.
 対向車判断部204Aでは、周辺環境認識部202から取得した物標の位置、物標の速度、物標の加速度と対向車線に関する情報から、対向車線が複数(2車線以上)あるか否かを判定し、対向車線が複数ある場合に物標がどの対向車線を走行しているかを判定(対向車線を走行する車両を判別)する。対向車線のうち自車両10からみて手前の車線を第1走行車線として第1対向車線を走行する車両を第1対向車(第1走行車両)と判定し、対向車線のうち自車両10からみて奥側の車線を第2走行車線として第2対向車線を走行する車両を第2対向車(第2走行車両)として判定する。 The oncoming vehicle determination unit 204A determines whether there are multiple oncoming lanes (two or more lanes) based on the target position, target speed, target acceleration, and oncoming lane information acquired from the surrounding environment recognition unit 202, and if there are multiple oncoming lanes, determines which oncoming lane the target is traveling in (distinguishes the vehicle traveling in the oncoming lane). The lane in front of the vehicle 10 is determined as the first driving lane, and a vehicle traveling in the first oncoming lane is determined as the first oncoming vehicle (first traveling vehicle), and the lane in the farthest from the vehicle 10 is determined as the second driving lane, and a vehicle traveling in the second oncoming lane is determined as the second oncoming vehicle (second traveling vehicle).
 フリースペース検出部204Bでは、道路形状と第1対向車線に関する情報から、第1対向車線において第1対向車の存在しない区間(以下、フリースペースと記載)を演算(検出)する。 The free space detection unit 204B calculates (detects) a section in the first oncoming lane where there is no oncoming vehicle (hereinafter referred to as a free space) based on information about the road shape and the first oncoming lane.
 衝突予測部205は、衝突予測時間演算部205Aと衝突領域通過時間演算部205Bから構成される。 The collision prediction unit 205 is composed of a collision prediction time calculation unit 205A and a collision area passage time calculation unit 205B.
 衝突予測時間演算部205Aでは、自車両10と第1対向車と第2対向車と道路形状に関する情報をもとに、自車両10と第1対向車と第2対向車の進路を予測する。自車両10と第1対向車と第2対向車の予測進路をもとに、自車両10が第1対向車と第2対向車と衝突する可能性の有無を判定し、自車両10と衝突が予測されるまでの時間(以下、衝突余裕時間と記載)を算出する。これにより、衝突予測時間演算部205Aでは、自車両10が対向車線を横切る際、周辺環境認識部202で検知した物標のうちに自車両10に向かってくる車両との衝突までの時間(衝突が予測されるまでの時間)である衝突余裕時間を演算する。 The collision prediction time calculation unit 205A predicts the paths of the host vehicle 10 and the first and second oncoming vehicles based on information about the host vehicle 10, the first and second oncoming vehicles, and the road shape. Based on the predicted paths of the host vehicle 10, the first and second oncoming vehicles, it determines whether there is a possibility that the host vehicle 10 will collide with the first and second oncoming vehicles, and calculates the time until a collision with the host vehicle 10 is predicted (hereinafter referred to as the collision margin). As a result, the collision prediction time calculation unit 205A calculates the collision margin, which is the time until a collision (the time until a collision is predicted) with a vehicle approaching the host vehicle 10 among the targets detected by the surrounding environment recognition unit 202 when the host vehicle 10 crosses the oncoming lane.
 衝突領域通過時間演算部205Bでは、自車両10と衝突が予測されるまでの時間をもとに自車両10と第2対向車の衝突が予測される領域、言い換えると、第2対向車の予測進路と自車両10の予測進路との交差領域(以下、第2衝突領域と記載)を算出し、第2対向車が現在の位置から第2衝突領域(交差領域)を通過するまでに要する時間を算出する。 The collision area passing time calculation unit 205B calculates the area where a collision between the host vehicle 10 and the second oncoming vehicle is predicted based on the time until a collision with the host vehicle 10 is predicted, in other words, the intersection area between the predicted path of the second oncoming vehicle and the predicted path of the host vehicle 10 (hereinafter referred to as the second collision area), and calculates the time required for the second oncoming vehicle to pass through the second collision area (intersection area) from its current position.
 衝突判定部206は、衝突回避動作決定部206Aと制御指示部206Bから構成させる。 The collision determination unit 206 is composed of a collision avoidance operation determination unit 206A and a control instruction unit 206B.
 衝突回避動作決定部206Aでは、衝突予測部205の演算結果をもとに第1対向車、および第2対向車に対して警報と制動の作動を要求する。 The collision avoidance operation decision unit 206A requests the first oncoming vehicle and the second oncoming vehicle to issue a warning and apply the brakes based on the calculation results of the collision prediction unit 205.
 制御指示部206Bでは、衝突回避動作決定部206Aから取得した警報の作動要求をもとに、メータ8に警告画面の表示を要求し、ブザー9には警報音の鳴動を要求する。 The control instruction unit 206B requests the meter 8 to display a warning screen and requests the buzzer 9 to sound an alarm based on the alarm activation request obtained from the collision avoidance operation decision unit 206A.
 上記に加えて制御指示部206Bは、衝突回避動作決定部206Aから取得した制動の作動要求をもとに、物標との衝突を回避するために必要な制御指令値を制動制御装置12に出力する。制御指示部206Bは、衝突余裕時間が制動作動判定閾値以下の場合、物標との衝突を回避するために自車両10を減速させるための制御指令値を制動制御装置12に出力する。制御指示部206Bでは、第1減速度または第1制動力と、第2減速度または第2制動力を出力することが可能であり、第2減速度は第1減速度より小さく、第2制動力も第1制動力よりも小さな値である。 In addition to the above, the control instruction unit 206B outputs a control command value required to avoid a collision with a target to the brake control device 12 based on the braking operation request acquired from the collision avoidance operation decision unit 206A. When the collision margin time is equal to or less than the braking operation judgment threshold, the control instruction unit 206B outputs a control command value to the brake control device 12 for decelerating the host vehicle 10 to avoid a collision with a target. The control instruction unit 206B is capable of outputting a first deceleration or a first braking force, and a second deceleration or a second braking force, where the second deceleration is smaller than the first deceleration and the second braking force is also smaller than the first braking force.
 制御指示部206Bは、制御指令値を出力する際に衝突回避動作決定部206Aからの作動要求に応じて第1減速度と第2減速度または第1制動力と第2制動力を切り替える。 When outputting a control command value, the control instruction unit 206B switches between the first deceleration and the second deceleration or the first braking force and the second braking force in response to an operation request from the collision avoidance operation determination unit 206A.
 図3は、本発明の実施形態における衝突回避支援において、第1対向車線と第2対向車線が存在し、自車両10が第1対向車線に既に進入している場合におけるフローチャートの一例である。自車両10が第1対向車線に進入しているかの判定方法は、周辺環境認識部202から取得した対向車線の位置と自車両10の位置関係をもとに判定してもよく、本実施形態に記載の方法に限定されるものではない。 FIG. 3 is an example of a flowchart for collision avoidance assistance in an embodiment of the present invention when a first oncoming lane and a second oncoming lane exist and the vehicle 10 has already entered the first oncoming lane. The method for determining whether the vehicle 10 has entered the first oncoming lane may be based on the positional relationship between the oncoming lane position acquired from the surrounding environment recognition unit 202 and the vehicle 10, and is not limited to the method described in this embodiment.
 図3のステップS401では、車両情報認識部201からの情報をもとに自車両10が交差点を右左折しているか否かを判定する。判定方法の一例としては、自車両10のヨーレート、または旋回半径、またはヨーレートと旋回半径の両方から自車両10が交差点を右左折していることを判定してもよいし、自車両10の速度情報から自車両10が減速していることを判定の条件に追加してもよい。また、カメラ2から取得した道路標識から自車両10が交差点内を走行していることを判定してもよい。ステップS401で自車両10が交差点を右左折していると判定した場合にステップS402に進み、自車両10が右左折していない場合はステップS401以降の処理を実施しない。本実施形態では、自車両10が右左折している場合に衝突回避支援を実施するが、自車両10が右左折していない場合においても従来通りの方法で衝突回避支援を実施してもよい。このステップS401は交差点横断予測部203で実行される。 In step S401 of FIG. 3, it is determined whether the host vehicle 10 is turning right or left at the intersection based on information from the vehicle information recognition unit 201. As an example of a determination method, it may be determined that the host vehicle 10 is turning right or left at the intersection based on the yaw rate, turning radius, or both the yaw rate and turning radius of the host vehicle 10, or the host vehicle 10 may be decelerated based on the speed information of the host vehicle 10 to add to the determination conditions. It may also be determined that the host vehicle 10 is traveling within the intersection based on road signs acquired from the camera 2. If it is determined in step S401 that the host vehicle 10 is turning right or left at the intersection, the process proceeds to step S402, and if the host vehicle 10 is not turning right or left, the process after step S401 is not performed. In this embodiment, collision avoidance support is performed when the host vehicle 10 is turning right or left, but collision avoidance support may be performed in the conventional manner even if the host vehicle 10 is not turning right or left. This step S401 is executed by the intersection crossing prediction unit 203.
 ステップS402では、第1対向車線のフリースペースを演算する。フリースペースは、対向車線状況判断部204で第1対向車が存在すると判定した場合には周辺環境認識部202から取得した第1対向車に関する情報をもとに算出する。図4に、第1対向車を検知していない場合(図4の(A)列)と第1対向車が自車両10から離れた位置にいる場合(図4の(B)列)と第1対向車が自車両10に近い位置にいる場合(図4の(C)列)におけるそれぞれのフリースペースを示す。図内の1000は道路の白線を示しており、白線1000で囲まれた領域1001は第1対向車線を示し、領域1002は第2対向車線を示す。10は自車両10を示しており、11Cは第1対向車を示している。矢印1010は、自車両10の走行軌跡を示している。領域1003はステップS402で演算するフリースペースを示しており、フリースペースは第1対向車線上で対向車が存在しない領域である。1004は自車両10の現在位置を基準としてフリースペースの長さを示している。図4(A)のように、第1対向車を検知できない場合は、フリースペースの縦方向の長さ1004はセンサが検知可能な限界距離を設定してもよいし、ステップS402以降において第1対向車との衝突判定を実施しないようにしてもよい。図4(B)や図4(C)のように、第1対向車を検知できている場合は、現在の自車両10の位置を基準としてフリースペースの縦方向の長さを算出し、ステップS402以降において第1対向車との衝突判定をする際にフリースペースに関する情報を使用してもよい。このステップS402は対向車線状況判断部204のフリースペース検出部204Bで実行される。 In step S402, the free space of the first oncoming lane is calculated. When the oncoming lane situation judgment unit 204 judges that a first oncoming vehicle is present, the free space is calculated based on information about the first oncoming vehicle obtained from the surrounding environment recognition unit 202. FIG. 4 shows the free space when the first oncoming vehicle is not detected (row (A) of FIG. 4), when the first oncoming vehicle is located away from the vehicle 10 (row (B) of FIG. 4), and when the first oncoming vehicle is located close to the vehicle 10 (row (C) of FIG. 4). In the figure, 1000 indicates the white line of the road, and the area 1001 surrounded by the white line 1000 indicates the first oncoming lane, and the area 1002 indicates the second oncoming lane. 10 indicates the vehicle 10, and 11C indicates the first oncoming vehicle. The arrow 1010 indicates the travel trajectory of the vehicle 10. Area 1003 indicates the free space calculated in step S402, and the free space is an area on the first oncoming lane where no oncoming vehicle exists. 1004 indicates the length of the free space based on the current position of the vehicle 10. As in FIG. 4(A), if the first oncoming vehicle cannot be detected, the vertical length 1004 of the free space may be set to the limit distance that the sensor can detect, or a collision determination with the first oncoming vehicle may not be performed after step S402. As in FIG. 4(B) and FIG. 4(C), if the first oncoming vehicle can be detected, the vertical length of the free space may be calculated based on the current position of the vehicle 10, and information about the free space may be used when determining a collision with the first oncoming vehicle after step S402. This step S402 is executed by the free space detection unit 204B of the oncoming lane situation determination unit 204.
 ステップS403では、自車両10と第1対向車と第2対向車に関する情報とステップS402で算出したフリースペースの情報から、自車両10と第1対向車の衝突する可能性の有無を判定(以下、第1衝突判定と記載)し、自車両10と第2対向車の衝突する可能性の有無を判定(以下、第2衝突判定と記載)する。第1衝突判定の方法としては、一例として自車両10と第1対向車の所定時間後の位置を予測し、自車両10と第1対向車の予測位置において自車両10と重なる領域がある場合は自車両10と衝突する可能性があると判定する。第2衝突判定についても自車両10と第2対向車の予測位置において自車両10と重なる領域がある場合は自車両10と衝突する可能性があると判定する。 In step S403, the possibility of collision between the host vehicle 10 and the first oncoming vehicle is determined (hereinafter referred to as the first collision determination) from information regarding the host vehicle 10, the first oncoming vehicle, and the second oncoming vehicle, and the information regarding the free space calculated in step S402, and the possibility of collision between the host vehicle 10 and the second oncoming vehicle is determined (hereinafter referred to as the second collision determination). As an example of a method for the first collision determination, the positions of the host vehicle 10 and the first oncoming vehicle after a predetermined time are predicted, and if there is an overlapping area between the predicted positions of the host vehicle 10 and the first oncoming vehicle and the host vehicle 10, it is determined that there is a possibility of collision between the host vehicle 10 and the second oncoming vehicle. In the second collision determination, if there is an overlapping area between the predicted positions of the host vehicle 10 and the second oncoming vehicle and the host vehicle 10, it is determined that there is a possibility of collision between the host vehicle 10 and the second oncoming vehicle.
 自車両10の所定時間後の予測位置を算出する際に、自車両10の挙動を速度とヨーレートが一定である定常旋回として予測位置を算出してもよいし、自車両の加速度やヨーレートの変化量を考慮して予測位置を算出してもよく、自車両10の予測位置の算出方法は本実施形態の方法に限定しない。第1対向車と第2対向車の所定時間後の予測位置を算出する際に、対向車の挙動を等速直線運動として予測位置を算出してもよいし、第1対向車と第2対向車の加速度を考慮して予測位置を算出してもよく、第1対向車と第2対向車の予測位置の算出方法は本実施形態の方法に限定されるものではない。 When calculating the predicted position of the host vehicle 10 after a predetermined time, the predicted position may be calculated assuming that the behavior of the host vehicle 10 is a steady turn with constant speed and yaw rate, or the predicted position may be calculated taking into account the change in the host vehicle's acceleration and yaw rate, and the method of calculating the predicted position of the host vehicle 10 is not limited to the method of this embodiment. When calculating the predicted positions of the first and second oncoming vehicles after a predetermined time, the predicted positions may be calculated assuming that the behavior of the oncoming vehicles is a constant-speed linear motion, or the predicted positions may be calculated taking into account the acceleration of the first and second oncoming vehicles, and the method of calculating the predicted positions of the first and second oncoming vehicles is not limited to the method of this embodiment.
 第1衝突判定で自車両10と衝突すると判定した場合は自車両10と第1対向車の衝突が予測されるまでに経過する時間(以下、第1衝突余裕時間と記載)を算出する。第1衝突余裕時間をもとに、自車両10が第1対向車との衝突が予測される時の自車両10の位置(以下、第1衝突予測位置と記載)と第1対向車の位置(以下、第1対向車衝突予測位置と記載)を算出する。 If the first collision judgment determines that a collision with the host vehicle 10 will occur, the time that will elapse until a collision between the host vehicle 10 and the first oncoming vehicle is predicted (hereinafter referred to as the first collision margin time) is calculated. Based on the first collision margin time, the position of the host vehicle 10 at the time when a collision between the host vehicle 10 and the first oncoming vehicle is predicted (hereinafter referred to as the first collision margin position) and the position of the first oncoming vehicle (hereinafter referred to as the first oncoming vehicle collision margin position) are calculated.
 第2衝突判定で自車両10と衝突すると判定した場合は自車両10と第2対向車の衝突が予測されるまでに経過する時間(以下、第2衝突余裕時間と記載)を算出する。第2衝突余裕時間をもとに、自車両10が第2対向車との衝突が予測される時の自車両10の位置(以下、第2衝突予測位置と記載)と第2対向車の位置(以下、第2対向車衝突予測位置と記載)を算出する。 If the second collision judgment determines that a collision with the host vehicle 10 will occur, the time that will elapse until a collision between the host vehicle 10 and the second oncoming vehicle is predicted (hereinafter referred to as the second collision margin time) is calculated. Based on the second collision margin time, the position of the host vehicle 10 at the time when a collision between the host vehicle 10 and the second oncoming vehicle is predicted (hereinafter referred to as the second collision predicted position) and the position of the second oncoming vehicle (hereinafter referred to as the second oncoming vehicle collision predicted position) are calculated.
 第1対向車が存在する時に第1衝突判定が成立しない場合は、第1衝突余裕時間は、第1対向車が現在の位置から第2衝突予測位置に到達するまでの時間として算出する。 If the first collision judgment is not established when a first oncoming vehicle is present, the first collision margin time is calculated as the time it takes for the first oncoming vehicle to reach the second predicted collision position from its current position.
 上記の第1衝突判定では、一例として自車両10と第1対向車に関する情報をもとに判定しているが、フリースペースの情報をもとに判定してもよい。例えば、ステップS402において、フリースペースの長さが所定距離よりも長い場合は、自車両10と衝突する可能性がある第1対向車が存在しないと判断し、第1衝突余裕時間を大きな値として設定してもよいし、フリースペースの長さを予め設定していた第1対向車の想定する最高速度で走行した場合に要する時間として設定してよい。 In the above first collision judgment, as an example, the judgment is made based on information about the host vehicle 10 and the first oncoming vehicle, but the judgment may also be made based on information about the free space. For example, in step S402, if the length of the free space is longer than a predetermined distance, it may be determined that there is no first oncoming vehicle that may collide with the host vehicle 10, and the first collision margin time may be set to a large value, or the length of the free space may be set to the time required for the first oncoming vehicle to travel at a previously set maximum expected speed.
 第2対向車が存在しない場合は、第2衝突余裕時間も大きな値を設定する。 If there is no second oncoming vehicle, the second collision margin time is also set to a large value.
 このステップS403は衝突予測部205の衝突予測時間演算部205Aで実行される。 This step S403 is executed by the collision prediction time calculation unit 205A of the collision prediction unit 205.
 ステップS404では、第1衝突判定の結果をもとにステップS404以降の処理を切り替える。第1衝突判定の結果において第1対向車と衝突する可能性があると判定した場合はステップS409に進み、第1対向車と衝突する可能性がないと判定した場合はステップS405に進む。 In step S404, the process from step S404 onwards is switched based on the result of the first collision determination. If the result of the first collision determination indicates that there is a possibility of a collision with the first oncoming vehicle, the process proceeds to step S409, and if the result indicates that there is no possibility of a collision with the first oncoming vehicle, the process proceeds to step S405.
 ステップS405では、第2衝突判定の結果をもとにステップS405以降の処理を切り替える。第2衝突判定の結果において第2対向車と衝突する可能性があると判定した場合はステップS406に進む。第2対向車と衝突する可能性がないと判定した場合は、第1対向車、および第2対向車と衝突する可能性がないため、減速度を要求しない。 In step S405, the process after step S405 is switched based on the result of the second collision judgment. If it is determined that there is a possibility of a collision with the second oncoming vehicle as a result of the second collision judgment, the process proceeds to step S406. If it is determined that there is no possibility of a collision with the second oncoming vehicle, deceleration is not requested because there is no possibility of a collision with the first oncoming vehicle or the second oncoming vehicle.
 自車両10が第2の減速度または制動力によって減速している時に、自車両10の減速によって第2対向車と衝突する可能性がなくなった場合は(第2対向車との衝突の可能性が低くなった時点で)第2の減速度または制動力の要求を解除する。上記の場合に減速度または制動力の要求を解除することで、自車両10が第1対向車線内で停車せずに素早く通過することを可能にし、第2対向車との衝突を回避した後に第1対向車から衝突されることを防ぐ。 When the host vehicle 10 is decelerating due to the second deceleration or braking force, if the deceleration of the host vehicle 10 eliminates the possibility of a collision with the second oncoming vehicle (at the point when the possibility of a collision with the second oncoming vehicle becomes low), the request for the second deceleration or braking force is cancelled. Cancelling the request for the deceleration or braking force in the above case allows the host vehicle 10 to quickly pass through the first oncoming lane without stopping, and prevents the host vehicle 10 from being hit by the first oncoming vehicle after avoiding a collision with the second oncoming vehicle.
 ステップS406では、自車両10が第2対向車と衝突する可能性があると判定した場合に、第2衝突予測位置と第2対向車衝突予測位置をもとに、第2衝突領域を第2対向車が通過するまでに経過する時間(以下、第2衝突領域予測通過時間と記載)を算出する。このステップS406は衝突予測部205の衝突領域通過時間演算部205Bで実行される。 In step S406, if it is determined that there is a possibility that the host vehicle 10 will collide with the second oncoming vehicle, the time that will pass until the second oncoming vehicle passes the second collision area (hereinafter referred to as the second collision area predicted passing time) is calculated based on the second collision predicted position and the second oncoming vehicle collision predicted position. This step S406 is executed by the collision area passing time calculation unit 205B of the collision prediction unit 205.
 第2衝突領域は、第2対向車の予測進路と自車両10の予測進路との交差領域であり、第2衝突領域の大きさは第2衝突予測位置と第2対向車衝突予測位置の位置関係をもとに算出するが、上記に加えて自車速度、または第2対向車の速度、またはセンサの検知精度を考慮した余裕距離を設定してもよい。第2衝突領域予測通過時間は、自車両10と第2対向車の衝突が予測される地点(第2衝突領域)における自車両10と第2対向車の重なりの比率(以下、予測オーバーラップ率と記載)によって変わるため、予測オーバーラップ率をもとに第2衝突領域予測通過時間を算出してもよい。 The second collision area is an intersection area between the predicted path of the second oncoming vehicle and the predicted path of the vehicle 10, and the size of the second collision area is calculated based on the positional relationship between the second predicted collision position and the predicted collision position of the second oncoming vehicle. In addition to the above, a margin distance may be set that takes into account the vehicle speed, or the speed of the second oncoming vehicle, or the detection accuracy of the sensor. The predicted passage time through the second collision area varies depending on the overlap ratio (hereinafter referred to as the predicted overlap rate) between the vehicle 10 and the second oncoming vehicle at the point where the collision between the vehicle 10 and the second oncoming vehicle is predicted (second collision area), so the predicted passage time through the second collision area may be calculated based on the predicted overlap rate.
 図5をもとに、ステップS406で算出した予測オーバーラップ率が大きい場合(図5の(A)列)と予測オーバーラップ率が小さい場合(図5の(B)列)を説明する。図5の(A)列と(B)列の自車両10と第2対向車の速度は同じであり、(A)列と(B)列の自車両10の走行軌跡は同じである。10は自車両10の現在の位置を示しており、12Aと12Bは第2対向車の現在の位置を示しており、(A)列の方が(B)列よりも第2対向車が自車両10に接近している。 With reference to FIG. 5, we will explain the case where the predicted overlap rate calculated in step S406 is large (row (A) in FIG. 5) and the case where the predicted overlap rate is small (row (B) in FIG. 5). The speeds of the host vehicle 10 and the second oncoming vehicle in rows (A) and (B) in FIG. 5 are the same, and the travel trajectory of the host vehicle 10 in rows (A) and (B) is the same. 10 indicates the current position of the host vehicle 10, 12A and 12B indicate the current position of the second oncoming vehicle, and the second oncoming vehicle is closer to the host vehicle 10 in row (A) than in row (B).
 1110は、第2衝突予測位置の自車両10を示している。1112Aと1112Bは、第2対向車衝突予測位置を示している。1102は、第2衝突領域を示している。第2衝突領域の算出方法の一例としては、第2衝突予測位置における自車両10の右側面と左側面の位置から自車両10の右側面と左側面の進路と第2対向車の進路が交差する位置(図5内の点1115と点1116)を算出し、点1115と点1116を頂点とし、第2対向車衝突予測位置の第2対向車の全長方向と全幅方向に平行な四角形とする。 1110 indicates the host vehicle 10 at the second predicted collision position. 1112A and 1112B indicate the second predicted collision position with an oncoming vehicle. 1102 indicates the second collision area. As an example of a method for calculating the second collision area, a position where the paths of the right and left sides of the host vehicle 10 and the path of the second oncoming vehicle intersect ( points 1115 and 1116 in FIG. 5) is calculated from the positions of the right and left sides of the host vehicle 10 at the second predicted collision position, and points 1115 and 1116 are used as vertices to form a rectangle parallel to the overall length and width of the second oncoming vehicle at the second predicted collision position with the second oncoming vehicle.
 矢印1101Aと矢印1101Bは、第2対向車が第2衝突領域に進入している長さを示しており、第2衝突領域の第2対向車の全長方向の長さに対して1101A、または1101Bが占める割合を予測オーバーラップ率とする。図5では自車両10が左下から右上に向かって第2対向車に衝突するが、例えば自車両10が第2対向車と直交して衝突する場合では、第2衝突領域の第2対向車の全長方向の長さは自車両10の全幅と等しくなるため、算出する予測オーバーラップ率は自車両10の全幅に対して占める割合となる。 Arrows 1101A and 1101B indicate the length of the second oncoming vehicle entering the second collision area, and the predicted overlap rate is the percentage of 1101A or 1101B relative to the overall length of the second oncoming vehicle in the second collision area. In FIG. 5, the vehicle 10 collides with the second oncoming vehicle from the bottom left to the top right, but for example, if the vehicle 10 collides perpendicularly with the second oncoming vehicle, the overall length of the second oncoming vehicle in the second collision area will be equal to the overall width of the vehicle 10, and so the calculated predicted overlap rate will be the percentage relative to the overall width of the vehicle 10.
 図6をもとに、予測オーバーラップ率が大きい場合(図5の(A)列)と予測オーバーラップ率が小さい場合(図5の(B)列)において、第2衝突領域予測通過時間の算出について説明する。 Based on Figure 6, we will explain how to calculate the predicted passing time through the second collision area when the predicted overlap rate is large (column (A) of Figure 5) and when the predicted overlap rate is small (column (B) of Figure 5).
 1110、1112A、1112B、1101A、1101B、1115、1116の定義は図5と同様である。1117は、第2衝突領域を通過した時の第2対向車を示している。長さ1104Aと長さ1104Bは、第2対向車の全てが第2衝突領域を通過するまでに要する走行距離を示しており、予測オーバーラップ率と第2対向車の全長をもとに算出できる。予測オーバーラップ率から第2対向車衝突予測位置における第2対向車の前端から点1116までの長さを算出し、算出した長さに第2対向車の全長を加えることで長さ1104Aと長さ1104Bを算出する。 The definitions of 1110, 1112A, 1112B, 1101A, 1101B, 1115, and 1116 are the same as in FIG. 5. 1117 indicates the second oncoming vehicle when it passes through the second collision area. Lengths 1104A and 1104B indicate the travel distance required for all of the second oncoming vehicles to pass through the second collision area, and can be calculated based on the predicted overlap rate and the overall length of the second oncoming vehicle. The length from the front end of the second oncoming vehicle to point 1116 at the predicted collision position of the second oncoming vehicle is calculated from the predicted overlap rate, and lengths 1104A and 1104B are calculated by adding the overall length of the second oncoming vehicle to the calculated length.
 ステップS406では、1104Aと1104Bの長さをもとに、第2衝突領域予測通過時間を算出する。第2衝突領域予測通過時間を算出する際に、第2対向車の速度が現在の速度一定で走行するとして算出してもよいし、第2走行車の加速度を考慮して算出してもよい。 In step S406, the predicted time to pass through the second collision area is calculated based on the lengths of 1104A and 1104B. When calculating the predicted time to pass through the second collision area, the calculation may be performed assuming that the speed of the second oncoming vehicle is constant at the current speed, or the calculation may be performed taking into account the acceleration of the second traveling vehicle.
 図6に示すように、第2対向車の全てが第2衝突領域を通過するまでに要する走行距離(1104Aと1104B)は予測オーバーラップ率によって異なるため、算出した前記予測オーバーラップ率をもとに第2衝突領域予測通過時間を算出することで、自車両10と第2対向車の位置関係や状態に応じた第2衝突領域予測通過時間の算出を可能にする。 As shown in FIG. 6, the travel distance (1104A and 1104B) required for all of the second oncoming vehicles to pass through the second collision area varies depending on the predicted overlap rate. Therefore, by calculating the predicted time to pass through the second collision area based on the calculated predicted overlap rate, it becomes possible to calculate the predicted time to pass through the second collision area according to the positional relationship and state of the vehicle 10 and the second oncoming vehicle.
 本実施形態では一例として、算出した予測オーバーラップ率をもとに第2衝突領域予測通過時間を算出している場合を記載したが、本実施形態に記載した方法とは異なる方法で第2衝突領域予測通過時間を算出してもよい。 In this embodiment, as an example, a case has been described in which the predicted passing time of the second collision area is calculated based on the calculated predicted overlap rate, but the predicted passing time of the second collision area may be calculated using a method different from the method described in this embodiment.
 ステップS406では、第2対向車の速度が速い場合や、自車両10から第2対向車までの距離が長い場合は、センサによって検知した第2対向車の速度や位置などの検知情報に大きな誤差が含まれることが想定される。センサで検知した情報をもとに算出した第2衝突領域予測通過時間が、第2対向車の実際の位置をもとに算出した第2衝突領域予測通過時間よりも短くなる場合には、第2対向車が第2衝突領域を通過していると誤判定する可能性があり、結果として第2対向車に衝突する。そこで、第2対向車の速度が所定速度より速い場合、または自車両10から第2対向車までの距離が所定距離より長い場合、または第2対向車の速度が所定速度より速い場合と自車両10から第2対向車までの距離が所定距離より長い場合の両方を満たす場合は、第2衝突領域予測通過時間に所定時間を加算することで、自車両10が第2対向車に衝突することを防いでもよい。 In step S406, if the speed of the second oncoming vehicle is fast or if the distance from the vehicle 10 to the second oncoming vehicle is long, it is assumed that the detection information of the second oncoming vehicle detected by the sensor, such as the speed and position, contains a large error. If the second collision area predicted passing time calculated based on the information detected by the sensor is shorter than the second collision area predicted passing time calculated based on the actual position of the second oncoming vehicle, it may be erroneously determined that the second oncoming vehicle is passing through the second collision area, resulting in a collision with the second oncoming vehicle. Therefore, if the speed of the second oncoming vehicle is faster than a predetermined speed, or if the distance from the vehicle 10 to the second oncoming vehicle is longer than a predetermined distance, or if both the speed of the second oncoming vehicle is faster than a predetermined speed and the distance from the vehicle 10 to the second oncoming vehicle are longer than a predetermined distance, the collision of the vehicle 10 with the second oncoming vehicle may be prevented by adding a predetermined time to the second collision area predicted passing time.
 上記の所定速度と所定距離は、自車両10と第2対向車の速度や位置関係によって可変にしてもよい。自車両10が衝突回避支援装置による制動を作動した後に第2対向車が減速することで自車両10が第2対向車に衝突することを防ぐために、第2衝突領域予測通過時間は、現在の第2対向車の減速度を考慮して算出してもよいし、予め第2対向車が一定の減速度で減速することを考慮し、第2衝突領域予測通過時間に余裕時間を加えてもよい。 The above-mentioned predetermined speed and predetermined distance may be variable depending on the speed and positional relationship between the host vehicle 10 and the second oncoming vehicle. In order to prevent the host vehicle 10 from colliding with the second oncoming vehicle due to the second oncoming vehicle decelerating after the host vehicle 10 activates the brakes using the collision avoidance assistance device, the predicted second collision zone passing time may be calculated taking into account the current deceleration of the second oncoming vehicle, or a margin may be added to the predicted second collision zone passing time in advance, taking into account that the second oncoming vehicle will decelerate at a constant deceleration.
 ステップS407では、自車両10の現在の位置と速度から、第2の減速度または制動力によって減速した時に、自車両10が第2衝突予測位置に到達するまでに経過する時間(以下、衝突予測位置到達時間と記載)を算出する。第2衝突予測位置までの道のり距離が、自車両10が第2の減速度または制動力によって停車するまでに移動する距離よりも長い場合は、自車両10が第2衝突予測位置に到達する前に停車するため、上記の場合は一例として衝突予測位置到達時間は0を設定する。このステップS407は衝突予測部205で実行される。 In step S407, the time that will elapse until the host vehicle 10 reaches the second predicted collision position when decelerated by the second deceleration or braking force (hereinafter referred to as the predicted collision position arrival time) is calculated from the current position and speed of the host vehicle 10. If the travel distance to the second predicted collision position is longer than the distance that the host vehicle 10 travels before stopping by the second deceleration or braking force, the host vehicle 10 will stop before reaching the second predicted collision position, so in the above case, as an example, the predicted collision position arrival time is set to 0. This step S407 is executed by the collision prediction unit 205.
 ステップS408では、第1衝突余裕時間と第2衝突領域予測通過時間と衝突予測位置到達時間をもとに、第2の減速度または制動力によって第2対向車との衝突を回避できることと、第2の減速度または制動力によって自車両10が減速した場合に第1対向車と衝突しないことを判定(以下、第2制御実施判定と記載)する。 In step S408, based on the first collision margin time and the second collision area predicted passage time and collision position arrival time, it is determined that a collision with the second oncoming vehicle can be avoided by the second deceleration or braking force, and that a collision with the first oncoming vehicle will not occur if the host vehicle 10 is decelerated by the second deceleration or braking force (hereinafter referred to as the second control implementation determination).
 ステップS408で第2制御実施判定が成立した場合は、ステップS410において第2の減速度または制動力の作動タイミングを決定する。ステップS408で第2制御実施判定が成立しない場合は、ステップS409に進み、第1の減速度または制動力の作動タイミングを決定する。 If the second control execution determination is true in step S408, the operation timing of the second deceleration or braking force is determined in step S410. If the second control execution determination is false in step S408, the process proceeds to step S409, where the operation timing of the first deceleration or braking force is determined.
 ステップS408以降は衝突判定部206で実行される。 Steps S408 and after are executed by the collision determination unit 206.
 図7は、第2制御実施判定のフローチャートの一例である。 FIG. 7 is an example of a flowchart for determining whether to perform the second control.
 ステップS501では、自車両10と第2対向車の状態に応じて、第2の減速度または制動力で衝突を回避できるか否かを判定する。 In step S501, it is determined whether a collision can be avoided by applying the second deceleration or braking force depending on the state of the host vehicle 10 and the second oncoming vehicle.
 自車両10の速度が所定速度よりも遅い場合は、自車両10が第2減速度また制動力によって減速した場合に第2衝突予測位置に到達するまでに停車する可能性があるため、第2の減速度または制動力による衝突回避をしない。換言すると、自車両10の車速が所定車速よりも低い時には、減速度または制動力を、第1の減速度または制動力から第2の減速度または制動力へ変更しない(第1から第2への減速度または制動力の切り替えを実施しない)。上記の所定速度は、自車両10の現在の状態をもとに設定してもよく、本実施形態に記載した方法に限定しない。自車両10の現在の状態から所定速度を設定する方法の一例としては、自車両10の速度と第2衝突余裕時間から、自車両10が現在位置から第2衝突予測位置に到達するまでの距離(以下、第2道のり距離と記載)を算出し、自車両10が第2の減速度または制動力で減速した場合に第2道のり距離を停車せずに走破するために必要な自車両10の最低速度を算出し、上記の方法で算出した最低速度を所定速度として設定する。上記の方法で所定速度を設置することで、自車両10が第2衝突予測位置に到達するまでに停車するか否かを判定できる。 If the speed of the host vehicle 10 is slower than the predetermined speed, there is a possibility that the host vehicle 10 will stop before reaching the second predicted collision position if it is decelerated by the second deceleration or braking force, so collision avoidance is not performed by using the second deceleration or braking force. In other words, when the speed of the host vehicle 10 is lower than the predetermined vehicle speed, the deceleration or braking force is not changed from the first deceleration or braking force to the second deceleration or braking force (the deceleration or braking force is not switched from the first to the second). The above predetermined speed may be set based on the current state of the host vehicle 10, and is not limited to the method described in this embodiment. As an example of a method for setting the predetermined speed from the current state of the vehicle 10, the distance from the current position of the vehicle 10 to the second predicted collision position (hereinafter referred to as the second distance) is calculated from the speed of the vehicle 10 and the second collision margin time, the minimum speed of the vehicle 10 required to travel the second distance without stopping when the vehicle 10 decelerates at the second deceleration or braking force is calculated, and the minimum speed calculated by the above method is set as the predetermined speed. By setting the predetermined speed by the above method, it is possible to determine whether the vehicle 10 will stop before reaching the second predicted collision position.
 第2対向車の速度が所定速度より遅い場合は、第2対向車が第2衝突領域内で停車する場合や右左折する可能性があるため、第2の減速度または制動力による衝突回避をしない。換言すると、第2走行車両の車速が所定車速よりも低い時には、減速度または制動力を、第1の減速度または制動力から第2の減速度または制動力へ変更しない(第1から第2への減速度または制動力の切り替えを実施しない)。 If the speed of the second oncoming vehicle is slower than the predetermined speed, the second oncoming vehicle may stop or turn right or left in the second collision area, so collision avoidance is not performed by applying the second deceleration or braking force. In other words, when the speed of the second traveling vehicle is slower than the predetermined speed, the deceleration or braking force is not changed from the first deceleration or braking force to the second deceleration or braking force (the deceleration or braking force is not switched from the first to the second).
 ステップS502では、第2衝突余裕時間と第2衝突領域予測通過時間と衝突予測位置到達時間をもとに、自車両10が第2の減速度または制動力によって減速した場合に自車両10よりも先に第2対向車が第2衝突領域を通過できるか否かを判定する。 In step S502, based on the second collision margin time and the second collision area predicted passage time and collision position predicted arrival time, it is determined whether the second oncoming vehicle will be able to pass the second collision area before the host vehicle 10 when the host vehicle 10 decelerates due to the second deceleration or braking force.
 第2対向車が現在の位置から第2衝突領域を通過するまでに要する時間は、第2対向車が現在の位置から第2衝突領域に到達するまでに要する時間である第2衝突余裕時間と、第2衝突領域に到達してから通過するまでに要する時間である第2衝突領域予測通過時間の合計(以下、第2衝突領域通過合計時間と記載)で算出できる。 The time required for the second oncoming vehicle to pass through the second collision area from its current position can be calculated as the sum of the second collision margin time, which is the time required for the second oncoming vehicle to reach the second collision area from its current position, and the predicted second collision area passing time, which is the time required for the second oncoming vehicle to pass through the second collision area after reaching it (hereinafter referred to as the total time to pass through the second collision area).
 衝突予測位置到達時間が第2衝突領域通過合計時間よりも大きい場合は、自車両10が第2衝突予測位置に到達したときに第2対向車が既に第2衝突領域を通過しているため、ステップS503に進む。一方で、衝突予測位置到達時間が第2衝突領域通過合計時間よりも小さい場合は、自車両10が第2衝突予測位置に到達したときに第2対向車が第2衝突領域内にいる(第2衝突領域を通過できない)ため、第2の減速度または制動力によって第2対向車との衝突を回避できないことから、第1の減速度または制動力で自車両10を第2対向車線の手前で停車させて第2対向車との衝突を回避する。 If the time to reach the predicted collision position is greater than the total time to pass through the second collision area, the second oncoming vehicle will have already passed through the second collision area when the vehicle 10 reaches the second predicted collision position, and so the process proceeds to step S503. On the other hand, if the time to reach the predicted collision position is less than the total time to pass through the second collision area, the second oncoming vehicle will be in the second collision area (cannot pass through the second collision area) when the vehicle 10 reaches the second predicted collision position, and so a collision with the second oncoming vehicle cannot be avoided by the second deceleration or braking force. Therefore, the vehicle 10 is stopped in front of the second oncoming lane by the first deceleration or braking force, and a collision with the second oncoming vehicle is avoided.
 ステップS503では、第1衝突余裕時間と自車両10が第2の減速度または制動力で減速した場合に第1対向車線を通過するまでに要する時間(以下、第1対向車線通過時間と記載)をもとに、自車両10が第2の減速度または制動力によって減速した場合に第1対向車との衝突を回避できるか否かを判定する。 In step S503, based on the first collision margin time and the time required for the host vehicle 10 to pass the first oncoming lane when decelerating at the second deceleration or braking force (hereinafter referred to as the first oncoming lane passing time), it is determined whether or not a collision with the first oncoming vehicle can be avoided when the host vehicle 10 decelerates at the second deceleration or braking force.
 第1対向車線通過時間は、衝突予測位置到達時間と自車両10が第2の減速度または制動力で減速した際に衝突予測位置到達時間後の自車両10の速度で自車両10の全長分の距離を通過するために要する時間の合計になる。 The first oncoming lane passing time is the sum of the predicted collision position arrival time and the time required for the host vehicle 10 to pass the full length of the host vehicle 10 at the speed of the host vehicle 10 after the predicted collision position arrival time when the host vehicle 10 is decelerated by the second deceleration or braking force.
 図8に、第1対向車線通過時間が第1衝突余裕時間よりも小さい場合(図8の(A)列)と第1対向車線通過時間が第1衝突余裕時間よりも大きい場合(図8の(B)列)に、自車両10が第2の減速度または制動力で減速し、第1対向車線を通過した時の自車両10と第1対向車の位置関係を示す。図8の(A)列と(B)列の自車両10と第1対向車の速度は同じである。 Figure 8 shows the positional relationship between the host vehicle 10 and the first oncoming vehicle when the host vehicle 10 decelerates at the second deceleration or braking force and passes through the first oncoming lane in the case where the first oncoming lane passing time is shorter than the first collision margin time (row (A) of Figure 8) and in the case where the first oncoming lane passing time is longer than the first collision margin time (row (B) of Figure 8). The speeds of the host vehicle 10 and the first oncoming vehicle are the same in rows (A) and (B) of Figure 8.
 10は自車両10の現在の位置を示す。11Aと11Bは、(A)の場合と(B)の場合における第1対向車の現在の位置を示しており、(B)列の方が(A)列よりも第1対向車と自車両10の距離が近い。1000と1001と1002との定義は図5と同様である。 10 indicates the current position of the vehicle 10. 11A and 11B indicate the current positions of the first oncoming vehicle in cases (A) and (B), with the first oncoming vehicle being closer to the vehicle 10 in row (B) than in row (A). The definitions of 1000, 1001, and 1002 are the same as in FIG. 5.
 1231は、11Aと11Bの第1対向車の前端中心を原点とした座標系であり、第1対向車の全長方向を縦位置とし、全幅方向を横位置と定義する。1231の縦位置は第1対向車の前方を正とし、横位置は第1対向車の左方向を正として定義する。 1231 is a coordinate system with the origin at the center of the front end of the first oncoming vehicle of 11A and 11B, and defines the overall length direction of the first oncoming vehicle as the longitudinal position and the overall width direction as the lateral position. The longitudinal position of 1231 is defined as being positive in front of the first oncoming vehicle, and the lateral position is defined as being positive to the left of the first oncoming vehicle.
 1210の点線は、1231の座標系で第2衝突予測位置の縦位置を示す。1211Aと1211Bは、自車両10が第1対向車線を通過した時に(A)列と(B)列の場合における第1対向車の位置を示す。1210Aと1210Bは、第1衝突余裕時間後の(A)列と(B)列の場合における自車両10の位置を示す。 The dotted line in 1210 indicates the vertical position of the second predicted collision position in the coordinate system in 1231. 1211A and 1211B indicate the position of the first oncoming vehicle in rows (A) and (B) when the vehicle 10 passes through the first oncoming lane. 1210A and 1210B indicate the position of the vehicle 10 after the first collision margin time in rows (A) and (B).
 図8の(A)列に示すように、第1対向車線通過時間が第1衝突余裕時間よりも小さい場合は、自車両10が第1対向車線を通過後に第1対向車が1231の座標系における第2衝突予測位置の縦位置を通過するため、第2の減速度または制動力で減速した場合に自車両10と第1対向車が衝突することがないことから、第2の減速度または制動力による衝突回避が可能である。一方で、図8の(B)列に示すように、第1対向車線通過時間が第1衝突余裕時間よりも大きい場合は、自車両10が第1対向車線を通過する前に第1対向車が1231の座標系における第2衝突予測位置の縦位置に到達する。自車両10が第2の減速度または制動力で減速すると、第1対向車と衝突することから、上記の場合では第1の減速度または制動力で自車両10を第2対向車線の手前で停車する。 As shown in column (A) of FIG. 8, if the first oncoming lane passing time is shorter than the first collision margin time, the first oncoming vehicle passes the longitudinal position of the second predicted collision position in the 1231 coordinate system after the host vehicle 10 passes the first oncoming lane, and therefore the host vehicle 10 and the first oncoming vehicle will not collide when decelerating with the second deceleration or braking force, and therefore collision avoidance by the second deceleration or braking force is possible. On the other hand, as shown in column (B) of FIG. 8, if the first oncoming lane passing time is longer than the first collision margin time, the first oncoming vehicle reaches the longitudinal position of the second predicted collision position in the 1231 coordinate system before the host vehicle 10 passes the first oncoming lane. If the host vehicle 10 decelerates with the second deceleration or braking force, it will collide with the first oncoming vehicle, so in the above case, the host vehicle 10 is stopped in front of the second oncoming lane with the first deceleration or braking force.
 第1対向車が存在しない場合は、第1衝突余裕時間は大きな値として設定するため、第2の減速度または制動力を要求する(図8の(A)列)。 If there is no first oncoming vehicle, the first collision margin time is set to a large value, and a second deceleration or braking force is required (row (A) in Figure 8).
 ステップS409では、第1の減速度または制動力による衝突回避支援の作動タイミングを決めるための閾値(以下、第1制動作動判定閾値と記載)を算出し、自車両10が第1衝突余裕時間と第2衝突余裕時間から第1の減速度または制動力の作動タイミングに到達したことを判定する。第1制動作動判定閾値は、自車両10が第1の減速度または第1制動力によって停車するまでに必要な距離を算出し、算出した距離を現在の自車両10で走行した時に経過する時間とする。 In step S409, a threshold value for determining the activation timing of collision avoidance assistance using the first deceleration or braking force (hereinafter referred to as the first braking operation determination threshold value) is calculated, and it is determined that the host vehicle 10 has reached the activation timing of the first deceleration or braking force from the first collision margin time and the second collision margin time. The first braking operation determination threshold value is calculated by calculating the distance required for the host vehicle 10 to stop using the first deceleration or the first braking force, and the calculated distance is set as the time that elapses when the host vehicle 10 is currently traveling.
 第1衝突余裕時間が第1制動作動判定閾値以下の場合は、自車両10が第1対向車と衝突する前に停車するために、第1の減速度または制動力を要求する。 If the first collision margin time is equal to or less than the first braking action determination threshold, a first deceleration or braking force is requested to stop the host vehicle 10 before it collides with the first oncoming vehicle.
 第2衝突余裕時間が第1制動作動判定閾値以下の場合は、自車両10が第2対向車と衝突する前に停車するために、第1の減速度または制動力を要求し、自車両10は第1対向車線上で停車する。 If the second collision margin time is equal to or less than the first braking operation determination threshold, a first deceleration or braking force is requested so that the host vehicle 10 stops before colliding with the second oncoming vehicle, and the host vehicle 10 stops in the first oncoming lane.
 ステップS410では、第2制御実施判定が成立している場合に、自車両10が第2の減速度または制動力によって減速を開始するタイミングに到達したか否かを判定する。衝突予測位置到達時間と第2衝突領域通過合計時間を比較することで減速を開始するタイミングに到達したか否かを判定する。 In step S410, if the second control execution determination is established, it is determined whether the timing has arrived for the host vehicle 10 to start decelerating using the second deceleration or braking force. The time to reach the predicted collision position is compared with the total time to pass through the second collision area to determine whether the timing has arrived to start decelerating.
 第2制御実施判定が成立したタイミングにおいて、第2の減速度または制動力を要求しても自車両10は第2対向車との衝突を回避しつつ第1対向車との衝突を回避できるが、上記のタイミングから所定時間経過後に第2の減速度または制動力を要求してもよい。 If the second deceleration or braking force is requested at the timing when the second control implementation determination is established, the host vehicle 10 can avoid a collision with the first oncoming vehicle while avoiding a collision with the second oncoming vehicle, but the second deceleration or braking force may be requested after a predetermined time has elapsed from the above timing.
 図9に、第2制御実施判定が成立したタイミングで自車両10が減速を開始した場合(図9の(A)列)と、第2制御実施判定が成立したタイミングから所定時間経過し、衝突予測位置到達時間が第2衝突領域通過合計時間と等しくなったタイミングで自車両10が減速を開始した場合(図9の(B)列)に、自車両10が第2衝突領域に到達した時の第2対向車の位置を示す。図9の(A)列の自車両10と第2対向車の速度は、(B)列の自車両10と第2対向車の速度と同じである。10Aと10Bは、(A)列の場合と(B)列の場合における自車両10の現在の位置を示しており、10Bの方が10Aよりも第2対向車に接近している。12Cは、第2対向車の現在の位置を示しており、(A)列と(B)列で等しい位置である。1000と1001と1002との定義は図5と同様である。1310Aは、自車両10が10Aの位置から第2の減速度または制動力で減速した時に、自車両10が第2衝突領域に到達した時の自車両10の位置を示す。1310Bは、自車両10が10Bの位置から第2の減速度または制動力で減速した時に、自車両10が第2衝突領域に到達した時の自車両10の位置を示す。1312Aは、自車両10が10Aの位置から第2の減速度または制動力で減速した時に、自車両10が第2衝突領域に到達した時の第2対向車の位置を示している。1312Bは、自車両10が10Bの位置から第2の減速度または制動力で減速した時に、自車両10が第2衝突領域に到達した時の第2対向車の位置を示している。 9 shows the position of the second oncoming vehicle when the vehicle 10 reaches the second collision area in the cases where the vehicle 10 starts decelerating when the second control execution determination is established (row (A) of FIG. 9) and where the vehicle 10 starts decelerating when a predetermined time has elapsed since the second control execution determination was established and the collision predicted position arrival time is equal to the total time of passing the second collision area (row (B) of FIG. 9). The speed of the vehicle 10 and the second oncoming vehicle in row (A) of FIG. 9 is the same as the speed of the vehicle 10 and the second oncoming vehicle in row (B). 10A and 10B show the current position of the vehicle 10 in row (A) and row (B), with 10B being closer to the second oncoming vehicle than 10A. 12C shows the current position of the second oncoming vehicle, which is the same position in rows (A) and (B). The definitions of 1000, 1001, and 1002 are the same as in FIG. 5. 1310A indicates the position of the host vehicle 10 when the host vehicle 10 reaches the second collision area when the host vehicle 10 decelerates from the position 10A at the second deceleration or braking force. 1310B indicates the position of the host vehicle 10 when the host vehicle 10 reaches the second collision area when the host vehicle 10 decelerates from the position 10B at the second deceleration or braking force. 1312A indicates the position of the second oncoming vehicle when the host vehicle 10 reaches the second collision area when the host vehicle 10 decelerates from the position 10A at the second deceleration or braking force. 1312B indicates the position of the second oncoming vehicle when the host vehicle 10 reaches the second collision area when the host vehicle 10 decelerates from the position 10B at the second deceleration or braking force.
 図9の(A)列に示すように、衝突予測位置到達時間が第2衝突領域通過合計時間よりも大きいため、自車両10が第2衝突領域に到達した時には、第2対向車は既に第2衝突領域を通過しているが、自車両10が第2衝突領域に到達した時には、第2対向車は自車両10から離れた位置にいる。図9の(B)列の場合では、第1対向車線通過時間が第1衝突余裕時間と等しいため、自車両10が第2衝突領域に到達した時に、第2対向車は第2衝突領域を通過する。(A)列の場合と比較し、(B)列の場合の方が、自車両10から第2対向車までの距離が短い時に自車両10が減速を開始するため、センサにおける第2対向車の認識精度と自車両10と第2対向車の進路の予測精度が向上することから、(B)列の場合の方が過剰作動を抑制できる。 As shown in row (A) of FIG. 9, the collision predicted position arrival time is longer than the total time to pass the second collision area, so when the host vehicle 10 reaches the second collision area, the second oncoming vehicle has already passed the second collision area, but when the host vehicle 10 reaches the second collision area, the second oncoming vehicle is in a position away from the host vehicle 10. In the case of row (B) of FIG. 9, the first oncoming lane passing time is equal to the first collision margin time, so when the host vehicle 10 reaches the second collision area, the second oncoming vehicle passes the second collision area. Compared to the case of row (A), in the case of row (B), the host vehicle 10 starts to decelerate when the distance from the host vehicle 10 to the second oncoming vehicle is shorter, so the recognition accuracy of the second oncoming vehicle in the sensor and the prediction accuracy of the path of the host vehicle 10 and the second oncoming vehicle are improved, and therefore excessive operation can be suppressed in the case of row (B).
 そこで、第2制御実施判定が成立したタイミングから第2の減速度または制動力を要求するまでの所定時間を自車両10や第2対向車の状態から調整できるようにしてもよく、前記のように調整できるようにする場合は、衝突予測位置到達時間が第2衝突領域通過合計時間よりも大きくならない範囲で調整する。 Therefore, the predetermined time from when the second control implementation determination is made until the second deceleration or braking force is requested may be adjustable based on the state of the vehicle 10 and the second oncoming vehicle. If adjustment is possible as described above, the adjustment is made within a range in which the time to reach the predicted collision position does not become greater than the total time to pass through the second collision area.
 ステップS411では、ステップS409の第1制動作動判定の結果とステップS410の第2制動作動判定の結果をもとに、衝突回避支援装置11から制動制御装置12に要求する減速度または制動力(減速度指示値)を決定する。第1制動作動判定と第2制動作動判定から同時に減速度または制動力が要求されることはないため、自車両10が制動を作動していない場合は、第1制動作動判定、または第2制動作動判定が要求した減速度または制動力を制動制御装置12に要求する。 In step S411, the deceleration or braking force (deceleration command value) requested by the collision avoidance assistance device 11 to the brake control device 12 is determined based on the result of the first braking operation determination in step S409 and the result of the second braking operation determination in step S410. Since deceleration or braking force is not requested simultaneously from the first braking operation determination and the second braking operation determination, if the host vehicle 10 is not applying the brakes, the deceleration or braking force requested by the first braking operation determination or the second braking operation determination is requested of the brake control device 12.
 自車両10が第2の減速度または制動力で減速している場合に、第2対向車も減速すると、第2対向車が第2衝突領域を通過する前に自車両10が第2衝突領域に到達し、第2対向車と衝突する可能性がある。そこで、ステップS411では、自車両10が第2の減速度または制動力で減速している場合に第2対向車の減速を検知した場合は、第1の減速度よりも大きな減速度または第1の制動力よりも大きな制動力を要求することで、自車両10は第2対向車線の手前で停車し、第2対向車との衝突を回避してもよい。 If the second oncoming vehicle also decelerates while the host vehicle 10 is decelerating at the second deceleration or braking force, the host vehicle 10 may reach the second collision area before the second oncoming vehicle passes through the second collision area, resulting in a collision with the second oncoming vehicle. Therefore, in step S411, if the host vehicle 10 detects deceleration of the second oncoming vehicle while decelerating at the second deceleration or braking force, the host vehicle 10 may stop just before the second oncoming vehicle lane and avoid a collision with the second oncoming vehicle by requesting a deceleration greater than the first deceleration or a braking force greater than the first braking force.
 第2制御実施判定が成立している場合に第2の減速度または制度力を要求することで、自車両10は、第2対向車と衝突を回避した後に第1対向車線内で停車せずに交差点を通過できることから第1対向車との衝突を回避し、2次被害も抑止できる。 By requesting a second deceleration or precision force when the second control implementation determination is established, the host vehicle 10 can pass through the intersection without stopping in the first oncoming lane after avoiding a collision with the second oncoming vehicle, thereby avoiding a collision with the first oncoming vehicle and preventing secondary damage.
 本実施形態では一例として、自車両10が第1対向車線に既に進入している際に、衝突する可能性がある第2対向車との衝突を回避しつつ、第1対向車との衝突を回避する場合を記載したが、自車両10が第1対向車線に進入していない場合には本実施形態とは別方法で第2対向車と第1対向車との衝突を回避してもよい。自車両10が第1対向車線に進入していない場合に衝突する可能性がある第2対向車に対する衝突回避支援の一例として、第1対向車線の手前で停車できるように自車両10に減速度または制動力を要求し、第2対向車と第1対向車との衝突を回避してもよい。 In this embodiment, as an example, a case has been described in which the host vehicle 10 avoids a collision with the first oncoming vehicle while avoiding a collision with a second oncoming vehicle with which there is a possibility of collision when the host vehicle 10 has already entered the first oncoming lane. However, when the host vehicle 10 has not entered the first oncoming lane, a collision between the second oncoming vehicle and the first oncoming vehicle may be avoided by a method different from that of this embodiment. As an example of collision avoidance assistance for a second oncoming vehicle with which there is a possibility of collision when the host vehicle 10 has not entered the first oncoming lane, the host vehicle 10 may be requested to decelerate or apply braking force so as to stop just before the first oncoming lane, thereby avoiding a collision between the second oncoming vehicle and the first oncoming vehicle.
 本実施形態では一例として、自車両10と衝突する可能性がある1台の車両に対して制動を作動して衝突を回避する場合を記載したが、自車両10と衝突する可能性がある物標が複数存在する場合では、自車両10と衝突する可能性がある複数の物標の中で初めに衝突する可能性が高い物標の手前で確実に停車するようにしてもよい。 In this embodiment, as an example, a case has been described in which the brakes are applied to a single vehicle that may collide with the vehicle 10 to avoid the collision, but if there are multiple targets that may collide with the vehicle 10, the vehicle may be reliably stopped in front of the target that is most likely to collide with the vehicle 10 first among the multiple targets that may collide with the vehicle 10.
 本実施形態では一例として、第1対向車線と第2対向車線が存在し、第2対向車と衝突する可能性がある場合における衝突回避の方法を記載したが、対向車線が第1対向車線のみの場合に第1対向車と衝突する可能性がある場合は、自車両10は第1対向車線の手前で停車できるタイミングで第1の減速度または制動力を要求してもよく、従来の方法で衝突を回避してもよい。 In this embodiment, as an example, a method for avoiding a collision when a first oncoming lane and a second oncoming lane exist and there is a possibility of collision with the second oncoming vehicle has been described. However, if there is only the first oncoming lane and there is a possibility of collision with the first oncoming vehicle, the host vehicle 10 may request a first deceleration or braking force at a timing when it can stop just before the first oncoming lane, or a collision may be avoided by a conventional method.
 以上で説明したように、本実施形態の衝突回避支援装置11は、自車両周辺の物標の情報を検知する周辺環境認識部202と、前記自車両が対向車線を横切る際、前記物標のうちに前記自車両に向かってくる車両との衝突までの時間(衝突が予測されるまでの時間)である衝突余裕時間を演算する衝突予測部205と、前記衝突余裕時間が制動作動判定閾値以下の場合、第1の減速度により前記自車両を減速させるタイミングを演算する制御判定部(衝突判定部206)と、前記周辺環境認識部202の入力に基づき前記対向車線が2車線以上あるか否かを判定し、前記対向車線のうち2車線を走行する車両を判別する対向車線状況判断部204と、を備え、前記対向車線状況判断部204は、前記対向車線のうち前記自車両からみて手前の車線を第1走行車線として前記第1走行車線を走行する車両を第1走行車両(第1対向車)とし、前記対向車線のうち前記自車両からみて奥側の車線を第2走行車線として前記第2走行車線を走行する車両を第2走行車両(第2対向車)とし、前記衝突予測部205は、前記対向車線状況判断部204の結果に基づき、前記自車両と前記第2走行車両とが衝突するまでの時間である第2衝突余裕時間を演算し、前記第2走行車両の予測進路と前記自車両の予測進路との交差領域(第2衝突領域)を、前記第2走行車両が通過するまでに要する時間である予測通過時間(第2衝突領域予測通過時間)を演算し、前記制御判定部(衝突判定部206)は、前記第2衝突余裕時間および前記予測通過時間(第2衝突領域予測通過時間)に基づき前記自車両を減速させる減速度を前記第1の減速度よりも小さな第2の減速度とする(ステップS502)。 As described above, the collision avoidance support device 11 of this embodiment includes a surrounding environment recognition unit 202 that detects information about targets around the host vehicle, a collision prediction unit 205 that calculates a collision margin time, which is the time until a collision (time until a collision is predicted) with a vehicle among the targets approaching the host vehicle when the host vehicle crosses an oncoming lane, a control judgment unit (collision judgment unit 206) that calculates the timing to decelerate the host vehicle by a first deceleration if the collision margin time is equal to or less than a braking operation judgment threshold, and an oncoming lane situation judgment unit 204 that judges whether the oncoming lane has two or more lanes based on an input from the surrounding environment recognition unit 202 and distinguishes vehicles traveling in two of the oncoming lanes, and the oncoming lane situation judgment unit 204 determines the lane in front of the host vehicle as a first driving lane among the oncoming lanes, and judges whether the lane in front of the host vehicle as viewed from the host vehicle is a first driving lane, and determines whether the vehicle is traveling in the first driving lane. The vehicle traveling on the opposite lane is the first traveling vehicle (first oncoming vehicle), the lane on the far side of the host vehicle is the second traveling lane, and the vehicle traveling on the second traveling lane is the second traveling vehicle (second oncoming vehicle). The collision prediction unit 205 calculates a second collision margin time, which is the time until the host vehicle collides with the second traveling vehicle, based on the result of the oncoming lane situation determination unit 204, and calculates a predicted passing time (second collision area predicted passing time), which is the time required for the second traveling vehicle to pass through an intersection area (second collision area) between the predicted course of the second traveling vehicle and the predicted course of the host vehicle. The control determination unit (collision determination unit 206) sets the deceleration for decelerating the host vehicle to a second deceleration that is smaller than the first deceleration based on the second collision margin time and the predicted passing time (second collision area predicted passing time) (step S502).
 前記衝突予測部205は、前記自車両と前記第1走行車両とが衝突するまでの時間である(第2衝突余裕時間よりも長い)第1衝突余裕時間を演算し、前記制御判定部(衝突判定部206)は、前記第1衝突余裕時間も考慮して前記減速度を前記第1の減速度よりも小さな第2の減速度とする(ステップS503)。 The collision prediction unit 205 calculates a first collision margin time, which is the time until a collision occurs between the host vehicle and the first traveling vehicle (longer than the second collision margin time), and the control determination unit (collision determination unit 206) sets the deceleration to a second deceleration smaller than the first deceleration, taking into account the first collision margin time (step S503).
 前記制御判定部(衝突判定部206)は、前記自車両の車速が所定車速よりも低い時には、前記減速度を前記第1の減速度から前記第2の減速度へ変更しない(ステップS501)。 The control determination unit (collision determination unit 206) does not change the deceleration from the first deceleration to the second deceleration when the vehicle speed is lower than a predetermined vehicle speed (step S501).
 前記制御判定部(衝突判定部206)は、前記第2走行車両の車速が所定車速よりも低い時には、前記減速度を前記第1の減速度から前記第2の減速度へ変更しない(ステップS501)。 The control determination unit (collision determination unit 206) does not change the deceleration from the first deceleration to the second deceleration when the vehicle speed of the second traveling vehicle is lower than a predetermined vehicle speed (step S501).
 前記衝突予測部205は、前記第2走行車両の予測進路と前記自車両の予測進路との交差領域(第2衝突領域)における、前記自車両と前記第2走行車両の重なりの比率である予測オーバーラップ率を演算し、前記予測オーバーラップ率に基づき前記予測通過時間(第2衝突領域予測通過時間)を算出する。 The collision prediction unit 205 calculates a predicted overlap rate, which is the ratio of overlap between the host vehicle and the second traveling vehicle in the intersection area (second collision area) between the predicted path of the second traveling vehicle and the predicted path of the host vehicle, and calculates the predicted passing time (second collision area predicted passing time) based on the predicted overlap rate.
 前記第1走行車線において障害物が存在しない空間であるフリースペースを検出するフリースペース検出部204Bを有し、前記衝突予測部205は、前記フリースペースの情報に基づき、前記自車両と前記第1走行車両との第1衝突余裕時間を演算する。 The vehicle has a free space detection unit 204B that detects a free space in the first travel lane, which is a space where no obstacles exist, and the collision prediction unit 205 calculates the first collision margin time between the vehicle and the first travel vehicle based on the information on the free space.
 前記制御判定部(衝突判定部206)は、前記第2走行車両との衝突の可能性が低くなった時点で、前記第2の減速度の要求を解除する。 The control determination unit (collision determination unit 206) cancels the request for the second deceleration when the possibility of a collision with the second traveling vehicle becomes low.
 前記第2の減速度で前記自車両を減速しているときに、前記第2走行車両の車速に基づき(減速を検知した場合)、前記自車両の減速度を(第2の減速度や第1の減速度よりも)大きくする。 When the host vehicle is decelerating at the second deceleration, the deceleration of the host vehicle is increased (more than the second deceleration or the first deceleration) based on the vehicle speed of the second traveling vehicle (if deceleration is detected).
 本実施形態によれば、自車両は第2対向車との衝突を回避しつつ、第2対向車との衝突を回避した後に第1対向車から衝突されることも回避する。具体的には、自車両が第2対向車と衝突する可能性がある場合に、自車両が第2対向車線の手前で停車するために必要な制動力、または減速度よりも小さな制動力、または減速度によって自車両を停車させずに第2対向車との衝突を回避しつつ、第2対向車との衝突を回避した後に自車両に指示した制動力、または減速度を解除することで、自車両を第1対向車線内で停車させずに第1車両との衝突を回避し、2次被害も抑止できる。 According to this embodiment, the host vehicle avoids a collision with the second oncoming vehicle, while also avoiding being hit by the first oncoming vehicle after avoiding the collision with the second oncoming vehicle. Specifically, when there is a possibility that the host vehicle will collide with the second oncoming vehicle, the host vehicle avoids a collision with the second oncoming vehicle without stopping the host vehicle by using a braking force or deceleration smaller than the braking force or deceleration required for the host vehicle to stop in front of the second oncoming vehicle lane, and after avoiding the collision with the second oncoming vehicle, the host vehicle avoids a collision with the first vehicle without stopping in the first oncoming lane, thereby preventing secondary damage.
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形形態が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 The present invention is not limited to the above-described embodiment, but includes various modified forms. For example, the above-described embodiment has been described in detail to clearly explain the present invention, and is not necessarily limited to having all of the configurations described.
 また、前記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。 Furthermore, each of the above-mentioned configurations, functions, processing units, processing means, etc. may be realized in hardware, for example by designing a part or all of them as an integrated circuit, or may be realized in software by a processor interpreting and executing a program that realizes each function.
 各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。 Information such as programs, tables, and files that realize each function can be stored in storage devices such as memory, hard disks, and SSDs (Solid State Drives), or in recording media such as IC cards, SD cards, and DVDs.
 また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。 Furthermore, the control lines and information lines shown are those considered necessary for explanation, and do not necessarily represent all control lines and information lines necessary for implementation. In reality, it is safe to assume that almost all components are interconnected.
2 カメラ
3 レーダー
4 車輪
5 車輪速センサ
6 舵角センサ
7 ヨーレートセンサ
8 メータ
9 ブザー
10 自車両
11 衝突回避支援装置
12 制動制御装置
201 車両情報認識部
202 周辺環境認識部
203 自車両の交差点横断予測部
204 対向車線状況判断部
204A 対向車判断部
204B フリースペース検出部
205 衝突予測部
205A 衝突予測時間演算部
205B 衝突領域通過時間演算部
206 衝突判定部(制御判定部)
206A 衝突回避動作決定部
206B 制御指示部
1000 白線
1001 第1対向車線
1002 第2対向車線
2 Camera 3 Radar 4 Wheel 5 Wheel speed sensor 6 Steering angle sensor 7 Yaw rate sensor 8 Meter 9 Buzzer 10 Vehicle 11 Collision avoidance support device 12 Brake control device 201 Vehicle information recognition unit 202 Surrounding environment recognition unit 203 Intersection crossing prediction unit of vehicle 204 Oncoming lane situation judgment unit 204A Oncoming vehicle judgment unit 204B Free space detection unit 205 Collision prediction unit 205A Collision prediction time calculation unit 205B Collision area passing time calculation unit 206 Collision judgment unit (control judgment unit)
206A Collision avoidance operation determination unit 206B Control instruction unit 1000 White line 1001 First oncoming lane 1002 Second oncoming lane

Claims (8)

  1.  自車両周辺の物標の情報を検知する周辺環境認識部と、
     前記自車両が対向車線を横切る際、前記物標のうちに前記自車両に向かってくる車両との衝突までの時間である衝突余裕時間を演算する衝突予測部と、
     前記衝突余裕時間が制動作動判定閾値以下の場合、第1の減速度により前記自車両を減速させるタイミングを演算する制御判定部と、
     前記周辺環境認識部の入力に基づき前記対向車線が2車線以上あるか否かを判定し、前記対向車線のうち2車線を走行する車両を判別する対向車線状況判断部と、を備え、
     前記対向車線状況判断部は、前記対向車線のうち前記自車両からみて手前の車線を第1走行車線として前記第1走行車線を走行する車両を第1走行車両とし、前記対向車線のうち前記自車両からみて奥側の車線を第2走行車線として前記第2走行車線を走行する車両を第2走行車両とし、
     前記衝突予測部は、前記対向車線状況判断部の結果に基づき、前記自車両と前記第2走行車両とが衝突するまでの時間である第2衝突余裕時間を演算し、前記第2走行車両の予測進路と前記自車両の予測進路との交差領域を、前記第2走行車両が通過するまでに要する時間である予測通過時間を演算し、
     前記制御判定部は、前記第2衝突余裕時間および前記予測通過時間に基づき前記自車両を減速させる減速度を前記第1の減速度よりも小さな第2の減速度とすることを特徴とする衝突回避支援装置。
    A surrounding environment recognition unit that detects information about targets around the host vehicle;
    a collision prediction unit that calculates a collision margin time, which is a time until a collision between the host vehicle and a vehicle among the targets approaching the host vehicle when the host vehicle crosses an oncoming lane;
    a control determination unit that calculates a timing for decelerating the host vehicle at a first deceleration when the time to collision is equal to or less than a braking operation determination threshold;
    an oncoming lane situation determination unit that determines whether the oncoming lanes have two or more lanes based on an input from the surrounding environment recognition unit and distinguishes vehicles traveling in two of the oncoming lanes;
    the oncoming lane situation determination unit defines a lane of the oncoming lane closer to the vehicle as a first driving lane, and defines a vehicle traveling in the first driving lane as a first driving vehicle; and defines a lane of the oncoming lane closer to the vehicle as a second driving lane, and defines a vehicle traveling in the second driving lane as a second driving vehicle;
    the collision prediction unit calculates a second collision margin time, which is a time until a collision occurs between the host vehicle and the second traveling vehicle, based on a result of the oncoming lane situation determination unit, and calculates a predicted passing time, which is a time required for the second traveling vehicle to pass through an intersection area between a predicted path of the second traveling vehicle and the predicted path of the host vehicle;
    The collision avoidance support device, wherein the control determination unit sets a second deceleration for decelerating the host vehicle based on the second collision margin time and the predicted passing time, the second deceleration being smaller than the first deceleration.
  2.  前記衝突予測部は、前記自車両と前記第1走行車両とが衝突するまでの時間である第1衝突余裕時間を演算し、
     前記制御判定部は、前記第1衝突余裕時間も考慮して前記減速度を前記第1の減速度よりも小さな第2の減速度とすることを特徴とする、請求項1に記載の衝突回避支援装置。
    The collision prediction unit calculates a first collision margin time which is a time until a collision occurs between the host vehicle and the first traveling vehicle,
    2. The collision avoidance support device according to claim 1, wherein the control determination unit sets the deceleration to a second deceleration that is smaller than the first deceleration, taking into account the first collision margin time as well.
  3.  前記制御判定部は、前記自車両の車速が所定車速よりも低い時には、前記減速度を前記第1の減速度から前記第2の減速度へ変更しないことを特徴とする、請求項1に記載の衝突回避支援装置。 The collision avoidance support device according to claim 1, characterized in that the control determination unit does not change the deceleration from the first deceleration to the second deceleration when the vehicle speed of the host vehicle is lower than a predetermined vehicle speed.
  4.  前記制御判定部は、前記第2走行車両の車速が所定車速よりも低い時には、前記減速度を前記第1の減速度から前記第2の減速度へ変更しないことを特徴とする、請求項1に記載の衝突回避支援装置。 The collision avoidance support device according to claim 1, characterized in that the control determination unit does not change the deceleration from the first deceleration to the second deceleration when the vehicle speed of the second traveling vehicle is lower than a predetermined vehicle speed.
  5.  前記衝突予測部は、前記第2走行車両の予測進路と前記自車両の予測進路との交差領域における、前記自車両と前記第2走行車両の重なりの比率である予測オーバーラップ率を演算し、前記予測オーバーラップ率に基づき前記予測通過時間を算出することを特徴とする、請求項1に記載の衝突回避支援装置。 The collision avoidance support device according to claim 1, characterized in that the collision prediction unit calculates a predicted overlap rate, which is the ratio of overlap between the host vehicle and the second traveling vehicle in an intersection area between the predicted path of the second traveling vehicle and the predicted path of the host vehicle, and calculates the predicted passing time based on the predicted overlap rate.
  6.  前記第1走行車線において障害物が存在しない空間であるフリースペースを検出するフリースペース検出部を有し、
     前記衝突予測部は、前記フリースペースの情報に基づき、前記自車両と前記第1走行車両との第1衝突余裕時間を演算することを特徴とする、請求項1に記載の衝突回避支援装置。
    a free space detection unit that detects a free space in the first driving lane that is a space in which no obstacle exists,
    2. The collision avoidance support device according to claim 1, wherein the collision prediction unit calculates a first collision margin time between the host vehicle and the first traveling vehicle based on information about the free space.
  7.  前記制御判定部は、前記第2走行車両との衝突の可能性が低くなった時点で、前記第2の減速度の要求を解除することを特徴とする、請求項1に記載の衝突回避支援装置。 The collision avoidance support device according to claim 1, characterized in that the control determination unit cancels the request for the second deceleration when the possibility of a collision with the second traveling vehicle becomes low.
  8.  前記第2の減速度で前記自車両を減速しているときに、前記第2走行車両の車速に基づき、前記自車両の減速度を大きくすることを特徴とする、請求項1に記載の衝突回避支援装置。 The collision avoidance support device according to claim 1, characterized in that when the host vehicle is decelerating at the second deceleration, the deceleration of the host vehicle is increased based on the vehicle speed of the second traveling vehicle.
PCT/JP2022/045118 2022-12-07 2022-12-07 Collision avoidance assistance device WO2024121978A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/045118 WO2024121978A1 (en) 2022-12-07 2022-12-07 Collision avoidance assistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/045118 WO2024121978A1 (en) 2022-12-07 2022-12-07 Collision avoidance assistance device

Publications (1)

Publication Number Publication Date
WO2024121978A1 true WO2024121978A1 (en) 2024-06-13

Family

ID=91378854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045118 WO2024121978A1 (en) 2022-12-07 2022-12-07 Collision avoidance assistance device

Country Status (1)

Country Link
WO (1) WO2024121978A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170334440A1 (en) * 2016-05-23 2017-11-23 Ford Global Technologies, Llc Accident attenuation systems and methods
JP2021157449A (en) * 2020-03-26 2021-10-07 本田技研工業株式会社 Vehicle and control apparatus thereof
US20220292959A1 (en) * 2019-08-15 2022-09-15 Volkswagen Aktiengesellschaft Method for Increasing the Traffic Flow Density at a Traffic Light Intersection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170334440A1 (en) * 2016-05-23 2017-11-23 Ford Global Technologies, Llc Accident attenuation systems and methods
US20220292959A1 (en) * 2019-08-15 2022-09-15 Volkswagen Aktiengesellschaft Method for Increasing the Traffic Flow Density at a Traffic Light Intersection
JP2021157449A (en) * 2020-03-26 2021-10-07 本田技研工業株式会社 Vehicle and control apparatus thereof

Similar Documents

Publication Publication Date Title
US11987238B2 (en) Driving support apparatus
US11485357B2 (en) Vehicle control device
JP6380919B2 (en) Vehicle control device
JP6596772B2 (en) Vehicle control device, vehicle control method, and program
JP6115576B2 (en) Vehicle travel control device
JP5024255B2 (en) Driving assistance device
CN112277937A (en) Collision avoidance aid
KR102106345B1 (en) Rear-side alert system and controlling method thereof
US20210316721A1 (en) Vehicle and method of controlling the same
CN112384419A (en) Vehicle driving support control device, vehicle driving support system, and vehicle driving support control method
WO2019012921A1 (en) Braking assistance device in vehicle, and braking assistance control method
JP2011002869A (en) Collision possibility determination device for vehicle
JP2012045984A (en) Collision reducing device
CN111791885A (en) Vehicle and method for predicting a collision
WO2024121978A1 (en) Collision avoidance assistance device
JP2023105692A (en) Driving support device for vehicle
JP7276690B2 (en) vehicle controller
US20240034286A1 (en) Collision avoidance assistance device
WO2024014049A1 (en) Collision avoidance assistance device
JP7282115B2 (en) Driving support device
WO2023233767A1 (en) Vehicle control device
JP2020115302A (en) Vehicle driving support device
JP7227284B2 (en) Driving support device
US20230286497A1 (en) Collision avoidance device, collision avoidance method and collision avoidance program
WO2024161481A1 (en) Vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22967829

Country of ref document: EP

Kind code of ref document: A1