WO2024116245A1 - Magnetization device for rotor, rotor, motor, and method for manufacturing rotor - Google Patents
Magnetization device for rotor, rotor, motor, and method for manufacturing rotor Download PDFInfo
- Publication number
- WO2024116245A1 WO2024116245A1 PCT/JP2022/043796 JP2022043796W WO2024116245A1 WO 2024116245 A1 WO2024116245 A1 WO 2024116245A1 JP 2022043796 W JP2022043796 W JP 2022043796W WO 2024116245 A1 WO2024116245 A1 WO 2024116245A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- magnet
- magnetic
- coil
- electromagnet
- Prior art date
Links
- 230000005415 magnetization Effects 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 230000004907 flux Effects 0.000 claims abstract description 22
- 238000004804 winding Methods 0.000 claims abstract description 7
- 230000008569 process Effects 0.000 claims description 13
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 239000012212 insulator Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/03—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
Definitions
- the present invention relates to a rotor magnetization device, a rotor, a motor, and a method for manufacturing a rotor.
- a technique known as post-magnetization is known in which an unmagnetized magnet is placed in the rotor, and then the entire rotor is magnetized using a magnetizing device.
- the objective is to provide a rotor magnetization device, rotor, motor, and rotor manufacturing method that can improve the magnetization rate.
- the rotor magnetization device includes a plurality of electromagnets arranged in a circumferential direction to magnetize a rotor having a rotor core with holes and magnets housed in the holes of the rotor core.
- the electromagnets include a magnetic body and a coil wound around the magnetic body. The winding axis of the coil is the axial direction of the rotor, and the magnetic flux generated from the coil passes through the magnetic body and is directed toward the side of the magnet in the circumferential direction of the rotor.
- the magnetization rate can be improved.
- FIG. 1 is a side cross-sectional view showing an example of a motor according to an embodiment.
- FIG. 2 is a perspective view illustrating an example of a rotor according to the embodiment.
- FIG. 3 is an enlarged perspective view illustrating an example of a rotor according to the embodiment.
- FIG. 4 is a perspective view showing an example of a magnetized result of the magnet in the embodiment.
- FIG. 5 is a perspective view illustrating an example of a magnetizing device according to an embodiment.
- FIG. 6 is a perspective view illustrating an example of an outer magnetization step in the embodiment.
- FIG. 7 is a cross-sectional perspective view illustrating an example of an inner magnetization step in the embodiment.
- FIG. 8 is an enlarged perspective view illustrating an example of an inner magnetization step in the embodiment.
- Fig. 1 is a side cross-sectional view showing an example of a motor in this embodiment.
- Fig. 2 is a perspective view showing an example of a rotor in this embodiment.
- Fig. 3 is an enlarged perspective view showing an example of a rotor.
- Fig. 3 is an enlarged view of a portion shown in frame F1 in Fig. 2.
- the motor 1 includes a rotor 20, a shaft 80, and a stator 90.
- the stator 90 includes a stator core 91, an insulator 92, and a coil 93.
- the rotor 20 is rotatably supported on the shaft 80 via a bearing 81.
- the motor 1 is also housed in a housing 70.
- the motor 1 in this embodiment is a so-called inner rotor type motor in which the stator 90 is positioned radially outward of the rotor 20.
- the stator core 91 is formed by stacking multiple magnetic materials, such as stainless steel or magnetic steel plates, in the axial direction.
- the insulator 92 is formed from an insulating material, such as resin.
- the coil 93 is formed by winding a rectangular wire, made of a conductor, such as copper, around the stator core 91 via the insulator 92.
- the rotor 20 includes a rotor core 100 and a magnet 200.
- the rotor core 100 is formed by stacking multiple flat cores made of, for example, electromagnetic steel sheets.
- the rotor core 100 of the rotor 20 includes a magnetic pole portion 110, an annular portion 120, and a connection portion 130.
- the annular portion 120 is located radially inward.
- the connection portion 130 connects the annular portion 120 and the magnetic pole portion 110 in the radial direction. In the circumferential direction, there is a gap 330 between the magnetic pole portion 110 and the connection portion 130.
- the magnetic pole portion 110 is located radially outside the annular portion 120. As shown in FIG. 4, the magnetic pole portion 110 has an extension portion 112 that extends radially toward the annular portion 120.
- FIG. 4 is a perspective view showing an example of the magnetization result of a magnet in an embodiment.
- the extension portion 112 is an example of a portion that extends toward the annular portion 120.
- the magnet 200 is sandwiched in the circumferential direction between the extensions 112 of the magnetic pole portions 110 of the rotor 20. Also, in FIG. 4, the shading of the fill in the magnet 200 indicates the magnitude of the magnetic force or magnetization rate of the magnet 200, with a darker shade meaning that the magnetic force or magnetization rate is relatively high and a lighter shade meaning that the magnetic force or magnetization rate is relatively low.
- the extension 112 of the magnetic pole portion 110 of the rotor core 100 is in contact with the side surface 230 or 240 of the radially outer portion 211 of the magnet 200, and the side surface 230 or 240 of the radially inner portion 212 of the magnet 200 is exposed to the extension 112.
- the magnetic pole portion 110 faces the stator 90 in the radial direction.
- a hole 310 is formed between two magnetic pole portions 110 adjacent in the circumferential direction. In this case, the extension 112 of the magnetic pole portion 110 forms the inner surface of the hole 310.
- the magnet 200 may be, for example, a bonded magnet or a sintered magnet made of a mixture of magnetic powder and resin.
- the magnet 200 is placed in the hole 310 in an unmagnetized state.
- the magnet 200 may be filled into the hole 310 by, for example, heating the bonded magnet to a high temperature to make it fluid.
- the magnet 200 is formed in a generally rectangular parallelepiped shape and has a side surface 230 that contacts the extension portion 112 on one side in the circumferential direction of the rotor core 100, and a side surface 240 that contacts the extension portion 112 on the other side. Also, as shown in FIG. 4, the magnet 200 has a radially outer portion 211 that contacts the extension portion 112, and a radially inner portion 212 that protrudes from the extension portion 112 toward the annular portion 120.
- the radially outer portion 211 of the magnet 200 is evenly magnetized as shown in FIG. 4. Meanwhile, the radially inner portion 212 protruding toward the annular portion 120 of the magnet 200 has a first region 201 with a low magnetic force and a second region 202 and a third region 203 with a high magnetic force. In the axial direction, the first region 201 is between the second region 202 and the third region 203.
- the magnetization rate in the first region 201 is smaller than the magnetization rate in the radially outer portion 211 of the magnet 200.
- the magnetic force in the first region 201 is smaller than the magnetic force in the radially outer portion 211 of the magnet 200.
- the radially inner side surface 270 of the magnet 200 faces the annular portion 120 of the rotor core 100 through a gap 320.
- the gap 320 acts as a flux barrier, preventing magnetic flux from flowing radially inward from the side surface 270 of the magnet 200.
- FIG. 5 is a perspective view showing an example of a magnetization device in an embodiment.
- the magnetization device 10 in an embodiment includes multiple electromagnets 500 and 600 arranged in the circumferential direction.
- magnets 20a to 20j when multiple magnets 200 are to be distinguished from one another, they may be referred to as magnets 20a to 20j.
- Electromagnets 500 and 600 are arranged radially inward of magnet 200, which is indicated by a dashed line in FIG. 5. Electromagnet 500 is located on the upper side of magnetization device 10 in the axial direction, and electromagnet 600 is located on the lower side of magnetization device 10 in the axial direction.
- electromagnets 50a to 50j when the multiple electromagnets 500 are to be individually expressed, they may be written as electromagnets 50a to 50j, and when the multiple electromagnets 600 are to be individually expressed, they may be written as electromagnets 60a to 60j.
- the multiple electromagnets 50a to 50j are supported by, for example, a ring-shaped frame (not shown).
- the electromagnets 500 and 600 include an upper coil 520 wound around an upper magnetic body 510 and a lower coil 620 wound around a lower magnetic body 610.
- the upper magnetic body 510 and the lower magnetic body 610 face each other in the axial direction of the rotor 20, either directly or via another member (magnetic body).
- the gap 330 of the rotor core 100 is located between the upper coil 520 and the lower coil 620 in the axial direction.
- the winding axis direction of the upper coil 520 and the lower coil 620 is the axial direction of the rotor 20.
- the upper magnetic body 510 and the lower magnetic body 610 are expressed without distinction, they may be simply referred to as magnetic bodies 510 and 610, and when the upper coil 520 and the lower coil 620 are expressed without distinction, they may be simply referred to as coils 520 and 620.
- the multiple electromagnets of the magnetization device 10 may also include an outer electromagnet 700 that is adjacent to the electromagnets 500 and 600 in the radial direction.
- the electromagnets 500 and 600 are disposed inside the outer electromagnet 700 in the radial direction.
- the outer electromagnet 700 faces the rotor core 100 in the radial direction.
- the outer electromagnet 700 comprises an outer magnetic body 710 and an outer coil 720 wound around the outer magnetic body 710.
- the outer magnetic body 710 extends radially inward from, for example, an annular support portion 730.
- the outer magnetic body 710 faces the magnetic pole portion 110 of the rotor core 100 in the radial direction.
- the winding axis direction of the outer coil 720 is the radial direction of the rotor 20.
- Figure 6 is a perspective view showing an example of the outer magnetizing process in the embodiment.
- Figure 7 is a cross-sectional perspective view showing an example of the inner magnetizing process in the embodiment.
- Figure 8 is an enlarged perspective view showing an example of the inner magnetizing process in the embodiment.
- Figure 7 shows a cross section taken along plane S1 in Figure 5.
- the manufacturing method in this embodiment includes a magnetizing process in which the side surfaces 230, 240 of the magnet 200 housed in the hole 310 of the rotor core 100 are magnetized in the circumferential direction of the rotor 20.
- the magnetization process may also include a process of contacting the magnetic bodies 510 and 610 with the side surfaces 250 and 260 of the magnet 200. Specifically, as shown in FIG. 8, the magnetic bodies 51a and 51j contact the side surface 250 of the radially inner portion 212 of the magnet 200, and the magnetic bodies 61a and 61j contact the side surface 260 of the radially inner portion 212 of the magnet 200.
- a yoke 400 may be further disposed in the gap 330 of the rotor core 100.
- the yoke 400 constitutes a part of the electromagnets 500 and 600.
- the yoke 400 is formed of a material with high magnetic permeability, such as iron.
- the yoke 400 has a shape that is substantially the same as the gap 330 of the rotor core 100.
- the magnet 200 contacts two yokes 400 in the circumferential direction. For example, as shown in FIG. 6, the magnet 20a contacts two yokes 4a1 and 4a2, and the magnet 20b contacts two yokes 4b1 and 4b2.
- the magnetic bodies 510 and 610 contact multiple yokes 400.
- the magnetic body 51a contacts two yokes 4a2 and 4b1.
- Electromagnet 50j Currents are passed through adjacent electromagnets in the circumferential direction so that the polarities are opposite to each other. For example, if the portion of electromagnet 50j shown in FIG. 6 that contacts magnet 200 is a north pole, then the portion of electromagnet 50a adjacent to electromagnet 50j that contacts magnet 200 is a south pole. In this configuration, magnetic flux flows from electromagnet 50j, through magnet 200, to electromagnet 50a.
- the magnetic flux generated from coil 52j passes through magnetic body 51j and is directed toward the side surfaces 230, 240 of magnet 200 in the circumferential direction of rotor 20.
- the magnetic flux generated from coil 62j passes through magnetic body 61j and is directed toward the side surfaces 230, 240 of magnet 200 in the circumferential direction of rotor 20
- the magnetic flux generated from outer coil 72i passes through outer magnetic body 71i and is directed toward the side surfaces 230, 240 of magnet 200 in the circumferential direction of rotor 20.
- electromagnet 50j is located on the side surface 240 side of magnet 20a, and electromagnet 50a is located on the side surface 230 side of magnet 20a.
- magnet 20a is located between two adjacent electromagnets 50j and 50a among the multiple electromagnets 500 in the circumferential direction.
- magnetic flux directed in the direction of the rotation axis of the rotor 20 and magnetic flux directed in the circumferential direction toward the side surfaces 230, 240 of the magnet 200 pass through the side surfaces 230, 240 of the radially inner portion 212 of the magnet 200.
- part of the magnetic flux directed in the direction of the rotation axis passes from the magnetic bodies 51j and 61j through the yoke 4a1 toward the side surface 240 of the magnet 20a.
- the magnetic flux then passes through the side surface 230 of the magnet 20a and the yoke 4a2 to flow to the magnetic bodies 51a and 61a.
- one side surface 230 of the magnet 200 is magnetized to the north pole
- the other side surface 240 is magnetized to the south pole.
- the magnetic flux from the outer coil 72b of the outer electromagnet 700 toward the magnet 20b flows mostly to the radially outer portion 211 of the magnet 20b, but not so much to the radially inner portion 212 of the magnet 20b.
- the magnetic force of the radially inner portion 212 of the magnet 200 is smaller than the magnetic force of the radially outer portion 211 by the magnetization process using the outer electromagnet 700 alone.
- the portion of magnetic body 510 that contacts magnet 200 and the portion of magnetic body 610 that contacts magnet 200 have the same polarity.
- the magnetic flux that flows from magnetic body 510 in the direction of the rotation axis and the magnetic flux that flows from magnetic body 610 in the direction of the rotation axis repel each other.
- a portion with a low magnetization rate is formed in first region 201 close to the position where the magnetic fluxes repel each other.
- the magnetization rate of the second region 202 located near the magnetic body 510 and the third region 203 located near the magnetic body 610 in the radially inner portion 212 of the magnet 200 is approximately equal to the magnetization rate of the radially outer portion 211 of the magnet 200.
- the portion of the magnet 200 with low magnetic force can be made smaller compared to the case where the outer electromagnet 700 is used for magnetization.
- the yoke 400 is removed from the gap 330 after the magnetization process is completed. This causes the gap 330 to become a flux barrier in the rotor 20 in which the magnet 200 is magnetized.
- the coils 520 of two electromagnets 500 adjacent in the circumferential direction are formed in positions that do not interfere with each other.
- coil 52a is wound above magnetic body 51a in the axial direction
- coils 52b and 52j which are adjacent to coil 52a in the circumferential direction
- coil 620 is wound below magnetic bodies 51b and 51j in the axial direction.
- coils 52b and 52j which are adjacent to coil 52a in the circumferential direction, are in different positions in the axial direction.
- the rotor magnetization device 10 in this embodiment magnetizes the rotor 20 having the rotor core 100 with the hole 310 and the magnet 200 housed in the hole 310 of the rotor core 100.
- the rotor magnetization device 10 includes a plurality of electromagnets 500, 600 arranged in the circumferential direction.
- the electromagnets 500, 600 include magnetic bodies 510, 610 and coils 620, 620 wound around the magnetic bodies 510, 610.
- the winding axis direction of the coils 520, 620 is the axial direction of the rotor 20, and the magnetic flux generated from the coils 520, 620 passes through the magnetic bodies 510, 610 and is directed toward the side surfaces 230, 240 of the magnet 200 in the circumferential direction of the rotor 20.
- the magnetization rate can be improved even in the radially inner portion 212 of the magnet 200, and therefore the magnetization rate of the rotor 20 can be improved.
- the embodiment is not limited thereto.
- the magnetizing device 10 has been described as including both the electromagnets 500 and 600 and the outer electromagnet 700, but may have a configuration including only one of them.
- the embodiment is not limited to this.
- a configuration in which a portion of the magnetic body is inserted into the gap 330 of the rotor core 100 is also possible.
- the portion of the magnetic body inserted into the gap 330 contacts the side surface 230 or 240 of the magnet 200. Note that since the upper magnetic body and the lower magnetic body repel each other, the upper magnetic body and the lower magnetic body do not need to contact each other.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
A magnetization device (10) for a rotor (20) comprises a plurality of electromagnets (500, 600) that are arrayed in the circumferential direction and that magnetize the rotor (20) having a rotor core (100) provided with a hole (310) and a magnet (200) stored in the hole (310) of the rotor core (100). The electromagnets (500, 600) are provided with magnetic bodies (510, 610) and coils (520, 620) wound on the magnetic bodies (510, 610). The winding axis direction of the coils (520, 620) is the axial direction of the rotor (20). Magnetic fluxes generated from the coils (520, 620) pass through the magnetic bodies (510, 610) toward the side surfaces (230, 240) of the magnet (200) in the circumferential direction of the rotor (20).
Description
本発明は、ロータの着磁装置、ロータ、モータ及びロータの製造方法に関する。
The present invention relates to a rotor magnetization device, a rotor, a motor, and a method for manufacturing a rotor.
IPMロータ等、ロータの内部に2つの磁石を互いに反発する方向に向けて配置する場合に、未着磁の磁石をロータに配置した後に、着磁装置を用いてロータ全体を着磁する、いわゆる後着磁の技術が知られている。
When two magnets are placed inside a rotor, such as an IPM rotor, so that they repel each other, a technique known as post-magnetization is known in which an unmagnetized magnet is placed in the rotor, and then the entire rotor is magnetized using a magnetizing device.
後着磁の工程において、着磁率を100%に近づけることが難しい場合がある。
In the post-magnetization process, it can be difficult to achieve a magnetization rate approaching 100%.
一つの側面では、着磁率を向上できるロータの着磁装置、ロータ、モータ及びロータの製造方法を提供することを目的とする。
In one aspect, the objective is to provide a rotor magnetization device, rotor, motor, and rotor manufacturing method that can improve the magnetization rate.
一つの態様において、ロータの着磁装置は、孔部を備えたロータコアと、当該ロータコアの孔部に収容されたマグネットとを有するロータを着磁する、周方向に並んだ複数の電磁石を備える。前記電磁石は、磁性体と、当該磁性体に巻かれたコイルと、を備える。前記コイルの巻回軸方向は、前記ロータの軸方向であり、前記コイルから発生した磁束は、前記磁性体を通過して、前記ロータの周方向における前記マグネットの側面に向いている。
In one embodiment, the rotor magnetization device includes a plurality of electromagnets arranged in a circumferential direction to magnetize a rotor having a rotor core with holes and magnets housed in the holes of the rotor core. The electromagnets include a magnetic body and a coil wound around the magnetic body. The winding axis of the coil is the axial direction of the rotor, and the magnetic flux generated from the coil passes through the magnetic body and is directed toward the side of the magnet in the circumferential direction of the rotor.
一つの態様によれば、着磁率を向上できる。
According to one aspect, the magnetization rate can be improved.
以下に、本願の開示するロータの着磁装置、ロータ、モータ及びロータの製造方法の実施形態を図面に基づいて詳細に説明する。なお、図面における各要素の寸法の関係、各要素の比率などは、現実と異なる場合がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
Below, embodiments of the rotor magnetization device, rotor, motor, and rotor manufacturing method disclosed in the present application are described in detail with reference to the drawings. Note that the dimensional relationships and ratios of each element in the drawings may differ from reality. There may also be parts in which the dimensional relationships and ratios differ between the drawings.
[実施形態]
まず、本実施形態におけるモータ1及びロータ20について、図1乃至図3を用いて説明する。図1は、実施形態におけるモータの一例を示す側断面図である。図2は、実施形態におけるロータの一例を示す斜視図である。図3は、ロータの一例を示す拡大斜視図である。図3は、図2の枠F1に示す部分を拡大した図である。 [Embodiment]
First, amotor 1 and a rotor 20 in this embodiment will be described with reference to Figs. 1 to 3. Fig. 1 is a side cross-sectional view showing an example of a motor in this embodiment. Fig. 2 is a perspective view showing an example of a rotor in this embodiment. Fig. 3 is an enlarged perspective view showing an example of a rotor. Fig. 3 is an enlarged view of a portion shown in frame F1 in Fig. 2.
まず、本実施形態におけるモータ1及びロータ20について、図1乃至図3を用いて説明する。図1は、実施形態におけるモータの一例を示す側断面図である。図2は、実施形態におけるロータの一例を示す斜視図である。図3は、ロータの一例を示す拡大斜視図である。図3は、図2の枠F1に示す部分を拡大した図である。 [Embodiment]
First, a
図1に示すように、モータ1は、ロータ20と、シャフト80と、ステータ90とを備える。ステータ90は、ステータコア91と、インシュレータ92と、コイル93とを備える。モータ1において、ロータ20は、軸受け81を介して、シャフト80に回動可能に軸支される。また、モータ1は、ハウジング70に収容される。図1に示すように、本実施形態におけるモータ1は、ステータ90が、ロータ20よりも径方向における外側に配置される、いわゆるインナーロータ型のモータである。
As shown in FIG. 1, the motor 1 includes a rotor 20, a shaft 80, and a stator 90. The stator 90 includes a stator core 91, an insulator 92, and a coil 93. In the motor 1, the rotor 20 is rotatably supported on the shaft 80 via a bearing 81. The motor 1 is also housed in a housing 70. As shown in FIG. 1, the motor 1 in this embodiment is a so-called inner rotor type motor in which the stator 90 is positioned radially outward of the rotor 20.
ステータコア91は、例えばステンレス鋼や磁性鋼板などの磁性体を、軸方向に複数積層することによって形成される。インシュレータ92は、例えば樹脂等の絶縁体により形成される。コイル93は、例えば銅等の導体で形成された平角線を、インシュレータ92を介してステータコア91に巻き回すことにより形成される。
The stator core 91 is formed by stacking multiple magnetic materials, such as stainless steel or magnetic steel plates, in the axial direction. The insulator 92 is formed from an insulating material, such as resin. The coil 93 is formed by winding a rectangular wire, made of a conductor, such as copper, around the stator core 91 via the insulator 92.
ロータ20は、図1及び図2に示すように、ロータコア100と、マグネット200とを備える。ロータコア100は、例えば電磁鋼板からなる平板状のコアが複数枚積層されて構成される。
As shown in Figures 1 and 2, the rotor 20 includes a rotor core 100 and a magnet 200. The rotor core 100 is formed by stacking multiple flat cores made of, for example, electromagnetic steel sheets.
図3に示すように、ロータ20のロータコア100は、磁極部110と、環状部120と、接続部130とを備える。
As shown in FIG. 3, the rotor core 100 of the rotor 20 includes a magnetic pole portion 110, an annular portion 120, and a connection portion 130.
環状部120は、径方向において内側に位置する。接続部130は、径方向において、環状部120と磁極部110とを接続する。周方向において、磁極部110と接続部130との間には、空隙330がある。
The annular portion 120 is located radially inward. The connection portion 130 connects the annular portion 120 and the magnetic pole portion 110 in the radial direction. In the circumferential direction, there is a gap 330 between the magnetic pole portion 110 and the connection portion 130.
磁極部110は、径方向において、環状部120の外側に位置する。図4に示すように、磁極部110は、径方向において、環状部120に向かって延びた延在部112を備える。図4は、実施形態におけるマグネットの着磁結果の一例を示す斜視図である。なお、延在部112は、環状部120に向かって延びた部分の一例である。
The magnetic pole portion 110 is located radially outside the annular portion 120. As shown in FIG. 4, the magnetic pole portion 110 has an extension portion 112 that extends radially toward the annular portion 120. FIG. 4 is a perspective view showing an example of the magnetization result of a magnet in an embodiment. The extension portion 112 is an example of a portion that extends toward the annular portion 120.
図4に示すように、マグネット200は、周方向において、ロータ20の磁極部110の延在部112に挟まれる。また、図4において、マグネット200における塗り潰しの濃淡は、マグネット200の磁力又は着磁率の大きさを示し、濃いことは磁力又は着磁率が相対的に高いことを意味し、薄いことは磁力又は着磁率が相対的に低いことを意味する。
As shown in FIG. 4, the magnet 200 is sandwiched in the circumferential direction between the extensions 112 of the magnetic pole portions 110 of the rotor 20. Also, in FIG. 4, the shading of the fill in the magnet 200 indicates the magnitude of the magnetic force or magnetization rate of the magnet 200, with a darker shade meaning that the magnetic force or magnetization rate is relatively high and a lighter shade meaning that the magnetic force or magnetization rate is relatively low.
ロータコア100の磁極部110における延在部112は、マグネット200の径方向における外側の部分211の側面230又は240に接触しており、マグネット200の径方向における内側の部分212の側面230又は240は、延在部112に対して露出している。図1に示すように、径方向において、磁極部110は、ステータ90に対向している。なお、周方向において隣接する2つの磁極部110の間には、孔部310が形成される。この場合において、磁極部110の延在部112は、孔部310の内面を形成する。
The extension 112 of the magnetic pole portion 110 of the rotor core 100 is in contact with the side surface 230 or 240 of the radially outer portion 211 of the magnet 200, and the side surface 230 or 240 of the radially inner portion 212 of the magnet 200 is exposed to the extension 112. As shown in FIG. 1, the magnetic pole portion 110 faces the stator 90 in the radial direction. A hole 310 is formed between two magnetic pole portions 110 adjacent in the circumferential direction. In this case, the extension 112 of the magnetic pole portion 110 forms the inner surface of the hole 310.
マグネット200としては、例えば磁粉と樹脂とを混合したボンド磁石や焼結磁石が挙げられる。マグネット200は、未着磁の状態で、孔部310に配置される。なお、マグネット200は、例えば、ボンド磁石を高温にして流動的な状態にすることで、孔部310に充填されてもよい。
The magnet 200 may be, for example, a bonded magnet or a sintered magnet made of a mixture of magnetic powder and resin. The magnet 200 is placed in the hole 310 in an unmagnetized state. The magnet 200 may be filled into the hole 310 by, for example, heating the bonded magnet to a high temperature to make it fluid.
図4に示すように、マグネット200は、略直方体形状に形成され、ロータコア100の周方向における一方側の延在部112と接触する側面230と、他方側の延在部112と接触する側面240とを備える。また、図4に示すように、マグネット200は、延在部112と接触する、径方向における外側の部分211と、延在部112から環状部120側に突出する、径方向における内側の部分212とを備える。
As shown in FIG. 4, the magnet 200 is formed in a generally rectangular parallelepiped shape and has a side surface 230 that contacts the extension portion 112 on one side in the circumferential direction of the rotor core 100, and a side surface 240 that contacts the extension portion 112 on the other side. Also, as shown in FIG. 4, the magnet 200 has a radially outer portion 211 that contacts the extension portion 112, and a radially inner portion 212 that protrudes from the extension portion 112 toward the annular portion 120.
本実施形態において、マグネット200の径方向における外側の部分211は、図4に示すように、均等に着磁される。一方、マグネット200の環状部120側に突出する、径方向における内側の部分212には、磁力の小さい第1領域201と、磁力の大きい第2領域202及び第3領域203とが形成される。軸方向において、第1領域201は、第2領域202と第3領域203との間にある。
In this embodiment, the radially outer portion 211 of the magnet 200 is evenly magnetized as shown in FIG. 4. Meanwhile, the radially inner portion 212 protruding toward the annular portion 120 of the magnet 200 has a first region 201 with a low magnetic force and a second region 202 and a third region 203 with a high magnetic force. In the axial direction, the first region 201 is between the second region 202 and the third region 203.
本実施形態において、第1領域201における着磁率は、マグネット200の径方向における外側の部分211における着磁率より小さい。この場合において、第1領域201における磁力は、マグネット200の径方向における外側の部分211における磁力より小さい。
In this embodiment, the magnetization rate in the first region 201 is smaller than the magnetization rate in the radially outer portion 211 of the magnet 200. In this case, the magnetic force in the first region 201 is smaller than the magnetic force in the radially outer portion 211 of the magnet 200.
なお、図3に示すように、マグネット200の径方向における内側の側面270は、空隙320を介して、ロータコア100の環状部120と対向する。この場合において、空隙320はフラックスバリアとなるため、マグネット200の側面270から径方向における内側に磁束が流れることが抑制される。
As shown in FIG. 3, the radially inner side surface 270 of the magnet 200 faces the annular portion 120 of the rotor core 100 through a gap 320. In this case, the gap 320 acts as a flux barrier, preventing magnetic flux from flowing radially inward from the side surface 270 of the magnet 200.
マグネット200は、着磁される前に孔部310に配置され、その後図5に示す着磁装置10により着磁される。図5は、実施形態における着磁装置の一例を示す斜視図である。図5に示すように、実施形態における着磁装置10は、周方向に並んだ複数の電磁石500及び600を備える。なお、以下において、複数のマグネット200を区別して表現する場合に、マグネット20a乃至20jと表記する場合がある。
The magnet 200 is placed in the hole 310 before being magnetized, and is then magnetized by the magnetization device 10 shown in FIG. 5. FIG. 5 is a perspective view showing an example of a magnetization device in an embodiment. As shown in FIG. 5, the magnetization device 10 in an embodiment includes multiple electromagnets 500 and 600 arranged in the circumferential direction. In the following, when multiple magnets 200 are to be distinguished from one another, they may be referred to as magnets 20a to 20j.
電磁石500及び600は、図5において破線で示すマグネット200に対して、ロータ20の径方向における内側に配置される。電磁石500は、着磁装置10における軸方向における上側に位置し、電磁石600は、着磁装置10における軸方向における下側に位置する。なお、以下において、複数の電磁石500をそれぞれ区別して表現する場合に、電磁石50a乃至50jのように表記し、複数の電磁石600をそれぞれ区別して表現する場合に、電磁石60a乃至60jのように表記する場合がある。なお、複数の電磁石50a乃至50jは、例えば図示しない環状の形状を有するフレーム等により支持される。
Electromagnets 500 and 600 are arranged radially inward of magnet 200, which is indicated by a dashed line in FIG. 5. Electromagnet 500 is located on the upper side of magnetization device 10 in the axial direction, and electromagnet 600 is located on the lower side of magnetization device 10 in the axial direction. In the following, when the multiple electromagnets 500 are to be individually expressed, they may be written as electromagnets 50a to 50j, and when the multiple electromagnets 600 are to be individually expressed, they may be written as electromagnets 60a to 60j. The multiple electromagnets 50a to 50j are supported by, for example, a ring-shaped frame (not shown).
電磁石500及び600は、上部磁性体510に巻かれた上部コイル520と、下部磁性体610に巻かれた下部コイル620と、を備える。上部磁性体510と下部磁性体610とは、ロータ20の軸方向において、直接又は他の部材(磁性体)を介して対向する。この場合において、軸方向において、上部コイル520と下部コイル620との間に、ロータコア100の空隙330が位置する。図5に示すように、上部コイル520及び下部コイル620の巻回軸方向は、ロータ20の軸方向である。なお、上部磁性体510及び下部磁性体610を区別せずに表現する場合に、単に磁性体510及び610と表記し、上部コイル520及び下部コイル620を区別せずに表現する場合に、単にコイル520及び620と表記する場合がある。
The electromagnets 500 and 600 include an upper coil 520 wound around an upper magnetic body 510 and a lower coil 620 wound around a lower magnetic body 610. The upper magnetic body 510 and the lower magnetic body 610 face each other in the axial direction of the rotor 20, either directly or via another member (magnetic body). In this case, the gap 330 of the rotor core 100 is located between the upper coil 520 and the lower coil 620 in the axial direction. As shown in FIG. 5, the winding axis direction of the upper coil 520 and the lower coil 620 is the axial direction of the rotor 20. Note that when the upper magnetic body 510 and the lower magnetic body 610 are expressed without distinction, they may be simply referred to as magnetic bodies 510 and 610, and when the upper coil 520 and the lower coil 620 are expressed without distinction, they may be simply referred to as coils 520 and 620.
また、着磁装置10の複数の電磁石は、径方向において、電磁石500及び600に隣接する、外側電磁石700を備えてもよい。この場合において、径方向において、外側電磁石700の内側に電磁石500及び600は配置されている。また、外側電磁石700は、径方向において、ロータコア100に対向している。
The multiple electromagnets of the magnetization device 10 may also include an outer electromagnet 700 that is adjacent to the electromagnets 500 and 600 in the radial direction. In this case, the electromagnets 500 and 600 are disposed inside the outer electromagnet 700 in the radial direction. The outer electromagnet 700 faces the rotor core 100 in the radial direction.
外側電磁石700は、外側磁性体710と、外側磁性体710に巻かれた外側コイル720と、を備える。外側磁性体710は、例えば環状の支持部730から、径方向における内側に向かって延在する。また、外側磁性体710は、ロータコア100の磁極部110と、径方向において対向する。なお、外側コイル720の巻回軸方向は、ロータ20の径方向である。
The outer electromagnet 700 comprises an outer magnetic body 710 and an outer coil 720 wound around the outer magnetic body 710. The outer magnetic body 710 extends radially inward from, for example, an annular support portion 730. The outer magnetic body 710 faces the magnetic pole portion 110 of the rotor core 100 in the radial direction. The winding axis direction of the outer coil 720 is the radial direction of the rotor 20.
着磁装置10による、ロータ20の製造方法について、図6乃至図8を用いて説明する。図6は、実施形態における外側着磁工程の一例を示す斜視図である。図7は、実施形態における内側着磁工程の一例を示す断面斜視図である。図8は、実施形態における内側着磁工程の一例を示す拡大斜視図である。図7は、図5を面S1で切断した断面を示す。本実施形態における製造方法は、ロータ20の周方向において、ロータコア100の孔部310に収容されたマグネット200の側面230,240を着磁する、着磁工程を備える。
The manufacturing method of the rotor 20 using the magnetizing device 10 will be described with reference to Figures 6 to 8. Figure 6 is a perspective view showing an example of the outer magnetizing process in the embodiment. Figure 7 is a cross-sectional perspective view showing an example of the inner magnetizing process in the embodiment. Figure 8 is an enlarged perspective view showing an example of the inner magnetizing process in the embodiment. Figure 7 shows a cross section taken along plane S1 in Figure 5. The manufacturing method in this embodiment includes a magnetizing process in which the side surfaces 230, 240 of the magnet 200 housed in the hole 310 of the rotor core 100 are magnetized in the circumferential direction of the rotor 20.
また、着磁工程は、磁性体510及び610を、マグネット200の側面250及び260に接触させる工程を備えてもよい。具体的には、図8に示すように、磁性体51a及び51jは、マグネット200の径方向における内側の部分212における側面250に接触し、磁性体61a及び61jは、マグネット200の径方向における内側の部分212における側面260に接触する。
The magnetization process may also include a process of contacting the magnetic bodies 510 and 610 with the side surfaces 250 and 260 of the magnet 200. Specifically, as shown in FIG. 8, the magnetic bodies 51a and 51j contact the side surface 250 of the radially inner portion 212 of the magnet 200, and the magnetic bodies 61a and 61j contact the side surface 260 of the radially inner portion 212 of the magnet 200.
また、図7に示すように、着磁工程において、ロータコア100の空隙330に、ヨーク400がさらに配置されていてもよい。本実施形態において、ヨーク400は、電磁石500及び600の一部を構成する。なお、以下において、ヨーク400を区別して表現する場合に、ヨーク4a1、4b2のように表記する場合がある。
Also, as shown in FIG. 7, in the magnetization process, a yoke 400 may be further disposed in the gap 330 of the rotor core 100. In this embodiment, the yoke 400 constitutes a part of the electromagnets 500 and 600. In the following, when the yokes 400 are to be distinguished from one another, they may be referred to as yokes 4a1, 4b2, etc.
ヨーク400は、例えば鉄等の透磁性の高い材料により形成される。ヨーク400は、ロータコア100の空隙330と略同一の形状を備える。実施形態において、マグネット200は、周方向において、2つのヨーク400と接する。例えば、図6に示すように、マグネット20aは、2つのヨーク4a1及び4a2と接し、マグネット20bは、2つのヨーク4b1及び4b2と接する。
The yoke 400 is formed of a material with high magnetic permeability, such as iron. The yoke 400 has a shape that is substantially the same as the gap 330 of the rotor core 100. In the embodiment, the magnet 200 contacts two yokes 400 in the circumferential direction. For example, as shown in FIG. 6, the magnet 20a contacts two yokes 4a1 and 4a2, and the magnet 20b contacts two yokes 4b1 and 4b2.
実施形態において、磁性体510及び610は、複数のヨーク400と接触する。例えば、図6に示すように、磁性体51aは、2つのヨーク4a2及び4b1と接する。
In the embodiment, the magnetic bodies 510 and 610 contact multiple yokes 400. For example, as shown in FIG. 6, the magnetic body 51a contacts two yokes 4a2 and 4b1.
周方向において隣接する電磁石には、互いに逆の極性となるように電流が流される。例えば、図6に示す電磁石50jにおいてマグネット200と接する部分がN極となる場合、電磁石50jと隣接する電磁石50aにおいてマグネット200と接する部分はS極となる。かかる構成において、磁束は、電磁石50jから、マグネット200を通過して、電磁石50aへと流れる。
Currents are passed through adjacent electromagnets in the circumferential direction so that the polarities are opposite to each other. For example, if the portion of electromagnet 50j shown in FIG. 6 that contacts magnet 200 is a north pole, then the portion of electromagnet 50a adjacent to electromagnet 50j that contacts magnet 200 is a south pole. In this configuration, magnetic flux flows from electromagnet 50j, through magnet 200, to electromagnet 50a.
図7に示すように、コイル52jから発生した磁束は、磁性体51jを通過して、ロータ20の周方向におけるマグネット200の側面230,240に向いている。同様に、コイル62jから発生した磁束は、磁性体61jを通過して、ロータ20の周方向におけるマグネット200の側面230,240に向いており、外側コイル72iから発生した磁束は、外側磁性体71iを通過して、ロータ20の周方向におけるマグネット200の側面230,240に向いている。
As shown in FIG. 7, the magnetic flux generated from coil 52j passes through magnetic body 51j and is directed toward the side surfaces 230, 240 of magnet 200 in the circumferential direction of rotor 20. Similarly, the magnetic flux generated from coil 62j passes through magnetic body 61j and is directed toward the side surfaces 230, 240 of magnet 200 in the circumferential direction of rotor 20, and the magnetic flux generated from outer coil 72i passes through outer magnetic body 71i and is directed toward the side surfaces 230, 240 of magnet 200 in the circumferential direction of rotor 20.
図8に示すように、電磁石50jは、マグネット20aに対して、側面240側に位置し、電磁石50aは、マグネット20aに対して、側面230側に位置する。かかる構成において、周方向において、複数の電磁石500のうち、互いに隣接する2つの電磁石50j及び50aの間にマグネット20aが位置している。
As shown in FIG. 8, electromagnet 50j is located on the side surface 240 side of magnet 20a, and electromagnet 50a is located on the side surface 230 side of magnet 20a. In this configuration, magnet 20a is located between two adjacent electromagnets 50j and 50a among the multiple electromagnets 500 in the circumferential direction.
着磁工程において、ロータ20の回転軸方向に向かう磁束と、周方向においてマグネット200の側面230,240に向かう磁束とが、マグネット200の径方向における内側の部分212の側面230,240を通過する。例えば、図8に示すように、回転軸方向に向かう磁束の一部は、磁性体51j及び61jから、ヨーク4a1を通過し、マグネット20aの側面240に向かう。その後、磁束は、マグネット20aの側面230及びヨーク4a2を通過して、磁性体51a及び61aへと流れる。この場合において、マグネット200の一方の側面230はN極に着磁され、もう一方の側面240はS極に着磁される。
In the magnetization process, magnetic flux directed in the direction of the rotation axis of the rotor 20 and magnetic flux directed in the circumferential direction toward the side surfaces 230, 240 of the magnet 200 pass through the side surfaces 230, 240 of the radially inner portion 212 of the magnet 200. For example, as shown in FIG. 8, part of the magnetic flux directed in the direction of the rotation axis passes from the magnetic bodies 51j and 61j through the yoke 4a1 toward the side surface 240 of the magnet 20a. The magnetic flux then passes through the side surface 230 of the magnet 20a and the yoke 4a2 to flow to the magnetic bodies 51a and 61a. In this case, one side surface 230 of the magnet 200 is magnetized to the north pole, and the other side surface 240 is magnetized to the south pole.
かかる着磁工程において、図6に示すように、外側電磁石700の外側コイル72bからマグネット20bに向かう磁束は、マグネット20bの径方向における外側の部分211に多く流れるが、マグネット20bの径方向における内側の部分212にはあまり流れない。これにより、外側電磁石700による着磁工程だけでは、マグネット200の径方向における内側の部分212の磁力が、径方向における外側の部分211の磁力よりも小さくなる。
In this magnetization process, as shown in FIG. 6, the magnetic flux from the outer coil 72b of the outer electromagnet 700 toward the magnet 20b flows mostly to the radially outer portion 211 of the magnet 20b, but not so much to the radially inner portion 212 of the magnet 20b. As a result, the magnetic force of the radially inner portion 212 of the magnet 200 is smaller than the magnetic force of the radially outer portion 211 by the magnetization process using the outer electromagnet 700 alone.
一方、図8に示すように、電磁石500及び600のコイル52j及び62jからマグネット20aに向かう磁束は、マグネット20aの径方向における内側の部分212に多く流れる。これにより、マグネット200の径方向における内側の部分212における着磁率を高めることができる。
On the other hand, as shown in FIG. 8, the magnetic flux from the coils 52j and 62j of the electromagnets 500 and 600 toward the magnet 20a flows more toward the radially inner portion 212 of the magnet 20a. This increases the magnetization rate of the radially inner portion 212 of the magnet 200.
なお、本実施形態において、磁性体510においてマグネット200と接する部分と、磁性体610においてマグネット200と接する部分とは、同じ極性を有する。この場合において、磁性体510から回転軸方向に向かう磁束と、磁性体610から回転軸方向に向かう磁束とは相互に反発する。かかる構成によれば、図4に示すように、磁束が相互に反発する位置に近い第1領域201において、着磁率が小さい部分が形成される。
In this embodiment, the portion of magnetic body 510 that contacts magnet 200 and the portion of magnetic body 610 that contacts magnet 200 have the same polarity. In this case, the magnetic flux that flows from magnetic body 510 in the direction of the rotation axis and the magnetic flux that flows from magnetic body 610 in the direction of the rotation axis repel each other. With this configuration, as shown in FIG. 4, a portion with a low magnetization rate is formed in first region 201 close to the position where the magnetic fluxes repel each other.
この場合においても、マグネット200の径方向における内側の部分212において、磁性体510に近い部分に位置する第2領域202、及び磁性体610に近い部分に位置する第3領域203における着磁率は、マグネット200の径方向における外側の部分211における着磁率とほぼ同等となる。これにより、外側電磁石700を用いて着磁する場合と比べて、マグネット200において磁力が小さい部分をより小さくすることができる。
Even in this case, the magnetization rate of the second region 202 located near the magnetic body 510 and the third region 203 located near the magnetic body 610 in the radially inner portion 212 of the magnet 200 is approximately equal to the magnetization rate of the radially outer portion 211 of the magnet 200. As a result, the portion of the magnet 200 with low magnetic force can be made smaller compared to the case where the outer electromagnet 700 is used for magnetization.
その後、ヨーク400は、着磁工程の終了後に、空隙330から取り除かれる。これにより、マグネット200が着磁されたロータ20において、空隙330はフラックスバリアとなる。
Then, the yoke 400 is removed from the gap 330 after the magnetization process is completed. This causes the gap 330 to become a flux barrier in the rotor 20 in which the magnet 200 is magnetized.
なお、本実施形態において、周方向において隣接する2つの電磁石500において、複数のコイル520は、相互に干渉しない位置に形成される。例えば、図6に示すように、コイル52aは、軸方向において磁性体51aの上側に巻かれるのに対し、コイル52aと周方向において隣接するコイル52b及びコイル52jは、軸方向において磁性体51b及び51jの下側に巻かれる。コイル620についても同様である。すなわち、コイル52aに対して周方向において隣接するコイル52bおよびコイル52jは軸方向において異なる位置にある。
In this embodiment, the coils 520 of two electromagnets 500 adjacent in the circumferential direction are formed in positions that do not interfere with each other. For example, as shown in FIG. 6, coil 52a is wound above magnetic body 51a in the axial direction, while coils 52b and 52j, which are adjacent to coil 52a in the circumferential direction, are wound below magnetic bodies 51b and 51j in the axial direction. The same is true for coil 620. In other words, coils 52b and 52j, which are adjacent to coil 52a in the circumferential direction, are in different positions in the axial direction.
以上説明したように、本実施形態におけるロータの着磁装置10は、孔部310を備えたロータコア100と、ロータコア100の孔部310に収容されたマグネット200とを有するロータ20を着磁する。ロータの着磁装置10は、周方向に並んだ複数の電磁石500,600を備える。電磁石500,600は、磁性体510,610と、磁性体510,610に巻かれたコイル620,620と、を備える。コイル520,620の巻回軸方向は、ロータ20の軸方向であり、コイル520,620から発生した磁束は、磁性体510,610を通過して、ロータ20の周方向におけるマグネット200の側面230,240に向いている。かかる構成によれば、マグネット200の径方向における内側の部分212においても着磁率を向上できるので、ロータ20の着磁率を向上できる。
As described above, the rotor magnetization device 10 in this embodiment magnetizes the rotor 20 having the rotor core 100 with the hole 310 and the magnet 200 housed in the hole 310 of the rotor core 100. The rotor magnetization device 10 includes a plurality of electromagnets 500, 600 arranged in the circumferential direction. The electromagnets 500, 600 include magnetic bodies 510, 610 and coils 620, 620 wound around the magnetic bodies 510, 610. The winding axis direction of the coils 520, 620 is the axial direction of the rotor 20, and the magnetic flux generated from the coils 520, 620 passes through the magnetic bodies 510, 610 and is directed toward the side surfaces 230, 240 of the magnet 200 in the circumferential direction of the rotor 20. With this configuration, the magnetization rate can be improved even in the radially inner portion 212 of the magnet 200, and therefore the magnetization rate of the rotor 20 can be improved.
[変形例]
以上、本実施形態における構成について説明したが、実施形態はこれに限られない。例えば、着磁装置10が、電磁石500及び600と、外側電磁石700との両方を備える構成について説明したが、いずれか一方のみを含むような構成であってもよい。 [Modification]
Although the configuration of the present embodiment has been described above, the embodiment is not limited thereto. For example, the magnetizingdevice 10 has been described as including both the electromagnets 500 and 600 and the outer electromagnet 700, but may have a configuration including only one of them.
以上、本実施形態における構成について説明したが、実施形態はこれに限られない。例えば、着磁装置10が、電磁石500及び600と、外側電磁石700との両方を備える構成について説明したが、いずれか一方のみを含むような構成であってもよい。 [Modification]
Although the configuration of the present embodiment has been described above, the embodiment is not limited thereto. For example, the magnetizing
なお、ヨーク400がロータコア100の空隙330に配置され、磁性体510及び610がヨーク400と接触する構成について説明したが、実施の形態はこれに限られない。例えば、磁性体の一部が、ロータコア100の空隙330に挿通されるような構成であってもよい。この場合において、空隙330に挿通された磁性体の一部は、マグネット200の側面230又は240と接触する。なお、上側の磁性体と下側の磁性体とは相互に反発するため、上側の磁性体と下側の磁性体とは相互に接触しなくともよい。
Although the configuration in which the yoke 400 is disposed in the gap 330 of the rotor core 100 and the magnetic bodies 510 and 610 contact the yoke 400 has been described, the embodiment is not limited to this. For example, a configuration in which a portion of the magnetic body is inserted into the gap 330 of the rotor core 100 is also possible. In this case, the portion of the magnetic body inserted into the gap 330 contacts the side surface 230 or 240 of the magnet 200. Note that since the upper magnetic body and the lower magnetic body repel each other, the upper magnetic body and the lower magnetic body do not need to contact each other.
以上、本発明を実施形態及び各変形例に基づき説明したが、本発明は実施形態及び各変形例に限定されるものではなく、本発明の要旨を逸脱しない範囲での種々の変更が可能であることも言うまでもない。そのような要旨を逸脱しない範囲での種々の変更を行ったものも本発明の技術的範囲に含まれるものであり、そのことは、当業者にとって特許請求の範囲の記載から明らかである。
The present invention has been described above based on the embodiment and various modifications, but it goes without saying that the present invention is not limited to the embodiment and various modifications, and various modifications are possible within the scope of the present invention without departing from the gist of the invention. Such modifications that do not depart from the gist of the invention are also included in the technical scope of the present invention, and this will be clear to those skilled in the art from the description of the claims.
1 モータ、10 着磁装置、20 ロータ、70 ハウジング、80 シャフト、81 軸受け、90 ステータ、91 ステータコア、92 インシュレータ、93 コイル、100 ロータコア、110 磁極部、112 延在部、120 環状部、130 接続部、200 マグネット、201 第1領域、202 第2領域、203 第3領域、211 径方向における外側の部分、212 径方向における内側の部分、230,240 側面、250,260 側面、270 側面、310 孔部、320 空隙、330 空隙、400 ヨーク、500,600 電磁石、510 上部磁性体、520 上部コイル、610 下部磁性体、620 下部コイル、700 外側電磁石、710 外側磁性体、720 外側コイル、730 支持部
1 motor, 10 magnetization device, 20 rotor, 70 housing, 80 shaft, 81 bearing, 90 stator, 91 stator core, 92 insulator, 93 coil, 100 rotor core, 110 magnetic pole portion, 112 extension portion, 120 annular portion, 130 connection portion, 200 magnet, 201 first region, 202 second region, 203 third region, 211 radial direction outer part, 212 radially inner part, 230, 240 side, 250, 260 side, 270 side, 310 hole, 320 gap, 330 gap, 400 yoke, 500, 600 electromagnet, 510 upper magnetic body, 520 upper coil, 610 lower magnetic body, 620 lower coil, 700 outer electromagnet, 710 outer magnetic body, 720 outer coil, 730 support
Claims (14)
- 孔部を備えたロータコアと、当該ロータコアの孔部に収容されたマグネットとを有するロータを着磁する、周方向に並んだ複数の電磁石を備える着磁装置であって、
前記電磁石は、磁性体と、当該磁性体に巻かれたコイルと、を備え、
前記コイルの巻回軸方向は、前記ロータの軸方向であり、
前記コイルから発生した磁束は、前記磁性体を通過して、前記ロータの周方向における前記マグネットの側面に向いている、
ロータの着磁装置。 A magnetizing device that magnetizes a rotor having a rotor core with holes and magnets housed in the holes of the rotor core, the magnetizing device including a plurality of electromagnets arranged in a circumferential direction,
The electromagnet includes a magnetic body and a coil wound around the magnetic body,
a winding axis direction of the coil is the axial direction of the rotor,
The magnetic flux generated from the coil passes through the magnetic body and is directed toward a side surface of the magnet in the circumferential direction of the rotor.
Rotor magnetization device. - 前記電磁石は、
上部磁性体に巻かれた上部コイルと、下部磁性体に巻かれた下部コイルとを備え、
前記上部磁性体と前記下部磁性体とは、前記ロータの軸方向において対向し、
軸方向において、前記上部コイルと前記下部コイルとの間に、前記ロータコアの孔部が位置する、
請求項1に記載のロータの着磁装置。 The electromagnet is
An upper coil is wound around an upper magnetic body, and a lower coil is wound around a lower magnetic body,
the upper magnetic body and the lower magnetic body face each other in the axial direction of the rotor,
a hole in the rotor core is located between the upper coil and the lower coil in the axial direction;
The rotor magnetizing device according to claim 1 . - 周方向において、前記複数の電磁石のうち、互いに隣接する2つの電磁石の間に前記マグネットが位置している、請求項1又は2に記載のロータの着磁装置。 The rotor magnetization device according to claim 1 or 2, wherein the magnet is positioned between two adjacent electromagnets of the plurality of electromagnets in the circumferential direction.
- 前記複数の電磁石は、径方向において、前記電磁石に隣接する、外側電磁石を備え、
径方向において、前記外側電磁石の内側に前記電磁石は配置されており、
前記外側電磁石は、径方向において、前記ロータコアに対向している、
請求項1から3のいずれか1つに記載のロータの着磁装置。 the plurality of electromagnets includes an outer electromagnet radially adjacent to the electromagnet;
The electromagnet is disposed inside the outer electromagnet in the radial direction,
The outer electromagnet faces the rotor core in a radial direction.
4. The rotor magnetizing device according to claim 1, wherein the magnetizing device is a magnetizing member. - ロータコアと、マグネットと、を備え、
径方向において、前記ロータコアは、内側に位置する環状部と、前記環状部の外側に位置する磁極部と、前記環状部と前記磁極部とを接続する接続部と、を備え、
周方向において、前記磁極部と前記接続部との間には空隙があり、
前記マグネットの前記環状部側に突出する、径方向における内側の部分は、磁力の小さい第1領域と、磁力の大きい第2領域および第3領域と、を備え、
軸方向において、前記第1領域は、前記第2領域と前記第3領域との間にある、
ロータ。 A rotor core and a magnet are provided.
In a radial direction, the rotor core includes an annular portion located on an inner side, a magnetic pole portion located on an outer side of the annular portion, and a connection portion connecting the annular portion and the magnetic pole portion,
There is a gap between the magnetic pole portion and the connection portion in the circumferential direction,
a radially inner portion of the magnet protruding toward the annular portion includes a first region having a low magnetic force, and second and third regions having a high magnetic force;
In the axial direction, the first region is between the second region and the third region.
Rotor. - 前記第1領域における磁力は、前記マグネットの前記径方向における外側の部分における磁力より小さい、請求項5に記載のロータ。 The rotor of claim 5, wherein the magnetic force in the first region is smaller than the magnetic force in the radially outer portion of the magnet.
- 前記第1領域における着磁率は、前記マグネットの前記径方向における外側の部分における着磁率より小さい、請求項5に記載のロータ。 The rotor of claim 5, wherein the magnetization rate in the first region is smaller than the magnetization rate in the radially outer portion of the magnet.
- 前記磁極部は、径方向において、前記環状部に向かって延びた部分を備え、
周方向において、前記環状部に向かって延びた部分は、前記マグネットの径方向における外側の部分における側面に接触しており、
前記マグネットの径方向における内側の部分における側面は、前記環状部に向かって延びた部分に対して露出している、
請求項5に記載のロータ。 The magnetic pole portion includes a portion extending radially toward the annular portion,
A portion extending toward the annular portion in the circumferential direction is in contact with a side surface of a radially outer portion of the magnet,
A side surface of the magnet at a radially inner portion is exposed to a portion extending toward the annular portion.
A rotor as claimed in claim 5. - 請求項5乃至8のいずれか1つに記載のロータと、
シャフトと、
ステータと、
を備え、
径方向において、前記磁極部は前記ステータに対向している、
モータ。 A rotor according to any one of claims 5 to 8;
A shaft,
A stator;
Equipped with
The magnetic pole portion faces the stator in a radial direction.
motor. - 孔部を備えたロータコアと、当該ロータコアの孔部に収容されたマグネットと、を有するロータの製造方法であって、
前記ロータの周方向において、前記ロータコアの孔部に収容されたマグネットの側面を着磁する、着磁工程を備える、
ロータの製造方法。 A manufacturing method of a rotor having a rotor core with a hole and a magnet housed in the hole of the rotor core, comprising the steps of:
a magnetizing step of magnetizing a side surface of a magnet housed in a hole of the rotor core in a circumferential direction of the rotor;
A method for manufacturing a rotor. - 前記マグネットは、前記孔部の内面と接触する径方向における外側の部分と、当該孔部の内面から径方向における内側に突出した径方向における内側の部分と、を備え、
前記着磁工程は、周方向において、前記マグネットの前記径方向における内側の部分の側面を着磁する工程を含む、
請求項10に記載のロータの製造方法。 the magnet includes a radially outer portion in contact with an inner surface of the hole, and a radially inner portion protruding radially inward from the inner surface of the hole,
The magnetizing step includes a step of magnetizing a side surface of an inner portion of the magnet in the radial direction in a circumferential direction.
A method for manufacturing a rotor according to claim 10. - 前記着磁工程において、前記ロータの回転軸方向に向かう磁束と、周方向において前記マグネットの側面に向かう磁束とが、当該マグネットの前記径方向における内側の部分の側面を通過する、請求項10に記載のロータの製造方法。 The method for manufacturing a rotor according to claim 10, wherein in the magnetization process, the magnetic flux directed in the direction of the rotor's rotation axis and the magnetic flux directed in the circumferential direction to the side of the magnet pass through the side of the inner portion of the magnet in the radial direction.
- 前記ロータの周方向において、前記孔部に収容される前記マグネットと、前記ロータコアとの間には空隙があり、
前記着磁工程において、
前記空隙に電磁石を配置する、電磁石の配置工程を備える、
請求項10乃至12のいずれか1つに記載のロータの製造方法。 In the circumferential direction of the rotor, there is a gap between the magnet housed in the hole and the rotor core,
In the magnetization step,
The method includes the step of disposing an electromagnet in the gap.
A method for manufacturing a rotor according to any one of claims 10 to 12. - 前記電磁石は、コイルと、当該コイルが巻かれた磁性体とを備え、
前記着磁工程には、前記磁性体を前記マグネットの側面に接触させる工程を備える、
請求項13に記載のロータの製造方法。 The electromagnet includes a coil and a magnetic body around which the coil is wound,
The magnetizing step includes a step of contacting the magnetic body with a side surface of the magnet.
A method for manufacturing a rotor according to claim 13.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/043796 WO2024116245A1 (en) | 2022-11-28 | 2022-11-28 | Magnetization device for rotor, rotor, motor, and method for manufacturing rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/043796 WO2024116245A1 (en) | 2022-11-28 | 2022-11-28 | Magnetization device for rotor, rotor, motor, and method for manufacturing rotor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024116245A1 true WO2024116245A1 (en) | 2024-06-06 |
Family
ID=91323288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/043796 WO2024116245A1 (en) | 2022-11-28 | 2022-11-28 | Magnetization device for rotor, rotor, motor, and method for manufacturing rotor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024116245A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06245419A (en) * | 1993-02-10 | 1994-09-02 | Honda Motor Co Ltd | Yoke for motor or generator |
WO2015104956A1 (en) * | 2014-01-08 | 2015-07-16 | 三菱電機株式会社 | Rotary electric machine |
JP2017060240A (en) * | 2015-09-15 | 2017-03-23 | パナソニックIpマネジメント株式会社 | Embedded magnet type rotor magnetization method and embedded magnet type rotor |
-
2022
- 2022-11-28 WO PCT/JP2022/043796 patent/WO2024116245A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06245419A (en) * | 1993-02-10 | 1994-09-02 | Honda Motor Co Ltd | Yoke for motor or generator |
WO2015104956A1 (en) * | 2014-01-08 | 2015-07-16 | 三菱電機株式会社 | Rotary electric machine |
JP2017060240A (en) * | 2015-09-15 | 2017-03-23 | パナソニックIpマネジメント株式会社 | Embedded magnet type rotor magnetization method and embedded magnet type rotor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI400857B (en) | Rotor-stator structure for electrodynamic machines | |
RU2479880C2 (en) | Assembly of superconductive coils and equipment for generation of magnetic field | |
JP2010130818A (en) | Method for manufacturing field element | |
JP2010130819A (en) | Field element and method for manufacturing field element | |
JP2003339141A5 (en) | ||
JP2013126281A (en) | Method for manufacturing field element, and end plate for field element | |
JP5889155B2 (en) | Magnetizing apparatus and magnetizing method | |
JP6415758B2 (en) | Magnetization method, rotor, electric motor and scroll compressor | |
WO2017130310A1 (en) | Rotor, magnetizing method, electric motor, and scroll compressor | |
JP6545480B2 (en) | Claw pole type motor, manufacturing method of claw pole type motor | |
JP2006115663A (en) | Permanent magnet rotor | |
US7779532B2 (en) | Manufacturing method of hybrid permanent magnet type electric rotating machine | |
WO2024116245A1 (en) | Magnetization device for rotor, rotor, motor, and method for manufacturing rotor | |
JP2007143335A (en) | Field magneton and motor | |
JP2009247041A (en) | Rotating machine | |
JP2005057955A (en) | Motor and process for manufacturing its rotor | |
KR100440514B1 (en) | Axial Core Type Brushless DC Motor | |
WO2012100379A1 (en) | Magnetic-variation type electrical permanent-magnetic chuck | |
JP2008022664A (en) | Magnetic field element and rotating electric machine | |
JP2013106417A (en) | Rotor and motor | |
CN115053433A (en) | Rotating electrical machine and electric wheel using the same | |
JP6750373B2 (en) | Moving coil type voice coil motor | |
JPH03195343A (en) | Magnetizer for step motor | |
CN118462718B (en) | Ultra-light type quadrupole direct current same-pole type hybrid magnetic bearing | |
JPH11103568A (en) | Movable magnet type linear actuator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22967081 Country of ref document: EP Kind code of ref document: A1 |