WO2024115865A1 - Fuel composition comprising a renewable base, a phenolic compound and a nitrogen-containing heterocyclic aromatic compound - Google Patents
Fuel composition comprising a renewable base, a phenolic compound and a nitrogen-containing heterocyclic aromatic compound Download PDFInfo
- Publication number
- WO2024115865A1 WO2024115865A1 PCT/FR2023/051885 FR2023051885W WO2024115865A1 WO 2024115865 A1 WO2024115865 A1 WO 2024115865A1 FR 2023051885 W FR2023051885 W FR 2023051885W WO 2024115865 A1 WO2024115865 A1 WO 2024115865A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- composition
- formula
- composition according
- carbon atoms
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 116
- 239000000446 fuel Substances 0.000 title claims abstract description 54
- 150000002989 phenols Chemical class 0.000 title claims abstract description 12
- 150000001875 compounds Chemical class 0.000 claims abstract description 44
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 33
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 32
- 235000014113 dietary fatty acids Nutrition 0.000 claims abstract description 30
- 229930195729 fatty acid Natural products 0.000 claims abstract description 30
- 239000000194 fatty acid Substances 0.000 claims abstract description 30
- -1 fatty acid esters Chemical class 0.000 claims abstract description 19
- 238000002485 combustion reaction Methods 0.000 claims abstract description 18
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 18
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 16
- 125000004432 carbon atom Chemical group C* 0.000 claims description 30
- 125000000217 alkyl group Chemical group 0.000 claims description 27
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 claims description 7
- 125000004429 atom Chemical group 0.000 claims description 6
- 230000007613 environmental effect Effects 0.000 claims description 6
- BPRYUXCVCCNUFE-UHFFFAOYSA-N 2,4,6-trimethylphenol Chemical compound CC1=CC(C)=C(O)C(C)=C1 BPRYUXCVCCNUFE-UHFFFAOYSA-N 0.000 claims description 5
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 5
- 239000012188 paraffin wax Substances 0.000 claims description 2
- 239000000654 additive Substances 0.000 description 11
- 239000003981 vehicle Substances 0.000 description 9
- 125000003118 aryl group Chemical group 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 235000015112 vegetable and seed oil Nutrition 0.000 description 5
- 239000008158 vegetable oil Substances 0.000 description 5
- 150000001491 aromatic compounds Chemical class 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 108010053481 Antifreeze Proteins Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- ZOJBYZNEUISWFT-UHFFFAOYSA-N allyl isothiocyanate Chemical compound C=CCN=C=S ZOJBYZNEUISWFT-UHFFFAOYSA-N 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 239000000828 canola oil Substances 0.000 description 1
- 235000019519 canola oil Nutrition 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000010460 hemp oil Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- LPAGFVYQRIESJQ-UHFFFAOYSA-N indoline Chemical compound C1=CC=C2NCCC2=C1 LPAGFVYQRIESJQ-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000008164 mustard oil Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/232—Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/182—Organic compounds containing oxygen containing hydroxy groups; Salts thereof
- C10L1/183—Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom
- C10L1/1832—Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom mono-hydroxy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0407—Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
- C10L2200/043—Kerosene, jet fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0461—Fractions defined by their origin
- C10L2200/0469—Renewables or materials of biological origin
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0461—Fractions defined by their origin
- C10L2200/0469—Renewables or materials of biological origin
- C10L2200/0476—Biodiesel, i.e. defined lower alkyl esters of fatty acids first generation biodiesel
Definitions
- DESCRIPTION TITLE Fuel composition comprising a renewable base, a phenolic compound and a nitrogen-containing heterocyclic aromatic compound
- the present invention relates to a fuel composition usable among others in air transport, and which comprises one or more cuts consisting of fatty acids and /or esters of hydrogenated fatty acids in association with at least one particular phenolic compound and at least one nitrogen-containing heterocyclic aromatic compound.
- the present invention also relates to the use of such a composition to power a heat engine, such as in particular but not limited to an airplane or rocket engine.
- a heat engine such as in particular but not limited to an airplane or rocket engine.
- jet fuels which are traditionally formulated from hydrocarbon cuts called kerosene cuts resulting from the distillation of crude oils.
- the reference jet fuel for civil aeronautics and the most widespread is Jet A-1. Its properties are defined in the international standard ASTM D1655. The physical characteristics of this fuel meet the efficiency and safety criteria required in the field of air transport, whether for ground operations or for flight phases. The main properties are: - A high calorific value, of at least 42.8 MJ/kg. It represents the quantity of energy released per unit mass of fuel during its combustion. This quantity is very important because it provides the aircraft with greater autonomy for a constant onboard mass.
- a very low freezing point which must be below - 47°C, which allows the fuel to be kept in a liquid state when the aircraft is in cruise flight, in a very low temperature environment.
- a flash point (or temperature above which fuel vapors can ignite in the presence of a flame), which must be greater than 38°C, in order to guarantee safe handling of fuel on the ground.
- Other properties such as sulfur content, acidity or fuel density are also defined in ASTM D1655.
- SAF sustainable aviation fuels
- a promising solution consists of replacing kerosene bases of fossil origin with bases of biological origin such as in particular bases resulting from hydrogenation processes of natural esters and fatty acids called Hydrogenated Esters and Fatty Acids (HEFA) for esters. and hydrogenated fatty acids.
- HEFA Hydrogenated Esters and Fatty Acids
- the fuels formulated from these bases have characteristics relatively close to Jet A1 jet fuel, which makes HEFA bases excellent candidates for the aeronautical industry.
- these HEFA bases are essentially made up of linear and branched paraffins (alkanes).
- the present invention aims to remedy the problems described above.
- the present invention aims in particular to propose a fuel composition based on fatty acids and/or hydrogenated fatty acid esters (HEFA), which has an increased auto-ignition temperature without resorting to bases rich in aromatic and/or naphthenic hydrocarbons in significant quantities.
- HEFA hydrogenated fatty acid esters
- the Applicant has now discovered that the addition, to a fuel base consisting of fatty acids and/or hydrogenated fatty acid esters, of a combination of one or more phenolic compounds as defined below in a minimum content of 0.05% by mass and one or more heterocyclic aromatic compounds as defined below in a minimum content of 0.05% by mass, made it possible to significantly increase the self-ignition temperature of the mixture and thus formulate a sustainable fuel suitable for use in the aviation and aerospace industries.
- the subject of the present invention is thus a fuel composition
- a fuel composition comprising: a) at least 50% by mass, relative to the total mass of the composition, of one or more cuts of paraffinic hydrocarbons consisting of acids fats and/or hydrogenated fatty acid esters (HEFA); b) at least 0.05% by mass, relative to the total mass of the composition, of one or more phenolic compounds corresponding to formula (I) below: in which the groups R 1 , R 2 , R 3 , R 4 and R 5 , identical or different, independently represent a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 atoms of carbon; it being understood that at least one of the groups R 1 , R 2 , R 3 , R 4 and R 5 represents an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms and c) at least 0.05% by mass, relative to the total mass of the composition, of one or more nitrogen-containing heterocyclic aromatic compounds corresponding to formula
- the composition according to the invention has an auto-ignition temperature, measured in accordance with standard ASTM E659, significantly higher than a composition comprising the same bases with the exception of the particular compounds of formulas (I) and (II).
- an auto-ignition temperature measured in accordance with standard ASTM E659
- the combination of compounds of formula (I) and compounds of formula (II) can be used to increase the self-ignition temperature of a fuel composition, in particular of a fuel composition intended for powering aircraft and rocket engines.
- This increase in the auto-ignition temperature results in a reduction in the risk of fire when using composition as a fuel, including at high temperatures as is the case in aircraft and rocket engines.
- This reduction in the risk of fire advantageously makes it possible to increase the safety of the internal combustion engine, in particular the safety of aircraft and rocket engines.
- the Applicant has demonstrated an unexpected synergistic effect on the increase in the auto-ignition temperature, provided by the combination of the compounds of formula (I) and the compounds of formula (II).
- the auto-ignition temperature measured in accordance with ASTM E659 of a fuel composition consisting solely of fatty acids and/or hydrogenated fatty acid esters (HEFA) is approximately 200°C
- the self-ignition temperature (measured according to the same standard) of the composition according to the invention is at least 210°C.
- the self-ignition temperature of the composition according to the invention is greater than or equal to 220°C and more preferably greater than or equal to 225°C.
- the aromatic hydrocarbon content of the composition according to the invention is less than 5% by mass, preferably less than 2% by mass, more preferably less than 1% by mass, relative to the total mass of the composition.
- aromatic hydrocarbons we designate here aromatic compounds formed solely of carbon and hydrogen atoms, and devoid of heteroatoms.
- neither the compounds of formula (I) nor the compounds of formula (II) defined above constitute aromatic hydrocarbons within the meaning of the present invention.
- the naphthenic hydrocarbon content of the composition according to the invention is less than 5% by mass, preferably less than 4% by mass, relative to the total mass of the composition.
- the total content of naphthenic hydrocarbons and aromatic hydrocarbons of the composition according to the invention is less than 5% by mass, preferably less than 4% by mass, relative to the total mass of the composition.
- the paraffinic hydrocarbon cut(s) consisting of fatty acids and/or hydrogenated fatty acid esters (HEFA) are bases of biological origin.
- the composition according to the invention comprises a majority quantity of biosourced materials. It therefore has a high eco-material content.
- the composition has an eco-material content of at least 70% by mass, preferably at least 80% by mass, preferably at least 90% by mass, and more preferably at least 95% by mass, relative to the total mass of the composition.
- the composition according to the invention also has good properties in terms of calorific value, freezing point and flash point. It is perfectly suitable for use as a fuel to power aircraft and rocket engines, but also and more generally to power any internal combustion engine used in propulsion, whether land, sea or air. or spatial.
- the present invention also relates to the use of the composition according to the invention to power an internal combustion engine of a terrestrial, marine, air or space propulsion vehicle, and preferably an aircraft engine. or rocket.
- an internal combustion engine of a terrestrial, marine, air or space propulsion vehicle and preferably an aircraft engine. or rocket.
- the limits of a domain of values are included in this domain, particularly in the expressions “between” and “ranging from... to...”.
- the expressions “at least one” and “at least” used in this description are respectively equivalent to the expressions “one or more” and “greater or equal”.
- C N compound or group denotes a compound or group containing N carbon atoms in its chemical structure.
- the paraffinic hydrocarbon cut contains at least one paraffinic hydrocarbon cut consisting of fatty acids and/or hydrogenated fatty acid esters (HEFA).
- HEFA hydrogenated fatty acid esters
- fatty acid is meant a carboxylic acid comprising a hydrocarbon chain having from 6 to 30 carbon atoms, preferably from 7 to 24 carbon atoms, and more preferably from 8 to 20 carbon atoms.
- the paraffinic hydrocarbon cut(s) (a) consist of hydrotreated vegetable oils, also known under the name HVO (from the English “hydrotreated vegetable oils”). These are oils of plant origin which have undergone successive treatments including hydrotreatment and possible isomerization. The processes for preparing such hydrotreated vegetable oils are known per se. Examples of suitable vegetable raw materials include rapeseed oil, canola oil, sunflower oil, soybean oil, hemp oil, olive oil, flaxseed oil, mustard oil, palm oil, castor oil, coconut oil.
- Patent applications WO2016/185046 and WO2016/185047 describe non-limiting examples of methods making it possible to obtain cuts of hydrotreated vegetable oils usable as fuel bases.
- the paraffinic hydrocarbon cut(s) (a) have a distillation range advantageously in the range going from 60 to 350°C, preferably from 100 to 300°C, more preferably from 120 to 290°C and better still from 140 to 280°C.
- the distillation range of said paraffinic hydrocarbon cut is determined in accordance with standard NF EN ISO 3405.
- the paraffinic hydrocarbon cut(s) (a) advantageously have a paraffin content greater than or equal to 90% by mass, of preferably greater than or equal to 95% by mass, and better still greater than or equal to 96% by mass, relative to the total mass of the cut(s) (a).
- paraffins we mean, in a manner known per se, branched alkanes (also called iso-paraffins or iso-alkanes) and unbranched alkanes (also called n-paraffins or n-alkanes).
- the paraffins present in the paraffinic hydrocarbon cut(s) (a) according to the invention advantageously comprise from 6 to 18 carbon atoms, preferably from 8 to 17 carbon atoms.
- the paraffinic hydrocarbon cut(s) (a) consist of at least 80% by weight, more preferably at least 90% by weight and better still at least 95% by weight of paraffins comprising from 8 to 17 carbon atoms.
- the cut(s) of paraffinic hydrocarbons (a) used in the composition according to the invention contain at least 60% by mass, preferably at least 70% by mass of iso-paraffins, for example relative to the total mass of the cut(s) (a). According to a particularly preferred embodiment, they contain at least 80% by weight of iso-paraffins.
- the paraffinic hydrocarbon cut(s) (a) have a content of aromatic compounds preferably less than or equal to 10,000 ppm by mass, more preferably less than or equal to 1500 ppm by mass, even more preferably less than or equal to 1000 ppm by mass .
- Their content of naphthenic compounds is preferably less than or equal to 40,000 ppm by mass, more preferably less than or equal to 30,000 ppm by mass.
- Their sulfur content is advantageously less than or equal to 10 ppm by mass, preferably less than or equal to 5 ppm by mass.
- the paraffinic hydrocarbon cut(s) (a) are completely free of sulfur.
- the composition according to the invention preferably comprises at least 75% by mass of one or more cuts of paraffinic hydrocarbons (a) as described above. Preferably, it contains at least 85% by mass of one or more cuts of paraffinic hydrocarbons (a), more preferably at least 90% by mass and better still at least 95% by mass, relative to the total mass. of the composition. According to a preferred embodiment, the composition according to the invention contains at least 98% by weight, and better still at least 99% by weight, of one or more cuts of paraffinic hydrocarbons (a) as described above .
- Phenolic compounds (b) The composition comprises at least one phenolic compound of formula in which the groups R 1 , R 2 , R 3 , R 4 and R 5 , identical or different, independently represent a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 atoms of carbon, with at least one of the groups R 1 , R 2 , R 3 , R 4 and R 5 representing an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms.
- the groups R 1 , R 2 , R 3 , R 4 and R 5 represent independently of each other a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 12 atoms of carbon, more preferably from 1 to 8 carbon atoms and better still from 1 to 6 carbon atoms, at least one of the groups R 1 , R 2 , R 3 , R 4 and R 5 representing such an alkyl group
- the groups R 1 , R 2 , R 3 , R 4 and R 5 identical or different, represent independently of each other a hydrogen atom or an alkyl group chosen from the groups methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-methylpropyl (iso-butyl), 1-methylpropyl (sec-butyl) and 1,1-dimethylethyl (tert-butyl), at least one of the groups R 1 , R 2
- At least two of the groups R 1 , R 2 , R 3 , R 4 and R 5 designate alkyl groups, identical or different, as defined above.
- three of the groups R 1 , R 2 , R 3 , R 4 and R 5 designate alkyl groups, identical or different, as defined above, and more preferably the three groups R 1 , R 3 and R 5 designate such alkyl groups, R 2 and R 4 designating a hydrogen atom.
- the composition according to the invention comprises 2,4,6-trimethylphenol (CAS No 527-60-6), which is a compound of formula (I) in which: the groups R 1 , R 3 and R 5 represent a methyl group; R 2 and R 4 represent a hydrogen atom:
- the compounds of formula (I) may be of natural origin.
- the eco-material content of the composition is still increased when the compound of formula (I) is obtained from compounds of natural origin.
- the phenolic compound(s) of formula (I) can be used to increase the eco-material content of a fuel composition, in particular of a fuel composition intended to power aircraft and rocket engines. .
- the composition according to the invention advantageously comprises the compound(s) of formula (I) in a content ranging from 0.05 to 10% by mass, preferably from 0.1 to 5% by mass, more preferably from 0.2 at 2% by mass, better from 0.25 to 0.6% by mass, relative to the total mass of the composition.
- the composition according to the invention preferably comprises 2,4,6-trimethylphenol in a content ranging from 0.05 to 10% by mass, preferably from 0.1 to 5% by mass, more preferably from 0. 2 to 2% by mass, better 0.25 to 0.6% by mass, relative to the total mass of the composition.
- the composition comprises at least one nitrogen-containing heterocyclic aromatic compound of formula (II): in which the groups R 6 , R 7 , R 8 , R 9 , R 10 and R 11 , identical or different, represent independently of each other a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms.
- the groups R 6 , R 7 , R 8 , R 9 , R 10 and R 11 identical or different, represent independently of each other a hydrogen atom or an alkyl group, linear or branched, comprising 1 with 12 carbon atoms, more preferably from 1 to 8 carbon atoms and better still from 1 to 6 carbon atoms.
- the groups R 6 , R 7 , R 8 , R 9 , R 10 and R 11 represent independently of each other a hydrogen atom or an alkyl group chosen from the groups methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-methylpropyl (iso-butyl), 1-methylpropyl (sec-butyl) and 1,1-dimethylethyl (tert-butyl).
- the composition according to the invention comprises indoline (CAS No 496-15-1), which is a compound of formula (II) in which the groups R 6 , R 7 , R 8 , R 9 , R 10 and R 11 all represent a hydrogen atom.
- the composition according to the invention advantageously comprises the compound(s) of formula (II) in a content ranging from 0.05 to 10% by mass, preferably from 0.1 to 5% by mass, more preferably from 0. 2 to 2% by mass, better 0.25 to 0.6% by mass, relative to the total mass of the composition.
- the composition according to the invention preferably comprises indoline in a content ranging from 0.05 to 10% by mass, preferably from 0.1 to 5% by mass, more preferably from 0.2 to 2% by mass. , better from 0.25 to 0.6% by mass, relative to the total mass of the composition.
- Indoline may be of natural origin.
- the eco-material content of the composition is further increased when the compound of formula (I) is indoline obtained from compounds of natural origin.
- the nitrogen-containing heterocyclic aromatic compound(s) of formula (I) can be used to increase the eco-material content of a fuel composition, in particular of a fuel composition for powering aircraft and aircraft engines. rockets.
- the weight ratio between the total content of the additive(s) of formula (I) on the one hand and the total content of the additive(s) of formula (II) on the other hand is included in the range ranging from 1:5 to 5:1, preferably from 1:3 to 3:1 and even better from 1:2 to 2:1.
- Any additives The composition according to the invention may further comprise one or more additives, different from the compounds of formula (I) and the compounds of formula (II) described above. This or these additives can for example be chosen, in a non-limiting manner, from antioxidant, anti-freeze, antistatic additives, corrosion inhibitors, lubricating additives, cold resistance additives, detergent additives. , tracer additives. Antioxidant additives are particularly preferred.
- composition according to the invention is useful as a fuel for powering any internal combustion engine of a propulsion vehicle, in particular land, marine, air or space propulsion.
- the composition according to the invention can in particular be used to power any internal combustion engine in one of the following vehicles: road vehicles including light vehicles (in particular automobiles) and heavy goods vehicles (trucks of different loads called “medium duty”). » and “heavy duty”, household waste bins, buses, coaches, etc.) and non-road vehicles (construction or public works machinery, tractors, trains, boats).
- the composition according to the invention is used to power an aircraft or rocket engine.
- the composition according to the invention is used to power a turbojet or a turboprop in an aircraft, preferably chosen from an airplane and a helicopter (civil or military), and more preferably an airplane.
- the composition according to the invention can also be used to improve the eco-performance of an internal combustion engine of a terrestrial, marine, air or space propulsion vehicle, in particular of an aircraft or aircraft engine. a rocket engine.
- the eco-performance of the internal combustion engine may be the reduction of the environmental impact of the internal combustion engine. internal combustion.
- the quantity of compound of biological origin in the composition according to the invention is significant.
- the quantity of fuel bases rich in aromatic and/or naphthenic hydrocarbons of fossil origin and the quantity of heterocyclic aromatic nitrogen compound of formula (I) in the composition according to the invention can be low and the compound nitrogen heterocyclic aromatic of formula (I) may be of biological origin.
- the environmental impact of the composition according to the invention is lower than the environmental impact of a fuel composition of fossil origin.
- the environmental impact of the internal combustion engine powered by the composition according to the invention is therefore reduced.
- the use of the combination of compounds of formula (I) and compounds of formula (II) also relates to the use of the combination of: - one or more phenolic compounds corresponding to formula (I ) below : in which the groups R 1 , R 2 , R 3 , R 4 and R 5 , identical or different, independently represent a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 atoms of carbon; it being understood that at least one of the groups R 1 , R 2 , R 3 , R 4 and R 5 represents an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms and - one or more heterocyclic aromatic compounds nitrogenous compounds corresponding to formula (II) below: in which the groups R 6 , R 7 , R 8 , R 9 , R 10 and R 11 , identical or different, represent independently of each other a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms, to increase the
- the auto-ignition temperature is measured according to the method defined in ASTM E659.
- the present invention also relates to the use of the combination of: - one or more phenolic compounds corresponding to formula (I) below: in which the groups R 1 , R 2 , R 3 , R 4 and R 5 , identical or different, independently represent a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 atoms of carbon; it being understood that at least one of the groups R 1 , R 2 , R 3 , R 4 and R 5 represents an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms and - one or more heterocyclic aromatic compounds nitrogenous compounds corresponding to formula (II) below: in which the groups R 6 , R 7 , R 8 , R 9 , R 10 and R 11 , identical or different, represent independently of each other a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms, to increase the
- the fuel composition, the compounds of formula (I) and the compounds of formula (II) as well as their respective contents are as described above.
- the method The present invention also relates to a method of propelling a land, sea, air or space travel vehicle equipped with at least one internal combustion engine, consisting of powering said engine by means of a fuel composition.
- said engine is an aircraft or rocket engine, more preferably a turbojet or a turboprop equipping an airplane or a helicopter and more preferably an airplane.
- cut A consisting of esters and hydrogenated fatty acids (HEFA). More precisely, cut A is consisting of a hydrotreated vegetable oil (HVO) whose characteristics are detailed in Table I below: [Table I] Comparative Examples 1 Fuel compositions were prepared by adding an aromatic compound (mesitylene) or a naphthenic compound (methylcyclohexane) to cut A, in the contents detailed in Table II below. The auto-ignition temperature of each of these compositions was measured, in accordance with the method defined in standard ASTM E659. The results obtained are also detailed in Table II.
- HVO hydrotreated vegetable oil
- compositions EC0 consisting entirely of cut A
- C'1 and C'2 are comparative.
- Composition C3 is in accordance with the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
The present invention relates to a fuel composition comprising at least 50% by weight, based on the total weight of the composition, of one or more paraffinic hydrocarbon cuts consisting of fatty acids and/or hydrogenated fatty acid esters (HEFA), at least 0.05% by weight of one or more phenolic compounds of formula (I): (I) and at least 0.05% by weight of one or more nitrogen-containing heterocyclic aromatic compounds of formula (II): (II) The combination of the compounds of formula (I) and the compounds of formula (II) makes it possible to increase the self-ignition temperature of the composition. This composition is useful for fuelling any internal combustion engine of a land, marine, aerial or space craft, and in particular an aircraft or rocket engine.
Description
DESCRIPTION TITRE : Composition de carburant comprenant une base renouvelable, un composé phénolique et un composé aromatique hétérocyclique azoté La présente invention porte sur une composition de carburant utilisable entre autres dans le transport aérien, et qui comprend une ou plusieurs coupes constituées d’acides gras et/ou d’esters d’acides gras hydrogénés en association avec au moins un composé phénolique particulier et au moins un composé aromatique hétérocyclique azoté. La présente invention porte également sur l’utilisat ion d’une telle composition pour alimenter un moteur thermique, tel que notamment mais non limitat ivement un moteur d’avion ou de fusée. ETAT DE L'ART ANTERIEUR Les carburants utilisés dans l’aéronautique et la propulsion spatiale sont soumis à des réglementations très sévères qui visent à garantir un niveau élevé de sécurité lors de leur utilisat ion. Ainsi les moteurs à turbines (turboréacteurs et turbopropulseurs) qui équipent la majorité des avions et des hélicoptères (civils ou militaires) utilisent des carburants spécifiques dénommés carburéacteurs, qui sont traditionnellement formulés à partir de coupes d’hydrocarbures dites coupes kérosènes issues de la distillation des pétroles bruts. Le carburéacteur de référence pour l 'aéronautique civile et le plus répandu est le Jet A-1. Ses propriétés sont définies dans la norme internationale ASTM D1655. Les caractérist iques physiques de ce carburant répondent aux critères d'efficacité et de sécurité exigés dans le domaine du transport aérien, que ce soit pour les opérations au sol ou pour les phases de vol. Les principales propriétés sont : - Un pouvoir calorifique élevé, d’au moins 42,8 MJ/kg. Il représente la quanti té d'énergie dégagée par unité de masse de carburant lors de sa combustion. Cette grandeur est très importante car elle procure à l 'aéronef une plus grande autonomie pour une masse embarquée constante.
- Un point de congélation très bas, qui doit être inférieur à - 47°C, ce qui permet de conserver le carburant à l 'état liquide lorsque l 'aéronef est en vol de croisière, dans un environnement à très basse température. - Un point éclair (ou température au-dessus de laquelle des vapeurs de carburant peuvent s 'enflammer en présence d'une flamme), qui doit être supérieur à 38°C, afin de garantir des manipulations sûres du carburant au sol. D'autres propriétés telles que le contenu en soufre, l 'acidité ou la densité du carburant sont également définies dans la norme ASTM D1655. La lutte contre le réchauffement climatique impose désormais au transport aérien de réduire ses émissions de dioxyde de carbone d’origine fossile en adoptant des carburants à faible impact environnement encore appelé carburants aviation durables ou SAF (c’est à dire Sustainable Aviation Fuels en anglais). Une solution prometteuse consiste à remplacer les bases kérosène d’origine fossile par des bases d’origine biologique telles que notamment des bases issues des procédés d’hydrogénation des esters et acides gras naturels appelés en anglais Hydrogenated Esters and Fatty Acids (HEFA) pour esters et acides gras hydrogénés. En effet, les carburants formulés à partir de ces bases possèdent des caractéristiques relativement proches du carburéacteur Jet A1 ce qui fait des bases HEFA d’excellents candidats pour l’industrie aéronautique. Toutefois, ces bases HEFA sont essentiellement constituées de paraffines (alcanes) linéaires et ramifiés. Leur composition chimique dénuée d’hydrocarbures aromatiques et naphténiques leur confère une température d’auto-inflammation significativement inférieure à celle des carburéacteurs traditionnels à base de kérosènes d’origine fossile, ce qui engendre d’importants problèmes de sécurité, notamment des risques d’incendie lors de l’utilisat ion du carburant dans les parties chaudes des moteurs d’avions et de fusées. Il est ainsi souhaitable d’augmenter la température d’auto- inflammation de ce type de biocarburants, afin notamment de permettre leur utilisation dans les industries aéronautique et aérospatiale.
Une solution à ce problème consiste à ajouter aux bases HEFA une ou plusieurs bases carburant riches en hydrocarbures aromatiques et/ou naphténiques. Cependant, les bases carburant aromatiques et/ou naphténiques disponibles proviennent le plus souvent des sources fossiles, qui ne sont pas renouvelables. De plus, ces bases sont disponibles en faibles quanti té, onéreuses et nécessitent des taux d’incorporation importants pour avoir un effet significatif sur la température d’auto-inflammation. La présente invention vise à remédier aux problèmes décrits ci- avant. La présente invention vise notamment à proposer une composition de carburant à base d’acides gras et/ou d’esters d’acides gras hydrogénés (HEFA), qui présente une température d’auto- inflammation augmentée sans avoir recours à des bases riches en hydrocarbures aromatiques et/ou naphténiques en quantités importantes. La Demanderesse a maintenant découvert que l’ajout, à une base carburant constituée d’acides gras et/ou d’esters d’acides gras hydrogénés, d’une association d’un ou de plusieurs composés phénoliques tels que définis ci-après en une teneur minimale de 0,05% en masse et d’un ou de plusieurs composés aromatiques hétérocycliques tels que définis ci-après en une teneur minimale de 0,05% en masse, permettait d’augmenter significativement la température d’auto- inflammation du mélange et de formuler ainsi un carburant durable apte à être utilisé dans les industries aéronautique et aérospatiale. La présente invention a ainsi pour objet une composition de carburant comprenant : a) au moins 50% en masse, par rapport à la masse totale de la composition, d’une ou de plusieurs coupes d’hydrocarbures paraffiniques constituée(s) d’acides gras et/ou d’esters d’acides gras hydrogénés (HEFA) ; b) au moins 0,05% en masse, par rapport à la masse totale de la composition, d’un ou plusieurs composés phénoliques répondant à la formule (I) ci-dessous :
dans laquelle les groupes R 1 , R 2 , R 3 , R 4 et R 5 , identiques ou différents, représentent indépendamment les uns des autres un atome d’hydrogène ou un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 16 atomes de carbone ; étant entendu que l’un au moins des groupes R 1 , R 2 , R 3 , R 4 et R 5 représente un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 16 atomes de carbone et c) au moins 0,05% en masse, par rapport à la masse totale de la composition, d’un ou plusieurs composés aromatiques hétérocycliques azotés répondant à la formule (II) ci-dessous :
dans laquelle les groupes R 6 , R 7 , R 8 , R 9 , R 10 et R 11 , identiques ou différents, représentent indépendamment les uns des autres un atome d’hydrogène ou un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 16 atomes de carbone. La composition selon l’invention présente une température d’auto-inflammation, mesurée conformément à la norme ASTM E659, significativement supérieure à une composition comprenant les mêmes bases à l’exception des composés particuliers de formules (I) et (II). Ainsi , l ’association des composés de formule (I) et des composés de formule (II) peut être utilisée pour augmenter la température d’auto- inflammation d’une composit ion de carburant, en particulier d’une composition de carburant destinée à alimenter des moteurs d’avions et de fusées. Cette augmentation de la température d’auto-inflammation se traduit par une réduction des risques d’incendie lors de l’uti lisation de
la composition comme carburant, y compris à hautes températures comme c’est le cas dans les moteurs d’avions et de fusées. Cette réduction du risque d’incendie permet avantageusement d’augmenter la sécurité du moteur à combustion interne, en particulier la sécurité des moteurs d’avions et de fusées. En particulier, la Demanderesse a mis en évidence un effet inattendu de synergie sur l’augmentation de la température d’auto- inflammation, procurée par l’association des composés de formule (I) et des composés de formule (II). Alors que la température d’auto-inflammation mesurée conformément à la norme ASTM E659 d’une composition de carburant constituée uniquement d’acides gras et/ou d’esters d’acides gras hydrogénés (HEFA) est d’environ 200°C, la température d’auto- inflammation (mesurée selon la même norme) de la composition selon l’invention est d’au moins 210°C. De préférence, la température d’auto- inflammation de la composition selon l’invention est supérieure ou égale à 220°C et plus préférentiel lement supérieure ou égale à 225°C. Cette température est atteinte sans avoir à ajouter des quantités significatives de bases carburant riches en hydrocarbures aromatiques et/ou naphténiques. Ainsi , selon un mode de réalisation préféré, la teneur en hydrocarbures aromatiques de la composition selon l’invention est inférieure à 5% en masse, de préférence inférieure à 2% en masse, plus préférentiellement inférieure à 1% en masse, par rapport à la masse totale de la composit ion. Par hydrocarbures aromatiques, on désigne ici des composés aromatiques formés uniquement d’atomes de carbone et d’hydrogène, et dépourvus d’hétéroatomes. En particulier, ni les composés de formule (I) ni les composés de formule (II) définis ci-avant ne consti tuent des hydrocarbures aromatiques au sens de la présente invention. Selon un mode de réalisation également préféré, la teneur en hydrocarbures naphténiques de la composition selon l’invention est inférieure à 5% en masse, de préférence inférieure à 4% en masse, par rapport à la masse totale de la composition.
Selon un mode de réalisation particulièrement préféré, la teneur totale en hydrocarbures naphténiques et en hydrocarbures aromatiques de la composition selon l’invention est inférieure à 5% en masse, de préférence inférieure à 4% en masse, par rapport à la masse totale de la composition. La ou les coupes d’hydrocarbures paraffiniques constituée(s) d’acides gras et/ou d’esters d’acides gras hydrogénés (HEFA) sont des bases d’origine biologique. Ainsi, la composition selon l’invention comprend une quantité majori taire de matières biosourcées. Elle présente donc une teneur en éco-matière élevée. La teneur massique en éco-matière de la composition est définie par l’équation suivante : Teneur en éco-matière en % = 100 – (pourcentage de matières non- biosourcées, non-biodégradables, non-recyclées). Selon un mode de réalisation avantageux, la composition présente une teneur en éco-matière d’au moins 70% en masse, de préférence d’au moins 80% en masse, préférentiel lement d’au moins 90% en masse, et plus préférentiellement d’au moins 95% en masse, par rapport à la masse totale de la composition. La composition selon l’invention présente par ailleurs de bonnes propriétés en termes de pouvoir calorifique, de point de congélation, de point éclair. Elle est parfaitement appropriée à une util isation comme carburant pour alimenter des moteurs d’avions et de fusées, mais également et d’une manière plus générale pour alimenter tout moteur à combustion interne utilisé dans la propulsion qu’elle soit terrestre, marine, aérienne ou spatiale. Ainsi , la présente invention a également pour objet l’util isation de la composition selon l’invention pour al imenter un moteur à combustion interne d’un engin de propulsion terrestre, marine, aérienne ou spatiale, et de préférence un moteur d’avion ou de fusée. D’autres objets, caractéristiques, aspects et avantages de l’invention apparaîtront encore plus clairement à la lecture de la description et des exemples qui suivent. Dans ce qui va suivre, et à moins d’une autre indication, les bornes d’un domaine de valeurs sont comprises dans ce domaine,
notamment dans les expressions « compris entre » et « allant de … à …». Par ailleurs, les expressions « au moins un » et « au moins » utilisées dans la présente description sont respectivement équivalentes aux expressions « un ou plusieurs » et « supérieur ou égal ». Enfin, de manière connue en soi, on désigne par composé ou groupe en C N un composé ou un groupe contenant dans sa structure chimique N atomes de carbone. DESCRIPTION DETAILLEE La coupe d’hydrocarbures paraffiniques (a) La composition selon l’invention contient au moins une coupe d’hydrocarbures paraffiniques constituée d’acides gras et/ou d’esters d’acides gras hydrogénés (HEFA). De manière connue en soi, ces coupes communément dénommées HEFA sont majoritairement constituées de paraffines, issues de l’hydrogénation d’acides gras et d’esters d’acides gras. Par acide gras, on désigne un acide carboxylique comprenant une chaine hydrocarbonée ayant de 6 à 30 atomes de carbone, de préférence de 7 à 24 atomes de carbone, et plus préférentiellement de 8 à 20 atomes de carbone. Par ester d’acide gras, on désigne tant les monoesters que les polyesters (notamment les di- et les tri-esters) des acides gras ci-dessus avec un alcool qui peut être un mono-alcool ou un polyol. Selon un mode de réalisation préféré, la ou les coupes d’hydrocarbures paraffiniques (a) sont constituées d’huiles végétales hydrotraitées, également connues sous l’appellation HVO (de l’anglais « hydrotreated vegetable oils »). Il s’agit d’huiles d’origine végétale qui ont subi des traitements successifs incluant un hydrotraitement et une éventuelle isomérisation. Les procédés de préparation de telles huiles végétales hydrotraitées sont connus en soi . Des exemples de matières premières végétales appropriées comprennent l’huile de colza, l’huile de canola, l’huile de tournesol,
l’huile de soja, l’huile de chanvre, l’huile d’olive, l’huile de lin, l’huile de moutarde, l’huile de palme, l’huile de ricin, l’huile de coco. Les demandes de brevet WO2016/185046 et WO2016/185047 décrivent des exemples non limitatifs de méthodes permettant d’obtenir des coupes d’huiles végétales hydrotraitées utilisables comme bases carburant. La ou les coupes d’hydrocarbures paraffiniques (a) présentent une gamme de distil lation avantageusement comprise dans la gamme allant de 60 à 350°C, de préférence de 100 à 300°C, plus préférentiellement de 120 à 290°C et mieux encore de 140 à 280°C. La gamme de disti llation de ladite coupe d’hydrocarbures paraffiniques est déterminée conformément à la norme NF EN ISO 3405. La ou les coupes d’hydrocarbures paraffiniques (a) ont avantageusement une teneur en paraffines supérieure ou égale à 90% en masse, de préférence supérieure ou égale à 95% en masse, et mieux encore supérieure ou égale à 96% en masse, par rapport à la masse totale de la ou des coupes (a). Par « paraffines » on désigne de manière connue en soi, les alcanes ramifiés (également dénommés iso-paraffines ou iso-alcanes) et les alcanes non ramifiés (également dénommés n-paraffines ou n- alcanes). Les paraffines présentes dans la ou les coupes d’hydrocarbures paraffiniques (a) selon l’invention comprennent avantageusement de 6 à 18 atomes de carbone, de préférence de 8 à 17 atomes de carbone. De préférence, la ou les coupes d’hydrocarbures paraffiniques (a) sont constituées à au moins 80% en masse, plus préférentiellement à au moins 90% en masse et mieux encore à au moins 95% en masse de paraffines comprenant de 8 à 17 atomes de carbone. Selon un mode de réalisation préféré, la ou les coupes d’hydrocarbures paraffiniques (a) utilisées dans la composit ion selon l’invention contiennent au moins 60% en masse, de préférence au moins 70% en masse d’iso-paraffines, par rapport à la masse totale de la ou des coupes (a). Selon un mode de réalisation part iculièrement préféré, elles contiennent au moins 80% en masse d’iso-paraffines.
La ou les coupes d’hydrocarbures paraffiniques (a) présentent une teneur en composés aromatiques de préférence inférieure ou égale à 10000 ppm en masse, plus préférentiellement inférieure ou égale à 1500 ppm en masse, encore plus préférentiellement inférieure ou égale à 1000 ppm en masse. Leur teneur en composés naphténiques est de préférence inférieure ou égale à 40000 ppm en masse, plus préférentiellement inférieure ou égale à 30000 ppm en masse. Leur teneur en soufre est avantageusement inférieure ou égale à 10 ppm en masse, de préférence inférieure ou égale à 5 ppm en masse. De manière particulièrement préférée, la ou les coupes d’hydrocarbures paraffiniques (a) sont totalement exemptes de soufre. La composition selon l’invention comprend de préférence au moins 75% en masse d’une ou de plusieurs coupes d’hydrocarbures paraffiniques (a) telles que décri tes ci-avant. De préférence, elle contient au moins 85% en masse d’une ou de plusieurs coupes d’hydrocarbures paraffiniques (a), plus préférentiellement au moins 90% en masse et mieux encore au moins 95% en masse, par rapport à la masse totale de la composition. Selon un mode de réalisation préféré, la composition selon l’invention contient au moins 98% en masse, et mieux encore au moins 99% en masse d’une ou de plusieurs coupes d’hydrocarbures paraffiniques (a) telles que décrites ci-avant. Les composés phénoliques (b) La composition comprend au moins un composé phénolique de formule
dans laquelle les groupes R 1 , R 2 , R 3 , R 4 et R 5 , identiques ou différents, représentent indépendamment les uns des autres un atome d’hydrogène ou un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 16 atomes
de carbone, avec l’un au moins des groupes R 1 , R 2 , R 3 , R 4 et R 5 représentant un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 16 atomes de carbone. De préférence, les groupes R 1 , R 2 , R 3 , R 4 et R 5 , identiques ou différents, représentent indépendamment les uns des autres un atome d’hydrogène ou un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 12 atomes de carbone, plus préférentiellement de 1 à 8 atomes de carbone et mieux encore de 1 à 6 atomes de carbone, l’un au moins des groupes R 1 , R 2 , R 3 , R 4 et R 5 représentant un tel groupe alkyle Selon un mode de réalisation préféré, les groupes R 1 , R 2 , R 3 , R 4 et R 5 , identiques ou différents, représentent indépendamment les uns des autres un atome d’hydrogène ou un groupe alkyle choisi parmi les groupes méthyle, éthyle, n-propyle, iso-propyle, n-butyle, 2- méthylpropyle (iso-butyle), 1-méthylpropyle (sec-butyle) et 1,1- diméthyléthyle (tert-butyle), l ’un au moins des groupes R 1 , R 2 , R 3 , R 4 et R 5 représentant un tel groupe alkyle. Selon un mode de réalisation préféré, au moins deux des groupes R 1 , R 2 , R 3 , R 4 et R 5 désignent des groupes alkyles, identiques ou différents, tels que définis ci-avant. Mieux encore, trois des groupes R 1 , R 2 , R 3 , R 4 et R 5 désignent des groupes alkyles, identiques ou différents, tels que définis ci-avant, et plus préférentiellement les trois groupes R 1 , R 3 et R 5 désignent de tels groupes alkyles, R 2 et R 4 désignant un atome d’hydrogène Selon un mode de réalisation particulièrement préféré, la composition selon l’invention comprend du 2,4,6-triméthylphénol (CAS No 527-60-6), qui est un composé de formule (I) dans laquelle : les groupes R 1 , R 3 et R 5 représentent un groupe méthyle ; R 2 et R 4 représentent un atome d’hydrogène :
Les composés de formule (I) peuvent être d’origine naturelle. De façon avantageuse, la teneur en éco-matière de la composition est encore
augmentée lorsque le composé de formule (I) est obtenu à partir de composés d’origine naturelle. Ainsi , le ou les composés phénoliques de formule (I) peuvent être utilisés pour augmenter la teneur en éco-matière d’une composition de carburant, en part iculier d’une composition de carburant destinée à alimenter des moteurs d’avions et de fusées. La composit ion selon l’invention comprend avantageusement le ou les composés de formule (I) en une teneur allant de 0,05 à 10% en masse, de préférence de 0,1 à 5% en masse, plus préférentiellement de 0,2 à 2% en masse, mieux de 0,25 à 0,6% en masse, par rapport à la masse totale de la composition. La composit ion selon l’invention comprend de préférence du 2,4,6-triméthylphénol en une teneur allant de 0,05 à 10% en masse, de préférence de 0,1 à 5% en masse, plus préférentiel lement de 0,2 à 2% en masse, mieux de 0,25 à 0,6% en masse, par rapport à la masse totale de la composition. Les composés aromatiques hétérocycliques azotés (c) La composition comprend au moins un composé aromatique hétérocyclique azoté de formule (II):
dans laquelle les groupes R 6 , R 7 , R 8 , R 9 , R 10 et R 11 , identiques ou différents, représentent indépendamment les uns des autres un atome d’hydrogène ou un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 16 atomes de carbone. De préférence, les groupes R 6 , R 7 , R 8 , R 9 , R 10 et R 11 , identiques ou différents, représentent indépendamment les uns des autres un atome d’hydrogène ou un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 12 atomes de carbone, plus préférentiellement de 1 à 8 atomes de carbone et mieux encore de 1 à 6 atomes de carbone.
Selon un mode de réalisation préféré, les groupes R 6 , R 7 , R 8 , R 9 , R 10 et R 11 , identiques ou différents, représentent indépendamment les uns des autres un atome d’hydrogène ou un groupe alkyle choisi parmi les groupes méthyle, éthyle, n-propyle, iso-propyle, n-butyle, 2- méthylpropyle (iso-butyle), 1-méthylpropyle (sec-butyle) et 1,1- diméthyléthyle (tert-butyle). Selon un mode de réalisation particulièrement préféré, la composition selon l’invention comprend de l’indoline (CAS No 496-15- 1), qui est un composé de formule (II) dans laquelle les groupes R 6 , R 7 , R 8 , R 9 , R 10 et R 11 représentent tous un atome d’hydrogène. La composit ion selon l’invention comprend avantageusement le ou les composés de formule (II) en une teneur al lant de 0,05 à 10% en masse, de préférence de 0,1 à 5% en masse, plus préférentiellement de 0,2 à 2% en masse, mieux de 0,25 à 0,6% en masse, par rapport à la masse totale de la composition. La composition selon l’invention comprend de préférence de l’indoline en une teneur allant de 0,05 à 10% en masse, de préférence de 0,1 à 5% en masse, plus préférentiellement de 0,2 à 2% en masse, mieux de 0,25 à 0,6% en masse, par rapport à la masse totale de la composition. L’indoline peut être d’origine naturelle. De façon avantageuse, la teneur en éco-matière de la composition est encore augmentée lorsque le composé de formule (I) est de l’indoline obtenu à partir de composés d’origine naturelle. Ainsi , le ou les composés aromatiques hétérocycliques azotés de formule (I) peuvent être utilisés pour augmenter la teneur en éco-matière d’une composition de carburant, en part iculier d’une composition de carburant pour alimenter des moteurs d’avions et de fusées. Selon un mode de réalisation préféré, le rat io pondéral entre la teneur totale du ou des additifs de formule (I) d’une part et la teneur totale du ou des additifs de formule (II) d’autre part est compris dans la gamme allant de 1 :5 à 5 :1, de préférence de 1 :3 à 3 :1 et mieux encore de 1 :2 à 2 :1. Les éventuels additifs
La composition selon l’invention peut comprendre en outre un ou plusieurs additifs, différents des composés de formule (I) et des composés de formule (II) décrits ci-avant. Ce ou ces additifs peuvent être par exemple choisis, de manière non limitative, parmi les addit ifs anti-oxydants, anti-gel, antistatiques, les inhibiteurs de corrosion, les addit ifs de lubrifiance, les additifs de tenue à froid, les additifs détergents, les additifs traceurs. Les additifs anti-oxydants sont part iculièrement préférés. Ces additifs peuvent être incorporés à des teneurs, pour chacun, pouvant aller de quelques ppm à 1000 ppm en masse. L’utilisation de la composition La composition selon l’invention est utile comme carburant pour alimenter tout moteur à combustion interne d’un engin de propulsion, notamment de propulsion terrestre, marine, aérienne ou spatiale. La composit ion selon l’invention peut être notamment utilisée pour alimenter tout moteur à combustion interne dans l’un des véhicules suivants : les véhicules routiers incluant les véhicules légers (notamment automobiles) et les poids lourds (camions de différentes charges dits « medium duty » et « heavy duty », bennes à ordures ménagères, bus, cars…) et les véhicules non routiers (engins de chantier ou de/ travaux publics, tracteurs, trains, bateaux). Selon un mode de réalisation préféré, la composition selon l’invention est utilisée pour alimenter un moteur d’aéronef ou de fusée. Selon un mode de réalisation particulièrement préféré, la composition selon l’invention est utilisée pour alimenter un turboréacteur ou un turbopropulseur dans un aéronef, de préférence choisi parmi un avion et un hélicoptère (civil ou militaire), et plus préférentiellement un avion. La composition selon l’invention peut également être utilisée pour améliorer l’éco-performance d’un moteur à combustion interne d’un engin de propulsion terrestre, marine, aérienne ou spatiale, en particulier d’un moteur d’avion ou d’un moteur de fusée. Par exemple, l 'éco-performance du moteur à combustion interne peut être la diminution de l’impact environnemental du moteur à
combustion interne. En effet, la quantité de composé d’origine biologique dans la composition selon l’invention est importante. Comme expliqué ci- dessus, la quanti té de bases carburant riches en hydrocarbures aromatiques et/ou naphténiques d’origine fossile et la quantité de composé aromatique hétérocyclique azoté de formule (I) dans la composition selon l’invention peuvent être faibles et le composé aromatique hétérocyclique azoté de formule (I) peut être d’origine biologique. Ainsi, l’impact environnemental de la composition selon l’invention est plus faible que l’impact environnemental d’une composition de carburant d’origine fossile. L’impact environnemental du moteur à combustion interne alimenté par la composition selon l’invention est donc réduit . L’utilisation de l’association des composés de formule (I) et des composés de formule (II) La présente invention a également pour objet l’utilisation de l’association de : - un ou plusieurs composés phénoliques répondant à la formule (I) ci- dessous :
dans laquelle les groupes R 1 , R 2 , R 3 , R 4 et R 5 , identiques ou différents, représentent indépendamment les uns des autres un atome d’hydrogène ou un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 16 atomes de carbone ; étant entendu que l’un au moins des groupes R 1 , R 2 , R 3 , R 4 et R 5 représente un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 16 atomes de carbone et de - un ou plusieurs composés aromatiques hétérocycliques azotés répondant à la formule (II) ci-dessous :
dans laquelle les groupes R 6 , R 7 , R 8 , R 9 , R 10 et R 11 , identiques ou différents, représentent indépendamment les uns des autres un atome d’hydrogène ou un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 16 atomes de carbone, pour augmenter la température d’auto-inflammation d’une composition de carburant comprenant au moins 50% en masse, par rapport à la masse totale de la composit ion, d’une ou de plusieurs coupes d’hydrocarbures paraffiniques constituée(s) d’acides gras et/ou d’esters d’acides gras hydrogénés (HEFA). La température d’auto-inflammation est mesurée conformément à méthode définie dans la norme ASTM E659. La présente invention a également pour objet l’utilisat ion de l’association de : - un ou plusieurs composés phénoliques répondant à la formule (I) ci- dessous :
dans laquelle les groupes R 1 , R 2 , R 3 , R 4 et R 5 , identiques ou différents, représentent indépendamment les uns des autres un atome d’hydrogène ou un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 16 atomes de carbone ; étant entendu que l’un au moins des groupes R 1 , R 2 , R 3 , R 4 et R 5 représente un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 16 atomes de carbone et de - un ou plusieurs composés aromatiques hétérocycliques azotés répondant à la formule (II) ci-dessous :
dans laquelle les groupes R 6 , R 7 , R 8 , R 9 , R 10 et R 11 , identiques ou différents, représentent indépendamment les uns des autres un atome d’hydrogène ou un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 16 atomes de carbone, pour augmenter la teneur en éco-matière d’une composition de carburant, en particulier d’une composition de carburant destinée à alimenter des moteurs d’avions et de fusées. La composition de carburant, les composés de formule (I) et les composés de formule (II) ainsi que leurs teneurs respectives sont tels que décrits ci-avant. La méthode La présente invention a également pour objet une méthode de propulsion d’un engin de déplacement terrestre, marine, aérienne ou spatiale équipé d’au moins un moteur à combustion interne, consistant à alimenter ledit moteur au moyen d’une composition de carburant telle que décrite ci- avant. De préférence, ledit moteur est un moteur d’aéronef ou de fusée, plus préférentiellement un turboréacteur ou un turbopropulseur équipant un avion ou un hélicoptère et plus préférentiellement un avion. Les exemples ci-après sont donnés à titre d’illustration de l’invention, et ne sauraient être interprétés de manière à en l imiter la portée. EXEMPLES Les exemples ci-après ont été réalisés à partir d’une coupe d’hydrocarbures paraffiniques dénommée coupe A constituée(s) d’esters et acides gras hydrogénés (HEFA). Plus précisément, la coupe A est
constituée d’une huile végétale hydrotraitée (HVO) dont les caractérist iques sont détaillées dans le tableau I ci-dessous : [Tableau I]
Exemples 1 comparatifs Des compositions de carburant ont été préparées en ajoutant un composé aromatique (le mésitylène) ou un composé naphténique (le méthylcyclohexane) à la coupe A, dans les teneurs détaillées dans le tableau II ci-dessous. La température d’auto-inflammation de chacune de ces compositions a été mesurée, conformément à méthode définie dans la norme ASTM E659. Les résultats obtenus sont également détaillés dans le tableau II. [Tableau II]
Ces résultats montrent que pour augmenter de manière significative la température d’auto-inflammation de la coupe A, le composé aromatique et le composé naphténique doivent être ajoutés en quantité importante comme c’est le cas dans les compositions
comparatives EC1 et EC2. En revanche, l’ajout d’une faible teneur en composé naphténique (composition EC3) ne permet pas d’obtenir une augmentation significative de la température d’auto-inflammation. Exemples 2 Des compositions de carburant ont été préparées en ajoutant du 2,4,6- triméthylphénol (ci-après dénommé 2,4,6-TMP) et/ou de l’indoline à la coupe A, dans les teneurs détaillées dans le tableau III ci-dessous. La température d’auto-inflammation de chacune de ces compositions a été mesurée, conformément à méthode définie dans la norme ASTM E659. Les résultats obtenus sont également détaillés dans le tableau III. [Tableau III]
Les compositions EC0 (consti tuée intégralement de la coupe A), C’1 et C’2 sont comparatives. La composition C3 est conforme à l’invention. Ces résultats montrent que l’ajout à la coupe A des deux composés conformes à l’invention dans de très faibles quantités permet d’augmenter significativement la température d’auto-inflammation. En comparaison à l’ajout des composés aromatique et naphténique selon les exemples comparatifs EC1 et EC2, l’ajout des deux composés conformes à l’invention permet d’obtenir des résultats meilleurs à des teneurs beaucoup plus faibles. En comparaison à l’ajout du composé naphténique selon
l’exemple comparatif EC3, l’ajout des deux composés conformes à l’invention dans les mêmes concentrations permet d’obtenir une augmentation très nettement supérieure de la température d’auto- inflammation de la composition de carburant. Les résultats détaillés dans le tableau III mettent également en évidence l’effet de synergie procuré par l’association des deux composés selon l’invention : à taux de trai tement égal par ailleurs (0,5% en masse), la composition C3 présente une température d’auto- inflammation significativement supérieure à celle des compositions C’1 et C’2.
DESCRIPTION TITLE: Fuel composition comprising a renewable base, a phenolic compound and a nitrogen-containing heterocyclic aromatic compound The present invention relates to a fuel composition usable among others in air transport, and which comprises one or more cuts consisting of fatty acids and /or esters of hydrogenated fatty acids in association with at least one particular phenolic compound and at least one nitrogen-containing heterocyclic aromatic compound. The present invention also relates to the use of such a composition to power a heat engine, such as in particular but not limited to an airplane or rocket engine. STATE OF THE PRIOR ART Fuels used in aeronautics and space propulsion are subject to very strict regulations which aim to guarantee a high level of safety during their use. Thus the turbine engines (turbojets and turboprops) which equip the majority of planes and helicopters (civil or military) use specific fuels called jet fuels, which are traditionally formulated from hydrocarbon cuts called kerosene cuts resulting from the distillation of crude oils. The reference jet fuel for civil aeronautics and the most widespread is Jet A-1. Its properties are defined in the international standard ASTM D1655. The physical characteristics of this fuel meet the efficiency and safety criteria required in the field of air transport, whether for ground operations or for flight phases. The main properties are: - A high calorific value, of at least 42.8 MJ/kg. It represents the quantity of energy released per unit mass of fuel during its combustion. This quantity is very important because it provides the aircraft with greater autonomy for a constant onboard mass. - A very low freezing point, which must be below - 47°C, which allows the fuel to be kept in a liquid state when the aircraft is in cruise flight, in a very low temperature environment. - A flash point (or temperature above which fuel vapors can ignite in the presence of a flame), which must be greater than 38°C, in order to guarantee safe handling of fuel on the ground. Other properties such as sulfur content, acidity or fuel density are also defined in ASTM D1655. The fight against global warming now requires air transport to reduce its carbon dioxide emissions of fossil origin by adopting fuels with low environmental impact, also called sustainable aviation fuels or SAF (i.e. Sustainable Aviation Fuels in English). . A promising solution consists of replacing kerosene bases of fossil origin with bases of biological origin such as in particular bases resulting from hydrogenation processes of natural esters and fatty acids called Hydrogenated Esters and Fatty Acids (HEFA) for esters. and hydrogenated fatty acids. In fact, the fuels formulated from these bases have characteristics relatively close to Jet A1 jet fuel, which makes HEFA bases excellent candidates for the aeronautical industry. However, these HEFA bases are essentially made up of linear and branched paraffins (alkanes). Their chemical composition devoid of aromatic and naphthenic hydrocarbons gives them an auto-ignition temperature significantly lower than that of traditional jet fuels based on kerosenes of fossil origin, which gives rise to significant safety problems, in particular risks of fire when using fuel in hot parts of aircraft and rocket engines. It is therefore desirable to increase the self-ignition temperature of this type of biofuel, in particular to allow their use in the aeronautics and aerospace industries. A solution to this problem consists of adding to the HEFA bases one or more fuel bases rich in aromatic and/or naphthenic hydrocarbons. However, the aromatic and/or naphthenic fuel bases available most often come from fossil sources, which are not renewable. In addition, these bases are available in small quantities, expensive and require significant incorporation rates to have a significant effect on the auto-ignition temperature. The present invention aims to remedy the problems described above. The present invention aims in particular to propose a fuel composition based on fatty acids and/or hydrogenated fatty acid esters (HEFA), which has an increased auto-ignition temperature without resorting to bases rich in aromatic and/or naphthenic hydrocarbons in significant quantities. The Applicant has now discovered that the addition, to a fuel base consisting of fatty acids and/or hydrogenated fatty acid esters, of a combination of one or more phenolic compounds as defined below in a minimum content of 0.05% by mass and one or more heterocyclic aromatic compounds as defined below in a minimum content of 0.05% by mass, made it possible to significantly increase the self-ignition temperature of the mixture and thus formulate a sustainable fuel suitable for use in the aviation and aerospace industries. The subject of the present invention is thus a fuel composition comprising: a) at least 50% by mass, relative to the total mass of the composition, of one or more cuts of paraffinic hydrocarbons consisting of acids fats and/or hydrogenated fatty acid esters (HEFA); b) at least 0.05% by mass, relative to the total mass of the composition, of one or more phenolic compounds corresponding to formula (I) below: in which the groups R 1 , R 2 , R 3 , R 4 and R 5 , identical or different, independently represent a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 atoms of carbon; it being understood that at least one of the groups R 1 , R 2 , R 3 , R 4 and R 5 represents an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms and c) at least 0.05% by mass, relative to the total mass of the composition, of one or more nitrogen-containing heterocyclic aromatic compounds corresponding to formula (II) below: in which the groups R 6 , R 7 , R 8 , R 9 , R 10 and R 11 , identical or different, represent independently of each other a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms. The composition according to the invention has an auto-ignition temperature, measured in accordance with standard ASTM E659, significantly higher than a composition comprising the same bases with the exception of the particular compounds of formulas (I) and (II). Thus, the combination of compounds of formula (I) and compounds of formula (II) can be used to increase the self-ignition temperature of a fuel composition, in particular of a fuel composition intended for powering aircraft and rocket engines. This increase in the auto-ignition temperature results in a reduction in the risk of fire when using composition as a fuel, including at high temperatures as is the case in aircraft and rocket engines. This reduction in the risk of fire advantageously makes it possible to increase the safety of the internal combustion engine, in particular the safety of aircraft and rocket engines. In particular, the Applicant has demonstrated an unexpected synergistic effect on the increase in the auto-ignition temperature, provided by the combination of the compounds of formula (I) and the compounds of formula (II). While the auto-ignition temperature measured in accordance with ASTM E659 of a fuel composition consisting solely of fatty acids and/or hydrogenated fatty acid esters (HEFA) is approximately 200°C, the self-ignition temperature (measured according to the same standard) of the composition according to the invention is at least 210°C. Preferably, the self-ignition temperature of the composition according to the invention is greater than or equal to 220°C and more preferably greater than or equal to 225°C. This temperature is reached without having to add significant quantities of fuel bases rich in aromatic and/or naphthenic hydrocarbons. Thus, according to a preferred embodiment, the aromatic hydrocarbon content of the composition according to the invention is less than 5% by mass, preferably less than 2% by mass, more preferably less than 1% by mass, relative to the total mass of the composition. By aromatic hydrocarbons, we designate here aromatic compounds formed solely of carbon and hydrogen atoms, and devoid of heteroatoms. In particular, neither the compounds of formula (I) nor the compounds of formula (II) defined above constitute aromatic hydrocarbons within the meaning of the present invention. According to an also preferred embodiment, the naphthenic hydrocarbon content of the composition according to the invention is less than 5% by mass, preferably less than 4% by mass, relative to the total mass of the composition. According to a particularly preferred embodiment, the total content of naphthenic hydrocarbons and aromatic hydrocarbons of the composition according to the invention is less than 5% by mass, preferably less than 4% by mass, relative to the total mass of the composition. The paraffinic hydrocarbon cut(s) consisting of fatty acids and/or hydrogenated fatty acid esters (HEFA) are bases of biological origin. Thus, the composition according to the invention comprises a majority quantity of biosourced materials. It therefore has a high eco-material content. The mass content of eco-material in the composition is defined by the following equation: Content of eco-material in % = 100 – (percentage of non-biosourced, non-biodegradable, non-recycled materials). According to an advantageous embodiment, the composition has an eco-material content of at least 70% by mass, preferably at least 80% by mass, preferably at least 90% by mass, and more preferably at least 95% by mass, relative to the total mass of the composition. The composition according to the invention also has good properties in terms of calorific value, freezing point and flash point. It is perfectly suitable for use as a fuel to power aircraft and rocket engines, but also and more generally to power any internal combustion engine used in propulsion, whether land, sea or air. or spatial. Thus, the present invention also relates to the use of the composition according to the invention to power an internal combustion engine of a terrestrial, marine, air or space propulsion vehicle, and preferably an aircraft engine. or rocket. Other objects, characteristics, aspects and advantages of the invention will appear even more clearly on reading the description and examples which follow. In what follows, and unless otherwise indicated, the limits of a domain of values are included in this domain, particularly in the expressions “between” and “ranging from… to…”. Furthermore, the expressions “at least one” and “at least” used in this description are respectively equivalent to the expressions “one or more” and “greater or equal”. Finally, in a manner known per se, the term C N compound or group denotes a compound or group containing N carbon atoms in its chemical structure. DETAILED DESCRIPTION The paraffinic hydrocarbon cut (a) The composition according to the invention contains at least one paraffinic hydrocarbon cut consisting of fatty acids and/or hydrogenated fatty acid esters (HEFA). In a manner known per se, these cuts commonly called HEFA are mainly made up of paraffins, resulting from the hydrogenation of fatty acids and fatty acid esters. By fatty acid is meant a carboxylic acid comprising a hydrocarbon chain having from 6 to 30 carbon atoms, preferably from 7 to 24 carbon atoms, and more preferably from 8 to 20 carbon atoms. By fatty acid ester, we designate both the monoesters and the polyesters (in particular the di- and tri-esters) of the above fatty acids with an alcohol which can be a mono-alcohol or a polyol. According to a preferred embodiment, the paraffinic hydrocarbon cut(s) (a) consist of hydrotreated vegetable oils, also known under the name HVO (from the English “hydrotreated vegetable oils”). These are oils of plant origin which have undergone successive treatments including hydrotreatment and possible isomerization. The processes for preparing such hydrotreated vegetable oils are known per se. Examples of suitable vegetable raw materials include rapeseed oil, canola oil, sunflower oil, soybean oil, hemp oil, olive oil, flaxseed oil, mustard oil, palm oil, castor oil, coconut oil. Patent applications WO2016/185046 and WO2016/185047 describe non-limiting examples of methods making it possible to obtain cuts of hydrotreated vegetable oils usable as fuel bases. The paraffinic hydrocarbon cut(s) (a) have a distillation range advantageously in the range going from 60 to 350°C, preferably from 100 to 300°C, more preferably from 120 to 290°C and better still from 140 to 280°C. The distillation range of said paraffinic hydrocarbon cut is determined in accordance with standard NF EN ISO 3405. The paraffinic hydrocarbon cut(s) (a) advantageously have a paraffin content greater than or equal to 90% by mass, of preferably greater than or equal to 95% by mass, and better still greater than or equal to 96% by mass, relative to the total mass of the cut(s) (a). By “paraffins” we mean, in a manner known per se, branched alkanes (also called iso-paraffins or iso-alkanes) and unbranched alkanes (also called n-paraffins or n-alkanes). The paraffins present in the paraffinic hydrocarbon cut(s) (a) according to the invention advantageously comprise from 6 to 18 carbon atoms, preferably from 8 to 17 carbon atoms. Preferably, the paraffinic hydrocarbon cut(s) (a) consist of at least 80% by weight, more preferably at least 90% by weight and better still at least 95% by weight of paraffins comprising from 8 to 17 carbon atoms. According to a preferred embodiment, the cut(s) of paraffinic hydrocarbons (a) used in the composition according to the invention contain at least 60% by mass, preferably at least 70% by mass of iso-paraffins, for example relative to the total mass of the cut(s) (a). According to a particularly preferred embodiment, they contain at least 80% by weight of iso-paraffins. The paraffinic hydrocarbon cut(s) (a) have a content of aromatic compounds preferably less than or equal to 10,000 ppm by mass, more preferably less than or equal to 1500 ppm by mass, even more preferably less than or equal to 1000 ppm by mass . Their content of naphthenic compounds is preferably less than or equal to 40,000 ppm by mass, more preferably less than or equal to 30,000 ppm by mass. Their sulfur content is advantageously less than or equal to 10 ppm by mass, preferably less than or equal to 5 ppm by mass. Particularly preferably, the paraffinic hydrocarbon cut(s) (a) are completely free of sulfur. The composition according to the invention preferably comprises at least 75% by mass of one or more cuts of paraffinic hydrocarbons (a) as described above. Preferably, it contains at least 85% by mass of one or more cuts of paraffinic hydrocarbons (a), more preferably at least 90% by mass and better still at least 95% by mass, relative to the total mass. of the composition. According to a preferred embodiment, the composition according to the invention contains at least 98% by weight, and better still at least 99% by weight, of one or more cuts of paraffinic hydrocarbons (a) as described above . Phenolic compounds (b) The composition comprises at least one phenolic compound of formula in which the groups R 1 , R 2 , R 3 , R 4 and R 5 , identical or different, independently represent a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 atoms of carbon, with at least one of the groups R 1 , R 2 , R 3 , R 4 and R 5 representing an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms. Preferably, the groups R 1 , R 2 , R 3 , R 4 and R 5 , identical or different, represent independently of each other a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 12 atoms of carbon, more preferably from 1 to 8 carbon atoms and better still from 1 to 6 carbon atoms, at least one of the groups R 1 , R 2 , R 3 , R 4 and R 5 representing such an alkyl group According to a preferred embodiment, the groups R 1 , R 2 , R 3 , R 4 and R 5 , identical or different, represent independently of each other a hydrogen atom or an alkyl group chosen from the groups methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-methylpropyl (iso-butyl), 1-methylpropyl (sec-butyl) and 1,1-dimethylethyl (tert-butyl), at least one of the groups R 1 , R 2 , R 3 , R 4 and R 5 representing such an alkyl group. According to a preferred embodiment, at least two of the groups R 1 , R 2 , R 3 , R 4 and R 5 designate alkyl groups, identical or different, as defined above. Better still, three of the groups R 1 , R 2 , R 3 , R 4 and R 5 designate alkyl groups, identical or different, as defined above, and more preferably the three groups R 1 , R 3 and R 5 designate such alkyl groups, R 2 and R 4 designating a hydrogen atom. According to a particularly preferred embodiment, the composition according to the invention comprises 2,4,6-trimethylphenol (CAS No 527-60-6), which is a compound of formula (I) in which: the groups R 1 , R 3 and R 5 represent a methyl group; R 2 and R 4 represent a hydrogen atom: The compounds of formula (I) may be of natural origin. Advantageously, the eco-material content of the composition is still increased when the compound of formula (I) is obtained from compounds of natural origin. Thus, the phenolic compound(s) of formula (I) can be used to increase the eco-material content of a fuel composition, in particular of a fuel composition intended to power aircraft and rocket engines. . The composition according to the invention advantageously comprises the compound(s) of formula (I) in a content ranging from 0.05 to 10% by mass, preferably from 0.1 to 5% by mass, more preferably from 0.2 at 2% by mass, better from 0.25 to 0.6% by mass, relative to the total mass of the composition. The composition according to the invention preferably comprises 2,4,6-trimethylphenol in a content ranging from 0.05 to 10% by mass, preferably from 0.1 to 5% by mass, more preferably from 0. 2 to 2% by mass, better 0.25 to 0.6% by mass, relative to the total mass of the composition. Nitrogen-containing heterocyclic aromatic compounds (c) The composition comprises at least one nitrogen-containing heterocyclic aromatic compound of formula (II): in which the groups R 6 , R 7 , R 8 , R 9 , R 10 and R 11 , identical or different, represent independently of each other a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms. Preferably, the groups R 6 , R 7 , R 8 , R 9 , R 10 and R 11 , identical or different, represent independently of each other a hydrogen atom or an alkyl group, linear or branched, comprising 1 with 12 carbon atoms, more preferably from 1 to 8 carbon atoms and better still from 1 to 6 carbon atoms. According to a preferred embodiment, the groups R 6 , R 7 , R 8 , R 9 , R 10 and R 11 , identical or different, represent independently of each other a hydrogen atom or an alkyl group chosen from the groups methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-methylpropyl (iso-butyl), 1-methylpropyl (sec-butyl) and 1,1-dimethylethyl (tert-butyl). According to a particularly preferred embodiment, the composition according to the invention comprises indoline (CAS No 496-15-1), which is a compound of formula (II) in which the groups R 6 , R 7 , R 8 , R 9 , R 10 and R 11 all represent a hydrogen atom. The composition according to the invention advantageously comprises the compound(s) of formula (II) in a content ranging from 0.05 to 10% by mass, preferably from 0.1 to 5% by mass, more preferably from 0. 2 to 2% by mass, better 0.25 to 0.6% by mass, relative to the total mass of the composition. The composition according to the invention preferably comprises indoline in a content ranging from 0.05 to 10% by mass, preferably from 0.1 to 5% by mass, more preferably from 0.2 to 2% by mass. , better from 0.25 to 0.6% by mass, relative to the total mass of the composition. Indoline may be of natural origin. Advantageously, the eco-material content of the composition is further increased when the compound of formula (I) is indoline obtained from compounds of natural origin. Thus, the nitrogen-containing heterocyclic aromatic compound(s) of formula (I) can be used to increase the eco-material content of a fuel composition, in particular of a fuel composition for powering aircraft and aircraft engines. rockets. According to a preferred embodiment, the weight ratio between the total content of the additive(s) of formula (I) on the one hand and the total content of the additive(s) of formula (II) on the other hand is included in the range ranging from 1:5 to 5:1, preferably from 1:3 to 3:1 and even better from 1:2 to 2:1. Any additives The composition according to the invention may further comprise one or more additives, different from the compounds of formula (I) and the compounds of formula (II) described above. This or these additives can for example be chosen, in a non-limiting manner, from antioxidant, anti-freeze, antistatic additives, corrosion inhibitors, lubricating additives, cold resistance additives, detergent additives. , tracer additives. Antioxidant additives are particularly preferred. These additives can be incorporated at levels, for each, which can range from a few ppm to 1000 ppm by mass. The use of the composition The composition according to the invention is useful as a fuel for powering any internal combustion engine of a propulsion vehicle, in particular land, marine, air or space propulsion. The composition according to the invention can in particular be used to power any internal combustion engine in one of the following vehicles: road vehicles including light vehicles (in particular automobiles) and heavy goods vehicles (trucks of different loads called "medium duty"). » and “heavy duty”, household waste bins, buses, coaches, etc.) and non-road vehicles (construction or public works machinery, tractors, trains, boats). According to a preferred embodiment, the composition according to the invention is used to power an aircraft or rocket engine. According to a particularly preferred embodiment, the composition according to the invention is used to power a turbojet or a turboprop in an aircraft, preferably chosen from an airplane and a helicopter (civil or military), and more preferably an airplane. The composition according to the invention can also be used to improve the eco-performance of an internal combustion engine of a terrestrial, marine, air or space propulsion vehicle, in particular of an aircraft or aircraft engine. a rocket engine. For example, the eco-performance of the internal combustion engine may be the reduction of the environmental impact of the internal combustion engine. internal combustion. Indeed, the quantity of compound of biological origin in the composition according to the invention is significant. As explained above, the quantity of fuel bases rich in aromatic and/or naphthenic hydrocarbons of fossil origin and the quantity of heterocyclic aromatic nitrogen compound of formula (I) in the composition according to the invention can be low and the compound nitrogen heterocyclic aromatic of formula (I) may be of biological origin. Thus, the environmental impact of the composition according to the invention is lower than the environmental impact of a fuel composition of fossil origin. The environmental impact of the internal combustion engine powered by the composition according to the invention is therefore reduced. The use of the combination of compounds of formula (I) and compounds of formula (II) The present invention also relates to the use of the combination of: - one or more phenolic compounds corresponding to formula (I ) below : in which the groups R 1 , R 2 , R 3 , R 4 and R 5 , identical or different, independently represent a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 atoms of carbon; it being understood that at least one of the groups R 1 , R 2 , R 3 , R 4 and R 5 represents an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms and - one or more heterocyclic aromatic compounds nitrogenous compounds corresponding to formula (II) below: in which the groups R 6 , R 7 , R 8 , R 9 , R 10 and R 11 , identical or different, represent independently of each other a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms, to increase the auto-ignition temperature of a fuel composition comprising at least 50% by mass, relative to the total mass of the composition, of one or more cuts of paraffinic hydrocarbons consisting of fatty acids and/or hydrogenated fatty acid esters (HEFA). The auto-ignition temperature is measured according to the method defined in ASTM E659. The present invention also relates to the use of the combination of: - one or more phenolic compounds corresponding to formula (I) below: in which the groups R 1 , R 2 , R 3 , R 4 and R 5 , identical or different, independently represent a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 atoms of carbon; it being understood that at least one of the groups R 1 , R 2 , R 3 , R 4 and R 5 represents an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms and - one or more heterocyclic aromatic compounds nitrogenous compounds corresponding to formula (II) below: in which the groups R 6 , R 7 , R 8 , R 9 , R 10 and R 11 , identical or different, represent independently of each other a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms, to increase the eco-material content of a fuel composition, in particular of a fuel composition intended to power aircraft and rocket engines. The fuel composition, the compounds of formula (I) and the compounds of formula (II) as well as their respective contents are as described above. The method The present invention also relates to a method of propelling a land, sea, air or space travel vehicle equipped with at least one internal combustion engine, consisting of powering said engine by means of a fuel composition. as described above. Preferably, said engine is an aircraft or rocket engine, more preferably a turbojet or a turboprop equipping an airplane or a helicopter and more preferably an airplane. The examples below are given by way of illustration of the invention, and cannot be interpreted in such a way as to imitate its scope. EXAMPLES The examples below were made from a cut of paraffinic hydrocarbons called cut A consisting of esters and hydrogenated fatty acids (HEFA). More precisely, cut A is consisting of a hydrotreated vegetable oil (HVO) whose characteristics are detailed in Table I below: [Table I] Comparative Examples 1 Fuel compositions were prepared by adding an aromatic compound (mesitylene) or a naphthenic compound (methylcyclohexane) to cut A, in the contents detailed in Table II below. The auto-ignition temperature of each of these compositions was measured, in accordance with the method defined in standard ASTM E659. The results obtained are also detailed in Table II. [Table II] These results show that to significantly increase the autoignition temperature of cut A, the aromatic compound and the naphthenic compound must be added in large quantities as is the case in the compositions comparative EC1 and EC2. On the other hand, the addition of a low content of naphthenic compound (EC3 composition) does not make it possible to obtain a significant increase in the autoignition temperature. Examples 2 Fuel compositions were prepared by adding 2,4,6-trimethylphenol (hereinafter referred to as 2,4,6-TMP) and/or indoline to cut A, in the contents detailed in the table III below. The auto-ignition temperature of each of these compositions was measured, in accordance with the method defined in standard ASTM E659. The results obtained are also detailed in Table III. [Table III] The compositions EC0 (consisting entirely of cut A), C'1 and C'2 are comparative. Composition C3 is in accordance with the invention. These results show that the addition to cut A of the two compounds according to the invention in very small quantities makes it possible to significantly increase the auto-ignition temperature. In comparison to the addition of the aromatic and naphthenic compounds according to comparative examples EC1 and EC2, the addition of the two compounds in accordance with the invention makes it possible to obtain better results at much lower contents. In comparison to the addition of the naphthenic compound according to Comparative example EC3, the addition of the two compounds in accordance with the invention in the same concentrations makes it possible to obtain a very significantly greater increase in the auto-ignition temperature of the fuel composition. The results detailed in Table III also highlight the synergistic effect provided by the combination of the two compounds according to the invention: at an equal treatment rate (0.5% by weight), the composition C3 presents a self-ignition temperature significantly higher than that of compositions C'1 and C'2.
Claims
REVENDICATIONS 1. Composition de carburant comprenant : (a) au moins 50% en masse, par rapport à la masse totale de la composition, d’une ou de plusieurs coupes d’hydrocarbures paraffiniques constituée(s) d’acides gras et/ou d’esters d’acides gras hydrogénés (HEFA) ; (b) au moins 0,05% en masse, par rapport à la masse totale de la composition, d’un ou plusieurs composés phénoliques répondant à la formule (I) ci-dessous :
dans laquelle les groupes R 1 , R 2 , R 3 , R 4 et R 5 , identiques ou différents, représentent indépendamment les uns des autres un atome d’hydrogène ou un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 16 atomes de carbone ; étant entendu que l’un au moins des groupes R 1 , R 2 , R 3 , R 4 et R 5 représente un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 16 atomes de carbone ; et c) au moins 0,05% en masse, par rapport à la masse totale de la composition, d’un ou plusieurs composés aromatiques hétérocycliques azotés répondant à la formule (II) ci-dessous :
dans laquelle les groupes R 6 , R 7 , R 8 , R 9 , R 10 et R 11 , identiques ou différents, représentent indépendamment les uns des autres un atome d’hydrogène ou un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 16 atomes de carbone.
2. Composition selon la revendication précédente, caractérisée en ce que la ou les coupes d’hydrocarbures paraffiniques (a) ont une teneur en paraffines supérieure ou égale à 90% en masse, de préférence supérieure ou égale à 95% en masse, et mieux encore supérieure ou égale à 96% en masse, par rapport à la masse totale de la ou des coupes (a). 3. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que les paraffines présentes dans la ou les coupes d’hydrocarbures paraffiniques (a) comprennent de 6 à 18 atomes de carbone, de préférence de 8 à 17 atomes de carbone. 4. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce qu’elle comprend au moins 75% en masse d’une ou de plusieurs coupes d’hydrocarbures paraffiniques (a), de préférence au moins 85% en masse, plus préférentiellement au moins 90% en masse et mieux encore au moins 95% en masse, par rapport à la masse totale de la composition. 5. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que dans la formule (I), les groupes R 1 , R 2 , R 3 , R 4 et R 5 , identiques ou différents, représentent indépendamment les uns des autres un atome d’hydrogène ou un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 12 atomes de carbone, de préférence de 1 à 8 atomes de carbone et plus préférentiellement de 1 à 6 atomes de carbone, l’un au moins des groupes R 1 , R 2 , R 3 , R 4 et R 5 représentant un tel groupe alkyle. 6. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce qu’elle comprend du 2,4,6- triméthylphénol. 7. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que le composé de formule (I) est d’origine naturelle. 8. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce qu’elle comprend le ou les composés de formule (I) à une teneur allant de 0,05 à 10% en masse, de préférence de 0,1 à 5% en masse, plus préférentiellement de 0,2 à 2% en masse, mieux de 0,25 à 0,6% en masse, par rapport à la masse totale de la composition.
9. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que dans la formule (II), les groupes R 6 , R 7 , R 8 , R 9 , R 10 et R 11 , identiques ou différents, représentent indépendamment les uns des autres un atome d’hydrogène ou un groupe alkyle, linéaire ou ramifié, comprenant de 1 à 12 atomes de carbone, de préférence de 1 à 8 atomes de carbone et plus préférentiellement de 1 à 6 atomes de carbone. 10. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce qu’elle comprend de l’indoline. 11. Composition selon la revendication 10, caractérisée en ce que l’indoline est d’origine naturelle. 12. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce qu’elle comprend le ou les composés de formule (II) à une teneur allant de 0,05 à 10% en masse, de préférence de 0,1 à 5% en masse, plus préférentiellement de 0,2 à 2% en masse, mieux de 0,25 à 0,6% en masse, par rapport à la masse totale de la composition. 13. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que sa teneur en hydrocarbures aromatiques est inférieure à 5% en masse, de préférence inférieure à 2% en masse, plus préférentiellement inférieure à 1% en masse, par rapport à la masse totale de la composit ion. 14. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce qu’elle présente une teneur en éco- matière d’au moins 70% en masse, de préférence d’au moins 80% en masse, préférentiel lement d’au moins 90% en masse, et plus préférentiellement d’au moins 95% en masse, par rapport à la masse totale de la composit ion. 15. Utilisation de la composition telle que définie dans l’une quelconque des revendications précédentes pour alimenter un moteur à combustion interne d’un engin de propulsion terrestre, marine, aérienne ou spatiale. 16. Utilisation selon la revendication précédente, pour alimenter un moteur d’aéronef ou de fusée, de préférence un
turboréacteur ou un turbopropulseur dans un aéronef choisi parmi un avion et un hélicoptère et plus préférentiellement un avion. 17. Utilisation de la composition telle que définie dans l’une quelconque des revendications 1 à 14, pour améliorer l’éco- performance d’un moteur à combustion interne d’un engin de propulsion terrestre, marine, aérienne ou spatiale. 18. Utilisation selon la revendication 17, dans laquelle l 'éco-performance du moteur à combustion interne est la diminution de l’impact environnemental du moteur à combustion interne. 19. Utilisation selon l’une des revendications 17 et 18, dans laquelle le moteur est un moteur d’avion ou un moteur de fusée 20. Méthode de propulsion d’un engin de déplacement terrestre, marine, aérienne ou spatiale équipé d’au moins un moteur à combustion interne, consistant à alimenter ledit moteur au moyen d’une composition de carburant telle que définie dans l’une quelconque des revendications 1 à 14. 21. Méthode selon la revendication précédente, caractérisée en ce que ledit moteur est un moteur d’aéronef ou de fusée, plus préférentiellement un turboréacteur ou un turbopropulseur équipant un avion ou un hélicoptère et plus préférentiellement un avion. 22. Utilisation de l’association d’un ou de plusieurs composés de formule (I) tels que définis dans l’une quelconque des revendications 1 et 5 à 7 et d’un ou de plusieurs composés de formule (II) tels que définis dans l’une quelconque des revendications 1 et 9 à 11 pour augmenter la température d’auto-inflammation d’une composition de carburant comprenant au moins 50% en masse, par rapport à la masse totale de la composition, d’une ou de plusieurs coupes d’hydrocarbures paraffiniques constituée(s) d’acides gras et/ou d’esters d’acides gras hydrogénés (HEFA). 23. Utilisation de l’association d’un ou de plusieurs composés de formule (I) tels que définis dans l’une quelconque des revendications 1 et 5 à 7 et d’un ou de plusieurs composés de formule (II) tels que définis dans l’une quelconque des revendications 1 et 9 à 11 pour augmenter la teneur en éco-matière d’une composition de
carburant, en particulier d’une composition de carburant destinée à alimenter des moteurs d’avions et de fusées.
CLAIMS 1. Fuel composition comprising: (a) at least 50% by mass, relative to the total mass of the composition, of one or more cuts of paraffinic hydrocarbons consisting of fatty acids and/or hydrogenated fatty acid esters (HEFA); (b) at least 0.05% by mass, relative to the total mass of the composition, of one or more phenolic compounds corresponding to formula (I) below: in which the groups R 1 , R 2 , R 3 , R 4 and R 5 , identical or different, independently represent a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 atoms of carbon; it being understood that at least one of the groups R 1 , R 2 , R 3 , R 4 and R 5 represents an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms; and c) at least 0.05% by mass, relative to the total mass of the composition, of one or more nitrogen-containing heterocyclic aromatic compounds corresponding to formula (II) below: in which the groups R 6 , R 7 , R 8 , R 9 , R 10 and R 11 , identical or different, represent independently of each other a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 16 carbon atoms. 2. Composition according to the preceding claim, characterized in that the paraffinic hydrocarbon cut(s) (a) have a paraffin content greater than or equal to 90% by mass, preferably greater than or equal to 95% by mass, and better still still greater than or equal to 96% by mass, relative to the total mass of the cut(s) (a). 3. Composition according to any one of the preceding claims, characterized in that the paraffins present in the paraffinic hydrocarbon cut(s) (a) comprise from 6 to 18 carbon atoms, preferably from 8 to 17 carbon atoms. 4. Composition according to any one of the preceding claims, characterized in that it comprises at least 75% by mass of one or more cuts of paraffinic hydrocarbons (a), preferably at least 85% by mass, plus preferably at least 90% by mass and better still at least 95% by mass, relative to the total mass of the composition. 5. Composition according to any one of the preceding claims, characterized in that in formula (I), the groups R 1 , R 2 , R 3 , R 4 and R 5 , identical or different, represent independently of each other a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 12 carbon atoms, preferably from 1 to 8 carbon atoms and more preferably from 1 to 6 carbon atoms, at least one of the groups R 1 , R 2 , R 3 , R 4 and R 5 representing such an alkyl group. 6. Composition according to any one of the preceding claims, characterized in that it comprises 2,4,6-trimethylphenol. 7. Composition according to any one of the preceding claims, characterized in that the compound of formula (I) is of natural origin. 8. Composition according to any one of the preceding claims, characterized in that it comprises the compound(s) of formula (I) at a content ranging from 0.05 to 10% by mass, preferably from 0.1 to 5 % by mass, more preferably 0.2 to 2% by mass, better still 0.25 to 0.6% by mass, relative to the total mass of the composition. 9. Composition according to any one of the preceding claims, characterized in that in formula (II), the groups R 6 , R 7 , R 8 , R 9 , R 10 and R 11 , identical or different, independently represent the from each other a hydrogen atom or an alkyl group, linear or branched, comprising from 1 to 12 carbon atoms, preferably from 1 to 8 carbon atoms and more preferably from 1 to 6 carbon atoms. 10. Composition according to any one of the preceding claims, characterized in that it comprises indoline. 11. Composition according to claim 10, characterized in that the indoline is of natural origin. 12. Composition according to any one of the preceding claims, characterized in that it comprises the compound(s) of formula (II) at a content ranging from 0.05 to 10% by mass, preferably from 0.1 to 5 % by mass, more preferably 0.2 to 2% by mass, better still 0.25 to 0.6% by mass, relative to the total mass of the composition. 13. Composition according to any one of the preceding claims, characterized in that its content of aromatic hydrocarbons is less than 5% by mass, preferably less than 2% by mass, more preferably less than 1% by mass, relative to the total mass of the composition. 14. Composition according to any one of the preceding claims, characterized in that it has an eco-material content of at least 70% by mass, preferably at least 80% by mass, preferably at least 80% by mass. less than 90% by mass, and more preferably at least 95% by mass, relative to the total mass of the composition. 15. Use of the composition as defined in any one of the preceding claims to power an internal combustion engine of a land, marine, air or space propulsion vehicle. 16. Use according to the preceding claim, to power an aircraft or rocket engine, preferably one turbojet or a turboprop in an aircraft chosen from an airplane and a helicopter and more preferably an airplane. 17. Use of the composition as defined in any one of claims 1 to 14, to improve the eco-performance of an internal combustion engine of a land, marine, air or space propulsion vehicle. 18. Use according to claim 17, in which the eco-performance of the internal combustion engine is the reduction in the environmental impact of the internal combustion engine. 19. Use according to one of claims 17 and 18, in which the engine is an aircraft engine or a rocket engine 20. Method of propelling a land, marine, air or space travel vehicle equipped with at least one internal combustion engine, consisting of powering said engine by means of a fuel composition as defined in any one of claims 1 to 14. 21. Method according to the preceding claim, characterized in that said engine is a aircraft or rocket engine, more preferably a turbojet or a turboprop equipping an airplane or a helicopter and more preferably an airplane. 22. Use of the combination of one or more compounds of formula (I) as defined in any one of claims 1 and 5 to 7 and one or more compounds of formula (II) as defined in any one of claims 1 and 9 to 11 to increase the auto-ignition temperature of a fuel composition comprising at least 50% by mass, relative to the total mass of the composition, of one or more several cuts of paraffinic hydrocarbons consisting of fatty acids and/or hydrogenated fatty acid esters (HEFA). 23. Use of the combination of one or more compounds of formula (I) as defined in any one of claims 1 and 5 to 7 and one or more compounds of formula (II) as defined in any one of claims 1 and 9 to 11 to increase the eco-material content of a composition of fuel, in particular a fuel composition intended to power aircraft and rocket engines.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2212670 | 2022-12-02 | ||
FR2212670A FR3142763A1 (en) | 2022-12-02 | 2022-12-02 | Fuel composition comprising a renewable base and a phenolic compound and a nitrogen-containing heterocyclic aromatic compound |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024115865A1 true WO2024115865A1 (en) | 2024-06-06 |
Family
ID=85175866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2023/051885 WO2024115865A1 (en) | 2022-12-02 | 2023-12-01 | Fuel composition comprising a renewable base, a phenolic compound and a nitrogen-containing heterocyclic aromatic compound |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3142763A1 (en) |
WO (1) | WO2024115865A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016185047A1 (en) | 2015-05-20 | 2016-11-24 | Total Marketing Services | Process for the production of biodegradable hydrocarbon fluids by hydrogenation |
WO2016185046A1 (en) | 2015-05-20 | 2016-11-24 | Total Marketing Services | Process for the production of biodegradable hydrocarbon fluids |
EP3943580A1 (en) * | 2020-07-23 | 2022-01-26 | Repsol, S.A. | Gasoline composition comprising indoline |
WO2023031513A1 (en) * | 2021-08-30 | 2023-03-09 | Neste Oyj | Renewable jet fuel with additive |
-
2022
- 2022-12-02 FR FR2212670A patent/FR3142763A1/en active Pending
-
2023
- 2023-12-01 WO PCT/FR2023/051885 patent/WO2024115865A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016185047A1 (en) | 2015-05-20 | 2016-11-24 | Total Marketing Services | Process for the production of biodegradable hydrocarbon fluids by hydrogenation |
WO2016185046A1 (en) | 2015-05-20 | 2016-11-24 | Total Marketing Services | Process for the production of biodegradable hydrocarbon fluids |
EP3943580A1 (en) * | 2020-07-23 | 2022-01-26 | Repsol, S.A. | Gasoline composition comprising indoline |
WO2023031513A1 (en) * | 2021-08-30 | 2023-03-09 | Neste Oyj | Renewable jet fuel with additive |
Non-Patent Citations (2)
Title |
---|
ESCALANTE EDWIN SANTIAGO RIOS ET AL: "Evaluation of the potential feedstock for biojet fuel production: Focus in the Brazilian context", RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, ELSEVIERS SCIENCE, NEW YORK, NY, US, vol. 153, 13 October 2021 (2021-10-13), XP086847895, ISSN: 1364-0321, [retrieved on 20211013], DOI: 10.1016/J.RSER.2021.111716 * |
no. 496-15-1 |
Also Published As
Publication number | Publication date |
---|---|
FR3142763A1 (en) | 2024-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2303997B1 (en) | Aviation gasoline for piston engines of aircraft, preparation process thereof | |
BR0013808B1 (en) | engine fuel composition, and process of preparing it. | |
CA2857847C (en) | High octane unleaded aviation gasoline | |
JP2007500267A (en) | Fuel for jets, gas turbines, rockets, and diesel engines | |
WO2007074226A1 (en) | Lead-free aviation fuel | |
US20170275548A1 (en) | Mesitylene as an octane enhancer for automotive gasoline, additive for jet fuel, and method of enhancing motor fuel octane and lowering jet fuel carbon emissions | |
EP2868735A1 (en) | High octane unleaded aviation gasoline | |
EP3784760A1 (en) | High-power and eco-friendly fuel composition | |
FR2987369A1 (en) | HIGH POWER LIQUID FUEL COMPOSITION FOR IGNITION ENGINES | |
WO2004037952A1 (en) | Novel fuel with high octane index and reduced lead content | |
WO2024115865A1 (en) | Fuel composition comprising a renewable base, a phenolic compound and a nitrogen-containing heterocyclic aromatic compound | |
WO2024115862A1 (en) | Fuel composition comprising a renewable base and a phenol compound | |
WO2024115863A1 (en) | Fuel composition comprising a renewable base and a nitrogen-containing heterocyclic aromatic compound | |
WO2024115864A1 (en) | Fuel composition comprising a renewable base and an aromatic amine | |
WO2024134058A1 (en) | Fuel composition comprising a renewable base, a fatty acid ester and an alkyl-phenol additive | |
WO2022229579A1 (en) | Fuel composition rich in aromatic compounds and in oxygen-containing compounds | |
WO2023218148A1 (en) | Fuel composition with a low impact on co2 emissions, and use thereof in particular in new vehicles | |
WO2023247891A1 (en) | Fuel composition with low impact in terms of co2 emissions and use thereof, in particular, in new vehicles | |
WO2016012342A1 (en) | Polyoxygenated compounds as anti-soot additives for a fuel | |
WO2022229573A1 (en) | Fuel composition rich in aromatic compounds, paraffins and ethanol, and use thereof in particular in competition motor vehicles | |
FR3119625A1 (en) | Composition of fuel rich in aromatic compounds, paraffins and ether, and its use in motor vehicles | |
FR2846003A1 (en) | Low-lead gasoline fuel, e.g. useful in engines for aircraft or racing vehicles, comprises defined amounts of isoparaffins with 4 or 5 carbon atoms and isoparaffins with 6-9 carbon atoms | |
US20150184100A1 (en) | Mesitylene as an octane enhancer for automotive gasoline, additive for jet fuel, and method of enchancing motor fuel octane and lowering jet fuel carbon emissions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23841267 Country of ref document: EP Kind code of ref document: A1 |