WO2024113745A1 - 双面发热的玻璃发热片及雾化装置 - Google Patents
双面发热的玻璃发热片及雾化装置 Download PDFInfo
- Publication number
- WO2024113745A1 WO2024113745A1 PCT/CN2023/098677 CN2023098677W WO2024113745A1 WO 2024113745 A1 WO2024113745 A1 WO 2024113745A1 CN 2023098677 W CN2023098677 W CN 2023098677W WO 2024113745 A1 WO2024113745 A1 WO 2024113745A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating
- heating element
- double
- substrate
- sided
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 188
- 239000011521 glass Substances 0.000 title claims abstract description 30
- 238000000889 atomisation Methods 0.000 title abstract description 31
- 239000007788 liquid Substances 0.000 claims abstract description 54
- 239000007769 metal material Substances 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims description 47
- 230000035515 penetration Effects 0.000 claims description 6
- 230000005611 electricity Effects 0.000 claims description 3
- 239000000443 aerosol Substances 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 10
- 230000009471 action Effects 0.000 abstract description 8
- 230000008569 process Effects 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 6
- 229910052755 nonmetal Inorganic materials 0.000 abstract 1
- 230000006872 improvement Effects 0.000 description 13
- 239000000919 ceramic Substances 0.000 description 5
- 238000009833 condensation Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 239000003571 electronic cigarette Substances 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000009688 liquid atomisation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 101100273866 Aedes albopictus CECC1 gene Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001007 puffing effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/10—Devices using liquid inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
- A24F40/57—Temperature control
Definitions
- the invention relates to the technical field of liquid atomization, and in particular to a double-sided heating glass heating sheet and an atomization device.
- the electronic atomization device includes an atomization device and a power supply for supplying power to the atomization device.
- the atomization device is internally constructed with a liquid storage chamber, an air flow channel, and an electronic atomization component.
- the power supply is provided with a receiving slot, and the atomization device is installed in the receiving slot and is electrically connected to the power supply.
- the power supply supplies power to the electronic atomization component inside the atomization device, the atomization component atomizes the solution stored in the liquid storage chamber into aerosol and discharges it.
- the atomizing heating sheet is one of the essential components of the atomizing device. Its function is to heat the liquid into atomization.
- Existing atomizing heating sheets include heating wires, ceramic heating elements, wafer heating sheets, etc.
- the above traditional heating structures directly heat the liquid to form atomized gas when in use, without preheating the liquid. In the case of condensation, the heating time is longer, and the aerosol directly heated after condensation has a poor taste.
- the present invention provides a double-sided heating glass heating sheet and atomizing device that is preheated and then heated by a second heating element to form an aerosol gas.
- the reheating after preheating reduces the process of liquid from a condensed state to heating, and can heat and atomize more quickly, thereby improving the atomization effect.
- a double-sided heating glass heating sheet including a substrate, a permeation zone, a first heating element, and a second heating element
- the substrate is made of an amorphous inorganic non-metallic material, and the substrate has a first surface and a second surface
- the permeation zone is arranged on the substrate, and connects the first surface with the second surface, and allows liquid to pass through at least under the action of negative pressure
- the first heating element is arranged on the first surface, and the first heating element is used to preheat the liquid that passes through the first surface and enters the permeation zone
- the second heating element is arranged on the second surface, and the second heating element is used to heat the liquid in the permeation zone and form an atomized gas.
- a further improvement to the above solution is that the first surface and the second surface are respectively the upper and lower surfaces of the base.
- a further improvement to the above solution is that the thickness of the substrate is 0.02 mm to 0.5 mm.
- a further improvement to the above solution is that the width of the substrate is 0.5-10 mm; the length of the substrate is 2.0 mm-20 mm.
- a further improvement to the above solution is that the permeation zone is composed of a plurality of micropores, and the plurality of micropores penetrate from the first surface to the second surface.
- a further improvement to the above solution is that the diameter of the micropores is 0.01 mm to 0.5 mm.
- a further improvement to the above solution is that the heating temperature of the first heating element is lower than the heating temperature of the second heating element.
- the first heating element includes a first contact end and a first heating circuit, the first contact end is used to connect to electricity, the first heating circuit passes through the permeation area, and the first contact end is provided with two, which are respectively positive and negative contact ends.
- the second heating element includes a second contact end and a second heating circuit, the second contact end is electrically connected to the first contact end, the second heating circuit passes through the permeation zone, and the second contact end is provided with two, which are respectively positive and negative contact ends.
- An atomizing device comprises the double-sided heating glass heating sheet.
- the present invention adopts amorphous inorganic non-metallic material as the basis, preferably glass, and arranges the first heating element and the second heating element on both sides respectively.
- the atomized liquid can be preheated by the first heating element first, and then heated by the second heating element to form an aerosol gas after preheating.
- the reheating after preheating reduces the process of the liquid from the condensed state to the heated state, and can heat and atomize more quickly, thereby improving the atomization effect.
- a substrate, a permeation zone, a first heating element, and a second heating element are provided.
- the substrate is made of amorphous inorganic non-metallic material and has a first surface and a second surface.
- the permeation zone is provided on the substrate and connects the first surface with the second surface, and allows liquid to pass through at least under the action of negative pressure.
- the first heating element is provided on the first surface and is used to preheat the liquid that enters the permeation zone through the first surface.
- the second heating element is provided on the second surface and is used to heat the liquid in the permeation zone and form atomized gas.
- the substrate has two surfaces, which are connected through the permeation zone. The first heating element can preheat the liquid from the liquid guide, and then heat and atomize it when it passes through the permeation zone and enters the second heating element.
- the liquid is atomized after being preheated, and the atomization efficiency is high.
- FIG1 is a three-dimensional schematic diagram of a double-sided heating glass heating sheet of the present invention.
- FIG2 is a three-dimensional schematic diagram of the double-sided heating glass heating sheet in FIG1 from another viewing angle;
- FIG3 is a schematic top view of the double-sided heating glass heating sheet in FIG1 ;
- FIG4 is a cross-sectional view taken along line A-A in FIG3 .
- substrate 1 substrate 1 , first surface 11 , second surface 12 , permeation zone 2 , micropores 21 , first heating element 3 , first contact terminal 31 , first heating circuit 32 , second heating element 4 , second contact terminal 41 , second heating circuit 42 .
- a double-sided heating glass heating sheet is involved, which is provided with a substrate 1, a permeation zone 2, a first heating element 3, and a second heating element 4, wherein the substrate 1 is made of an amorphous inorganic non-metallic material, and the substrate 1 has a first surface 11 and a second surface 12; the permeation zone 2 is arranged on the substrate 1, and connects the first surface 11 with the second surface 12, and allows liquid to pass through at least under the action of negative pressure; the first heating element 3 is arranged on the first surface 11, and the first heating element 3 is used to preheat the liquid that passes through the first surface 11 and enters the permeation zone 2; the second heating element 4 is arranged on the second surface 12, and the second heating element 4 is used to heat the liquid in the permeation zone 2 and form an atomized gas.
- first surface 11 and the second surface 12 are respectively the upper and lower surfaces of the base 1.
- first surface 11 and the second surface 12 are set as the upper and lower surfaces of the base 1, so that one side fits the oil guide element and the other side atomizes the liquid and guides it out, which is suitable for liquid atomization of the atomizer.
- a double-sided heating glass heating sheet is provided with a substrate 1, a permeation zone 2, a first heating element 3, and a second heating element 4.
- the substrate 1 is made of amorphous inorganic non-metallic material, and the substrate 1 has a first surface 11 and a second surface 12; the permeation zone 2 is provided on the substrate 1, and connects the first surface 11 with the second surface 12, and allows liquid to pass through at least under the action of negative pressure; the first heating element 3 is provided on the first surface 11, and the first heating element 3 is used to preheat the liquid entering the permeation zone 2 through the first surface 11; the second heating element 4 is provided on the second surface 12, and the second heating element 4 is used to heat the liquid in the permeation zone 2 and form atomized gas.
- the thickness of the substrate 1 is 0.02 mm to 0.5 mm, and the thickness of the substrate is related to the penetration of the heating, so different thicknesses can be selected for different liquids.
- a further improvement to the above embodiment is that the width of the substrate 1 is 0.5-10 mm; the length of the substrate 1 is 2.0 mm-20 mm.
- the above preferred dimensions can be adjusted according to the size of the atomizing device, in order to allow the substrate 1 to adapt to structural installation.
- a double-sided heating glass heating sheet is provided with a substrate 1, a permeation zone 2, a first heating element 3, and a second heating element 4.
- the substrate 1 is made of amorphous inorganic non-metallic material, and the substrate 1 has a first surface 11 and a second surface 12;
- the permeation zone 2 is arranged on the substrate 1, and connects the first surface 11 with the second surface 12, and allows liquid to pass through at least under the action of negative pressure;
- the first heating element 3 is arranged on the first surface 11, and the first heating element 3 is used to preheat the liquid entering the permeation zone 2 through the first surface 11;
- the second heating element 4 is arranged on the second surface 12, and the second heating element 4 is used to heat the liquid in the permeation zone 2 and form atomized gas.
- the permeation zone 2 is composed of a plurality of micropores 21, and the plurality of micropores 21 penetrate from the first surface 11 to the second surface 12.
- the permeation zone 2 designed with a plurality of micropores 21 can be directly formed by laser drilling during the processing process, which is convenient for the structure processing of the glass substrate 1 and suitable for mass production.
- a further improvement to the above embodiment is that the diameter of the micropores 21 is 0.01 mm to 0.5 mm.
- the micropores 21 of smaller size are used in order to lock the liquid when not in use and prevent leakage.
- the heating temperature of the first heating element 3 is lower than the heating temperature of the second heating element 4, that is, the resistance of the first heating element 3 is lower than the resistance of the second heating element 4.
- the two can be connected to a conductive structure. When power is turned on, different heat is generated due to different resistances, and there is no need to connect a separate power supply for control.
- a double-sided heating glass heating sheet is provided with a substrate 1, a permeation zone 2, a first heating element 3, and a second heating element 4.
- the substrate 1 is made of amorphous inorganic non-metallic material, and the substrate 1 has a first surface 11 and a second surface 12;
- the permeation zone 2 is arranged on the substrate 1, and connects the first surface 11 with the second surface 12, and allows liquid to pass through at least under the action of negative pressure;
- the first heating element 3 is arranged on the first surface 11, and the first heating element 3 is used to preheat the liquid entering the permeation zone 2 through the first surface 11;
- the second heating element 4 is arranged on the second surface 12, and the second heating element 4 is used to heat the liquid in the permeation zone 2 and form atomized gas.
- the permeation zone 2 is composed of a plurality of micropores 21, and the plurality of micropores 21 penetrate from the first surface 11 to the second surface 12.
- the permeation zone 2 designed with a plurality of micropores 21 can be directly formed by laser drilling during the processing process, which is convenient for the structure processing of the glass substrate 1 and suitable for mass production.
- the diameter of the micropores 21 is 0.01 mm to 0.5 mm.
- the purpose of using the micropores 21 of smaller size is to lock the liquid when not in use and prevent leakage.
- the heating temperature of the first heating element 3 is the same as the heating temperature of the second heating element 4, that is, the resistance of the first heating element 3 is the same as the resistance of the second heating element 4.
- the two can be connected to a separate conductive structure to generate the same heat when powered on, thereby improving the heating efficiency.
- the glass heating element is tested, and the tested parameters are compared with the mainstream ceramic heating core in the market, as shown in the following table:
- the working temperature of glass heating element is lower than that of mainstream ceramic heating core in the market, but it can reach the average consumption close to that of ceramic heating core, and it is safer and has longer service life than ceramic heating core.
- test method for changes in the total particulate matter transmission amount of smoke adopts the test method in “Appendix D Standard Puffing Conditions for Electronic Cigarettes” in the national standard for electronic cigarettes (GB 41700-2022).
- test results of the change in the total particulate matter transmission amount of the smoke refer to the relevant requirements of "Appendix C Determination of the Atomization Gas Capture Amount" in the General Technical Specifications for Atomizing Electronic Cigarette Devices (T/CECC 001-2021).
- the average consumption of atomizing gas is related to the user experience.
- the first heating element 3 includes a first contact terminal 31 and a first heating circuit 32, the first contact terminal 31 is used to connect to electricity, the first heating circuit 32 passes through the penetration zone 2, the first contact terminal 31 is provided with two, respectively, positive and negative contact terminals, in a further embodiment, the second heating element 4 includes a second contact terminal 41 and a second heating circuit 42, the second contact terminal 41 is electrically connected to the first contact terminal 31, the second heating circuit 42 passes through the penetration zone 2, the second contact terminal 41 is provided with two, respectively, positive and negative contact terminals; similar to the above embodiments, in this embodiment, two second contact terminals 41 are used to power the second heating circuit 42, and the second contact terminal 41 is electrically connected to the first contact terminal 31, for the purpose of powering the first heating circuit 32, specifically, the resistance of the first heating circuit 32 is less than the resistance of the second heating circuit 42, and different heating temperatures can be generated under the same power supply, thereby realizing single power connection
- the resistance values of the two heating elements are 1.0-1.3 ⁇
- the dry-burning temperature is 600-700°C
- the heating efficiency of the heating circuit can reach above 100°C in 0.3s.
- An atomization device including any of the above embodiments adopts the heating plate of the above structure, which can preheat the liquid before atomization, thereby ensuring the subsequent heating efficiency and the taste of the liquid after atomization is richer and more layered.
- the present invention adopts amorphous inorganic non-metallic materials as a basis, preferably glass, and arranges a first heating element 3 and a second heating element 4 on both sides respectively.
- the atomized liquid can be preheated by the first heating element 3 first, and then heated by the second heating element 4 to form an aerosol gas.
- the preheating and reheating reduce a process from the condensation state to the heating of the liquid, and can be heated and atomized more quickly, thereby improving the atomization effect.
- a substrate 1 a permeation zone 2, a first heating element 3, and a second heating element 4 are provided.
- the substrate 1 is made of amorphous inorganic non-metallic material, and has a first surface 11 and a second surface 12.
- the permeation zone 2 is provided on the substrate 1, and connects the first surface 11 with the second surface 12, and allows liquid to pass through at least under the action of negative pressure.
- the first heating element 3 is provided on the first surface 11, and the first heating element 3 is used to preheat the liquid that enters the permeation zone 2 through the first surface 11.
- the second heating element 4 is provided on the second surface 12, and the second heating element 4 is used to heat the liquid in the permeation zone 2 and form atomized gas.
- the substrate 1 has two surfaces, and the two surfaces are connected through the permeation zone 2.
- the first heating element 3 can preheat the liquid from the liquid guide, and then heat and atomize it when it passes through the permeation zone 2 and enters the second heating element 4.
- the liquid is atomized after being preheated, and the atomization efficiency is high.
Landscapes
- Resistance Heating (AREA)
Abstract
一种双面发热的玻璃发热片及雾化装置,包括基体(1),渗透区(2),第一加热元件(3),以及第二加热元件(4),基体(1)由非晶无机非金属材料制成,基体(1)具有第一面(11)和第二面(12);渗透区(2)设于基体(1)、并将第一面(11)与第二面(12)连通,且至少在负压作用下可以让液体通过;第一加热元件(3)设于第一面(11),第一加热元件(3)用于对经过第一面(11)进入渗透区(2)的液体进行预热;第二加热元件(4)设于第二面(12),第二加热元件(4)用于对渗透区(2)的液体进行加热、并形成雾化气体。该雾化装置预热后再经过第二加热元件(4)进行加热形成气溶胶气体,在预热后再加热,减少了液体从冷凝状态至加热的一个过程,可更加快速的进行加热雾化,进而提升雾化效果。
Description
本发明涉及液体雾化技术领域,特别是涉及一种双面发热的玻璃发热片及雾化装置。
电子雾化设备包括雾化装置和为雾化装置供电的供电器,雾化装置内部构建有储液腔、气流通道及电子雾化组件。供电器开设有容纳槽,雾化装置安装于容纳槽内,并与供电器建立电性连接。当供电器为雾化装置内部的电子雾化组件供电时,雾化组件将储液腔内部存储的溶液雾化成气雾排出。
雾化发热片,是雾化装置的必备元件之一,其作用是将液体加热雾化,现有的雾化发热片包括有发热丝、陶瓷发热体、晶元发热片等等,以上传统发热结构在使用时都是直接对液体加热形成雾化气体,没有对液体进行预热,在冷凝情况下加热时间较长,同时在冷凝后直接加热的气雾口感较差。
为解决上述问题,本发明提供一种预热后再经过第二加热元件进行加热形成气溶胶气体,在预热后再加热,减少了液体从冷凝状态至加热的一个过程,可更加快速的进行加热雾化,进而提升雾化效果的双面发热的玻璃发热片及雾化装置。
本发明所采用的技术方案是:一种双面发热的玻璃发热片,包括基体,渗透区,第一加热元件,以及第二加热元件,所述基体由非晶无机非金属材料制成,所述基体具有第一面和第二面;所述渗透区设于基体、并将第一面与第二面连通,且至少在负压作用下可以让液体通过;所述第一加热元件设于第一面,所述第一加热元件用于对经过第一面进入渗透区的液体进行预热;所述第二加热元件设于第二面,所述第二加热元件用于对渗透区的液体进行加热、并形成雾化气体。
对上述方案的进一步改进为,所述第一面与第二面分别为基体的上下表面。
对上述方案的进一步改进为,所述基体的厚度尺寸为0.02mm~0.5mm。
对上述方案的进一步改进为,所述基体的宽度尺寸为0.5~10mm;所述基体的长度尺寸为2.0mm~20mm。
对上述方案的进一步改进为,所述渗透区由多个微孔构成,多个所述微孔从第一面贯通到第二面。
对上述方案的进一步改进为,所述微孔的直径尺寸为0.01mm~0.5mm。
对上述方案的进一步改进为,所述第一加热元件的加热温度小于第二加热元件的加热温度。
对上述方案的进一步改进为,所述第一加热元件包括第一接触端以及第一发热线路,所述第一接触端用于接电,所述第一发热线路通过渗透区,所述第一接触端设有两个、并分别为正负极接触端。
对上述方案的进一步改进为,所述第二加热元件包括第二接触端以及第二发热线路,所述第二接触端与第一接触端电连接,所述第二发热线路通过渗透区,所述第二接触端设有两个、并分别为正负极接触端。
一种雾化装置,包括所述的双面发热的玻璃发热片。
相比现有的发热片结构,本发明采用非晶无机非金属材料作为基础,优选为玻璃,并在双面分别设置第一加热元件和第二加热元件,在雾化装置上使用时,可先通过第一加热元件对被雾化的液体进行预热,预热后再经过第二加热元件进行加热形成气溶胶气体,在预热后再加热,减少了液体从冷凝状态至加热的一个过程,可更加快速的进行加热雾化,进而提升雾化效果,在针对不同的液体雾化后也能具有不同的层次感,在雾化使用中效果更佳;解决了现有在液体由冷凝至加热需要一个较长的过程,也杜绝了使用时雾化效率低,雾化出料的气雾口感没有层次感的问题。具体是,设置了基体,渗透区,第一加热元件,以及第二加热元件,所述基体由非晶无机非金属材料制成,所述基体具有第一面和第二面;所述渗透区设于基体、并将第一面与第二面连通,且至少在负压作用下可以让液体通过;所述第一加热元件设于第一面,所述第一加热元件用于对经过第一面进入渗透区的液体进行预热;所述第二加热元件设于第二面,所述第二加热元件用于对渗透区的液体进行加热、并形成雾化气体。基体上具有两个面,两个面通过渗透区连通,第一加热元件可从液体导向中现将液体预热,经过渗透区进入到第二加热元件时再进行加热雾化,对液体预热后雾化,雾化效率高。
图1 为本发明双面发热的玻璃发热片的立体示意图;
图2 为图1中双面发热的玻璃发热片另一视角的立体示意图;
图3 为图1中双面发热的玻璃发热片的俯视示意图;
图4 为图3中A-A的剖视图。
附图标记说明:基体1、第一面11、第二面12、渗透区2、微孔21、第一加热元件3、第一接触端31、第一发热线路32、第二加热元件4、第二接触端41、第二发热线路42。
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本发明的一种实施例中,如图1~图4所示,涉及了一种双面发热的玻璃发热片,设置了基体1,渗透区2,第一加热元件3,以及第二加热元件4,所述基体1由非晶无机非金属材料制成,所述基体1具有第一面11和第二面12;所述渗透区2设于基体1、并将第一面11与第二面12连通,且至少在负压作用下可以让液体通过;所述第一加热元件3设于第一面11,所述第一加热元件3用于对经过第一面11进入渗透区2的液体进行预热;所述第二加热元件4设于第二面12,所述第二加热元件4用于对渗透区2的液体进行加热、并形成雾化气体。
对上述实施例的进一步改进为,第一面11与第二面12分别为基体1的上下表面,本实施例中,将第一面11与第二面12设置为基体1的上下表面,以便一面贴合导油元件,另一面将液体雾化后导出,适用于雾化器的液体雾化。
本发明的另一实施例中,参阅图1~图4所示,一种双面发热的玻璃发热片,设置了基体1,渗透区2,第一加热元件3,以及第二加热元件4,所述基体1由非晶无机非金属材料制成,所述基体1具有第一面11和第二面12;所述渗透区2设于基体1、并将第一面11与第二面12连通,且至少在负压作用下可以让液体通过;所述第一加热元件3设于第一面11,所述第一加热元件3用于对经过第一面11进入渗透区2的液体进行预热;所述第二加热元件4设于第二面12,所述第二加热元件4用于对渗透区2的液体进行加热、并形成雾化气体。基体1的厚度尺寸为0.02mm~0.5mm,基体的厚度尺寸与加热的穿透性相关,因而可以针对不同的液体选择不同的厚度。
对上述实施例的进一步改进为,基体1的宽度尺寸为0.5~10mm;所述基体1的长度尺寸为2.0mm~20mm,以上采用优选的尺寸,可根据雾化装置的大小不同适应调整尺寸,目的是让基体1能够适应结构安装。
本发明的另一实施例中,如图1~图4所示,一种双面发热的玻璃发热片,设置了基体1,渗透区2,第一加热元件3,以及第二加热元件4,所述基体1由非晶无机非金属材料制成,所述基体1具有第一面11和第二面12;所述渗透区2设于基体1、并将第一面11与第二面12连通,且至少在负压作用下可以让液体通过;所述第一加热元件3设于第一面11,所述第一加热元件3用于对经过第一面11进入渗透区2的液体进行预热;所述第二加热元件4设于第二面12,所述第二加热元件4用于对渗透区2的液体进行加热、并形成雾化气体。渗透区2由多个微孔21构成,多个所述微孔21从第一面11贯通到第二面12,采用多个微孔21设计的渗透区2,在加工过程中可直接通过激光打孔加工形成,对采用玻璃基体1的结构加工方便,适合大批量生产。
对上述实施例的进一步改进为,微孔21的直径尺寸为0.01mm~0.5mm,采用较小尺寸的微孔21,目的是在不使用时能够锁住液体,不会出现漏液现象。
以上实施例中,当微孔21的直径尺寸为0.08mm时,第一加热元件3的加热温度小于第二加热元件4的加热温度,即第一加热元件3的电阻小于第二加热元件4的电阻,可将两者连接一个导电结构,在通电时由于不同电阻作用下产生不同的热量,不需要单独连接电源进行控制。
本发明的另一实施例中,如图1~图4所示,一种双面发热的玻璃发热片,设置了基体1,渗透区2,第一加热元件3,以及第二加热元件4,所述基体1由非晶无机非金属材料制成,所述基体1具有第一面11和第二面12;所述渗透区2设于基体1、并将第一面11与第二面12连通,且至少在负压作用下可以让液体通过;所述第一加热元件3设于第一面11,所述第一加热元件3用于对经过第一面11进入渗透区2的液体进行预热;所述第二加热元件4设于第二面12,所述第二加热元件4用于对渗透区2的液体进行加热、并形成雾化气体。渗透区2由多个微孔21构成,多个所述微孔21从第一面11贯通到第二面12,采用多个微孔21设计的渗透区2,在加工过程中可直接通过激光打孔加工形成,对采用玻璃基体1的结构加工方便,适合大批量生产。
上述实施例中,微孔21的直径尺寸为0.01mm~0.5mm,采用较小尺寸的微孔21,目的是在不使用时能够锁住液体,不会出现漏液现象。
以上各个实施例中,第一加热元件3的加热温度与第二加热元件4的加热温度相同,即第一加热元件3的电阻与第二加热元件4的电阻相同,可将两者连接单独连接导电结构,在通电时产生同样的热量,提升加热效率。
以上各个实施例中,针对玻璃发热片进行测试,并对所测试的参数与市场主流的陶瓷发热芯进行对比,详细见下表:
结论:玻璃发热片工作温度比市场主流陶瓷发热芯的工作温度低,但能达到接近陶瓷发热芯的平均消耗量,且相比陶瓷发热芯更加安全、使用寿命更长。
备注:
1.烟气总粒相物传输量的变化测试方法采用电子烟国标(GB 41700-2022)中“附录D 电子烟标准抽吸条件”中的测试方法。
2.烟气总粒相物传输量的变化测试结果参考雾化电子烟装置通用技术规范(T/CECC 001-2021)中“附录C 雾化气体捕集量的测定”的相关要求,雾化气体平均消耗量与用户体验相关。
参阅图1~图4所示,对上述两个实施例3和/或 4的进一步改进为,第一加热元件3包括第一接触端31以及第一发热线路32,所述第一接触端31用于接电,所述第一发热线路32通过渗透区2,所述第一接触端31设有两个、并分别为正负极接触端,进一步的实施例中,第二加热元件4包括第二接触端41以及第二发热线路42,所述第二接触端41与第一接触端31电连接,所述第二发热线路42通过渗透区2,所述第二接触端41设有两个、并分别为正负极接触端;同于上述实施例,本实施例中,采用两个的第二接触端41用于第二发热线路42供电,同时第二接触端41与第一接触端31电连接,目的是用于第一发热线路32供电,具体来说,第一发热线路32的电阻小于第二发热线路42的电阻,能够在同样供电作用下产生不同的发热温度,进而实现单接电双温度的控制。
上述实施例5中,在加热时,两个发热元件的电阻值为1.0~1.3Ω,干烧温度为600~700℃,发热线路发热效率为0.3s可达到100℃以上。
一种包括上述任意实施例的雾化装置,采用了上述结构的发热片,能够对液体雾化前进行预热,能够保证后续的加热效率和液体雾化后的口感更佳丰富,更具层次感。
本发明采用非晶无机非金属材料作为基础,优选为玻璃,并在双面分别设置第一加热元件3和第二加热元件4,在雾化装置上使用时,可先通过第一加热元件3对被雾化的液体进行预热,预热后再经过第二加热元件4进行加热形成气溶胶气体,在预热后再加热,减少了液体从冷凝状态至加热的一个过程,可更加快速的进行加热雾化,进而提升雾化效果,在针对不同的液体雾化后也能具有不同的层次感,在雾化使用中效果更佳;解决了现有在液体由冷凝至加热需要一个较长的过程,也杜绝了使用时雾化效率低,雾化出料的气雾口感没有层次感的问题。具体是,设置了基体1,渗透区2,第一加热元件3,以及第二加热元件4,所述基体1由非晶无机非金属材料制成,所述基体1具有第一面11和第二面12;所述渗透区2设于基体1、并将第一面11与第二面12连通,且至少在负压作用下可以让液体通过;所述第一加热元件3设于第一面11,所述第一加热元件3用于对经过第一面11进入渗透区2的液体进行预热;所述第二加热元件4设于第二面12,所述第二加热元件4用于对渗透区2的液体进行加热、并形成雾化气体。基体1上具有两个面,两个面通过渗透区2连通,第一加热元件3可从液体导向中现将液体预热,经过渗透区2进入到第二加热元件4时再进行加热雾化,对液体预热后雾化,雾化效率高。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种双面发热的玻璃发热片,其特征在于:包括基体,所述基体由非晶无机非金属材料制成,所述基体具有第一面和第二面;渗透区,所述渗透区设于基体、并将第一面与第二面连通,且至少在负压作用下可以让液体通过;第一加热元件,所述第一加热元件设于第一面,所述第一加热元件用于对经过第一面进入渗透区的液体进行预热;第二加热元件,所述第二加热元件设于第二面,所述第二加热元件用于对渗透区的液体进行加热、并形成雾化气体。
- 根据权利要求1所述的双面发热的玻璃发热片,其特征在于:所述第一面与第二面分别为基体的上下表面。
- 根据权利要求1所述的双面发热的玻璃发热片,其特征在于:所述基体的厚度尺寸为0.02mm~0.5mm。
- 根据权利要求1所述的双面发热的玻璃发热片,其特征在于:所述基体的宽度尺寸为0.5~10mm;所述基体的长度尺寸为2.0mm~20mm。
- 根据权利要求1所述的双面发热的玻璃发热片,其特征在于:所述渗透区由多个微孔构成,多个所述微孔从第一面贯通到第二面。
- 根据权利要求5所述的双面发热的玻璃发热片,其特征在于:所述微孔的直径尺寸为0.01mm~0.5mm。
- 根据权利要求1所述的双面发热的玻璃发热片,其特征在于:所述第一加热元件的加热温度小于第二加热元件的加热温度。
- 根据权利要求1所述的双面发热的玻璃发热片,其特征在于:所述第一加热元件包括第一接触端以及第一发热线路,所述第一接触端用于接电,所述第一发热线路通过渗透区,所述第一接触端设有两个、并分别为正负极接触端。
- 根据权利要求8所述的双面发热的玻璃发热片,其特征在于:所述第二加热元件包括第二接触端以及第二发热线路,所述第二接触端与第一接触端电连接,所述第二发热线路通过渗透区,所述第二接触端设有两个、并分别为正负极接触端。
- 一种雾化装置,其特征在于:包括权利要求1~9任意一项所述的双面发热的玻璃发热片。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211537678.4A CN115944121A (zh) | 2022-12-02 | 2022-12-02 | 双面发热的玻璃发热片及雾化装置 |
CN202211537678.4 | 2022-12-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024113745A1 true WO2024113745A1 (zh) | 2024-06-06 |
Family
ID=87285131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/098677 WO2024113745A1 (zh) | 2022-12-02 | 2023-06-06 | 双面发热的玻璃发热片及雾化装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115944121A (zh) |
WO (1) | WO2024113745A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115944121A (zh) * | 2022-12-02 | 2023-04-11 | 东莞市克莱鹏雾化科技有限公司 | 双面发热的玻璃发热片及雾化装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110447966A (zh) * | 2019-08-12 | 2019-11-15 | 深圳麦克韦尔科技有限公司 | 发热体、雾化器和电子雾化装置 |
CN111109665A (zh) * | 2020-01-17 | 2020-05-08 | 深圳麦克韦尔科技有限公司 | 电子雾化装置及其雾化器和发热体 |
WO2022078448A1 (zh) * | 2020-10-14 | 2022-04-21 | 深圳市新宜康科技股份有限公司 | 加热雾化组件、雾化器以及电子雾化装置 |
CN114521676A (zh) * | 2020-11-23 | 2022-05-24 | 深圳市新宜康创新技术有限公司 | 雾化加热组件、雾化器和电子雾化装置 |
CN217885090U (zh) * | 2022-07-18 | 2022-11-25 | 东莞市克莱鹏雾化科技有限公司 | 基于玻璃基体的雾化片及雾化装置 |
CN115944121A (zh) * | 2022-12-02 | 2023-04-11 | 东莞市克莱鹏雾化科技有限公司 | 双面发热的玻璃发热片及雾化装置 |
-
2022
- 2022-12-02 CN CN202211537678.4A patent/CN115944121A/zh active Pending
-
2023
- 2023-06-06 WO PCT/CN2023/098677 patent/WO2024113745A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110447966A (zh) * | 2019-08-12 | 2019-11-15 | 深圳麦克韦尔科技有限公司 | 发热体、雾化器和电子雾化装置 |
CN111109665A (zh) * | 2020-01-17 | 2020-05-08 | 深圳麦克韦尔科技有限公司 | 电子雾化装置及其雾化器和发热体 |
WO2022078448A1 (zh) * | 2020-10-14 | 2022-04-21 | 深圳市新宜康科技股份有限公司 | 加热雾化组件、雾化器以及电子雾化装置 |
CN114521676A (zh) * | 2020-11-23 | 2022-05-24 | 深圳市新宜康创新技术有限公司 | 雾化加热组件、雾化器和电子雾化装置 |
CN217885090U (zh) * | 2022-07-18 | 2022-11-25 | 东莞市克莱鹏雾化科技有限公司 | 基于玻璃基体的雾化片及雾化装置 |
CN115944121A (zh) * | 2022-12-02 | 2023-04-11 | 东莞市克莱鹏雾化科技有限公司 | 双面发热的玻璃发热片及雾化装置 |
Also Published As
Publication number | Publication date |
---|---|
CN115944121A (zh) | 2023-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200315251A1 (en) | Heating element and method for fabricating the same and electronic atomizer | |
US20220338543A1 (en) | Electronic atomization apparatus, and atomizer and heating body of electronic atomization apparatus | |
WO2024113745A1 (zh) | 双面发热的玻璃发热片及雾化装置 | |
US11589428B2 (en) | Electronic cigarette, atomizer and heating assembly thereof | |
CN112931952A (zh) | 一种雾化芯及电子雾化装置 | |
WO2020238607A1 (zh) | 雾化件及电子烟 | |
CN111109665A (zh) | 电子雾化装置及其雾化器和发热体 | |
US20220256924A1 (en) | Atomizing assembly and electronic atomizing device | |
CN104983078A (zh) | 一种电子烟雾化器及电子烟 | |
KR20210064213A (ko) | 에어로졸 발생 시스템용 히터 조립체 | |
CN216701680U (zh) | 雾化芯、雾化器及气溶胶发生装置 | |
WO2022095900A1 (zh) | 气溶胶生成装置及其控制方法 | |
CN216019085U (zh) | 一种雾化芯及电子雾化装置 | |
WO2023169525A1 (zh) | 适用于液体基质的气溶胶生成器以及雾化单元 | |
WO2024119745A1 (zh) | 玻璃发热片及制备方法 | |
CN113729299A (zh) | 一种基于多孔结构的发热硅片及包含其的电子烟 | |
CN114794567A (zh) | 发热体、雾化组件及电子雾化装置 | |
WO2024082647A1 (zh) | 分体式玻璃发热片及雾化装置 | |
WO2022170726A1 (zh) | 发热体、雾化组件及电子雾化装置 | |
WO2022170728A1 (zh) | 发热体、雾化组件及电子雾化装置 | |
CN107125806B (zh) | 一种改进的复合陶瓷雾化器 | |
CN218784555U (zh) | 一种气溶胶发生器及系统 | |
WO2023109355A1 (zh) | 电子雾化装置及其发热组件和发热体 | |
WO2022170727A1 (zh) | 发热体、雾化组件及电子雾化装置 | |
WO2022170725A1 (zh) | 一种导液玻璃基体以及发热体的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23895911 Country of ref document: EP Kind code of ref document: A1 |