[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024111717A1 - Composite sheet with excellent thermal and electrical conductivity having reduced thermal resistance due to hardness control of carbon-based coating layer - Google Patents

Composite sheet with excellent thermal and electrical conductivity having reduced thermal resistance due to hardness control of carbon-based coating layer Download PDF

Info

Publication number
WO2024111717A1
WO2024111717A1 PCT/KR2022/018909 KR2022018909W WO2024111717A1 WO 2024111717 A1 WO2024111717 A1 WO 2024111717A1 KR 2022018909 W KR2022018909 W KR 2022018909W WO 2024111717 A1 WO2024111717 A1 WO 2024111717A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite sheet
electrical conductivity
carbon
excellent thermal
thermal
Prior art date
Application number
PCT/KR2022/018909
Other languages
French (fr)
Korean (ko)
Inventor
최현석
박정현
한상효
이종희
Original Assignee
주식회사 에스엠티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스엠티 filed Critical 주식회사 에스엠티
Priority to PCT/KR2022/018909 priority Critical patent/WO2024111717A1/en
Priority to KR1020247029464A priority patent/KR20240148371A/en
Publication of WO2024111717A1 publication Critical patent/WO2024111717A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic

Definitions

  • the present invention relates to a composite sheet with excellent thermal and electrical conductivity that reduces thermal resistance by controlling the hardness of a carbon-based coating layer. More specifically, it relates to a composite sheet that reduces thermal resistance by controlling the hardness of a conductive layer containing a carbon-based compound and a polymer binder. It relates to a composite sheet with excellent thermal and electrical conductivity that reduces .
  • the purpose of the present invention is to provide a composite sheet with excellent thermal and electrical conductivity that satisfies sufficient hardness and low thermal resistance by reducing thermal resistance through controlling the hardness of the carbon-based coating layer.
  • a composite sheet with excellent thermal conductivity and electrical conductivity which is an embodiment of the present invention, includes a base material; A primer layer formed on at least one side of the substrate; and a conductive layer formed on the primer layer and including a carbon-based compound and a polymer binder, wherein Shore A hardness is in the range of 50 to 95 Shore A.
  • the polymer binder is characterized in that it contains a base material, a curing agent, and a filler.
  • the weight ratio of the base material and the curing agent is characterized in that it is 1:0.6 to 1.2.
  • the main agent is a compound containing a vinyl group
  • the curing agent is a compound containing a hydrogen group, and crosslinking occurs when the vinyl group of the main agent reacts with the hydrogen group of the curing agent.
  • the weight ratio of the carbon-based compound and the polymer binder is characterized in that 1:0.2 to 30.
  • the carbon-based compound is characterized in that its maximum diameter is 0.01 to 100 ⁇ m.
  • the carbon-based compound is one or more selected from the group consisting of graphite, carbon nanotubes (CNT), graphene, graphene oxide, carbon fiber and fullerene, carbon, nanocarbon, and carbon black. It is characterized by including.
  • the polymer binder is characterized in that it is at least one selected from the group consisting of thermosetting silicone rubber compounds, one-component thermosetting silicone binders, two-component thermosetting silicone binders, acrylic resins, epoxy resins, urethane resins, and urea-based resins.
  • the conductive layer is characterized in that it has a thickness of 5 to 450 ⁇ m.
  • the conductive layer is characterized by an average density of 1.0 to 5.0 g/cc.
  • the conductive layer is characterized by a porosity of 5% or less.
  • the thermal resistance of the composite sheet is characterized in that it ranges from 0.8 to 1.3 K/W.
  • the ratio of (shore A hardness)/(thermal resistance) of the composite sheet is characterized in that it ranges from 50 to 90 (shore A)/(K/W).
  • the process yield can be reduced by reducing thermal resistance through controlling the hardness of the carbon-based coating layer by varying the ratio of the base material and the curing agent.
  • a composite sheet with excellent thermal conductivity and electrical conductivity which is an embodiment of the present invention, includes a base material; A primer layer formed on at least one side of the substrate; and a conductive layer formed on the primer layer and including a carbon-based compound and a polymer binder.
  • the shore A hardness of the composite sheet of the present invention is preferably 50 to 95 shore A, more preferably 75 to 95 shore A, and most preferably 80 to 95 shore A. Additionally, the thermal resistance of the composite sheet is preferably 0.8 to 1.3 K/W, and more preferably 1.0 to 1.2 K/W. Additionally, the wear resistance of the composite sheet is preferably 2 to 3%, and preferably 2 to 2.7%. If it is less than the above range, the contact interface thermal resistance will be lowered, but workability such as surface staining and scratches will deteriorate during work, and if it is greater than the above range, the contact interface thermal resistance will increase and the thermal resistance will increase, which is not desirable. .
  • (Shore A hardness)/(thermal resistance) of the composite sheet can be used in the range of 50 to 90 (shore A)/(K/W). More preferably, (Shore A hardness)/(heat resistance) can be 58 to 86 (shore A)/(K/W), and most preferably 78 to 86 (shore A)/(K/W). . In the above range, heat resistance and workability characteristics without increased yield can be obtained.
  • a conductive layer is formed on the primer layer, and the conductive layer includes a carbon-based compound and a polymer binder.
  • the carbon-based compound is a material that has thermal and electrical conductivity
  • the polymer binder is a material that helps the bonding force between the carbon-based compounds or between the conductive layer and the primer layer.
  • the composite sheet has excellent thermal and electrical conductivity as it contains a carbon-based compound having thermal and electrical conductivity, so when the composite sheet is used as a heat dissipation material for various electrical and electronic processing equipment, including semiconductor processing equipment, it is possible to quickly It has the advantage of solving local heat concentration problems by enabling heat transfer and preventing electromagnetic instability such as charging by plasma.
  • the conductive layer includes a carbon-based compound and a polymer binder, and the weight ratio of the carbon-based compound and the polymer binder is preferably 1:0.2 to 30, more preferably 1:0.5 to 15, and most preferably 1:1 to 2. It can be. If the weight ratio of the carbon-based compound and the polymer binder is less than 1:0.2, the adhesion between the polymer binder and the primer layer may decrease, causing delamination, and the filler may form on the surface due to the binder's inability to hold the carbon-based compound. It may smear, and if it exceeds 1:30, the polymer binder content may be too high and thermal and electrical conductivity may be lowered.
  • the maximum particle diameter of the carbon-based compound is not particularly limited, but in order to prevent the thickness of the conductive layer from becoming too thick and to make the thickness of the conductive layer uniform, the maximum particle diameter of the carbon-based compound is preferably 0.01 to 0.01. 100 ⁇ m can be used, more preferably 0.1 to 70 ⁇ m, and most preferably 0.5 to 50 ⁇ m.
  • Carbon-based compounds included in the conductive layer include carbon black, graphite, carbon nanotubes (CNT), graphene, graphene oxide, carbon fiber and fullerene, carbon, nanocarbon, and carbon black. It may include one or more selected from the group consisting of.
  • the conductive layer can exhibit high conductivity characteristics not only in the vertical direction but also in the horizontal direction on one side of the conductive layer.
  • the carbon-based compound included in the conductive layer may include graphite. These individual particles of graphite may have a flake form, have a maximum diameter of 0.01 to 100 ⁇ m, and have a density of 1.5 to 3.0 g/cm3.
  • polymer binder It is preferable to use a material with excellent conductivity and shock absorption properties as the polymer binder.
  • materials that can be used as such polymer binders include one or more selected from the group consisting of thermosetting silicone rubber compounds, one-component thermosetting silicone binders, two-component thermosetting silicone binders, acrylic resins, epoxy resins, urethane resins, and urea resins. These materials can be used, but due to their excellent adhesive strength, there is no need to provide a separate adhesive layer, which simplifies work fixation and reduces the production cost of the final product.
  • the polymer binder is characterized in that it contains a base material, a curing agent, and a filler. Additionally, it may further contain additives such as adhesion agents, coupling agents, and pigments.
  • the weight ratio of the base material and the curing agent of the present invention can be 1:0.6 to 1.2, and more preferably 1:0.9 to 1.2.
  • the main agent is a compound containing a vinyl group
  • the curing agent may be a compound containing a hydrogen group.
  • the compound represented by Formula 1 can be used as the main agent
  • the compound represented by Formula 2 can be used as the curing agent.
  • n1 is an integer from 10 to 150
  • n2 is an integer from 10 to 150
  • the vinyl group of the above-mentioned subject and the hydrogen group of the curing agent react with heat or light to cause crosslinking and increase hardness.
  • the bonding reaction between the vinyl group of the compound represented by Formula 1 and the hydrogen group of the compound represented by Formula 2 can be represented by Formula 3.
  • n1 is an integer from 10 to 150
  • n2 is an integer from 10 to 150
  • the composite sheet of the present invention can have excellent properties in terms of thermal conductivity and workability by including a compound represented by Formula 3 by reacting the compound represented by Formula 1 with the compound represented by Formula 2.
  • the conductive layer included in the composite sheet of the above embodiment may have an average density of 1.0 to 5.0 g/cc. If the average density of the conductive layer is less than 1.0 g/cc, thermal and electrical conductivity may be reduced, and if it exceeds 5.0 g/cc, the strength of the coating film may be reduced and the flexibility of the composite sheet may be reduced.
  • the porosity of the conductive layer may be 5.0% or less. If the porosity of the conductive layer exceeds 5.0%, the coating film strength, thermal conductivity, and electrical conductivity may decrease.
  • the conductive layer thickness may be preferably 5 to 400 ⁇ m, more preferably 10 to 300 ⁇ m, and most preferably 80 to 150 ⁇ m. If the thickness of the conductive layer is less than 5 ⁇ m, the bearing capacity of the composite sheet may be reduced due to the conductive layer being too thin. If it exceeds 400 ⁇ m, the flexibility of the composite sheet may decrease and thermal and electrical conductivity may decrease due to the inclusion of an excessively thick conductive layer.
  • a primer layer was applied on aluminum with a thickness of 40 ⁇ m as a base material, and a conductive coating composition was coated on it to form a conductive layer, thereby producing a composite sheet with a total thickness of 152 ⁇ m.
  • Shore hardness (Shore A) was measured under the condition of a total specimen thickness of 1 mm, heat resistance measurement conditions were measured at 1,100 kPa with a DynTIMS equipment, and wear resistance measurement conditions were measured at 50 rpm/500 cycles with a Taber wear tester CS-10 wheel. Measured.
  • Filler 1 used natural graphite powder with an average particle size (D50) of 10 ⁇ m
  • Filler 2 used spherical aluminum oxide (Al2O3) powder with an average particle size (D50) of 10 ⁇ m
  • Filler 3 had an average particle size (D50) of 10 ⁇ m.
  • Nickel-coated copper powder with a thickness of 10 ⁇ m was used.
  • a compound represented by Formula 1 (n1 is 135) was used as the main agent, and a compound represented by Formula 2 (n2 was 84) was used as a curing agent.
  • the additives were epoxy silane-based adhesion agent, methyl silane-based coupling agent, and carbon black pigment mixed in a weight ratio of 1:1:0.5. In the composite sheets of Examples and Comparative Examples, other conditions were the same and the conductive layer conditions were varied.
  • Table 1 is a table showing shore hardness (A), heat resistance (B), wear resistance, and the ratio of shore hardness and heat resistance (A/B) when the ratio of base material and hardener is different.
  • Examples 1 to 6 exhibit superior properties in terms of shore hardness, heat resistance, and wear resistance compared to Comparative Examples 1 to 3.
  • Table 2 is a table showing shore hardness (A), thermal resistance (B), wear resistance, and ratio of shore hardness and thermal resistance (A/B) when the ratio of base material and hardener is varied at various conductive layer densities. am.
  • Table 3 is a table showing shore hardness (A), heat resistance (B), wear resistance, and the ratio of shore hardness and heat resistance (A/B) when the ratio of base material and hardener is varied at various porosity.
  • Examples 10 to 12 exhibit superior properties in terms of shore hardness, heat resistance, and wear resistance compared to Comparative Examples 10 to 15.
  • the present invention is not limited to the above-mentioned embodiments, but can be manufactured in various different forms, and those skilled in the art will be able to form other specific forms without changing the technical idea or essential features of the present invention. You will be able to understand that this can be implemented. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to a thermally and electrically conductive composite sheet having reduced thermal resistance due to hardness control of a carbon-based coating layer, more specifically to a thermally and electrically conductive composite sheet having reduced thermal resistance due to hardness control of a conductive layer comprising a carbon-based compound and a polymer binder.

Description

카본계 코팅층 경도 제어를 통하여 열저항을 감소시킨 열전도성 및 전기전도성이 우수한 복합시트Composite sheet with excellent thermal and electrical conductivity that reduces thermal resistance by controlling the hardness of the carbon-based coating layer
본 발명은 카본계 코팅층 경도 제어를 통하여 열저항을 감소시킨 열전도성 및 전기전도성이 우수한 복합시트에 관한 것이며, 보다 상세하게는 탄소계 화합물과 고분자 바인더가 포함된 전도층의 경도를 제어하여 열저항을 감소시킨 열전도성 및 전기전도성이 우수한 복합시트에 관한 것이다. The present invention relates to a composite sheet with excellent thermal and electrical conductivity that reduces thermal resistance by controlling the hardness of a carbon-based coating layer. More specifically, it relates to a composite sheet that reduces thermal resistance by controlling the hardness of a conductive layer containing a carbon-based compound and a polymer binder. It relates to a composite sheet with excellent thermal and electrical conductivity that reduces .
진공 증착(Vacuum deposition), 건식 에칭(Dry etching)과 같은 플라즈마 (plasma)를 이용하는 반도체 제조공정 설비는, 공정 운영 시에 높은 플라즈마 밀도(plasma density)와 구동 전력에 의해 심각한 열문제와 다양한 전자기적(electro-magnetic) 문제들이 발생한다. 이러한 열적 및 전자기적 문제들로 인하여 실리콘 웨이퍼의 공정 수율이 지대하게 영향을 받게 되며, 특히 고전압을 인가하는 상하부 전극 부분의 열문제를 해결하는 것이 큰 과제이다.Semiconductor manufacturing process equipment that uses plasma, such as vacuum deposition and dry etching, suffers from serious thermal problems and various electromagnetic waves due to high plasma density and driving power during process operation. (electro-magnetic) problems arise. Due to these thermal and electromagnetic problems, the process yield of silicon wafers is greatly affected, and in particular, solving thermal problems in the upper and lower electrode parts where high voltage is applied is a major challenge.
한편, 반도체 공정설비 전극부분의 열문제와 플라즈마에 관련된 전자기적 불안정성을 해결하기 위한 수단으로써, 공정 설비의 전극 부분에 열전도성과 전기전도성이 높은 소재를 장착하여 빠른 열전달을 가능하게 하고, 국부적인 열집중 문제를 해결하는 방법을 사용하고 있다. 특히, 이때 전극 부분의 내부에 사용되는 방열재료의 열전도성 및 전기전도성에 따라 공정 수율에 지대한 영향을 미치므로, 열전도성 및 전기전도성이 우수한 발열재료의 소재를 개발하기 위한 연구가 이루어지고 있다.Meanwhile, as a means to solve the thermal problem of the electrode part of semiconductor processing equipment and the electromagnetic instability related to plasma, materials with high thermal and electrical conductivity are installed in the electrode part of the process equipment to enable rapid heat transfer and localized heat. We are using a method to solve concentration problems. In particular, since the thermal and electrical conductivity of the heat dissipating material used inside the electrode portion has a significant impact on the process yield, research is being conducted to develop a heat dissipating material with excellent thermal and electrical conductivity.
종래에는 이러한 반도체 공정설비용 방열재료로, Al, Cu와 같은 금속 포일(foil)에 전도성 카본 소재를 양면에 코팅한 복합재료가 많이 사용되고 있으나, 극한 플라즈마 환경하에서 지속적으로 노출되는 경우 금속 포일과 전도성 카본 소재가 분리(delamination)되는 문제가 발생하고 있다. 이는 반도체 공정시간이 경과함에 따라 공정수율에 영향을 미치는 요소로 작용하게 되며, 이를 해결하기 위한 솔루션을 찾는 시도가 이루어지고 있다.Conventionally, as a heat dissipation material for semiconductor processing equipment, a composite material coated on both sides with a conductive carbon material on a metal foil such as Al or Cu has been widely used. However, when continuously exposed to an extreme plasma environment, the metal foil and the conductivity become unstable. There is a problem with carbon material delamination. This acts as a factor affecting process yield as the semiconductor process time elapses, and attempts are being made to find a solution to solve this problem.
따라서, 방열 및 경도의 관점에서 플라즈마용 공정설비에 적용될 수 있는 복합시트에 대한 연구개발이 필요한 실정이다. Therefore, there is a need for research and development on composite sheets that can be applied to plasma processing equipment in terms of heat dissipation and hardness.
본 발명은 카본계 코팅층 경도 제어를 통하여 열저항을 감소시켜 충분한 경도와 낮은 열저항을 만족하는 열전도성 및 전기전도성이 우수한 복합시트를 제공하는 것을 목적으로 한다. The purpose of the present invention is to provide a composite sheet with excellent thermal and electrical conductivity that satisfies sufficient hardness and low thermal resistance by reducing thermal resistance through controlling the hardness of the carbon-based coating layer.
본 발명의 일 실시형태인 열전도성과 전기전도성이 우수한 복합시트는 기재; 상기 기재의 적어도 일면에 형성된 프라이머층; 및 상기 프라이머층 상에 형성되고, 탄소계 화합물과 고분자 바인더를 포함하는 전도층;을 포함하며,쇼어 A 경도는 50 내지 95 Shore A의 범위인 것을 특징으로 한다. A composite sheet with excellent thermal conductivity and electrical conductivity, which is an embodiment of the present invention, includes a base material; A primer layer formed on at least one side of the substrate; and a conductive layer formed on the primer layer and including a carbon-based compound and a polymer binder, wherein Shore A hardness is in the range of 50 to 95 Shore A.
상기 고분자 바인더는 주제, 경화제 및 필러를 포함하는 것을 특징으로 한다. The polymer binder is characterized in that it contains a base material, a curing agent, and a filler.
상기 주제 및 경화제의 중량 비율은 1:0.6 내지 1.2인 것을 특징으로 한다. The weight ratio of the base material and the curing agent is characterized in that it is 1:0.6 to 1.2.
상기 주제는 비닐기를 포함하는 화합물이며, 상기 경화제는 수소기를 포함하는 화합물이며, 상기 주제의 비닐기와 상기 경화제의 수소기가 반응하여 가교가 일어나는 것을 특징으로 한다. The main agent is a compound containing a vinyl group, and the curing agent is a compound containing a hydrogen group, and crosslinking occurs when the vinyl group of the main agent reacts with the hydrogen group of the curing agent.
상기 탄소계 화합물 및 상기 고분자 바인더의 중량비는 1:0.2 내지 30인 것을 특징으로 한다. The weight ratio of the carbon-based compound and the polymer binder is characterized in that 1:0.2 to 30.
상기 탄소계 화합물은 최대 직경이 0.01 내지 100㎛인 것을 특징으로 한다. The carbon-based compound is characterized in that its maximum diameter is 0.01 to 100㎛.
상기 탄소계 화합물은 그라파이트(graphite), 탄소나노튜브(CNT), 그래핀(Graphene), 산화 그래핀, 탄소 섬유 및 플러렌(Fullerene), 카본, 나노카본, 카본블랙으로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 한다. The carbon-based compound is one or more selected from the group consisting of graphite, carbon nanotubes (CNT), graphene, graphene oxide, carbon fiber and fullerene, carbon, nanocarbon, and carbon black. It is characterized by including.
상기 고분자 바인더는 열경화성 실리콘 고무 화합물, 일액형 열경화성 실리콘 바인더, 이액형 열경화성 실리콘 바인더, 아크릴계 수지, 에폭시계 수지, 우레탄계 수지 및 우레아계 수지로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 한다. The polymer binder is characterized in that it is at least one selected from the group consisting of thermosetting silicone rubber compounds, one-component thermosetting silicone binders, two-component thermosetting silicone binders, acrylic resins, epoxy resins, urethane resins, and urea-based resins.
상기 전도층은 두께가 5 내지 450㎛인 것을 특징으로 한다. The conductive layer is characterized in that it has a thickness of 5 to 450㎛.
상기 전도층은 평균 밀도가 1.0 내지 5.0 g/cc인 것을 특징으로 한다. The conductive layer is characterized by an average density of 1.0 to 5.0 g/cc.
상기 전도층은 기공률이 5% 이하인 것을 특징으로 한다. The conductive layer is characterized by a porosity of 5% or less.
복합시트의 열저항은 0.8 내지 1.3 K/W 의 범위인 것을 특징으로 한다.The thermal resistance of the composite sheet is characterized in that it ranges from 0.8 to 1.3 K/W.
복합시트의 (쇼어 A 경도)/(열저항)의 비는 50 내지 90 (shore A)/(K/W)의 범위인 것을 특징으로 한다. The ratio of (shore A hardness)/(thermal resistance) of the composite sheet is characterized in that it ranges from 50 to 90 (shore A)/(K/W).
본 발명의 열 및 전기전도성 복합시트에 의하면, 주제 및 경화제의 비율을 달리함으로써 카본계 코팅층 경도 제어를 통하여 열저항을 감소시켜 공정 수율을 감소시킬 수 있다. According to the thermal and electrically conductive composite sheet of the present invention, the process yield can be reduced by reducing thermal resistance through controlling the hardness of the carbon-based coating layer by varying the ratio of the base material and the curing agent.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있다. 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.The present invention is capable of various modifications and may have various embodiments. The terms used in this application are only used to describe specific embodiments and are not intended to limit the invention. Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless explicitly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.
본 발명의 일 실시형태인 열전도성과 전기전도성이 우수한 복합시트는 기재; 상기 기재의 적어도 일면에 형성된 프라이머층; 및 상기 프라이머층 상에 형성되고, 탄소계 화합물과 고분자 바인더를 포함하는 전도층;을 포함한다. A composite sheet with excellent thermal conductivity and electrical conductivity, which is an embodiment of the present invention, includes a base material; A primer layer formed on at least one side of the substrate; and a conductive layer formed on the primer layer and including a carbon-based compound and a polymer binder.
본 발명의 복합시트의 쇼어 A 경도는 50 내지 95 shore A 가 바람직하고, 75 내지 95 shore A 가 더욱 바람직하고, 80 내지 95 shore A 가 가장 바람직하다. 또한, 복합시트의 열저항은 0.8 내지 1.3 K/W 가 바람직하고, 1.0 내지 1.2 K/W 가 더욱 바람직하다. 또한, 복합시트의 내마모율은 2 내지 3 % 가 바람직하고, 2 내지 2.7 %가 바람직하다. 상기 범위보다 적은 경우에는 접촉 계면 열저항은 낮아지지만 작업 시에 표면 묻어남, 스크래치 등의 작업성은 나빠지며, 상기 범위보다 큰 경우에는 접촉 계면 열저항이 높아짐에 따라 열저항이 증가하여 바람직하지 않다. The shore A hardness of the composite sheet of the present invention is preferably 50 to 95 shore A, more preferably 75 to 95 shore A, and most preferably 80 to 95 shore A. Additionally, the thermal resistance of the composite sheet is preferably 0.8 to 1.3 K/W, and more preferably 1.0 to 1.2 K/W. Additionally, the wear resistance of the composite sheet is preferably 2 to 3%, and preferably 2 to 2.7%. If it is less than the above range, the contact interface thermal resistance will be lowered, but workability such as surface staining and scratches will deteriorate during work, and if it is greater than the above range, the contact interface thermal resistance will increase and the thermal resistance will increase, which is not desirable. .
상기 복합시트의 (쇼어 A 경도)/(열저항)은 50 내지 90 (shore A)/(K/W)의 범위인 사용할 수 있다. 더욱 바람직하게는 (쇼어 A 경도)/(열저항)은 58 내지 86 (shore A)/(K/W), 가장 바람직하게는 78 내지 86 (shore A)/(K/W)을 사용할 수 있다. 상기 범위에서 수율이 증가하지 않는 열저항과 작업성의 특성을 얻을 수 있다. (Shore A hardness)/(thermal resistance) of the composite sheet can be used in the range of 50 to 90 (shore A)/(K/W). More preferably, (Shore A hardness)/(heat resistance) can be 58 to 86 (shore A)/(K/W), and most preferably 78 to 86 (shore A)/(K/W). . In the above range, heat resistance and workability characteristics without increased yield can be obtained.
상기 일 실시예의 복합시트는 상기 프라이머층 상에 전도층이 형성되며, 상기 전도층은 탄소계 화합물 및 고분자 바인더를 포함한다. 상기 탄소계 화합물은 열전도성 및 전기전도성을 갖는 소재이고, 상기 고분자 바인더는 탄소계 화합물 상호간에 결합력을 도와주거나 전도층과 프라이머층간의 결합력을 도와주는 소재이다. In the composite sheet of one embodiment, a conductive layer is formed on the primer layer, and the conductive layer includes a carbon-based compound and a polymer binder. The carbon-based compound is a material that has thermal and electrical conductivity, and the polymer binder is a material that helps the bonding force between the carbon-based compounds or between the conductive layer and the primer layer.
상기 복합시트는 열전도성 및 전기전도성을 갖는 탄소계 화합물을 포함함에 따라 열전도성 및 전기전도성이 우수하여, 상기 복합시트를 반도체 공정설비를 포함한 다양한 전기전자 공정 설비의 방열재료로 사용하는 경우, 빠른 열전달을 가능하게 하여 국부적인 열집중 문제를 해결할 수 있고, 플라즈마에 의한 대전 등과 같은 전자기적 불안정성을 방지할 수 있는 장점이 있다. The composite sheet has excellent thermal and electrical conductivity as it contains a carbon-based compound having thermal and electrical conductivity, so when the composite sheet is used as a heat dissipation material for various electrical and electronic processing equipment, including semiconductor processing equipment, it is possible to quickly It has the advantage of solving local heat concentration problems by enabling heat transfer and preventing electromagnetic instability such as charging by plasma.
상기 전도층은 탄소계 화합물 및 고분자 바인더를 포함하며, 상기 탄소계 화합물 및 상기 고분자 바인더의 중량비는 바람직하게 1: 0.2 내지 30, 더욱 바람직하게 1: 0.5 내지 15, 가장 바람직하게 1: 1 내지 2일 수 있다. 상기 탄소계 화합물 및 상기 고분자 바인더의 중량비가 1:0.2 미만이면 고분자 바인더와 프라이머층 간의 접착력이 저하되어 박리(delamination)현상이 발생할 수 있고, 바인더가 탄소계 화합물 잡아주지 못함으로 인하여 표면에서 필러가 묻어날 수 있으며, 1:30 초과하면 고분자 바인더 함량이 너무 높아 열전도성 및 전기전도성이 낮아질 수 있다. The conductive layer includes a carbon-based compound and a polymer binder, and the weight ratio of the carbon-based compound and the polymer binder is preferably 1:0.2 to 30, more preferably 1:0.5 to 15, and most preferably 1:1 to 2. It can be. If the weight ratio of the carbon-based compound and the polymer binder is less than 1:0.2, the adhesion between the polymer binder and the primer layer may decrease, causing delamination, and the filler may form on the surface due to the binder's inability to hold the carbon-based compound. It may smear, and if it exceeds 1:30, the polymer binder content may be too high and thermal and electrical conductivity may be lowered.
상기 탄소계 화합물의 입자 최대 직경은 특별히 한정하는 것은 아니지만, 전도층의 두께가 지나치게 두꺼워지는 것을 방지하고, 전도층의 두께를 균일하게 하기 위해서는 상기 탄소계 화합물의 입자 최대 직경이 바람직하게는 0.01 내지 100㎛, 더욱 바람직하게는 0.1 내지 70㎛, 가장 바람직하게는 0.5 내지 50㎛인 것을 사용할 수 있다. The maximum particle diameter of the carbon-based compound is not particularly limited, but in order to prevent the thickness of the conductive layer from becoming too thick and to make the thickness of the conductive layer uniform, the maximum particle diameter of the carbon-based compound is preferably 0.01 to 0.01. 100㎛ can be used, more preferably 0.1 to 70㎛, and most preferably 0.5 to 50㎛.
상기 전도층에 포함되는 탄소계 화합물은 카본 블랙, 그라파이트(graphite), 탄소나노튜브(CNT), 그래핀 (Graphene), 산화 그래핀, 탄소 섬유 및 플러렌(Fullerene), 카본, 나노카본, 카본블랙으로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다. 이러한 탄소계 화합물을 포함함에 따라서 상기 전도층은 전도층 일변에 수직 방향뿐만 아니라, 수평 방향으로도 높은 전도도의 특성을 나타낼 수 있다. 바람직하게는, 상기 전도층에 포함되는 탄소계 화합물은 그라파이트를 포함할 수 있다. 이러한 그라파이트의 개별 입자는 편상(flake)형태를 가질 수 있으며, 최대 직경이 0.01 내지 100㎛일 수 있으며, 밀도가 1.5 내지 3.0g/㎤ 일 수 있다.Carbon-based compounds included in the conductive layer include carbon black, graphite, carbon nanotubes (CNT), graphene, graphene oxide, carbon fiber and fullerene, carbon, nanocarbon, and carbon black. It may include one or more selected from the group consisting of. By including such a carbon-based compound, the conductive layer can exhibit high conductivity characteristics not only in the vertical direction but also in the horizontal direction on one side of the conductive layer. Preferably, the carbon-based compound included in the conductive layer may include graphite. These individual particles of graphite may have a flake form, have a maximum diameter of 0.01 to 100 μm, and have a density of 1.5 to 3.0 g/cm3.
상기 고분자 바인더는 우수한 전도성 및 충격 흡수 특성을 갖는 물질을 사용하는 것이 바람직하다. 이러한 고분자 바인더로 사용될 수 있는 물질의 구체적인 예로는 열경화성 실리콘 고무 화합물, 일액형열경화성 실리콘 바인더, 이액형열경화성 실리콘 바인더, 아크릴계 수지, 에폭시계 수지, 우레탄계 수지 및 우레아계 수지로 이루어진 군에서 선택된 하나 이상을 사용할 수 있는데, 이러한 물질들은 자체의 우수한 점착력으로 인하여 별도의 점착층 등을 구비할 필요 없어서 작업 고정을 단순화 할 수 있고 최종 제품의 생산 단가를 절감시킬 수 있다.It is preferable to use a material with excellent conductivity and shock absorption properties as the polymer binder. Specific examples of materials that can be used as such polymer binders include one or more selected from the group consisting of thermosetting silicone rubber compounds, one-component thermosetting silicone binders, two-component thermosetting silicone binders, acrylic resins, epoxy resins, urethane resins, and urea resins. These materials can be used, but due to their excellent adhesive strength, there is no need to provide a separate adhesive layer, which simplifies work fixation and reduces the production cost of the final product.
상기 고분자 바인더는 주제, 경화제 및 필러를 포함하는 것을 특징으로 한다. 또한, 접착부여제, 커플링제, 안료 등의 첨가제를 더욱 포함할 수 있다. 본 발명의 상기 주제 및 경화제의 중량 비율은 1:0.6 내지 1.2인 것을 사용할 수 있고, 더욱 바람직하게는 1:0.9 내지 1.2인 것을 사용할 수 있다. The polymer binder is characterized in that it contains a base material, a curing agent, and a filler. Additionally, it may further contain additives such as adhesion agents, coupling agents, and pigments. The weight ratio of the base material and the curing agent of the present invention can be 1:0.6 to 1.2, and more preferably 1:0.9 to 1.2.
본 발명의 고분자 바인더의 일 실시형태에서, 상기 주제는 비닐기를 포함하는 화합물이며, 상기 경화제는 수소기를 포함하는 화합물을 사용할 수 있다. 바람직하게 주제는 화학식 1로 표시되는 화합물, 경화제는 화학식 2로 표시되는 화합물을 사용할 수 있다.In one embodiment of the polymer binder of the present invention, the main agent is a compound containing a vinyl group, and the curing agent may be a compound containing a hydrogen group. Preferably, the compound represented by Formula 1 can be used as the main agent, and the compound represented by Formula 2 can be used as the curing agent.
Figure PCTKR2022018909-appb-img-000001
Figure PCTKR2022018909-appb-img-000001
(여기서, n1은 10 내지 150의 정수이다) (where n1 is an integer from 10 to 150)
Figure PCTKR2022018909-appb-img-000002
Figure PCTKR2022018909-appb-img-000002
(여기서, n2는 10 내지 150의 정수이다)(where n2 is an integer from 10 to 150)
상기 주제의 비닐기와 상기 경화제의 수소기가 열 또는 광에 의하여 반응하여 가교가 일어나면서 경도의 증가를 가져오는게 열저항의 관점에서 바람직하다. 예를 들어, 화학식 1로 나타내는 화합물의 비닐기와 화학식 2로 나타나는 화합물의 수소기의 결합 반응은 화학식 3으로 나타낼 수 있다. From the viewpoint of heat resistance, it is preferable that the vinyl group of the above-mentioned subject and the hydrogen group of the curing agent react with heat or light to cause crosslinking and increase hardness. For example, the bonding reaction between the vinyl group of the compound represented by Formula 1 and the hydrogen group of the compound represented by Formula 2 can be represented by Formula 3.
Figure PCTKR2022018909-appb-img-000003
Figure PCTKR2022018909-appb-img-000003
(여기서, n1은 10 내지 150의 정수이며, n2는 10 내지 150의 정수이다) (Here, n1 is an integer from 10 to 150, and n2 is an integer from 10 to 150)
본 발명의 복합시트는 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물을 반응시켜 화학식 3으로 표시되는 화합물을 포함하여 열전도성과 작업성의 관점에서 우수한 특성을 가질 수 있다. The composite sheet of the present invention can have excellent properties in terms of thermal conductivity and workability by including a compound represented by Formula 3 by reacting the compound represented by Formula 1 with the compound represented by Formula 2.
상기 일 실시예의 복합시트에 포함되는 전도층은 평균 밀도가 1.0 내지 5.0 g/cc일 수 있다. 상기 전도층의 평균 밀도가 1.0g/cc 미만이면 열전도성 및 전기전도성이 저하될 수 있으며, 5.0g/cc를 초과하면 도막 강도가 저하되고 복합시트의 유연성이 저하될 수 있다.The conductive layer included in the composite sheet of the above embodiment may have an average density of 1.0 to 5.0 g/cc. If the average density of the conductive layer is less than 1.0 g/cc, thermal and electrical conductivity may be reduced, and if it exceeds 5.0 g/cc, the strength of the coating film may be reduced and the flexibility of the composite sheet may be reduced.
상기 전도층의 밀도가 높을수록 상기 전도층 내에 포함된 기공의 함량이 낮아질 수 있다. 예를 들어, 상기 전도층의 기공률은 5.0% 이하일 수 있다. 상기 전도층의기공률이 5.0% 초과하면 도막 강도 및 열전도성 및 전기전도성이 저하될 수 있다. The higher the density of the conductive layer, the lower the content of pores contained in the conductive layer. For example, the porosity of the conductive layer may be 5.0% or less. If the porosity of the conductive layer exceeds 5.0%, the coating film strength, thermal conductivity, and electrical conductivity may decrease.
한편, 상기 전도층 두께가 바람직하게는 5 내지 400㎛, 더욱 바람직하게는 10 내지 300㎛, 가장 바람직하게는 80 내지 150㎛일 수 있다. 상기 전도층의 두께가 5㎛ 미만이면 지나치게 얇은 두께의 전도층을 포함함으로 인해 복합시트의 지지력이 저하될 수 있다. 400㎛ 초과하면 지나치게 두꺼운 두께의 전도층을 포함함으로 인해 복합시트의 유연성이 저하되고 열전도성 및 전기전도성이 저하될 수 있다.Meanwhile, the conductive layer thickness may be preferably 5 to 400 μm, more preferably 10 to 300 μm, and most preferably 80 to 150 μm. If the thickness of the conductive layer is less than 5㎛, the bearing capacity of the composite sheet may be reduced due to the conductive layer being too thin. If it exceeds 400㎛, the flexibility of the composite sheet may decrease and thermal and electrical conductivity may decrease due to the inclusion of an excessively thick conductive layer.
(실시예) (Example)
기재로서 두께가 40㎛ 인 알루미늄 상에 프라이머층을 도포하고, 그 위에 도전성 코팅액 조성물을 코팅하여 전도층을 형성하고 전체 두께가 152 ㎛ 인 복합시트를 제조하였다. 쇼어 경도(Shore A)는 전체 시편 두께 1 mm 의 조건에서 측정하였고, 열저항 측정 조건은 DynTIMS 장비에서 1,100 kPa 에서 측정하였고, 내마모율 측정 조건은 Taber 마모시험기 CS-10 wheel 로 50 rpm/500cycles 에서 측정하였다. 필러 1은 평균 입도 (D50)가 10 ㎛ 인 천연 그래파이트 분말을 사용하였고, 필러 2는 평균 입도 (D50)가 10 ㎛ 인 구형 산화알루미늄 (Al2O3) 분말을 사용하였고, 필러 3은 평균 입도 (D50)가 10 ㎛ 인 니켈 코팅된 구리 분말을 사용하였다. 주제로서 화학식 1로 표시되는 화합물(n1은 135), 경화제로서 화학식 2로 표시되는 화합물(n2는 84)을 사용하였다. 첨가제는 에폭시 실란계 접착부여제, 메틸 실란계 커플링제, 카본블랙 안료를 1:1:0.5중량비로 혼합하였다. 실시예 및 비교예의 복합시트에서 다른 조건은 동일하게 하고, 전도층의 조건을 달리하여 실험하였다. A primer layer was applied on aluminum with a thickness of 40 ㎛ as a base material, and a conductive coating composition was coated on it to form a conductive layer, thereby producing a composite sheet with a total thickness of 152 ㎛. Shore hardness (Shore A) was measured under the condition of a total specimen thickness of 1 mm, heat resistance measurement conditions were measured at 1,100 kPa with a DynTIMS equipment, and wear resistance measurement conditions were measured at 50 rpm/500 cycles with a Taber wear tester CS-10 wheel. Measured. Filler 1 used natural graphite powder with an average particle size (D50) of 10 ㎛, Filler 2 used spherical aluminum oxide (Al2O3) powder with an average particle size (D50) of 10 ㎛, and Filler 3 had an average particle size (D50) of 10 ㎛. Nickel-coated copper powder with a thickness of 10 ㎛ was used. A compound represented by Formula 1 (n1 is 135) was used as the main agent, and a compound represented by Formula 2 (n2 was 84) was used as a curing agent. The additives were epoxy silane-based adhesion agent, methyl silane-based coupling agent, and carbon black pigment mixed in a weight ratio of 1:1:0.5. In the composite sheets of Examples and Comparative Examples, other conditions were the same and the conductive layer conditions were varied.
[표 1]은 주제와 경화제의 비율을 달리한 경우에 쇼어 경도(A), 열저항(B), 내마모율 및 쇼어 경도와 열저항의 비율(A/B)을 나타내는 도표이다. [Table 1] is a table showing shore hardness (A), heat resistance (B), wear resistance, and the ratio of shore hardness and heat resistance (A/B) when the ratio of base material and hardener is different.
구분division 단위unit 비교예1Comparative Example 1 비교예2Comparative example 2 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 실시예6Example 6 비교예3Comparative example 3
필러1
함량
Filler 1
content
중량부weight part 56.1556.15 56.1556.15 56.1556.15 56.1556.15 56.1556.15 56.1556.15 56.1556.15 56.1556.15 56.1556.15
주제
함량
subject
content
중량부weight part 27.5327.53 25.6925.69 24.0924.09 22.6722.67 21.4121.41 20.2820.28 19.2719.27 18.3618.36 16.0616.06
경화제
함량
hardener
content
중량부weight part 11.0111.01 12.8512.85 14.4514.45 15.8715.87 17.1317.13 18.2618.26 19.2719.27 20.1820.18 22.4822.48
첨가제
함량
additive
content
중량부weight part 5.315.31 5.315.31 5.315.31 5.315.31 5.315.31 5.315.31 5.315.31 5.315.31 5.315.31
합계Sum -- 100100 100100 100100 100100 100100 100100 100100 100100 100100
주제:
경화제
subject:
hardener
-- 1:0.41:0.4 1:0.51:0.5 1:0.61:0.6 1:0.71:0.7 1:0.81:0.8 1:0.91:0.9 1:11:1 1:1.21:1.2 1:1.41:1.4
쇼어
경도
(A)
Shore
Hardness
(A)
Shore AShore A 3030 4040 5050 5555 6060 8080 9090 9595 9999
열저항(B)Thermal resistance (B) K/WK/W 0.710.71 0.750.75 0.860.86 0.970.97 1.011.01 1.031.03 1.071.07 1.111.11 1.521.52
내마모율Wear resistance rate %% 4.884.88 3.553.55 2.962.96 2.882.88 2.722.72 2.682.68 2.442.44 2.062.06 2.042.04
A/BA/B Shore A
/(K/W)
Shore A
/(K/W)
4242 5353 5858 5757 5959 7878 8484 8686 6565
[표 1]에 나타난 것처럼, 실시예 1 내지 6은 비교예 1 내지 3에 비하여 쇼어 경도, 열저항, 내마모율 측면에서 우수한 특성을 나타냄을 알 수 있다. As shown in [Table 1], it can be seen that Examples 1 to 6 exhibit superior properties in terms of shore hardness, heat resistance, and wear resistance compared to Comparative Examples 1 to 3.
[표 2]는 다양한 전도층 밀도에서 주제와 경화제의 비율을 달리한 경우에 쇼어 경도(A), 열저항(B), 내마모율 및 쇼어 경도와 열저항의 비율(A/B)을 나타내는 도표이다. [Table 2] is a table showing shore hardness (A), thermal resistance (B), wear resistance, and ratio of shore hardness and thermal resistance (A/B) when the ratio of base material and hardener is varied at various conductive layer densities. am.
구분division 단위unit 비교예4Comparative Example 4 실시예7Example 7 비교예5Comparative Example 5 비교예6Comparative Example 6 실시예8Example 8 비교예7Comparative example 7 비교에88 in comparison 실시예9Example 9 비교예9Comparative Example 9
필러1
함량
Filler 1
content
wt%wt% 56.1556.15 56.1556.15 56.1556.15 14.0414.04 14.0414.04 14.0414.04 9.369.36 9.369.36 9.369.36
필러2
함량
Filler 2
content
wt%wt% 42.1142.11 42.1142.11 42.1142.11
필러3
함량
Filler 3
content
wt%wt% 46.7946.79 46.7946.79 46.7946.79
주제
함량
subject
content
wt%wt% 25.6925.69 19.2719.27 16.0616.06 25.6925.69 19.2719.27 16.0616.06 25.6925.69 19.2719.27 16.0616.06
경화제
함량
hardener
content
wt%wt% 12.8512.85 19.2719.27 22.4822.48 12.8512.85 19.2719.27 22.4822.48 12.8512.85 19.2719.27 22.4822.48
첨가제
함량
additive
content
wt%wt% 5.315.31 5.315.31 5.315.31 5.315.31 5.315.31 5.315.31 5.315.31 5.315.31 5.315.31
합계Sum -- 100100 100100 100100 100100 100100 100100 100100 100100 100100
주제:
경화제
subject:
hardener
-- 1:0.51:0.5 1:11:1 1:1.41:1.4 1:0.51:0.5 1:11:1 1:1.41:1.4 1:0.51:0.5 1:11:1 1:1.41:1.4
밀도
density
g/ccg/cc 1.01.0 1.01.0 1.01.0 3.03.0 3.03.0 3.03.0 5.05.0 5.05.0 5.05.0
쇼어
경도
(A)
Shore
Hardness
(A)
Shore AShore A 4545 8585 9999 4545 9191 9999 4545 9393 9999
열저항
(B)
heat resistance
(B)
K/WK/W 1.341.34 0.960.96 1.621.62 1.041.04 1.081.08 1.591.59 1.021.02 1.101.10 1.651.65
내마모율Wear resistance rate %% 3.683.68 2.462.46 2.042.04 3.473.47 2.422.42 2.012.01 3.853.85 1.981.98 1.881.88
A/BA/B Shore A
/(K/W)
Shore A
/(K/W)
3434 8989 6161 4343 8484 6262 4444 8585 6060
[표 2]에 나타난 것처럼, 실시예 7 내지 9는 비교예 4 내지 9에 비하여 쇼어 경도, 열저항, 내마모율 측면에서 우수한 특성을 나타냄을 알 수 있다. As shown in [Table 2], it can be seen that Examples 7 to 9 exhibit superior properties in terms of shore hardness, heat resistance, and wear resistance compared to Comparative Examples 4 to 9.
[표 3]은 다양한 기공률에서 주제와 경화제의 비율을 달리한 경우에 쇼어 경도(A), 열저항(B), 내마모율 및 쇼어 경도와 열저항의 비율(A/B)을 나타내는 도표이다. [Table 3] is a table showing shore hardness (A), heat resistance (B), wear resistance, and the ratio of shore hardness and heat resistance (A/B) when the ratio of base material and hardener is varied at various porosity.
구분division 단위unit 비교예10Comparative Example 10 실시예10Example 10 비교예11Comparative Example 11 비교예12Comparative Example 12 실시예11Example 11 비교예13Comparative Example 13 비교예14Comparative Example 14 실시예12Example 12 비교에1515 in comparison
기공율porosity %% 1One 1One 1One 33 33 33 55 55 55
쇼어
경도
Shore
Hardness
Shore AShore A 4545 8888 9999 4545 9090 9999 4545 9292 9999
열저항heat resistance K/WK/W 0.920.92 1.051.05 1.541.54 1.041.04 1.081.08 1.591.59 1.201.20 1.241.24 1.821.82
내마모율Wear resistance rate %% 3.843.84 1.941.94 1.881.88 3.923.92 2.232.23 2.142.14 3.853.85 2.682.68 2.342.34
A/BA/B Shore A
/(K/W)
Shore A
/(K/W)
4949 8484 6464 4343 8383 6262 3838 7474 5454
[표 3]에 나타난 것처럼, 실시예 10 내지 12는 비교예 10 내지 15에 비하여 쇼어 경도, 열저항, 내마모율 측면에서 우수한 특성을 나타냄을 알 수 있다.As shown in [Table 3], it can be seen that Examples 10 to 12 exhibit superior properties in terms of shore hardness, heat resistance, and wear resistance compared to Comparative Examples 10 to 15.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The present invention is not limited to the above-mentioned embodiments, but can be manufactured in various different forms, and those skilled in the art will be able to form other specific forms without changing the technical idea or essential features of the present invention. You will be able to understand that this can be implemented. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.

Claims (12)

  1. 기재;write;
    상기 기재의 적어도 일면에 형성된 프라이머층; 및A primer layer formed on at least one side of the substrate; and
    상기 프라이머층 상에 형성되고, 탄소계 화합물과 고분자 바인더를 포함하는 전도층;을 포함하는 열전도성과 전기전도성이 우수한 복합시트이며, A composite sheet having excellent thermal and electrical conductivity, including a conductive layer formed on the primer layer and containing a carbon-based compound and a polymer binder,
    쇼어 A 경도는 50 내지 95 Shore A의 범위인 것을 특징으로 하는 열전도성과 전기전도성이 우수한 복합시트.A composite sheet with excellent thermal and electrical conductivity, characterized in that Shore A hardness is in the range of 50 to 95 Shore A.
  2. 청구항 1에 있어서,In claim 1,
    상기 고분자 바인더는 주제, 경화제 및 필러를 포함하는 것을 특징으로 하는 열전도성과 전기전도성이 우수한 복합시트. A composite sheet with excellent thermal and electrical conductivity, wherein the polymer binder includes a base material, a curing agent, and a filler.
  3. 청구항 2에 있어서,In claim 2,
    상기 주제 및 경화제의 중량 비율은 1:0.6 내지 1.2인 것을 특징으로 하는 열전도성과 전기전도성이 우수한 복합시트. A composite sheet with excellent thermal and electrical conductivity, characterized in that the weight ratio of the base material and the curing agent is 1:0.6 to 1.2.
  4. 청구항 2에 있어서,In claim 2,
    상기 주제는 비닐기를 포함하는 화합물이며, 상기 경화제는 수소기를 포함하는 화합물이며, 상기 주제의 비닐기와 상기 경화제의 수소기가 반응하여 가교가 일어나는 것을 특징으로 하는 열전도성과 전기전도성이 우수한 복합시트. The main agent is a compound containing a vinyl group, the curing agent is a compound containing a hydrogen group, and crosslinking occurs when the vinyl group of the main agent reacts with the hydrogen group of the curing agent. A composite sheet with excellent thermal and electrical conductivity.
  5. 청구항 1에 있어서,In claim 1,
    상기 탄소계 화합물 및 상기 고분자 바인더의 중량비는 1:0.2 내지 30인 것을 특징으로 하는 열전도성과 전기전도성이 우수한 복합시트. A composite sheet with excellent thermal and electrical conductivity, characterized in that the weight ratio of the carbon-based compound and the polymer binder is 1:0.2 to 30.
  6. 청구항 1에 있어서,In claim 1,
    상기 탄소계 화합물은 그라파이트(graphite), 탄소나노튜브(CNT), 그래핀(Graphene), 산화 그래핀, 탄소 섬유 및 플러렌(Fullerene), 카본, 나노카본, 카본블랙으로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 하는 열전도성과 전기전도성이 우수한 복합시트. The carbon-based compound is one or more selected from the group consisting of graphite, carbon nanotubes (CNT), graphene, graphene oxide, carbon fiber and fullerene, carbon, nanocarbon, and carbon black. A composite sheet with excellent thermal and electrical conductivity, comprising:
  7. 청구항 1에 있어서,In claim 1,
    상기 고분자 바인더는 열경화성 실리콘 고무 화합물, 일액형 열경화성 실리콘 바인더, 이액형 열경화성 실리콘 바인더, 아크릴계 수지, 에폭시계 수지, 우레탄계 수지 및 우레아계 수지로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 열전도성과 전기전도성이 우수한 복합시트. The polymer binder has thermal and electrical conductivity, characterized in that it is at least one selected from the group consisting of a thermosetting silicone rubber compound, a one-component thermosetting silicone binder, a two-component thermosetting silicone binder, an acrylic resin, an epoxy resin, a urethane resin, and a urea resin. Excellent composite sheet.
  8. 청구항 1에 있어서,In claim 1,
    상기 전도층은 두께가 5 내지 450㎛인 것을 특징으로 하는 열전도성과 전기전도성이 우수한 복합시트. A composite sheet with excellent thermal and electrical conductivity, wherein the conductive layer has a thickness of 5 to 450 ㎛.
  9. 청구항 1에 있어서,In claim 1,
    상기 전도층은 평균 밀도가 1.0 내지 5.0 g/cc인 것을 특징으로 하는 열전도성과 전기전도성이 우수한 복합시트. A composite sheet with excellent thermal and electrical conductivity, wherein the conductive layer has an average density of 1.0 to 5.0 g/cc.
  10. 청구항 1에 있어서,In claim 1,
    상기 전도층은 기공률이 5% 이하인 것을 특징으로 하는 열전도성과 전기전도성이 우수한 복합시트. A composite sheet with excellent thermal and electrical conductivity, wherein the conductive layer has a porosity of 5% or less.
  11. 청구항 1에 있어서,In claim 1,
    복합시트의 열저항은 0.8 내지 1.3 K/W 의 범위인 것을 특징으로 하는 열전도성과 전기전도성이 우수한 복합시트. A composite sheet with excellent thermal and electrical conductivity, characterized in that the thermal resistance of the composite sheet is in the range of 0.8 to 1.3 K/W.
  12. 청구항 1에 있어서,In claim 1,
    복합시트의 (쇼어 A 경도)/(열저항)의 비는 50 내지 90 (shore A)/(K/W)의 범위인 것을 특징으로 하는 열전도성과 전기전도성이 우수한 복합시트. A composite sheet with excellent thermal and electrical conductivity, characterized in that the ratio of (shore A hardness) / (thermal resistance) of the composite sheet is in the range of 50 to 90 (shore A) / (K / W).
PCT/KR2022/018909 2022-11-26 2022-11-26 Composite sheet with excellent thermal and electrical conductivity having reduced thermal resistance due to hardness control of carbon-based coating layer WO2024111717A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2022/018909 WO2024111717A1 (en) 2022-11-26 2022-11-26 Composite sheet with excellent thermal and electrical conductivity having reduced thermal resistance due to hardness control of carbon-based coating layer
KR1020247029464A KR20240148371A (en) 2022-11-26 2022-11-26 Composite sheet with excellent thermal and electrical conductivity, reducing thermal resistance through hardness control of carbon coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/018909 WO2024111717A1 (en) 2022-11-26 2022-11-26 Composite sheet with excellent thermal and electrical conductivity having reduced thermal resistance due to hardness control of carbon-based coating layer

Publications (1)

Publication Number Publication Date
WO2024111717A1 true WO2024111717A1 (en) 2024-05-30

Family

ID=91196249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018909 WO2024111717A1 (en) 2022-11-26 2022-11-26 Composite sheet with excellent thermal and electrical conductivity having reduced thermal resistance due to hardness control of carbon-based coating layer

Country Status (2)

Country Link
KR (1) KR20240148371A (en)
WO (1) WO2024111717A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134604A (en) * 2002-10-11 2004-04-30 Shin Etsu Chem Co Ltd Electromagnetic wave absorbing heat conductive sheet
KR20080114838A (en) * 2006-04-27 2008-12-31 데이진 가부시키가이샤 Composite carbon fiber sheet
KR20160084808A (en) * 2015-01-06 2016-07-14 신에쓰 가가꾸 고교 가부시끼가이샤 Thermal conductive silicone composition and cured product, and composite sheet
KR20180135762A (en) * 2017-06-13 2018-12-21 주식회사 에스엠티 Composite sheet with thermal and electric conductivity
KR20210088568A (en) * 2018-11-09 2021-07-14 세키수이 폴리머텍 가부시키가이샤 Thermally conductive composition, thermally conductive member, manufacturing method of thermally conductive member, heat dissipation structure, heat generating composite member, heat dissipating composite member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134604A (en) * 2002-10-11 2004-04-30 Shin Etsu Chem Co Ltd Electromagnetic wave absorbing heat conductive sheet
KR20080114838A (en) * 2006-04-27 2008-12-31 데이진 가부시키가이샤 Composite carbon fiber sheet
KR20160084808A (en) * 2015-01-06 2016-07-14 신에쓰 가가꾸 고교 가부시끼가이샤 Thermal conductive silicone composition and cured product, and composite sheet
KR20180135762A (en) * 2017-06-13 2018-12-21 주식회사 에스엠티 Composite sheet with thermal and electric conductivity
KR20210088568A (en) * 2018-11-09 2021-07-14 세키수이 폴리머텍 가부시키가이샤 Thermally conductive composition, thermally conductive member, manufacturing method of thermally conductive member, heat dissipation structure, heat generating composite member, heat dissipating composite member

Also Published As

Publication number Publication date
KR20240148371A (en) 2024-10-11

Similar Documents

Publication Publication Date Title
EP2201079B1 (en) Thermally conductive composition
US8114314B2 (en) Electroconductive curable resins
WO2012091462A2 (en) Back sheet for solar cells and method for preparing the same
WO2011122901A2 (en) Polyimide nanocomposite and method for preparing same
WO2010067949A1 (en) Conductive paste containing silver-decorated carbon nanotubes
WO2013137654A1 (en) Metal-plate graphene powder, and electromagnetic interference shielding coating composition containing same
CN112552754A (en) Preparation method of graphene heat dissipation coating
WO2011013927A2 (en) Thermosetting electrode paste fireable at a low temperature
WO2021142752A1 (en) Organic silicon resin conductive adhesive, and preparation method therefor and application thereof
CN113808779B (en) Low-temperature curing insulating medium slurry for chip resistor
WO2021177704A1 (en) Laminate for flexible circuit board having low dielectric constant and low-loss characteristic
US11312870B2 (en) Copper based conductive paste and its preparation method
EP4382574A1 (en) Composition and filler mixture
KR20170131930A (en) Composition and composite sheet for dissipating heat and shielding emi
WO2010067965A2 (en) Electroconductive silver nanoparticle composition, ink and method for preparing the same
WO2020032684A1 (en) Graphene wet spinning coagulation bath and method for manufacturing graphene oxide fiber using the same
WO2019059730A1 (en) Composite material
WO2024111717A1 (en) Composite sheet with excellent thermal and electrical conductivity having reduced thermal resistance due to hardness control of carbon-based coating layer
CN114015233B (en) Polyimide material and preparation method and application thereof
WO2015093825A1 (en) High-heat dissipation ceramic composite, method for manufacturing same, and use thereof
CN116987310A (en) Double-anti-static release film and preparation process thereof
WO2017188752A1 (en) Coating composition having improved heat dissipation characteristics, and method for forming coating film by using same
CN113292933B (en) High-thermal-conductivity-coefficient pressure-sensitive adhesive and high-thermal-conductivity-coefficient pressure-sensitive adhesive tape
EP2151832A1 (en) Process for producing ptc ink composition and ptc ink composition
JP2595394B2 (en) Conductive resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22966577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247029464

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247029464

Country of ref document: KR