[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024111593A1 - 接合方法およびレーザ加工装置 - Google Patents

接合方法およびレーザ加工装置 Download PDF

Info

Publication number
WO2024111593A1
WO2024111593A1 PCT/JP2023/041861 JP2023041861W WO2024111593A1 WO 2024111593 A1 WO2024111593 A1 WO 2024111593A1 JP 2023041861 W JP2023041861 W JP 2023041861W WO 2024111593 A1 WO2024111593 A1 WO 2024111593A1
Authority
WO
WIPO (PCT)
Prior art keywords
joining
conductive member
laser light
joining method
melting
Prior art date
Application number
PCT/JP2023/041861
Other languages
English (en)
French (fr)
Inventor
慶吾 佐藤
暢康 松本
孝 繁松
諒也 松本
知道 安岡
一輝 高田
淳 寺田
俊明 酒井
和行 梅野
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2024111593A1 publication Critical patent/WO2024111593A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding

Definitions

  • the present invention relates to a joining method and a laser processing device.
  • Reflow soldering is known as a method for joining conductors provided on a circuit board to conductive members such as bus bars in order to electrically connect them (see, for example, Patent Documents 1 to 4).
  • the application of reflow soldering may be limited due to the risk of heat adversely affecting the board and components.
  • solder with high strength reliability generally has a high melting point, which further increases the effect of heat, and therefore may further limit the application of reflow soldering.
  • a joining material such as conductive solder that is placed between a conductor and a conductive member is heated and melted by irradiating it with laser light, and then cooled and solidified to obtain a joined state.
  • one of the objectives of the present invention is to provide a new and improved joining method and laser processing device that joins a conductive member and a conductor provided on a circuit board by irradiating a conductive member with laser light, heating and melting a bonding material having conductivity through the thermal conduction of the conductive member, and then cooling and solidifying the molten bonding material, so that it is possible to obtain, for example, a desired bonding state more easily or more reliably in the joining method and laser processing device.
  • the joining method of the present invention includes, for example, a step of melting the joining material by thermal conduction in the joining portion by irradiating a portion of the joining portion opposite the joining material with laser light having a wavelength of 550 nm or less in a state in which a first surface of a conductor provided on a circuit board facing a first direction and a joining portion of a conductive member are aligned in the first direction and a joining material having an electrical conductivity lower than the melting point of the conductor and the conductive member is interposed between the first surface and the joining portion, and a step of solidifying the molten joining material by cooling the joining material, electrically connecting the conductor and the conductive member via the joining material.
  • the wavelength of the laser light may be 400 nm or more.
  • the wavelength of the laser light may be less than 500 nm.
  • the conductive member may be made of a copper-based material.
  • the parts to be joined do not have to be melted by irradiation with the laser light.
  • the joined parts are formed with a molten and solidified part that is melted by irradiation with the laser light in the step of melting the joining material and then solidified in the step of joining the conductor and the conductive member, and the molten and solidified part may be separated from the joining material.
  • the aspect ratio of the depth of the molten and solidified portion in the first direction to the width in a direction intersecting the first direction may be 1 or less.
  • the aspect ratio may be 0.5 or less.
  • the energy of the laser light irradiated in the process of melting the joining material per unit volume of a portion of the joined portion that overlaps with the first surface and the joining material in the first direction may be 1.5 [J/mm 3 ] or more and 12 [J/mm 3 ] or less.
  • the energy of the laser light irradiated in the process of melting the joining material per unit volume of a portion of the joined portion that overlaps with the first surface and the joining material in the first direction may be 2.5 [J/mm 3 ] or more and 7 [J/mm 3 ] or less.
  • the laser light in the step of melting the joining material, may be scanned on a second surface, which is a portion of the joined portion opposite the joining material.
  • the width of the spot of the laser light on the second surface, which is the part of the joined portion opposite the joining material may be 0.5 mm or more.
  • the width of the spot of the laser light on the second surface, which is the part of the joined portion opposite the joining material may be 1 mm or more.
  • the circuit board may be any one of a glass epoxy resin board, a ceramic board, and a metal-based board.
  • the conductive member may be a plate-shaped, rod-shaped, or wire-shaped member.
  • the conductive member may be a foil-like member.
  • gas may be supplied to the parts to be joined during the process of melting the joining material.
  • the conductive member is a foil-like member and has an extension that extends from the joined portion in a second direction that intersects with the first direction and follows the first surface, and in the process of melting the joining material, the gas may be blown in a direction between the opposite direction of the second direction and the opposite direction of the first direction.
  • the joining method of the present invention includes, for example, a step of melting the joining material by irradiating a laser beam having a wavelength of 550 nm or less to a portion of the joining material on the opposite side of the joining material of the joining material or to the joining material, in a state in which a first surface of a conductor provided on a circuit board facing a first direction and a joining portion of a conductive member are aligned in the first direction, and at least a portion of a joining material having an electrical conductivity with a melting point lower than that of the conductor and the conductive member is interposed between the first surface and the joining portion, and a step of solidifying the molten joining material by cooling the joining material, electrically connecting the conductor and the conductive member via the joining material.
  • the laser processing device of the present invention is, for example, a laser processing device in which a first surface of a conductor provided on a circuit board facing a first direction and a joint portion of a conductive member are aligned in the first direction, and a joint material having an electrical conductivity with a melting point lower than that of the conductor and the conductive member is interposed between the first surface and the joint portion, and the laser processing device irradiates a second surface of the joint portion opposite the joint material with laser light having a wavelength of 550 nm or less to melt the joint material by thermal conduction in the joint portion, and includes a laser device that outputs laser light having a wavelength of 550 nm or less, and an optical head that irradiates the second surface with the laser light output from the laser device.
  • a new and improved joining method and laser processing device can be obtained as a joining method for joining a conductive member and a conductor provided on a circuit board by irradiating a conductive member with laser light, heating and melting a bonding material having electrical conductivity through the thermal conduction of the conductive member, and then cooling and solidifying the molten bonding material.
  • FIG. 1 is an exemplary schematic configuration diagram of a laser processing device that performs the joining method of the first embodiment.
  • FIG. 2 is an exemplary schematic plan view of an object to be processed by the joining method of the first embodiment.
  • FIG. 3 is an exemplary flowchart showing the steps of the bonding method according to the embodiment.
  • FIG. 4 is a schematic plan view showing an example of a scanning trajectory of laser light on a surface of an object to be processed in the joining method of the embodiment.
  • FIG. 5 is a schematic plan view showing another example of the scanning trajectory of the laser light on the surface of the processing object in the joining method of the embodiment, different from that in FIG. FIG.
  • FIG. 6 is a schematic plan view showing another example of the scanning trajectory of the laser light on the surface of the processing target in the joining method of the embodiment, different from those in FIGS.
  • FIG. 7 is a schematic plan view showing an example of the shape of a spot of laser light on a surface of an object to be processed in the joining method of the embodiment.
  • FIG. 8 is a schematic plan view showing another example of the shape of a laser light spot on a surface of an object to be processed in the joining method of the embodiment, different from that shown in FIG.
  • FIG. 9 is a schematic plan view showing another example of the shape of a laser beam spot on the surface of the object to be processed in the joining method of the embodiment, different from those shown in FIGS. FIG.
  • FIG. 10 is an explanatory diagram showing an example of a beam profile of laser light on the surface of the object to be processed in the joining method of the embodiment.
  • FIG. 11 is a schematic cross-sectional view showing an example of a portion of a circuit board assembly joined by the joining method of the embodiment.
  • FIG. 12 is a schematic cross-sectional view showing another example of a part of a circuit board assembly joined by the joining method of the embodiment, different from that shown in FIG.
  • FIG. 13 is a graph showing the bonding state depending on the volume of the irradiated portion and the irradiation energy in the bonding method of the embodiment.
  • FIG. 14 is an exemplary schematic configuration diagram of a laser processing device that performs the joining method of the second embodiment.
  • FIG. 15 is an illustrative schematic plan view of an object to be processed by the joining method of the second embodiment.
  • the X direction is represented by an arrow X
  • the Y direction is represented by an arrow Y
  • the Z direction is represented by an arrow Z.
  • the X direction, Y direction, and Z direction intersect with each other and are perpendicular to each other.
  • the Z direction is, for example, the normal direction of the surface (machining surface) of the workpiece W.
  • [Laser processing equipment] 1 is a schematic diagram of a laser processing apparatus 100A (100) according to a first embodiment. As shown in FIG. 1, the laser processing apparatus 100 includes a laser device 110, an optical fiber 130, an optical head 120, and a position adjustment mechanism 140.
  • Laser device 110 has a laser oscillator.
  • laser device 110 has multiple semiconductor laser elements inside and is configured to output multi-mode laser light with a power of several kW as the total output of the multiple semiconductor laser elements.
  • the laser device 110 outputs laser light with a wavelength of, for example, 550 nm or less.
  • the wavelength of the laser light is preferably 400 nm or more and 550 nm or less, and more preferably 400 nm or more and less than 500 nm.
  • the optical fiber 130 guides the laser light output from the laser device 110 to the optical head 120.
  • the optical head 120 is an optical device for irradiating the laser light input from the laser device 110 via the optical fiber 130 toward the workpiece W.
  • the optical head 120 includes a collimator lens 121, a mirror 123, a galvanometer scanner 126, and a focusing lens 122.
  • the collimator lens 121, the mirror 123, the galvanometer scanner 126, and the focusing lens 122 can also be referred to as optical components.
  • Collimating lens 121 collimates the laser light input through optical fiber 130.
  • the collimated laser light becomes parallel light.
  • Mirror 123 reflects the laser light that has been collimated by collimator lens 121.
  • the laser light reflected by mirror 123 travels toward galvano scanner 126. Note that, depending on the layout of the optical components in optical head 120, mirror 123 may not be necessary.
  • the galvanometer scanner 126 has two mirrors 126a and 126b, and is a device that can control the angles of the two mirrors 126a and 126b to move the irradiation position of the laser light L on the surface of the workpiece W and scan the surface with the laser light L.
  • the angles of the mirrors 126a and 126b can each be changed by an actuator (not shown) including a motor, for example.
  • the focusing lens 122 focuses the laser light that has passed through the galvanometer scanner 126 and irradiates the laser light L (output light) onto the workpiece W.
  • the position adjustment mechanism 140 is configured to be able to change the relative position of the optical head 120 with respect to the workpiece W.
  • the laser processing apparatus 100 can scan a spot of laser light L on the surface of the workpiece W by operating at least one of the galvanometer scanner 126 and the position adjustment mechanism 140.
  • the galvanometer scanner 126 and the position adjustment mechanism 140 can also be referred to as a scanning mechanism.
  • the processing object W includes a conductor 12 provided on a circuit board 10, a terminal portion 21 of a conductive member 20, and a bonding material 30. Through a bonding process using the laser processing apparatus 100, the conductor 12 and the terminal portion 21 are integrated with the bonding material 30 to form a circuit board assembly 1.
  • the circuit board assembly 1 includes the circuit board 10 provided with the conductor 12, the conductive member 20 having the terminal portion 21, and the bonding material 30.
  • the terminal portion 21 is an example of a portion to be bonded.
  • the circuit board 10 is, for example, a printed wiring board, and has an insulator 11 and a conductor 12.
  • the insulator 11 is made of, for example, glass epoxy resin. However, the insulator 11 is not limited to this and may be made of other materials.
  • the conductor 12 is made of a material having relatively high conductivity. As an example, the conductor 12 is made of a copper-based metal material such as pure copper or a copper alloy. However, the insulator 11 is not limited to this and may be made of other metal materials.
  • the circuit board 10 is not limited to a glass epoxy resin board, and may be, for example, a ceramic board such as a DCB board (DCB: direct copper bonding) or an AMB board (AMB: active metal brazing), a metal-based board, or another board.
  • a ceramic board such as a DCB board (DCB: direct copper bonding) or an AMB board (AMB: active metal brazing), a metal-based board, or another board.
  • the insulator 11 has a plate-like shape, and intersects with and is perpendicular to the Z direction.
  • the insulator 11 also has a surface 11a and a surface 11b.
  • the surface 11a faces in the opposite direction to the Z direction, and intersects with and is perpendicular to the Z direction.
  • the surface 11b faces in the Z direction, and intersects with and is perpendicular to the Z direction.
  • the conductor 12 is integrated with the insulator 11 and has a surface 12a exposed in the Z direction.
  • Surface 12a faces the Z direction and intersects with and is perpendicular to the Z direction.
  • Surface 12a is approximately flush with surface 11a or protrudes in the Z direction beyond surface 11a.
  • the conductor 12 is not limited to this and may be a semiconductor device such as a switching element mounted on the circuit board 10, or a conductor of an electrical component or electronic component. In this case, surface 12a becomes the surface of the conductor of the semiconductor device, electrical component, or electronic component mounted on the circuit board 10.
  • Surface 12a is an example of a first surface.
  • the conductive member 20A (20) has a terminal portion 21.
  • the terminal portion 21 has a plate-like shape with a substantially constant thickness, and intersects with and is perpendicular to the Z direction.
  • the terminal portion 21 also has a surface 21a and a surface 21b.
  • the surface 21a faces in the opposite direction to the Z direction, and intersects with and is perpendicular to the Z direction.
  • the surface 21b faces in the Z direction, and intersects with and is perpendicular to the Z direction.
  • the conductive member 20 is made of a material that has relatively high electrical conductivity and relatively high thermal conductivity.
  • the conductive member 20 is made of a copper-based metal material such as pure copper or a copper alloy.
  • the conductive member 20 is, for example, a plate-shaped, rod-shaped, or wire-shaped member.
  • the conductive member 20 may also be called a bus bar.
  • the conductive member 20 is not limited to this and may be made of other metal materials or may be a foil-shaped member. Specific examples of the conductive member 20 are terminals, ribbons, power supply lines, lead frames, etc.
  • the bonding material 30 crosses and is perpendicular to the Z direction, and spreads with a substantially constant thickness.
  • the bonding material 30 is at least partially sandwiched between the surface 12a of the conductor 12 and the surface 21a of the terminal portion 21.
  • the conductor 12, the bonding material 30, and the terminal portion 21 are stacked in this order in the Z direction.
  • Surface 21b is the portion of the terminal portion 21 located on the opposite side to the bonding material 30, and is an example of a second surface.
  • the Z direction is an example of a first direction.
  • the joining material 30 is made of a solder material or brazing material that is conductive and has a lower melting point than the conductor 12 and the conductive member 20.
  • the joining material 30 is, for example, a solder material such as solder paste or solder foil. Solder material can also be called a soft brazing material.
  • the joining material 30 is not limited to this, and may be a brazing material other than a solder material, a so-called hard brazing material.
  • the optical head 120 is spaced apart from the surface 21b of the terminal portion 21 in the Z direction, and outputs laser light L toward the surface 21b in the direction substantially opposite the Z direction.
  • the laser light L is irradiated onto the surface 21b of the terminal portion 21.
  • the terminal portion 21 conducts heat generated by the irradiation of the laser light L to the bonding material 30, which melts the bonding material 30.
  • FIG. 2 is a plan view of the workpiece W.
  • the conductor 12, the bonding material 30, and the terminal portion 21 partially overlap in the Z direction.
  • part A of the terminal portion 21 that overlaps with the surface 12a of the conductor 12 and the bonding material 30 in the Z direction is referred to as the irradiated part of the terminal portion 21.
  • the laser light L is irradiated onto the surface 21b of part A.
  • the irradiated part is also an example of the part to be joined.
  • [Joining method procedure] 3 is a flow chart showing the procedure of the bonding method.
  • the circuit board 10, the conductive member 20, and the bonding material 30 are set in the state shown in FIG. 1 and FIG. 2 (S1).
  • the surface 21b of the terminal portion 21 is irradiated with laser light L, and the bonding material 30 is melted by thermal conduction of the terminal portion 21 (S2).
  • the melted bonding material 30 is solidified by natural cooling or forced cooling (S3).
  • the solidified bonding material 30 bonds the conductor 12 and the terminal portion 21, and thus the conductor 12 and the terminal portion 21 are electrically connected.
  • the conductor 12, the bonding material 30, and the conductive member 20 constitute a part of an electrical circuit. It is preferable that the bonding material 30 remains on the conductor 12.
  • the absorptivity of laser light having a wavelength of 550 nm or less, preferably 400 nm or more and 550 nm or less, more preferably 400 nm or more and less than 500 nm, in metal materials is greater than the absorptivity of laser light having a longer wavelength, for example, laser light having a wavelength of 800 nm or more and 1200 nm or less, in metal materials.
  • the absorptivity of the terminal portion 21 is low, so when the power of the laser light is increased to melt the joining material 30, the terminal portion 21 also melts, and there are cases where an inconvenient situation occurs, such as spatter flying from the terminal portion 21. If spatter occurs, there is a risk of problems such as a short circuit occurring in the circuit of the circuit board 10.
  • the surface 21b of the terminal portion 21 is irradiated with laser light L having a wavelength of 550 nm or less, preferably 400 nm or more and 550 nm or less, and more preferably 400 nm or more and less than 500 nm, so that the bonding material 30 can be melted efficiently without causing sputtering or the like.
  • the laser light L may scan the surface 21b.
  • Fig. 4 is a plan view showing an example of a scanning trajectory Pt of a spot of the laser light L on the surface 21b. As shown in Fig. 4, the scanning trajectory Pt may be a substantially circular trajectory.
  • FIG. 5 is a plan view showing an example of a scanning trajectory Pt of the spot of the laser light L on the surface 21b. As shown in Fig. 5, the scanning trajectory Pt may be a trajectory that turns back in a zigzag pattern.
  • FIG. 6 is a plan view showing an example of a scanning locus Pt of the spot of the laser light L on the surface 21b. As shown in Fig. 6, the scanning locus Pt may be a spiral locus.
  • [Spot shape (1)] 7 is a plan view showing an example of the spot S on the surface 21b of the laser light L.
  • the spot S may be a circular spot.
  • the diameter D of the spot S is preferably 0.5 [mm] or more, and more preferably 1 [mm] or more, from the viewpoint of suppressing an excessive increase in the energy density due to the irradiation of the laser light L.
  • the diameter D may also be referred to as the width of the spot S.
  • the diameter D of the spot S may be defined as, for example, the diameter of a region in the spot S having an intensity of 1/e2 or more of the peak intensity.
  • FIG. 8 is a plan view showing an example of the spot S on the surface 21b of the laser light L.
  • the spot S may be a rectangular spot with rounded corners.
  • the width Ws of the spot S in the direction perpendicular to the scanning direction SD is preferably 1 mm or more.
  • [Spot shape (3)] 9 is a plan view showing an example of a spot S on the surface 21b of the laser light L.
  • the laser light may be split into a plurality of beams B by a beam shaper such as a DOE (diffractive optical element), and the laser light L may form a plurality of irradiation areas corresponding to each beam B on the surface 21b.
  • the width Ws of the spot S in the direction perpendicular to the scanning direction SD is preferably 0.5 [mm] or more, and more preferably 1 [mm] or more. Note that the specifications of the shape, arrangement, size, etc. of the spot S are not limited to the examples of FIGS. 7 to 9.
  • Fig. 10 is an explanatory diagram showing an example of a beam profile of the laser light L.
  • the horizontal axis of Fig. 10 indicates the position p on a line that intersects with the Z direction, extends along the surface 21b, and passes through the optical axis Ax, and the vertical axis indicates the intensity I of the laser light.
  • the beam profile of the laser light L has a flat shape (flat-top shape) that does not have a local peak as shown in Fig. 10.
  • U P (Z) ⁇ E FWHM / E max ...
  • ⁇ E FWHM is the full width at half maximum (FWHM) of the peak E max of the energy density histogram N(E i ), and N(E i ) is the number of points (x, y) having energy density plotted.
  • Fig. 11 is a cross-sectional view of a portion of the circuit assembly 1A(1) taken approximately along the Z direction.
  • the terminal portion 21 is not melted by the irradiation of the laser beam L of S2 in Fig. 2, and a trace remains of the heated portion H that was heated by the irradiation of the laser beam L.
  • a molten pool is not formed in the terminal portion 21, so that no spatter is generated from the molten pool of the terminal portion 21 to the surrounding area.
  • Fig. 12 is a cross-sectional view of a portion of the circuit assembly 1B(1) taken approximately along the Z direction.
  • a heated portion H and a melted and solidified portion M that is partially melted and solidified are formed in the terminal portion 21 by irradiation with the laser light L at S2 in Fig. 2.
  • the melted and solidified portion M is a portion that melted at S2 in Fig. 2 and solidified at S3 in Fig. 2.
  • a molten pool is formed at the location that will become the molten and solidified portion M.
  • the molten and solidified portion M does not reach the position where it contacts the joining material 30 from the surface 21b, is separated from the joining material 30, and has a relatively small volume.
  • the inventors' research has confirmed that when the aspect ratio of the molten and solidified portion M, which is the depth Dp (maximum depth) from the surface 21b in the Z direction to the width Wd (maximum width) in the direction intersecting the Z direction, is 1 or less, no spatter that would affect the surrounding circuitry occurs.
  • the aspect ratio is preferably 0.5 or less.
  • FIG. 13 is a graph showing the results of examining the bonding state for a number of samples with various combinations of the volume of the irradiated portion A (see Fig. 2) of the terminal portion 21 and the irradiation energy of the laser light L on the surface 21b.
  • the horizontal axis represents the volume [ mm3 ] of the irradiated portion A
  • the vertical axis represents the irradiation energy [J].
  • the inventors' research has revealed that the bonding strength changes according to the irradiation energy [J/mm 3 ] per unit volume of the irradiated portion A, that is, the slope of the graph in FIG. 13, as shown in FIG. 13. Specifically, when the irradiation energy per unit volume of the irradiated portion A is less than 1.5 [J/mm 3 ], the solder wettability is insufficient, and the required bonding state is not obtained. It has also been revealed that when the irradiation energy per unit volume of the irradiated portion A is 1.5 [J/mm 3 ] or more and 12 [J/mm 3 ] or less, the required bonding state is obtained.
  • the bonding state: good indicates a state in which there is no bonding failure due to insufficient solder wettability or damage to the board due to overheating. Furthermore, when the irradiation energy per unit volume of the irradiated portion A is more than 12 [J/mm 3 ], the terminal portion 21 melts more, sputtering occurs, and the circuit board assembly 1 is damaged due to overheating.
  • the joining material 30 can be melted more efficiently by the thermal conduction of the terminal portion 21 without significantly melting the terminal portion 21, so that, for example, a higher quality and more efficient joining can be achieved in the joining of the conductor 12 and the terminal portion 21 of the conductive member 20 with the joining material 30.
  • FIG. 14 is a schematic diagram of the laser processing apparatus 100B (100) of the second embodiment.
  • the laser processing apparatus 100B includes a laser device 110, an optical fiber 130, an optical head 120, and a position adjustment mechanism 140, similar to the laser processing apparatus 100A of the first embodiment.
  • the laser processing apparatus 100B of this embodiment includes a gas nozzle 150 as a gas supply mechanism for supplying gas G toward the terminal portion 21.
  • the gas G is supplied by both S2 and S3 (FIG. 3) described above.
  • the gas G is, for example, an inert gas such as nitrogen gas, and can suppress burning due to oxidation of the conductive member 20.
  • the gas G can also have the effect of cooling and preventing overheating.
  • FIG. 15 is a plan view of the workpiece W.
  • the conductive member 20B (20) is a foil-like member (metal foil).
  • the conductive member 20B is a member having a thickness of, for example, 0.4 mm or less.
  • the conductive member 20B has a terminal portion 21 and an extension portion 22 extending from the terminal portion 21 in the Y direction.
  • the terminal portion 21 is a joining region that is joined to the conductor 12 via the joining material 30, and the terminal portion 21 and the extension portion 22 extend in the Y direction with a substantially constant width in the X direction.
  • the Y direction is an example of the second direction.
  • the gas nozzle 150 is located away from the terminal portion 21 in the Z direction, for example, as shown in FIG. 14, and is located away from the geometric center C (center of gravity) of the terminal portion 21 in the Y direction in a plan view when viewed in the opposite direction to the Z direction, as shown in FIG. 15.
  • the gas nozzle 150 sprays the gas G in a direction D1 (FIG. 14) between the opposite direction to the Z direction and the opposite direction to the Y direction.
  • the gas G is preferably sprayed toward the geometric center C in a plan view as shown in FIG.
  • the gas G is preferably sprayed toward a position away from the geometric center C in the Y direction, for example, toward the vicinity of the end of the terminal portion 21 in the Y direction, so that the gas G flows approximately along the opposite direction to the Y direction in approximately the entire terminal portion 21.
  • the present invention can be used in joining methods and laser processing devices.
  • Circuit board assembly 10 ... Circuit board 11... Insulator 11a... Surface 11b... Surface 12... Conductor 12a... Surface (first surface) 20, 20A, 20B... Conductive member 21... Terminal portion (joined portion) 21a... surface 21b... surface (second surface, part) 22... Extension portion 30... Bonding material 100, 100A, 100B... Laser processing device 110... Laser device 120... Optical head 121... Collimator lens 122... Condenser lens 123... Mirror 126...
  • Galvano scanner (scanning mechanism) 126a, 126b...mirror 130...optical fiber 140...position adjustment mechanism (scanning mechanism) 150...Gas nozzle (gas supply mechanism)
  • G...gas H Cirated area
  • I...intensity L...laser light M...melted and solidified area p...position
  • Pt...scanning trajectory S...spots S1 to S3...process VP...virtual surface W...processing object Wd...width Ws...width X...direction Y...direction Z...direction (first direction)

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

接合方法は、例えば、回路基板に設けられた導体の第一方向を向いた第一面と、導電部材の被接合部と、が第一方向に並ぶとともに、第一面と被接合部との間に導体および導電部材より融点が低い電気伝導性を有した接合材が介在した状態で、被接合部の接合材とは反対側の部位に、波長が550[nm]以下のレーザ光を照射することにより被接合部での熱伝導によって接合材を溶融する工程と、溶融した接合材を冷却することにより固化する工程と、を備え、導体と導電部材とを接合材を介して電気的に接続する。

Description

接合方法およびレーザ加工装置
 本発明は、接合方法およびレーザ加工装置に関する。
 回路基板上に設けられた導体と、バスバーのような導電部材と、を電気的に接続するために接合する手法として、リフローはんだ付けが知られている(例えば、特許文献1~4参照)。リフローはんだ付けは、熱が基板や部品に悪影響を及ぼす虞があるため、適用が制限される場合がある。また、一般に、強度信頼性が高いはんだの融点は高く、熱による影響がさらに大きくなるため、適用がさらに制限される場合がある。
国際公開2021/235196号公報 特開2007-194462号公報 実用新案登録第3156732号公報 実用新案登録第2503584号公報
 リフローはんだ付けに代わる手法として、導体と導電部材との間に介在した導電性を有したはんだのような接合材を、レーザ光の照射によって加熱して溶融し、溶融した後に冷却して固化することにより、接合状態を得る手法が考えられる。
 この場合において、接合材にレーザ光を直接照射するのが難しい構成にあっては、導電部材にレーザ光を照射し、当該導電部材での熱伝導によって接合材を溶融することが考えられる。しかしながら、一般的な赤外波長領域のレーザ光は、導電部材を構成する金属材料に対する吸収率が低いため、導電部材を極力溶融させることなく接合材を溶融させるような条件の設定が難しいことが想定される。
 そこで、本発明の課題の一つは、導電部材にレーザ光を照射し、当該導電部材の熱伝導によって導電性を有した接合材を加熱して溶融し、当該溶融した接合材を冷却して固化することにより、導電部材と回路基板に設けられた導体とを接合する接合方法およびレーザ加工装置において、例えば、所要の接合状態をより容易にあるいはより確実に得ることが可能となるような、改善された新規な接合方法およびレーザ加工装置を得ること、である。
 本発明の接合方法は、例えば、回路基板に設けられた導体の第一方向を向いた第一面と、導電部材の被接合部と、が前記第一方向に並ぶとともに、前記第一面と前記被接合部との間に前記導体および前記導電部材より融点が低い電気伝導性を有した接合材が介在した状態で、前記被接合部の前記接合材とは反対側の部位に、波長が550[nm]以下のレーザ光を照射することにより前記被接合部での熱伝導によって前記接合材を溶融する工程と、前記溶融した接合材を冷却することにより固化する工程と、を備え、前記導体と前記導電部材とを前記接合材を介して電気的に接続する。
 前記接合方法では、前記レーザ光の波長は、400[nm]以上であってもよい。
 前記接合方法では、前記レーザ光の波長は、500[nm]未満であってもよい。
 前記接合方法では、前記導電部材は、銅系材料で作られてもよい。
 前記接合方法において、前記接合材を溶融する工程では、前記被接合部は前記レーザ光の照射によって溶融しなくてもよい。
 前記接合方法において、前記被接合部には、前記接合材を溶融する工程において前記レーザ光の照射によって溶融した後に前記導体と前記導電部材とを接合する工程において固化した溶融固化部が形成され、前記溶融固化部は前記接合材とは離れてもよい。
 前記接合方法では、前記溶融固化部の、前記第一方向と交差した方向における幅に対する前記第一方向における深さのアスペクト比は、1以下であってもよい。
 前記接合方法では、前記アスペクト比は、0.5以下であってもよい。
 前記接合方法では、前記被接合部のうち前記第一面および前記接合材と前記第一方向に重なる部位の単位体積あたりの、前記接合材を溶融する工程で照射される前記レーザ光のエネルギは、1.5[J/mm]以上かつ12[J/mm]以下であってもよい。
 前記接合方法では、前記被接合部のうち前記第一面および前記接合材と前記第一方向に重なる部位の単位体積あたりの、前記接合材を溶融する工程で照射される前記レーザ光のエネルギは、2.5[J/mm]以上かつ7[J/mm]以下であってもよい。
 前記接合方法において、前記接合材を溶融する工程では、前記レーザ光を前記被接合部の前記接合材とは反対側の部位である第二面上で走査してもよい。
 前記接合方法において、前記接合材を溶融する工程では、前記被接合部の前記接合材とは反対側の部位である第二面上での前記レーザ光のスポットの幅は、0.5[mm]以上であってもよい。
 前記接合方法において、前記接合材を溶融する工程では、前記被接合部の前記接合材とは反対側の部位である第二面上での前記レーザ光のスポットの幅は、1[mm]以上であってもよい。
 前記接合方法では、前記回路基板は、ガラスエポキシ樹脂基板、セラミック基板、およびメタルベース基板のうちいずれか一つであってもよい。
 前記接合方法では、前記導電部材は、板状、棒状、または線状の部材であってもよい。
 前記接合方法では、前記導電部材は、箔状の部材であってもよい。
 前記接合方法では、前記接合材を溶融する工程において、前記被接合部にガスを供給してもよい。
 前記接合方法では、前記導電部材は、箔状の部材であるとともに、前記被接合部から前記第一方向と交差しかつ前記第一面に沿った第二方向に延びた延部を有し、前記接合材を溶融する工程において、前記ガスを、前記第二方向の反対方向と前記第一方向の反対方向との間の方向に吹き付けてもよい。
 また、本発明の接合方法は、例えば、回路基板に設けられた導体の第一方向を向いた第一面と、導電部材の被接合部と、が前記第一方向に並ぶとともに、前記第一面と前記被接合部との間に前記導体および前記導電部材より融点が低い電気伝導性を有した接合材の少なくとも一部が介在した状態で、前記被接合部の前記接合材とは反対側の部位または前記接合材に、波長が550[nm]以下のレーザ光を照射することにより前記接合材を溶融する工程と、前記溶融した接合材を冷却することにより固化する工程と、を備え、前記導体と前記導電部材とを前記接合材を介して電気的に接続する。
 また、本発明のレーザ加工装置は、例えば、回路基板に設けられた導体の第一方向を向いた第一面と、導電部材の被接合部と、が前記第一方向に並ぶとともに、前記第一面と前記被接合部との間に前記導体および前記導電部材より融点が低い電気伝導性を有した接合材が介在した状態で、前記被接合部の前記接合材とは反対側の第二面に、波長が550[nm]以下のレーザ光を照射することにより前記被接合部での熱伝導によって前記接合材を溶融するレーザ加工装置であって、波長が550[nm]以下のレーザ光を出力するレーザ装置と、前記レーザ装置から出力されたレーザ光を前記第二面に照射する光学ヘッドと、を備える。
 本発明によれば、導電部材にレーザ光を照射し、当該導電部材の熱伝導によって導電性を有した接合材を加熱して溶融し、当該溶融した接合材を冷却して固化することにより、導電部材と回路基板に設けられた導体とを接合する接合方法として、改善された新規な接合方法およびレーザ加工装置を得ることができる。
図1は、第1実施形態の接合方法を実行するレーザ加工装置の例示的な概略構成図である。 図2は、第1実施形態の接合方法による加工対象の例示的かつ模式的な平面図である。 図3は、実施形態の接合方法の手順を示す例示的なフローチャートである。 図4は、実施形態の接合方法における加工対象の表面でのレーザ光の走査軌跡の一例を示す模式的な平面図である。 図5は、実施形態の接合方法における加工対象の表面でのレーザ光の走査軌跡の図4とは別の一例を示す模式的な平面図である。 図6は、実施形態の接合方法における加工対象の表面でのレーザ光の走査軌跡の図4,5とは別の一例を示す模式的な平面図である。 図7は、実施形態の接合方法における加工対象の表面でのレーザ光のスポットの形状の一例を示す模式的な平面図である。 図8は、実施形態の接合方法における加工対象の表面でのレーザ光のスポットの形状の図7とは別の一例を示す模式的な平面図である。 図9は、実施形態の接合方法における加工対象の表面でのレーザ光のスポットの形状の図7,8とは別の一例を示す模式的な平面図である。 図10は、実施形態の接合方法における加工対象の表面上でのレーザ光のビームプロファイルの一例を示す説明図である。 図11は、実施形態の接合方法によって接合された回路基板アセンブリの一部の一例を示す模式的な断面図である。 図12は、実施形態の接合方法によって接合された回路基板アセンブリの一部の図11とは別の一例を示す模式的な断面図である。 図13は、実施形態の接合方法における被照射部位の体積および照射エネルギに応じた接合状態を示すグラフである。 図14は、第2実施形態の接合方法を実行するレーザ加工装置の例示的な概略構成図である。 図15は、第2実施形態の接合方法による加工対象の例示的かつ模式的な平面図である。
 以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。
 また、各図において、X方向を矢印Xで表し、Y方向を矢印Yで表し、Z方向を矢印Zで表している。X方向、Y方向、およびZ方向は、互いに交差するとともに直交している。Z方向は、例えば、加工対象Wの表面(加工面)の法線方向である。
 また、本明細書において、序数は、方向や部位等を区別するために便宜上付与されており、優先度や順番を示すものではないし、数を限定するものでもない。
[第1実施形態]
[レーザ加工装置]
 図1は、第1実施形態のレーザ加工装置100A(100)の概略構成図である。図1に示されるように、レーザ加工装置100は、レーザ装置110と、光ファイバ130と、光学ヘッド120と、位置調整機構140と、を備えている。
 レーザ装置110は、レーザ発振器を有している。一例として、レーザ装置110は、内部に複数の半導体レーザ素子を有し、当該複数の半導体レーザ素子の合計の出力として数kWのパワーのマルチモードのレーザ光を出力できるよう構成される。
 レーザ装置110は、例えば、550[nm]以下の波長のレーザ光を出力する。レーザ光の波長は、400[nm]以上かつ550[nm]以下であるのが好ましく、400[nm]以上かつ500[nm]未満であるのがより好ましい。
 光ファイバ130は、レーザ装置110から出力されたレーザ光を光学ヘッド120に導く。
 光学ヘッド120は、レーザ装置110から光ファイバ130を介して入力されたレーザ光を、加工対象Wに向けて照射するための光学装置である。光学ヘッド120は、コリメートレンズ121と、ミラー123と、ガルバノスキャナ126と、集光レンズ122と、を備えている。これらコリメートレンズ121、ミラー123、ガルバノスキャナ126、および集光レンズ122は、光学部品とも称されうる。
 コリメートレンズ121は、光ファイバ130を介して入力されたレーザ光をコリメートする。コリメートされたレーザ光は、平行光になる。
 ミラー123は、コリメートレンズ121で平行光となったレーザ光を反射する。ミラー123で反射されたレーザ光は、ガルバノスキャナ126へ向かう。なお、光学ヘッド120内の光学部品のレイアウトによっては、ミラー123は不要となる。
 ガルバノスキャナ126は、2枚のミラー126a,126bを有しており、当該2枚のミラー126a,126bの角度を制御することで、加工対象Wの表面上でのレーザ光Lの照射位置を移動し、表面上でレーザ光Lを走査することができる装置である。ミラー126a,126bの角度は、それぞれ、例えばモータを含む不図示のアクチュエータによって変更されうる。
 集光レンズ122は、ガルバノスキャナ126を経由したレーザ光を集光し、レーザ光L(出力光)として、加工対象Wへ照射する。
 位置調整機構140は、加工対象Wに対する光学ヘッド120の相対位置を変更可能に構成されている。
 レーザ加工装置100は、ガルバノスキャナ126および位置調整機構140の少なくとも一方の作動により、加工対象Wの表面上で、レーザ光Lのスポットを走査することができる。ガルバノスキャナ126および位置調整機構140は、走査機構とも称されうる。
[加工対象]
 加工対象Wは、回路基板10に設けられた導体12と、導電部材20の端子部21と、接合材30と、を含む。レーザ加工装置100による接合処理により、導体12と端子部21とが接合材30によって一体化され、回路基板アセンブリ1が形成される。回路基板アセンブリ1は、導体12が設けられた回路基板10と、端子部21を有した導電部材20と、接合材30と、を備えている。端子部21は、被接合部の一例である。
 回路基板10は、例えば、プリント配線基板であり、絶縁体11と、導体12と、を有している。絶縁体11は、例えば、ガラスエポキシ樹脂で作られる。ただし、絶縁体11は、これには限定されず、他の材料で作られてもよい。導体12は、比較的高い導電性を有した材料で作られる。一例として、導体12は、純銅や銅合金のような銅系の金属材料で作られる。ただし、これには限定されず、導体12は、他の金属材料で作られてもよい。また、回路基板10は、ガラスエポキシ樹脂基板には限定されず、例えば、DCB基板(DCB:direct copper bonding)やAMB基板(AMB:active metal brazing)のようなセラミック基板や、メタルベース基板等であってもよいし、他の基板であってもよい。
 絶縁体11は、板状の形状を有し、Z方向と交差するとともに直交している。また、絶縁体11は、面11aと面11bと、を有している。面11aは、Z方向の反対方向を向き、Z方向と交差するとともに直交している。面11bは、Z方向を向き、Z方向と交差するとともに直交している。
 導体12は、絶縁体11と一体化されており、Z方向に露出した面12aを有している。面12aは、Z方向を向き、Z方向と交差するとともに直交している。面12aは、面11aとは、略面一か、あるいは面11aよりZ方向に突出している。なお、導体12は、これには限定されず、回路基板10に実装された例えばスイッチング素子のような半導体装置や、電気部品、電子部品の導体であってもよい。この場合、面12aは、回路基板10に実装された半導体装置や、電気部品、電子部品の導体の面となる。面12aは、第一面の一例である。
 導電部材20A(20)は、端子部21を有している。端子部21は、略一定の厚さを有した板状の形状を有し、Z方向と交差するとともに直交している。また、端子部21は、面21aと面21bと、を有している。面21aは、Z方向の反対方向を向き、Z方向と交差するとともに直交している。面21bは、Z方向を向き、Z方向と交差するとともに直交している。
 導電部材20は、比較的高い導電性および比較的高い熱伝導性を有した材料で作られる。一例として、導電部材20は、純銅や銅合金のような銅系の金属材料で作られる。また、導電部材20は、例えば、板状、棒状、または線状の部材である。導電部材20は、バスバーとも称されうる。ただし、導電部材20は、これには限定されず、他の金属材料で作られてもよいし、箔状の部材であってもよい。導電部材20は、具体的に、例えば、端子や、リボン、給電線、リードフレーム等である。
 接合材30は、Z方向と交差するとともに直交し、略一定の厚さで広がっている。接合材30は、導体12の面12aと端子部21の面21aとの間に少なくとも部分的に挟まれている。導体12、接合材30、および端子部21は、Z方向にこの順に重なっている。面21bは、端子部21のうち接合材30とは反対側に位置した部位であり、第二面の一例である。Z方向は、第一方向の一例である。
 接合材30は、導電性を有するとともに、導体12および導電部材20より融点が低いはんだ材あるいはろう材で作られている。接合材30は、例えば、はんだペーストあるいははんだ箔のようなはんだ材である。はんだ材は、軟ろう材とも称されうる。ただし、接合材30は、これには限定されず、はんだ材とは異なるろう材、所謂硬ろう材であってもよい。
 光学ヘッド120は、端子部21の面21bに対してZ方向に離れており、レーザ光Lを、当該面21bに向けて、略Z方向の反対方向に出力する。レーザ光Lは、端子部21の面21b上に照射される。端子部21は、レーザ光Lの照射によって生じた熱を接合材30に伝導し、これにより接合材30が溶融する。
 図2は、加工対象Wの平面図である。図2に示されるように、導体12、接合材30、および端子部21は、Z方向に部分的に重なっている。本実施形態では、端子部21のうち、導体12の面12aおよび接合材30とZ方向に重なっている部位Aを、端子部21の被照射部位と称する。レーザ光Lは、当該部位Aの面21bに照射される。被照射部位は、被接合部の一例でもある。
[接合方法の手順]
 図3は、接合方法の手順を示すフローチャートである。図3に示されるように、まずは、回路基板10、導電部材20、および接合材30を、図1,2に示される状態にセットする(S1)。次に、端子部21の面21bにレーザ光Lを照射し、当該端子部21の熱伝導によって、接合材30を溶融する(S2)。次に、溶融した接合材30を自然冷却または強制冷却によって固化する(S3)。固化した接合材30によって、導体12と端子部21とが接合され、これにより導体12と端子部21とが電気的に接続される。導体12、接合材30、および導電部材20は、電気的な回路の一部を構成する。なお、接合材30は、導体12上に留まるのが好ましい。
 本実施形態のように、波長が550[nm]以下、好ましくは400[nm]以上550[nm]以下、より好ましくは400[nm]以上500[nm]未満のレーザ光の、金属材料に対する吸収率は、より波長が長いレーザ光、例えば、波長が800[nm]以上かつ1200[nm]以下のレーザ光の、金属材料に対する吸収率に比べて、大きいことが判明している。仮に、本実施形態のような加工対象Wに対して波長が800[nm]以上かつ1200[nm]以下のレーザ光によって加工を行った場合、端子部21による吸収率が低いため、接合材30を溶融するためにレーザ光のパワーを大きくすると、端子部21も溶融し、当該端子部21からスパッタが飛んでしまうなどの不都合な事態が生じる場合があった。スパッタが生じた場合にあっては、回路基板10の回路に短絡が生じるなどの問題が生じる虞もある。この点、本実施形態では、波長が550[nm]以下、好ましくは400[nm]以上550[nm]以下、より好ましくは400[nm]以上500[nm]未満のレーザ光Lを、端子部21の面21bに照射するため、スパッタ等を生じることなく、効率良く接合材30を溶融することが可能となる。
[走査パターン(1)]
 レーザ光Lは、面21b上で走査してもよい。図4は、面21b上でのレーザ光Lのスポットの走査軌跡Ptの一例を示す平面図である。図4に示されるように、走査軌跡Ptは、略円形の軌跡であってもよい。
[走査パターン(2)]
 図5は、面21b上でのレーザ光Lのスポットの走査軌跡Ptの一例を示す平面図である。図5に示されるように、走査軌跡Ptは、ジグザグに折り返す軌跡であってもよい。
[走査パターン(3)]
 図6は、面21b上でのレーザ光Lのスポットの走査軌跡Ptの一例を示す平面図である。図6に示されるように、走査軌跡Ptは、渦巻き状の軌跡であってもよい。
 図4~6に示されるように、面21b上でレーザ光Lのスポットを走査することにより、接合材30の溶融状態の場所によるばらつきを抑制することができる。また、面21b上でレーザ光Lのエネルギ密度が局所的に過度に高まり、面21bが比較的大きくあるいは比較的深く溶融してスパッタが生じるのを、抑制することができる。なお、走査軌跡Ptは、図4~6の例には限定されない。
[スポット形状(1)]
 図7は、レーザ光Lの面21b上でのスポットSの一例を示す平面図である。図7に示されるように、スポットSは、円形状のスポットであってもよい。発明者らの研究により、スポットSの直径Dは、レーザ光Lの照射によるエネルギ密度が過度に高くなるのを抑制する観点から、0.5[mm]以上であるのが好ましく、1[mm]以上であるのがより好ましいことが判明した。直径Dは、スポットSの幅とも称されうる。なお、スポットSの直径Dは、例えば、スポットS内のピーク強度の1/e以上の強度の領域の径として定義することができる。
[スポット形状(2)]
 図8は、レーザ光Lの面21b上でのスポットSの一例を示す平面図である。図8に示されるように、スポットSは、角部が丸められた四角形状のスポットであってもよい。発明者らの研究により、スポットSの走査方向SDと直交する方向における幅Wsは、1[mm]以上であるのが好ましいことが判明した。
[スポット形状(3)]
 図9は、レーザ光Lの面21b上でのスポットSの一例を示す平面図である。図9に示されるように、光学ヘッド120において、レーザ光は、例えばDOE(diffractive optical element、回折光学素子)のようなビームシェイパによって複数のビームBに分割され、レーザ光Lが面21b上で各ビームBに対応した複数の照射領域を形成してもよい。発明者らの研究により、この場合も、スポットSの走査方向SDと直交する方向における幅Wsは、0.5[mm]以上であるのが好ましく、1[mm]以上であるのがより好ましいことが判明した。なお、スポットSの形状や、配置、大きさ等のスペックは、図7~9の例には限定されない。
[ビームプロファイル]
 図10は、レーザ光Lのビームプロファイルの一例を示す説明図である。図10の横軸は、Z方向と交差して面21bに沿って延び光軸Axを通る線上の位置pを示し、縦軸は、レーザ光の強度Iを示す。レーザ光Lによる入熱量の場所によるばらつきを抑制するため、レーザ光Lのビームプロファイルは、図10に示されるような局所的なピークを持たないフラットな形状(フラットトップ形状)であることが好ましい。一例としては、次の式(1)
 UP(Z)=ΔEFWHM/Emax ・・・(1)
(ここで、ΔEFWHMは、エネルギ密度ヒストグラムN(E)のピークEmaxの半値幅(FWHM)であり、N(E)はエネルギ密度を持つ点(x,y)の数をプロットしたもの。)
で表されるプラトー均一性(Plateau Uniformity)が、0.5未満であることが好ましい。
[接合状態(1)]
 図11は、回路アセンブリ1A(1)の一部のZ方向に略沿った断面図である。図11に示される例では、図2のS2のレーザ光Lの照射によっては、端子部21は溶融せず、レーザ光Lの照射によって加熱された被加熱部位Hの痕跡が残っている。この場合、端子部21には溶融池が形成されないため、当該端子部21の溶融池から周囲にスパッタが飛ぶことがない。
[接合状態(2)]
 図12は、回路アセンブリ1B(1)の一部のZ方向に略沿った断面図である。図12に示される例では、図2のS2のレーザ光Lの照射によって、端子部21には、被加熱部位Hと、部分的に溶融して固化した溶融固化部Mと、が形成されている。溶融固化部Mは、図2のS2において溶融し、図2のS3において固化した部位である。
 図12の場合、図2のS2では、溶融固化部Mとなる場所に、溶融池が形成されている。ただし、図12に示されるように、溶融固化部Mは、面21bから接合材30と接する位置までは到達せず、当該接合材30とは離れており、比較的小さい体積を有している。また、発明者らの研究により、溶融固化部Mの、Z方向と交差した方向における幅Wd(最大幅)に対するZ方向における面21bからの深さDp(最大深さ)であるアスペクト比は、1以下である場合、周囲の回路に影響を与えるようなスパッタは生じないことを確認できた。さらに、当該アスペクト比は、0.5以下であるのが好ましいことが判明した。
[被照射部位の体積と照射エネルギとの関係]
 図13は、端子部21の被照射部位A(図2参照)の体積と、レーザ光Lによる面21bに対する照射エネルギとを種々に組み合わせた複数のサンプルにおいて、接合状態を調べた結果を示すグラフである。図13では、横軸は、被照射部位Aの体積[mm]であり、縦軸は、照射エネルギ[J]である。
 発明者らの研究により、図13に示されるように、被照射部位Aの単位体積あたりの照射エネルギ[J/mm]、すなわち図13のグラフの傾きに応じて、接合強度が変化することが判明した。具体的には、被照射部位Aの単位体積あたりの照射エネルギが1.5[J/mm]未満である場合には、はんだの濡れ性が不足し、所要の接合状態が得られなかった。また、被照射部位Aの単位体積あたりの照射エネルギが1.5[J/mm]以上かつ12[J/mm]以下である場合には、所要の接合状態が得られることが、判明した。ここに、接合状態:良は、はんだの濡れの不足による接合不良や過熱による基板損傷がない状態であることを示している。さらに、被照射部位Aの単位体積あたりの照射エネルギが12[J/mm]より大きい場合には、端子部21がより大きく溶融し、スパッタが発生したり、過熱による回路基板アセンブリ1の損傷が生じたりした。
 さらに、被照射部位Aの単位体積あたりの照射エネルギが2.5[J/mm]以上かつ7[J/mm]以下である場合には、より好ましい接合状態(最良)が得られることが判明した。また、2.5[J/mm]以上かつ7[J/mm]以下である場合には、導電部材20が、厚さが0.3[mm]以下のような箔状の部材(金属箔)である場合にあっても、箔の切断が生じないことが判明した。
 以上、説明したように、本実施形態の接合方法では、銅系材料のような金属材料に対する吸収率が高い、波長が550[nm]以下、好ましくは400[nm]以上550[nm]以下、より好ましくは400[nm]以上500[nm]未満のレーザ光Lを、端子部21の面21bに照射する。当該接合方法によれば、端子部21を大きく溶融することなく、端子部21の熱伝導によって、より効率良く接合材30を溶融することができるため、導体12と導電部材20の端子部21との接合材30による接合において、例えば、より高品質かつより高効率な接合を実現することができる。
[第2実施形態]
 図14は、第2実施形態のレーザ加工装置100B(100)の概略構成図である。図1に示されるように、レーザ加工装置100Bは、上記第1実施形態のレーザ加工装置100Aと同様に、レーザ装置110と、光ファイバ130と、光学ヘッド120と、位置調整機構140と、を備えている。さらに、本実施形態のレーザ加工装置100Bは、端子部21に向けてガスGを供給するガス供給機構としてのガスノズル150を備えている。ガスGは、上述したS2およびS3(図3)の双方で供給される。ガスGは、例えば、窒素ガスのような不活性ガスであり、導電部材20の酸化に基づく焼けを抑制することができる。また、ガスGは、冷却や過熱防止の効果も有しうる。
 図15は、加工対象Wの平面図である。本実施形態では、導電部材20B(20)は、箔状の部材(金属箔)である。この場合、導電部材20Bの厚さは、例えば、0.4[mm]以下の部材である。導電部材20Bは、端子部21と、当該端子部21からY方向に延びる延部22と、を有している。端子部21は、接合材30を介して導体12と接合される被接合領域であり、端子部21と延部22とは、X方向における略一定幅で、Y方向に延びている。Y方向は、第二方向の一例である。
 この場合において、ガスノズル150は、例えば、図14に示されるように、端子部21に対してZ方向に離れて位置するとともに、図15に示されるように、Z方向の反対方向に見た場合の平面視において、端子部21の幾何中心C(重心)に対してY方向に離れて位置する。そして、当該ガスノズル150は、ガスGを、Z方向の反対方向とY方向の反対方向との間の方向D1(図14)に向けて吹き付ける。さらに、この場合、ガスGは、図15に示されるように平面視では幾何中心Cに向けて吹き付けられるのが好ましく、当該幾何中心Cを通りZ方向およびY方向に沿う仮想面VPに対して略対称となる流速分布あるいは流線分布が得られるように吹きつけられるのがより好ましい。また、ガスGは、幾何中心CよりY方向に離れた位置、例えば端子部21のY方向の端部近傍に向けて吹き付けられることで、端子部21の略全体においてY方向の反対方向に略沿った流れとなるのが好ましい。
 このようなガスGの吹きつけにより、箔状の導電部材20Bの端子部21にZ方向の反対方向およびY方向の反対方向に向かう力を作用することができる。これにより、端子部21を、めくれることなく、導体12の面12aおよび接合材30に沿った姿勢で保持することができ、ひいては溶接不良を回避することができる。
 以上、本発明の実施形態が例示されたが、上記実施形態は一例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や、形状、等のスペック(構造や、種類、方向、型式、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。例えば、レーザ光は、接合材の露出部分に照射されてもよい。
 本発明は、接合方法およびレーザ加工装置に利用することができる。
1,1A,1B…回路基板アセンブリ
10…回路基板
11…絶縁体
11a…面
11b…面
12…導体
12a…面(第一面)
20,20A,20B…導電部材
21…端子部(被接合部)
21a…面
21b…面(第二面、部位)
22…延部
30…接合材
100,100A,100B…レーザ加工装置
110…レーザ装置
120…光学ヘッド
121…コリメートレンズ
122…集光レンズ
123…ミラー
126…ガルバノスキャナ(走査機構)
126a,126b…ミラー
130…光ファイバ
140…位置調整機構(走査機構)
150…ガスノズル(ガス供給機構)
A…被照射部位(部位、被接合部)
Ax…光軸
B…ビーム
C…幾何中心
D…直径(幅)
Dp…深さ
D1…方向
G…ガス
H…被加熱部位
I…強度
L…レーザ光
M…溶融固化部
p…位置
Pt…走査軌跡
S…スポット
S1~S3…工程
VP…仮想面
W…加工対象
Wd…幅
Ws…幅
X…方向
Y…方向
Z…方向(第一方向)

Claims (20)

  1.  回路基板に設けられた導体の第一方向を向いた第一面と、導電部材の被接合部と、が前記第一方向に並ぶとともに、前記第一面と前記被接合部との間に前記導体および前記導電部材より融点が低い電気伝導性を有した接合材が介在した状態で、前記被接合部の前記接合材とは反対側の部位に、波長が550[nm]以下のレーザ光を照射することにより前記被接合部での熱伝導によって前記接合材を溶融する工程と、
     前記溶融した接合材を冷却することにより固化する工程と、
     を備え、前記導体と前記導電部材とを前記接合材を介して電気的に接続する接合方法。
  2.  前記レーザ光の波長は、400[nm]以上である、請求項1に記載の接合方法。
  3.  前記レーザ光の波長は、500[nm]未満である、請求項1に記載の接合方法。
  4.  前記導電部材は、銅系材料で作られた、請求項1に記載の接合方法。
  5.  前記接合材を溶融する工程では、前記被接合部は前記レーザ光の照射によって溶融しない、請求項1に記載の接合方法。
  6.  前記被接合部には、前記接合材を溶融する工程において前記レーザ光の照射によって溶融した後に前記導体と前記導電部材とを接合する工程において固化した溶融固化部が形成され、
     前記溶融固化部は前記接合材とは離れた、請求項1に記載の接合方法。
  7.  前記溶融固化部の、前記第一方向と交差した方向における幅に対する前記第一方向における深さのアスペクト比は、1以下である、請求項6に記載の接合方法。
  8.  前記アスペクト比は、0.5以下である、請求項7に記載の接合方法。
  9.  前記被接合部のうち前記第一面および前記接合材と前記第一方向に重なる部位の単位体積あたりの、前記接合材を溶融する工程で照射される前記レーザ光のエネルギは、1.5[J/mm]以上かつ12[J/mm]以下である、請求項1に記載の接合方法。
  10.  前記被接合部のうち前記第一面および前記接合材と前記第一方向に重なる部位の単位体積あたりの、前記接合材を溶融する工程で照射される前記レーザ光のエネルギは、2.5[J/mm]以上かつ7[J/mm]以下である、請求項9に記載の接合方法。
  11.  前記接合材を溶融する工程では、前記レーザ光を前記被接合部の前記接合材とは反対側の部位である第二面上で走査する、請求項1に記載の接合方法。
  12.  前記接合材を溶融する工程では、前記被接合部の前記接合材とは反対側の部位である第二面上での前記レーザ光のスポットの幅は、0.5[mm]以上である、請求項1~11のうちいずれか一つに記載の接合方法。
  13.  前記接合材を溶融する工程では、前記被接合部の前記接合材とは反対側の部位である第二面上での前記レーザ光のスポットの幅は、1[mm]以上である、請求項12に記載の接合方法。
  14.  前記回路基板は、ガラスエポキシ樹脂基板、セラミック基板、およびメタルベース基板のうちいずれか一つである、請求項1~10のうちいずれか一つに記載の接合方法。
  15.  前記導電部材は、板状、棒状、または線状の部材である、請求項1~10のうちいずれか一つに記載の接合方法。
  16.  前記導電部材は、箔状の部材である、請求項1~10のうちいずれか一つに記載の接合方法。
  17.  前記接合材を溶融する工程において、前記被接合部にガスを供給する、請求項1~10のうちいずれか一つに記載の接合方法。
  18.  前記導電部材は、箔状の部材であるとともに、前記被接合部から前記第一方向と交差しかつ前記第一面に沿った第二方向に延びた延部を有し、
     前記接合材を溶融する工程において、前記ガスを、前記第二方向の反対方向と前記第一方向の反対方向との間の方向に吹き付ける、請求項17に記載の接合方法。
  19.  回路基板に設けられた導体の第一方向を向いた第一面と、導電部材の被接合部と、が前記第一方向に並ぶとともに、前記第一面と前記被接合部との間に前記導体および前記導電部材より融点が低い電気伝導性を有した接合材の少なくとも一部が介在した状態で、前記被接合部の前記接合材とは反対側の部位または前記接合材に、波長が550[nm]以下のレーザ光を照射することにより前記接合材を溶融する工程と、
     前記溶融した接合材を冷却することにより固化する工程と、
     を備え、前記導体と前記導電部材とを前記接合材を介して電気的に接続する接合方法。
  20.  回路基板に設けられた導体の第一方向を向いた第一面と、導電部材の被接合部と、が前記第一方向に並ぶとともに、前記第一面と前記被接合部との間に前記導体および前記導電部材より融点が低い電気伝導性を有した接合材が介在した状態で、前記被接合部の前記接合材とは反対側の第二面に、波長が550[nm]以下のレーザ光を照射することにより前記被接合部での熱伝導によって前記接合材を溶融するレーザ加工装置であって、
     波長が550[nm]以下のレーザ光を出力するレーザ装置と、
     前記レーザ装置から出力されたレーザ光を前記第二面に照射する光学ヘッドと、
     を備えた、レーザ加工装置。
PCT/JP2023/041861 2022-11-24 2023-11-21 接合方法およびレーザ加工装置 WO2024111593A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022187688 2022-11-24
JP2022-187688 2022-11-24

Publications (1)

Publication Number Publication Date
WO2024111593A1 true WO2024111593A1 (ja) 2024-05-30

Family

ID=91196154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041861 WO2024111593A1 (ja) 2022-11-24 2023-11-21 接合方法およびレーザ加工装置

Country Status (1)

Country Link
WO (1) WO2024111593A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144871A (ja) * 1985-12-20 1987-06-29 Hitachi Ltd はんだ付け方法
JPH0422591A (ja) * 1990-05-08 1992-01-27 Fuji Electric Co Ltd レーザー半田付け装置
JP2008254018A (ja) * 2007-04-04 2008-10-23 Olympus Corp レーザ接合装置
JP2009105266A (ja) * 2007-10-24 2009-05-14 Fuji Electric Device Technology Co Ltd 半導体装置の製造方法
WO2017195625A1 (ja) * 2016-05-11 2017-11-16 三菱電機株式会社 半導体装置および半導体装置の製造方法
JP2020072208A (ja) * 2018-11-01 2020-05-07 三菱電機株式会社 半導体装置、電力変換装置及び半導体装置の製造方法
JP2020184577A (ja) * 2019-05-08 2020-11-12 三菱電機株式会社 半導体装置の製造方法および接合材供給治具ならびにその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144871A (ja) * 1985-12-20 1987-06-29 Hitachi Ltd はんだ付け方法
JPH0422591A (ja) * 1990-05-08 1992-01-27 Fuji Electric Co Ltd レーザー半田付け装置
JP2008254018A (ja) * 2007-04-04 2008-10-23 Olympus Corp レーザ接合装置
JP2009105266A (ja) * 2007-10-24 2009-05-14 Fuji Electric Device Technology Co Ltd 半導体装置の製造方法
WO2017195625A1 (ja) * 2016-05-11 2017-11-16 三菱電機株式会社 半導体装置および半導体装置の製造方法
JP2020072208A (ja) * 2018-11-01 2020-05-07 三菱電機株式会社 半導体装置、電力変換装置及び半導体装置の製造方法
JP2020184577A (ja) * 2019-05-08 2020-11-12 三菱電機株式会社 半導体装置の製造方法および接合材供給治具ならびにその製造方法

Similar Documents

Publication Publication Date Title
KR20210134087A (ko) 반도체 패키징, 자동차 전기 장치, 배터리 및 기타 부품에 대한 가시 레이저 용접 방법
US5832595A (en) Method of modifying conductive lines of an electronic circuit board and its apparatus
EP1226000B1 (en) An apparatus and method for laser welding of ribbons for electrical connections
JP2022013800A (ja) 半導体装置および溶接方法
JP4858238B2 (ja) レーザ溶接部材およびそれを用いた半導体装置
CN110936016B (zh) 用于激光焊接的方法和设备
JP7547454B2 (ja) 溶接方法およびレーザ溶接システム
WO2024111593A1 (ja) 接合方法およびレーザ加工装置
US20230096039A1 (en) Busbar and method of manufacturing busbar
JP2022026626A (ja) 半導体装置およびその製造方法
JP2001321973A (ja) レーザ溶接接合構造
JP2011101894A (ja) 接合構造及び接合方法
WO2023157810A1 (ja) レーザ溶接方法および金属接合体
JP5207557B2 (ja) 接合装置
JP2024076250A (ja) レーザ溶接方法およびレーザ溶接装置
JPH07211424A (ja) 半田付け方法および半田付け装置
JP7571619B2 (ja) 金属部材の製造方法
CN117161561B (zh) 芯片与铜框架的焊接方法、系统和芯片组件
JP2002025639A (ja) レーザ溶接接合構造
JP2008000793A (ja) レーザ溶接装置及びレーザ溶接方法
JPH0744332B2 (ja) 端子接続方法および装置
JP4325550B2 (ja) 電子機器用バスバーと接続端子の接合構造及び接合方法
WO2022211133A1 (ja) レーザ溶接方法およびレーザ溶接装置
CN118871247A (zh) 激光焊接方法、端子接头结构、电力变换装置
JP2022182279A (ja) レーザ溶接方法、レーザ溶接装置、および電気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23894598

Country of ref document: EP

Kind code of ref document: A1