[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024110400A1 - Solar control glazing with high external reflection - Google Patents

Solar control glazing with high external reflection Download PDF

Info

Publication number
WO2024110400A1
WO2024110400A1 PCT/EP2023/082421 EP2023082421W WO2024110400A1 WO 2024110400 A1 WO2024110400 A1 WO 2024110400A1 EP 2023082421 W EP2023082421 W EP 2023082421W WO 2024110400 A1 WO2024110400 A1 WO 2024110400A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride
designates
niobium
layers
Prior art date
Application number
PCT/EP2023/082421
Other languages
French (fr)
Inventor
Sacha ABADIE
Vincent Reymond
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Publication of WO2024110400A1 publication Critical patent/WO2024110400A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/361Coatings of the type glass/metal/inorganic compound/metal/inorganic compound/other
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3642Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing a metal layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens

Definitions

  • the invention relates to insulating glazing called solar control, provided with stacks of thin layers of which at least one is absorbent, that is to say it acts on solar and/or thermal radiation essentially by absorption. at least part of the near (solar) or far (thermal) infrared radiation.
  • the present invention relates more particularly to layer(s) glazing, in particular those intended mainly for the thermal insulation of buildings.
  • Such glazing provided with stacks of thin layers acts on the incident solar radiation by absorbing said radiation and/or by reflecting this radiation.
  • anti-solar we therefore mean in the sense of the present invention the ability of the glazing to limit the energy flow, in particular the solar infrared radiation (1RS) passing through it from the outside towards the inside of the home or passenger compartment. .
  • such glazing advantageously comprises at least one absorbent layer, that is to say a layer absorbing part of the solar radiation and in particular solar infrared.
  • the solar factor denoted FS or g is used in the field.
  • the solar factor g is equal to the ratio of the energy passing through the glazing (that is to say entering the room) and the incident solar energy. More particularly, it corresponds to the sum of the flow transmitted directly through the glazing and the flow absorbed by the glazing (including the stacks of layers possibly present on one of its surfaces) and re-emitted towards the interior (the room ).
  • TL light transmittance which describes the percentage of visible light (between 380 and 780 nm) that passes through the glazing.
  • the TL values can however vary greatly from one anti-solar glazing to another depending on the level of sunshine in the country concerned but also the wishes of architects and other project managers. Typically it can be estimated that the required light transmission can vary between 20 and 80%, depending on requests.
  • the most efficient stacks currently marketed to achieve such performances incorporate at least one silver-type metallic layer operating essentially in the mode of reflecting a majority of the incident IR (infrared) radiation.
  • These stacks can be used mainly as low-emission glazing (or low-e in English) or as solar protection glazing.
  • these layers are very sensitive to humidity and oxidation. They are therefore exclusively used in double glazing, on side 2 or 3 thereof, to be protected from humidity.
  • the stacks according to the present invention do not include such layers based on silver, or even based on gold or platinum, or in very negligible quantities, in particular in the form of inevitable impurities.
  • TCO transparent conductive oxides
  • the stacks according to the present invention do not include such layers.
  • niobium-based layers comprising absorbent layers of the metallic Nb or nitrided niobium NbN type, as described for example in application W001/21540 or even in application W02009/1 12759.
  • the solar radiation is this time mainly absorbed in a non-selective manner by the absorbing layer, that is to say that the IR radiation (i.e. i.e. whose wavelength is between approximately 780 nm and 2500 nm) and visible radiation (whose wavelength is between approximately 380 and 780 nm) are absorbed indiscriminately by the active layer.
  • the use of niobium-based layers does not make it possible to achieve a high external reflection (greater than 25%) for a light transmission greater than 35%.
  • a key aspect to consider is the exterior aesthetics of the building, which should be highly reflective and neutral or blue in color. According to another aspect of the present invention, this involves minimizing reflection on the interior side of the building, for the comfort reasons described below.
  • an essential factor lies in the visual comfort of the occupants of the building or the passenger compartment equipped with the glazing.
  • the vision through the glazing must be as clear as possible and the color perceived must be pleasant.
  • a light transmission of around 50% is therefore preferable, in order to guarantee good illumination of the interior of the building without excessive heating of the building.
  • the exterior light reflection Ri_ext that is to say the light reflection measured on the face of the glazing exposed to the exterior of the building or the passenger compartment
  • the so-called solar control stack can be arranged on the face of the glazing facing the interior of the building or the passenger compartment which it equips and in particular on face 2 of a single glazing, the faces being conventionally numbered from the outside to the inside.
  • the Garnt interior light reflection is measured on the side provided with the stack of layers (also called the layer side) while the Riext exterior light reflection is measured on the bare side of the glazing (also called the glass side).
  • the interior reflection Runt be minimized, in particular less than 20%, so as to avoid a "mirror" effect of the glazing, this that is to say a reflected image of the interior of the building to the detriment of the exterior view, particularly in oblique vision (that is to say with a non-zero angle compared to the normal to the glazing).
  • an obscuring effect is sought, this time from inside the building, by observers from the outside.
  • This time requires a sufficiently high external reflection, for example of the order of 30%, while nevertheless remaining significantly lower than the light transmission, for example at least 10%.
  • the glazings comprising a single absorbent layer based on niobium, as described in application W001/21540, have suitable colorimetry (negative a* and b*) but external reflection levels that are too low (less than 20%) . In addition, they mostly exhibit high internal reflection and low external reflection.
  • the present invention aims to meet the objectives described above and relates to glass articles presenting the majority and most often all of the following criteria:
  • - a light transmission greater than or equal to 35%, preferably greater than 40%, and for example less than 70%, advantageously between 40 and 65%, -
  • a solar factor substantially equal to or less than the value of light transmission, in percentage
  • an internal light reflection Runt (that is to say on the face of the substrate on which the stack of layers is deposited) less than or equal to 25%, preferably less than 20%,
  • the parameters L, a* and b* are measured according to the CIE LAB criteria, under the illuminant D65, 2°.
  • stack side we mean the face of the glazing on which the stack is placed.
  • glass side we mean the side of the glazing opposite to that on which the stack is placed, in principle not covered.
  • the terms “exterior face” (or “external”) and “interior face” or (“internal”) refer to the position of the glazing when it equips the building or vehicle to which it is installed. destined.
  • the glass and glazing articles according to the invention have solar control properties conforming to those required in the field, in particular a solar factor g close to and preferably less than 50%, or even less than 45% or even less than 40 % in certain configurations.
  • the present invention relates to a transparent glass article for anti-solar glazing, comprising at least one glass substrate provided on at least one of its faces with a coating constituted by a stack of layers, said stack comprising the succession of layers following, from the surface of said substrate:
  • a first layer comprising a nitride of at least one element chosen from Si, Al, said nitride optionally comprising Zr, with a physical thickness of between 1 and 25 nm, preferably between 5 and 20 nm, - a second infrared absorbing layer, consisting of a material comprising niobium or a material comprising nickel and chromium, with a physical thickness of between 1 and 20 nm, preferably between 5 and 15 nm,
  • a third layer whose optical thickness is between 60 and 100 nm, preferably between 65 and 95 nm, comprising a nitride of at least one element chosen from Si, Al, said nitride further comprising Zr, in contact with the infrared absorbing layer, with a refractive index at 550 nm greater than 2.2 or a set of third layers whose total optical thickness is between 60 and 100 nm, preferably between 65 and 95 nm, said set comprising or preferably consisting of a) a layer comprising a nitride of at least one element chosen from Si, Al, said nitride optionally comprising Zr, in contact with the infrared absorbing layer and b) a layer of a dielectric material of refractive index at 550 nm greater than 2.2, of physical thickness greater than or equal to 15 nm, preferably of physical thickness greater than or equal to 20 nm,
  • the stack only includes one IR absorbing layer.
  • the succession of layers comprises said layer of a dielectric material with a refractive index at 550 nm less than 1.6
  • nitride layer with a refractive index at 550 nm greater than 2.2 or said layer of a dielectric material with a refractive index at 550 nm greater than 2.2 has a physical thickness preferably at least 1.5 times greater than said layer of a dielectric material with a refractive index at 550 nm less than 1.6.
  • the layers comprising a nitride of at least one element chosen from Si, Al, and optionally comprising Zr, are in contact with the absorbent layer.
  • the first layer of the stack comprising a nitride of at least one element chosen from Si, Al and optionally comprising Zr is in contact with the surface of the substrate and preferably is in contact with the absorbent layer.
  • the first layer of the stack comprising a nitride of at least one element chosen from Si, Al and optionally comprising Zr is a silicon nitride or a silicon and aluminum nitride.
  • the silicon nitride preferably represents at least 50% of the weight of said layers, on the basis of a SisN4 formulation, and preferably more than 80% or even more than 90% by weight of said layers, based on the SisN4 formulation. More preferably, said layers are based on silicon nitride, but can also include another metal such as aluminum.
  • aluminum is used in a well-known manner, in proportions of up to 10 atomic% or more, in silicon targets used for the deposition by cathode sputtering assisted by a magnetic field (magnetron) of layers containing silicon, in particular layers based on silicon nitride.
  • silicon targets used for the deposition by cathode sputtering assisted by a magnetic field (magnetron) of layers containing silicon, in particular layers based on silicon nitride.
  • the dielectric material with a refractive index at 550 nm greater than 2.2 in said set of layers comprises, preferably for more than 80% of its weight, an oxide of at least one element chosen from titanium, niobium , zirconium or their mixture, in particular comprises titanium oxide, niobium oxide, zirconium oxide, or a nitride of silicon and zirconium or a nitride of silicon, aluminum and zirconium.
  • the dielectric material with a refractive index at 550 nm less than 1.6 comprises silicon oxide or a silicon oxynitride, preferably a silicon oxide.
  • said material comprises more than 80% by weight of said oxides, and preferably consists of said oxides.
  • the material constituting the absorbent layer is chosen from a material comprising niobium or niobium nitride, preferably niobium nitride.
  • a material comprising niobium or niobium nitride preferably niobium nitride.
  • said material comprises more than 80% by weight of niobium or niobium nitride, and preferably consists of niobium or niobium nitride.
  • the material constituting the absorbent layer is chosen from niobium or an alloy of niobium with at least one other metal such as Zr or Ti, the niobium representing at least 50% of the metal atoms present in said material, preferably representing at least 80 % of metal atoms present in said material.
  • the material constituting the absorbent layer comprises a niobium nitride or a niobium nitride and at least one other metal such as Zr or Ti, the niobium representing at least 50% of the metal atoms present in said material, preferably representing at least least 80% of the metal atoms present in said material.
  • the material constituting the absorbent layer comprises a nickel and chromium alloy or a nitride of a nickel and chromium alloy, an alloy in which the Ni/Cr atomic ratio varies between 2 and 9, preferably between 3 and 5.
  • the third layer comprising a nitride of at least one element chosen from Si, Al, and comprising Zr, with a refractive index at 550 nm greater than 2.2 and a silicon nitride or a silicon and aluminum nitride in which the Si/Zr ratio is between 1.5 and 6.0, preferably between 2.0 and 5.5, or even between 3.5 and 5.0.
  • the stack is only made up of the layers described previously.
  • the stack comprises or is constituted by the succession of the following layers, each layer being in direct contact with the next, from the surface of said substrate:
  • the stack comprises or is constituted by the succession of the following layers, each layer being in direct contact with the next, from the surface of said substrate: SiN/CA/SiN/NbO/ preferably SiO /optionally TiO, ZrO or TiZrO, in which SiN designates layers comprising silicon nitride, CA designates the absorbent layer, in particular a layer of niobium nitride or niobium, SiO designates a layer comprising silicon oxide, NbO designates a layer comprising niobium oxide, TiO designates a layer comprising titanium oxide, ZrO designates a layer comprising zirconium oxide and TiZrO designates a layer comprising an oxide titanium and zirconium.
  • the stack comprises or preferably consists of the succession of the following layers, each layer being in direct contact with the next and from the surface of said substrate:
  • the stack comprises or preferably consists of the succession of the following layers, each layer being in direct contact with the next and from the surface of said substrate:
  • the stack does not include layers based on Ag, Au, Pt, Cu, Ni or stainless steel.
  • the item is thermally tempered and/or curved.
  • the article has a light transmission greater than or equal to 35%, in particular greater than or equal to 40%.
  • the article has an internal light reflection Runt (i.e. on the face of the substrate on which the stack of layers is deposited) less than or equal to 20%.
  • the article has a light reflection Ri_ext (that is to say on the face of the substrate opposite to which the stack of layers is deposited) greater than or equal to 25%, preferably greater than or equal to 30 %.
  • the article presents in internal reflection at least one parameter b*, and preferably parameters a* and b*, negative, in the colorimetric system L, a*, b* and under the illuminant D65 2°, in particular a parameter a* ex t between 0 (0 excluded) and - 3.5 and a parameter b* ex t less than 0 and preferably less than -5.
  • the item is anti-solar glazing comprising only a single glass substrate.
  • the item is a multiple glazing comprising several glass substrates.
  • the thicknesses are physical (geometric) thicknesses.
  • the optical thickness of a layer is obtained in a conventional manner by multiplying its physical thickness by the refractive index at 550 nm of the material which constitutes it.
  • infrared absorbing layer is meant a layer consisting of a material absorbing at least partially infrared, in particular infrared from solar radiation between 780 nm and 3000 nm.
  • absorbing IR we do not exclude within the meaning of the present invention that said layer can also reflect another portion.
  • a dielectric material is for example a material whose massive form, devoid of impurities, has a high resistivity, in particular a resistivity greater than 10 10 ohms. meters (Q. m) at ambient temperature (25°C).
  • a layer comprising silicon nitride according to the invention may also comprise the elements aluminum and zirconium.
  • the absorbent layer according to the invention is selected in order to obtain a relatively high light transmission value of the substrate, allowing vision from the inside to the outside without discomfort, while maintaining a significant effect of controlling thermal input.
  • the absorbent layer according to the invention comprises niobium and in particular niobium nitride.
  • the niobium nitride NbN preferably represents at least 50% by weight of said layers, and preferably more than 80% or even more than 90% of said layers.
  • the N/Nb ratio can vary for example between 0 and 1.2, preferably is of the order of 1, that is to say corresponds substantially to a stoichiometric NbiNi formulation .
  • the layers comprising niobium nitride or niobium may also comprise another element, for example chosen from zirconium, titanium, in a minority quantity compared to niobium.
  • the formulation of the layers can be obtained conventionally by XPS photoelectron spectrometry, according to techniques well known in the field of materials.
  • said layers are preferably made up essentially of niobium nitride, or even are made up of niobium nitride, apart from inevitable impurities.
  • the layer comprising niobium nitride or niobium may further comprise a small quantity of oxygen, for example such that the O/Nb atomic ratio is less than 0.2, preferably less than 0.1. According to a preferred embodiment, however, the layers comprising niobium nitride or niobium do not include oxygen other than in the form of inevitable impurities.
  • the silicon oxide preferably represents at least 50% of the weight of said layers, on the basis of a SiC>2 formulation, and preferably more than 80% or even more than 90% of said layers, based on the SiCh formulation.
  • said layers consist essentially of silicon oxide, but can also include aluminum.
  • Aluminum is used in a well-known manner, in proportions of up to 10 atomic% or more based on the sum of the elements Si and Al, in silicon targets used for sputtering deposition assisted by a magnetic field (magnetron) of layers containing silicon, in particular layers based on silicon oxide.
  • the niobium oxide preferably represents at least 50% of the weight of said layers, on the basis of an Nb20s formulation, and preferably more than 80% or even more than 90% of said layers, based on the Nb2 ⁇ 5 formulation. More preferably, said layers consist essentially of niobium oxide.
  • the titanium oxide preferably represents at least 50% of the weight of said layers, on the basis of a TiCh formulation, and preferably more than 80% or even more than 90% of said layers, based on the TiCh formulation. More preferably, said layers consist essentially of titanium oxide.
  • the silicon and zirconium nitride preferably represents at least 70% of the weight of said layers, on the based on a Si x Zr y N formulation, and preferably more than 80% or even more than 90% of the weight of said layers, based on said formulation.
  • the Si/Zr atomic ratio is between 1.5 and 6.0, and preferably is between 2.0 and 5.5, or even included between 2.5 and 5.0. More preferably, said layers consist essentially of silicon nitride and zirconium, but may also include aluminum.
  • Aluminum is used in a well-known manner, in proportions of up to 10 atomic%, based on the sum of the elements Si Zr and Al, or even more and preferably between 1 and 8 atomic%, on the basis of the sum of the elements Si Zr and Al, in the silicon targets used for the deposition of layers by cathodic sputtering assisted by a magnetic field (magnetron).
  • the coatings according to the invention are conventionally deposited by field-assisted vacuum spraying type deposition techniques.
  • magnetic of a cathode of the material or of a precursor of the material to be deposited often called magnetron sputtering technique in the field.
  • magnetron sputtering technique in the field.
  • Such a technique is now conventionally used, particularly when the coating to be deposited consists of a complex stack of successive layers with thicknesses of a few nanometers or a few tens of nanometers.
  • underlayer and “overlayer”, reference is made in the present description to the respective position of said layers relative to the absorbent layer comprising niobium nitride in the stack, said stack being supported by the glass substrate taken as a reference.
  • the underlayer is generally the layer in contact with the glass substrate and the overlayer is the outermost layer of the stack, facing away from the substrate.
  • the application more particularly targeted by the invention is glazing for buildings, it is clear that other applications are possible, in particular in vehicle glazing (apart from the windshield where very high high light transmission), such as side windows, car roof, rear window.
  • vehicle glazing apart from the windshield where very high high light transmission
  • side windows car roof, rear window.
  • the invention and its advantages are described in more detail below, using the non-limiting examples below, according to the invention and comparative. In all examples and description, the thicknesses given are physical.
  • All substrates are 6 mm thick clear glass of the Planiclear® type marketed by the company Saint-Gobain Glass France.
  • All layers are deposited in a known manner by magnetic field-assisted cathode sputtering (often called magnetron).
  • the different successive layers are deposited in the successive compartments of the cathode sputtering device, each compartment being provided with a specific metallic target (for example in Si, or Nb) chosen for the deposition of a specific layer of stacking.
  • a specific metallic target for example in Si, or Nb
  • the layers based on silicon nitride are deposited in a first compartment of the device from a metallic silicon target (doped with 8% by mass of aluminum), in a reactive atmosphere containing nitrogen ( 40% Ar and 60% N2).
  • the silicon nitride layers denoted SisN4 by convenience, therefore also contain aluminum. These layers are subsequently designated according to the classic general formulation Si3N4, even if the deposited layer does not necessarily meet this assumed stoichiometry.
  • the layers based on silicon nitride and zirconium are deposited in a first compartment of the device from a target of silicon and zirconium whose Si/Zr ratio is equal to 4.9 and further comprising 8% by mass of aluminum, in a reactive atmosphere containing nitrogen (40% Ar and 60% N2).
  • the NbN niobium nitride layers are obtained by sputtering a metallic niobium target in an atmosphere comprising a mixture of nitrogen and argon, according to the conditions described in publication W001/21540 or even in publication W02009/112759.
  • the silicon oxide layers are obtained using an aluminum-doped silicon target identical to that previously described according to a sputtering process in an atmosphere this time comprising oxygen and argon, according to well-known techniques. of a person skilled in the art.
  • the titanium oxide layers are obtained by means of a titanium oxide target according to a sputtering process in an atmosphere this time comprising essentially argon and a little oxygen and, according to the well-known techniques of the skilled person.
  • the glass substrate is successively covered, according to current magnetron-assisted cathode sputtering deposition techniques, with a stack successively comprising a layer of niobium nitride surrounded by layers of silicon nitride with a refractive index of 2.0, then layers of titanium oxide, with a refractive index of around 2.4 and silicon oxide, with a refractive index of around 2.4 of 1.45.
  • Niobium nitride is substantially stoichiometric, based on an NbiNi formulation.
  • a first stack according to example 1 is constituted by the succession of the following layers:
  • a second stack according to example 2 is constituted by the succession of the following layers:
  • a third stack according to example 3 is constituted by the succession of the following layers:
  • the glass substrate is successively covered, according to current magnetron-assisted cathode sputtering deposition techniques described previously, with a stack successively comprising a layer of silicon nitride with a refractive index of 2.0, a layer of niobium nitride, a layer of silicon nitride and zirconium obtained from the metallic target SiZr previously described and with a refractive index of the order of 2.3 and a layer of silicon oxide, refractive index of the order of 1.45.
  • Niobium nitride is substantially stoichiometric, based on an NbiNi formulation.
  • the fourth stack according to the invention is therefore constituted by the succession of the following layers:
  • the optical thickness of the SiZrN layer is equal to 69 nm (30x2.3).
  • the light transmission values TL and external and internal light reflections R ex t and Rint are measured in the range 380 nm to 780 nm according to the methods described in standard NF EN 410 (2011).
  • the solar factor is measured according to this same standard, between 300 and 2500 nm.
  • the glazing according to the invention all has a blue color in external reflection.
  • the cumulative optical thickness of all of the two layers of Si 3 N4 and TiO 2 is equal to 96 nm.
  • the cumulative optical thickness of all of the two layers of Si 3 N4 and TiO 2 is equal to 81 nm.
  • the glazing according to the invention all has a blue color in external reflection.
  • thermoforming according to examples 5 and 6 according to the invention unlike the comparative examples, present not only a reduced internal reflection but also a difference AR between the exterior reflection and the significantly increased interior reflection.
  • Example 4 of application W001/21540 describes a succession of layers in the stack:
  • example 6 of application W001/21540 describes a succession of layers in the stack:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)

Abstract

The invention relates to a transparent glass item for solar control glazing, comprising at least one glass substrate, at least one of the faces of which is provided with a coating comprising the following series of layers, starting from the surface of said substrate: - a layer comprising a nitride of at least one element chosen from Si, Al, said nitride optionally comprising Zr, having a physical thickness of between 1 and 25 nm; - an infrared-absorbing layer consisting of a material comprising niobium or of a material comprising nickel and chromium, having a physical thickness of between 1 and 20 nm; - a layer of which the optical thickness is between 60 and 100 nm, comprising a nitride of at least one element chosen from Si, Al, said nitride further comprising Zr, in contact with the infrared-absorbing layer, having a refractive index at 550 nm of greater than 2.2, or an assembly of layers of which the total optical thickness is between 60 and 100 nm, said assembly comprising or consisting of a) a layer comprising a nitride of at least one element chosen from Si, Al, said nitride optionally comprising Zr, in contact with the infrared-absorbing layer, and b) a layer of a dielectric material having a refractive index at 550 nm of greater than 2.2, having a physical thickness of greater than or equal to 15 nm.

Description

DESCRIPTION DESCRIPTION
TITRE : Vitrage antisolaire à forte réflexion externe TITLE: Anti-solar glazing with strong external reflection
L'invention concerne les vitrages isolants dits de contrôle solaire, munis d'empilements de couches minces dont au moins l’une est absorbante, c'est-à-dire qu’elle agit sur le rayonnement solaire et/ou thermique essentiellement par absorption d’au moins une partie du rayonnement infrarouge proche (solaire) ou lointain (thermique). La présente invention concerne plus particulièrement les vitrages à couche(s) notamment ceux destinés principalement à l'isolation thermique des bâtiments. The invention relates to insulating glazing called solar control, provided with stacks of thin layers of which at least one is absorbent, that is to say it acts on solar and/or thermal radiation essentially by absorption. at least part of the near (solar) or far (thermal) infrared radiation. The present invention relates more particularly to layer(s) glazing, in particular those intended mainly for the thermal insulation of buildings.
De tels vitrages munis d’empilements de couches minces agissent sur le rayonnement solaire incident par l’absorption dudit rayonnement et/ou par réflexion de ce rayonnement. Such glazing provided with stacks of thin layers acts on the incident solar radiation by absorbing said radiation and/or by reflecting this radiation.
Ils sont regroupés sous la désignation de vitrage de contrôle solaire. Ils sont commercialisés et utilisés essentiellement pour assurer une protection de l’habitation du rayonnement solaire et en éviter une surchauffe. They are grouped under the designation of solar control glazing. They are marketed and used mainly to protect the home from solar radiation and prevent overheating.
Par antisolaire, on entend ainsi au sens de la présente invention la faculté du vitrage de limiter le flux énergétique, en particulier le rayonnement Infrarouge solaire (1RS) le traversant depuis l’extérieur vers l’intérieur de l’habitation ou de l’habitacle. By anti-solar, we therefore mean in the sense of the present invention the ability of the glazing to limit the energy flow, in particular the solar infrared radiation (1RS) passing through it from the outside towards the inside of the home or passenger compartment. .
Pour remplir la fonction antisolaire, de tels vitrages comprennent avantageusement au moins une couche absorbante, c’est à dire une couche absorbant une partie du rayonnement solaire et en particulier l’infrarouge solaire. To fulfill the anti-solar function, such glazing advantageously comprises at least one absorbent layer, that is to say a layer absorbing part of the solar radiation and in particular solar infrared.
Pour mesurer les propriétés de contrôle solaire des vitrages, on utilise dans le domaine le facteur solaire noté FS ou g. To measure the solar control properties of glazing, the solar factor denoted FS or g is used in the field.
De manière connue le facteur solaire g est égal au rapport de l’énergie traversant le vitrage (c'est-à-dire entrant dans le local) et de l’énergie solaire incidente. Plus particulièrement, il correspond à la somme du flux transmis directement à travers le vitrage et du flux absorbé par le vitrage (en y incluant les empilements de couches éventuellement présents à l’une de ses surfaces) et réémis vers l’intérieur (le local). On recherche à l’heure actuelle des vitrages présentant un facteur g le plus faible possible et au plus égal à 50% (0,5). In a known manner, the solar factor g is equal to the ratio of the energy passing through the glazing (that is to say entering the room) and the incident solar energy. More particularly, it corresponds to the sum of the flow transmitted directly through the glazing and the flow absorbed by the glazing (including the stacks of layers possibly present on one of its surfaces) and re-emitted towards the interior (the room ). We are currently looking for glazing with the lowest possible g factor and at most equal to 50% (0.5).
Un autre facteur important pris en compte est la transmission lumineuse TL qui décrit le pourcentage de lumière visible (comprise entre 380 et 780 nm) qui traverse le vitrage. Les valeurs de TL peuvent cependant varier fortement d’un vitrage antisolaire à un autre en fonction du niveau d’ensoleillement du pays concerné mais aussi des désidératas des architectes et autres maîtres d’œuvre. Typiquement on peut estimer que la transmission lumineuse requise peut varier entre 20 et 80%, selon les demandes. Another important factor taken into account is the TL light transmittance which describes the percentage of visible light (between 380 and 780 nm) that passes through the glazing. The TL values can however vary greatly from one anti-solar glazing to another depending on the level of sunshine in the country concerned but also the wishes of architects and other project managers. Typically it can be estimated that the required light transmission can vary between 20 and 80%, depending on requests.
Les empilements les plus performants commercialisés à l’heure actuelle pour arriver à de telles performances incorporent au moins une couche métallique du type argent fonctionnant essentiellement sur le mode de la réflexion d’une majeure partie du rayonnement IR (infrarouge) incident. Ces empilements peuvent être utilisés principalement en tant que vitrages du type bas émissifs (ou low-e en anglais) ou comme vitrage antisolaire. Ces couches sont cependant très sensibles à l’humidité et à l’oxydation. Elles sont donc exclusivement utilisées dans des doubles vitrages, en face 2 ou 3 de celui-ci, pour être protégées de l’humidité. Pour des applications dans le domaine du bâtiment ou de l’automobile, il n’est pas possible de déposer de telles couches sur des vitrages simples. Les empilements selon la présente invention ne comprennent pas de telles couches à base d’argent, ou encore à base d’or ou de platine, ou alors en quantités très négligeables, notamment sous forme d’impuretés inévitables. The most efficient stacks currently marketed to achieve such performances incorporate at least one silver-type metallic layer operating essentially in the mode of reflecting a majority of the incident IR (infrared) radiation. These stacks can be used mainly as low-emission glazing (or low-e in English) or as solar protection glazing. However, these layers are very sensitive to humidity and oxidation. They are therefore exclusively used in double glazing, on side 2 or 3 thereof, to be protected from humidity. For applications in the building or automotive sectors, it is not possible to deposit such layers on single glazing. The stacks according to the present invention do not include such layers based on silver, or even based on gold or platinum, or in very negligible quantities, in particular in the form of inevitable impurities.
On connait également des empilements à propriétés bas émissives ou antisolaire mais basés sur des couches absorbantes en oxydes transparents conducteurs (TCO) comme les oxydes mixtes d’étain et d’indium, comme par exemple les empilements décrits dans la publication US2009320824. Cependant, pour obtenir des vitrages dont le facteur solaire est inférieur à 50%, il est nécessaire de déposer des épaisseurs de couches d’au moins 100 nm. Le dépôt de telles couches par les techniques de pulvérisation assistée par magnétron est donc long et coûteux. Avantageusement, les empilements selon la présente invention ne comprennent pas de telles couches. We also know stacks with low emissive or anti-solar properties but based on absorbent layers of transparent conductive oxides (TCO) such as mixed oxides of tin and indium, such as for example the stacks described in publication US2009320824. However, to obtain glazing with a solar factor of less than 50%, it is necessary to deposit layer thicknesses of at least 100 nm. The deposition of such layers by magnetron-assisted sputtering techniques is therefore long and expensive. Advantageously, the stacks according to the present invention do not include such layers.
D’autres empilements à fonction antisolaire ont également été divulgués dans le domaine, comprenant des couches absorbantes du type Nb métallique ou niobium nitruré NbN, tel que décrit par exemple dans la demande W001/21540 ou encore dans la demande W02009/1 12759. Au sein de telles couches à base de niobium, et notamment à base de niobium nitruré, le rayonnement solaire est cette fois majoritairement absorbé de manière non sélective par la couche absorbante, c'est- à-dire que le rayonnement IR (c'est-à-dire dont la longueur d’onde est compris entre environ 780 nm et 2500 nm) et le rayonnement visible (dont la longueur d’onde est compris entre environ et 380 et 780 nm) sont absorbés sans distinction par la couche active. Comme indiqué dans ces publications, l’utilisation de couches à base de niobium ne permet pas d’atteindre une réflexion extérieure élevée (supérieure à 25%) pour une transmission lumineuse supérieure à 35%. Other stacks with anti-solar function have also been disclosed in the field, comprising absorbent layers of the metallic Nb or nitrided niobium NbN type, as described for example in application W001/21540 or even in application W02009/1 12759. within such layers based on niobium, and in particular based on nitrided niobium, the solar radiation is this time mainly absorbed in a non-selective manner by the absorbing layer, that is to say that the IR radiation (i.e. i.e. whose wavelength is between approximately 780 nm and 2500 nm) and visible radiation (whose wavelength is between approximately 380 and 780 nm) are absorbed indiscriminately by the active layer. As indicated in these publications, the use of niobium-based layers does not make it possible to achieve a high external reflection (greater than 25%) for a light transmission greater than 35%.
Un aspect essentiel à prendre en compte est l’esthétique extérieure du bâtiment, qui doit être fortement réfléchissante et de couleur neutre ou bleue. Selon un autre aspect de la présente invention, il s’agit de minimiser la réflexion cette fois côté intérieur du bâtiment, pour les raisons de confort décrites ci-après. A key aspect to consider is the exterior aesthetics of the building, which should be highly reflective and neutral or blue in color. According to another aspect of the present invention, this involves minimizing reflection on the interior side of the building, for the comfort reasons described below.
Egalement, un facteur essentiel réside dans le confort visuel des occupants du bâtiment ou de l’habitacle équipé par le vitrage. En particulier, la vision à travers le vitrage doit être la plus nette possible et la couleur perçue doit être agréable. Also, an essential factor lies in the visual comfort of the occupants of the building or the passenger compartment equipped with the glazing. In particular, the vision through the glazing must be as clear as possible and the color perceived must be pleasant.
Une transmission lumineuse de l’ordre de 50% est de ce fait préférable, afin de garantir un bon éclairement de l’intérieur du bâtiment sans échauffement excessif de celui-ci. A light transmission of around 50% is therefore preferable, in order to guarantee good illumination of the interior of the building without excessive heating of the building.
On distingue également, à ce titre : We also distinguish, in this respect:
- la réflexion lumineuse extérieure Ri_ext, c'est-à-dire la réflexion lumineuse mesurée sur la face du vitrage exposée à l’extérieur du bâtiment ou de l’habitacle, et - the exterior light reflection Ri_ext, that is to say the light reflection measured on the face of the glazing exposed to the exterior of the building or the passenger compartment, and
- la réflexion lumineuse intérieure Runt, c'est-à-dire la réflexion lumineuse mesurée sur la face du vitrage tournée vers l’intérieur. - the interior light reflection Runt, that is to say the light reflection measured on the side of the glazing facing inwards.
D’une manière générale, toutes les caractéristiques lumineuses présentées dans la présente description, en particulier, la transmission lumineuse TL et les réflexions lumineuses RL, ainsi que le facteur g, sont obtenues selon les principes et méthodes décrits dans la norme NF EN 410 (2011 ) se rapportant à la détermination des caractéristiques lumineuses et énergétiques des vitrages utilisés dans le verre pour la construction. Generally speaking, all the light characteristics presented in this description, in particular, the light transmission TL and the light reflections RL, as well as the g factor, are obtained according to the principles and methods described in standard NF EN 410 ( 2011) relating to the determination of the light and energy characteristics of glazing used in glass for construction.
Dans un vitrage selon l’invention, l’empilement dit de contrôle solaire peut être disposé sur la face du vitrage tournée vers l’intérieur du bâtiment ou de l’habitacle qu’il équipe et notamment en face 2 d’un vitrage simple, les faces étant numérotées conventionnellement depuis l’extérieur vers l’intérieur. In a glazing according to the invention, the so-called solar control stack can be arranged on the face of the glazing facing the interior of the building or the passenger compartment which it equips and in particular on face 2 of a single glazing, the faces being conventionally numbered from the outside to the inside.
Autrement dit, la réflexion lumineuse intérieure Rünt est mesurée sur la face munie de l’empilement de couches (aussi appelé côté couches) alors que la réflexion lumineuse extérieure Riext est mesurée sur la face nue du vitrage (aussi appelée côté verre). Pour le bon confort des occupants du bâtiment ou de l’habitacle, il est tout d’abord nécessaire que la réflexion intérieure Runt soit minimisée, en particulier inférieure à 20%, de manière à éviter un effet « miroir » du vitrage, c'est-à-dire une image réfléchie de l’intérieur du bâtiment au détriment de la vue extérieure, notamment en vision oblique (c'est-à-dire avec un angle non nul par rapport à la normale au vitrage). In other words, the Rünt interior light reflection is measured on the side provided with the stack of layers (also called the layer side) while the Riext exterior light reflection is measured on the bare side of the glazing (also called the glass side). For the good comfort of the occupants of the building or the passenger compartment, it is first of all necessary that the interior reflection Runt be minimized, in particular less than 20%, so as to avoid a "mirror" effect of the glazing, this that is to say a reflected image of the interior of the building to the detriment of the exterior view, particularly in oblique vision (that is to say with a non-zero angle compared to the normal to the glazing).
Au sens de la présente invention, on recherche donc des vitrages dont la différence ARL = Riext - Runt est proche ou supérieure à 6%. For the purposes of the present invention, we are therefore looking for glazing whose difference ARL = Riext - Runt is close to or greater than 6%.
Idéalement, il est recherché un effet occultant cette fois de l’intérieur du bâtiment, par des observateurs depuis l’extérieur. Une telle propriété nécessite cette fois une réflexion extérieure suffisamment élevée, par exemple de l’ordre de 30%, tout en restant pourtant sensiblement inférieure à la transmission lumineuse, par exemple d’au moins 10%. Ideally, an obscuring effect is sought, this time from inside the building, by observers from the outside. Such a property this time requires a sufficiently high external reflection, for example of the order of 30%, while nevertheless remaining significantly lower than the light transmission, for example at least 10%.
Cependant, avec un tel niveau de réflexion externe (côté extérieur), l’aspect colorimétrique devient critique pour l’esthétique général du bâtiment. Il est recherché en particulier que de tels vitrages présentent une coloration neutre ou légèrement bleutée. However, with such a level of external reflection (exterior side), the colorimetric aspect becomes critical for the general aesthetics of the building. It is particularly desired that such glazing have a neutral or slightly bluish coloring.
Pour obtenir une telle propriété, il est nécessaire que les valeurs de a* et b*, et en particulier de b*, dans le système L, a*, b* (typiquement sous un angle de vision de 2° et sous l’illuminant Des), soit précisément ajustées. Des valeurs de a* et b* recherchées sont notamment inférieures à 0, comme indiqué dans la suite de la description. To obtain such a property, it is necessary that the values of a* and b*, and in particular of b*, in the system L, a*, b* (typically under a viewing angle of 2° and under the illuminant Des), are precisely adjusted. Values of a* and b* sought are notably less than 0, as indicated in the remainder of the description.
Non seulement les vitrages comprenant une seule couche absorbante à base de niobium, tels que décrit dans la demande W001/21540, présentent une colorimétrie adaptée (a* et b* négatifs) mais des niveaux de réflexion extérieure trop faibles (moins de 20%). En outre, ils présentent pour la plupart une forte réflexion interne et une faible réflexion externe. Not only do the glazings comprising a single absorbent layer based on niobium, as described in application W001/21540, have suitable colorimetry (negative a* and b*) but external reflection levels that are too low (less than 20%) . In addition, they mostly exhibit high internal reflection and low external reflection.
La présente invention vise à répondre aux objectifs décrits précédemment et porte sur des articles verriers présentant la majorité et le plus souvent la totalité des critères suivants : The present invention aims to meet the objectives described above and relates to glass articles presenting the majority and most often all of the following criteria:
- une transmission lumineuse supérieure ou égale à 35%, de préférence supérieure à 40%, et par exemple inférieure à 70%, avantageusement comprise entre 40 et 65%, - Un facteur solaire sensiblement égal ou inférieur à la valeur de la transmission lumineuse, en pourcentage, - a light transmission greater than or equal to 35%, preferably greater than 40%, and for example less than 70%, advantageously between 40 and 65%, - A solar factor substantially equal to or less than the value of light transmission, in percentage,
- une réflexion lumineuse interne Runt (c'est-à-dire sur la face du substrat sur laquelle l’empilement de couches est déposée) inférieure ou égale à 25%, de préférence inférieure à 20%, - an internal light reflection Runt (that is to say on the face of the substrate on which the stack of layers is deposited) less than or equal to 25%, preferably less than 20%,
- une réflexion lumineuse Ri_ext (c'est-à-dire sur la face du substrat à l’opposé de laquelle l’empilement de couches est déposée) supérieure à la Runt et en particulier supérieure ou égale à 25%, de préférence supérieure ou égale à 30%,- a light reflection Ri_ext (that is to say on the face of the substrate opposite to which the stack of layers is deposited) greater than the Runt and in particular greater than or equal to 25%, preferably greater than or equal to 30%,
- des paramètres a* et b* en réflexion externe négatifs dans le système colorimétrique L, a*, b* et en particulier un paramètre a*ext compris entre 0 (exclu) et -3,5 et un paramètre b*ext inférieur à 0 et de préférence inférieur à -5, - parameters a* and b* in negative external reflection in the colorimetric system L, a*, b* and in particular a parameter a* ex t between 0 (excluded) and -3.5 and a parameter b* ex t less than 0 and preferably less than -5,
- de préférence une différence entre la réflexion extérieure et la réflexion intérieure (ARL = Riext - Runt) d’au moins 6%, voire d’au moins 7% ou même d’au moins 10%. - preferably a difference between the exterior reflection and the interior reflection (ARL = Riext - Runt) of at least 6%, or even at least 7% or even at least 10%.
Selon l’invention, les paramètres L, a* et b* sont mesurés selon les critères CIE LAB, sous l’illuminant D65, 2°. According to the invention, the parameters L, a* and b* are measured according to the CIE LAB criteria, under the illuminant D65, 2°.
Par côté empilement, comme indiqué précédemment, on entend la face du vitrage sur laquelle est déposée l’empilement. Par côté verre on entend la face du vitrage opposée à celle sur laquelle est déposée l’empilement, en principe non recouverte. Au sens de la présente invention, les termes « face extérieure » (ou « externe ») et « face intérieure» ou (« interne ») font référence à la position du vitrage lorsque celui-ci équipe le bâtiment ou le véhicule auquel il est destiné. By stack side, as indicated previously, we mean the face of the glazing on which the stack is placed. By glass side we mean the side of the glazing opposite to that on which the stack is placed, in principle not covered. For the purposes of the present invention, the terms “exterior face” (or “external”) and “interior face” or (“internal”) refer to the position of the glazing when it equips the building or vehicle to which it is installed. destined.
En outre les articles verriers et vitrages selon l’invention présentent des propriétés de contrôle solaire conformes à celles requises dans le domaine, en particulier un facteur solaire g proche et de préférence inférieur à 50%, voire inférieur à 45% ou même inférieur à 40% dans certaines configurations. Furthermore, the glass and glazing articles according to the invention have solar control properties conforming to those required in the field, in particular a solar factor g close to and preferably less than 50%, or even less than 45% or even less than 40 % in certain configurations.
Plus précisément, la présente invention se rapporte à un article verrier transparent pour vitrage antisolaire, comprenant au moins un substrat de verre muni sur au moins une de ses faces d'un revêtement constitué par un empilement de couches, ledit empilement comprenant la succession de couches suivantes, à partir de la surface dudit substrat : More specifically, the present invention relates to a transparent glass article for anti-solar glazing, comprising at least one glass substrate provided on at least one of its faces with a coating constituted by a stack of layers, said stack comprising the succession of layers following, from the surface of said substrate:
- une première couche comprenant un nitrure d’au moins un élément choisi parmi Si, Al, ledit nitrure comprenant éventuellement Zr, d’épaisseur physique comprise entre 1 et 25 nm, de préférence entre 5 et 20 nm, - une seconde couche absorbant les infrarouges, constitué par un matériau comprenant du niobium ou par un matériau comprenant du nickel et du chrome, d’épaisseur physique comprise entre 1 et 20 nm, de préférence comprise entre 5 et 15 nm, - a first layer comprising a nitride of at least one element chosen from Si, Al, said nitride optionally comprising Zr, with a physical thickness of between 1 and 25 nm, preferably between 5 and 20 nm, - a second infrared absorbing layer, consisting of a material comprising niobium or a material comprising nickel and chromium, with a physical thickness of between 1 and 20 nm, preferably between 5 and 15 nm,
- une troisième couche dont l’épaisseur optique est comprise entre 60 et 100 nm, de préférence entre 65 et 95 nm, comprenant un nitrure d’au moins un élément choisi parmi Si, Al, ledit nitrure comprenant en outre Zr, au contact de la couche absorbant les infrarouges, d’indice de réfraction à 550 nm supérieur à 2,2 ou un ensemble de troisièmes couches dont l’épaisseur optique totale est comprise entre 60 et 100 nm, de préférence entre 65 et 95 nm, ledit ensemble comprenant ou de préférence étant constitué a) par une couche comprenant un nitrure d’au moins un élément choisi parmi Si, Al, ledit nitrure comprenant éventuellement Zr, au contact de la couche absorbant les infrarouges et b) par une couche d’un matériau diélectrique d’indice de réfraction à 550 nm supérieur à 2,2, d’épaisseur physique supérieure ou égale à 15 nm, de préférence d’épaisseur physique supérieure ou égale à 20 nm, - a third layer whose optical thickness is between 60 and 100 nm, preferably between 65 and 95 nm, comprising a nitride of at least one element chosen from Si, Al, said nitride further comprising Zr, in contact with the infrared absorbing layer, with a refractive index at 550 nm greater than 2.2 or a set of third layers whose total optical thickness is between 60 and 100 nm, preferably between 65 and 95 nm, said set comprising or preferably consisting of a) a layer comprising a nitride of at least one element chosen from Si, Al, said nitride optionally comprising Zr, in contact with the infrared absorbing layer and b) a layer of a dielectric material of refractive index at 550 nm greater than 2.2, of physical thickness greater than or equal to 15 nm, preferably of physical thickness greater than or equal to 20 nm,
- de préférence une couche d’un matériau diélectrique d’indice de réfraction à 550 nm inférieur à 1 ,6, d’épaisseur physique comprise entre 1 et 25 nm, de préférence entre 5 et 20 nm, - preferably a layer of a dielectric material with a refractive index at 550 nm of less than 1.6, with a physical thickness of between 1 and 25 nm, preferably between 5 and 20 nm,
- éventuellement une couche de protection d’un oxyde de titane, d’un oxyde de zirconium ou d’un oxyde de titane et de zirconium, d’épaisseur physique comprise entre 1 et 5 nm de préférence entre 1 et 3 nm. - optionally a protective layer of a titanium oxide, a zirconium oxide or a titanium and zirconium oxide, with a physical thickness of between 1 and 5 nm, preferably between 1 and 3 nm.
Selon des modes de réalisations particuliers et préférés de la présente invention, qui peuvent être le cas échéant combinés entre eux : According to particular and preferred embodiments of the present invention, which can be combined if necessary:
- L’empilement ne comprend qu’une couche absorbant les IR. - The stack only includes one IR absorbing layer.
- La succession de couches comprend ladite couche d’un matériau diélectrique d’indice de réfraction à 550 nm inférieur à 1 ,6, - The succession of layers comprises said layer of a dielectric material with a refractive index at 550 nm less than 1.6,
- Ladite couche de nitrure d’indice de réfraction à 550 nm supérieur à 2,2 ou ladite couche d’un matériau diélectrique d’indice de réfraction à 550 nm supérieur à 2,2 a une épaisseur physique de préférence au moins 1 ,5 fois supérieure à ladite couche d’un matériau diélectrique d’indice de réfraction à 550 nm inférieur à 1 ,6.- Said nitride layer with a refractive index at 550 nm greater than 2.2 or said layer of a dielectric material with a refractive index at 550 nm greater than 2.2 has a physical thickness preferably at least 1.5 times greater than said layer of a dielectric material with a refractive index at 550 nm less than 1.6.
- Ladite couche d’un matériau diélectrique d’indice de réfraction à 550 nm supérieur à 2,2, d’épaisseur physique supérieure à 15 nm et la couche d’un matériau diélectrique d’indice de réfraction à 550 nm inférieur à 1 ,6 dudit ensemble de couches ont une épaisseur physique cumulée totale comprise entre 25 et 50 nm, de préférence entre 25 et 35 nm. - Said layer of a dielectric material with a refractive index at 550 nm greater than 2.2, with a physical thickness greater than 15 nm and the layer of a dielectric material with a refractive index at 550 nm less than 1, 6 of said set of layers have a total cumulative physical thickness of between 25 and 50 nm, preferably between 25 and 35 nm.
- Les couches comprenant un nitrure d’au moins un élément choisi parmi Si, Al, et comprenant éventuellement Zr, sont au contact de la couche absorbante. - The layers comprising a nitride of at least one element chosen from Si, Al, and optionally comprising Zr, are in contact with the absorbent layer.
- La première couche de l’empilement comprenant un nitrure d’au moins un élément choisi parmi Si, Al et comprenant éventuellement Zr est au contact de la surface du substrat et de préférence est au contact de la couche absorbante.- The first layer of the stack comprising a nitride of at least one element chosen from Si, Al and optionally comprising Zr is in contact with the surface of the substrate and preferably is in contact with the absorbent layer.
- La première couche de l’empilement comprenant un nitrure d’au moins un élément choisi parmi Si, Al et comprenant éventuellement Zr est un nitrure de silicium ou un nitrure de silicium et d’aluminium. De préférence dans les couches selon l’invention comprenant du nitrure de silicium ou du nitrure de silicium et d’aluminium, le nitrure de silicium représente de préférence au moins 50% du poids desdites couches, sur la base d’une formulation SisN4, et de préférence plus de 80 % ou même plus de 90 % poids desdites couches, sur la base de la formulation SisN4. De préférence encore, lesdites couches sont à base de nitrure de silicium, mais peuvent comprendre également un autre métal tel que l’aluminium. Par exemple, l’aluminium est utilisé de façon bien connue, dans des proportions pouvant aller jusqu’à 10% atomique voire plus, dans les cibles de silicium servant pour le dépôt par pulvérisation cathodique assisté par un champ magnétique (magnétron) des couches contenant du silicium, notamment les couches à base de nitrure de silicium. - The first layer of the stack comprising a nitride of at least one element chosen from Si, Al and optionally comprising Zr is a silicon nitride or a silicon and aluminum nitride. Preferably in the layers according to the invention comprising silicon nitride or silicon aluminum nitride, the silicon nitride preferably represents at least 50% of the weight of said layers, on the basis of a SisN4 formulation, and preferably more than 80% or even more than 90% by weight of said layers, based on the SisN4 formulation. More preferably, said layers are based on silicon nitride, but can also include another metal such as aluminum. For example, aluminum is used in a well-known manner, in proportions of up to 10 atomic% or more, in silicon targets used for the deposition by cathode sputtering assisted by a magnetic field (magnetron) of layers containing silicon, in particular layers based on silicon nitride.
- Le matériau diélectrique d’indice de réfraction à 550 nm supérieur à 2,2 dans ledit ensemble de couches comprend, de préférence pour plus de 80% de son poids, un oxyde d’au moins un élément choisi parmi le titane, le niobium, le zirconium ou leur mélange, en particulier comprend de l’oxyde de titane, de l’oxyde de niobium, de l’oxyde de zirconium, ou un nitrure de silicium et de zirconium ou un nitrure de silicium, d’aluminium et de zirconium. - The dielectric material with a refractive index at 550 nm greater than 2.2 in said set of layers comprises, preferably for more than 80% of its weight, an oxide of at least one element chosen from titanium, niobium , zirconium or their mixture, in particular comprises titanium oxide, niobium oxide, zirconium oxide, or a nitride of silicon and zirconium or a nitride of silicon, aluminum and zirconium.
- Le matériau diélectrique d’indice de réfraction à 550 nm inférieur à 1 ,6 comprend de l’oxyde de silicium ou un oxynitrure de silicium, de préférence un oxyde de silicium. De préférence ledit matériau comprend plus de 80% poids desdits oxydes, et de préférence est constitué par lesdits oxydes. - The dielectric material with a refractive index at 550 nm less than 1.6 comprises silicon oxide or a silicon oxynitride, preferably a silicon oxide. Preferably said material comprises more than 80% by weight of said oxides, and preferably consists of said oxides.
- Le matériau constituant la couche absorbante est choisi parmi un matériau comprenant du niobium ou du nitrure de niobium, de préférence par du nitrure de niobium. De préférence ledit matériau comprend plus de 80% poids de niobium ou de nitrure de niobium, et de préférence est constitué par du niobium ou du nitrure de niobium. - The material constituting the absorbent layer is chosen from a material comprising niobium or niobium nitride, preferably niobium nitride. Preferably said material comprises more than 80% by weight of niobium or niobium nitride, and preferably consists of niobium or niobium nitride.
- Le matériau constituant la couche absorbante est choisi parmi le niobium ou un alliage de niobium avec au moins un autre métal tel que Zr ou Ti, le niobium représentant au moins 50% des atomes métalliques présents dans ledit matériau, de préférence représentant au moins 80% des atomes métalliques présents dans ledit matériau. - The material constituting the absorbent layer is chosen from niobium or an alloy of niobium with at least one other metal such as Zr or Ti, the niobium representing at least 50% of the metal atoms present in said material, preferably representing at least 80 % of metal atoms present in said material.
- Le matériau constituant la couche absorbante comprend un nitrure de niobium ou un nitrure de niobium et d’au moins un autre métal tel que Zr ou Ti, le niobium représentant au moins 50% des atomes métalliques présents dans ledit matériau, de préférence représentant au moins 80% des atomes métalliques présents dans ledit matériau. - The material constituting the absorbent layer comprises a niobium nitride or a niobium nitride and at least one other metal such as Zr or Ti, the niobium representing at least 50% of the metal atoms present in said material, preferably representing at least least 80% of the metal atoms present in said material.
- Le matériau constituant la couche absorbante comprend un alliage de nickel et de chrome ou un nitrure d’un alliage de nickel et de chrome, alliage dans lequel le ratio atomique Ni/Cr varie entre 2 et 9, de préférence entre 3 et 5. - The material constituting the absorbent layer comprises a nickel and chromium alloy or a nitride of a nickel and chromium alloy, an alloy in which the Ni/Cr atomic ratio varies between 2 and 9, preferably between 3 and 5.
- La troisième couche comprenant un nitrure d’au moins un élément choisi parmi Si, Al, et comprenant Zr, d’indice de réfraction à 550 nm supérieur à 2,2 et un nitrure de silicium ou un nitrure de silicium et d’aluminium dans lequel le ratio Si/Zr est compris entre 1 ,5 et 6,0, de préférence est compris entre 2,0 et 5,5, ou même est compris entre 3,5 et 5,0. - The third layer comprising a nitride of at least one element chosen from Si, Al, and comprising Zr, with a refractive index at 550 nm greater than 2.2 and a silicon nitride or a silicon and aluminum nitride in which the Si/Zr ratio is between 1.5 and 6.0, preferably between 2.0 and 5.5, or even between 3.5 and 5.0.
- L’empilement est uniquement constitué par les couches décrites précédemment.- The stack is only made up of the layers described previously.
- L’empilement comprend ou est constitué par la succession des couches suivantes, chaque couche étant au contact direct de la suivante, à partir de la surface dudit substrat: - The stack comprises or is constituted by the succession of the following layers, each layer being in direct contact with the next, from the surface of said substrate:
SiN/CA/SiN/TiO/ de préférence Si 0/ éventuellement TiO, ZrO ou TiZrO dans lequel SiN désigne des couches comprenant du nitrure de silicium, CA désigne la couche absorbante, en particulier une couche de nitrure de niobium ou de niobium, SiO désigne une couche comprenant de l’oxyde de silicium, TiO désigne une couche comprenant un oxyde de titane, ZrO désigne une couche comprenant un oxyde de zirconium et TiZrO désigne une couche comprenant un oxyde de titane et de zirconium. SiN/CA/SiN/TiO/ preferably Si 0/ optionally TiO, ZrO or TiZrO in which SiN designates layers comprising silicon nitride, CA designates the absorbent layer, in particular a layer of niobium nitride or niobium, SiO denotes a layer comprising silicon oxide, TiO denotes a layer comprising titanium oxide, ZrO denotes a layer comprising zirconium oxide and TiZrO denotes a layer comprising titanium and zirconium oxide.
- L’empilement comprend ou est constitué par la succession des couches suivantes, chaque couche étant au contact direct de la suivante, à partir de la surface dudit substrat: SiN/CA/SiN/NbO/ de préférence SiO /éventuellement TiO, ZrO ou TiZrO, dans lequel SiN désigne des couches comprenant du nitrure de silicium, CA désigne la couche absorbante, en particulier une couche de nitrure de niobium ou de niobium, SiO désigne une couche comprenant de l’oxyde de silicium, NbO désigne une couche comprenant de l’oxyde de niobium, TiO désigne une couche comprenant un oxyde de titane, ZrO désigne une couche comprenant un oxyde de zirconium et TiZrO désigne une couche comprenant un oxyde de titane et de zirconium. - The stack comprises or is constituted by the succession of the following layers, each layer being in direct contact with the next, from the surface of said substrate: SiN/CA/SiN/NbO/ preferably SiO /optionally TiO, ZrO or TiZrO, in which SiN designates layers comprising silicon nitride, CA designates the absorbent layer, in particular a layer of niobium nitride or niobium, SiO designates a layer comprising silicon oxide, NbO designates a layer comprising niobium oxide, TiO designates a layer comprising titanium oxide, ZrO designates a layer comprising zirconium oxide and TiZrO designates a layer comprising an oxide titanium and zirconium.
- L’empilement comprend ou de préférence est constitué par la succession des couches suivantes, chaque couche étant au contact direct de la suivante et à partir de la surface dudit substrat : - The stack comprises or preferably consists of the succession of the following layers, each layer being in direct contact with the next and from the surface of said substrate:
SiN/CA/SiNZ SiZrN/ de préférence SiO/éventuellement TiO, ZrO ou TiZrO dans lequel SiN désigne des couches comprenant du nitrure de silicium, CA désigne la couche absorbante, en particulier une couche de nitrure de niobium ou de niobium, SiO désigne une couche comprenant de l’oxyde de silicium, SiZrN désigne une couche comprenant un nitrure de silicium et de zirconium, TiO désigne une couche comprenant un oxyde de titane, ZrO désigne une couche comprenant un oxyde de zirconium et TiZrO désigne une couche comprenant un oxyde de titane et de zirconium. SiN/CA/SiNZ SiZrN/ preferably SiO/optionally TiO, ZrO or TiZrO in which SiN designates layers comprising silicon nitride, CA designates the absorbent layer, in particular a layer of niobium nitride or niobium, SiO designates a layer comprising silicon oxide, SiZrN designates a layer comprising silicon and zirconium nitride, TiO designates a layer comprising titanium oxide, ZrO designates a layer comprising zirconium oxide and TiZrO designates a layer comprising silicon oxide titanium and zirconium.
- L’empilement comprend ou de préférence est constitué par la succession des couches suivantes, chaque couche étant au contact direct de la suivante et à partir de la surface dudit substrat : - The stack comprises or preferably consists of the succession of the following layers, each layer being in direct contact with the next and from the surface of said substrate:
SiN/CA/ SiZrN/ de préférence SiO/éventuellement TiO, ZrO ou TiZrO dans lequel SiN désigne des couches comprenant du nitrure de silicium, CA désigne la couche absorbante, en particulier une couche de nitrure de niobium ou de niobium, SiO désigne une couche comprenant de l’oxyde de silicium, SiZrN désigne une couche comprenant un nitrure de silicium et de zirconium, TiO désigne une couche comprenant un oxyde de titane, ZrO désigne une couche comprenant un oxyde de zirconium et TiZrO désigne une couche comprenant un oxyde de titane et de zirconium. SiN/CA/ SiZrN/ preferably SiO/optionally TiO, ZrO or TiZrO in which SiN designates layers comprising silicon nitride, CA designates the absorbent layer, in particular a layer of niobium nitride or niobium, SiO designates a layer comprising silicon oxide, SiZrN designates a layer comprising silicon and zirconium nitride, TiO designates a layer comprising titanium oxide, ZrO designates a layer comprising zirconium oxide and TiZrO designates a layer comprising titanium oxide and zirconium.
- L’empilement ne comprend pas de couches à base d’Ag, Au, Pt, Cu, Ni ou d’acier inoxydable. - The stack does not include layers based on Ag, Au, Pt, Cu, Ni or stainless steel.
- L’article est trempé thermiquement et/ou bombé. - L’article présente une transmission lumineuse supérieure ou égale à 35%, en particulier supérieure ou égale à 40%. - The item is thermally tempered and/or curved. - The article has a light transmission greater than or equal to 35%, in particular greater than or equal to 40%.
- L’article présente une réflexion lumineuse interne Runt (c'est-à-dire sur la face du substrat sur laquelle l’empilement de couches est déposé) inférieure ou égale à 20%. - The article has an internal light reflection Runt (i.e. on the face of the substrate on which the stack of layers is deposited) less than or equal to 20%.
- L’article présente une réflexion lumineuse Ri_ext (c'est-à-dire sur la face du substrat à l’opposé de laquelle l’empilement de couches est déposé) supérieure ou égale à 25%, de préférence supérieure ou égale à 30%. - The article has a light reflection Ri_ext (that is to say on the face of the substrate opposite to which the stack of layers is deposited) greater than or equal to 25%, preferably greater than or equal to 30 %.
- L’article présente une différence entre la réflexion extérieure et la réflexion intérieure (ARL = Ri_ext - Runt) d’au moins 6%, voire d’au moins 8% ou même d’au moins 10%. - The article presents a difference between external reflection and internal reflection (ARL = Ri_ext - Runt) of at least 6%, or even at least 8% or even at least 10%.
- L’article présente en réflexion interne au moins un paramètre b*, et de préférence des paramètres a* et b*, négatifs, dans le système colorimétrique L, a*, b* et sous l’illuminant D65 2°, en particulier un paramètre a*ext compris entre 0 (0 exclu) et - 3,5 et un paramètre b*ext inférieur à 0 et de préférence inférieur à -5. - The article presents in internal reflection at least one parameter b*, and preferably parameters a* and b*, negative, in the colorimetric system L, a*, b* and under the illuminant D65 2°, in particular a parameter a* ex t between 0 (0 excluded) and - 3.5 and a parameter b* ex t less than 0 and preferably less than -5.
- L’article est un vitrage antisolaire ne comprenant qu’un seul substrat de verre.- The item is anti-solar glazing comprising only a single glass substrate.
- L’article est un vitrage multiple comprenant plusieurs substrats de verre. - The item is a multiple glazing comprising several glass substrates.
- L’article est un vitrage feuilleté comprenant un semble d’au moins deux substrats de verre liés par un feuillet thermoplastique notamment en polyvinylbutyral (PVB). - The article is a laminated glazing comprising a combination of at least two glass substrates linked by a thermoplastic sheet, in particular polyvinyl butyral (PVB).
Dans toute la description, en l’absence d’indication contraire, les épaisseurs sont des épaisseurs physiques (géométriques). Throughout the description, unless otherwise indicated, the thicknesses are physical (geometric) thicknesses.
L’épaisseur optique d’une couche est obtenue de manière conventionnelle en multipliant son épaisseur physique par l’indice de réfraction à 550 nm du matériau qui la constitue. Par exemple l’épaisseur optique d’une couche d’oxyde de silicium (d’indice de réfraction à 550 nm égal à 1 ,45) dont l’épaisseur physique est de 10 nm est égale à 10 x 1 ,45 = 14,5 nm. The optical thickness of a layer is obtained in a conventional manner by multiplying its physical thickness by the refractive index at 550 nm of the material which constitutes it. For example, the optical thickness of a layer of silicon oxide (refractive index at 550 nm equal to 1.45) whose physical thickness is 10 nm is equal to 10 x 1.45 = 14, 5nm.
Par couche absorbant les infrarouges, on entend une couche constituée par un matériau absorbant au moins partiellement les infrarouges, en particulier les infrarouges issues du rayonnement solaire entre 780 nm et 3000 nm. Par le terme « absorbant les IR », on n’exclue pas au sens de la présente invention que ladite couche puisse également en réfléchir une autre portion. Un matériau diélectrique est par exemple un matériau dont la forme massive et dénuée d’impuretés présente une forte résistivité, notamment une résistivité supérieure à 1010 ohms. mètres (Q. m) à la température ambiante (25°C). By infrared absorbing layer is meant a layer consisting of a material absorbing at least partially infrared, in particular infrared from solar radiation between 780 nm and 3000 nm. By the term “absorbing IR”, we do not exclude within the meaning of the present invention that said layer can also reflect another portion. A dielectric material is for example a material whose massive form, devoid of impurities, has a high resistivity, in particular a resistivity greater than 10 10 ohms. meters (Q. m) at ambient temperature (25°C).
Une couche comprenant du nitrure de silicium selon l’invention peut comprendre en outre les éléments aluminium et zirconium. A layer comprising silicon nitride according to the invention may also comprise the elements aluminum and zirconium.
La couche absorbante selon l'invention est sélectionnée afin d’obtenir une valeur de la transmission lumineuse du substrat relativement élevée, permettant la vision depuis l’intérieur vers l’extérieur sans gêne, tout en conservant un effet de contrôle des apports thermiques notable. The absorbent layer according to the invention is selected in order to obtain a relatively high light transmission value of the substrate, allowing vision from the inside to the outside without discomfort, while maintaining a significant effect of controlling thermal input.
De préférence la couche absorbante selon l’invention comprend du niobium et en particulier du nitrure de niobium. Preferably the absorbent layer according to the invention comprises niobium and in particular niobium nitride.
Dans les couches selon l’invention comprenant du nitrure de niobium, le nitrure de niobium NbN représente de préférence au moins 50% en poids desdites couches, et de préférence plus de 80 % ou même plus de 90 % desdites couches. Dans un nitrure de niobium selon l’invention, le ratio N/Nb peut varier par exemple entre 0 et 1 ,2, de préférence est de l’ordre de 1 , c'est-à-dire correspond sensiblement à une formulation stoechiométrique NbiNi. Selon un mode possible de la présente invention les couches comprenant du nitrure de niobium ou du niobium peuvent également comprendre un autre élément, par exemple choisi parmi le zirconium, le titane, en quantité minoritaire par rapport au niobium. In the layers according to the invention comprising niobium nitride, the niobium nitride NbN preferably represents at least 50% by weight of said layers, and preferably more than 80% or even more than 90% of said layers. In a niobium nitride according to the invention, the N/Nb ratio can vary for example between 0 and 1.2, preferably is of the order of 1, that is to say corresponds substantially to a stoichiometric NbiNi formulation . According to a possible embodiment of the present invention, the layers comprising niobium nitride or niobium may also comprise another element, for example chosen from zirconium, titanium, in a minority quantity compared to niobium.
La formulation des couches peut être obtenue classiquement par spectrométrie photoélectronique XPS, selon des techniques bien connues dans le domaine des matériaux. Selon un mode préféré de réalisation de l’invention, lesdites couches sont de préférence constituées essentiellement de nitrure de niobium, ou même sont constituées de nitrure de niobium, aux impuretés inévitables près. The formulation of the layers can be obtained conventionally by XPS photoelectron spectrometry, according to techniques well known in the field of materials. According to a preferred embodiment of the invention, said layers are preferably made up essentially of niobium nitride, or even are made up of niobium nitride, apart from inevitable impurities.
La couche comprenant du nitrure de niobium ou du niobium peut comprendre en outre une faible quantité d’oxygène, par exemple tel que le rapport atomique O/Nb soit inférieur à 0,2, de préférence inférieur à 0,1. Selon un mode préféré toutefois, les couches comprenant du nitrure de niobium ou du niobium ne comprennent pas d’oxygène autrement que sous forme d’impuretés inévitables. The layer comprising niobium nitride or niobium may further comprise a small quantity of oxygen, for example such that the O/Nb atomic ratio is less than 0.2, preferably less than 0.1. According to a preferred embodiment, however, the layers comprising niobium nitride or niobium do not include oxygen other than in the form of inevitable impurities.
Dans les couches selon l’invention comprenant de l’oxyde de silicium, l’oxyde de silicium représente de préférence au moins 50% du poids desdites couches, sur la base d’une formulation SiC>2, et de préférence plus de 80% ou même plus de 90% desdites couches, sur la base de la formulation SiCh. De préférence encore, lesdites couches sont constituées essentiellement d’oxyde de silicium, mais peuvent comprendre également de l’aluminium. L’aluminium est utilisé de façon bien connue, dans des proportions pouvant aller jusqu’à 10% atomique voire plus sur la base de la somme des éléments Si et Al, dans les cibles de silicium servant pour le dépôt par pulvérisation cathodique assisté par un champ magnétique (magnétron) des couches contenant du silicium, notamment les couches à base d’oxyde de silicium. In the layers according to the invention comprising silicon oxide, the silicon oxide preferably represents at least 50% of the weight of said layers, on the basis of a SiC>2 formulation, and preferably more than 80% or even more than 90% of said layers, based on the SiCh formulation. Preferably still, said layers consist essentially of silicon oxide, but can also include aluminum. Aluminum is used in a well-known manner, in proportions of up to 10 atomic% or more based on the sum of the elements Si and Al, in silicon targets used for sputtering deposition assisted by a magnetic field (magnetron) of layers containing silicon, in particular layers based on silicon oxide.
Dans les couches selon l’invention comprenant de l’oxyde de niobium, l’oxyde de niobium représente de préférence au moins 50% du poids desdites couches, sur la base d’une formulation Nb20s, et de préférence plus de 80 % ou même plus de 90 % desdites couches, sur la base de la formulation Nb2Û5. De préférence encore, lesdites couches sont constituées essentiellement d’oxyde de niobium. In the layers according to the invention comprising niobium oxide, the niobium oxide preferably represents at least 50% of the weight of said layers, on the basis of an Nb20s formulation, and preferably more than 80% or even more than 90% of said layers, based on the Nb2Û5 formulation. More preferably, said layers consist essentially of niobium oxide.
Dans les couches selon l’invention comprenant de l’oxyde de titane, l’oxyde de titane représente de préférence au moins 50% du poids desdites couches, sur la base d’une formulation TiCh, et de préférence plus de 80 % ou même plus de 90 % desdites couches, sur la base de la formulation TiCh. De préférence encore, lesdites couches sont constituées essentiellement d’oxyde de titane. In the layers according to the invention comprising titanium oxide, the titanium oxide preferably represents at least 50% of the weight of said layers, on the basis of a TiCh formulation, and preferably more than 80% or even more than 90% of said layers, based on the TiCh formulation. More preferably, said layers consist essentially of titanium oxide.
Dans les couches selon l’invention d’indice de réfraction à 550 nm supérieur à 2,2 comprenant du nitrure de silicium et de zirconium, le nitrure de silicium et de zirconium représente de préférence au moins 70% du poids desdites couches, sur la base d’une formulation SixZryN, et de préférence plus de 80 % ou même plus de 90 % du poids desdites couches, sur la base de ladite formulation. In the layers according to the invention with a refractive index at 550 nm greater than 2.2 comprising silicon and zirconium nitride, the silicon and zirconium nitride preferably represents at least 70% of the weight of said layers, on the based on a Si x Zr y N formulation, and preferably more than 80% or even more than 90% of the weight of said layers, based on said formulation.
Dans une couche comprenant du nitrure de silicium et de zirconium selon l’invention, le ratio atomique Si/Zr est compris entre 1 ,5 et 6,0, et de préférence est compris entre 2,0 et 5,5, ou même compris entre 2,5 et 5,0. De préférence encore, lesdites couches sont constituées essentiellement de nitrure de silicium et de zirconium, mais peuvent comprendre également de l’aluminium. L’aluminium est utilisé de façon bien connue, dans des proportions pouvant aller jusqu’à 10% atomique, sur la base de la somme des éléments Si Zr et Al, voire plus et de préférence compris entre 1 et 8% atomique, sur la base de la somme des éléments Si Zr et Al, dans les cibles de silicium servant pour le dépôt de couches par pulvérisation cathodique assisté par un champ magnétique (magnétron). In a layer comprising silicon and zirconium nitride according to the invention, the Si/Zr atomic ratio is between 1.5 and 6.0, and preferably is between 2.0 and 5.5, or even included between 2.5 and 5.0. More preferably, said layers consist essentially of silicon nitride and zirconium, but may also include aluminum. Aluminum is used in a well-known manner, in proportions of up to 10 atomic%, based on the sum of the elements Si Zr and Al, or even more and preferably between 1 and 8 atomic%, on the basis of the sum of the elements Si Zr and Al, in the silicon targets used for the deposition of layers by cathodic sputtering assisted by a magnetic field (magnetron).
Les revêtements selon l’invention sont de façon classique déposés par des techniques de dépôt du type pulvérisation sous vide assistée par champ magnétique d’une cathode du matériau ou d’un précurseur du matériau à déposer, souvent appelée technique de la pulvérisation magnétron dans le domaine. Une telle technique est aujourd’hui classiquement utilisée notamment lorsque le revêtement à déposer est constitué d’un empilement complexe de couches successives d’épaisseurs de quelques nanomètres ou quelques dizaines de nanomètres. The coatings according to the invention are conventionally deposited by field-assisted vacuum spraying type deposition techniques. magnetic of a cathode of the material or of a precursor of the material to be deposited, often called magnetron sputtering technique in the field. Such a technique is now conventionally used, particularly when the coating to be deposited consists of a complex stack of successive layers with thicknesses of a few nanometers or a few tens of nanometers.
Par les termes « sous couche » et « surcouche », il est fait référence dans la présente description à la position respective desdites couches par rapport à la couche absorbante comprenant du nitrure de niobium dans l’empilement, ledit empilement étant supporté par le substrat verrier pris comme référence. By the terms “underlayer” and “overlayer”, reference is made in the present description to the respective position of said layers relative to the absorbent layer comprising niobium nitride in the stack, said stack being supported by the glass substrate taken as a reference.
En particulier, la sous couche est généralement la couche au contact du substrat verrier et la surcouche est la couche la plus externe de l’empilement, tournée à l’opposé du substrat. In particular, the underlayer is generally the layer in contact with the glass substrate and the overlayer is the outermost layer of the stack, facing away from the substrate.
Les termes « au-dessus » ou « en dessous », sauf mention contraire, s’entendent par référence à la surface du substrat sur lequel est déposé l’empilement. The terms “above” or “below”, unless otherwise stated, are understood to refer to the surface of the substrate on which the stack is placed.
Si l'application plus particulièrement visée par l'invention est le vitrage pour le bâtiment, il est clair que d'autres applications sont envisageables, notamment dans les vitrages de véhicules (mis à part le pare-brise où l'on exige une très haute transmission lumineuse), comme les verres latéraux, le toit-auto, la lunette arrière. L'invention et ses avantages sont décrits avec plus de détails, ci-après, au moyen des exemples non limitatifs ci-dessous, selon l’invention et comparatifs. Dans tous les exemples et la description, les épaisseurs données sont physiques. If the application more particularly targeted by the invention is glazing for buildings, it is clear that other applications are possible, in particular in vehicle glazing (apart from the windshield where very high high light transmission), such as side windows, car roof, rear window. The invention and its advantages are described in more detail below, using the non-limiting examples below, according to the invention and comparative. In all examples and description, the thicknesses given are physical.
Tous les substrats sont en verre clair de 6 mm d'épaisseur de type Planiclear® commercialisé par la société Saint-Gobain Glass France. All substrates are 6 mm thick clear glass of the Planiclear® type marketed by the company Saint-Gobain Glass France.
Toutes les couches sont déposées de façon connue par pulvérisation cathodique assistée par champ magnétique (souvent appelé magnétron). All layers are deposited in a known manner by magnetic field-assisted cathode sputtering (often called magnetron).
De façon bien connue, les différentes couches successives sont déposées dans les compartiments successifs du dispositif de pulvérisation cathodique, chaque compartiment étant muni d’une cible métallique spécifique (par exemple en Si, ou Nb) choisie pour le dépôt d’une couche spécifique de l’empilement. In a well-known manner, the different successive layers are deposited in the successive compartments of the cathode sputtering device, each compartment being provided with a specific metallic target (for example in Si, or Nb) chosen for the deposition of a specific layer of stacking.
Plus précisément, les couches à base de nitrure de silicium sont déposées dans un premier compartiment du dispositif à partir d’une cible de silicium métallique (dopé avec 8% en masse d'aluminium), dans une atmosphère réactive contenant de l'azote (40% Ar et 60% N2). Les couches en nitrure de silicium, notées SisN4 par commodité, contiennent donc également de l’aluminium. Ces couches sont désignées par la suite selon la formulation générale classique Si3N4, même si la couche déposée ne répond pas forcément à cette stœchiométrie supposée. More precisely, the layers based on silicon nitride are deposited in a first compartment of the device from a metallic silicon target (doped with 8% by mass of aluminum), in a reactive atmosphere containing nitrogen ( 40% Ar and 60% N2). The silicon nitride layers, denoted SisN4 by convenience, therefore also contain aluminum. These layers are subsequently designated according to the classic general formulation Si3N4, even if the deposited layer does not necessarily meet this assumed stoichiometry.
Les couches à base de nitrure de silicium et de zirconium sont déposées dans un premier compartiment du dispositif à partir d’une cible de silicium et de zirconium dont le ratio Si/Zr est égal à 4,9 et comprenant en outre 8% en masse d'aluminium, dans une atmosphère réactive contenant de l'azote (40% Ar et 60% N2). Les couches en nitrure de silicium et de zirconium, notées SiZrN par commodité, contiennent donc également de l’aluminium. The layers based on silicon nitride and zirconium are deposited in a first compartment of the device from a target of silicon and zirconium whose Si/Zr ratio is equal to 4.9 and further comprising 8% by mass of aluminum, in a reactive atmosphere containing nitrogen (40% Ar and 60% N2). The silicon and zirconium nitride layers, denoted SiZrN for convenience, therefore also contain aluminum.
Les couches en nitrure de niobium NbN sont obtenues par pulvérisation d’une cible en niobium métallique dans une atmosphère comprenant un mélange d’azote et d’argon, selon les conditions décrites dans la publication W001/21540 ou encore dans publication W02009/112759. The NbN niobium nitride layers are obtained by sputtering a metallic niobium target in an atmosphere comprising a mixture of nitrogen and argon, according to the conditions described in publication W001/21540 or even in publication W02009/112759.
Les couches d’oxyde de silicium sont obtenues au moyen d’une cible de silicium dopé aluminium identique à celle précédemment décrite selon un procédé de pulvérisation dans une atmosphère cette fois comprenant de l’oxygène et de l’argon, selon les techniques bien connues de l’homme du métier. The silicon oxide layers are obtained using an aluminum-doped silicon target identical to that previously described according to a sputtering process in an atmosphere this time comprising oxygen and argon, according to well-known techniques. of a person skilled in the art.
Les couches d’oxyde de titane sont obtenues au moyen d’une cible d’oxyde de titane selon un procédé de pulvérisation dans une atmosphère cette fois comprenant essentiellement de l’argon et un peu d’oxygène et, selon les techniques bien connues de l’homme du métier.
Figure imgf000015_0001
The titanium oxide layers are obtained by means of a titanium oxide target according to a sputtering process in an atmosphere this time comprising essentially argon and a little oxygen and, according to the well-known techniques of the skilled person.
Figure imgf000015_0001
Dans les exemples 1 à 3 selon l’invention qui suivent, le substrat verrier est recouvert successivement, selon les techniques actuelles de déposition par pulvérisation cathodique assistée par magnétron, d’un empilement comprenant successivement une couche de nitrure de niobium entourée par des couches de nitrure silicium d’indice de réfraction de 2,0, puis des couches d’oxyde de titane, d’indice de réfraction de l’ordre de 2,4 et d’oxyde de silicium, d’indice de réfraction de l’ordre de 1 ,45. Le nitrure de niobium est sensiblement stoechiométrique, sur la base d’une formulation NbiNi. In the examples 1 to 3 according to the invention which follow, the glass substrate is successively covered, according to current magnetron-assisted cathode sputtering deposition techniques, with a stack successively comprising a layer of niobium nitride surrounded by layers of silicon nitride with a refractive index of 2.0, then layers of titanium oxide, with a refractive index of around 2.4 and silicon oxide, with a refractive index of around 2.4 of 1.45. Niobium nitride is substantially stoichiometric, based on an NbiNi formulation.
Un premier empilement selon l’exemple 1 est constitué par la succession des couches suivantes : A first stack according to example 1 is constituted by the succession of the following layers:
Verre/Si3N4 (10 nm) / NbN (7nm) / Si3N4 (11 nm) /TiO2 (21 nm) /S iO2 (8 nm) L’épaisseur optique cumulée de l’ensemble des deux couches de Si3N4 et de TiO2 est égale à 72 nm (11 *2+21 x2,4). Glass/Si 3 N 4 (10 nm) / NbN (7 nm) / Si 3 N 4 (11 nm) /TiO 2 (21 nm) /S iO 2 (8 nm) The cumulative optical thickness of all of the two layers of Si 3 N 4 and TiO 2 is equal to 72 nm (11 *2+21 x2.4).
Un second empilement selon l’exemple 2 est constitué par la succession des couches suivantes : A second stack according to example 2 is constituted by the succession of the following layers:
Verre/Si3N4 (10 nm) / NbN (7 nm) / Si3N4 (10 nm) /TiO2 (25nm) /SiO2 (10 nm) L’épaisseur optique cumulée de l’ensemble des deux couches de Si3N4 et de TiO2 est égale à 80 nm. Glass/Si 3 N 4 (10 nm) / NbN (7 nm) / Si 3 N 4 (10 nm) /TiO 2 (25nm) /SiO 2 (10 nm) The cumulative optical thickness of all of the two layers of Si 3 N 4 and TiO 2 is equal to 80 nm.
Un troisième empilement selon l’exemple 3 est constitué par la succession des couches suivantes : A third stack according to example 3 is constituted by the succession of the following layers:
Verre/Si3N4 (10 nm) /NbN (9 nm) / Si3N4 (9 nm) ZTiO2 (21 nm) /SiO2 (8 nm) L’épaisseur optique cumulée de l’ensemble des deux couches de Si3N4 et de TiO2 est égale à 68 nm. Glass/Si 3 N 4 (10 nm) /NbN (9 nm) / Si 3 N 4 (9 nm) ZTiO 2 (21 nm) /SiO 2 (8 nm) The cumulative optical thickness of all of the two layers of Si 3 N 4 and TiO 2 is equal to 68 nm.
Exemple 4 : Example 4:
Dans cet exemple, le substrat verrier est recouvert successivement, selon les techniques actuelles de déposition par pulvérisation cathodique assistée par magnétron décrites précédemment, d’un empilement comprenant successivement une couche de nitrure silicium d’indice de réfraction de 2,0, une couche de nitrure de niobium, d’une couche de nitrure de silicium et de zirconium obtenue à partir de la cible métallique SiZr précédemment décrite et d’indice de réfraction de l’ordre de 2,3 et d’une couche d’oxyde de silicium, d’indice de réfraction de l’ordre de 1 ,45. Le nitrure de niobium est sensiblement stoechiométrique, sur la base d’une formulation NbiNi. In this example, the glass substrate is successively covered, according to current magnetron-assisted cathode sputtering deposition techniques described previously, with a stack successively comprising a layer of silicon nitride with a refractive index of 2.0, a layer of niobium nitride, a layer of silicon nitride and zirconium obtained from the metallic target SiZr previously described and with a refractive index of the order of 2.3 and a layer of silicon oxide, refractive index of the order of 1.45. Niobium nitride is substantially stoichiometric, based on an NbiNi formulation.
Le quatrième empilement selon l’invention est donc constitué par la succession des couches suivantes: The fourth stack according to the invention is therefore constituted by the succession of the following layers:
Verre/Si3N4 (10 nm) /NbN (7 nm) / SiZrN (30 nm) / SiO2 (8 nm) L’épaisseur optique de la couche de SiZrN est égale à 69 nm (30x2,3). Les valeurs de transmission lumineuse TL et des réflexions lumineuses externes et internes Rext et Rint, sont mesurées dans la gamme 380 nm à 780 nm selon les méthodes décrites dans la norme NF EN 410 (2011 ). Le facteur solaire est mesuré selon cette même norme, entre 300 et 2500 nm. Glass/Si 3 N 4 (10 nm) /NbN (7 nm) / SiZrN (30 nm) / SiO 2 (8 nm) The optical thickness of the SiZrN layer is equal to 69 nm (30x2.3). The light transmission values TL and external and internal light reflections R ex t and Rint are measured in the range 380 nm to 780 nm according to the methods described in standard NF EN 410 (2011). The solar factor is measured according to this same standard, between 300 and 2500 nm.
Les résultats obtenus sont regroupés dans le tableau 2 qui suit, en pourcentages : [Tableau 2]
Figure imgf000016_0001
Figure imgf000017_0001
The results obtained are grouped in table 2 which follows, in percentages: [Table 2]
Figure imgf000016_0001
Figure imgf000017_0001
Les résultats reportés dans le tableau 2 qui précède montrent que les vitrages obtenus à partir des exemples 1 à 3 selon l’invention présentent un facteur solaire inférieur à ou proche de 50% (0,5), qui garantit une bonne isolation thermique du bâtiment ou de l’habitacle. The results reported in Table 2 above show that the glazing obtained from examples 1 to 3 according to the invention have a solar factor less than or close to 50% (0.5), which guarantees good thermal insulation of the building. or the passenger compartment.
On peut voir sur la base du tableau 2 que les vitrages selon l’invention présentent tous une couleur bleue en réflexion externe. It can be seen on the basis of Table 2 that the glazing according to the invention all has a blue color in external reflection.
Enfin on peut voir également que tous les vitrages selon l’invention, au contraire des exemples comparatifs, présentent non seulement une réflexion interne diminuée mais également une différence AR entre la réflexion extérieure et la réflexion intérieure sensiblement augmentée. Une telle propriété assure, comme indiqué précédemment, le confort visuel des occupants du bâtiment ou de l’habitacle équipé par le vitrage, en vision diurne comme en vision nocturne. Finally, we can also see that all the glazing according to the invention, unlike the comparative examples, presents not only a reduced internal reflection but also a difference AR between the exterior reflection and the significantly increased interior reflection. Such a property ensures, as indicated previously, the visual comfort of the occupants of the building or of the passenger compartment equipped by the glazing, in daytime vision as well as in night vision.
Exemples 5 et 6: Examples 5 and 6:
Dans l’exemple 5, selon une autre réalisation de l’invention, on décrit l’empilement suivant : In example 5, according to another embodiment of the invention, the following stack is described:
Verre/Si3N4 (10 nm) /Nb (4nm) / Si3N4 (12 nm) /TiO2 (30nm) /SiO2 (8 nm)Glass/Si3N4 (10 nm) /Nb (4nm) / Si 3 N4 (12 nm) /TiO 2 (30nm) /SiO2 (8 nm)
L’épaisseur optique cumulée de l’ensemble des deux couches de Si3N4 et de TiO2 est égale à 96 nm. The cumulative optical thickness of all of the two layers of Si 3 N4 and TiO 2 is equal to 96 nm.
Dans l’exemple 6, selon une autre réalisation de l’invention, on décrit l’empilement suivant : In example 6, according to another embodiment of the invention, the following stack is described:
Verre/Si3N4 (20 nm) /NiCr (5 nm) / Si3N4 (8 nm) /TiO2 (27nm) /SiO2 (8 nm)Glass/Si 3 N 4 (20 nm) /NiCr (5 nm) / Si 3 N 4 (8 nm) /TiO 2 (27nm) /SiO 2 (8 nm)
L’épaisseur optique cumulée de l’ensemble des deux couches de Si3N4 et de TiO2 est égale à 81 nm. The cumulative optical thickness of all of the two layers of Si 3 N4 and TiO 2 is equal to 81 nm.
Les résultats obtenus sont regroupés dans le tableau 3 qui suit, en pourcentages : [Tableau 3]
Figure imgf000017_0002
Figure imgf000018_0001
The results obtained are grouped in table 3 below, in percentages: [Table 3]
Figure imgf000017_0002
Figure imgf000018_0001
Les résultats reportés dans le tableau 3 qui précède montrent que les vitrages obtenus à partir des exemples 5 et 6 selon l’invention présentent un facteur solaire inférieur à ou proche de 50% (0,5), qui garantit une bonne isolation thermique du bâtiment ou de l’habitacle. The results reported in Table 3 above show that the glazing obtained from examples 5 and 6 according to the invention have a solar factor less than or close to 50% (0.5), which guarantees good thermal insulation of the building or the passenger compartment.
On peut voir sur la base du tableau 3 que les vitrages selon l’invention présentent tous une couleur bleue en réflexion externe. It can be seen on the basis of Table 3 that the glazing according to the invention all has a blue color in external reflection.
Enfin on peut voir également que les vitrages selon les exemples 5 et 6 selon l’invention, au contraire des exemples comparatifs, présentent non seulement une réflexion interne diminuée mais également une différence AR entre la réflexion extérieure et la réflexion intérieure sensiblement augmentée. Finally, we can also see that the glazing according to examples 5 and 6 according to the invention, unlike the comparative examples, present not only a reduced internal reflection but also a difference AR between the exterior reflection and the significantly increased interior reflection.
Exemples selon l’art antérieur : Examples according to prior art:
On peut comparer les propriétés des empilements de la demande WO 01/21540 citée précédemment. We can compare the properties of the stacks of application WO 01/21540 cited above.
L’exemple 4 de la demande W001/21540 décrit une succession de couches dans l’empilement : Example 4 of application W001/21540 describes a succession of layers in the stack:
Verre / SisN4 (10nm) / Nb (12 nm) / SisN4 (17 nm)Glass / SisN4 (10nm) / Nb (12 nm) / SisN4 (17 nm)
Dans le tableau page 18 de cette publication, pour une transmission lumineuse de 32,3%, il est indiqué que la réflexion lumineuse Ri_ext est de 14,4% et la réflexion lumineuse Runt est de 25,3%. In the table on page 18 of this publication, for a light transmission of 32.3%, it is indicated that the light reflection Ri_ext is 14.4% and the light reflection Runt is 25.3%.
La valeur de la réflexion intérieure apparaît trop élevée et supérieure à celle de la réflexion extérieure, contrairement aux objectifs recherchés par la présente invention, tel que décrit précédemment. The value of the interior reflection appears too high and greater than that of the exterior reflection, contrary to the objectives sought by the present invention, as described previously.
De même, l’exemple 6 de la demande W001/21540 décrit une succession de couches dans l’empilement : Likewise, example 6 of application W001/21540 describes a succession of layers in the stack:
Verre / SisN4 (10nm) / NbN (10 nm) / SisN4 (15 nm)Glass / SisN4 (10nm) / NbN (10nm) / SisN4 (15nm)
Dans le tableau page 18 de cette publication, les valeurs reportées de Ri_ext et de Runt sont respectivement égales à 17,9% et 27,8%. De même que pour l’empilement précédent, on peut voir que la réflexion intérieure est également beaucoup plus élevée pour cette configuration et la réflexion extérieure beaucoup trop faible pour l’objectif recherché selon la présente invention. In the table on page 18 of this publication, the reported values of Ri_ext and Runt are respectively equal to 17.9% and 27.8%. As with the previous stack, we can see that the interior reflection is also much higher for this configuration and the exterior reflection is much too low for the objective sought according to the present invention.

Claims

REVENDICATIONS
1. Article verrier transparent pour vitrage antisolaire, comprenant au moins un substrat de verre muni sur au moins une de ses faces d'un revêtement constitué par un empilement de couches, ledit empilement comprenant la succession de couches suivantes, à partir de la surface dudit substrat : 1. Transparent glass article for anti-solar glazing, comprising at least one glass substrate provided on at least one of its faces with a coating constituted by a stack of layers, said stack comprising the succession of following layers, from the surface of said substrate:
- une couche comprenant un nitrure d’au moins un élément choisi parmi Si, Al, ledit nitrure comprenant éventuellement Zr, d’épaisseur physique comprise entre 1 et 25 nm, de préférence entre 5 et 20 nm, - a layer comprising a nitride of at least one element chosen from Si, Al, said nitride optionally comprising Zr, with a physical thickness of between 1 and 25 nm, preferably between 5 and 20 nm,
- une couche absorbant les infrarouges, constitué par un matériau comprenant du niobium ou par un matériau comprenant du nickel et du chrome, d’épaisseur physique comprise entre 1 et 20 nm, de préférence entre 5 et 15 nm, - an infrared absorbing layer, constituted by a material comprising niobium or by a material comprising nickel and chromium, with a physical thickness of between 1 and 20 nm, preferably between 5 and 15 nm,
- une couche dont l’épaisseur optique est comprise entre 60 et 100 nm, de préférence entre 65 et 95 nm, comprenant un nitrure d’au moins un élément choisi parmi Si, Al, ledit nitrure comprenant en outre Zr, au contact de la couche absorbant les infrarouges, d’indice de réfraction à 550 nm supérieur à 2,2 ou un ensemble de couches dont l’épaisseur optique totale est comprise entre 60 et 100 nm, de préférence entre 65 et 95 nm, ledit ensemble comprenant ou étant constitué par une couche comprenant un nitrure d’au moins un élément choisi parmi Si, Al, ledit nitrure comprenant éventuellement Zr, au contact de la couche absorbant les infrarouges et par une couche d’un matériau diélectrique d’indice de réfraction à 550 nm supérieur à 2,2, d’épaisseur physique supérieure à 15 nm. - a layer whose optical thickness is between 60 and 100 nm, preferably between 65 and 95 nm, comprising a nitride of at least one element chosen from Si, Al, said nitride further comprising Zr, in contact with the infrared absorbing layer, with a refractive index at 550 nm greater than 2.2 or a set of layers whose total optical thickness is between 60 and 100 nm, preferably between 65 and 95 nm, said set comprising or being constituted by a layer comprising a nitride of at least one element chosen from Si, Al, said nitride optionally comprising Zr, in contact with the infrared absorbing layer and by a layer of a dielectric material with a refractive index at 550 nm greater than 2.2, with a physical thickness greater than 15 nm.
- de préférence une couche d’un matériau diélectrique d’indice de réfraction à 550 nm inférieur à 1 ,6, d’épaisseur physique comprise entre 1 et 25 nm, de préférence entre 5 et 20 nm, - preferably a layer of a dielectric material with a refractive index at 550 nm of less than 1.6, with a physical thickness of between 1 and 25 nm, preferably between 5 and 20 nm,
- éventuellement une couche de protection d’un oxyde de titane, d’un oxyde de zirconium ou d’un oxyde de titane et de zirconium, d’épaisseur physique comprise entre 1 et 5 nm de préférence entre 1 et 3 nm. - optionally a protective layer of a titanium oxide, a zirconium oxide or a titanium and zirconium oxide, with a physical thickness of between 1 and 5 nm, preferably between 1 and 3 nm.
2. Article verrier selon la revendication 1 , dans lequel l’empilement ne comprend qu’une couche absorbant les IR. 2. Glass article according to claim 1, in which the stack only comprises an IR absorbing layer.
3. Article verrier selon l’une des revendications précédentes, dans lequel la succession de couches comprend ladite couche d’un matériau diélectrique d’indice de réfraction à 550 nm inférieur à 1 ,6, et dans lequel ladite couche d’un matériau diélectrique d’indice de réfraction à 550 nm supérieur à 2,2 a une épaisseur physique de préférence au moins 1 ,5 fois supérieure à ladite couche d’un matériau diélectrique d’indice de réfraction à 550 nm inférieur à 1 ,6. 3. Glass article according to one of the preceding claims, in which the succession of layers comprises said layer of a dielectric material with a refractive index at 550 nm less than 1.6, and in which said layer of a dielectric material of refractive index at 550 nm greater than 2.2 has a thickness physical preferably at least 1.5 times greater than said layer of a dielectric material with a refractive index at 550 nm less than 1.6.
4. Article selon l’une des revendications précédentes, dans lequel la couche d’un matériau diélectrique d’indice de réfraction à 550 nm supérieur à 2,2, d’épaisseur supérieure à 15 nm et la couche d’un matériau diélectrique d’indice de réfraction à 550 nm inférieur à 1 ,6 ont une épaisseur physique cumulée totale comprise entre 25 et 50 nm, de préférence entre 25 et 35 nm. 4. Article according to one of the preceding claims, in which the layer of a dielectric material with a refractive index at 550 nm greater than 2.2, of thickness greater than 15 nm and the layer of a dielectric material of refractive index at 550 nm less than 1.6 have a total cumulative physical thickness of between 25 and 50 nm, preferably between 25 and 35 nm.
5. Article selon l’une des revendications précédentes dans lequel les couches comprenant un nitrure d’au moins un élément choisi parmi Si, Al, et comprenant éventuellement Zr, sont au contact de la couche absorbante. 5. Article according to one of the preceding claims in which the layers comprising a nitride of at least one element chosen from Si, Al, and optionally comprising Zr, are in contact with the absorbent layer.
6. Article selon l’une des revendications précédentes dans lequel le matériau diélectrique d’indice de réfraction à 550 nm supérieur à 2,2 dans ledit ensemble de couches comprend un oxyde d’au moins un élément choisi parmi le titane, le niobium, le zirconium ou leur mélange, en particulier comprend de l’oxyde de titane, de l’oxyde de niobium, de l’oxyde de zirconium, ou un nitrure de silicium et de zirconium ou un nitrure de silicium, d’aluminium et de zirconium. 6. Article according to one of the preceding claims in which the dielectric material with a refractive index at 550 nm greater than 2.2 in said set of layers comprises an oxide of at least one element chosen from titanium, niobium, zirconium or their mixture, in particular comprises titanium oxide, niobium oxide, zirconium oxide, or a silicon and zirconium nitride or a silicon, aluminum and zirconium nitride .
7. Article selon l’une des revendications précédentes dans lequel le matériau diélectrique d’indice de réfraction à 550 nm inférieur à 1 ,6 comprend de l’oxyde de silicium ou un oxynitrure de silicium, de préférence un oxyde de silicium. 7. Article according to one of the preceding claims in which the dielectric material with a refractive index at 550 nm less than 1.6 comprises silicon oxide or a silicon oxynitride, preferably silicon oxide.
8. Article selon l’une des revendications précédentes dans lequel le matériau constituant la couche absorbante est choisi parmi un matériau comprenant, et de préférence constitué essentiellement par du niobium ou du nitrure de niobium, de préférence par du nitrure de niobium. 8. Article according to one of the preceding claims in which the material constituting the absorbent layer is chosen from a material comprising, and preferably consisting essentially of, niobium or niobium nitride, preferably niobium nitride.
9. Article selon l’une des revendications précédentes dans lequel le matériau constituant la couche absorbante est choisi parmi le niobium ou un alliage de niobium avec au moins un autre métal, le niobium représentant au moins 50% des atomes métalliques présents dans ledit matériau, de préférence représentant au moins 80% des atomes métalliques présents dans ledit matériau. 9. Article according to one of the preceding claims in which the material constituting the absorbent layer is chosen from niobium or an alloy of niobium with at least one other metal, the niobium representing at least 50% of the metal atoms present in said material, preferably representing at least 80% of the metal atoms present in said material.
10. Article selon l’une des revendications 1 à 8 dans lequel dans lequel le matériau constituant la couche absorbante comprend un nitrure de niobium ou un nitrure de niobium et d’au moins un autre métal, le niobium représentant au moins 50% des atomes métalliques présents dans ledit matériau, de préférence représentant au moins 80% des atomes métalliques présents dans ledit matériau. 10. Article according to one of claims 1 to 8 in which the material constituting the absorbent layer comprises a niobium nitride or a niobium nitride and at least one other metal, the niobium representing at least 50% of the atoms metals present in said material, preferably representing at least 80% of the metal atoms present in said material.
11 . Article selon l’une des revendications 1 à 7 dans lequel dans lequel le matériau constituant la couche absorbante comprend un alliage de nickel et de chrome ou un nitrure d’un alliage de nickel et de chrome, dans lequel le ratio atomique Ni/Cr varie entre 2 et 9, de préférence entre 3 et 5. 11. Article according to one of claims 1 to 7 in which the material constituting the absorbent layer comprises a nickel and chromium alloy or a nitride of a nickel and chromium alloy, in which the Ni/Cr atomic ratio varies between 2 and 9, preferably between 3 and 5.
12. Article selon l’une des revendications précédentes dans lequel l’empilement est uniquement constitué par les couches décrites dans lesdites revendications. 12. Article according to one of the preceding claims in which the stack consists solely of the layers described in said claims.
13. Article selon l’une des revendications précédentes, dans lequel l’empilement comprend ou est constitué par la succession des couches suivantes, chaque couche étant au contact direct de la suivante, à partir de la surface dudit substrat: 13. Article according to one of the preceding claims, in which the stack comprises or is constituted by the succession of the following layers, each layer being in direct contact with the next, from the surface of said substrate:
SiN/CA/SiN/TiO/ de préférence SiO/ éventuellement TiO, ZrO ou TiZrO dans lequel SiN désigne des couches comprenant du nitrure de silicium, CA désigne la couche absorbante, en particulier une couche de nitrure de niobium ou de niobium, SiO désigne une couche comprenant de l’oxyde de silicium, TiO désigne une couche comprenant un oxyde de titane, ZrO désigne une couche comprenant un oxyde de zirconium et TiZrO désigne une couche comprenant un oxyde de titane et de zirconium. SiN/CA/SiN/TiO/ preferably SiO/ optionally TiO, ZrO or TiZrO in which SiN designates layers comprising silicon nitride, CA designates the absorbent layer, in particular a layer of niobium nitride or niobium, SiO designates a layer comprising silicon oxide, TiO designates a layer comprising titanium oxide, ZrO designates a layer comprising zirconium oxide and TiZrO designates a layer comprising titanium and zirconium oxide.
14. Article selon l’une des revendications 1 à 12, dans lequel l’empilement comprend ou est constitué par la succession des couches suivantes, chaque couche étant au contact direct de la suivante, à partir de la surface dudit substrat: 14. Article according to one of claims 1 to 12, in which the stack comprises or is constituted by the succession of the following layers, each layer being in direct contact with the next, from the surface of said substrate:
SiN/CA/SiN/NbO/ de préférence SiO /éventuellement TiO, ZrO ou TiZrO, dans lequel SiN désigne des couches comprenant du nitrure de silicium, CA désigne la couche absorbante, en particulier une couche de nitrure de niobium ou de niobium, SiO désigne une couche comprenant de l’oxyde de silicium, NbO désigne une couche comprenant de l’oxyde de niobium, TiO désigne une couche comprenant un oxyde de titane, ZrO désigne une couche comprenant un oxyde de zirconium et TiZrO désigne une couche comprenant un oxyde de titane et de zirconium. SiN/CA/SiN/NbO/ preferably SiO /optionally TiO, ZrO or TiZrO, in which SiN designates layers comprising silicon nitride, CA designates the absorbent layer, in particular a layer of niobium nitride or niobium, SiO designates a layer comprising silicon oxide, NbO designates a layer comprising niobium oxide, TiO designates a layer comprising a titanium oxide, ZrO designates a layer comprising a zirconium oxide and TiZrO designates a layer comprising an oxide titanium and zirconium.
15. Article selon l’une des revendications 1 à 12, dans lequel l’empilement comprend ou de préférence est constitué par la succession des couches suivantes, chaque couche étant au contact direct de la suivante et à partir de la surface dudit substrat : 15. Article according to one of claims 1 to 12, in which the stack comprises or preferably is constituted by the succession of the following layers, each layer being in direct contact with the next and from the surface of said substrate:
SiN/CA/SiNZ SiZrN/ de préférence SiO/éventuellement TiO, ZrO ou TiZrO dans lequel SiN désigne des couches comprenant du nitrure de silicium, CA désigne la couche absorbante, en particulier une couche de nitrure de niobium ou de niobium, SiO désigne une couche comprenant de l’oxyde de silicium, SiZrN désigne une couche comprenant un nitrure de silicium et de zirconium, TiO désigne une couche comprenant un oxyde de titane, ZrO désigne une couche comprenant un oxyde de zirconium et TiZrO désigne une couche comprenant un oxyde de titane et de zirconium. SiN/CA/SiNZ SiZrN/ preferably SiO/optionally TiO, ZrO or TiZrO in which SiN designates layers comprising silicon nitride, CA designates the absorbent layer, in particular a layer of niobium nitride or niobium, SiO designates a layer comprising silicon oxide, SiZrN designates a layer comprising silicon and zirconium nitride, TiO designates a layer comprising titanium oxide, ZrO designates a layer comprising zirconium oxide and TiZrO designates a layer comprising a titanium and zirconium oxide.
16. Article selon l’une des revendications 1 à 12, dans lequel l’empilement comprend ou de préférence est constitué par la succession des couches suivantes, chaque couche étant au contact direct de la suivante et à partir de la surface dudit substrat : 16. Article according to one of claims 1 to 12, in which the stack comprises or preferably is constituted by the succession of the following layers, each layer being in direct contact with the next and from the surface of said substrate:
SiN/CA/ SiZrN/ de préférence SiO/éventuellement TiO, ZrO ou TiZrO dans lequel SiN désigne des couches comprenant du nitrure de silicium, CA désigne la couche absorbante, en particulier une couche de nitrure de niobium ou de niobium, SiO désigne une couche comprenant de l’oxyde de silicium, SiZrN désigne une couche comprenant un nitrure de silicium et de zirconium, TiO désigne une couche comprenant un oxyde de titane, ZrO désigne une couche comprenant un oxyde de zirconium et TiZrO désigne une couche comprenant un oxyde de titane et de zirconium. SiN/CA/ SiZrN/ preferably SiO/optionally TiO, ZrO or TiZrO in which SiN designates layers comprising silicon nitride, CA designates the absorbent layer, in particular a layer of niobium nitride or niobium, SiO designates a layer comprising silicon oxide, SiZrN designates a layer comprising silicon and zirconium nitride, TiO designates a layer comprising titanium oxide, ZrO designates a layer comprising zirconium oxide and TiZrO designates a layer comprising titanium oxide and zirconium.
17. Article selon l’une des revendications précédentes, caractérisé en ce que l’empilement ne comprend pas de couches à base d’Ag, Au, Pt, Cu, Ni ou d’acier inoxydable. 17. Article according to one of the preceding claims, characterized in that the stack does not include layers based on Ag, Au, Pt, Cu, Ni or stainless steel.
18. Article selon l’une des revendications précédentes, dans lequel la couche d’un matériau diélectrique d’indice de réfraction à 550 nm supérieur à 2,2 a une épaisseur physique supérieure ou égale à 20 nm. 18. Article according to one of the preceding claims, in which the layer of a dielectric material with a refractive index at 550 nm greater than 2.2 has a physical thickness greater than or equal to 20 nm.
PCT/EP2023/082421 2022-11-24 2023-11-20 Solar control glazing with high external reflection WO2024110400A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2212293 2022-11-24
FR2212293A FR3142471A1 (en) 2022-11-24 2022-11-24 Anti-solar glazing with high external reflection

Publications (1)

Publication Number Publication Date
WO2024110400A1 true WO2024110400A1 (en) 2024-05-30

Family

ID=85570319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/082421 WO2024110400A1 (en) 2022-11-24 2023-11-20 Solar control glazing with high external reflection

Country Status (2)

Country Link
FR (1) FR3142471A1 (en)
WO (1) WO2024110400A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021540A1 (en) 1999-09-23 2001-03-29 Saint-Gobain Glass France Glazing provided with a stack of thin layers acting on solar radiation
FR2927897A1 (en) * 2008-02-27 2009-08-28 Saint Gobain ANTISOLAR GLAZING HAVING IMPROVED LUMINOUS TRANSMISSION COEFFICIENT.
US20090320824A1 (en) 2008-06-30 2009-12-31 Christian Henn Arrangement for reflection of heat radiation, process of making same and uses of same
WO2011030049A2 (en) * 2009-09-08 2011-03-17 Saint-Gobain Glass France Material and glazing comprising said material
FR3102984A1 (en) * 2019-11-13 2021-05-14 Saint-Gobain Glass France Sun protection glazing with low internal reflection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021540A1 (en) 1999-09-23 2001-03-29 Saint-Gobain Glass France Glazing provided with a stack of thin layers acting on solar radiation
FR2927897A1 (en) * 2008-02-27 2009-08-28 Saint Gobain ANTISOLAR GLAZING HAVING IMPROVED LUMINOUS TRANSMISSION COEFFICIENT.
WO2009112759A2 (en) 2008-02-27 2009-09-17 Saint-Gobain Glass France Solar-protection glazing having an improved light transmission coefficient
US20090320824A1 (en) 2008-06-30 2009-12-31 Christian Henn Arrangement for reflection of heat radiation, process of making same and uses of same
WO2011030049A2 (en) * 2009-09-08 2011-03-17 Saint-Gobain Glass France Material and glazing comprising said material
FR3102984A1 (en) * 2019-11-13 2021-05-14 Saint-Gobain Glass France Sun protection glazing with low internal reflection

Also Published As

Publication number Publication date
FR3142471A1 (en) 2024-05-31

Similar Documents

Publication Publication Date Title
CA2800252C (en) Solar control glazing with low solar factor.
BE1019346A3 (en) GLAZING OF SOLAR CONTROL.
EP0995724B1 (en) Multilayered thin film-coated transparent substrate
WO2020128327A1 (en) Solar-control glazing comprising two layers based on titanium nitride
FR2988387A1 (en) GLAZING OF SOLAR CONTROL
WO2019002737A1 (en) Glazing with solar protection properties comprising a titanium oxynitride layer
WO2021170959A1 (en) Solar-control glazing comprising a layer of titanium nitride
EP4058416A1 (en) Solar control glazing with low internal reflection
EP4041690B1 (en) Insulating glazing comprising layers of ito and niobium nitride
EP2986577A1 (en) Solar control glazing comprising two metal layers made from nickel
WO2024110400A1 (en) Solar control glazing with high external reflection
WO2022144518A1 (en) Solar control glazing comprising a thin film based on titanium nitride and a film of sub-stoichiometric silicon nitride in nitrogen
EP4031506A1 (en) Insulating glass panel comprising a thin chromium-based layer
FR3111631A1 (en) SOLAR CONTROL GLASS CONSISTING OF A TITANIUM NITRIDE BASED LAYER AND AN ITO BASED LAYER
WO2021063921A1 (en) Glazing comprising a solar-protection stack and a protective coating comprising yttrium
WO2024013059A1 (en) Solar protection glazing with blue external reflection
WO2023203192A1 (en) Solar control glazing panel comprising a single functional titanium nitride layer
WO2022144519A1 (en) Solar control glazing comprising a thin film of nickel-chromium alloy and a thin film of sub-stoichiometric silicon nitride in nitrogen
WO2021004873A1 (en) Glazing unit with a double layer of tin for solar control
WO2024160764A1 (en) Laminated glazing comprising a silver-based functional coating
WO2023105156A1 (en) Glass panel comprising a sun protection stack and a protective coating comprising yttrium oxide and at least one element selected from hafnium and/or titanium
EP4408809A1 (en) Solar-control glazing comprising a titanium nitride-based layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23809224

Country of ref document: EP

Kind code of ref document: A1