[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024108513A1 - 一种测量方法、装置、设备及存储介质 - Google Patents

一种测量方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2024108513A1
WO2024108513A1 PCT/CN2022/134188 CN2022134188W WO2024108513A1 WO 2024108513 A1 WO2024108513 A1 WO 2024108513A1 CN 2022134188 W CN2022134188 W CN 2022134188W WO 2024108513 A1 WO2024108513 A1 WO 2024108513A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
interval
expansion coefficient
measurement interval
require
Prior art date
Application number
PCT/CN2022/134188
Other languages
English (en)
French (fr)
Inventor
胡子泉
陶旭华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/134188 priority Critical patent/WO2024108513A1/zh
Priority to CN202280005234.8A priority patent/CN118402269A/zh
Publication of WO2024108513A1 publication Critical patent/WO2024108513A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a measurement method, device, equipment and storage medium.
  • network equipment In a communication system, network equipment usually configures cell-defined synchronization signal blocks (cell-defining Primary Synchronization Signals/Secondary Synchronization Signals PBCH Block, CD-SSB) and non-cell-defined synchronization signal blocks (non-cell-defining Primary Synchronization Signals/Secondary Synchronization Signals PBCH Block, CD-SSB, NCD-SSB) for terminal devices.
  • terminal devices usually measure neighboring cell reference signals (such as CD-SSB and/or NCD-SSB). The measurement includes co-frequency measurement and inter-frequency measurement.
  • inter-frequency measurement is usually performed during the measurement gap based on the measurement gap (MG).
  • time for terminal device RF adjustment usually needs to be reserved at both ends of the measurement gap.
  • the present disclosure provides a measurement method, an apparatus, a device and a storage medium to solve the technical problem of conflict between same-frequency measurement and different-frequency measurement in the related art.
  • an embodiment of the present disclosure provides a measurement method, including:
  • the terminal device in response to a conflict between a first measurement opportunity that does not require a measurement interval and a second measurement opportunity that requires a measurement interval, the terminal device will perform a measurement that does not require a measurement interval or a measurement that requires a measurement interval.
  • the terminal device may choose to perform a measurement that does not require a measurement interval and abandon the measurement that requires a measurement interval, or may choose to perform a measurement that requires a measurement interval and abandon the measurement that does not require a measurement interval, thereby avoiding the situation where "the same-frequency measurement (i.e., the aforementioned measurement that does not require a measurement interval) and the different-frequency measurement (i.e., the aforementioned measurement that requires a measurement interval) are both affected due to the time overlap between the measurement that does not require a measurement interval and the measurement that requires a measurement interval", ensuring the accurate and smooth execution of the same-frequency measurement and the different-frequency measurement, and improving the measurement efficiency of the reference signal.
  • the same-frequency measurement i.e., the aforementioned measurement that does not require a measurement interval
  • the different-frequency measurement i.e., the aforementioned measurement that requires a measurement interval
  • an embodiment of the present disclosure provides a measurement method, including:
  • the terminal device is configured with a first expansion coefficient corresponding to measurements that do not require a measurement interval, and/or a second expansion coefficient corresponding to measurements that require a measurement interval.
  • an embodiment of the present disclosure provides a communication device, including:
  • the processing module is configured to, in response to a conflict between a first measurement opportunity not requiring a measurement interval and a second measurement opportunity requiring a measurement interval, perform a measurement not requiring a measurement interval or perform a measurement requiring a measurement interval.
  • an embodiment of the present disclosure provides a communication device, including:
  • the transceiver module is used to configure the first expansion coefficient corresponding to the measurement that does not require a measurement interval and/or the second expansion coefficient corresponding to the measurement that requires a measurement interval to the terminal device.
  • an embodiment of the present disclosure provides a communication device, which includes a processor.
  • the processor calls a computer program in a memory, the method described in any one of the first to second aspects is executed.
  • an embodiment of the present disclosure provides a communication device, which includes a processor and a memory, in which a computer program is stored; the processor executes the computer program stored in the memory so that the communication device executes the method described in any one of the first to second aspects above.
  • an embodiment of the present disclosure provides a communication device, which includes a processor and an interface circuit, wherein the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to enable the device to execute the method described in any one of the first to second aspects above.
  • an embodiment of the present disclosure provides a communication system, the system comprising the communication device described in any one of aspects from the third to the fourth aspect, or the system comprising the communication device described in the fifth aspect, or the system comprising the communication device described in the sixth aspect, or the system comprising the communication device described in the seventh aspect.
  • an embodiment of the present disclosure provides a computer-readable storage medium for storing instructions used by the above-mentioned network device.
  • the terminal device executes the method described in any one of the first to second aspects above.
  • the present disclosure further provides a computer program product comprising a computer program, which, when executed on a computer, enables the computer to execute the method described in any one of the first to second aspects above.
  • the present disclosure provides a chip system, which includes at least one processor and an interface, and is used to support a network device to implement the functions involved in the method described in any one of the first aspect to the second aspect, for example, determining or processing at least one of the data and information involved in the above method.
  • the chip system also includes a memory, and the memory is used to store computer programs and data necessary for the source auxiliary node.
  • the chip system can be composed of a chip, or it can include a chip and other discrete devices.
  • the present disclosure provides a computer program, which, when executed on a computer, enables the computer to execute the method described in any one of the first to second aspects above.
  • FIG. 1a is a time slot distribution diagram of reference signals requiring measurement intervals and reference signals not requiring measurement intervals provided by an embodiment of the present disclosure
  • FIG1b is a schematic diagram of the architecture of a communication system provided by an embodiment of the present disclosure.
  • FIG2 is a schematic flow chart of a measurement method provided by another embodiment of the present disclosure.
  • FIG3 is a schematic flow chart of a measurement method provided in yet another embodiment of the present disclosure.
  • FIG4 is a schematic flow chart of a measurement method provided by yet another embodiment of the present disclosure.
  • FIG5 is a schematic flow chart of a measurement method provided by another embodiment of the present disclosure.
  • FIG6 is a flow chart of a measurement method provided by another embodiment of the present disclosure.
  • FIG7 is a schematic flow chart of a measurement method provided by another embodiment of the present disclosure.
  • FIG8 is a schematic flow chart of a measurement method provided by another embodiment of the present disclosure.
  • FIG9 is a schematic flow chart of a measurement method provided by another embodiment of the present disclosure.
  • FIG10 is a schematic flow chart of a measurement method provided by another embodiment of the present disclosure.
  • FIG11 is a schematic flow chart of a measurement method provided by another embodiment of the present disclosure.
  • FIG12 is a schematic flow chart of a measurement method provided by another embodiment of the present disclosure.
  • FIG13 is a flow chart of a measurement method provided by another embodiment of the present disclosure.
  • FIG14 is a schematic flow chart of a measurement method provided by another embodiment of the present disclosure.
  • FIG15 is a schematic diagram of the structure of a communication device provided by yet another embodiment of the present disclosure.
  • FIG16 is a schematic diagram of the structure of a communication device provided by yet another embodiment of the present disclosure.
  • FIG17 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG. 18 is a schematic diagram of the structure of a chip provided by an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the disclosed embodiments, these information should not be limited to these terms. These terms are only used to distinguish signals of the same type from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the words "if” and “if” as used herein may be interpreted as “at” or "when” or "in response to determination”.
  • CD-SSB Cell-defining Primary Synchronization Signals/Secondary Synchronization Signals PBCH Block
  • CD-SSB is mainly used for initial access to a cell, and contains the system information block 1 (SIB1) information of the access cell.
  • SIB1 system information block 1
  • Non-cell-defining Primary Synchronization Signals/Secondary Synchronization Signals PBCH Block CD-SSB, NCD-SSB
  • NCD-SSB is mainly used for initial access to non-cells, such as measurement.
  • center frequency of the reference signal of the current serving cell of the terminal device and the center frequency and subcarrier spacing of the reference signal of the target cell are the same.
  • the center frequency of the reference signal of the current serving cell of the terminal device is different from the center frequency or subcarrier spacing of the reference signal of the target cell.
  • the terminal device suspends communication with the serving cell for the duration of the neighboring cell measurement. During the measurement interval, the terminal device will interrupt communication with the current serving cell, not send or receive data from the current serving cell, and only perform inter-frequency measurement of neighboring cell reference signals.
  • Figure 1a is a time slot distribution diagram of reference signals that require measurement intervals and reference signals that do not require measurement intervals provided by an embodiment of the present disclosure.
  • the reference signals CD-SSB of hetero-frequency neighboring cells Cell1 and hetero-frequency neighboring cells Cell2 both require measurement interval measurement
  • the reference signal NCD-SSB of the same-frequency neighboring cell Cell0 does not require measurement interval measurement.
  • time for the terminal device to adjust the radio frequency needs to be reserved at both ends of the measurement interval (i.e., the gray rectangular part in the figure).
  • the present disclosure proposes a measurement method.
  • the communication system to which the embodiment of the present disclosure is applicable is first described below.
  • FIG. 1b is a schematic diagram of the architecture of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a terminal device and a network device, wherein the number and form of devices shown in FIG. 1b are only used as examples and do not constitute a limitation on the embodiment of the present disclosure, and may include one or more terminal devices or one or more network devices in actual applications.
  • the communication system shown in FIG. 1b takes a network device 11 and a terminal device 12 as an example.
  • LTE long term evolution
  • 5G fifth generation
  • NR 5G new radio
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 11 can be an evolved NodeB (eNB), a transmission reception point (TRP), a Radio Remote Head (RRH), a next generation NodeB (gNB) in an NR system, a base station in other future mobile communication systems, or an access node in a wireless fidelity (WiFi) system.
  • eNB evolved NodeB
  • TRP transmission reception point
  • RRH Radio Remote Head
  • gNB next generation NodeB
  • the network device provided in the embodiment of the present disclosure can be composed of a central unit (CU) and a distributed unit (DU), wherein the CU can also be called a control unit.
  • CU central unit
  • DU distributed unit
  • the CU-DU structure can be used to split the protocol layer of the network device, such as the base station, and the functions of some protocol layers are placed in the CU for centralized control, and the functions of the remaining part or all of the protocol layers are distributed in the DU, and the DU is centrally controlled by the CU.
  • the terminal device 12 in the disclosed embodiment may be an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal device may also be referred to as a terminal device (terminal), a user equipment (UE), a mobile station (MS), a mobile terminal device (MT), etc.
  • the UE may be a car with communication function, a smart car, a mobile phone (mobile phone), a wearable device, a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control (industrial control), a wireless terminal device in self-driving, a wireless terminal device in remote medical surgery, a wireless terminal device in smart grid (smart grid), a wireless terminal device in transportation safety (transportation safety), a wireless terminal device in a smart city (smart city), a wireless terminal device in a smart home (smart home), etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the UE.
  • the communication system described in the embodiment of the present disclosure is for the purpose of more clearly illustrating the technical solution of the embodiment of the present disclosure, and does not constitute a limitation on the technical solution provided by the embodiment of the present disclosure.
  • a person skilled in the art can know that with the evolution of the system architecture and the emergence of new business scenarios, the technical solution provided by the embodiment of the present disclosure is also applicable to similar technical problems.
  • the measurement method provided in any embodiment can be executed alone, and any implementation method in the embodiment can also be executed alone, or combined with other embodiments, or possible implementation methods in other embodiments, and can also be executed together with any technical solution in the related technology.
  • FIG2 is a flow chart of a measurement method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG2 , the measurement method may include the following steps:
  • Step 201 In response to a conflict between a first measurement opportunity not requiring a measurement interval and a second measurement opportunity requiring a measurement interval, perform measurement not requiring a measurement interval or perform measurement requiring a measurement interval.
  • the terminal device may be a reduced capability (Redcap) terminal device.
  • Redcap reduced capability
  • the first measurement opportunity not requiring a measurement interval may be used for measuring a co-frequency measurement object (such as a co-frequency reference signal or a co-frequency carrier).
  • the second measurement opportunity requiring a measurement interval may be used for measuring an inter-frequency measurement object (such as an inter-frequency reference signal or an inter-frequency carrier).
  • the conflict between the above-mentioned first measurement opportunity that does not require a measurement interval and the second measurement opportunity that requires a measurement interval can be understood as: the measurement time corresponding to the first measurement opportunity that does not require a measurement interval coincides with the measurement time corresponding to the second measurement opportunity that requires a measurement interval, or the measurement time corresponding to the first measurement opportunity that does not require a measurement interval coincides with the time reserved at both ends of the measurement interval for terminal device RF adjustment.
  • the conflict between the first measurement opportunity that does not require a measurement interval and the second measurement opportunity that requires a measurement interval may include at least one of the following situations:
  • the time interval between the reference signal corresponding to the measurement object that does not require a measurement interval (i.e., the aforementioned same-frequency reference signal) and the reference signal corresponding to the measurement object that requires a measurement interval (i.e., the aforementioned different-frequency reference signal) is less than a preset threshold, for example: the time interval between the starting time domain position of the reference signal corresponding to the measurement object that does not require a measurement interval and the starting time domain position of the reference signal corresponding to the measurement object that requires a measurement interval is less than a preset threshold;
  • the time interval between the SS block based RRM measurement timing configuration (SMTC) corresponding to the measurement object that does not require a measurement interval and the measurement interval corresponding to the measurement object that requires a measurement interval is less than a preset threshold.
  • SMTC SS block based RRM measurement timing configuration
  • the above-mentioned preset threshold may be a fixed value, and the fixed value may be determined by any of the following methods: autonomous determination by the terminal device; protocol agreement; or network device configuration.
  • the above-mentioned preset threshold may be configured by the network device based on the capability information reported by the terminal device.
  • the terminal device may report capability information to the network device, and the capability information may be used to indicate: the minimum time interval supported by the terminal device that can ensure that there is no conflict between the adjacent first measurement opportunity and the second measurement opportunity; and the network device may configure the above-mentioned preset threshold to the terminal device based on the minimum time interval indicated by the capability information.
  • the preset threshold may be equal to the minimum time interval indicated by the capability information, or the preset threshold may be greater than the minimum time interval indicated by the capability information, such as the preset threshold may be: the sum of the minimum time interval and the offset value ⁇ .
  • the offset value ⁇ may be determined by any of the following methods: autonomous determination by the terminal device; protocol agreement; network device configuration.
  • the preset threshold may be 9 ms (milliseconds).
  • the reference signal corresponding to the above-mentioned measurement object that does not require a measurement interval may be CD-SSB or NCD-SSB; the reference signal corresponding to the above-mentioned measurement object that requires a measurement interval may also be CD-SSB or NCD-SSB.
  • the general conflict situation may be: the measurement opportunity corresponding to CD-SSB conflicts with the measurement opportunity corresponding to NCD-SSB.
  • the reference signal corresponding to the measurement object that does not require a measurement interval may be CD-SSB, and the reference signal corresponding to the measurement object that requires a measurement interval may be NCD-SSB; or, in one embodiment of the present disclosure, the reference signal corresponding to the measurement object that does not require a measurement interval may be NCD-SSB, and the reference signal corresponding to the measurement object that requires a measurement interval may be CD-SSB.
  • the reason why the measurement not requiring a measurement interval or the measurement requiring a measurement interval should be selected to be performed when the first measurement opportunity conflicts with the second measurement opportunity is introduced below.
  • the measurement interval will cover the time domain position of the reference signal corresponding to the measurement object that requires the measurement interval, and during the measurement interval, the terminal device will interrupt communication with the current serving cell, not send or receive data from the current serving cell, and only perform measurements of the reference signal corresponding to the measurement object that requires the measurement interval.
  • the terminal device will interrupt communication with the current serving cell, not send or receive data from the current serving cell, and only perform measurements of the reference signal corresponding to the measurement object that requires the measurement interval.
  • the present disclosure introduces the same-frequency measurement as "measurement that does not require a measurement interval” and the different-frequency measurement as "measurement that requires a measurement interval”.
  • the same-frequency measurement will also require a measurement interval, and the reason why the present disclosure introduces the same-frequency measurement as "measurement that does not require a measurement interval” and the different-frequency measurement as "measurement that requires a measurement interval” is because the NCD-SSB is introduced in the present disclosure, wherein after the introduction of NCD-SSB, there is generally no same-frequency measurement that requires a measurement interval.
  • the method of the present disclosure is mainly applicable to the scenario of "conflict between measurement that does not require a measurement interval and measurement that requires a measurement interval", based on this, when the measurement that does not require a measurement interval and the measurement that requires a measurement interval are both same-frequency measurements, and the measurement that does not require a measurement interval and the measurement that requires a measurement interval conflict, the method of the present disclosure can also be used to perform the measurement. Similarly, other similar schemes are also within the scope of protection of the present disclosure.
  • the terminal device in response to a conflict between a first measurement opportunity that does not require a measurement interval and a second measurement opportunity that requires a measurement interval, the terminal device will perform a measurement that does not require a measurement interval or a measurement that requires a measurement interval.
  • the terminal device may choose to perform a measurement that does not require a measurement interval and abandon the measurement that requires a measurement interval, or may choose to perform a measurement that requires a measurement interval and abandon the measurement that does not require a measurement interval, thereby avoiding the situation where "the same-frequency measurement (i.e., the aforementioned measurement that does not require a measurement interval) and the different-frequency measurement (i.e., the aforementioned measurement that requires a measurement interval) are both affected due to the time overlap between the measurement that does not require a measurement interval and the measurement that requires a measurement interval", ensuring the accurate and smooth execution of the same-frequency measurement and the different-frequency measurement, and improving the measurement efficiency of the reference signal.
  • the same-frequency measurement i.e., the aforementioned measurement that does not require a measurement interval
  • the different-frequency measurement i.e., the aforementioned measurement that requires a measurement interval
  • FIG3 is a flow chart of a measurement method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG3 , the measurement method may include the following steps:
  • Step 301 In response to a reference signal corresponding to a measurement object not requiring a measurement interval and a time interval between a reference signal corresponding to a measurement object requiring a measurement interval and a time interval between the reference signal and the measurement object requiring a measurement interval being less than a preset threshold, perform measurement not requiring a measurement interval or perform measurement requiring a measurement interval.
  • the above-mentioned measurement of the reference signal may refer to the measurement of the radio resource management (Radio Resource Management, RRM) of the reference signal.
  • RRM Radio Resource Management
  • step 301 For a detailed description of step 301, reference may be made to the above embodiment description.
  • the terminal device in response to the reference signal corresponding to the measurement object that does not require a measurement interval, the time interval between the reference signal corresponding to the measurement object that requires a measurement interval is less than a preset threshold, and the terminal device will perform the measurement that does not require a measurement interval or the measurement that requires a measurement interval.
  • the terminal device may choose to perform the measurement that does not require a measurement interval and abandon the measurement that requires a measurement interval, or may choose to perform the measurement that requires a measurement interval and abandon the measurement that does not require a measurement interval, thereby avoiding the situation that "due to the time overlap between the measurement that does not require a measurement interval and the measurement that requires a measurement interval, the same-frequency measurement (i.e., the aforementioned measurement that does not require a measurement interval) and the different-frequency measurement (i.e., the aforementioned measurement that requires a measurement interval) are both affected", ensuring the accurate and smooth execution of the same-frequency measurement and the different-frequency measurement, and improving the measurement efficiency of the reference signal.
  • the same-frequency measurement i.e., the aforementioned measurement that does not require a measurement interval
  • the different-frequency measurement i.e., the aforementioned measurement that requires a measurement interval
  • FIG4 is a flow chart of a measurement method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG4 , the measurement method may include the following steps:
  • Step 401 In response to the SMTC corresponding to the measurement object not requiring measurement intervals and the time interval between the measurement intervals corresponding to the measurement object requiring measurement intervals being less than a preset threshold, perform measurement not requiring measurement intervals or perform measurement requiring measurement intervals.
  • step 401 For a detailed description of step 401, please refer to the above embodiment description.
  • the time interval between the measurement interval corresponding to the measurement object that requires a measurement interval is less than a preset threshold, and the terminal device will perform the measurement that does not require a measurement interval or the measurement that requires a measurement interval.
  • the terminal device may choose to perform the measurement that does not require a measurement interval and abandon the measurement that requires a measurement interval, or may choose to perform the measurement that requires a measurement interval and abandon the measurement that does not require a measurement interval, thereby avoiding the situation where "the same-frequency measurement (i.e., the aforementioned measurement that does not require a measurement interval) and the different-frequency measurement (i.e., the aforementioned measurement that requires a measurement interval) are both affected due to the time overlap between the measurement that does not require a measurement interval and the measurement that requires a measurement interval", ensuring the accurate and smooth execution of the same-frequency measurement and the different-frequency measurement, and improving the measurement efficiency of the reference signal.
  • the same-frequency measurement i.e., the aforementioned measurement that does not require a measurement interval
  • the different-frequency measurement i.e., the aforementioned measurement that requires a measurement interval
  • FIG5 is a flow chart of a measurement method provided by an embodiment of the present disclosure, which is executed by a terminal device.
  • the method of the embodiment of FIG5 may be an implementable manner of “performing a measurement without requiring a measurement interval or performing a measurement requiring a measurement interval” in the above step 201.
  • the measurement method may include the following steps:
  • Step 501 Determine a first expansion coefficient corresponding to a measurement that does not require a measurement interval, and/or determine a second expansion coefficient corresponding to a measurement that requires a measurement interval.
  • the first expansion coefficient may be: the ratio between the number of first measurement opportunities corresponding to the measurement that does not require a measurement interval and the total number of measurement opportunities that conflict during the entire measurement process for all conflict situations, and the first expansion coefficient may be used to determine the total number of measurements that do not require a measurement interval during the entire measurement process.
  • the second expansion coefficient may be: the ratio between the number of second measurement opportunities corresponding to the measurement that requires a measurement interval and the total number of measurement opportunities that conflict during the entire measurement process for all conflict situations, and the second expansion coefficient may be used to determine the total number of measurements that require a measurement interval during the entire measurement process.
  • the terminal device may only determine the first expansion coefficient corresponding to the measurement that does not require a measurement interval. Alternatively, in one embodiment of the present disclosure, the terminal device may only determine the second expansion coefficient corresponding to the measurement that requires a measurement interval. Alternatively, in one embodiment of the present disclosure, the terminal device may determine the first expansion coefficient corresponding to the measurement that does not require a measurement interval, and determine the second expansion coefficient corresponding to the measurement that requires a measurement interval.
  • the first expansion coefficient and the second expansion coefficient may both be less than 1, and the sum of the first expansion coefficient and the second expansion coefficient is 1.
  • the first expansion coefficient and the second expansion coefficient may both be 50%, or the first expansion coefficient may be 25% and the second expansion coefficient may be 75%; or the first expansion coefficient may be 75% and the second expansion coefficient may be 25%.
  • a method for a terminal device to determine the first expansion coefficient and/or the second expansion coefficient may include at least one of the following:
  • the first expansion factor and/or the second expansion factor may be determined based on the configuration of the network device.
  • the first expansion factor and/or the second expansion factor may be configured by the network device through a Radio Resource Control (RRC) message;
  • RRC Radio Resource Control
  • the terminal device autonomously determines the first expansion coefficient and/or the second expansion coefficient.
  • Step 502 Perform measurement that does not require a measurement interval or perform measurement that requires a measurement interval based on the first expansion coefficient and/or the second expansion coefficient.
  • the above-mentioned performing the measurement without requiring the measurement interval or performing the measurement requiring the measurement interval based on the first expansion coefficient and/or the second expansion coefficient may include:
  • the total number of executions of the first measurement opportunities that do not require a measurement interval is equal to the product of the first expansion factor and the total number of conflicts in the measurement opportunities;
  • the total number of executions of the second measurement opportunities requiring the measurement interval is equal to the product of the second expansion coefficient and the total number of conflicts of the measurement opportunities.
  • any two of the eight conflicts can be selected to execute the measurement corresponding to the first measurement opportunity, while the measurement corresponding to the second measurement opportunity is discarded, and the remaining six of the eight conflicts can be selected to execute the measurement corresponding to the second measurement opportunity, while the measurement corresponding to the first measurement opportunity is discarded; or, any six of the eight conflicts can be selected to execute the measurement corresponding to the second measurement opportunity, while the measurement corresponding to the first measurement opportunity is discarded, and the remaining two of the eight conflicts can be selected to execute the measurement corresponding to the first measurement opportunity, while the measurement corresponding to the second measurement opportunity is discarded.
  • the terminal device when the terminal device only determines the first expansion coefficient in the above step 501, then in this step 502, the total number of executions of the first measurement opportunity can be determined only based on the first expansion coefficient, and for all conflict situations that occur, it is determined which conflict situations perform the measurements corresponding to the first measurement opportunity, and the measurements corresponding to the second measurement opportunity can be performed in the remaining conflict situations.
  • the terminal device when the terminal device only determines the second expansion coefficient in the above step 502, the total number of executions of the second measurement opportunity can be determined only based on the second expansion coefficient in this step 502, and for all conflict situations that occur, it can be determined which conflict situations perform the measurements corresponding to the second measurement opportunity, and the measurements corresponding to the first measurement opportunity can be performed in the remaining conflict situations.
  • the terminal device will determine a first expansion coefficient corresponding to a measurement that does not require a measurement interval, and/or determine a second expansion coefficient corresponding to a measurement that requires a measurement interval; wherein the sum of the first expansion coefficient and the second expansion coefficient is 1; thereafter, the terminal device will perform measurements that do not require a measurement interval or perform measurements that require a measurement interval based on the first expansion coefficient and/or the second expansion coefficient.
  • the terminal device can specifically determine, based on the determined first expansion coefficient corresponding to the measurement that does not require a measurement interval, and/or the second expansion coefficient corresponding to the measurement that requires a measurement interval, which conflict situations choose to perform the measurement corresponding to the first measurement opportunity and abandon the measurement corresponding to the second measurement opportunity, and which conflict situations choose to perform the measurement corresponding to the second measurement opportunity and abandon the measurement corresponding to the first measurement opportunity for all conflict situations that occur.
  • FIG6 is a flow chart of a measurement method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG6 , the measurement method may include the following steps:
  • Step 601 Determine a first expansion coefficient corresponding to a measurement that does not require a measurement interval.
  • Step 602 Perform measurement that does not require a measurement interval or perform measurement that requires a measurement interval based on the first expansion coefficient.
  • steps 601 - 602 please refer to the above embodiment.
  • the terminal device determines the first expansion coefficient corresponding to the measurement that does not require the measurement interval; thereafter, the terminal device performs the measurement that does not require the measurement interval or performs the measurement that requires the measurement interval based on the first expansion coefficient.
  • the terminal device can specifically determine which conflict situations choose to perform the measurement corresponding to the first measurement opportunity and abandon the measurement corresponding to the second measurement opportunity based on the first expansion coefficient corresponding to the measurement that does not require the measurement interval, and which conflict situations choose to perform the measurement corresponding to the second measurement opportunity and abandon the measurement corresponding to the first measurement opportunity, thereby avoiding the conflict between the first measurement opportunity and the second measurement opportunity, ensuring the accurate and smooth execution of the same-frequency measurement (i.e., the measurement corresponding to the first measurement opportunity) and the different-frequency measurement (i.e., the measurement corresponding to the second measurement opportunity), and improving the measurement efficiency of the reference signal.
  • the same-frequency measurement i.e., the measurement corresponding to the first measurement opportunity
  • the different-frequency measurement i.e., the measurement corresponding to the second measurement opportunity
  • FIG. 7 is a flow chart of a measurement method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG. 7 , the measurement method may include the following steps:
  • Step 701 Determine a second expansion coefficient corresponding to a measurement of a required measurement interval.
  • Step 702 Perform measurement that does not require a measurement interval or perform measurement that requires a measurement interval based on the second expansion coefficient.
  • steps 701 - 702 please refer to the above embodiment.
  • the terminal device determines the second expansion coefficient corresponding to the measurement requiring the measurement interval; thereafter, the terminal device performs the measurement not requiring the measurement interval or the measurement requiring the measurement interval based on the second expansion coefficient.
  • the terminal device can specifically determine, based on the second expansion coefficient corresponding to the measurement requiring the measurement interval, which conflict situations are selected to perform the measurement corresponding to the first measurement opportunity, and abandon the measurement corresponding to the second measurement opportunity, and which conflict situations are selected to perform the measurement corresponding to the second measurement opportunity, and abandon the measurement corresponding to the first measurement opportunity, thereby avoiding the conflict between the first measurement opportunity and the second measurement opportunity, ensuring the accurate and smooth execution of the same-frequency measurement (i.e., the measurement corresponding to the first measurement opportunity) and the different-frequency measurement (i.e., the measurement corresponding to the second measurement opportunity), and improving the measurement efficiency of the reference signal.
  • the same-frequency measurement i.e., the measurement corresponding to the first measurement opportunity
  • the different-frequency measurement i.e., the measurement corresponding to the second measurement opportunity
  • FIG8 is a flow chart of a measurement method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG8 , the measurement method may include the following steps:
  • Step 801 Determine a first expansion coefficient corresponding to a measurement that does not require a measurement interval, and determine a second expansion coefficient corresponding to a measurement that requires a measurement interval.
  • Step 802 Perform measurement that does not require a measurement interval or perform measurement that requires a measurement interval based on the first expansion coefficient and the second expansion coefficient.
  • steps 801 - 802 please refer to the above embodiment.
  • the terminal device will determine a first expansion coefficient corresponding to the measurement that does not require a measurement interval, and determine a second expansion coefficient corresponding to the measurement that requires a measurement interval; wherein the sum of the first expansion coefficient and the second expansion coefficient is 1; thereafter, the terminal device will perform measurements that do not require a measurement interval or perform measurements that require a measurement interval based on the first expansion coefficient and/or the second expansion coefficient.
  • the terminal device when a conflict occurs between the first measurement opportunity and the second measurement opportunity, and the terminal device chooses to perform a measurement that does not require a measurement interval or performs a measurement that requires a measurement interval, the terminal device can specifically determine, based on the determined first expansion coefficient corresponding to the measurement that does not require a measurement interval and the second expansion coefficient corresponding to the measurement that requires a measurement interval, which conflict situations choose to perform the measurement corresponding to the first measurement opportunity and abandon the measurement corresponding to the second measurement opportunity, and which conflict situations choose to perform the measurement corresponding to the second measurement opportunity and abandon the measurement corresponding to the first measurement opportunity for all conflict situations that occur.
  • FIG9 is a flow chart of a measurement method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in FIG9 , the measurement method may include the following steps:
  • Step 901 Receive measurement configuration parameters (MeasConfig) configured by a network device.
  • the measurement configuration parameter may include at least one of the following:
  • a measurement object in which a reference signal to be measured is indicated.
  • the reference signal to be measured may be CD-SSB or NCD-SSB);
  • Measurement gap configuration (MeasGapConfig).
  • the above measurement interval configuration may be used to indicate whether a measurement interval is required when measuring the corresponding reference signal to be measured.
  • the measurement configuration parameter may also include a time domain position (such as a starting time domain position and/or an ending time domain position) corresponding to the reference signal to be measured.
  • the terminal device can determine the measurement that does not require a measurement interval and the measurement that requires a measurement interval based on the measurement configuration parameters configured by the network device, and subsequently can determine whether a conflict occurs between a first measurement opportunity that does not require a measurement interval and a second measurement opportunity that requires a measurement interval based on the time domain position between the reference signal corresponding to the measurement object that does not require a measurement interval and the reference signal corresponding to the measurement object that requires a measurement interval, and when it is determined that the first measurement opportunity conflicts with the second measurement opportunity, it can choose to perform the measurement that does not require a measurement interval or the measurement that requires a measurement interval based on the first expansion coefficient and/or the second expansion coefficient to avoid a conflict between the first measurement opportunity and the second measurement opportunity, thereby ensuring the accurate and smooth execution of the same-frequency measurement (i.e., the measurement corresponding to the first measurement opportunity) and the different-frequency measurement (i.e., the measurement corresponding to the second measurement opportunity), and improving the measurement efficiency of the reference signal.
  • the terminal device will receive the measurement configuration parameters configured by the network device, wherein the terminal device can determine the measurement that does not require the measurement interval and the measurement that requires the measurement interval based on the measurement configuration parameters, and subsequently can determine whether a conflict occurs between a first measurement opportunity that does not require the measurement interval and a second measurement opportunity that requires the measurement interval based on the time domain position between the reference signal corresponding to the measurement object that does not require the measurement interval and the reference signal corresponding to the measurement object that requires the measurement interval, and when it is determined that the first measurement opportunity conflicts with the second measurement opportunity, it can be selected to perform the measurement that does not require the measurement interval or the measurement that requires the measurement interval based on the first expansion coefficient and/or the second expansion coefficient, thereby avoiding the conflict between the first measurement opportunity and the second measurement opportunity, ensuring the accurate and smooth execution of the same-frequency measurement (i.e., the measurement corresponding to the first measurement opportunity) and the different-frequency measurement (i.e., the measurement corresponding to
  • FIG10 is a flow chart of a measurement method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in FIG10 , the measurement method may include the following steps:
  • Step 1001 configure a first expansion coefficient corresponding to a measurement that does not require a measurement interval, and/or a second expansion coefficient corresponding to a measurement that requires a measurement interval, to a terminal device.
  • step 1001 For a detailed description of step 1001 , please refer to the above embodiment description.
  • the network device will configure the first expansion coefficient corresponding to the measurement that does not require a measurement interval, and/or the second expansion coefficient corresponding to the measurement that requires a measurement interval to the terminal device. Therefore, when the terminal device determines that the first measurement opportunity conflicts with the second measurement opportunity, it can choose to perform the measurement that does not require a measurement interval or choose to perform the measurement that requires a measurement interval based on the first expansion coefficient and/or the second expansion coefficient, so as to avoid the conflict between the first measurement opportunity and the second measurement opportunity, ensure the accurate and smooth execution of the same-frequency measurement (i.e., the measurement corresponding to the first measurement opportunity) and the different-frequency measurement (i.e., the measurement corresponding to the second measurement opportunity), and improve the measurement efficiency of the reference signal.
  • the same-frequency measurement i.e., the measurement corresponding to the first measurement opportunity
  • the different-frequency measurement i.e., the measurement corresponding to the second measurement opportunity
  • FIG11 is a flow chart of a measurement method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in FIG11 , the measurement method may include the following steps:
  • Step 1101 configure a first expansion coefficient corresponding to a measurement that does not require a measurement interval to a terminal device.
  • step 1101 For a detailed description of step 1101 , please refer to the above embodiment description.
  • the network device will configure the first expansion coefficient corresponding to the measurement that does not require a measurement interval to the terminal device. Therefore, when the terminal device determines that the first measurement opportunity conflicts with the second measurement opportunity, it can choose to perform the measurement that does not require a measurement interval or choose to perform the measurement that requires a measurement interval based on the first expansion coefficient, so as to avoid the conflict between the first measurement opportunity and the second measurement opportunity, ensure the accurate and smooth execution of the same-frequency measurement (i.e., the measurement corresponding to the first measurement opportunity) and the different-frequency measurement (i.e., the measurement corresponding to the second measurement opportunity), and improve the measurement efficiency of the reference signal.
  • the same-frequency measurement i.e., the measurement corresponding to the first measurement opportunity
  • the different-frequency measurement i.e., the measurement corresponding to the second measurement opportunity
  • FIG. 12 is a flow chart of a measurement method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in FIG. 12 , the measurement method may include the following steps:
  • Step 1201 configure a second expansion coefficient corresponding to a measurement requiring a measurement interval to a terminal device.
  • step 1201 For a detailed description of step 1201, please refer to the above embodiment description.
  • the network device will configure the second expansion coefficient corresponding to the measurement requiring a measurement interval to the terminal device.
  • the terminal device determines that the first measurement opportunity conflicts with the second measurement opportunity, it can choose to perform the measurement that does not require a measurement interval or choose to perform the measurement that requires a measurement interval based on the second expansion coefficient, so as to avoid the conflict between the first measurement opportunity and the second measurement opportunity, ensure the accurate and smooth execution of the same-frequency measurement (i.e., the measurement corresponding to the first measurement opportunity) and the different-frequency measurement (i.e., the measurement corresponding to the second measurement opportunity), and improve the measurement efficiency of the reference signal.
  • FIG13 is a flow chart of a measurement method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in FIG13 , the measurement method may include the following steps:
  • Step 1301 configure a first expansion coefficient corresponding to a measurement that does not require a measurement interval, and a second expansion coefficient corresponding to a measurement that requires a measurement interval, to a terminal device.
  • step 1301 For a detailed description of step 1301 , please refer to the above embodiment description.
  • the network device will configure the first expansion coefficient corresponding to the measurement that does not require a measurement interval and the second expansion coefficient corresponding to the measurement that requires a measurement interval to the terminal device. Therefore, when the terminal device determines that the first measurement opportunity conflicts with the second measurement opportunity, it can choose to perform the measurement that does not require a measurement interval or choose to perform the measurement that requires a measurement interval based on the first expansion coefficient and the second expansion coefficient, so as to avoid the conflict between the first measurement opportunity and the second measurement opportunity, ensure the accurate and smooth execution of the same-frequency measurement (i.e., the measurement corresponding to the first measurement opportunity) and the different-frequency measurement (i.e., the measurement corresponding to the second measurement opportunity), and improve the measurement efficiency of the reference signal.
  • the same-frequency measurement i.e., the measurement corresponding to the first measurement opportunity
  • the different-frequency measurement i.e., the measurement corresponding to the second measurement opportunity
  • FIG14 is a flow chart of a measurement method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in FIG14 , the measurement method may include the following steps:
  • Step 1401 configure measurement configuration parameters to the terminal device.
  • the measurement configuration parameters may include at least one of the following:
  • a measurement object wherein the measurement object indicates a reference signal to be measured
  • step 1401 For a detailed description of step 1401 , please refer to the above embodiment description.
  • the network device configures measurement configuration parameters to the terminal device, wherein the terminal device can determine the measurement that does not require a measurement interval and the measurement that requires a measurement interval based on the measurement configuration parameters, and subsequently can determine whether a conflict occurs between a first measurement opportunity that does not require a measurement interval and a second measurement opportunity that requires a measurement interval based on the time domain position between the reference signal corresponding to the measurement object that does not require a measurement interval and the reference signal corresponding to the measurement object that requires a measurement interval, and when it is determined that the first measurement opportunity conflicts with the second measurement opportunity, it can be selected based on the first expansion coefficient and/or the second expansion coefficient to perform the measurement that does not require a measurement interval or to perform the measurement that requires a measurement interval, thereby avoiding a conflict between the first measurement opportunity and the second measurement opportunity, ensuring the accurate and smooth execution of the same-frequency measurement (i.e., the measurement corresponding to the first measurement opportunity) and the different-frequency measurement (i
  • the above content introduces the measurement method of the present invention by taking the measurement reference signal as an example.
  • the measurement method of the present invention is also applicable to measurements of other measurement objects.
  • other measurement objects such as measuring carriers
  • measurements that do not require a measurement interval or measurements that require a measurement interval can also be performed based on the first expansion coefficient and/or the second expansion coefficient.
  • the present disclosure provides an RRM measurement solution when NCD-SSB and CD-SSB coexist.
  • the specific type of terminal may be a Redcap type terminal
  • the network device configures measurement configuration parameters (MeasConfig) for the terminal device, including a measurement object (MeasObject) and a measurement interval configuration (MeasGapConfig), wherein:
  • the reference signal to be measured in the measurement object can be CD-SSB or NCD-SSB
  • the terminal device may perform a shared measurement method
  • the terminal device can execute the shared measurement method
  • the sharing method may be to further multiply the existing measurement requirements by an expansion factor (i.e. the aforementioned first expansion factor and/or second expansion factor)
  • the expansion factor can be a fixed value agreed upon by the protocol
  • the expansion factor may be a configurable value configured by the network via an RRC message
  • NCD-SSB and CD-SSB are configured at the same time, their duration is 5ms, and the time interval between NCD-SSB and CD-SSB is 5ms.
  • NCD-SSB corresponds to the reference signal configured by servingcellMO
  • the two CD-SSBs correspond to the reference signals configured by hetero-frequency MO1 and hetero-frequency MO2 respectively.
  • MO1 and MO2 need to be measured by the execution of the measurement interval, and servingcellMO does not need to perform the measurement of the measurement interval.
  • the terminal device cannot perform measurements without MG and with MG at the same time.
  • the sharing mechanism is used, and the sharing coefficients (i.e., the aforementioned expansion coefficients) are K outside_MG and K within_MG , respectively.
  • CSSF carrier-specific scaling factor
  • FIG. 15 is a schematic diagram of the structure of a communication device provided by an embodiment of the present disclosure. As shown in FIG. 15 , the device may include:
  • the processing module is configured to, in response to a conflict between a first measurement opportunity not requiring a measurement interval and a second measurement opportunity requiring a measurement interval, perform a measurement not requiring a measurement interval or perform a measurement requiring a measurement interval.
  • the terminal device in response to a conflict between a first measurement opportunity that does not require a measurement interval and a second measurement opportunity that requires a measurement interval, the terminal device will perform a measurement that does not require a measurement interval or a measurement that requires a measurement interval.
  • the terminal device may choose to perform a measurement that does not require a measurement interval and abandon the measurement that requires a measurement interval, or may choose to perform a measurement that requires a measurement interval and abandon the measurement that does not require a measurement interval, thereby avoiding the situation where "the same-frequency measurement (i.e., the aforementioned measurement that does not require a measurement interval) and the different-frequency measurement (i.e., the aforementioned measurement that requires a measurement interval) are both affected due to the time overlap between the measurement that does not require a measurement interval and the measurement that requires a measurement interval", ensuring the accurate and smooth execution of the same-frequency measurement and the different-frequency measurement, and improving the measurement efficiency of the reference signal.
  • the same-frequency measurement i.e., the aforementioned measurement that does not require a measurement interval
  • the different-frequency measurement i.e., the aforementioned measurement that requires a measurement interval
  • the reference signal corresponding to the measurement object that does not require a measurement interval is a cell-defined synchronization signal block CD-SSB or a non-cell-defined synchronization signal block NCD-SSB;
  • the reference signal corresponding to the measurement object requiring a measurement interval is CD-SSB or NCD-SSB.
  • the conflict between the first measurement opportunity that does not require a measurement interval and the second measurement opportunity that requires a measurement interval includes at least one of the following:
  • the time interval between the reference signal corresponding to the measurement object that does not require a measurement interval and the reference signal corresponding to the measurement object that requires a measurement interval is less than a preset threshold
  • the time interval between the measurement time configuration SMTC based on the synchronization signal block corresponding to the measurement object that does not require a measurement interval and the measurement interval corresponding to the measurement object that requires a measurement interval is less than a preset threshold.
  • the processing module is further configured to:
  • Measurement not requiring a measurement interval or measurement requiring a measurement interval is performed based on the first expansion factor and/or the second expansion factor.
  • the processing module is further configured to:
  • the total number of executions of the first measurement opportunity is equal to the product of the first expansion coefficient and the total number of conflicts of the measurement opportunities;
  • the total number of executions of the second measurement opportunity is made equal to the product of the second expansion coefficient and the total number of conflicts of the measurement opportunities.
  • the processing module is further used for at least one of the following:
  • the terminal device autonomously determines the first expansion coefficient and/or the second expansion coefficient.
  • the processing module is further configured to:
  • the first expansion coefficient and/or the second expansion coefficient are configured based on the network device through a radio resource control RRC message.
  • the device is further used for:
  • Receive measurement configuration parameters configured by a network device; the measurement configuration parameters include at least one of the following:
  • a measurement object wherein the measurement object indicates a reference signal to be measured
  • the terminal device includes a capability reduction Redcap terminal device.
  • FIG. 16 is a schematic diagram of the structure of a communication device provided by an embodiment of the present disclosure. As shown in FIG. 16 , the device may include:
  • the transceiver module is used to configure the first expansion coefficient corresponding to the measurement that does not require a measurement interval and/or the second expansion coefficient corresponding to the measurement that requires a measurement interval to the terminal device.
  • the network device will configure the first expansion coefficient corresponding to the measurement that does not require a measurement interval, and/or the second expansion coefficient corresponding to the measurement that requires a measurement interval to the terminal device. Therefore, when the terminal device determines that the first measurement opportunity conflicts with the second measurement opportunity, it can choose to perform the measurement that does not require a measurement interval or choose to perform the measurement that requires a measurement interval based on the first expansion coefficient and/or the second expansion coefficient, so as to avoid the conflict between the first measurement opportunity and the second measurement opportunity, ensure the accurate and smooth execution of the same-frequency measurement (i.e., the measurement corresponding to the first measurement opportunity) and the different-frequency measurement (i.e., the measurement corresponding to the second measurement opportunity), and improve the measurement efficiency of the reference signal.
  • the same-frequency measurement i.e., the measurement corresponding to the first measurement opportunity
  • the different-frequency measurement i.e., the measurement corresponding to the second measurement opportunity
  • the sum of the first expansion coefficient and the second expansion coefficient is 1.
  • the device is further used for:
  • the measurement configuration parameters include at least one of the following:
  • a measurement object wherein the measurement object indicates a reference signal to be measured
  • the terminal device includes a Redcap terminal device.
  • FIG 17 is a schematic diagram of the structure of a communication device 1700 provided in an embodiment of the present application.
  • the communication device 1700 can be a network device, or a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a processor that supports the terminal device to implement the above method.
  • the device can be used to implement the method described in the above method embodiment, and the details can be referred to the description in the above method embodiment.
  • the communication device 1700 may include one or more processors 1701.
  • the processor 1701 may be a general-purpose processor or a dedicated processor, etc.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor may be used to process the communication protocol and communication data
  • the central processing unit may be used to control the communication device (such as a base station, a baseband chip, a terminal device, a terminal device chip, a DU or a CU, etc.), execute a computer program, and process the data of the computer program.
  • the communication device 1700 may further include one or more memories 1702, on which a computer program 1704 may be stored, and the processor 1701 executes the computer program 1704 so that the communication device 1700 performs the method described in the above method embodiment.
  • data may also be stored in the memory 1702.
  • the communication device 1700 and the memory 1702 may be provided separately or integrated together.
  • the communication device 1700 may further include a transceiver 1705 and an antenna 1706.
  • the transceiver 1705 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1705 may include a receiver and a transmitter, the receiver may be referred to as a receiver or a receiving circuit, etc., and is used to implement a receiving function; the transmitter may be referred to as a transmitter or a transmitting circuit, etc., and is used to implement a transmitting function.
  • the communication device 1700 may further include one or more interface circuits 1707.
  • the interface circuit 1707 is used to receive code instructions and transmit them to the processor 1701.
  • the processor 1701 runs the code instructions to enable the communication device 1700 to perform the method described in the above method embodiment.
  • the processor 1701 may include a transceiver for implementing the receiving and sending functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuit, interface, or interface circuit for implementing the receiving and sending functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface, or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface, or interface circuit may be used for transmitting or delivering signals.
  • the processor 1701 may store a computer program 1703, which runs on the processor 1701 and enables the communication device 1700 to perform the method described in the above method embodiment.
  • the computer program 1703 may be fixed in the processor 1701, in which case the processor 1701 may be implemented by hardware.
  • the communication device 1700 may include a circuit that can implement the functions of sending or receiving or communicating in the aforementioned method embodiments.
  • the processor and transceiver described in the present application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit RFIC, a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (nMetal-oxide-semiconductor, NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • N-type metal oxide semiconductor nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in the present application is not limited thereto, and the structure of the communication device may not be limited by FIG. 17.
  • the communication device may be an independent device or may be part of a larger device.
  • the communication device may be:
  • the IC set may also include a storage component for storing data and computer programs;
  • ASIC such as modem
  • the communication device can be a chip or a chip system
  • the communication device can be a chip or a chip system
  • the schematic diagram of the chip structure shown in Figure 18 includes a processor 1801 and an interface 1802.
  • the number of processors 1801 can be one or more, and the number of interfaces 1802 can be multiple.
  • the chip further includes a memory 1803, and the memory 1803 is used to store necessary computer programs and data.
  • the present application also provides a readable storage medium having instructions stored thereon, which implement the functions of any of the above method embodiments when executed by a computer.
  • the present application also provides a computer program product, which implements the functions of any of the above method embodiments when executed by a computer.
  • the computer program product includes one or more computer programs.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a high-density digital video disc (DVD)), or a semiconductor medium (e.g., a solid state disk (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • At least one in the present application can also be described as one or more, and a plurality can be two, three, four or more, which is not limited in the present application.
  • the technical features in the technical feature are distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc., and there is no order of precedence or size between the technical features described by the "first”, “second”, “third”, “A”, “B”, “C” and “D”.
  • the corresponding relationships shown in each table in the present application can be configured or predefined.
  • the values of the signals in each table are only examples and can be configured as other values, which are not limited by the present application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles in the above tables can also use other names that can be understood by the communication device, and the values or representations of the parameters can also be other values or representations that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables.
  • the predefined in the present application may be understood as defined, predefined, stored, pre-stored, pre-negotiated, pre-configured, solidified, or pre-burned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种测量方法、装置、设备及存储介质,方法包括:响应于不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突,执行不需要测量间隔的测量或执行需要测量间隔的测量。本公开的方法可以避免出现"由于不需要测量间隔的测量与需要测量间隔的测量的时间重合,而导致同频测量(即不需要测量间隔的测量)和异频测量(即需要测量间隔的测量)均受到影响"的情况,确保了同频测量和异频测量的准确顺利执行,提高了参考信号的测量效率。

Description

一种测量方法、装置、设备及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及测量方法、装置、设备及存储介质。
背景技术
在通信系统中,网络设备通常会为终端设备配置小区定义的同步信号块(cell-defining Primary Synchronization Signals/Secondary Synchronization Signals PBCH Block,CD-SSB)和非小区定义的同步信号块(non-cell-defining Primary Synchronization Signals/Secondary Synchronization Signals PBCH Block,CD-SSB,NCD-SSB)。以及,终端设备通常会对邻小区参考信号(如CD-SSB和/或NCD-SSB)进行测量。测量包括同频测量和异频测量。其中,当对邻小区异频参考信号进行异频测量时,通常都会基于测量间隔(Measurement Gap,MG)在测量间隔期间进行异频测量。以及,在基于测量间隔测量时,测量间隔两端通常需要预留用于终端设备射频调整的时间。
相关技术中,可能会出现不需要测量间隔的参考信号与需要测量间隔的参考信号之间的时间间隔较小的情况,则会导致难以满足测量间隔两端用于终端设备射频调整的时间要求,从而会对同频测量和异频测量造成影响。
发明内容
本公开提出的测量方法、装置、设备及存储介质,以解决相关技术中的同频测量和异频测量发生冲突的技术问题。
第一方面,本公开实施例提供一种测量方法,包括:
响应于不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突,执行不需要测量间隔的测量或执行需要测量间隔的测量。
本公开中,响应于不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突,终端设备会执行不需要测量间隔的测量或执行需要测量间隔的测量。也即是,本公开中,当不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突时,终端设备可以选择执行不需要测量间隔的测量,而舍弃需要测量间隔的测量,或者,可以选择执行需要测量间隔的测量,而舍弃不需要测量间隔的测量,由此避免出现“由于不需要测量间隔的测量与需要测量间隔的测量的时间重合,而导致同频测量(即前述的不需要测量间隔的测量)和异频测量(即前述的需要测量间隔的测量)均受到影响”的情况,确保了同频测量和异频测量的准确顺利执行,提高了参考信号的测量效率。
第二方面,本公开实施例提供一种测量方法,包括:
向终端设备配置不需要测量间隔的测量对应的第一扩展系数,和/或,需要测量间隔的测量对应的第二扩展系数。
第三方面,本公开实施例提供一种通信装置,包括:
处理模块,用于响应于不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突,执行不需要测量间隔的测量或执行需要测量间隔的测量。
第四方面,本公开实施例提供一种通信装置,包括:
收发模块,用于向终端设备配置不需要测量间隔的测量对应的第一扩展系数,和/或,需要测量间隔的测量对应的第二扩展系数。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面至第二方面任一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面至第二方面任一方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面至第二方面任一方面所述的方法。
第八方面,本公开实施例提供一种通信系统,该系统包括第三方面至第四方面任一方面所述的通信装置,或者,该系统包括第五方面所述的通信装置,或者,该系统包括第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置。
第九方面,本公开实施例提供一种计算机可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面至第二方面任一方面所述的方法。
第十方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面任一方面所述的方法。
第十一方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第一方面至第二方面任一方面所述的方法所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存源辅节点必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十二方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面任一方面所述的方法。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1a为本公开一个实施例所提供的需要测量间隔的参考信号与不需要测量间隔的参考信号的时隙分布图;
图1b为本公开实施例提供的一种通信系统的架构示意图;
图2为本公开另一个实施例所提供的测量方法的流程示意图;
图3为本公开再一个实施例所提供的测量方法的流程示意图;
图4为本公开又一个实施例所提供的测量方法的流程示意图;
图5为本公开另一个实施例所提供的测量方法的流程示意图;
图6为本公开另一个实施例所提供的测量方法的流程示意图;
图7为本公开另一个实施例所提供的测量方法的流程示意图;
图8为本公开另一个实施例所提供的测量方法的流程示意图;
图9为本公开另一个实施例所提供的测量方法的流程示意图;
图10为本公开另一个实施例所提供的测量方法的流程示意图;
图11为本公开另一个实施例所提供的测量方法的流程示意图;
图12为本公开另一个实施例所提供的测量方法的流程示意图;
图13为本公开另一个实施例所提供的测量方法的流程示意图;
图14为本公开另一个实施例所提供的测量方法的流程示意图;
图15为本公开再一个实施例所提供的通信装置的结构示意图;
图16为本公开再一个实施例所提供的通信装置的结构示意图;
图17是本申请实施例提供的一种通信装置的结构示意图;
图18为本公开一个实施例所提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施 例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信号彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
为了便于理解,首先介绍本申请涉及的术语。
1、小区定义的同步信号块(cell-defining Primary Synchronization Signals/Secondary Synchronization Signals PBCH Block,CD-SSB)
CD-SSB主要用于小区的初始接入,其包含接入小区的系统信息块1(SystemInformation Block 1,SIB1)信息。
2、非小区定义的同步信号块(non-cell-defining Primary Synchronization Signals/Secondary Synchronization Signals PBCH Block,CD-SSB,NCD-SSB)
NCD-SSB主要用于非小区的初始接入,比如测量。
3、同频测量(intra-frequency measurement)
指终端设备当前服务小区参考信号的中心频点和目标小区的参考信号的中心频点和子载波间隔相同。
4、异频测量(inter-frequency measurement)
指终端设备当前服务小区参考信号的中心频点和目标小区的参考信号的中心频点或者子载波间隔不同。
5、测量间隔(Measurement Gap,MG)
终端设备暂停与服务小区通信,用于邻区测量的持续时间。在测量间隔期间,终端设备会与当前服务小区中断通信,不收发当前服务小区的数据,而仅执行邻小区参考信号的异频测量。
图1a为本公开一个实施例所提供的需要测量间隔的参考信号与不需要测量间隔的参考信号的时隙分布图。如图1a所示,相关技术中,异频邻小区Cell1和异频邻小区Cell2的参考信号CD-SSB均需要测量间隔测量,同频邻小区Cell0的参考信号NCD-SSB不需要测量间隔测量。其中,测量间隔两端(即图中灰色长方形部分)需要预留用于终端设备射频调整的时间。但是,由于需要测量间隔的CD-SSB与不需要测量间隔的NCD-SSB之间的时间间隔较小,从而使得不需要测量间隔的NCD-SSB的测量时间与测量间隔的右端的用于终端设备射频调整的时间发生重合,则会对同频测量和异频测量造成影响。基于此,本公开提出了一种测量方法,为了更好的理解本公开实施例公开的一种测量方法,下面首先对本公开实施例适用的通信系统进行描述。
请参见图1b,图1b为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于终端设备和网络设备,其中,图1b所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括一个或一个以上的终端设备,或者一个或一个以上的网络设备。其中,图1b所示的通信系统以包括一个网络设备11、一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备11可以为演进型基站(evolved NodeB,eNB)、发送接收点(transmission reception point,TRP)、射频拉远头(Radio Remote Head,RRH)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集 中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12可以是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。UE可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对UE所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面参考附图对本公开实施例所提供的测量方法、装置、设备及存储介质进行详细描述。
需要说明的是,本公开中,任一个实施例提供的测量方法可以单独执行,实施例中任一实现方式也可以单独执行,或是结合其他实施例,或其他实施例中的可能的实现方法一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
图2为本公开实施例所提供的一种测量方法的流程示意图,该方法由终端设备执行,如图2所示,该测量方法可以包括以下步骤:
步骤201、响应于不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突,执行不需要测量间隔的测量或执行需要测量间隔的测量。
在本公开的一个实施例之后,该终端设备可以为能力缩减(reducedcapability,Redcap)终端设备。
在本公开的一个实施例之中,上述的不需要测量间隔的第一测量机会可以是用于对同频测量对象(如同频参考信号、或同频载波)的测量。上述的需要测量间隔的第二测量机会可以是用于对异频测量对象(如异频参考信号、或异频载波)的测量。
以及,在本公开的一个实施例之中,上述的不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突可以理解为:不需要测量间隔的第一测量机会对应的测量时间与需要测量间隔的第二测量机会对应的测量时间发生重合,或者,不需要测量间隔的第一测量机会对应的测量时间与测量间隔两端预留的用于终端设备射频调整的时间发生重合。
基于此,上述的不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突可以包括以下至少一种情形:
不需要测量间隔的测量对象对应的参考信号(即前述的同频参考信号),与需要测量间隔的测量对象对应的参考信号(即前述的异频参考信号)之间的时间间隔小于预设阈值,例如:不需要测量间隔的测量对象对应的参考信号的起始时域位置,与需要测量间隔的测量对象对应的参考信号的起始时域位置之间的时间间隔小于预设阈值;
不需要测量间隔的测量对象对应的基于同步信号块的测量时间配置(SS block based RRM measurement timing configuration,SMTC),与需要测量间隔的测量对象对应的测量间隔之间的时间间隔小于预设阈值,例如:不需要测量间隔的测量对象对应的SMTC的起始时域位置,与需要测量间隔的测量对象对应的测量间隔的起始时域位置之间的时间间隔小于预设阈值。
以及,在本公开的一个实施例之中,上述的预设阈值可以是一固定值,该固定值例可以由以下任一种方式确定:终端设备自主确定;协议约定;网络设备配置。
或者,在本公开的一个实施例之中,上述的预设阈值可以是网络设备基于终端设备上报的能力信息配置的。具体的,终端设备可以向网络设备上报能力信息,该能力信息可以用于指示:终端设备支持的 能够确保相邻的第一测量机会与第二测量机会之间不发生冲突的最小时间间隔;以及,网络设备可以基于该能力信息指示的最小时间间隔来向终端设备配置上述预设阈值。其中,该预设阈值可以等于能力信息指示的最小时间间隔,或者,该预设阈值可以大于能力信息指示的最小时间间隔,如该预设阈值可以为:最小时间间隔与偏移值Δ的和。该偏移值Δ可以由以下任一种方式确定:终端设备自主确定;协议约定;网络设备配置。
示例的,在本公开的一个实施例之中,上述的预设阈值可以为9ms(毫秒)。
进一步地,在本公开的一个实施例之中,上述的不需要测量间隔的测量对象对应的参考信号可以为CD-SSB或者NCD-SSB;上述的需要测量间隔的测量对象对应的参考信号也可以为CD-SSB或者NCD-SSB。
但是,需要说明的是,由于通常情况下,可能是CD-SSB与NCD-SSB之间所配置的时间间隔较小,因此,一般出现冲突的情形可能为:CD-SSB对应的测量机会与NCD-SSB对应的测量机会出现冲突。基于此,在本公开的一个实施例之中,该不需要测量间隔的测量对象对应的参考信号可以为CD-SSB,该需要测量间隔的测量对象对应的参考信号可以为NCD-SSB;或者,在本公开的一个实施例之中,该不需要测量间隔的测量对象对应的参考信号可以为NCD-SSB,该需要测量间隔的测量对象对应的参考信号可以为CD-SSB。
再进一步地,以下对当第一测量机会与第二测量机会发生冲突时,为何要择一执行不需要测量间隔的测量或执行需要测量间隔的测量的原因进行介绍。
具体的,针对于需要测量间隔的测量而言,该测量间隔会覆盖需要测量间隔的测量对象对应的参考信号的时域位置,并且,在测量间隔期间,终端设备会与当前服务小区中断通信,不收发当前服务小区的数据,而仅执行需要测量间隔的测量对象对应的参考信号的测量。但是,针对于不需要测量间隔的测量而言,则需要与当前服务小区进行通信,以接收并测量不需要测量间隔的测量对象对应的参考信号。
由此可知,针对于终端设备而言,其无法同时执行需要测量间隔的测量和不需要测量间隔的测量。基于此,在本公开的一个实施例之中,当不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突时,可以选择执行不需要测量间隔的测量,而舍弃需要测量间隔的测量,或者,可以选择执行需要测量间隔的测量,而舍弃不需要测量间隔的测量,由此避免出现“由于不需要测量间隔的测量与需要测量间隔的测量的时间重合,而导致同频测量(即前述的不需要测量间隔的测量)和异频测量(即前述的需要测量间隔的测量)均受到影响”的情况,确保了同频测量和异频测量的准确顺利执行,提高了参考信号的测量效率。
此外,需要说明的是,本公开中是以“不需要测量间隔的测量”为同频测量,“需要测量间隔的测量”为异频测量为例进行介绍的,但是,在通信系统中,一些情况下,同频测量也会需要测量间隔,以及,本公开中之所以按照“不需要测量间隔的测量”为同频测量,“需要测量间隔的测量”为异频测量为例进行介绍,是由于本公开中引入了NCD-SSB,其中,在引入了NCD-SSB后一般不存在需要测量间隔的同频测量。但是,应当认识到,由于本公开的方法主要适用于“不需要测量间隔的测量与需要测量间隔的测量之间发生冲突”的这一场景,基于此,当不需要测量间隔的测量与需要测量间隔的测量均为同频测量,且该不需要测量间隔的测量与需要测量间隔的测量发生了冲突时,也可以采用本公开的方法来进行测量,同理的,其他类似的方案也均在本公开的保护范围内。
综上所述,本公开实施例提供的测量方法之中,响应于不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突,终端设备会执行不需要测量间隔的测量或执行需要测量间隔的测量。也即是,本公开中,当不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突时,终端设备可以选择执行不需要测量间隔的测量,而舍弃需要测量间隔的测量,或者,可以选择执行需要测量间隔的测量,而舍弃不需要测量间隔的测量,由此避免出现“由于不需要测量间隔的测量与需要测量间隔的测量的时间重合,而导致同频测量(即前述的不需要测量间隔的测量)和异频测量(即前述的需要测量间隔的测量)均受到影响”的情况,确保了同频测量和异频测量的准确顺利执行,提高了参考信号的测量效率。
图3为本公开实施例所提供的一种测量方法的流程示意图,该方法由终端设备执行,如图3所示, 该测量方法可以包括以下步骤:
步骤301、响应于不需要测量间隔的测量对象对应的参考信号,与需要测量间隔的测量对象对应的参考信号之间的时间间隔小于预设阈值,执行不需要测量间隔的测量或执行需要测量间隔的测量。
其中,在本公开的一个实施例之中,上述的对于参考信号的测量可以是指对参考信号的无线资源管理(Radio Resource Management,RRM)的测量。
以及,关于步骤301的详细介绍可以参考上述实施例描述。
综上所述,本公开实施例提供的测量方法之中,响应于不需要测量间隔的测量对象对应的参考信号,与需要测量间隔的测量对象对应的参考信号之间的时间间隔小于预设阈值,终端设备会执行不需要测量间隔的测量或执行需要测量间隔的测量。也即是,本公开中,当不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突时,终端设备可以选择执行不需要测量间隔的测量,而舍弃需要测量间隔的测量,或者,可以选择执行需要测量间隔的测量,而舍弃不需要测量间隔的测量,由此避免出现“由于不需要测量间隔的测量与需要测量间隔的测量的时间重合,而导致同频测量(即前述的不需要测量间隔的测量)和异频测量(即前述的需要测量间隔的测量)均受到影响”的情况,确保了同频测量和异频测量的准确顺利执行,提高了参考信号的测量效率。
图4为本公开实施例所提供的一种测量方法的流程示意图,该方法由终端设备执行,如图4所示,该测量方法可以包括以下步骤:
步骤401、响应于不需要测量间隔的测量对象对应的SMTC,与需要测量间隔的测量对象对应的测量间隔之间的时间间隔小于预设阈值,执行不需要测量间隔的测量或执行需要测量间隔的测量。
其中,关于步骤401的详细介绍可以参考上述实施例描述。
综上所述,本公开实施例提供的测量方法之中,响应于不需要测量间隔的测量对象对应的SMTC,与需要测量间隔的测量对象对应的测量间隔之间的时间间隔小于预设阈值,终端设备会执行不需要测量间隔的测量或执行需要测量间隔的测量。也即是,本公开中,当不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突时,终端设备可以选择执行不需要测量间隔的测量,而舍弃需要测量间隔的测量,或者,可以选择执行需要测量间隔的测量,而舍弃不需要测量间隔的测量,由此避免出现“由于不需要测量间隔的测量与需要测量间隔的测量的时间重合,而导致同频测量(即前述的不需要测量间隔的测量)和异频测量(即前述的需要测量间隔的测量)均受到影响”的情况,确保了同频测量和异频测量的准确顺利执行,提高了参考信号的测量效率。
图5为本公开实施例所提供的一种测量方法的流程示意图,该方法由终端设备执行,图5实施例的方法可以为上述步骤201中的“执行不需要测量间隔的测量或执行需要测量间隔的测量”一种可实现方式,如图5所示,该测量方法可以包括以下步骤:
步骤501、确定不需要测量间隔的测量对应的第一扩展系数,和/或,确定需要测量间隔的测量对应的第二扩展系数。
其中,在本公开的一个实施例之中,该第一扩展系数可以为:整个测量过程中,针对于全部的冲突情形,选择执行不需要测量间隔的测量对应的第一测量机会的次数,与测量机会发生冲突的总次数之间的比值,该第一扩展系数可以用于确定整个测量过程中不需要测量间隔的测量所执行的总次数。以及,该第二扩展系数可以为:整个测量过程中,针对于全部的冲突情形,选择执行需要测量间隔的测量对应的第二测量机会的次数,与测量机会发生冲突的总次数之间的比值,该第二扩展系数可以用于确定整个测量过程中需要测量间隔的测量所执行的总次数。
需要说明的是,在本公开的一个实施例之中,终端设备可以仅确定不需要测量间隔的测量对应的第一扩展系数。或者,在本公开的一个实施例之中,终端设备可以仅确定需要测量间隔的测量对应的第二扩展系数。或者,在本公开的一个实施例之中,终端设备可以确定不需要测量间隔的测量对应的第一扩展系数,以及确定需要测量间隔的测量对应的第二扩展系数。
在本公开的一个实施例之中,该第一扩展系数和第二扩展系数可以均小于1,且该第一扩展系数和第二扩展系数之和为1。示例的,该第一扩展系数和第二扩展系数可以均为50%,或者,该第一扩展系数可以为25%,该第二扩展系数可以为75%;或者,该第一扩展系数可以为75%,该第二扩展系数可 以为25%。
进一步地,在本公开的一个实施例之中,终端设备确定第一扩展系数和/或第二扩展系数的方法可以包括以下至少一种:
基于协议约定确定第一扩展系数和/或第二扩展系数;
基于网络设备的配置确定第一扩展系数和/或第二扩展系数。例如,可以基于网络设备通过无线资源控制(Radio Resource Control,RRC)消息配置的该第一扩展系数和/或第二扩展系数;
终端设备自主确定第一扩展系数和/或第二扩展系数。
步骤502、基于第一扩展系数和/或第二扩展系数执行不需要测量间隔的测量或执行需要测量间隔的测量。
其中,在本公开的一个实施例之中,上述的基于第一扩展系数和/或第二扩展系数执行不需要测量间隔的测量或执行需要测量间隔的测量可以包括:
使得不需要测量间隔的第一测量机会的执行总次数等于第一扩展系数与测量机会发生冲突的总次数的乘积;和/或
使得需要测量间隔的第二测量机会的执行总次数等于第二扩展系数与测量机会发生冲突的总次数的乘积。
示例的,在本公开的一个实施例之中,假设在整个测量过程中,第一测量机会与第二测量机会发生冲突的总次数为8次,其中,第一扩展系数为25%,第二扩展系数均为75%,基于此,可以确定出第一测量机会的执行总次数为:8×25%=2次,第二测量机会的执行总次数为:8×75%=6次。由此,在所发生的六次冲突情形下,可以使得该8次冲突情形中的任2次冲突情形下选择执行第一测量机会对应的测量,而舍弃执行第二测量机会对应的测量,以及使得该8次冲突情形中的其余6次冲突情形下选择执行第二测量机会对应的测量,而舍弃执行第一测量机会对应的测量;或者,可以使得该8次冲突情形中的任6次冲突情形下选择执行第二测量机会对应的测量,而舍弃执行第一测量机会对应的测量,以及使得该8次冲突情形中的其余2次冲突情形下选择执行第一测量机会对应的测量,而舍弃执行第二测量机会对应的测量。
示例的,如可以选择在第1次冲突和第2次冲突的情形下,执行第一测量机会对应的测量,而舍弃执行第二测量机会对应的测量,选择在第3次冲突至第8次冲突的情形下,执行第二测量机会对应的测量,而舍弃执行第一测量机会对应的测量。
此外,需要说明的是,在本公开的一个实施例之中,当上述步骤501中终端设备仅确定了第一扩展系数时,则本步骤502中可以仅基于第一扩展系数确定出第一测量机会的执行总次数,并针对所发生的所有冲突情形下,确定出哪些冲突情形下执行该第一测量机会对应的测量,则其余的冲突情形下可以执行第二测量机会对应的测量。
或者,当上述步骤502中终端设备仅确定了第二扩展系数时,则本步骤502中可以仅基于第二扩展系数确定出第二测量机会的执行总次数,并针对所发生的所有冲突情形下,确定出哪些冲突情形下执行该第二测量机会对应的测量,则其余的冲突情形下可以执行第一测量机会对应的测量。
综上所述,本公开实施例提供的测量方法之中,终端设备会确定不需要测量间隔的测量对应的第一扩展系数,和/或,确定需要测量间隔的测量对应的第二扩展系数;其中,第一扩展系数和第二扩展系数之和为1;之后,终端设备会基于第一扩展系数和/或第二扩展系数执行不需要测量间隔的测量或执行需要测量间隔的测量。由此可知,在本公开中,当第一测量机会与第二测量机会之间发生冲突,而选择执行不需要测量间隔的测量或执行需要测量间隔的测量时,终端设备具体可以基于确定出的不需要测量间隔的测量对应的第一扩展系数,和/或,需要测量间隔的测量对应的第二扩展系数,来针对所发生的所有冲突情形下,确定出哪些冲突情形下选择执行第一测量机会对应的测量,而舍弃执行第二测量机会对应的测量,哪些冲突情形下选择执行第二测量机会对应的测量,而舍弃执行第一测量机会对应的测量,由此可以避免第一测量机会与第二测量机会发生冲突,确保了同频测量(即第一测量机会对应的测量)和异频测量(即第二测量机会对应的测量)的准确顺利执行,提高了参考信号的测量效率。
图6为本公开实施例所提供的一种测量方法的流程示意图,该方法由终端设备执行,如图6所示, 该测量方法可以包括以下步骤:
步骤601、确定不需要测量间隔的测量对应的第一扩展系数。
步骤602、基于第一扩展系数执行不需要测量间隔的测量或执行需要测量间隔的测量。
其中,关于步骤601-602的详细介绍可以参考上述实施例。
综上所述,本公开实施例提供的测量方法之中,终端设备会确定不需要测量间隔的测量对应的第一扩展系数;之后,终端设备会基于第一扩展系数执行不需要测量间隔的测量或执行需要测量间隔的测量。由此可知,在本公开中,当第一测量机会与第二测量机会之间发生冲突,而选择执行不需要测量间隔的测量或执行需要测量间隔的测量时,终端设备具体可以基于确定出的不需要测量间隔的测量对应的第一扩展系数,来针对所发生的所有冲突情形下,确定出哪些冲突情形下选择执行第一测量机会对应的测量,而舍弃执行第二测量机会对应的测量,哪些冲突情形下选择执行第二测量机会对应的测量,而舍弃执行第一测量机会对应的测量,由此可以避免第一测量机会与第二测量机会发生冲突,确保了同频测量(即第一测量机会对应的测量)和异频测量(即第二测量机会对应的测量)的准确顺利执行,提高了参考信号的测量效率。
图7为本公开实施例所提供的一种测量方法的流程示意图,该方法由终端设备执行,如图7所示,该测量方法可以包括以下步骤:
步骤701、确定需要测量间隔的测量对应的第二扩展系数。
步骤702、基于第二扩展系数执行不需要测量间隔的测量或执行需要测量间隔的测量。
其中,关于步骤701-702的详细介绍可以参考上述实施例。
综上所述,本公开实施例提供的测量方法之中,终端设备会确定需要测量间隔的测量对应的第二扩展系数;之后,终端设备会基于第二扩展系数执行不需要测量间隔的测量或执行需要测量间隔的测量。由此可知,在本公开中,当第一测量机会与第二测量机会之间发生冲突,而选择执行不需要测量间隔的测量或执行需要测量间隔的测量时,终端设备具体可以基于确定出的需要测量间隔的测量对应的第二扩展系数,来针对所发生的所有冲突情形下,确定出哪些冲突情形下选择执行第一测量机会对应的测量,而舍弃执行第二测量机会对应的测量,哪些冲突情形下选择执行第二测量机会对应的测量,而舍弃执行第一测量机会对应的测量,由此可以避免第一测量机会与第二测量机会发生冲突,确保了同频测量(即第一测量机会对应的测量)和异频测量(即第二测量机会对应的测量)的准确顺利执行,提高了参考信号的测量效率。
图8为本公开实施例所提供的一种测量方法的流程示意图,该方法由终端设备执行,如图8所示,该测量方法可以包括以下步骤:
步骤801、确定不需要测量间隔的测量对应的第一扩展系数,以及,确定需要测量间隔的测量对应的第二扩展系数。
步骤802、基于第一扩展系数和第二扩展系数执行不需要测量间隔的测量或执行需要测量间隔的测量。
其中,关于步骤801-802的详细介绍可以参考上述实施例。
综上所述,本公开实施例提供的测量方法之中,终端设备会确定不需要测量间隔的测量对应的第一扩展系数,以及,确定需要测量间隔的测量对应的第二扩展系数;其中,第一扩展系数和第二扩展系数之和为1;之后,终端设备会基于第一扩展系数和/或第二扩展系数执行不需要测量间隔的测量或执行需要测量间隔的测量。由此可知,在本公开中,当第一测量机会与第二测量机会之间发生冲突,而选择执行不需要测量间隔的测量或执行需要测量间隔的测量时,终端设备具体可以基于确定出的不需要测量间隔的测量对应的第一扩展系数,以及,需要测量间隔的测量对应的第二扩展系数,来针对所发生的所有冲突情形下,确定出哪些冲突情形下选择执行第一测量机会对应的测量,而舍弃执行第二测量机会对应的测量,哪些冲突情形下选择执行第二测量机会对应的测量,而舍弃执行第一测量机会对应的测量,由此可以避免第一测量机会与第二测量机会发生冲突,确保了同频测量(即第一测量机会对应的测量)和异频测量(即第二测量机会对应的测量)的准确顺利执行,提高了参考信号的测量效率。
图9为本公开实施例所提供的一种测量方法的流程示意图,该方法由终端设备执行,如图9所示, 该测量方法可以包括以下步骤:
步骤901、接收网络设备配置的测量配置参数(MeasConfig)。
其中,在本公开的一个实施例之中,该测量配置参数可以包括以下至少一种:
测量对象(MeasObject),该测量对象中指示待测量的参考信号,该待测量的参考信号可以为CD-SSB或者NCD-SSB);
测量间隔配置(MeasGapConfig)。
在本公开的一个实施例之中,上述的测量间隔配置可以用于指示对应的待测量的参考信号在测量时是否需要测量间隔。以及,在本公开的一个实施例之中,该测量配置参数中还可以包括待测量的参考信号对应的时域位置(如起始时域位置和/或终止时域位置)。
基于此,终端设备可以基于网络设备配置的测量配置参数确定出不需要测量间隔的测量和需要测量间隔的测量,并且后续可以基于不需要测量间隔的测量对象对应的参考信号与需要测量间隔的测量对象对应的参考信号之间的时域位置,确定出不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间是否发生冲突,以及当确定第一测量机会与第二测量机会发生冲突时,可以基于第一扩展系数和/或第二扩展系数选择执行不需要测量间隔的测量或选择执行需要测量间隔的测量,以避免第一测量机会与第二测量机会发生冲突,确保了同频测量(即第一测量机会对应的测量)和异频测量(即第二测量机会对应的测量)的准确顺利执行,提高了参考信号的测量效率。
综上所述,本公开实施例提供的测量方法之中,终端设备会接收网络设备配置的测量配置参数,其中,终端设备可以基于该测量配置参数确定出不需要测量间隔的测量和需要测量间隔的测量,并且后续可以基于不需要测量间隔的测量对象对应的参考信号与需要测量间隔的测量对象对应的参考信号之间的时域位置,确定出不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间是否发生冲突,以及当确定第一测量机会与第二测量机会发生冲突时,可以基于第一扩展系数和/或第二扩展系数选择执行不需要测量间隔的测量或选择执行需要测量间隔的测量,由此可以避免第一测量机会与第二测量机会发生冲突,确保了同频测量(即第一测量机会对应的测量)和异频测量(即第二测量机会对应的测量)的准确顺利执行,提高了参考信号的测量效率。
图10为本公开实施例所提供的一种测量方法的流程示意图,该方法由网络设备执行,如图10所示,该测量方法可以包括以下步骤:
步骤1001、向终端设备配置不需要测量间隔的测量对应的第一扩展系数,和/或,需要测量间隔的测量对应的第二扩展系数。
其中,关于步骤1001的详细介绍可以参考上述实施例描述。
综上所述,本公开实施例提供的测量方法之中,网络设备会向终端设备配置不需要测量间隔的测量对应的第一扩展系数,和/或,需要测量间隔的测量对应的第二扩展系数,由此,当终端设备确定第一测量机会与第二测量机会发生冲突时,可以基于第一扩展系数和/或第二扩展系数选择执行不需要测量间隔的测量或选择执行需要测量间隔的测量,以避免第一测量机会与第二测量机会发生冲突,确保了同频测量(即第一测量机会对应的测量)和异频测量(即第二测量机会对应的测量)的准确顺利执行,提高了参考信号的测量效率。
图11为本公开实施例所提供的一种测量方法的流程示意图,该方法由网络设备执行,如图11所示,该测量方法可以包括以下步骤:
步骤1101、向终端设备配置不需要测量间隔的测量对应的第一扩展系数。
其中,关于步骤1101的详细介绍可以参考上述实施例描述。
综上所述,本公开实施例提供的测量方法之中,网络设备会向终端设备配置不需要测量间隔的测量对应的第一扩展系数,由此,当终端设备确定第一测量机会与第二测量机会发生冲突时,可以基于第一扩展系数选择执行不需要测量间隔的测量或选择执行需要测量间隔的测量,以避免第一测量机会与第二测量机会发生冲突,确保了同频测量(即第一测量机会对应的测量)和异频测量(即第二测量机会对应的测量)的准确顺利执行,提高了参考信号的测量效率。
图12为本公开实施例所提供的一种测量方法的流程示意图,该方法由网络设备执行,如图12所示, 该测量方法可以包括以下步骤:
步骤1201、向终端设备配置需要测量间隔的测量对应的第二扩展系数。
其中,关于步骤1201的详细介绍可以参考上述实施例描述。
综上所述,本公开实施例提供的测量方法之中,网络设备会向终端设备配置需要测量间隔的测量对应的第二扩展系数,由此,当终端设备确定第一测量机会与第二测量机会发生冲突时,可以基于第二扩展系数选择执行不需要测量间隔的测量或选择执行需要测量间隔的测量,以避免第一测量机会与第二测量机会发生冲突,确保了同频测量(即第一测量机会对应的测量)和异频测量(即第二测量机会对应的测量)的准确顺利执行,提高了参考信号的测量效率。
图13为本公开实施例所提供的一种测量方法的流程示意图,该方法由网络设备执行,如图13所示,该测量方法可以包括以下步骤:
步骤1301、向终端设备配置不需要测量间隔的测量对应的第一扩展系数,以及,需要测量间隔的测量对应的第二扩展系数。
其中,关于步骤1301的详细介绍可以参考上述实施例描述。
综上所述,本公开实施例提供的测量方法之中,网络设备会向终端设备配置不需要测量间隔的测量对应的第一扩展系数,以及,需要测量间隔的测量对应的第二扩展系数,由此,当终端设备确定第一测量机会与第二测量机会发生冲突时,可以基于第一扩展系数和第二扩展系数选择执行不需要测量间隔的测量或选择执行需要测量间隔的测量,以避免第一测量机会与第二测量机会发生冲突,确保了同频测量(即第一测量机会对应的测量)和异频测量(即第二测量机会对应的测量)的准确顺利执行,提高了参考信号的测量效率。
图14为本公开实施例所提供的一种测量方法的流程示意图,该方法由网络设备执行,如图14所示,该测量方法可以包括以下步骤:
步骤1401、向终端设备配置测量配置参数。
可选的,测量配置参数可以包括以下至少一种:
测量对象,所述测量对象中指示待测量的参考信号;
测量间隔配置。
其中,关于步骤1401的详细介绍可以参考上述实施例描述。
综上所述,本公开实施例提供的测量方法之中,网络设备会向终端设备配置测量配置参数,其中,终端设备可以基于该测量配置参数确定出不需要测量间隔的测量和需要测量间隔的测量,并且后续可以基于不需要测量间隔的测量对象对应的参考信号与需要测量间隔的测量对象对应的参考信号之间的时域位置,确定出不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间是否发生冲突,以及当确定第一测量机会与第二测量机会发生冲突时,可以基于第一扩展系数和/或第二扩展系数选择执行不需要测量间隔的测量或选择执行需要测量间隔的测量,由此可以避免第一测量机会与第二测量机会发生冲突,确保了同频测量(即第一测量机会对应的测量)和异频测量(即第二测量机会对应的测量)的准确顺利执行,提高了参考信号的测量效率。
此外,还需要说明的是,上述内容中均是以测量参考信号为例对本公开的测量方法进行介绍的。但是,应当认为到,本公开的测量方法也适用于针对其他测量对象的测量。例如,当测量其他测量对象(如测量载波)时,当不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突时,也可以选择执行不需要测量间隔的测量或执行需要测量间隔的测量。具体的,也可以基于第一扩展系数和/或第二扩展系数来执行不需要测量间隔的测量或执行需要测量间隔的测量。
以下对本公开的方法进行示例介绍。
本公开给出一种NCD-SSB和CD-SSB共存情况下的RRM测量方案。
1.一种特定类型终端的测量方法;
(1)特定类型终端可为Redcap类型终端;
2.网络设备为所述终端设备配置测量配置参数(MeasConfig),包括测量对象(MeasObject),测量间隔配置(MeasGapConfig),其中:
(1)测量对象中指示待测量的参考信号(可以是CD-SSB或者NCD-SSB)
3.基于2,若不需要测量间隔的MO对应的参考信号和需要测量间隔的MO对应的参考信号之间的时间间隔小于阈值(该阈值可以是固定值,也可以是timeoffset(前述实施例中的最小时间间隔),也可以是timeoffset+Δ),终端设备可以执行共享测量方法
4.基于2,若不需要测量间隔的MO对应的SMTC和需要测量间隔的MO对应的测量间隔之间的时间间隔小于阈值(该阈值可以是固定值,也可以是timeoffset,也可以是timeoffset+Δ),终端设备可以执行共享测量方法
5.基于3和4,共享方法可以是在现有测量要求的基础上进一步乘以扩展系数(即前述的第一扩展系数和/或第二扩展系数)
(1)扩展系数可以是协议约定的固定值;
(2)扩展系数可以是网络通过RRC消息配置的可配值;
作为实施例:
当网络设备下发如上述图1a所示配置时,即同时配置了NCD-SSB和CD-SSB,其持续时间均为5ms,且NCD-SSB和CD-SSB之间的时间间隔为5ms,此时NCD-SSB对应于servingcellMO配置的参考信号,两个CD-SSB分别对应异频MO1和异频MO2配置的参考信号。此时MO1和MO2需要通过测量间隔的执行测量,servingcellMO不需要测量间隔的执行测量。
但是由于NCD-SSB和CD-SSB之间的间隔时间为5ms小于预设阈值9ms,终端设备无法同时执行without MG和with MG的测量,此时按照共享机制来进行,共享系数(即前述的扩展系数)分别为K outside_MG和K within_MG,取默认值K with_MG=K without_MG=50%,即在当前测量机会出现时,执行without MG的测量,在下一个测量机会出现时,执行with MG的测量。
体现在协议中即对于载波特定扩展因子(CSSF,Carrier-specific scaling factor)改写为:
CSSF outside_gap*K outside_MG和CSSF within_gap*K within_MG
图15为本公开实施例所提供的一种通信装置的结构示意图,如图15所示,装置可以包括:
处理模块,用于响应于不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突,执行不需要测量间隔的测量或执行需要测量间隔的测。
综上所述,在本公开实施例提供的通信装置之中,响应于不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突,终端设备会执行不需要测量间隔的测量或执行需要测量间隔的测量。也即是,本公开中,当不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突时,终端设备可以选择执行不需要测量间隔的测量,而舍弃需要测量间隔的测量,或者,可以选择执行需要测量间隔的测量,而舍弃不需要测量间隔的测量,由此避免出现“由于不需要测量间隔的测量与需要测量间隔的测量的时间重合,而导致同频测量(即前述的不需要测量间隔的测量)和异频测量(即前述的需要测量间隔的测量)均受到影响”的情况,确保了同频测量和异频测量的准确顺利执行,提高了参考信号的测量效率。
可选的,在本公开的一个实施例之中,所述不需要测量间隔的测量对象对应的参考信号为小区定义的同步信号块CD-SSB或者非小区定义的同步信号块NCD-SSB;
所述需要测量间隔的测量对象对应的参考信号为CD-SSB或者NCD-SSB。
可选的,在本公开的一个实施例之中,所述不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突,包括以下至少一种:
不需要测量间隔的测量对象对应的参考信号,与需要测量间隔的测量对象对应的参考信号之间的时间间隔小于预设阈值;
不需要测量间隔的测量对象对应的基于同步信号块的测量时间配置SMTC,与需要测量间隔的测量对象对应的测量间隔之间的时间间隔小于预设阈值。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
确定不需要测量间隔的测量对应的第一扩展系数,和/或,确定需要测量间隔的测量对应的第二扩展系数;其中,所述第一扩展系数和所述第二扩展系数之和为1;
基于所述第一扩展系数和/或第二扩展系数执行不需要测量间隔的测量或执行需要测量间隔的测量。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
使得第一测量机会的执行总次数等于第一扩展系数与测量机会发生冲突的总次数的乘积;和/或
使得第二测量机会的执行总次数等于第二扩展系数与测量机会发生冲突的总次数的乘积。
可选的,在本公开的一个实施例之中,所述处理模块还用于以下至少一种:
基于协议约定确定所述第一扩展系数和/或第二扩展系数;
基于网络设备的配置确定所述第一扩展系数和/或第二扩展系数;
终端设备自主确定所述第一扩展系数和/或第二扩展系数。
可选的,在本公开的一个实施例之中,所述处理模块还用于:
基于网络设备通过无线资源控制RRC消息配置的所述第一扩展系数和/或第二扩展系数。
可选的,在本公开的一个实施例之中,所述装置还用于:
接收网络设备配置的测量配置参数;所述测量配置参数包括以下至少一种:
测量对象,所述测量对象中指示待测量的参考信号;
测量间隔配置。
可选的,在本公开的一个实施例之中,所述终端设备包括能力缩减Redcap终端设备。
图16为本公开实施例所提供的一种通信装置的结构示意图,如图16所示,装置可以包括:
收发模块,用于向终端设备配置不需要测量间隔的测量对应的第一扩展系数,和/或,需要测量间隔的测量对应的第二扩展系数。
综上所述,本公开提供的通信装置之中,网络设备会向终端设备配置不需要测量间隔的测量对应的第一扩展系数,和/或,需要测量间隔的测量对应的第二扩展系数,由此,当终端设备确定第一测量机会与第二测量机会发生冲突时,可以基于第一扩展系数和/或第二扩展系数选择执行不需要测量间隔的测量或选择执行需要测量间隔的测量,以避免第一测量机会与第二测量机会发生冲突,确保了同频测量(即第一测量机会对应的测量)和异频测量(即第二测量机会对应的测量)的准确顺利执行,提高了参考信号的测量效率。
可选的,在本公开的一个实施例之中,所述第一扩展系数和所述第二扩展系数之和为1。
可选的,在本公开的一个实施例之中,所述装置还用于:
向终端设备配置测量配置参数;所述测量配置参数包括以下至少一种:
测量对象,所述测量对象中指示待测量的参考信号;
测量间隔配置。
可选的,在本公开的一个实施例之中,所述终端设备包括Redcap终端设备。
请参见图17,图17是本申请实施例提供的一种通信装置1700的结构示意图。通信装置1700可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1700可以包括一个或多个处理器1701。处理器1701可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1700中还可以包括一个或多个存储器1702,其上可以存有计算机程序1704,处理器1701执行所述计算机程序1704,以使得通信装置1700执行上述方法实施例中描述的方法。可选的,所述存储器1702中还可以存储有数据。通信装置1700和存储器1702可以单独设置,也可以集成在一起。
可选的,通信装置1700还可以包括收发器1705、天线1706。收发器1705可以称为收发单元、收 发机、或收发电路等,用于实现收发功能。收发器1705可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1700中还可以包括一个或多个接口电路1707。接口电路1707用于接收代码指令并传输至处理器1701。处理器1701运行所述代码指令以使通信装置1700执行上述方法实施例中描述的方法。
在一种实现方式中,处理器1701中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1701可以存有计算机程序1703,计算机程序1703在处理器1701上运行,可使得通信装置1700执行上述方法实施例中描述的方法。计算机程序1703可能固化在处理器1701中,该种情况下,处理器1701可能由硬件实现。
在一种实现方式中,通信装置1700可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图17的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图18所示的芯片的结构示意图。图18所示的芯片包括处理器1801和接口1802。其中,处理器1801的数量可以是一个或多个,接口1802的数量可以是多个。
可选的,芯片还包括存储器1803,存储器1803用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程 序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信号的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种测量方法,其特征在于,所述方法被终端设备执行,包括:
    响应于不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突,执行不需要测量间隔的测量或执行需要测量间隔的测量。
  2. 如权利要求1所述的方法,其特征在于,所述不需要测量间隔的测量对象对应的参考信号为小区定义的同步信号块CD-SSB或者非小区定义的同步信号块NCD-SSB;
    所述需要测量间隔的测量对象对应的参考信号为CD-SSB或者NCD-SSB。
  3. 如权利要求1所述的方法,其特征在于,所述不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突,包括以下至少一种:
    不需要测量间隔的测量对象对应的参考信号,与需要测量间隔的测量对象对应的参考信号之间的时间间隔小于预设阈值;
    不需要测量间隔的测量对象对应的基于同步信号块的测量时间配置SMTC,与需要测量间隔的测量对象对应的测量间隔之间的时间间隔小于预设阈值。
  4. 如权利要求1所述的方法,其特征在于,所述执行不需要测量间隔的测量或执行需要测量间隔的测量,包括:
    确定不需要测量间隔的测量对应的第一扩展系数,和/或,确定需要测量间隔的测量对应的第二扩展系数;其中,所述第一扩展系数和所述第二扩展系数之和为1;
    基于所述第一扩展系数和/或第二扩展系数执行不需要测量间隔的测量或执行需要测量间隔的测量。
  5. 如权利要求4所述的方法,其特征在于,所述基于所述第一扩展系数和/或第二扩展系数执行不需要测量间隔的测量或执行需要测量间隔的测量,包括:
    使得第一测量机会的执行总次数等于第一扩展系数与测量机会发生冲突的总次数的乘积;和/或
    使得第二测量机会的执行总次数等于第二扩展系数与测量机会发生冲突的总次数的乘积。
  6. 如权利要求4所述的方法,其特征在于,所述确定不需要测量间隔的测量对应的第一扩展系数,和/或,确定需要测量间隔的测量对应的第二扩展系数,包括以下至少一种:
    基于协议约定确定所述第一扩展系数和/或第二扩展系数;
    基于网络设备的配置确定所述第一扩展系数和/或第二扩展系数;
    终端设备自主确定所述第一扩展系数和/或第二扩展系数。
  7. 如权利要求6所述的方法,其特征在于,所述基于网络设备的配置确定所述第一扩展系数和/或第二扩展系数,包括:
    基于网络设备通过无线资源控制RRC消息配置的所述第一扩展系数和/或第二扩展系数。
  8. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    接收网络设备配置的测量配置参数;所述测量配置参数包括以下至少一种:
    测量对象,所述测量对象中指示待测量的参考信号;
    测量间隔配置。
  9. 如权利要求1-8任一所述的方法,其特征在于,所述终端设备包括能力缩减Redcap终端设备。
  10. 一种测量方法,其特征在于,所述方法被网络设备执行,包括:
    向终端设备配置不需要测量间隔的测量对应的第一扩展系数,和/或,需要测量间隔的测量对应的第二扩展系数。
  11. 如权利要求10所述的方法,其特征在于,所述第一扩展系数和所述第二扩展系数之和为1。
  12. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    向终端设备配置测量配置参数;所述测量配置参数包括以下至少一种:
    测量对象,所述测量对象中指示待测量的参考信号;
    测量间隔配置。
  13. 如权利要求10-12任一所述的方法,其特征在于,所述终端设备包括Redcap终端设备。
  14. 一种通信装置,其特征在于,包括:
    处理模块,用于响应于不需要测量间隔的第一测量机会与需要测量间隔的第二测量机会之间发生冲突,执行不需要测量间隔的测量或执行需要测量间隔的测量。
  15. 一种通信装置,其特征在于,包括:
    收发模块,用于向终端设备配置不需要测量间隔的测量对应的第一扩展系数,和/或,需要测量间隔的测量对应的第二扩展系数。
  16. 一种通信装置,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至9中任一所述的方法,或者,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求10至13中任一所述的方法。
  17. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至9中任一所述的方法,或者,用于运行所述代码指令以执行如权利要求10至13中任一所述的方法。
  18. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至9中任一所述的方法被实现,或者当所述指令被执行时,使如权利要求10至13中任一所述的方法被实现。
PCT/CN2022/134188 2022-11-24 2022-11-24 一种测量方法、装置、设备及存储介质 WO2024108513A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/134188 WO2024108513A1 (zh) 2022-11-24 2022-11-24 一种测量方法、装置、设备及存储介质
CN202280005234.8A CN118402269A (zh) 2022-11-24 2022-11-24 一种测量方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/134188 WO2024108513A1 (zh) 2022-11-24 2022-11-24 一种测量方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024108513A1 true WO2024108513A1 (zh) 2024-05-30

Family

ID=91194994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134188 WO2024108513A1 (zh) 2022-11-24 2022-11-24 一种测量方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN118402269A (zh)
WO (1) WO2024108513A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013177977A1 (zh) * 2012-06-01 2013-12-05 华为技术有限公司 一种解决测量冲突的方法及装置
US20210120446A1 (en) * 2018-06-26 2021-04-22 Huawei Technologies Co., Ltd. Measurement Method and Measurement Apparatus
US20210321335A1 (en) * 2018-12-25 2021-10-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for rrm measurement
WO2022237575A1 (zh) * 2021-05-10 2022-11-17 华为技术有限公司 测量配置方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013177977A1 (zh) * 2012-06-01 2013-12-05 华为技术有限公司 一种解决测量冲突的方法及装置
US20210120446A1 (en) * 2018-06-26 2021-04-22 Huawei Technologies Co., Ltd. Measurement Method and Measurement Apparatus
US20210321335A1 (en) * 2018-12-25 2021-10-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for rrm measurement
WO2022237575A1 (zh) * 2021-05-10 2022-11-17 华为技术有限公司 测量配置方法和装置

Also Published As

Publication number Publication date
CN118402269A (zh) 2024-07-26

Similar Documents

Publication Publication Date Title
WO2024044991A1 (zh) 测量上报方法和装置
WO2023087156A1 (zh) 一种新空口和新空口侧行链路切换的方法及装置
WO2024108513A1 (zh) 一种测量方法、装置、设备及存储介质
WO2024065129A1 (zh) 用于终端设备ue到ue中继场景中的目标ue确定方法及装置
WO2023201756A1 (zh) 一种用于基于条件的移动性的信息的处理方法及装置
WO2023035125A1 (zh) 一种小区重选测量的方法及其装置
WO2024092558A1 (zh) 一种测量方法、装置、设备及存储介质
WO2024092847A1 (zh) 随机接入方法及装置
WO2023283964A1 (zh) 多载波小区的移动性测量的配置方法及装置
WO2024092834A1 (zh) 切换时延的确定方法和装置
WO2024065103A1 (zh) 一种上行功率控制方法及其装置
WO2024168918A1 (zh) 定位参考信号prs处理窗口的激活方法和装置
WO2023010475A1 (zh) 一种服务小区测量方法及其装置
WO2024178700A1 (zh) 切换配置方法和装置
WO2024065544A1 (zh) 一种信息上报方法及其装置
WO2024197931A1 (zh) 侧行链路数据无线承载drb配置方法及装置
WO2023201755A1 (zh) 一种移动性管理的配置方法及装置
WO2024145927A1 (zh) 能力上报方法和装置
WO2023050091A1 (zh) 一种上行波束的测量方法及其装置
WO2024207328A1 (zh) 信号发送方法、装置、设备及存储介质
WO2024159543A1 (zh) 一种传输实体的控制方法及其装置
WO2024229773A1 (zh) 信息获取方法和装置
WO2024187326A1 (zh) 一种波束指示方法及其装置
WO2023197121A1 (zh) 一种发送直连测距信号的方法及装置
WO2023044628A1 (zh) 一种测量gap的调度方法及其装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280005234.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22966204

Country of ref document: EP

Kind code of ref document: A1