[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024106536A1 - Control device for loading machine, remote control device, and control method - Google Patents

Control device for loading machine, remote control device, and control method Download PDF

Info

Publication number
WO2024106536A1
WO2024106536A1 PCT/JP2023/041473 JP2023041473W WO2024106536A1 WO 2024106536 A1 WO2024106536 A1 WO 2024106536A1 JP 2023041473 W JP2023041473 W JP 2023041473W WO 2024106536 A1 WO2024106536 A1 WO 2024106536A1
Authority
WO
WIPO (PCT)
Prior art keywords
loading
height
target
control device
bucket
Prior art date
Application number
PCT/JP2023/041473
Other languages
French (fr)
Japanese (ja)
Inventor
知樹 根田
朋幸 衞藤
正男 山村
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2024106536A1 publication Critical patent/WO2024106536A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload

Definitions

  • the present disclosure relates to a control device, a remote control device, and a control method for a loading machine.
  • This application claims priority to Japanese Patent Application No. 2022-184885, filed in Japan on November 18, 2022, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses technology related to semi-automatic control of loading machines.
  • the semi-automatic control described in Patent Document 1 is a control in which, after loading of a loading target such as a dump truck is completed, an excavation command is received from an operator, and a control device controls the rotation of the loading machine and the drive of the work equipment, thereby automatically moving the bucket to the excavation position.
  • the operator When loading a load onto a loading object, the operator may load the load at a low position to reduce the impact on the object.
  • the operator may also level the load with a bucket.
  • the bucket In this case, the bucket is positioned inside the box that is the loading object. Therefore, when the loading machine is rotated by semi-automatic control or fully automatic control, there is a possibility that the bucket will come into contact with the inner wall of the loading object.
  • semi-automatic control and fully automatic control will be collectively referred to as automatic control.
  • the objective of this disclosure is to provide a control device, remote control device, and control method for a loading machine that prevents the bucket from contacting the inner wall of the object being loaded during automatic control of the loading machine.
  • the control device for a loading machine is a control device for a loading machine that includes a rotating body that rotates around a rotation center and a working machine that has a working tool attached to the rotating body, and includes a reference identification unit that identifies the height of the loading target, a working machine position identification unit that identifies the height of the working tool, and an operation signal output unit that outputs a signal to raise the working machine when the working tool is located above the loading target and the height of the working tool is lower than the height of the loading target during automatic control to move the working tool from above the loading target to the side of the loading target.
  • the loading machine control device can prevent the bucket from contacting the inner wall of the box body to be loaded during automatic control of the loading machine.
  • FIG. 1 is a schematic diagram showing a configuration of a loading machine according to a first embodiment.
  • FIG. FIG. 2 is a diagram showing the internal configuration of a driver's cab according to the first embodiment.
  • FIG. 2 is a schematic block diagram showing the configuration of a control device according to the first embodiment.
  • 5A to 5C are diagrams illustrating an example of a movement of the loading machine in a first turning according to the first embodiment.
  • 8A to 8C are diagrams illustrating an example of a movement of the loading machine in a second turning according to the first embodiment.
  • 5A to 5C are diagrams illustrating an example of the movement of the loading machine during a dump operation according to the first embodiment.
  • 5 is a flowchart showing a first turning control by the control device according to the first embodiment.
  • 5 is a flowchart showing a second turning control by the control device according to the first embodiment.
  • FIG. 1 is a schematic diagram showing the configuration of a loading machine 100 according to the first embodiment.
  • the loading machine 100 operates at a construction site, excavates a construction object such as soil and sand, and loads the excavated soil and sand as cargo onto a loading platform such as a vessel of a loading object T such as a dump truck.
  • Examples of the loading machine 100 include a face shovel, a backhoe shovel, and a rope shovel.
  • the loading machine 100 may be either electrically driven or hydraulically driven.
  • the loading machine 100 according to the first embodiment is a backhoe shovel.
  • the loading machine 100 includes a traveling body 110, a rotating body 120, a work machine 130, and a cab 140.
  • Examples of the loading object T include a dump truck and a hopper.
  • the running body 110 supports the loading machine 100 so that the loading machine 100 can run.
  • the running body 110 includes two endless tracks 111 provided on the left and right sides, and two travel motors 112 for driving each of the endless tracks 111.
  • the running body 110 is an example of a support portion.
  • the rotating body 120 is supported by the running body 110 so as to be capable of rotating about a rotation center.
  • the work machine 130 is hydraulically driven and supported on the front part of the revolving body 120 so as to be drivable in the vertical direction.
  • the operator's cab 140 is a space where an operator rides in and operates the loading machine 100.
  • the operator's cab 140 is provided at the left front part of the rotating body 120.
  • the portion of the rotating body 120 to which the work machine 130 is attached is referred to as the front portion. Furthermore, with respect to the rotating body 120, the portion opposite the front portion is referred to as the rear portion, the left portion as the left portion, and the right portion as the right portion.
  • the rotating body 120 is equipped with an engine 121, a hydraulic pump 122, a control valve 123, and a rotating motor 124.
  • the engine 121 is a prime mover that drives the hydraulic pump 122.
  • the engine 121 is an example of a power source.
  • the hydraulic pump 122 is a variable displacement pump driven by the engine 121.
  • the hydraulic pump 122 supplies hydraulic oil via a control valve 123 to each actuator (the boom cylinder 131C, the arm cylinder 132C, the bucket cylinder 133C, the travel motor 112, and the swing motor 124).
  • the control valve 123 controls the flow rate of the hydraulic oil supplied from the hydraulic pump 122 .
  • the swing motor 124 is driven by hydraulic oil supplied from a hydraulic pump 122 via a control valve 123 to swing the swing body 120 .
  • the work machine 130 includes a boom 131, an arm 132, a bucket 133 as a work tool, a boom cylinder 131C, an arm cylinder 132C, and a bucket cylinder 133C.
  • Other examples of the work tool include end attachments such as a clam bucket, a tilt bucket, a tilt rotate bucket, a grapple, and a lifting magnet.
  • the base end of the boom 131 is rotatably attached to the revolving body 120 via a boom pin.
  • the boom 131 is provided at the center of the front of the revolving body 120, but the present invention is not limited to this.
  • the boom 131 may be attached offset in the left-right direction. In this case, the center of rotation of the revolving body 120 is not located on the operating plane of the work machine 130.
  • the arm 132 connects the boom 131 and the bucket 133.
  • a base end of the arm 132 is rotatably attached to a tip end of the boom 131 via an arm pin.
  • the bucket 133 is rotatably attached to the tip of the arm 132 via a pin.
  • Members supporting the bucket 133 include the boom 131 and the arm 132.
  • the bucket 133 functions as a container for storing excavated soil and sand.
  • the bucket 133 is attached so that its opening faces the rotating body 120 (rear).
  • the loading machine 100 which is a backhoe excavator, performs excavation by pulling the bucket 133 to the front side of the rotating body 120.
  • the boom cylinder 131C is a hydraulic cylinder for operating the boom 131.
  • a base end of the boom cylinder 131C is attached to the rotating body 120.
  • a tip end of the boom cylinder 131C is attached to the boom 131.
  • the arm cylinder 132C is a hydraulic cylinder for driving the arm 132.
  • a base end of the arm cylinder 132C is attached to the boom 131.
  • a tip end of the arm cylinder 132C is attached to the arm 132.
  • the bucket cylinder 133C is a hydraulic cylinder for driving the bucket 133.
  • a base end of the bucket cylinder 133C is attached to the arm 132.
  • a tip end of the bucket cylinder 133C is attached to a link mechanism that rotates the bucket 133.
  • FIG. 2 is a diagram showing the internal configuration of the operator's cab 140 according to the first embodiment.
  • a driver's seat 141, an operation terminal 142, and an operation device 143 are provided in the driver's cab 140.
  • the operation terminal 142 is provided near the driver's seat 141, and is a user interface with the control device 160 described below.
  • the operation terminal 142 is a display device constituted by, for example, a touch panel, and may have an operation unit operated by an operator and an input reception unit that receives operations.
  • the display device also displays measurement data of an engine water temperature gauge, a fuel gauge, and the like.
  • the operation terminal 142 may also be equipped with a display unit such as an LCD.
  • the touch panel is an example of a display unit.
  • the operating device 143 is a device for driving the traveling body 110, the rotating body 120, and the work machine 130 by manual operation by the operator.
  • the operating device 143 includes a left operating lever 143LO, a right operating lever 143RO, a left foot pedal 143LF, a right foot pedal 143RF, a left travel lever 143LT, a right travel lever 143RT, a swing brake pedal 143TB, and a start switch 143SW.
  • the left operating lever 143LO is provided on the left side of the driver's seat 141.
  • the right operating lever 143RO is provided on the right side of the driver's seat 141.
  • the left operating lever 143LO is an operating mechanism for rotating the rotating body 120 and performing the excavation/dumping operation of the arm 132. Specifically, when the operator of the loading machine 100 tilts the left operating lever 143LO forward, the arm 132 performs the dumping operation. When the operator of the loading machine 100 tilts the left operating lever 143LO backward, the arm 132 performs the excavation operation. When the operator of the loading machine 100 tilts the left operating lever 143LO to the right, the rotating body 120 rotates to the right. When the operator of the loading machine 100 tilts the left operating lever 143LO to the left, the rotating body 120 rotates to the left.
  • the rotating body 120 rotates to the right or left, and when the left operating lever 143LO is tilted left or right, the arm 132 performs the excavation operation or dumping operation.
  • the right operating lever 143RO is an operating mechanism for performing the excavation/dumping operation of the bucket 133 and the raising/lowering operation of the boom 131. Specifically, when the operator of the loading machine 100 tilts the right operating lever 143RO forward, the boom 131 is lowered. When the operator of the loading machine 100 tilts the right operating lever 143RO backward, the boom 131 is raised. When the operator of the loading machine 100 tilts the right operating lever 143RO to the right, the bucket 133 is dumped. When the operator of the loading machine 100 tilts the right operating lever 143RO to the left, the bucket 133 is excavated. In other embodiments, when the right operating lever 143RO is tilted forward/backward, the bucket 133 is dumped or excavated, and when the right operating lever 143RO is tilted left/right, the boom 131 is raised or lowered.
  • the left foot pedal 143LF is located on the left side of the floor in front of the driver's seat 141.
  • the right foot pedal 143RF is located on the right side of the floor in front of the driver's seat 141.
  • the left travel lever 143LT is pivoted to the left foot pedal 143LF and configured so that the tilt of the left travel lever 143LT and the pressing down of the left foot pedal 143LF are linked.
  • the right travel lever 143RT is pivoted to the right foot pedal 143RF and configured so that the tilt of the right travel lever 143RT and the pressing down of the right foot pedal 143RF are linked.
  • the left foot pedal 143LF and the left travel lever 143LT correspond to the rotational drive of the left track of the travelling body 110. Specifically, when the operator of the loading machine 100 pushes the left foot pedal 143LF or the left travel lever 143LT forward, the left track rotates in the forward direction. Conversely, when the operator of the loading machine 100 pushes the left foot pedal 143LF or the left travel lever 143LT backward, the left track rotates in the reverse direction.
  • the right foot pedal 143RF and right travel lever 143RT correspond to the rotational drive of the right track of the travelling body 110. Specifically, when the operator of the loading machine 100 pushes the right foot pedal 143RF or the right travel lever 143RT forward, the right track rotates in the forward direction. Conversely, when the operator of the loading machine 100 pushes the right foot pedal 143RF or the right travel lever 143RT backward, the right track rotates in the reverse direction.
  • the start switch 143SW is provided, for example, on the handle portion of the left operating lever 143LO.
  • the start switch 143SW may be located near the operator seated in the driver's seat 141.
  • an automatic control instruction signal is output to the control device 160.
  • the control device 160 receives the input of the automatic control instruction signal, it starts automatic control.
  • the automatic control is a control in which the loading machine 100 autonomously controls the driving of the work machine 130 and the rotating body 120 to realize a predetermined operation.
  • the automatic control in the first embodiment is a control in which the loading machine 100 autonomously performs a first rotation, which is a series of operations in which the bucket 133 is positioned on the side of the loading target T by excavation of the excavation target, and the boom 131 is raised while rotating to a direction facing the loading target T, and a second rotation, which is a series of operations in which the bucket 133 is positioned on top of the loading target T by loading, and the boom 131 is lowered while rotating to a predetermined direction.
  • the side of the loading target T refers to the outside of a loading platform such as a vessel on which a load is loaded.
  • the automatic control in other embodiments may perform only the second rotation.
  • the target orientation of the rotating body 120 and the target attitude of the bucket 133 in the first rotation and the second rotation are respectively predetermined orientations and attitudes.
  • the excavation target is usually located lower than the height of the loading target T. Therefore, during the first and second turns, the loading machine 100 controls the driving of the work machine 130 so that the loading target T does not come into contact with the work machine 130. Details of the automatic control will be described later.
  • the operation device 143 may be provided with two start switches 143SW, each of which may be assigned to the first rotation and the second rotation.
  • the loading machine 100 includes a position/orientation calculator 151 , an inclination measuring device 152 , a boom stroke sensor 153 , an arm stroke sensor 154 , and a bucket stroke sensor 155 .
  • the position and orientation calculator 151 calculates the position of the revolving body 120 and the orientation in which the revolving body 120 faces.
  • the position and orientation calculator 151 includes two receivers that receive positioning signals from artificial satellites that constitute the GNSS. The two receivers are installed at different positions on the revolving body 120.
  • the position and orientation calculator 151 detects the position of a representative point of the revolving body 120 in the site coordinate system (the origin of the excavator coordinate system) based on the positioning signals received by the receivers.
  • the position and orientation calculator 151 uses the positioning signals received by the two receivers to calculate the orientation of the rotating body 120 as the relationship between the installation position of one receiver and the installation position of the other receiver.
  • the orientation of the rotating body 120 is a direction perpendicular to the front of the rotating body 120.
  • the orientation of the rotating body 120 is equal to the horizontal component of the extension direction of a straight line extending from the boom 131 to the bucket 133 of the work machine 130.
  • the inclination measuring device 152 measures the acceleration and angular velocity of the rotating body 120, and detects the attitude (e.g., roll angle, pitch angle, yaw angle) and rotation speed of the rotating body 120 based on the measurement results.
  • the inclination measuring device 152 is installed, for example, on the underside of the rotating body 120.
  • the inclination measuring device 152 can be, for example, an inertial measurement unit (IMU).
  • IMU inertial measurement unit
  • the boom stroke sensor 153 is attached to the boom cylinder 131C and detects the cylinder length of the boom cylinder 131C.
  • the cylinder length of the boom cylinder 131C can be converted into a relative angle of the boom 131 with respect to the rotating body 120.
  • the arm stroke sensor 154 is attached to the arm cylinder 132C and detects the cylinder length of the arm cylinder 132C.
  • the cylinder length of the arm cylinder 132C can be converted into a relative angle of the arm 132 with respect to the boom 131.
  • the bucket stroke sensor 155 is attached to the bucket cylinder 133C and detects the cylinder length of the bucket cylinder 133C.
  • the cylinder length of the bucket cylinder 133C can be converted into a relative angle of the bucket 133 with respect to the arm 132.
  • the loading machine 100 specifies the angle of each link component of the work machine 130 using the boom stroke sensor 153, the arm stroke sensor 154, and the bucket stroke sensor 155, but this is not limited to the above in other embodiments.
  • a potentiometer that detects the relative rotation angle of the link component may be provided, or an inclination sensor that detects the ground angle of each link component may be provided.
  • FIG. 3 is a schematic block diagram showing the configuration of the control device 160 according to the first embodiment.
  • the loading machine 100 includes a control device 160.
  • the control device 160 may be implemented in the operation terminal 142, or may be provided separately from the operation terminal 142 and receive input and output from the operation terminal 142.
  • the control device 160 receives an operation signal from the operation device 143.
  • the control device 160 drives the work machine 130, the revolving body 120, and the traveling body 110 by outputting the received operation signal or an operation signal generated for automatic control to the control valve 123.
  • the operation signal received from the operation device 143 is also referred to as a manual operation signal
  • the operation signal generated for automatic control is also referred to as an automatic operation signal.
  • the automatic operation signal is composed of an operation signal that drives the revolving body 120 and the work machine 130, and does not include an operation signal that drives the traveling body 110.
  • the control device 160 may stop the automatic control.
  • the control device 160 is a computer that includes a processor 610, a main memory 630, a storage 650, and an interface 670.
  • the storage 650 stores a program.
  • the processor 610 reads the program from the storage 650, expands it in the main memory 630, and executes processing according to the program.
  • Examples of storage 650 include semiconductor memory, magnetic disks, magneto-optical disks, optical disks, etc. Storage 650 may be internal media directly connected to the common communication line of control device 160, or may be external media connected to control device 160 via interface 670. Main memory 630 and storage 650 are non-transitory tangible storage media.
  • the processor 610 has a measurement data acquisition unit 611, an operation signal input unit 612, a work machine position identification unit 613, a reference identification unit 614, an angle identification unit 615, a movement control unit 616, and an operation signal output unit 617.
  • the measurement data acquisition unit 611 acquires measurement data from the measurement system of the loading machine 100. Specifically, the measurement data acquisition unit 611 acquires measurement data from the position and orientation calculator 151, the inclination measuring device 152, the boom stroke sensor 153, the arm stroke sensor 154, and the bucket stroke sensor 155. The measurement data acquisition unit 611 calculates the angle of the rotating unit 120 by integrating the angular velocity of the rotating unit 120 measured by the inclination measuring device 152.
  • the operation signal input unit 612 accepts input of operation signals manually operated by the operator from the operation device 143.
  • the operation signals include a drive signal for raising or lowering the boom 131, a drive signal for raising or lowering the arm 132, a drive signal for dumping or digging the bucket 133, a drive signal for turning the rotating body 120 to the right or left, a drive signal for operating the traveling body 110 to travel, and an automatic control instruction signal for the loading machine 100.
  • the work machine position identification unit 613 identifies the position of the tip P of the arm 132 (FIG. 4) and the position of the lowest point Q of the bucket 133 (FIG. 4) in the vehicle body coordinate system based on the rotating body 120, based on the measurement data acquired by the measurement data acquisition unit 611.
  • the lowest point Q of the bucket 133 refers to the point on the outer shape of the bucket 133 that is the shortest distance from the ground surface.
  • the work machine position identification unit 613 determines the vertical and horizontal components of the length of the boom 131 based on the inclination angle of the boom 131 and the known length of the boom 131 (the distance from the pin at the base end to the pin at the tip end). Similarly, the work machine position identification unit 613 determines the vertical and horizontal components of the length of the arm 132. The work machine position identification unit 613 identifies the position of the tip P of the arm 132 as a position that is away from the position of the loading machine 100 in a direction identified from the orientation and posture of the loading machine 100 by the sum of the vertical components and the sum of the horizontal components of the lengths of the boom 131 and the arm 132.
  • the work machine position identification unit 613 also identifies the position of the lowest point Q of the bucket 133 based on the inclination angle of the bucket 133 and the known shape of the bucket 133. For example, the work machine position identification unit 613 calculates the positions of each of a plurality of points on the outer shell of the bucket 133 based on the inclination angle of the bucket 133, and identifies the point with the lowest height among the plurality of points as the lowest point Q. Also, for example, the work machine position identification unit 613 may determine the lowest point Q as a point obtained by offsetting the distance between the bucket pin and the point of the bucket 133 that is farthest from the bucket pin downward in the height direction from the bucket pin.
  • the work machine position identification unit 613 may determine the lowest point Q as a point obtained by offsetting the maximum bucket movable range amount downward in the height direction from the bucket pin. Also, the work machine position identification unit 613 may determine the lowest point Q as a point obtained by offsetting a height with a margin from the height identified above, taking into account control error and measurement error.
  • the reference specifying unit 614 Before executing automatic control, the reference specifying unit 614 receives teaching of an excavation preparation position, an interference avoidance position, and a loading position of the bucket 133 from the operator as reference points for automatic control. The teaching is performed, for example, in the following procedure.
  • the reference specifying unit 614 displays an instruction to move the bucket 133 to the excavation preparation position on the operation terminal 142.
  • the operator operates the operation device 143 to move the bucket 133 to the excavation preparation position, and inputs completion of the movement to the excavation preparation position to the operation terminal 142.
  • the reference specifying unit 614 sets the attitude of the work machine 130 specified by the work machine position specifying unit 613 as the target attitude for the second rotation, sets the position of the tip P of the arm 132 as the target position for the second rotation, and records in the storage 650 the direction in which the rotating body 120 faces as the target direction for the second rotation.
  • the reference specification unit 614 displays on the operation terminal 142 an instruction to move the blade tip of the bucket 133 to an interference avoidance position that has the height of the upper end of the vessel wall of the loading target T and is a position where the work machine 130 and the loading target T do not overlap in a plan view from above.
  • the vessel wall used for teaching may be any of the side wall, front wall, and rear wall of the vessel.
  • the operator operates the operation device 143 to move the blade tip of the bucket 133 to the interference avoidance position and inputs the completion of the movement to the interference avoidance position to the operation terminal 142.
  • the interference avoidance positions are input for both the right end and the left end of the loading target T.
  • This allows the reference specification unit 614 to specify the range of the loading platform of the loading target T.
  • the height of the interference avoidance position may be offset upward by a height with a margin taking into account control errors and measurement errors.
  • the reference identification unit 614 sets the height of the lowest point Q of the bucket 133 identified by the work machine position identification unit 613 as the wall height Ht of the loading target T, and records the orientation of the rotating body 120 as the interference avoidance orientation in the storage 650.
  • the wall height Ht is an example of the height of the loading target T.
  • the reference specification unit 614 displays an instruction to move the bucket 133 to a loading position above the loading target T on the operation terminal 142.
  • the operator operates the operation device 143 to move the bucket 133 to the loading position, and inputs the completion of the movement to the loading position to the operation terminal 142.
  • the reference specification unit 614 records in the storage 650 the attitude of the working machine 130 as the target attitude of the first rotation, the position of the tip P of the arm 132 as the target position of the first rotation, and the direction in which the rotating body 120 faces identified by the working machine position specification unit 613 as the target direction of the first rotation.
  • the height of the lowest point Q of the bucket 133 identified at the loading position may be the wall height Ht.
  • the height of the loading target T does not necessarily have to be the wall height Ht, which is the height of the side wall of the loading platform, and may be the height of the highest point of the entire loading target T.
  • the angle identification unit 615 identifies, as a target rotation angle, the angle between the initial orientation in which the rotating body 120 faces when an automatic control instruction signal is input to the operation signal input unit 612 and the target orientation recorded in storage 650.
  • the angle identification unit 615 identifies, as an interference avoidance angle, the angle between the initial orientation in which the rotating body 120 faces when an automatic control instruction signal is input to the operation signal input unit 612 and the interference avoidance orientation recorded in storage 650.
  • the interference avoidance angle is the rotation angle when the work machine 130 and the loading target T do not overlap in a planar view from above.
  • the movement control unit 616 When the operation signal input unit 612 receives an automatic control instruction signal, the movement control unit 616 generates an automatic operation signal that realizes automatic control. When the automatic control instruction signal is input, the automatic control unit 616 executes an automatic control that realizes a first rotation that moves the bucket 133 to a loading position, or an automatic control that realizes a second rotation that moves the bucket 133 to an excavation preparation position. The movement control unit 616 determines whether to execute the first rotation or the second rotation in the automatic control depending on whether the bucket 133 is within the range of the loading target T in a plan view from above when the automatic control instruction signal is input.
  • the movement control unit 616 executes the first rotation, and if the bucket 133 is within the range of the loading target T's loading platform, the movement control unit 616 executes the second rotation. At this time, the movement control unit 616 controls the rotating body 120 and the working machine 130 so that the loading target T and the working machine 130 do not come into contact with each other, based on the wall height Ht and the interference avoidance angle stored in the storage 650.
  • the movement control unit 616 realizes the combined operation of the rotating body 120 and the working machine 130 in the first rotation before the first interference avoidance angle ⁇ 1 ( FIG. 4 ) is reached.
  • the first rotation if the height of the bucket 133 does not reach the height of the loading position before the rotation angle of the rotating body 120 reaches the first interference avoidance angle ⁇ 1 ( FIG. 4 ), the movement control unit 616 does not generate a rotation operation signal for the rotating body 120, and generates only an operation signal for the working machine 130.
  • the movement control unit 616 determines whether the height of the bucket 133 reaches the height of the loading position before the rotation angle due to the rotation reaches the first interference avoidance angle ⁇ 1. If the height of the bucket 133 reaches the height of the loading position before the rotation angle due to the rotation reaches the first interference avoidance angle ⁇ 1, the movement control unit 616 generates a rotation operation signal for the rotating body 120 and an operation signal for the working machine 130, thereby realizing the combined operation of the rotating body 120 and the working machine 130. After the height of the bucket 133 reaches the height of the loading position at the first interference avoidance angle ⁇ 1 ( FIG. 4 ), the movement control unit 616 rotates the rotating body 120 without moving the working machine 130.
  • the movement control unit 616 controls so that the lowest point of the bucket 133 does not drop until the rotation angle of the rotating body 120 reaches the second interference avoidance angle ⁇ 2 ( FIG. 5 ).
  • the control to prevent the lowest point from dropping may be control to rotate the rotating body 120 without moving the work machine 130 and maintain the height of the lowest point, or control to set the lowest point higher than the lowest point before the control to provide a gap between the loading target T and the bucket 133.
  • the movement control unit 616 After the rotation angle reaches the second interference avoidance angle ⁇ 2, the movement control unit 616 generates a rotation operation signal for the rotating body 120 and an operation signal for the work machine 130, thereby realizing a combined operation of the rotating body 120 and the work machine 130.
  • the movement control unit 616 receives input of an automatic control instruction signal during the second rotation, if the height of the lowest point of the bucket 133 is lower than the wall height Ht of the loading object T, the movement control unit 616 moves the bucket 133 upward before rotating the rotating body 120.
  • the operation signal output unit 617 outputs the manual operation signal input to the operation signal input unit 612 or the automatic operation signal generated by the movement control unit 616 to the control valve 123.
  • Fig. 4 is a diagram showing an example of the movement of the loading machine 100 during a first turning according to the first embodiment.
  • Fig. 5 is a diagram showing an example of the movement of the loading machine 100 during a second turning according to the first embodiment.
  • the control device 160 When automatic control for the first rotation is started, as shown in FIG. 4, the control device 160 first starts driving the work machine 130 (boom 131, arm 132, and bucket 133), and moves the bucket 133 upward by raising the boom 131.
  • the target position of the bucket 133 for the first rotation is a loading position above the loading target T.
  • the control device 160 After a delay, the control device 160 starts rotating the rotating body 120.
  • the control device 160 adjusts the rotation start timing so that the posture of the work machine 130 becomes the target posture for the first rotation before the rotation angle of the rotating body 120 matches the first interference avoidance angle ⁇ 1.
  • the posture of the work machine 130 becomes the target posture for the first rotation before the rotation angle of the rotating body 120 matches the first interference avoidance angle ⁇ 1, that is, if the height of the lowest point Q of the bucket 133 is higher than the wall height Ht of the loading target T, the rotation of the rotating body 120 will not cause the work machine 130 to come into contact with the loading target T.
  • the control device 160 may start driving and rotating the working machine 130 simultaneously. After that, when the bucket 133 reaches the loading position, the automatic control ends.
  • FIG. 6 is a diagram showing an example of the movement of the loading machine 100 during the dump operation according to the first embodiment.
  • a manual dump operation the operator may load the load at a low position to reduce the impact on the loading object T.
  • the operator may also operate the loading machine 100 to level the load loaded on a bed such as a vessel.
  • the lowest point Q of the bucket 133 may be lower than the wall of the loading object T as shown in FIG. 6. Therefore, if the control device 160 continues to rotate the loading machine 100 in this state, the bucket 133 will come into contact with the inner wall of the loading object T.
  • the control device 160 determines whether the lowest point of the bucket 133 is higher than the wall of the loading target T. As shown in FIG. 5, if the lowest point Q of the bucket 133 is lower than the wall height Ht, the boom 131 is raised. When the lowest point Q of the bucket 133 becomes higher than the wall height Ht, the control device 160 starts rotating the rotating body 120. The control device 160 rotates the rotating body 120 without moving the work implement 130 until the rotation angle of the rotating body 120 exceeds the second interference avoidance angle ⁇ 2, thereby maintaining the height of the lowest point of the bucket 133.
  • the control device 160 when the lowest point Q of the bucket 133 is lower than the wall height Ht, the control device 160 raises only the work implement 130 and does not rotate the rotating body 120, but this is not limited to this in other embodiments.
  • the control device 160 may raise the work machine 130 while rotating the rotating body 120 at a speed such that the bucket 133 does not come into contact with the wall of the loading target T.
  • the control device 160 drives the boom 131, the arm 132, and the bucket 133. At this time, the control device 160 may drive all of the boom 131, the arm 132, and the bucket 133, or may drive a part of the boom 131, the arm 132, and the bucket 133, depending on the relationship between the posture at the start of the rotation and the target posture.
  • the control device 160 ends the drive of the revolving body 120. Also, when the posture of the working machine 130 becomes the target posture at the start of excavation, the control device 160 ends the drive of the working machine 130.
  • the control device 160 rotates the revolving body 120 without moving the working machine 130 until the rotation angle of the revolving body 120 exceeds the second interference avoidance angle ⁇ 2 in the second rotation, but is not limited to this.
  • the control device 160 according to the other embodiment may rotate the rotating body 120 while moving the work machine 130 so as not to change the height of the lowest point of the bucket 133.
  • the control device 160 according to the embodiment may rotate the rotating body 120 while lowering the work machine 130 to such an extent that the height of the lowest point of the bucket 133 does not fall below the wall height Ht.
  • the positional relationship between the excavation position and the loading target T is about 90 degrees around the rotating body 120, but this is not limited to this in other embodiments.
  • the positional relationship between the excavation position and the loading target T may be another rotation angle position, such as about 180 degrees around the rotating body 120.
  • FIG. 7 is a flowchart showing a first turning control by the control device 160 according to the first embodiment.
  • Fig. 8 is a flowchart showing a second turning control by the control device 160 according to the first embodiment.
  • the operation signal input unit 612 of the control device 160 accepts input of an automatic control instruction signal.
  • the control device 160 determines whether to execute the first rotation or the second rotation based on whether the bucket 133 is within a range above the bed of the loading target T in a plan view from above.
  • the control device 160 executes the first rotation control shown in FIG. 7.
  • the measurement data acquisition unit 611 acquires measurement data of the orientation of the loading machine 100 (step S1).
  • the movement control unit 616 reads out the target orientation (orientation toward the loading target T), target posture, wall height Ht of the loading target T, and interference avoidance orientation of the rotating body 120 from the storage 650 (step S2).
  • the angle identification unit 615 identifies the target rotation angle ⁇ 0 and the first interference avoidance angle ⁇ 1 based on the orientation of the rotating body 120 identified in step S1 and the target orientation and interference avoidance orientation read in step S2 (step S3).
  • the measurement data acquisition unit 611 acquires measurement data on the position and orientation, tilt angle, rotation speed, and cylinder length of each cylinder of the loading machine 100, and the work machine position identification unit 613 identifies the posture of the work machine 130 based on the measurement data (step S4).
  • the work machine position identification unit 613 identifies the position of the tip P of the arm 132, the position of the lowest point Q of the bucket 133, and the posture of the bucket 133 (step S5).
  • the movement control unit 616 generates an automatic operation signal for moving the bucket 133 to above the loading target T, based on the target orientation, target posture, and wall height Ht read out in step S2, and the first interference avoidance angle ⁇ 1 specified in step S3. That is, the movement processing unit 1112 generates an automatic operation signal so that the lowest point Q of the bucket 133 reaches the loading position represented by the target orientation and target posture from the position of the lowest point Q at the start of the first swing control, via the interference avoidance position represented by the wall height Ht and the first interference avoidance angle ⁇ 1. At this time, the movement control unit 616 generates an automatic operation signal for the bucket 133 so that the ground angle of the bucket 133 does not change even if the boom 131 and the arm 132 are driven.
  • the movement control unit 616 generates an automatic operation signal in the following procedure.
  • the movement control unit 616 determines whether the posture of the work machine 130 identified in step S5 is similar to the target posture acquired in step S1 (step S6). For example, the movement control unit 616 determines that the posture of the work machine 130 is similar to the target posture when the difference between the position of the tip of the arm 132 in the target posture and the current position of the tip of the arm 132 is equal to or smaller than a predetermined value.
  • step S6 If the posture of the work machine 130 is not close to the target posture (step S6: NO), the movement control unit 616 generates an automatic operation signal to move the boom 131 and the arm 132 closer to the target posture (step S7). At this time, the movement control unit 616 generates the automatic operation signal based on the position and speed of the boom 131 and the arm 132 identified from the measurement data acquired in step S4.
  • the movement control unit 616 also calculates the sum of the drive speeds of the boom 131 and the arm 132 based on the generated automatic operation signals of the boom 131 and the arm 132, and generates an automatic operation signal that drives the bucket 133 at a speed equal to the sum of the drive speeds (step S8). This allows the movement control unit 616 to generate an operation signal that maintains the ground angle of the bucket 133.
  • the movement control unit 616 determines whether the work machine 130 is rotating (step S9). For example, the movement control unit 616 determines that the work machine 130 is rotating when the rotation speed of the rotating body 120 is equal to or higher than a predetermined speed. If the work machine 130 is not rotating (step S9: NO), the movement control unit 616 calculates the completion time until the work machine 130 reaches the target posture based on the speeds of the boom 131 and the arm 132 identified in step S7 (step S10). In addition, the movement control unit 616 calculates the arrival time until the rotation angle reaches the first interference avoidance angle ⁇ 1 identified in step S3 when the rotating body 120 starts rotating (step S11).
  • the movement control unit 616 determines whether the completion time calculated in step S10 is less than the arrival time calculated in step S11 (step S12). In other words, the movement control unit 616 determines whether the work machine 130 reaches the target posture when the rotation angle reaches the first interference avoidance angle ⁇ 1.
  • step S12: NO If the completion time is equal to or greater than the arrival time (step S12: NO), i.e., if the work machine 130 does not reach the target posture before the rotation angle reaches the first interference avoidance angle ⁇ 1, the movement control unit 616 does not generate a rotation operation signal for the rotating body 120.
  • step S12: YES if the completion time is less than the arrival time (step S12: YES), i.e., if the work machine 130 reaches the target posture before the rotation angle reaches the first interference avoidance angle ⁇ 1, the movement control unit 616 generates a rotation operation signal for the rotating body 120 (step S13). This allows the control device 160 to prevent the work machine 130 from coming into contact with the loading target T due to rotating while the height of the work machine 130 is still low.
  • the operation signal output unit 617 outputs the generated automatic operation signal to the control valve 123 (step S14). This drives the loading machine 100. The control device 160 then returns the process to step S4 and continues control.
  • step S9 determines whether or not the rotation angle will reach the target rotation angle by inertia when the rotation operation signal is stopped based on the rotation speed of the work machine 130 identified in step S4 (step S15). If the rotation angle does not reach the target rotation angle by inertia (step S15: NO), the movement control unit 616 generates a rotation operation signal in step S13, and the operation signal output unit 617 outputs the rotation operation signal to the control valve 123 in step S14.
  • step S15 if it is determined that the rotation angle will reach the target rotation angle due to inertia (step S15: YES), it is determined whether the rotation angle has reached the target rotation angle and the attitude of the work machine 130 has become the target attitude (step S16). If the rotation angle has reached the target rotation angle and the attitude of the work machine 130 has not become the target attitude (step S16: NO), the control device 160 returns the process to step S4.
  • step S16 YES
  • FIG. 8 is a flowchart showing the second turning control of the control device 160 according to the first embodiment.
  • the operation signal input unit 612 of the control device 160 receives an input of an automatic control instruction signal.
  • the control device 160 executes the second rotation control shown in FIG. 8.
  • the measurement data acquisition unit 611 acquires measurement data of the orientation of the loading machine 100 (step S21).
  • the movement control unit 616 reads out the target orientation of the rotating body 120 (orientation facing the side of the loading target T), the target posture, the wall height Ht of the loading target T, and the interference avoidance orientation from the storage 650 (step S22).
  • the angle identification unit 615 identifies the target rotation angle ⁇ 0 and the second interference avoidance angle ⁇ 2 based on the orientation of the rotating body 120 identified in step S21 and the target orientation and interference avoidance orientation read in step S22 (step S23).
  • the movement control unit 616 determines whether the work machine 130 is rotating (step S26). For example, the movement control unit 616 determines that the work machine 130 is rotating when the rotation speed of the rotating body 120 is equal to or higher than a predetermined speed. If the work machine 130 is not rotating (step S26: NO), the movement control unit 616 determines whether the height of the lowest point Q identified in step S25 is higher than the wall height Ht read in step S22 (step S27). If the height of the lowest point Q is lower than the wall height Ht (step S27: NO), the movement control unit 616 generates an automatic operation signal to raise the boom 131 (step S27).
  • an automatic operation signal to raise the arm 132 or the bucket 133 instead of the boom 131 may be generated, or a combination of these may be operated.
  • the movement control unit 616 does not generate an automatic operation signal to rotate the rotating body 120.
  • the control device 160 then returns the process to step S24.
  • the movement control unit 616 generates an automatic operation signal to rotate the rotating body 120 (step S29).
  • the automatic operation signal is an operation signal to rotate the rotating body 120 from the inside to the outside of the loading target T in a plan view from above.
  • step S26 if the work machine 130 is rotating (step S26: YES), the movement control unit 616 determines whether or not the rotation angle of the work machine 130 will reach the target rotation angle by inertia when the rotation operation signal is stopped, based on the measurement data of the rotation speed of the work machine 130 identified in step S24 (step S30). If the rotation angle of the work machine 130 does not reach the target rotation angle by inertia (step S30: NO), the movement control unit 616 generates an automatic operation signal to rotate the rotating body 120 (step S29). If the rotation angle of the work machine 130 reaches the target rotation angle by inertia (step S30: YES), the movement control unit 616 does not generate an automatic operation signal to rotate the rotating body 120.
  • the movement control unit 616 determines whether the rotation angle of the rotating body 120 from the start of automatic control to the current time is less than the second interference avoidance angle ⁇ 2 (step S31). If the rotation angle is less than the second interference avoidance angle ⁇ 2 (step S31: YES), the movement control unit 616 generates an operation signal (neutral signal) that maintains the attitude of the work machine 130.
  • step S31 if the rotation angle is equal to or greater than the second interference avoidance angle ⁇ 2 (step S31: NO), the movement control unit 616 determines whether the attitude of the work implement 130 identified in step S24 is close to the target attitude identified in step S22 (step S32). If the attitude of the work implement 130 is not close to the target attitude (step S32: NO), the movement control unit 616 generates an automatic operation signal that moves the boom 131, arm 132, and bucket 133 closer to the target attitude (step S33). If the attitude of the work implement 130 is close to the target attitude (step S32: YES), the movement control unit 616 generates a neutral signal that maintains the attitude of the work implement 130.
  • the operation signal output unit 617 outputs the generated automatic operation signal to the control valve 123 (step S34).
  • the movement control unit 616 determines whether the rotation angle has reached the target rotation angle and the attitude of the work machine 130 has become the target attitude (step S35). If the rotation angle has not reached the target rotation angle or the attitude of the work machine 130 has not become the target attitude (step S35: NO), the control device 160 returns the process to step S24. On the other hand, if the rotation angle has reached the target rotation angle and the attitude of the work machine 130 has become the target attitude (step S35: YES), the automatic control process ends.
  • the control device 160 when the automatic control for the second rotation in which the bucket 133 is moved from above the loading target T to the side of the loading target T is started, if the height of the lowest point of the bucket 133 is higher than the height of the wall of the loading target T, the control device 160 according to the first embodiment outputs an automatic operation signal for rotating the rotating body 120 from the inside to the outside of the loading target T in a plan view from above. On the other hand, if the height of the lowest point is lower than the height of the wall at the start of the automatic control, the control device 160 does not immediately output an automatic operation signal for rotating the rotating body 120 from the inside to the outside of the loading target T in a plan view from above. This makes it possible to prevent the bucket 133 from contacting the inner wall of the loading target T in the automatic control of the loading machine 100, even if the operator positions the bucket 133 inside the loading target T as shown in FIG. 6.
  • control device 160 outputs an automatic operation signal to raise the work machine 130 if the height of the lowest point of the bucket 133 is lower than the height of the wall of the loading object T at the start of automatic control, and outputs an automatic operation signal to rotate the rotating body 120 from the inside to the outside of the loading object T after the height of the lowest point becomes higher than the height of the wall.
  • the control device 160 can move the bucket 133 to the side of the loading object T without causing the bucket 133 to come into contact with the inner wall of the loading object T.
  • the second rotation may not be performed and an alert may be output to the operation terminal 142.
  • the alert may be, for example, an alarm sound or a warning screen displayed on the display of the operation terminal 142. In this case, the operator who has confirmed the alert raises the bucket 133 and then presses the start switch 143SW again, whereby the second rotation is performed.
  • the control device 160 may be configured by a single computer, or the configuration of the control device 160 may be divided and arranged among multiple computers, and the multiple computers may function as the control device 160 by working together. In this case, some of the computers constituting the control device 160 may be mounted inside the loading machine 100, and other computers may be provided outside the loading machine 100.
  • the target posture, target orientation, interference avoidance orientation, and wall height Ht in the above-described embodiment are recorded in storage 650 by teaching, but are not limited to this.
  • the loading machine 100 in other embodiments may be equipped with a three-dimensional measuring device such as a stereo camera or LiDar to recognize the position and shape of the loading target T, and identify the target posture, target orientation, interference avoidance orientation, and wall height Ht based on this.
  • the reference identification unit 614 may identify the target posture, target orientation, interference avoidance orientation, and wall height Ht based on the shape data of the loading target T.
  • the position, posture, and orientation of the loading target T may be received by communication with the loading target T, and the target posture, target orientation, interference avoidance orientation, and wall height Ht may be identified based on this and the known shape of the loading target T.
  • the position and direction of the loading target T may be received from the control device, and the target posture, target orientation, interference avoidance orientation, and wall height Ht may be specified based on the position and direction of the loading target T and the known shape of the loading target T.
  • the reference specification unit 614 may specify the target posture, target orientation, interference avoidance orientation, and wall height Ht based on an input by an operator to the operation terminal 142.
  • the loading machine 100 may specify the target posture, target orientation, and interference avoidance orientation, and specify the wall height Ht separately. That is, in another embodiment, the control device 160 may separately include a first reference specification unit that specifies the target posture, target orientation, and interference avoidance orientation, and a second reference specification unit that specifies the wall height Ht.
  • the loading machine 100 may specify the target posture, target orientation, and interference avoidance orientation by teaching, and specify the wall height Ht by an input by an operator. The operator may also input the model of the loading machine to specify the wall height, which is the height of the loading target.
  • the control device 160 specifies the wall height Ht by reading the height associated with the input model from a table that associates the model with the wall height in advance.
  • the control device 160 identifies the posture of the work machine 130 based on measurement data from a sensor that measures the posture of the work machine 130, but is not limited to this.
  • a sensor that measures the posture of the work machine 130
  • the posture of the work machine 130 in particular the height of the lowest point Q of the bucket 133, may be recognized based on the measurement data from the three-dimensional measuring device, and automatic control may be performed based on this.
  • the control device 160 calculates the angle of the rotating body 120 by integrating the angular velocity of the rotating body 120 measured by the inclinometer 152, but is not limited to this.
  • the control device 160 may calculate the angle of the rotating body 120 based on the difference in the orientation measured by the position and orientation calculator 151.
  • the angle of the rotating body 120 may be determined using the detection value of a rotation angle sensor provided in the rotation motor 124.
  • the control device 160 performs automatic control based on a comparison between the rotation angle and the interference avoidance angle, but is not limited to this.
  • the control device 160 may perform automatic control based on a comparison between the position of the bucket 133 and the rearmost point in the rotation direction of the rotating body 120 on the outer shape of the loading target T.
  • the control device 160 may adjust the rotation start timing so that the bucket 133 is located in an area near the rearmost point in the rotation direction of the rotating body 120.
  • the control device 160 may generate automatic control signals for each link component and the rotating body 120 so that the bucket 133 follows a predesignated trajectory.
  • the trajectory may be determined, for example, by fitting to a predetermined curve function, or by teaching through manual operation.
  • the trajectory may be represented by a time series of the attitude of the bucket 133, the attitude of each link component and the rotating body 120, or an operation signal.
  • the loading machine 100 is operated directly by an operator in the cab 140, but is not limited to this.
  • the loading machine 100 may be operated by remote control. That is, in other embodiments, an operation signal may be transmitted to the control device 160 by communication from an operating device 143 provided remotely.
  • the control device 160 may be configured by a computer provided at a remote location, or may be configured by a control system in which functions are shared between computers provided at the loading machine 100 and the remote location.
  • the automatic control according to the embodiment described above executes a first rotation to move the bucket 133 from a position at the completion of excavation to a loading point, and a second rotation to move the bucket 133 to a position for starting the next excavation, but is not limited to this.
  • the control device 160 may execute a fully automatic control to automatically execute a series of operations of the first rotation, earth removal, and second rotation.
  • the control device 160 may execute only the second rotation without executing the first rotation.
  • the automatic control according to the embodiment described above is triggered by the operator pressing the start switch 143SW, but is not limited to this.
  • the control device 160 may autonomously determine the start timing of the automatic control and start the automatic control without pressing the start switch 143SW.
  • Position direction Position calculator 152 ...inclination measuring device 153...boom stroke sensor 154...arm stroke sensor 155...bucket stroke sensor 160...control device 610...processor 611...measurement data acquisition section 612...operation signal input section 613...working machine position identification section 614...reference identification section 615...angle identification section 616...movement control section 617...operation signal output section 630...main memory 650...storage 670...interface T...loading target

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

A reference identification unit (614) identifies the height of a loading target (T). A work machine identification unit (613) identifies the height of a work tool. During automatic control for moving the work tool from above the loading target (T) to outward of the loading target (T), an operating signal output unit (617) outputs a signal to raise a work machine (130) if the work tool is located above the loading target (T) and the height of the work tool is lower than the height of the loading target (T).

Description

積込機械の制御装置、遠隔制御装置および制御方法Control device, remote control device and control method for loading machine
 本開示は、積込機械の制御装置、遠隔制御装置および制御方法に関する。
 本願は、2022年11月18日に日本に出願された特願2022-184885号について優先権を主張し、その内容をここに援用する。
The present disclosure relates to a control device, a remote control device, and a control method for a loading machine.
This application claims priority to Japanese Patent Application No. 2022-184885, filed in Japan on November 18, 2022, the contents of which are incorporated herein by reference.
 特許文献1には、積込機械の半自動制御に関する技術が開示されている。特許文献1に係る半自動制御は、ダンプトラックなどの積込対象に対する積込完了後に、オペレータから掘削指示を受け付け、制御装置が積込機械の旋回及び作業機の駆動を制御することで、掘削位置までバケットを自動的に移動させる制御である。 Patent Document 1 discloses technology related to semi-automatic control of loading machines. The semi-automatic control described in Patent Document 1 is a control in which, after loading of a loading target such as a dump truck is completed, an excavation command is received from an operator, and a control device controls the rotation of the loading machine and the drive of the work equipment, thereby automatically moving the bucket to the excavation position.
日本国特開2020-041352号公報Japanese Patent Publication No. 2020-041352
 ところで、オペレータは、荷を積込対象に積み込む際に、積込対象に加わる衝撃を抑えるために荷を低い位置で積み込むことがある。またオペレータはバケットで荷を均すことがある。このとき、バケットは積込対象である箱体の内側に位置する。したがって、半自動制御または全自動制御によって積込機械を旋回させるときに、バケットが積込対象の内壁に接触する可能性がある。以下、半自動制御および全自動制御を総称して自動制御とよぶ。 When loading a load onto a loading object, the operator may load the load at a low position to reduce the impact on the object. The operator may also level the load with a bucket. In this case, the bucket is positioned inside the box that is the loading object. Therefore, when the loading machine is rotated by semi-automatic control or fully automatic control, there is a possibility that the bucket will come into contact with the inner wall of the loading object. Hereinafter, semi-automatic control and fully automatic control will be collectively referred to as automatic control.
 本開示の目的は、積込機械の自動制御において、バケットが積込対象の内壁に接触することを防ぐ積込機械の制御装置、遠隔制御装置および制御方法を提供することにある。 The objective of this disclosure is to provide a control device, remote control device, and control method for a loading machine that prevents the bucket from contacting the inner wall of the object being loaded during automatic control of the loading machine.
 本開示の一態様によれば、積込機械の制御装置は、旋回中心回りに旋回する旋回体と、作業具を有する前記旋回体に取り付けられた作業機とを備える積込機械の制御装置であって、積込対象の高さを特定する基準特定部と、前記作業具の高さを特定する作業機位置特定部と、前記作業具を前記積込対象の上から前記積込対象の側方へ移動させる自動制御時に、前記作業具が前記積込対象の上方に位置し、かつ前記作業具の高さが前記積込対象の高さより低い場合に、前記作業機を上昇させる信号を出力する操作信号出力部とを備える。 According to one aspect of the present disclosure, the control device for a loading machine is a control device for a loading machine that includes a rotating body that rotates around a rotation center and a working machine that has a working tool attached to the rotating body, and includes a reference identification unit that identifies the height of the loading target, a working machine position identification unit that identifies the height of the working tool, and an operation signal output unit that outputs a signal to raise the working machine when the working tool is located above the loading target and the height of the working tool is lower than the height of the loading target during automatic control to move the working tool from above the loading target to the side of the loading target.
 上記態様によれば、積込機械の制御装置は積込機械の自動制御において、バケットが積込対象である箱体の内壁に接触することを防ぐことができる。 According to the above aspect, the loading machine control device can prevent the bucket from contacting the inner wall of the box body to be loaded during automatic control of the loading machine.
第一実施形態に係る積込機械の構成を示す概略図である。1 is a schematic diagram showing a configuration of a loading machine according to a first embodiment. FIG. 第一実施形態に係る運転室の内部の構成を示す図である。FIG. 2 is a diagram showing the internal configuration of a driver's cab according to the first embodiment. 第一実施形態に係る制御装置の構成を示す概略ブロック図である。FIG. 2 is a schematic block diagram showing the configuration of a control device according to the first embodiment. 第一実施形態に係る第一旋回における積込機械の動きの例を示す図である。5A to 5C are diagrams illustrating an example of a movement of the loading machine in a first turning according to the first embodiment. 第一実施形態に係る第二旋回における積込機械の動きの例を示す図である。8A to 8C are diagrams illustrating an example of a movement of the loading machine in a second turning according to the first embodiment. 第一実施形態に係るダンプ操作における積込機械の動きの例を示す図である。5A to 5C are diagrams illustrating an example of the movement of the loading machine during a dump operation according to the first embodiment. 第一実施形態に係る制御装置による第一旋回制御を示すフローチャートである。5 is a flowchart showing a first turning control by the control device according to the first embodiment. 第一実施形態に係る制御装置による第二旋回制御を示すフローチャートである。5 is a flowchart showing a second turning control by the control device according to the first embodiment.
〈第一実施形態〉
 以下、図面を参照しながら実施形態について詳しく説明する。
First Embodiment
Hereinafter, the embodiments will be described in detail with reference to the drawings.
《積込機械100の構成》
 図1は、第一実施形態に係る積込機械100の構成を示す概略図である。
 積込機械100は、施工現場にて稼働し、土砂などの施工対象を掘削し、荷としてダンプトラックなどの積込対象Tのベッセルなど荷台に積み込む。積込機械100の例としては、フェイスショベル、バックホウショベル、ロープショベルなどが挙げられる。また積込機械100は電動駆動するものであってもよいし、油圧駆動するものであってもよい。第一実施形態に係る積込機械100は、バックホウショベルである。積込機械100は、走行体110、旋回体120、作業機130及び運転室140を備える。積込対象Tの例としては、ダンプトラック、ホッパなどが挙げられる。
Configuration of the loading machine 100
FIG. 1 is a schematic diagram showing the configuration of a loading machine 100 according to the first embodiment.
The loading machine 100 operates at a construction site, excavates a construction object such as soil and sand, and loads the excavated soil and sand as cargo onto a loading platform such as a vessel of a loading object T such as a dump truck. Examples of the loading machine 100 include a face shovel, a backhoe shovel, and a rope shovel. The loading machine 100 may be either electrically driven or hydraulically driven. The loading machine 100 according to the first embodiment is a backhoe shovel. The loading machine 100 includes a traveling body 110, a rotating body 120, a work machine 130, and a cab 140. Examples of the loading object T include a dump truck and a hopper.
 走行体110は、積込機械100を走行可能に支持する。走行体110は、左右に設けられた2つの無限軌道111と、各無限軌道111を駆動するための2つの走行モータ112を備える。走行体110は、支持部の一例である。
 旋回体120は、走行体110に旋回中心回りに旋回可能に支持される。
 作業機130は、油圧により駆動する。作業機130は、旋回体120の前部に上下方向に駆動可能に支持される。
 運転室140は、オペレータが搭乗し、積込機械100の操作を行うためのスペースである。運転室140は、旋回体120の左前部に設けられる。
 ここで、旋回体120のうち作業機130が取り付けられる部分を前部という。また、旋回体120について、前部を基準に、反対側の部分を後部、左側の部分を左部、右側の部分を右部という。
The running body 110 supports the loading machine 100 so that the loading machine 100 can run. The running body 110 includes two endless tracks 111 provided on the left and right sides, and two travel motors 112 for driving each of the endless tracks 111. The running body 110 is an example of a support portion.
The rotating body 120 is supported by the running body 110 so as to be capable of rotating about a rotation center.
The work machine 130 is hydraulically driven and supported on the front part of the revolving body 120 so as to be drivable in the vertical direction.
The operator's cab 140 is a space where an operator rides in and operates the loading machine 100. The operator's cab 140 is provided at the left front part of the rotating body 120.
Here, the portion of the rotating body 120 to which the work machine 130 is attached is referred to as the front portion. Furthermore, with respect to the rotating body 120, the portion opposite the front portion is referred to as the rear portion, the left portion as the left portion, and the right portion as the right portion.
《旋回体120の構成》
 旋回体120は、エンジン121、油圧ポンプ122、コントロールバルブ123、旋回モータ124を備える。
 エンジン121は、油圧ポンプ122を駆動する原動機である。エンジン121は、動力源の一例である。
 油圧ポンプ122は、エンジン121により駆動される可変容量ポンプである。油圧ポンプ122は、コントロールバルブ123を介して各アクチュエータ(ブームシリンダ131C、アームシリンダ132C、バケットシリンダ133C、走行モータ112、及び旋回モータ124)に作動油を供給する。
 コントロールバルブ123は、油圧ポンプ122から供給される作動油の流量を制御する。
 旋回モータ124は、コントロールバルブ123を介して油圧ポンプ122から供給される作動油によって駆動し、旋回体120を旋回させる。
Configuration of the rotating body 120
The rotating body 120 is equipped with an engine 121, a hydraulic pump 122, a control valve 123, and a rotating motor 124.
The engine 121 is a prime mover that drives the hydraulic pump 122. The engine 121 is an example of a power source.
The hydraulic pump 122 is a variable displacement pump driven by the engine 121. The hydraulic pump 122 supplies hydraulic oil via a control valve 123 to each actuator (the boom cylinder 131C, the arm cylinder 132C, the bucket cylinder 133C, the travel motor 112, and the swing motor 124).
The control valve 123 controls the flow rate of the hydraulic oil supplied from the hydraulic pump 122 .
The swing motor 124 is driven by hydraulic oil supplied from a hydraulic pump 122 via a control valve 123 to swing the swing body 120 .
《作業機130の構成》
 作業機130は、ブーム131、アーム132、作業具としてのバケット133、ブームシリンダ131C、アームシリンダ132C、及びバケットシリンダ133Cを備える。作業具の他の例として、クラムバケット、チルトバケット、チルトローテートバケット、グラップル、リフティングマグネットなどの先端アタッチメントが挙げられる。
Configuration of the work machine 130
The work machine 130 includes a boom 131, an arm 132, a bucket 133 as a work tool, a boom cylinder 131C, an arm cylinder 132C, and a bucket cylinder 133C. Other examples of the work tool include end attachments such as a clam bucket, a tilt bucket, a tilt rotate bucket, a grapple, and a lifting magnet.
 ブーム131の基端部は、旋回体120にブームピンを介して回転可能に取り付けられる。なお、図1に示す積込機械100においては、ブーム131が旋回体120の正面中央部分に設けられるが、これに限られず、ブーム131は左右方向にオフセットして取り付けられたものであってもよい。この場合、旋回体120の旋回中心は作業機130の動作平面上に位置しない。
 アーム132は、ブーム131とバケット133とを連結する。アーム132の基端部は、ブーム131の先端部にアームピンを介して回転可能に取り付けられる。
 バケット133は、アーム132の先端部にピンを介して回転可能に取り付けられる。バケット133を支持する部材として、ブーム131、アーム132がある。バケット133は、掘削した土砂を収容するための容器として機能する。バケット133は、開口が旋回体120側(後方)を向くように取り付けられる。つまり、バックホウショベルである積込機械100は、バケット133を旋回体120の手前側に引き寄せることで掘削を行う。
The base end of the boom 131 is rotatably attached to the revolving body 120 via a boom pin. In the loading machine 100 shown in FIG. 1 , the boom 131 is provided at the center of the front of the revolving body 120, but the present invention is not limited to this. The boom 131 may be attached offset in the left-right direction. In this case, the center of rotation of the revolving body 120 is not located on the operating plane of the work machine 130.
The arm 132 connects the boom 131 and the bucket 133. A base end of the arm 132 is rotatably attached to a tip end of the boom 131 via an arm pin.
The bucket 133 is rotatably attached to the tip of the arm 132 via a pin. Members supporting the bucket 133 include the boom 131 and the arm 132. The bucket 133 functions as a container for storing excavated soil and sand. The bucket 133 is attached so that its opening faces the rotating body 120 (rear). In other words, the loading machine 100, which is a backhoe excavator, performs excavation by pulling the bucket 133 to the front side of the rotating body 120.
 ブームシリンダ131Cは、ブーム131を作動させるための油圧シリンダである。ブームシリンダ131Cの基端部は、旋回体120に取り付けられる。ブームシリンダ131Cの先端部は、ブーム131に取り付けられる。
 アームシリンダ132Cは、アーム132を駆動するための油圧シリンダである。アームシリンダ132Cの基端部は、ブーム131に取り付けられる。アームシリンダ132Cの先端部は、アーム132に取り付けられる。
 バケットシリンダ133Cは、バケット133を駆動するための油圧シリンダである。バケットシリンダ133Cの基端部は、アーム132に取り付けられる。バケットシリンダ133Cの先端部は、バケット133を回動させるリンク機構に取り付けられる。
The boom cylinder 131C is a hydraulic cylinder for operating the boom 131. A base end of the boom cylinder 131C is attached to the rotating body 120. A tip end of the boom cylinder 131C is attached to the boom 131.
The arm cylinder 132C is a hydraulic cylinder for driving the arm 132. A base end of the arm cylinder 132C is attached to the boom 131. A tip end of the arm cylinder 132C is attached to the arm 132.
The bucket cylinder 133C is a hydraulic cylinder for driving the bucket 133. A base end of the bucket cylinder 133C is attached to the arm 132. A tip end of the bucket cylinder 133C is attached to a link mechanism that rotates the bucket 133.
《運転室140の構成》
 図2は、第一実施形態に係る運転室140の内部の構成を示す図である。
 運転室140内には、運転席141、操作端末142及び操作装置143が設けられる。操作端末142は、運転席141の近傍に設けられ、後述する制御装置160とのユーザインタフェースである。操作端末142は、例えばタッチパネルで構成された表示装置であり、オペレータが操作する操作部と、操作を受け付ける入力受付部があってもよい。また、表示装置には、エンジン水温計、燃料計の計測データなどが表示されている。また、操作端末142は、LCDなどの表示部を備えるものであってよい。前記タッチパネルは表示部の一例である。
Configuration of the operator's cab 140
FIG. 2 is a diagram showing the internal configuration of the operator's cab 140 according to the first embodiment.
A driver's seat 141, an operation terminal 142, and an operation device 143 are provided in the driver's cab 140. The operation terminal 142 is provided near the driver's seat 141, and is a user interface with the control device 160 described below. The operation terminal 142 is a display device constituted by, for example, a touch panel, and may have an operation unit operated by an operator and an input reception unit that receives operations. The display device also displays measurement data of an engine water temperature gauge, a fuel gauge, and the like. The operation terminal 142 may also be equipped with a display unit such as an LCD. The touch panel is an example of a display unit.
 操作装置143は、オペレータの手動操作によって走行体110、旋回体120及び作業機130を駆動させるための装置である。操作装置143は、左操作レバー143LO、右操作レバー143RO、左フットペダル143LF、右フットペダル143RF、左走行レバー143LT、右走行レバー143RT、旋回ブレーキペダル143TB、開始スイッチ143SWを備える。 The operating device 143 is a device for driving the traveling body 110, the rotating body 120, and the work machine 130 by manual operation by the operator. The operating device 143 includes a left operating lever 143LO, a right operating lever 143RO, a left foot pedal 143LF, a right foot pedal 143RF, a left travel lever 143LT, a right travel lever 143RT, a swing brake pedal 143TB, and a start switch 143SW.
 左操作レバー143LOは、運転席141の左側に設けられる。右操作レバー143ROは、運転席141の右側に設けられる。 The left operating lever 143LO is provided on the left side of the driver's seat 141. The right operating lever 143RO is provided on the right side of the driver's seat 141.
 左操作レバー143LOは、旋回体120の旋回動作、及び、アーム132の掘削/ダンプ動作を行うための操作機構である。具体的には、積込機械100のオペレータが左操作レバー143LOを前方に倒すと、アーム132がダンプ動作する。また、積込機械100のオペレータが左操作レバー143LOを後方に倒すと、アーム132が掘削動作する。また、積込機械100のオペレータが左操作レバー143LOを右方向に倒すと、旋回体120が右旋回する。また、積込機械100のオペレータが左操作レバー143LOを左方向に倒すと、旋回体120が左旋回する。なお、他の実施形態においては、左操作レバー143LOを前後方向に倒した場合に旋回体120が右旋回又は左旋回し、左操作レバー143LOが左右方向に倒した場合にアーム132が掘削動作又はダンプ動作してもよい。 The left operating lever 143LO is an operating mechanism for rotating the rotating body 120 and performing the excavation/dumping operation of the arm 132. Specifically, when the operator of the loading machine 100 tilts the left operating lever 143LO forward, the arm 132 performs the dumping operation. When the operator of the loading machine 100 tilts the left operating lever 143LO backward, the arm 132 performs the excavation operation. When the operator of the loading machine 100 tilts the left operating lever 143LO to the right, the rotating body 120 rotates to the right. When the operator of the loading machine 100 tilts the left operating lever 143LO to the left, the rotating body 120 rotates to the left. Note that in other embodiments, when the left operating lever 143LO is tilted forward or backward, the rotating body 120 rotates to the right or left, and when the left operating lever 143LO is tilted left or right, the arm 132 performs the excavation operation or dumping operation.
 右操作レバー143ROは、バケット133の掘削/ダンプ動作、及び、ブーム131の上げ/下げ動作を行うための操作機構である。具体的には、積込機械100のオペレータが右操作レバー143ROを前方に倒すと、ブーム131の下げ動作が実行される。また、積込機械100のオペレータが右操作レバー143ROを後方に倒すと、ブーム131の上げ動作が実行される。また、積込機械100のオペレータが右操作レバー143ROを右方向に倒すと、バケット133のダンプ動作が行われる。また、積込機械100のオペレータが右操作レバー143ROを左方向に倒すと、バケット133の掘削動作が行われる。なお、他の実施形態においては、右操作レバー143ROを前後方向に倒した場合に、バケット133がダンプ動作又は掘削動作し、右操作レバー143ROを左右方向に倒した場合にブーム131が上げ動作又は下げ動作してもよい。 The right operating lever 143RO is an operating mechanism for performing the excavation/dumping operation of the bucket 133 and the raising/lowering operation of the boom 131. Specifically, when the operator of the loading machine 100 tilts the right operating lever 143RO forward, the boom 131 is lowered. When the operator of the loading machine 100 tilts the right operating lever 143RO backward, the boom 131 is raised. When the operator of the loading machine 100 tilts the right operating lever 143RO to the right, the bucket 133 is dumped. When the operator of the loading machine 100 tilts the right operating lever 143RO to the left, the bucket 133 is excavated. In other embodiments, when the right operating lever 143RO is tilted forward/backward, the bucket 133 is dumped or excavated, and when the right operating lever 143RO is tilted left/right, the boom 131 is raised or lowered.
 左フットペダル143LFは、運転席141の前方の床面の左側に配置される。右フットペダル143RFは、運転席141の前方の床面の右側に配置される。左走行レバー143LTは、左フットペダル143LFに軸支され、左走行レバー143LTの傾斜と左フットペダル143LFの押し下げが連動するように構成される。右走行レバー143RTは、右フットペダル143RFに軸支され、右走行レバー143RTの傾斜と右フットペダル143RFの押し下げが連動するように構成される。 The left foot pedal 143LF is located on the left side of the floor in front of the driver's seat 141. The right foot pedal 143RF is located on the right side of the floor in front of the driver's seat 141. The left travel lever 143LT is pivoted to the left foot pedal 143LF and configured so that the tilt of the left travel lever 143LT and the pressing down of the left foot pedal 143LF are linked. The right travel lever 143RT is pivoted to the right foot pedal 143RF and configured so that the tilt of the right travel lever 143RT and the pressing down of the right foot pedal 143RF are linked.
 左フットペダル143LF及び左走行レバー143LTは、走行体110の左側履帯の回転駆動に対応する。具体的には、積込機械100のオペレータが左フットペダル143LF又は左走行レバー143LTを前方に倒すと、左側履帯は前進方向に回転する。また、積込機械100のオペレータが左フットペダル143LF又は左走行レバー143LTを後方に倒すと、左側履帯は後進方向に回転する。 The left foot pedal 143LF and the left travel lever 143LT correspond to the rotational drive of the left track of the travelling body 110. Specifically, when the operator of the loading machine 100 pushes the left foot pedal 143LF or the left travel lever 143LT forward, the left track rotates in the forward direction. Conversely, when the operator of the loading machine 100 pushes the left foot pedal 143LF or the left travel lever 143LT backward, the left track rotates in the reverse direction.
 右フットペダル143RF及び右走行レバー143RTは、走行体110の右側履帯の回転駆動に対応する。具体的には、積込機械100のオペレータが右フットペダル143RF又は右走行レバー143RTを前方に倒すと、右側履帯は前進方向に回転する。また、積込機械100のオペレータが右フットペダル143RF又は右走行レバー143RTを後方に倒すと、右側履帯は後進方向に回転する。 The right foot pedal 143RF and right travel lever 143RT correspond to the rotational drive of the right track of the travelling body 110. Specifically, when the operator of the loading machine 100 pushes the right foot pedal 143RF or the right travel lever 143RT forward, the right track rotates in the forward direction. Conversely, when the operator of the loading machine 100 pushes the right foot pedal 143RF or the right travel lever 143RT backward, the right track rotates in the reverse direction.
 開始スイッチ143SWは、例えば左操作レバー143LOのハンドル部分に設けられる。なお、開始スイッチ143SWは、運転席141に着座したオペレータの近傍に位置するように配置されればよい。開始スイッチ143SWが押下されると、制御装置160に自動制御指示信号が出力される。制御装置160は、自動制御指示信号の入力を受け付けると、自動制御を開始する。 The start switch 143SW is provided, for example, on the handle portion of the left operating lever 143LO. The start switch 143SW may be located near the operator seated in the driver's seat 141. When the start switch 143SW is pressed, an automatic control instruction signal is output to the control device 160. When the control device 160 receives the input of the automatic control instruction signal, it starts automatic control.
 自動制御は、所定の動作を実現するために積込機械100が自律的に作業機130および旋回体120の駆動を制御することである。第1の実施形態における自動制御は、掘削対象の掘削によって積込対象Tの側方にバケット133が位置する状態から、ブーム131を上げながら積込対象Tを向く方位まで旋回する一連の動作である第一旋回と、積込によって積込対象Tの上にバケット133が位置する状態から、ブーム131を下げながら所定の方位まで旋回する一連の動作である第二旋回とを、積込機械100が自律的に行う制御である。積込対象Tの側方とは、ベッセルなど荷を積み込む荷台の外側をいう。なお、他の実施形態に係る自動制御は、第二旋回のみを行うものであってもよい。第一実施形態においては、第一旋回および第二旋回における旋回体120の目標方位およびバケット133の目標姿勢は、それぞれ予め指定された方位および姿勢とする。なお、通常、掘削対象は積込対象Tの高さより低い位置となる。そのため、積込機械100は、第一旋回および第二旋回において、積込対象Tと作業機130とが接触しないように作業機130の駆動を制御する。自動制御の詳細は後述する。
 開始スイッチ143SWの押下の度に実行される自動制御が第一旋回と第二旋回とで切り替わる。また、他の実施形態においては、操作装置143が2つの開始スイッチ143SWを備え、それぞれに第一旋回と第二旋回とが割り当てられてもよい。
The automatic control is a control in which the loading machine 100 autonomously controls the driving of the work machine 130 and the rotating body 120 to realize a predetermined operation. The automatic control in the first embodiment is a control in which the loading machine 100 autonomously performs a first rotation, which is a series of operations in which the bucket 133 is positioned on the side of the loading target T by excavation of the excavation target, and the boom 131 is raised while rotating to a direction facing the loading target T, and a second rotation, which is a series of operations in which the bucket 133 is positioned on top of the loading target T by loading, and the boom 131 is lowered while rotating to a predetermined direction. The side of the loading target T refers to the outside of a loading platform such as a vessel on which a load is loaded. Note that the automatic control in other embodiments may perform only the second rotation. In the first embodiment, the target orientation of the rotating body 120 and the target attitude of the bucket 133 in the first rotation and the second rotation are respectively predetermined orientations and attitudes. Note that the excavation target is usually located lower than the height of the loading target T. Therefore, during the first and second turns, the loading machine 100 controls the driving of the work machine 130 so that the loading target T does not come into contact with the work machine 130. Details of the automatic control will be described later.
Each time the start switch 143SW is pressed, the automatic control that is executed is switched between the first rotation and the second rotation. In another embodiment, the operation device 143 may be provided with two start switches 143SW, each of which may be assigned to the first rotation and the second rotation.
《計測系の構成》
 図1に示すように、積込機械100は、位置方位演算器151、傾斜計測器152、ブームストロークセンサ153、アームストロークセンサ154、バケットストロークセンサ155を備える。
<<Configuration of the measurement system>>
As shown in FIG. 1 , the loading machine 100 includes a position/orientation calculator 151 , an inclination measuring device 152 , a boom stroke sensor 153 , an arm stroke sensor 154 , and a bucket stroke sensor 155 .
 位置方位演算器151は、旋回体120の位置及び旋回体120が向く方位を演算する。位置方位演算器151は、GNSSを構成する人工衛星から測位信号を受信する2つの受信器を備える。2つの受信器は、それぞれ旋回体120の異なる位置に設置される。位置方位演算器151は、受信器が受信した測位信号に基づいて、現場座標系における旋回体120の代表点(ショベル座標系の原点)の位置を検出する。
 位置方位演算器151は、2つの受信器が受信した各測位信号を用いて、一方の受信器の設置位置に対する他方の受信器の設置位置の関係として、旋回体120の向く方位を演算する。旋回体120が向く方位とは、旋回体120の正面に直交する方向である。旋回体120が向く方位は、作業機130のブーム131からバケット133へ伸びる直線の延在方向の水平成分に等しい。
The position and orientation calculator 151 calculates the position of the revolving body 120 and the orientation in which the revolving body 120 faces. The position and orientation calculator 151 includes two receivers that receive positioning signals from artificial satellites that constitute the GNSS. The two receivers are installed at different positions on the revolving body 120. The position and orientation calculator 151 detects the position of a representative point of the revolving body 120 in the site coordinate system (the origin of the excavator coordinate system) based on the positioning signals received by the receivers.
The position and orientation calculator 151 uses the positioning signals received by the two receivers to calculate the orientation of the rotating body 120 as the relationship between the installation position of one receiver and the installation position of the other receiver. The orientation of the rotating body 120 is a direction perpendicular to the front of the rotating body 120. The orientation of the rotating body 120 is equal to the horizontal component of the extension direction of a straight line extending from the boom 131 to the bucket 133 of the work machine 130.
 傾斜計測器152は、旋回体120の加速度及び角速度を計測し、計測結果に基づいて旋回体120の姿勢(例えば、ロール角、ピッチ角、ヨー角)および旋回速度を検出する。傾斜計測器152は、例えば旋回体120の下面に設置される。傾斜計測器152は、例えば、慣性計測装置(IMU:Inertial Measurement Unit)を用いることができる。 The inclination measuring device 152 measures the acceleration and angular velocity of the rotating body 120, and detects the attitude (e.g., roll angle, pitch angle, yaw angle) and rotation speed of the rotating body 120 based on the measurement results. The inclination measuring device 152 is installed, for example, on the underside of the rotating body 120. The inclination measuring device 152 can be, for example, an inertial measurement unit (IMU).
 ブームストロークセンサ153は、ブームシリンダ131Cに取り付けられ、ブームシリンダ131Cのシリンダ長を検出する。ブームシリンダ131Cのシリンダ長は、旋回体120に対するブーム131の相対角度に換算可能である。
 アームストロークセンサ154は、アームシリンダ132Cに取り付けられ、アームシリンダ132Cのシリンダ長を検出する。アームシリンダ132Cのシリンダ長は、ブーム131に対するアーム132の相対角度に換算可能である。
 バケットストロークセンサ155は、バケットシリンダ133Cに取り付けられ、バケットシリンダ133Cのシリンダ長を検出する。バケットシリンダ133Cのシリンダ長は、アーム132に対するバケット133の相対角度に換算可能である。
 第一実施形態に係る積込機械100は、ブームストロークセンサ153、アームストロークセンサ154、及びバケットストロークセンサ155を用いて作業機130の各リンク部品の角度を特定するが、他の実施形態においてはこれに限られない。例えば、他の実施形態においては、ストロークセンサに代えて、リンク部品の相対回転角を検出するポテンショメータを備えてもよいし、各リンク部品の対地角を検出する傾斜センサを備えてもよい。
The boom stroke sensor 153 is attached to the boom cylinder 131C and detects the cylinder length of the boom cylinder 131C. The cylinder length of the boom cylinder 131C can be converted into a relative angle of the boom 131 with respect to the rotating body 120.
The arm stroke sensor 154 is attached to the arm cylinder 132C and detects the cylinder length of the arm cylinder 132C. The cylinder length of the arm cylinder 132C can be converted into a relative angle of the arm 132 with respect to the boom 131.
The bucket stroke sensor 155 is attached to the bucket cylinder 133C and detects the cylinder length of the bucket cylinder 133C. The cylinder length of the bucket cylinder 133C can be converted into a relative angle of the bucket 133 with respect to the arm 132.
The loading machine 100 according to the first embodiment specifies the angle of each link component of the work machine 130 using the boom stroke sensor 153, the arm stroke sensor 154, and the bucket stroke sensor 155, but this is not limited to the above in other embodiments. For example, in other embodiments, instead of the stroke sensor, a potentiometer that detects the relative rotation angle of the link component may be provided, or an inclination sensor that detects the ground angle of each link component may be provided.
《制御装置160の構成》
 図3は、第一実施形態に係る制御装置160の構成を示す概略ブロック図である。
 積込機械100は、制御装置160を備える。制御装置160は、操作端末142に実装されるものであってもよいし、操作端末142と別個に設けられ、操作端末142からの入出力を受け付けるものであってもよい。制御装置160は、操作装置143から操作信号を受信する。制御装置160は、受信した操作信号又は自動制御のために生成された操作信号をコントロールバルブ123に出力することで、作業機130、旋回体120及び走行体110を駆動させる。以下、操作装置143から受信した操作信号を手動操作信号ともよび、自動制御のために生成された操作信号を自動操作信号ともよぶ。なお、自動操作信号は、旋回体120および作業機130を駆動させる操作信号からなり、走行体110を駆動させる操作信号を含まない。自動制御中に、オペレータによる手動操作信号を受信した場合、制御装置160は自動制御を停止してもよい。
Configuration of the control device 160
FIG. 3 is a schematic block diagram showing the configuration of the control device 160 according to the first embodiment.
The loading machine 100 includes a control device 160. The control device 160 may be implemented in the operation terminal 142, or may be provided separately from the operation terminal 142 and receive input and output from the operation terminal 142. The control device 160 receives an operation signal from the operation device 143. The control device 160 drives the work machine 130, the revolving body 120, and the traveling body 110 by outputting the received operation signal or an operation signal generated for automatic control to the control valve 123. Hereinafter, the operation signal received from the operation device 143 is also referred to as a manual operation signal, and the operation signal generated for automatic control is also referred to as an automatic operation signal. Note that the automatic operation signal is composed of an operation signal that drives the revolving body 120 and the work machine 130, and does not include an operation signal that drives the traveling body 110. When a manual operation signal by an operator is received during automatic control, the control device 160 may stop the automatic control.
 制御装置160は、プロセッサ610、メインメモリ630、ストレージ650、インタフェース670を備えるコンピュータである。ストレージ650は、プログラムを記憶する。プロセッサ610は、プログラムをストレージ650から読み出してメインメモリ630に展開し、プログラムに従った処理を実行する。 The control device 160 is a computer that includes a processor 610, a main memory 630, a storage 650, and an interface 670. The storage 650 stores a program. The processor 610 reads the program from the storage 650, expands it in the main memory 630, and executes processing according to the program.
 ストレージ650の例としては、半導体メモリ、磁気ディスク、光磁気ディスク、光ディスク等が挙げられる。ストレージ650は、制御装置160の共通通信線に直接接続された内部メディアであってもよいし、インタフェース670を介して制御装置160に接続される外部メディアであってもよい。メインメモリ630及びストレージ650は、一時的でない有形の記憶媒体である。 Examples of storage 650 include semiconductor memory, magnetic disks, magneto-optical disks, optical disks, etc. Storage 650 may be internal media directly connected to the common communication line of control device 160, or may be external media connected to control device 160 via interface 670. Main memory 630 and storage 650 are non-transitory tangible storage media.
 プロセッサ610は、プログラムの実行により、計測データ取得部611、操作信号入力部612、作業機位置特定部613、基準特定部614、角度特定部615、移動制御部616、操作信号出力部617を備える。 By executing the program, the processor 610 has a measurement data acquisition unit 611, an operation signal input unit 612, a work machine position identification unit 613, a reference identification unit 614, an angle identification unit 615, a movement control unit 616, and an operation signal output unit 617.
 計測データ取得部611は、積込機械100の計測系による計測データを取得する。具体的には、計測データ取得部611は、位置方位演算器151、傾斜計測器152、ブームストロークセンサ153、アームストロークセンサ154およびバケットストロークセンサ155から計測データを取得する。計測データ取得部611は、傾斜計測器152が計測した旋回体120の角速度を積分することで、旋回体120の角度を算出する。 The measurement data acquisition unit 611 acquires measurement data from the measurement system of the loading machine 100. Specifically, the measurement data acquisition unit 611 acquires measurement data from the position and orientation calculator 151, the inclination measuring device 152, the boom stroke sensor 153, the arm stroke sensor 154, and the bucket stroke sensor 155. The measurement data acquisition unit 611 calculates the angle of the rotating unit 120 by integrating the angular velocity of the rotating unit 120 measured by the inclination measuring device 152.
 操作信号入力部612は、操作装置143からオペレータが手動で操作された操作信号の入力を受け付ける。操作信号には、ブーム131の上げ操作や下げ操作をする駆動信号、アーム132の上げ操作や下げ操作をする駆動信号、バケット133のダンプ操作や掘削操作をする駆動信号、旋回体120の右旋回操作や左旋回操作をする駆動信号、走行体110の走行操作をする駆動信号、ならびに積込機械100の自動制御指示信号が含まれる。 The operation signal input unit 612 accepts input of operation signals manually operated by the operator from the operation device 143. The operation signals include a drive signal for raising or lowering the boom 131, a drive signal for raising or lowering the arm 132, a drive signal for dumping or digging the bucket 133, a drive signal for turning the rotating body 120 to the right or left, a drive signal for operating the traveling body 110 to travel, and an automatic control instruction signal for the loading machine 100.
 作業機位置特定部613は、計測データ取得部611が取得した計測データに基づいて、旋回体120を基準とする車体座標系におけるアーム132の先端Pの位置(図4)およびバケット133の最下点Qの位置(図4)を特定する。バケット133の最下点Qとは、バケット133の外形のうち地表面からの距離が最も短い点をいう。 The work machine position identification unit 613 identifies the position of the tip P of the arm 132 (FIG. 4) and the position of the lowest point Q of the bucket 133 (FIG. 4) in the vehicle body coordinate system based on the rotating body 120, based on the measurement data acquired by the measurement data acquisition unit 611. The lowest point Q of the bucket 133 refers to the point on the outer shape of the bucket 133 that is the shortest distance from the ground surface.
 作業機位置特定部613は、ブーム131の傾斜角と既知のブーム131の長さ(基端部のピンから先端部のピンまでの距離)とに基づいて、ブーム131の長さの垂直方向成分及び水平方向成分を求める。同様に、作業機位置特定部613は、アーム132の長さの垂直方向成分及び水平方向成分を求める。作業機位置特定部613は、積込機械100の位置から、積込機械100の方位及び姿勢から特定される方向に、ブーム131及びアーム132の長さの垂直方向成分の和及び水平方向成分の和だけ離れた位置を、アーム132の先端Pの位置として特定する。また、作業機位置特定部613は、バケット133の傾斜角と既知のバケット133の形状とに基づいて、バケット133の最下点Qの位置を特定する。例えば、作業機位置特定部613は、バケット133の傾斜角に基づいてバケット133の外殻の複数の点それぞれの位置を算出し、当該複数の点のうち最も高さが低い点を、最下点Qとして特定する。また、例えば、作業機位置特定部613は、バケット133のうちバケットピンから最も離れた点とバケットピンとの距離を、バケットピンから高さ方向下方にオフセットさせた点を最下点Qとしてもよい。また、例えば、作業機位置特定部613は、最大のバケット可動範囲の量を、バケットピンから高さ方向下方にオフセットさせた点を最下点Qとしてもよい。また作業機位置特定部613は、制御誤差や計測誤差を加味して、上記で特定した高さより余裕を持たせた高さをオフセットさせた点を、最下点Qとしてもよい。 The work machine position identification unit 613 determines the vertical and horizontal components of the length of the boom 131 based on the inclination angle of the boom 131 and the known length of the boom 131 (the distance from the pin at the base end to the pin at the tip end). Similarly, the work machine position identification unit 613 determines the vertical and horizontal components of the length of the arm 132. The work machine position identification unit 613 identifies the position of the tip P of the arm 132 as a position that is away from the position of the loading machine 100 in a direction identified from the orientation and posture of the loading machine 100 by the sum of the vertical components and the sum of the horizontal components of the lengths of the boom 131 and the arm 132. The work machine position identification unit 613 also identifies the position of the lowest point Q of the bucket 133 based on the inclination angle of the bucket 133 and the known shape of the bucket 133. For example, the work machine position identification unit 613 calculates the positions of each of a plurality of points on the outer shell of the bucket 133 based on the inclination angle of the bucket 133, and identifies the point with the lowest height among the plurality of points as the lowest point Q. Also, for example, the work machine position identification unit 613 may determine the lowest point Q as a point obtained by offsetting the distance between the bucket pin and the point of the bucket 133 that is farthest from the bucket pin downward in the height direction from the bucket pin. Also, for example, the work machine position identification unit 613 may determine the lowest point Q as a point obtained by offsetting the maximum bucket movable range amount downward in the height direction from the bucket pin. Also, the work machine position identification unit 613 may determine the lowest point Q as a point obtained by offsetting a height with a margin from the height identified above, taking into account control error and measurement error.
 基準特定部614は、自動制御を実行する前に、自動制御の基準点として、オペレータからバケット133の掘削準備位置、干渉回避位置、および積込位置のティーチングを受け付ける。ティーチングは、例えば以下の手順で行われる。
 基準特定部614は、操作端末142にバケット133を掘削準備位置へ移動させる指示を表示させる。オペレータは、操作装置143を操作してバケット133を掘削準備位置へ移動させ、操作端末142に掘削準備位置への移動完了を入力する。基準特定部614は、作業機位置特定部613によって特定された作業機130の姿勢を第二旋回の目標姿勢とし、アーム132の先端Pの位置を第二旋回の目標位置とし、旋回体120が向く方位を第二旋回の目標方位としてストレージ650に記録する。
 次に、基準特定部614は、操作端末142にバケット133の刃先を、積込対象Tのベッセルの壁の上端の高さを有し、かつ作業機130と積込対象Tとが上方からの平面視において重ならない位置である干渉回避位置に移動させる指示を表示させる。なお、ティーチングに用いるベッセルの壁は、ベッセルの側面の壁、前方の壁、後方の壁の何れでもよい。オペレータは、操作装置143を操作してバケット133の刃先を干渉回避位置へ移動させ、操作端末142に干渉回避位置への移動完了を入力する。干渉回避位置は、積込対象Tの右端および左端の両方について入力される。これにより、基準特定部614は、積込対象Tの荷台の範囲を特定することができる。なお、干渉回避位置の高さは、制御誤差や計測誤差を加味して、余裕を持たせた高さを上方向にオフセットさせたものであってもよい。
 基準特定部614は、作業機位置特定部613によって特定されたバケット133の最下点Qの高さを積込対象Tの壁高さHtとし、旋回体120が向く方位を干渉回避方位として、ストレージ650に記録する。壁高さHtは、積込対象Tの高さの一例である。
 次に、基準特定部614は、操作端末142にバケット133を積込対象Tの上方の積込位置に移動させる指示を表示させる。オペレータは、操作装置143を操作してバケット133を積込位置へ移動させ、操作端末142に積込位置への移動完了を入力する。基準特定部614は、作業機130の姿勢を第一旋回の目標姿勢とし、アーム132の先端Pの位置を第一旋回の目標位置とし、作業機位置特定部613によって特定された旋回体120が向く方位を第一旋回の目標方位として、ストレージ650に記録する。また、積込位置で特定されたバケット133の最下点Qの高さを壁高さHtとしてもよい。また、他の実施形態においては積込対象Tの高さは必ずしも荷台の側壁の高さである壁高さHtでなくてよく、積込対象T全体のうち最も高い点の高さであってもよい。
Before executing automatic control, the reference specifying unit 614 receives teaching of an excavation preparation position, an interference avoidance position, and a loading position of the bucket 133 from the operator as reference points for automatic control. The teaching is performed, for example, in the following procedure.
The reference specifying unit 614 displays an instruction to move the bucket 133 to the excavation preparation position on the operation terminal 142. The operator operates the operation device 143 to move the bucket 133 to the excavation preparation position, and inputs completion of the movement to the excavation preparation position to the operation terminal 142. The reference specifying unit 614 sets the attitude of the work machine 130 specified by the work machine position specifying unit 613 as the target attitude for the second rotation, sets the position of the tip P of the arm 132 as the target position for the second rotation, and records in the storage 650 the direction in which the rotating body 120 faces as the target direction for the second rotation.
Next, the reference specification unit 614 displays on the operation terminal 142 an instruction to move the blade tip of the bucket 133 to an interference avoidance position that has the height of the upper end of the vessel wall of the loading target T and is a position where the work machine 130 and the loading target T do not overlap in a plan view from above. The vessel wall used for teaching may be any of the side wall, front wall, and rear wall of the vessel. The operator operates the operation device 143 to move the blade tip of the bucket 133 to the interference avoidance position and inputs the completion of the movement to the interference avoidance position to the operation terminal 142. The interference avoidance positions are input for both the right end and the left end of the loading target T. This allows the reference specification unit 614 to specify the range of the loading platform of the loading target T. The height of the interference avoidance position may be offset upward by a height with a margin taking into account control errors and measurement errors.
The reference identification unit 614 sets the height of the lowest point Q of the bucket 133 identified by the work machine position identification unit 613 as the wall height Ht of the loading target T, and records the orientation of the rotating body 120 as the interference avoidance orientation in the storage 650. The wall height Ht is an example of the height of the loading target T.
Next, the reference specification unit 614 displays an instruction to move the bucket 133 to a loading position above the loading target T on the operation terminal 142. The operator operates the operation device 143 to move the bucket 133 to the loading position, and inputs the completion of the movement to the loading position to the operation terminal 142. The reference specification unit 614 records in the storage 650 the attitude of the working machine 130 as the target attitude of the first rotation, the position of the tip P of the arm 132 as the target position of the first rotation, and the direction in which the rotating body 120 faces identified by the working machine position specification unit 613 as the target direction of the first rotation. In addition, the height of the lowest point Q of the bucket 133 identified at the loading position may be the wall height Ht. In addition, in other embodiments, the height of the loading target T does not necessarily have to be the wall height Ht, which is the height of the side wall of the loading platform, and may be the height of the highest point of the entire loading target T.
 角度特定部615は、操作信号入力部612に自動制御指示信号が入力されたときに旋回体120が向く初期方位と、ストレージ650に記録された目標方位との間の角度を目標旋回角度として特定する。角度特定部615は、操作信号入力部612に自動制御指示信号が入力されたときに旋回体120が向く初期方位と、ストレージ650に記録された干渉回避方位の間の角度を干渉回避角度として特定する。干渉回避角度とは、作業機130と積込対象Tとが上方からの平面視において重ならないときの旋回角度である。 The angle identification unit 615 identifies, as a target rotation angle, the angle between the initial orientation in which the rotating body 120 faces when an automatic control instruction signal is input to the operation signal input unit 612 and the target orientation recorded in storage 650. The angle identification unit 615 identifies, as an interference avoidance angle, the angle between the initial orientation in which the rotating body 120 faces when an automatic control instruction signal is input to the operation signal input unit 612 and the interference avoidance orientation recorded in storage 650. The interference avoidance angle is the rotation angle when the work machine 130 and the loading target T do not overlap in a planar view from above.
 移動制御部616は、操作信号入力部612が自動制御指示信号の入力を受け付けた場合に、自動制御を実現する自動操作信号を生成する。自動制御指示信号が入力されたときに、バケット133を積込位置まで移動させる第一旋回を実現する自動制御、またはバケット133を掘削準備位置まで移動させる第二旋回を実現する自動制御を実行する。移動制御部616は、自動制御において第一旋回を実行するか第二旋回を実行するかを、自動制御指示信号の入力時にバケット133が上方からの平面視において積込対象Tの範囲内にあるか否かによって決定する。バケット133が積込対象Tの荷台の範囲内にない場合、移動制御部616は第一旋回を実行し、バケット133が積込対象Tの荷台の範囲内にある場合、移動制御部616は第二旋回を実行する。このとき、移動制御部616は、ストレージ650が記憶する壁高さHtと干渉回避角度とに基づいて、積込対象Tと作業機130とが接触しないよう旋回体120および作業機130を制御する。 When the operation signal input unit 612 receives an automatic control instruction signal, the movement control unit 616 generates an automatic operation signal that realizes automatic control. When the automatic control instruction signal is input, the automatic control unit 616 executes an automatic control that realizes a first rotation that moves the bucket 133 to a loading position, or an automatic control that realizes a second rotation that moves the bucket 133 to an excavation preparation position. The movement control unit 616 determines whether to execute the first rotation or the second rotation in the automatic control depending on whether the bucket 133 is within the range of the loading target T in a plan view from above when the automatic control instruction signal is input. If the bucket 133 is not within the range of the loading target T's loading platform, the movement control unit 616 executes the first rotation, and if the bucket 133 is within the range of the loading target T's loading platform, the movement control unit 616 executes the second rotation. At this time, the movement control unit 616 controls the rotating body 120 and the working machine 130 so that the loading target T and the working machine 130 do not come into contact with each other, based on the wall height Ht and the interference avoidance angle stored in the storage 650.
 具体的には、移動制御部616は、第一旋回において、第一干渉回避角度θ1(図4)に到達するまでに旋回体120と作業機130との複合動作を実現させる。第一旋回において、旋回体120の旋回角度が第一干渉回避角度θ1(図4)に到達するまでにバケット133の高さが積込位置の高さに至らない場合、旋回体120の旋回操作信号を生成せず、作業機130の操作信号のみを生成する。他方、移動制御部616は、旋回による旋回角度が第一干渉回避角度θ1に到達するまでにバケット133の高さが積込位置の高さに到達する場合、旋回体120の旋回操作信号及び作業機130の操作信号を生成し、旋回体120と作業機130との複合動作を実現する。バケット133の高さが、第一干渉回避角度θ1(図4)で積込位置の高さに到達した後は、移動制御部616は、作業機130を動かさずに旋回体120を旋回させる。
 また、移動制御部616は、第一旋回と反対に旋回する第二旋回において、旋回体120の旋回角度が第二干渉回避角度θ2(図5)に到達するまで、バケット133の最下点が下がらないよう制御する。最下点が下がらない制御は、作業機130を動かさずに旋回体120を旋回させ、最下点の高さを維持する制御であってもよいし、最下点を制御前の最下点より高くすることで積込対象Tとバケット133との間に隙間を設ける制御であってもよい。旋回角度が第二干渉回避角度θ2に到達した後、移動制御部616は、旋回体120の旋回操作信号及び作業機130の操作信号を生成し、旋回体120と作業機130との複合動作を実現する。ただし、移動制御部616は、第二旋回において自動制御指示信号の入力を受け付けたときに、バケット133の最下点の高さが積込対象Tの壁高さHtより低い場合に、旋回体120を旋回させる前に、バケット133を上方に移動させる。
Specifically, the movement control unit 616 realizes the combined operation of the rotating body 120 and the working machine 130 in the first rotation before the first interference avoidance angle θ1 ( FIG. 4 ) is reached. In the first rotation, if the height of the bucket 133 does not reach the height of the loading position before the rotation angle of the rotating body 120 reaches the first interference avoidance angle θ1 ( FIG. 4 ), the movement control unit 616 does not generate a rotation operation signal for the rotating body 120, and generates only an operation signal for the working machine 130. On the other hand, if the height of the bucket 133 reaches the height of the loading position before the rotation angle due to the rotation reaches the first interference avoidance angle θ1, the movement control unit 616 generates a rotation operation signal for the rotating body 120 and an operation signal for the working machine 130, thereby realizing the combined operation of the rotating body 120 and the working machine 130. After the height of the bucket 133 reaches the height of the loading position at the first interference avoidance angle θ1 ( FIG. 4 ), the movement control unit 616 rotates the rotating body 120 without moving the working machine 130.
Furthermore, in the second rotation in the opposite direction to the first rotation, the movement control unit 616 controls so that the lowest point of the bucket 133 does not drop until the rotation angle of the rotating body 120 reaches the second interference avoidance angle θ2 ( FIG. 5 ). The control to prevent the lowest point from dropping may be control to rotate the rotating body 120 without moving the work machine 130 and maintain the height of the lowest point, or control to set the lowest point higher than the lowest point before the control to provide a gap between the loading target T and the bucket 133. After the rotation angle reaches the second interference avoidance angle θ2, the movement control unit 616 generates a rotation operation signal for the rotating body 120 and an operation signal for the work machine 130, thereby realizing a combined operation of the rotating body 120 and the work machine 130. However, when the movement control unit 616 receives input of an automatic control instruction signal during the second rotation, if the height of the lowest point of the bucket 133 is lower than the wall height Ht of the loading object T, the movement control unit 616 moves the bucket 133 upward before rotating the rotating body 120.
 操作信号出力部617は、操作信号入力部612に入力された手動操作信号、又は移動制御部616が生成した自動操作信号をコントロールバルブ123に出力する。 The operation signal output unit 617 outputs the manual operation signal input to the operation signal input unit 612 or the automatic operation signal generated by the movement control unit 616 to the control valve 123.
《自動制御時の動作》
 ここで、図面を参照しながら、第一実施形態に係る自動制御時の積込機械100の動きについて説明する。
 図4は、第一実施形態に係る第一旋回における積込機械100の動きの例を示す図である。図5は、第一実施形態に係る第二旋回における積込機械100の動きの例を示す図である。
<<Automatic control operation>>
Here, the movement of the loading machine 100 during automatic control according to the first embodiment will be described with reference to the drawings.
Fig. 4 is a diagram showing an example of the movement of the loading machine 100 during a first turning according to the first embodiment. Fig. 5 is a diagram showing an example of the movement of the loading machine 100 during a second turning according to the first embodiment.
 第一旋回に係る自動制御が開始されると、図4に示すように制御装置160は、まず作業機130(ブーム131、アーム132、およびバケット133)の駆動を開始し、ブーム131の上げ動作でバケット133を上方へ移動させる。第一旋回に係るバケット133の目標位置は、積込対象Tの上方の積込位置である。遅れて、制御装置160は、旋回体120の旋回を開始させる。制御装置160は、旋回体120の旋回角度が第一干渉回避角度θ1と一致するまでに、作業機130の姿勢が第一旋回に係る目標姿勢となるように、旋回開始タイミングを調整する。なお、旋回体120の旋回角度が第一干渉回避角度θ1と一致するまでに作業機130の姿勢が第一旋回における目標姿勢となっている場合、つまりバケット133の最下点Qの高さが積込対象Tの壁高さHtより高い場合、旋回体120の旋回によって作業機130が積込対象Tに接触することがない。なお、旋回と同時に作業機130を駆動させて、旋回角度が第一干渉回避角度θ1と一致するまでに作業機130の姿勢が第一旋回における目標姿勢となる場合には、制御装置160は、作業機130の駆動と旋回とを同時に開始してもよい。その後、バケット133が積込位置に到達すると、自動制御を終了する。 When automatic control for the first rotation is started, as shown in FIG. 4, the control device 160 first starts driving the work machine 130 (boom 131, arm 132, and bucket 133), and moves the bucket 133 upward by raising the boom 131. The target position of the bucket 133 for the first rotation is a loading position above the loading target T. After a delay, the control device 160 starts rotating the rotating body 120. The control device 160 adjusts the rotation start timing so that the posture of the work machine 130 becomes the target posture for the first rotation before the rotation angle of the rotating body 120 matches the first interference avoidance angle θ1. Note that if the posture of the work machine 130 becomes the target posture for the first rotation before the rotation angle of the rotating body 120 matches the first interference avoidance angle θ1, that is, if the height of the lowest point Q of the bucket 133 is higher than the wall height Ht of the loading target T, the rotation of the rotating body 120 will not cause the work machine 130 to come into contact with the loading target T. In addition, if the working machine 130 is driven simultaneously with the rotation, and the posture of the working machine 130 becomes the target posture for the first rotation before the rotation angle coincides with the first interference avoidance angle θ1, the control device 160 may start driving and rotating the working machine 130 simultaneously. After that, when the bucket 133 reaches the loading position, the automatic control ends.
 その後、オペレータは、手動操作によってバケット133をダンプ方向に回動させるダンプ操作を行う。図6は、第一実施形態に係るダンプ操作における積込機械100の動きの例を示す図である。オペレータは、手動のダンプ操作において、積込対象Tに加わる衝撃を抑えるために荷を低い位置で積み込むことがある。また、オペレータは、積込機械100を操作して、ベッセルなどの荷台に積み込まれた荷を均す作業をすることがある。このとき、バケット133の最下点Qは図6に示すように積込対象Tの壁より低くなることがある。したがって、制御装置160がこのまま積込機械100を旋回させると、バケット133が積込対象Tの内壁に接触してしまう。 Then, the operator performs a dump operation by manually rotating the bucket 133 in the dump direction. FIG. 6 is a diagram showing an example of the movement of the loading machine 100 during the dump operation according to the first embodiment. In a manual dump operation, the operator may load the load at a low position to reduce the impact on the loading object T. The operator may also operate the loading machine 100 to level the load loaded on a bed such as a vessel. At this time, the lowest point Q of the bucket 133 may be lower than the wall of the loading object T as shown in FIG. 6. Therefore, if the control device 160 continues to rotate the loading machine 100 in this state, the bucket 133 will come into contact with the inner wall of the loading object T.
 第二旋回に係る自動制御が開始されると、制御装置160はバケット133の最下点が積込対象Tの壁より高いか否かを判定する。図5に示すようにバケット133の最下点Qが壁高さHtより低い場合、ブーム131を上昇させる。バケット133の最下点Qが壁高さHtより高くなると、制御装置160は、旋回体120の旋回を開始する。制御装置160は、旋回体120の旋回角度が第二干渉回避角度θ2を超えるまで、作業機130を動かさずに旋回体120を旋回させ、バケット133の最下点の高さを維持する。なお、第一実施形態においては、バケット133の最下点Qが壁高さHtより低い場合に、制御装置160は作業機130のみを上昇させ、旋回体120を旋回させないが、他の実施形態においてはこれに限られない。例えば、他の実施形態においては、バケット133の最下点Qが壁高さHtより低い場合に、制御装置160は作業機130を上昇させながら、バケット133が積込対象Tの壁に接しない程度の速度で旋回体120を旋回させてもよい。 When automatic control for the second rotation is initiated, the control device 160 determines whether the lowest point of the bucket 133 is higher than the wall of the loading target T. As shown in FIG. 5, if the lowest point Q of the bucket 133 is lower than the wall height Ht, the boom 131 is raised. When the lowest point Q of the bucket 133 becomes higher than the wall height Ht, the control device 160 starts rotating the rotating body 120. The control device 160 rotates the rotating body 120 without moving the work implement 130 until the rotation angle of the rotating body 120 exceeds the second interference avoidance angle θ2, thereby maintaining the height of the lowest point of the bucket 133. Note that in the first embodiment, when the lowest point Q of the bucket 133 is lower than the wall height Ht, the control device 160 raises only the work implement 130 and does not rotate the rotating body 120, but this is not limited to this in other embodiments. For example, in another embodiment, when the lowest point Q of the bucket 133 is lower than the wall height Ht, the control device 160 may raise the work machine 130 while rotating the rotating body 120 at a speed such that the bucket 133 does not come into contact with the wall of the loading target T.
 旋回体120の旋回角度が第二干渉回避角度θ2を超えると、制御装置160はブーム131、アーム132およびバケット133を駆動させる。このとき、制御装置160は、旋回開始時の姿勢と目標姿勢との関係から、ブーム131、アーム132およびバケット133をすべて駆動させることもあれば、ブーム131、アーム132およびバケット133の一部を駆動させることもある。旋回体120の旋回角度が目標旋回角度θ0に至ると、制御装置160は旋回体120の駆動を終了する。また作業機130の姿勢が掘削開始時の目標姿勢となると、制御装置160は作業機130の駆動を終了する。第一実施形態に係る制御装置160は、第二旋回において、旋回体120の旋回角度が第二干渉回避角度θ2を超えるまで作業機130を動かさずに旋回体120を旋回させるが、これに限られない。例えば、他の実施形態に係る制御装置160は、バケット133の最下点の高さが変わらないように作業機130を動かしながら旋回体120を旋回させてもよい。また実施形態に係る制御装置160は、バケット133が壁高さHtより高い場合に、バケット133の最下点の高さが壁高さHtを下回らない程度に、作業機130を下げながら旋回体120を旋回させてもよい。
 なお、図4および図5は、掘削位置と積込対象Tとの位置関係が、旋回体120を中心として約90度である例を示すが、他の実施形態においてはこれに限られない。例えば、他の実施形態においては、掘削位置と積込対象Tとの位置関係が、旋回体120を中心として約180度であるなど、他の旋回角度位置であってもよい。
When the rotation angle of the revolving body 120 exceeds the second interference avoidance angle θ2, the control device 160 drives the boom 131, the arm 132, and the bucket 133. At this time, the control device 160 may drive all of the boom 131, the arm 132, and the bucket 133, or may drive a part of the boom 131, the arm 132, and the bucket 133, depending on the relationship between the posture at the start of the rotation and the target posture. When the rotation angle of the revolving body 120 reaches the target rotation angle θ0, the control device 160 ends the drive of the revolving body 120. Also, when the posture of the working machine 130 becomes the target posture at the start of excavation, the control device 160 ends the drive of the working machine 130. In the first embodiment, the control device 160 rotates the revolving body 120 without moving the working machine 130 until the rotation angle of the revolving body 120 exceeds the second interference avoidance angle θ2 in the second rotation, but is not limited to this. For example, the control device 160 according to the other embodiment may rotate the rotating body 120 while moving the work machine 130 so as not to change the height of the lowest point of the bucket 133. Furthermore, when the bucket 133 is higher than the wall height Ht, the control device 160 according to the embodiment may rotate the rotating body 120 while lowering the work machine 130 to such an extent that the height of the lowest point of the bucket 133 does not fall below the wall height Ht.
4 and 5 show an example in which the positional relationship between the excavation position and the loading target T is about 90 degrees around the rotating body 120, but this is not limited to this in other embodiments. For example, in other embodiments, the positional relationship between the excavation position and the loading target T may be another rotation angle position, such as about 180 degrees around the rotating body 120.
《制御装置160の動作》
 図7は、第一実施形態に係る制御装置160による第一旋回制御を示すフローチャートである。図8は、第一実施形態に係る制御装置160による第二旋回制御を示すフローチャートである。
 オペレータによって開始スイッチ143SWが押下されると、制御装置160の操作信号入力部612は自動制御指示信号の入力を受け付ける。制御装置160は、自動積込指示信号が入力されると、バケット133が上方からの平面視において積込対象Tの荷台上の範囲内にあるか否かに基づいて、第一旋回を実行するか第二旋回を実行するかを決定する。
Operation of the control device 160
Fig. 7 is a flowchart showing a first turning control by the control device 160 according to the first embodiment. Fig. 8 is a flowchart showing a second turning control by the control device 160 according to the first embodiment.
When the operator presses the start switch 143SW, the operation signal input unit 612 of the control device 160 accepts input of an automatic control instruction signal. When the automatic loading instruction signal is input, the control device 160 determines whether to execute the first rotation or the second rotation based on whether the bucket 133 is within a range above the bed of the loading target T in a plan view from above.
 第一旋回を実行する場合、制御装置160は図7に示す第一旋回制御を実行する。まず、計測データ取得部611は積込機械100の方位の計測データを取得する(ステップS1)。移動制御部616は、ストレージ650から旋回体120の目標方位(積込対象Tを向く方位)、目標姿勢、積込対象Tの壁高さHt、および干渉回避方位を読み出す(ステップS2)。角度特定部615は、ステップS1で特定した旋回体120の向く方位ならびにステップS2で読み出した目標方位および干渉回避方位に基づいて、目標旋回角度θ0および第一干渉回避角度θ1を特定する(ステップS3)。 When executing the first rotation, the control device 160 executes the first rotation control shown in FIG. 7. First, the measurement data acquisition unit 611 acquires measurement data of the orientation of the loading machine 100 (step S1). The movement control unit 616 reads out the target orientation (orientation toward the loading target T), target posture, wall height Ht of the loading target T, and interference avoidance orientation of the rotating body 120 from the storage 650 (step S2). The angle identification unit 615 identifies the target rotation angle θ0 and the first interference avoidance angle θ1 based on the orientation of the rotating body 120 identified in step S1 and the target orientation and interference avoidance orientation read in step S2 (step S3).
 次に、計測データ取得部611は積込機械100の位置および方位、傾斜角、旋回速度および各シリンダのシリンダ長の計測データを取得し、作業機位置特定部613は計測データに基づいて作業機130の姿勢を特定する(ステップS4)。作業機位置特定部613はアーム132の先端Pの位置、バケット133の最下点Qの位置およびバケット133の姿勢を特定する(ステップS5)。 Next, the measurement data acquisition unit 611 acquires measurement data on the position and orientation, tilt angle, rotation speed, and cylinder length of each cylinder of the loading machine 100, and the work machine position identification unit 613 identifies the posture of the work machine 130 based on the measurement data (step S4). The work machine position identification unit 613 identifies the position of the tip P of the arm 132, the position of the lowest point Q of the bucket 133, and the posture of the bucket 133 (step S5).
 移動制御部616は、ステップS2で読み出した目標方位、目標姿勢および壁高さHt、ならびにステップS3で特定した第一干渉回避角度θ1に基づいて、バケット133を積込対象Tの上方まで移動させるための自動操作信号を生成する。すなわち、移動処理部1112は、バケット133の最下点Qが、第一旋回制御の開始時の最下点Qの位置から、壁高さHtおよび第一干渉回避角度θ1で表される干渉回避位置を経由して、目標方位および目標姿勢で表される積込位置に到達するように、自動操作信号を生成する。このとき、移動制御部616は、ブーム131およびアーム132が駆動してもバケット133の対地角度が変化しないように、バケット133の自動操作信号を生成する。
 具体的には、移動制御部616は、以下の手順で自動操作信号を生成する。
 まず、移動制御部616は、ステップS5で特定された作業機130の姿勢が、ステップS1で取得した目標姿勢と近似するか否かを判定する(ステップS6)。例えば、移動制御部616は、目標姿勢におけるアーム132の先端の位置と、現在のアーム132の先端の位置との差が所定値以下である場合に、作業機130の姿勢が目標姿勢と近似していると判定する。
The movement control unit 616 generates an automatic operation signal for moving the bucket 133 to above the loading target T, based on the target orientation, target posture, and wall height Ht read out in step S2, and the first interference avoidance angle θ1 specified in step S3. That is, the movement processing unit 1112 generates an automatic operation signal so that the lowest point Q of the bucket 133 reaches the loading position represented by the target orientation and target posture from the position of the lowest point Q at the start of the first swing control, via the interference avoidance position represented by the wall height Ht and the first interference avoidance angle θ1. At this time, the movement control unit 616 generates an automatic operation signal for the bucket 133 so that the ground angle of the bucket 133 does not change even if the boom 131 and the arm 132 are driven.
Specifically, the movement control unit 616 generates an automatic operation signal in the following procedure.
First, the movement control unit 616 determines whether the posture of the work machine 130 identified in step S5 is similar to the target posture acquired in step S1 (step S6). For example, the movement control unit 616 determines that the posture of the work machine 130 is similar to the target posture when the difference between the position of the tip of the arm 132 in the target posture and the current position of the tip of the arm 132 is equal to or smaller than a predetermined value.
 作業機130の姿勢が目標姿勢と近似していない場合(ステップS6:NO)、移動制御部616は、ブーム131及びアーム132を目標姿勢に近づける自動操作信号を生成する(ステップS7)。このとき、移動制御部616は、ステップS4で取得した計測データから特定されるブーム131及びアーム132の位置及び速度に基づいて、自動操作信号を生成する。 If the posture of the work machine 130 is not close to the target posture (step S6: NO), the movement control unit 616 generates an automatic operation signal to move the boom 131 and the arm 132 closer to the target posture (step S7). At this time, the movement control unit 616 generates the automatic operation signal based on the position and speed of the boom 131 and the arm 132 identified from the measurement data acquired in step S4.
 また移動制御部616は、生成したブーム131及びアーム132の自動操作信号に基づいてブーム131及びアーム132の駆動速度の和を算出し、当該駆動速度の和と同じ速度でバケット133を駆動させる自動操作信号を生成する(ステップS8)。これにより、移動制御部616は、バケット133の対地角を保持する操作信号を生成することができる。 The movement control unit 616 also calculates the sum of the drive speeds of the boom 131 and the arm 132 based on the generated automatic operation signals of the boom 131 and the arm 132, and generates an automatic operation signal that drives the bucket 133 at a speed equal to the sum of the drive speeds (step S8). This allows the movement control unit 616 to generate an operation signal that maintains the ground angle of the bucket 133.
 移動制御部616は、作業機130が旋回中であるか否かを判定する(ステップS9)。移動制御部616は、例えば旋回体120の旋回速度が所定速度以上である場合に旋回中であると判定する。作業機130が旋回中でない場合(ステップS9:NO)、移動制御部616は、ステップS7で特定したブーム131及びアーム132の速度に基づいて作業機130が目標姿勢となるまでの完了時間を算出する(ステップS10)。また、移動制御部616は、旋回体120が旋回を開始した場合に旋回角度がステップS3で特定した第一干渉回避角度θ1に到達するまでの到達時間を算出する(ステップS11)。移動制御部616は、ステップS10で算出した完了時間がステップS11で算出した到達時間未満であるか否かを判定する(ステップS12)。つまり、移動制御部616は、旋回角度が第一干渉回避角度θ1に到達するときに作業機130が目標姿勢となるか否かを判定する。 The movement control unit 616 determines whether the work machine 130 is rotating (step S9). For example, the movement control unit 616 determines that the work machine 130 is rotating when the rotation speed of the rotating body 120 is equal to or higher than a predetermined speed. If the work machine 130 is not rotating (step S9: NO), the movement control unit 616 calculates the completion time until the work machine 130 reaches the target posture based on the speeds of the boom 131 and the arm 132 identified in step S7 (step S10). In addition, the movement control unit 616 calculates the arrival time until the rotation angle reaches the first interference avoidance angle θ1 identified in step S3 when the rotating body 120 starts rotating (step S11). The movement control unit 616 determines whether the completion time calculated in step S10 is less than the arrival time calculated in step S11 (step S12). In other words, the movement control unit 616 determines whether the work machine 130 reaches the target posture when the rotation angle reaches the first interference avoidance angle θ1.
 完了時間が到達時間以上である場合(ステップS12:NO)、すなわち旋回角度が第一干渉回避角度θ1に到達するまでに作業機130が目標姿勢とならない場合、移動制御部616は旋回体120の旋回操作信号を生成しない。他方、完了時間が到達時間未満である場合(ステップS12:YES)、すなわち旋回角度が第一干渉回避角度θ1に到達するまでに作業機130が目標姿勢となる場合、移動制御部616は旋回体120の旋回操作信号を生成する(ステップS13)。これにより、制御装置160は、作業機130の高さが低いまま旋回してしまうことにより積込対象Tと接触することを防ぐことができる。 If the completion time is equal to or greater than the arrival time (step S12: NO), i.e., if the work machine 130 does not reach the target posture before the rotation angle reaches the first interference avoidance angle θ1, the movement control unit 616 does not generate a rotation operation signal for the rotating body 120. On the other hand, if the completion time is less than the arrival time (step S12: YES), i.e., if the work machine 130 reaches the target posture before the rotation angle reaches the first interference avoidance angle θ1, the movement control unit 616 generates a rotation operation signal for the rotating body 120 (step S13). This allows the control device 160 to prevent the work machine 130 from coming into contact with the loading target T due to rotating while the height of the work machine 130 is still low.
 操作信号出力部617は、生成された自動操作信号をコントロールバルブ123に出力する(ステップS14)。これにより、積込機械100が駆動する。そして、制御装置160は、処理をステップS4に戻し、制御を継続する。 The operation signal output unit 617 outputs the generated automatic operation signal to the control valve 123 (step S14). This drives the loading machine 100. The control device 160 then returns the process to step S4 and continues control.
 他方、ステップS9にて作業機130が旋回中であると判定された場合(ステップS9:YES)、移動制御部616は、ステップS4で特定した作業機130の旋回速度に基づいて、旋回の操作信号を停止した場合に、惰性による旋回によって旋回角度が目標旋回角度に到達するか否かを判定する(ステップS15)。惰性による旋回では旋回角度が目標旋回角度に到達しない場合(ステップS15:NO)、移動制御部616はステップS13にて旋回操作信号を生成し、操作信号出力部617はステップS14にて旋回操作信号をコントロールバルブ123に出力する。 On the other hand, if it is determined in step S9 that the work machine 130 is rotating (step S9: YES), the movement control unit 616 determines whether or not the rotation angle will reach the target rotation angle by inertia when the rotation operation signal is stopped based on the rotation speed of the work machine 130 identified in step S4 (step S15). If the rotation angle does not reach the target rotation angle by inertia (step S15: NO), the movement control unit 616 generates a rotation operation signal in step S13, and the operation signal output unit 617 outputs the rotation operation signal to the control valve 123 in step S14.
 他方、惰性による旋回によって旋回角度が目標旋回角度に到達すると判定された場合(ステップS15:YES)、旋回角度が目標旋回角度に到達し、かつ作業機130の姿勢が目標姿勢になっているか否かを判定する(ステップS16)。旋回角度が目標旋回角度に到達し、かつ作業機130の姿勢が目標姿勢になっていない場合(ステップS16:NO)、制御装置160は処理をステップS4に戻す。 On the other hand, if it is determined that the rotation angle will reach the target rotation angle due to inertia (step S15: YES), it is determined whether the rotation angle has reached the target rotation angle and the attitude of the work machine 130 has become the target attitude (step S16). If the rotation angle has reached the target rotation angle and the attitude of the work machine 130 has not become the target attitude (step S16: NO), the control device 160 returns the process to step S4.
 他方、旋回角度が目標旋回角度に到達し、かつ作業機130の姿勢が目標姿勢になった場合(ステップS16:YES)、制御装置160は第一旋回処理を終了する。 On the other hand, if the rotation angle reaches the target rotation angle and the attitude of the work machine 130 becomes the target attitude (step S16: YES), the control device 160 ends the first rotation process.
 図8は、第一実施形態に係る制御装置160の第二旋回制御を示すフローチャートである。
 オペレータによって開始スイッチ143SWが押下されると、制御装置160の操作信号入力部612は自動制御指示信号の入力を受け付ける。
FIG. 8 is a flowchart showing the second turning control of the control device 160 according to the first embodiment.
When the operator presses the start switch 143SW, the operation signal input unit 612 of the control device 160 receives an input of an automatic control instruction signal.
 第二旋回を実行する場合、制御装置160は図8に示す第二旋回制御を実行する。まず、計測データ取得部611は積込機械100の方位の計測データを取得する(ステップS21)。移動制御部616は、ストレージ650から旋回体120の目標方位(積込対象Tの側方を向く方位)、目標姿勢、積込対象Tの壁高さHt、および干渉回避方位を読み出す(ステップS22)。角度特定部615は、ステップS21で特定した旋回体120の向く方位ならびにステップS22で読み出した目標方位および干渉回避方位に基づいて、目標旋回角度θ0および第二干渉回避角度θ2を特定する(ステップS23)。 When executing the second rotation, the control device 160 executes the second rotation control shown in FIG. 8. First, the measurement data acquisition unit 611 acquires measurement data of the orientation of the loading machine 100 (step S21). The movement control unit 616 reads out the target orientation of the rotating body 120 (orientation facing the side of the loading target T), the target posture, the wall height Ht of the loading target T, and the interference avoidance orientation from the storage 650 (step S22). The angle identification unit 615 identifies the target rotation angle θ0 and the second interference avoidance angle θ2 based on the orientation of the rotating body 120 identified in step S21 and the target orientation and interference avoidance orientation read in step S22 (step S23).
 次に、計測データ取得部611は積込機械100の位置および方位、傾斜角、旋回速度および各シリンダのシリンダ長の計測データを取得し、作業機位置特定部613は計測データに基づいて作業機130の姿勢を特定する(ステップS24)。作業機位置特定部613はアーム132の先端Pの位置、バケット133の最下点Qの位置およびバケット133の姿勢を特定する(ステップS25)。 Next, the measurement data acquisition unit 611 acquires measurement data on the position and orientation, tilt angle, rotation speed, and cylinder length of each cylinder of the loading machine 100, and the work machine position identification unit 613 identifies the posture of the work machine 130 based on the measurement data (step S24). The work machine position identification unit 613 identifies the position of the tip P of the arm 132, the position of the lowest point Q of the bucket 133, and the posture of the bucket 133 (step S25).
 移動制御部616は、移動制御部616は、作業機130が旋回中であるか否かを判定する(ステップS26)。移動制御部616は、例えば旋回体120の旋回速度が所定速度以上である場合に旋回中であると判定する。作業機130が旋回中でない場合(ステップS26:NO)、移動制御部616は、ステップS25で特定した最下点Qの高さがステップS22で読み出した壁高さHtより高いか否かを判定する(ステップS27)。最下点Qの高さが壁高さHtより低い場合(ステップS27:NO)、移動制御部616はブーム131を上昇させる自動操作信号を生成する(ステップS27)。なお、他の実施形態においては、ブーム131に代えて、アーム132またはバケット133を上昇させる自動操作信号を生成してもよいし、これらを複合操作するものであってもよい。このとき、移動制御部616は旋回体120を旋回させる自動操作信号を生成しない。その後、制御装置160は処理をステップS24に戻す。 The movement control unit 616 determines whether the work machine 130 is rotating (step S26). For example, the movement control unit 616 determines that the work machine 130 is rotating when the rotation speed of the rotating body 120 is equal to or higher than a predetermined speed. If the work machine 130 is not rotating (step S26: NO), the movement control unit 616 determines whether the height of the lowest point Q identified in step S25 is higher than the wall height Ht read in step S22 (step S27). If the height of the lowest point Q is lower than the wall height Ht (step S27: NO), the movement control unit 616 generates an automatic operation signal to raise the boom 131 (step S27). Note that in other embodiments, an automatic operation signal to raise the arm 132 or the bucket 133 instead of the boom 131 may be generated, or a combination of these may be operated. In this case, the movement control unit 616 does not generate an automatic operation signal to rotate the rotating body 120. The control device 160 then returns the process to step S24.
 他方、最下点Qの高さが壁高さHtより高い場合(ステップS27:YES)、移動制御部616は旋回体120を旋回させる自動操作信号を生成する(ステップS29)。当該自動操作信号は、上方からの平面視において旋回体120を積込対象Tの内側から外側へ向けて旋回させるための操作信号である。 On the other hand, if the height of the lowest point Q is higher than the wall height Ht (step S27: YES), the movement control unit 616 generates an automatic operation signal to rotate the rotating body 120 (step S29). The automatic operation signal is an operation signal to rotate the rotating body 120 from the inside to the outside of the loading target T in a plan view from above.
 他方、作業機130が旋回中である場合(ステップS26:YES)、移動制御部616は、ステップS24で特定した作業機130の旋回速度の計測データに基づいて、旋回の操作信号を停止した場合に、惰性による旋回によって作業機130の旋回角度が目標旋回角度に到達するか否かを判定する(ステップS30)。惰性による旋回では作業機130の旋回角度が目標旋回角度に到達しない場合(ステップS30:NO)、移動制御部616は旋回体120を旋回させる自動操作信号を生成する(ステップS29)。惰性による旋回で作業機130の旋回角度が目標旋回角度に到達する場合(ステップS30:YES)、移動制御部616は旋回体120を旋回させる自動操作信号を生成しない。 On the other hand, if the work machine 130 is rotating (step S26: YES), the movement control unit 616 determines whether or not the rotation angle of the work machine 130 will reach the target rotation angle by inertia when the rotation operation signal is stopped, based on the measurement data of the rotation speed of the work machine 130 identified in step S24 (step S30). If the rotation angle of the work machine 130 does not reach the target rotation angle by inertia (step S30: NO), the movement control unit 616 generates an automatic operation signal to rotate the rotating body 120 (step S29). If the rotation angle of the work machine 130 reaches the target rotation angle by inertia (step S30: YES), the movement control unit 616 does not generate an automatic operation signal to rotate the rotating body 120.
 次に、移動制御部616は自動制御開始時から現時点までの旋回体120の旋回角度が第二干渉回避角度θ2未満であるか否かを判定する(ステップS31)。旋回角度が第二干渉回避角度θ2未満である場合(ステップS31:YES)、移動制御部616は作業機130の姿勢を維持する操作信号(中立信号)を生成する。 Next, the movement control unit 616 determines whether the rotation angle of the rotating body 120 from the start of automatic control to the current time is less than the second interference avoidance angle θ2 (step S31). If the rotation angle is less than the second interference avoidance angle θ2 (step S31: YES), the movement control unit 616 generates an operation signal (neutral signal) that maintains the attitude of the work machine 130.
 ステップS31において、旋回角度が第二干渉回避角度θ2以上である場合(ステップS31:NO)、移動制御部616は、ステップS24で特定された作業機130の姿勢が、ステップS22で特定した目標姿勢と近似するか否かを判定する(ステップS32)。作業機130の姿勢が目標姿勢と近似していない場合(ステップS32:NO)、移動制御部616は、ブーム131、アーム132及びバケット133を目標姿勢に近づける自動操作信号を生成する(ステップS33)。作業機130の姿勢が目標姿勢と近似している場合(ステップS32:YES)、移動制御部616は作業機130の姿勢を維持する中立信号を生成する。 In step S31, if the rotation angle is equal to or greater than the second interference avoidance angle θ2 (step S31: NO), the movement control unit 616 determines whether the attitude of the work implement 130 identified in step S24 is close to the target attitude identified in step S22 (step S32). If the attitude of the work implement 130 is not close to the target attitude (step S32: NO), the movement control unit 616 generates an automatic operation signal that moves the boom 131, arm 132, and bucket 133 closer to the target attitude (step S33). If the attitude of the work implement 130 is close to the target attitude (step S32: YES), the movement control unit 616 generates a neutral signal that maintains the attitude of the work implement 130.
 そして、操作信号出力部617は、生成された自動操作信号をコントロールバルブ123に出力する(ステップS34)。移動制御部616は、旋回角度が目標旋回角度に到達し、かつ作業機130の姿勢が目標姿勢になっているか否かを判定する(ステップS35)。旋回角度が目標旋回角度に到達せず、または作業機130の姿勢が目標姿勢になっていない場合(ステップS35:NO)、制御装置160は処理をステップS24に戻す。他方、旋回角度が目標旋回角度に到達し、かつ作業機130の姿勢が目標姿勢になった場合(ステップS35:YES)、自動制御処理を終了する。 Then, the operation signal output unit 617 outputs the generated automatic operation signal to the control valve 123 (step S34). The movement control unit 616 determines whether the rotation angle has reached the target rotation angle and the attitude of the work machine 130 has become the target attitude (step S35). If the rotation angle has not reached the target rotation angle or the attitude of the work machine 130 has not become the target attitude (step S35: NO), the control device 160 returns the process to step S24. On the other hand, if the rotation angle has reached the target rotation angle and the attitude of the work machine 130 has become the target attitude (step S35: YES), the automatic control process ends.
《作用・効果》
 このように、第一実施形態に係る制御装置160は、バケット133を積込対象Tの上から積込対象Tの側方へ移動させる第二旋回に係る自動制御の開始時に、バケット133の最下点の高さが積込対象Tの壁の高さより高い場合に、上方からの平面視において旋回体120を積込対象Tの内側から外側へ向けて旋回させる自動操作信号を出力する。他方、自動制御の開始時に最下点の高さが前記壁の高さより低い場合には、上方からの平面視において旋回体120を積込対象Tの内側から外側へ向けて旋回させる自動操作信号を直ちには出力しない。これにより、オペレータが図6に示すように積込対象Tの内側にバケット133を位置させた場合にも、積込機械100の自動制御において、バケット133が積込対象Tの内壁に接触することを防ぐことができる。
<Action and Effects>
In this way, when the automatic control for the second rotation in which the bucket 133 is moved from above the loading target T to the side of the loading target T is started, if the height of the lowest point of the bucket 133 is higher than the height of the wall of the loading target T, the control device 160 according to the first embodiment outputs an automatic operation signal for rotating the rotating body 120 from the inside to the outside of the loading target T in a plan view from above. On the other hand, if the height of the lowest point is lower than the height of the wall at the start of the automatic control, the control device 160 does not immediately output an automatic operation signal for rotating the rotating body 120 from the inside to the outside of the loading target T in a plan view from above. This makes it possible to prevent the bucket 133 from contacting the inner wall of the loading target T in the automatic control of the loading machine 100, even if the operator positions the bucket 133 inside the loading target T as shown in FIG. 6.
 また、第一実施形態に係る制御装置160は、自動制御の開始時にバケット133の最下点の高さが積込対象Tの壁の高さより低い場合に、作業機130を上昇させる自動操作信号を出力し、最下点の高さが壁の高さより高くなった後に、旋回体120を積込対象Tの内側から外側へ向けて旋回させる自動操作信号を出力する。これにより、制御装置160は、積込機械100の自動制御において、バケット133が積込対象Tの内壁に接触させずにバケット133を積込対象Tの側方に移動させることができる。
 なお、他の実施形態においては、これに限られず、開始スイッチ143SWが押下されたときに、自動制御の開始時に最下点の高さが前記壁の高さより低い場合には、第二旋回を実行せず、操作端末142にアラートを出力させるものであってもよい。アラートは、例えば警告音を発するものであってもよいし、操作端末142のディスプレイに警告画面を表示させるものであってもよい。この場合、当該アラートを確認したオペレータがバケット133を上昇させた後に再度開始スイッチ143SWを押下することで、第二旋回が実行される。
Furthermore, the control device 160 according to the first embodiment outputs an automatic operation signal to raise the work machine 130 if the height of the lowest point of the bucket 133 is lower than the height of the wall of the loading object T at the start of automatic control, and outputs an automatic operation signal to rotate the rotating body 120 from the inside to the outside of the loading object T after the height of the lowest point becomes higher than the height of the wall. Thereby, in the automatic control of the loading machine 100, the control device 160 can move the bucket 133 to the side of the loading object T without causing the bucket 133 to come into contact with the inner wall of the loading object T.
In other embodiments, without being limited to this, when the start switch 143SW is pressed, if the height of the lowest point at the start of automatic control is lower than the height of the wall, the second rotation may not be performed and an alert may be output to the operation terminal 142. The alert may be, for example, an alarm sound or a warning screen displayed on the display of the operation terminal 142. In this case, the operator who has confirmed the alert raises the bucket 133 and then presses the start switch 143SW again, whereby the second rotation is performed.
〈他の実施形態〉
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。すなわち、他の実施形態においては、上述の処理の順序が適宜変更されてもよい。また、一部の処理が並列に実行されてもよい。
Other Embodiments
Although one embodiment has been described in detail above with reference to the drawings, the specific configuration is not limited to the above, and various design changes are possible. That is, in other embodiments, the order of the above-mentioned processes may be changed as appropriate. Also, some of the processes may be executed in parallel.
 上述した実施形態に係る制御装置160は、単独のコンピュータによって構成されるものであってもよいし、制御装置160の構成を複数のコンピュータに分けて配置し、複数のコンピュータが互いに協働することで制御装置160として機能するものであってもよい。このとき、制御装置160を構成する一部のコンピュータが積込機械100の内部に搭載され、他のコンピュータが積込機械100の外部に設けられてもよい。 The control device 160 according to the embodiment described above may be configured by a single computer, or the configuration of the control device 160 may be divided and arranged among multiple computers, and the multiple computers may function as the control device 160 by working together. In this case, some of the computers constituting the control device 160 may be mounted inside the loading machine 100, and other computers may be provided outside the loading machine 100.
 上述した実施形態に係る目標姿勢、目標方位、干渉回避方位および壁高さHtは、ティーチングによってストレージ650に記録されるが、これに限られない。例えば、他の実施形態に係る積込機械100は、ステレオカメラやLiDarなどの三次元計測装置を備えることで、積込対象Tの位置および形状を認識し、これに基づいて目標姿勢、目標方位、干渉回避方位および壁高さHtを特定してもよい。つまり、基準特定部614は、目標姿勢、目標方位、干渉回避方位および壁高さHtを、積込対象Tの形状データに基づいて特定してもよい。また、他の実施形態においては、積込対象Tとの通信によって積込対象Tの位置、姿勢および方位を受信し、これと既知の積込対象Tの形状とに基づいて目標姿勢、目標方位、干渉回避方位および壁高さHtを特定してもよい。また、他の実施形態において、積込対象Tが管制装置との通信によって自動走行する場合、管制装置から積込対象Tの位置および方位を受信し、これと既知の積込対象Tの形状とに基づいて目標姿勢、目標方位、干渉回避方位および壁高さHtを特定してもよい。また、他の実施形態においては、基準特定部614は、目標姿勢、目標方位、干渉回避方位および壁高さHtを、オペレータによる操作端末142への入力に基づいて特定してもよい。また、他の実施形態に係る積込機械100は、目標姿勢、目標方位および干渉回避方位の特定と、壁高さHtの特定を別途に行ってもよい。つまり、他の実施形態においては、制御装置160は、目標姿勢、目標方位および干渉回避方位の特定を特定する第一基準特定部と、壁高さHtを特定する第二基準特定部とを別個に備えてもよい。例えば、積込機械100は、目標姿勢、目標方位および干渉回避方位をティーチングによって特定し、壁高さHtをオペレータの入力によって特定してもよい。また、オペレータは積込機械の車種を入力することで、積込対象の高さである壁高さを特定してもよい。つまり、制御装置160は、予め車種と壁高さとを予め関連付けたテーブルから、入力された車種に関連付けられた高さを読み出すことで、壁高さHtを特定する。 The target posture, target orientation, interference avoidance orientation, and wall height Ht in the above-described embodiment are recorded in storage 650 by teaching, but are not limited to this. For example, the loading machine 100 in other embodiments may be equipped with a three-dimensional measuring device such as a stereo camera or LiDar to recognize the position and shape of the loading target T, and identify the target posture, target orientation, interference avoidance orientation, and wall height Ht based on this. In other words, the reference identification unit 614 may identify the target posture, target orientation, interference avoidance orientation, and wall height Ht based on the shape data of the loading target T. Also, in other embodiments, the position, posture, and orientation of the loading target T may be received by communication with the loading target T, and the target posture, target orientation, interference avoidance orientation, and wall height Ht may be identified based on this and the known shape of the loading target T. In another embodiment, when the loading target T automatically travels by communication with the control device, the position and direction of the loading target T may be received from the control device, and the target posture, target orientation, interference avoidance orientation, and wall height Ht may be specified based on the position and direction of the loading target T and the known shape of the loading target T. In another embodiment, the reference specification unit 614 may specify the target posture, target orientation, interference avoidance orientation, and wall height Ht based on an input by an operator to the operation terminal 142. In addition, the loading machine 100 according to another embodiment may specify the target posture, target orientation, and interference avoidance orientation, and specify the wall height Ht separately. That is, in another embodiment, the control device 160 may separately include a first reference specification unit that specifies the target posture, target orientation, and interference avoidance orientation, and a second reference specification unit that specifies the wall height Ht. For example, the loading machine 100 may specify the target posture, target orientation, and interference avoidance orientation by teaching, and specify the wall height Ht by an input by an operator. The operator may also input the model of the loading machine to specify the wall height, which is the height of the loading target. In other words, the control device 160 specifies the wall height Ht by reading the height associated with the input model from a table that associates the model with the wall height in advance.
 また、上述した実施形態に係る制御装置160は、作業機130の姿勢を計測するセンサの計測データに基づいて作業機130の姿勢を特定するがこれに限られない。例えば、他の実施形態において、積込機械100がステレオカメラやLiDarなどの三次元計測装置を備える場合、当該三次元計測装置の計測データに基づいて作業機130の姿勢、特にバケット133の最下点Qの高さを認識し、これに基づいて自動制御を行ってもよい。 The control device 160 according to the embodiment described above identifies the posture of the work machine 130 based on measurement data from a sensor that measures the posture of the work machine 130, but is not limited to this. For example, in another embodiment, if the loading machine 100 is equipped with a three-dimensional measuring device such as a stereo camera or LiDar, the posture of the work machine 130, in particular the height of the lowest point Q of the bucket 133, may be recognized based on the measurement data from the three-dimensional measuring device, and automatic control may be performed based on this.
 上述した実施形態に係る制御装置160は、傾斜計測器152が計測した旋回体120の角速度を積分することで、旋回体120の角度を算出するが、これに限られない。例えば、他の実施形態に係る制御装置160は、位置方位演算器151が計測する方位の差分に基づいて旋回体120の角度を算出してもよい。また他の実施形態においては、旋回モータ124に設けた回転角センサの検出値を用いて旋回体120の角度を特定してもよい。 The control device 160 according to the embodiment described above calculates the angle of the rotating body 120 by integrating the angular velocity of the rotating body 120 measured by the inclinometer 152, but is not limited to this. For example, the control device 160 according to other embodiments may calculate the angle of the rotating body 120 based on the difference in the orientation measured by the position and orientation calculator 151. In other embodiments, the angle of the rotating body 120 may be determined using the detection value of a rotation angle sensor provided in the rotation motor 124.
 上述した実施形態に係る制御装置160は、旋回角度と干渉回避角度の比較に基づいて自動制御を行うが、これに限られない。例えば、他の実施形態に係る制御装置160は、バケット133の位置と積込対象Tの外形のうち旋回体120の旋回方向の最も後方の点との比較に基づいて自動制御を行ってもよい。例えば、他の実施形態に係る制御装置160は、バケット133が旋回体120の旋回方向の最も後方の点の近傍の領域に位置するように旋回開始タイミングを調整してよい。
 また他の実施形態においては、制御装置160は、バケット133が予め指定された軌跡を通るように、各リンク部品および旋回体120の自動制御信号を生成してもよい。軌跡は、例えば所定の曲線関数とのフィッティングによって決定されてもよいし、手動操作によるティーチングによって決定されてもよい。軌跡は、バケット133の姿勢、各リンク部品および旋回体120の姿勢、または操作信号を、時系列に並べたものによって表されてよい。
The control device 160 according to the embodiment described above performs automatic control based on a comparison between the rotation angle and the interference avoidance angle, but is not limited to this. For example, the control device 160 according to another embodiment may perform automatic control based on a comparison between the position of the bucket 133 and the rearmost point in the rotation direction of the rotating body 120 on the outer shape of the loading target T. For example, the control device 160 according to another embodiment may adjust the rotation start timing so that the bucket 133 is located in an area near the rearmost point in the rotation direction of the rotating body 120.
In another embodiment, the control device 160 may generate automatic control signals for each link component and the rotating body 120 so that the bucket 133 follows a predesignated trajectory. The trajectory may be determined, for example, by fitting to a predetermined curve function, or by teaching through manual operation. The trajectory may be represented by a time series of the attitude of the bucket 133, the attitude of each link component and the rotating body 120, or an operation signal.
 上述した実施形態に係る積込機械100は、オペレータが運転室140に搭乗して直接操作するものであるが、これに限られない。例えば、他の実施形態に係る積込機械100は、遠隔操作により動作するものであってもよい。すなわち、他の実施形態では、遠隔に設けられた操作装置143から通信によって操作信号が制御装置160に伝送されてよい。また、制御装置160は、遠隔地に設けられたコンピュータによって構成されてもよいし、積込機械100と遠隔地とのそれぞれに設けられたコンピュータに機能を分担させた制御システムで構成されてもよい。 The loading machine 100 according to the embodiment described above is operated directly by an operator in the cab 140, but is not limited to this. For example, the loading machine 100 according to other embodiments may be operated by remote control. That is, in other embodiments, an operation signal may be transmitted to the control device 160 by communication from an operating device 143 provided remotely. The control device 160 may be configured by a computer provided at a remote location, or may be configured by a control system in which functions are shared between computers provided at the loading machine 100 and the remote location.
 上述した実施形態に係る自動制御は、バケット133を掘削完了時の位置から、積込点へ移動させる第一旋回と、次の掘削を開始するための位置へ移動させる第二旋回とをそれぞれ実行するものであるが、これに限られない。例えば、他の実施形態においては、制御装置160は、第一旋回、排土および第二旋回の一連の動作を自動実行する全自動制御を行うものであってもよい。また例えば、他の実施形態においては、制御装置160は、第一旋回を実行せず、第二旋回のみを実行するものであってもよい。
 また、上述した実施形態に係る自動制御は、オペレータによる開始スイッチ143SWの押下をトリガに開始されるものであるが、これに限られない。例えば、他の実施形態においては、制御装置160が自動制御の開始タイミングを自律的に判定し、開始スイッチ143SWの押下によらず自動制御を開始するものであってもよい。
The automatic control according to the embodiment described above executes a first rotation to move the bucket 133 from a position at the completion of excavation to a loading point, and a second rotation to move the bucket 133 to a position for starting the next excavation, but is not limited to this. For example, in another embodiment, the control device 160 may execute a fully automatic control to automatically execute a series of operations of the first rotation, earth removal, and second rotation. Also, for example, in another embodiment, the control device 160 may execute only the second rotation without executing the first rotation.
In addition, the automatic control according to the embodiment described above is triggered by the operator pressing the start switch 143SW, but is not limited to this. For example, in another embodiment, the control device 160 may autonomously determine the start timing of the automatic control and start the automatic control without pressing the start switch 143SW.
 100…積込機械 110…走行体 111…無限軌道 112…走行モータ 120…旋回体 121…エンジン 122…油圧ポンプ 123…コントロールバルブ 124…旋回モータ 130…作業機 131…ブーム 131C…ブームシリンダ 132…アーム 132C…アームシリンダ 133…バケット 133C…バケットシリンダ 140…運転室 141…運転席 142…操作端末 143…操作装置 151…位置方位演算器 152…傾斜計測器 153…ブームストロークセンサ 154…アームストロークセンサ 155…バケットストロークセンサ 160…制御装置 610…プロセッサ 611…計測データ取得部 612…操作信号入力部 613…作業機位置特定部 614…基準特定部 615…角度特定部 616…移動制御部 617…操作信号出力部 630…メインメモリ 650…ストレージ 670…インタフェース T…積込対象 100... Loading machine 110... Running body 111... Caterpillar track 112... Running motor 120... Swing body 121... Engine 122... Hydraulic pump 123... Control valve 124... Swing motor 130... Work machine 131... Boom 131C... Boom cylinder 132... Arm 132C... Arm cylinder 133... Bucket 133C... Bucket cylinder 140... Driver's cab 141... Driver's seat 142... Operation terminal 143... Operation device 151... Position direction Position calculator 152...inclination measuring device 153...boom stroke sensor 154...arm stroke sensor 155...bucket stroke sensor 160...control device 610...processor 611...measurement data acquisition section 612...operation signal input section 613...working machine position identification section 614...reference identification section 615...angle identification section 616...movement control section 617...operation signal output section 630...main memory 650...storage 670...interface T...loading target

Claims (9)

  1.  旋回中心回りに旋回する旋回体と、作業具を有する前記旋回体に取り付けられた作業機とを備える積込機械の制御装置であって、
     積込対象の高さを特定する基準特定部と、
     前記作業具の高さを特定する作業機位置特定部と、
     前記作業具を前記積込対象の上から前記積込対象の外側へ移動させる自動制御時に、前記作業具が前記積込対象の上方に位置し、かつ前記作業具の高さが前記積込対象の高さより低い場合に、前記作業機を上昇させる信号を出力する操作信号出力部と
     を備える積込機械の制御装置。
    A control device for a loading machine including a rotating body that rotates around a rotation center and a working machine attached to the rotating body having a working tool,
    A reference specification unit that specifies the height of a loading object;
    A work implement position identification unit that identifies a height of the work implement;
    and an operation signal output unit that outputs a signal to raise the working implement when the working implement is located above the loading target and the height of the working implement is lower than the height of the loading target during automatic control to move the working implement from above the loading target to the outside of the loading target.
  2.  前記操作信号出力部は、
     前記作業機を上昇させる操作信号によって前記作業具の高さが前記積込機械の高さより高くなった後に、前記旋回体を前記積込対象の外側へ向けて旋回させる操作信号を出力する
     請求項1に記載の積込機械の制御装置。
    The operation signal output unit is
    2. The control device for a loading machine according to claim 1, further comprising: an operation signal for rotating the rotating body toward the outside of the loading machine after the height of the working implement becomes higher than the height of the loading machine due to an operation signal for raising the working implement, the operation signal being outputted.
  3.  前記操作信号出力部は、
     前記作業具の高さが前記積込機械の高さより低い場合に、前記作業機を上昇させる信号として、前記作業機のうち前記作業具を支持する部材を上昇させる操作信号を出力する 請求項1または請求項2に記載の積込機械の制御装置。
    The operation signal output unit is
    3. The control device for a loading machine according to claim 1 or 2, further comprising: an operation signal for raising a member of the working machine that supports the working tool, as a signal for raising the working machine, when the height of the working tool is lower than the height of the loading machine.
  4.  前記操作信号出力部は、
     前記作業具の高さが前記積込機械の高さより高い場合に、前記旋回体を前記積込対象の外側へ向けて旋回させる操作信号を出力する
     請求項1または請求項2に記載の積込機械の制御装置。
    The operation signal output unit is
    The control device for a loading machine according to claim 1 or 2, further comprising: an operation signal for rotating the rotating body toward the outside of the loading target when a height of the working implement is higher than a height of the loading machine, the operation signal being outputted.
  5.  前記操作信号出力部は、
     前記作業具の高さが前記積込機械の高さより低い場合に、旋回させる信号を出力しない
     請求項4に記載の積込機械の制御装置。
    The operation signal output unit is
    The control device for a loading machine according to claim 4, wherein when the height of the working implement is lower than the height of the loading machine, a signal for rotating the working implement is not output.
  6.  前記作業機位置特定部は、前記作業具の高さとして、作業具の最下点または、作業具の稼働範囲の最下点の高さを特定する
     請求項1または請求項2に記載の積込機械の制御装置。
    The control device for a loading machine according to claim 1 or 2, wherein the work implement position identifying unit identifies, as the height of the work implement, the height of a lowest point of the work implement or the height of a lowest point of an operating range of the work implement.
  7.  オペレータから、前記自動制御の開始指示の入力を受け付ける入力部を備える
     請求項1または請求項2に記載の積込機械の制御装置。
    The loading machine control device according to claim 1 or 2, further comprising an input unit that receives an input of an instruction to start the automatic control from an operator.
  8.  旋回中心回りに旋回する旋回体と、作業具を有する前記旋回体に取り付けられた作業機とを備える積込機械の制御方法であって、
     積込対象の高さを特定するステップと、
     前記作業具の高さを特定するステップと、
     前記作業具を前記積込対象の上から前記積込対象の外側へ移動させる自動制御時に、前記作業具が前記積込対象の上方に位置し、かつ前記作業具の高さが前記積込対象の高さより低い場合に、前記作業機を上昇させる信号を出力するステップと
     を備える積込機械の制御方法。
    A control method for a loading machine including a rotating body that rotates about a rotation center and a working machine attached to the rotating body having a working tool, comprising:
    Identifying a height of a loading object;
    determining a height of the work implement;
    and outputting a signal to raise the working implement when the working implement is located above the loading target and the height of the working implement is lower than the height of the loading target during automatic control to move the working implement from above the loading target to the outside of the loading target.
  9.  旋回中心回りに旋回する旋回体と、作業具を有する前記旋回体に取り付けられた作業機とを備える積込機械を遠隔制御する遠隔制御装置であって、
     積込対象の高さを特定する基準特定部と、
     前記作業具の高さを特定する作業機位置特定部と、
     前記作業具を前記積込対象の上から前記積込対象の外側へ移動させる自動制御時に、前記作業具が前記積込対象の上方に位置し、かつ前記作業具の高さが前記積込対象の高さより低い場合に、前記作業機を上昇させる信号を、前記積込機械に出力する操作信号出力部と
     を備える遠隔制御装置。
    A remote control device that remotely controls a loading machine including a rotating body that rotates about a rotation center and a working machine attached to the rotating body having a working tool,
    A reference specification unit that specifies the height of a loading object;
    A work implement position identification unit that identifies a height of the work implement;
    and an operation signal output unit that outputs a signal to the loading machine to raise the working implement when the working implement is located above the loading target and the height of the working implement is lower than the height of the loading target during automatic control to move the working implement from above the loading target to the outside of the loading target.
PCT/JP2023/041473 2022-11-18 2023-11-17 Control device for loading machine, remote control device, and control method WO2024106536A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022184885A JP2024073906A (en) 2022-11-18 2022-11-18 Control device of loading machine, remote control device and control method
JP2022-184885 2022-11-18

Publications (1)

Publication Number Publication Date
WO2024106536A1 true WO2024106536A1 (en) 2024-05-23

Family

ID=91084577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041473 WO2024106536A1 (en) 2022-11-18 2023-11-17 Control device for loading machine, remote control device, and control method

Country Status (2)

Country Link
JP (1) JP2024073906A (en)
WO (1) WO2024106536A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115809A1 (en) * 2015-12-28 2017-07-06 住友建機株式会社 Excavator
JP2020204193A (en) * 2019-06-18 2020-12-24 株式会社小松製作所 Work machine, system, and control method of work machine
JP2021059945A (en) * 2019-10-09 2021-04-15 住友重機械工業株式会社 Shovel
JP2022171025A (en) * 2021-04-30 2022-11-11 株式会社小松製作所 Controller for loading machine and control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115809A1 (en) * 2015-12-28 2017-07-06 住友建機株式会社 Excavator
JP2020204193A (en) * 2019-06-18 2020-12-24 株式会社小松製作所 Work machine, system, and control method of work machine
JP2021059945A (en) * 2019-10-09 2021-04-15 住友重機械工業株式会社 Shovel
JP2022171025A (en) * 2021-04-30 2022-11-11 株式会社小松製作所 Controller for loading machine and control method

Also Published As

Publication number Publication date
JP2024073906A (en) 2024-05-30

Similar Documents

Publication Publication Date Title
JP7144252B2 (en) Loading machine control device and control method
JP7301875B2 (en) excavator, excavator controller
JP7361186B2 (en) Control device, loading machine, and control method
WO2019168012A1 (en) Loading machine control device and control method
JP7481422B2 (en) Control device and control method for loading machine
WO2022230980A1 (en) Control device and control method for loading machine
WO2024106536A1 (en) Control device for loading machine, remote control device, and control method
WO2022244832A1 (en) Loading machine control system and control method
WO2024190914A1 (en) Control device for work machine, remote control system, and control method
WO2024157918A1 (en) Device, method, and system for controlling loading machine
WO2024024510A1 (en) Loading machine control device, loading machine control method, and control system
WO2022244830A1 (en) Control system and control method for loading machine
CN113454292A (en) Excavator
WO2024057959A1 (en) System including work machine, controller for work machine, and method for controlling work machine
JP2022137769A (en) Shovel, and information processor
JP2024042455A (en) System including work machine, controller of work machine, and control method of work machine
JP2023151687A (en) Shovel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891681

Country of ref document: EP

Kind code of ref document: A1