[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024106523A1 - Benzoxazine compound, resin material composition containing same, curable resin composition, and cured product of same - Google Patents

Benzoxazine compound, resin material composition containing same, curable resin composition, and cured product of same Download PDF

Info

Publication number
WO2024106523A1
WO2024106523A1 PCT/JP2023/041382 JP2023041382W WO2024106523A1 WO 2024106523 A1 WO2024106523 A1 WO 2024106523A1 JP 2023041382 W JP2023041382 W JP 2023041382W WO 2024106523 A1 WO2024106523 A1 WO 2024106523A1
Authority
WO
WIPO (PCT)
Prior art keywords
benzoxazine compound
group
carbon atoms
general formula
benzoxazine
Prior art date
Application number
PCT/JP2023/041382
Other languages
French (fr)
Japanese (ja)
Inventor
健太 萩原
嵩浩 浅枝
佑磨 芝崎
大地 岡村
Original Assignee
本州化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本州化学工業株式会社 filed Critical 本州化学工業株式会社
Priority to CN202380073041.0A priority Critical patent/CN119998267A/en
Publication of WO2024106523A1 publication Critical patent/WO2024106523A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/041,3-Oxazines; Hydrogenated 1,3-oxazines
    • C07D265/121,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems
    • C07D265/141,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D265/161,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring with only hydrogen or carbon atoms directly attached in positions 2 and 4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G14/00Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00
    • C08G14/02Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes
    • C08G14/04Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols
    • C08G14/06Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols and monomers containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/34Condensation polymers of aldehydes or ketones with monomers covered by at least two of the groups C08L61/04, C08L61/18 and C08L61/20

Definitions

  • the present invention relates to a benzoxazine compound, a resin raw material composition containing the same, a curable resin composition, and a cured product thereof. More specifically, the present invention relates to a benzoxazine compound having benzoxazine rings at both ends of a cycloalkylidene group and further having an allyl group, a resin raw material composition containing the same, a curable resin composition, and a cured product thereof.
  • Benzoxazine compounds are compounds synthesized by reacting phenols, amines, and formaldehyde, and are known as thermosetting resin raw materials that cure by ring-opening polymerization of benzoxazine rings without producing volatile by-products when heated, and are used as raw materials for molded products that can be used as materials for insulating substrates, liquid crystal alignment agents, semiconductor encapsulation resin compositions, etc.
  • heat resistance with excellent stability and reliability at high temperatures is required.
  • problems remain regarding heat resistance, such as the lack of heat resistance at 200° C. or higher, and in order to improve these problems, a benzoxazine composition into which an allyl group has been introduced has been reported (Patent Document 1).
  • An object of the present invention is to provide a novel benzoxazine compound having an allyl group, which can be stored for a long period of time even under room temperature conditions, a resin raw material composition containing the same, a curable resin composition, and a cured product thereof.
  • a resin raw material composition comprising the benzoxazine compound according to 1. 4.
  • the resin raw material composition according to 3. wherein the content of the benzoxazine compound represented by the general formula (1) is in the range of 10 to 100 area % based on the area of all peaks detected by analysis by gel permeation chromatography using a differential refractometer as a detector. 5.
  • a curable resin composition comprising the benzoxazine compound according to 1. or the resin raw material composition according to 3. 6.
  • the curable resin composition according to 5. comprising the benzoxazine compound according to 1. or the resin raw material composition according to 3., and one or more selected from the group consisting of an epoxy resin, a benzoxazine compound other than the benzoxazine compound represented by general formula (1), a phenolic resin, and a bismaleimide compound.
  • 7.5 A cured product obtained by curing the curable resin composition described in 7.5.
  • the benzoxazine compound of the present invention and the resin raw material composition containing the same are extremely useful because they can be stored for a long period of time even under room temperature conditions, as compared with the conventionally known benzoxazine compounds represented by formula (i). Furthermore, the benzoxazine compound of the present invention and the curable resin composition containing the resin raw material composition containing the same can give a cured product having excellent heat resistance and dielectric properties, which makes them very useful as resin materials for prepregs, printed circuit boards, sealants for semiconductors and electronic parts, electric and electronic molded parts, automobile parts, laminates, paints, resist inks, etc.
  • FIG. 1 is a diagram showing a spectrum by 1 H NMR analysis of the benzoxazine compound represented by formula (1-4) obtained in Example 1.
  • FIG. 2 is a diagram showing a spectrum by 1 H NMR analysis of the benzoxazine compound represented by formula (1-5) obtained in Example 2.
  • each R 1 independently represents an alkylene group having 1 to 4 carbon atoms
  • X represents a cycloalkylidene group having 5 to 20 carbon atoms.
  • R 1 's are each independently an alkylene group having 1 to 4 carbon atoms, preferably an alkylene group having 1 to 2 carbon atoms, more preferably a methylene group or 1,2-ethylene group, and particularly preferably a methylene group.
  • X in general formula (1) represents a cycloalkylidene group having 5 to 20 carbon atoms, which may contain an alkyl group as a branched chain, in which case the number of carbon atoms of the alkyl group as a branched chain is also included in the number of carbon atoms of 5 to 20.
  • the cycloalkylidene group preferably has 5 to 15 carbon atoms, more preferably has 6 to 12 carbon atoms, further preferably has 6 to 10 carbon atoms, and particularly preferably has 6 to 9 carbon atoms.
  • cycloalkylidene group examples include a cyclopentylidene group (5 carbon atoms), a cyclohexylidene group (6 carbon atoms), a 3-methylcyclohexylidene group (7 carbon atoms), a 4-methylcyclohexylidene group (7 carbon atoms), a 3,3,5-trimethylcyclohexylidene group (9 carbon atoms), a cycloheptylidene group (7 carbon atoms), a bicyclo[2.2.1]heptane-2,2-diyl group (7 carbon atoms), a 1,7,7-trimethylbicyclo[2.2.1]heptane-2,2-diyl group (10 carbon atoms), a 4,7,7-trimethylbicyclo[2.2.1]heptane-2,2-diyl group (10 carbon atoms), a tricyclo[5.2.1.0 2,6 ]decane-8,8-diyl group (10 carbon atoms), 2,
  • a cyclohexylidene group (6 carbon atoms), a 3-methylcyclohexylidene group (7 carbon atoms), a 4-methylcyclohexylidene group (7 carbon atoms), a 3,3,5-trimethylcyclohexylidene group (9 carbon atoms) or a cyclododecanylidene group (12 carbon atoms) is preferred, a cyclohexylidene group (6 carbon atoms), a 3,3,5-trimethylcyclohexylidene group (9 carbon atoms) or a cyclododecanylidene group (12 carbon atoms) is more preferred, and a 3,3,5-trimethylcyclohexylidene group (9 carbon atoms) is particularly preferred.
  • benzoxazine compound represented by general formula (1) in the present invention include compounds represented by the following formulas (1-1) to (1-20). Among these, compounds (1-1) to (1-5) and compounds (1-11) to (1-15) are preferred, compounds (1-1), (1-4), (1-5), (1-11), (1-14) and (1-15) are more preferred, compounds (1-4), (1-5), (1-14) and (1-15) are even more preferred, and compounds (1-4) and (1-14) are particularly preferred.
  • the starting material and the manufacturing method for the benzoxazine compound represented by the general formula (1) in the present invention are not particularly limited.
  • a manufacturing method can be mentioned in which a bisphenol compound represented by the general formula (2), an amine compound represented by the general formula (3), and formaldehyde are subjected to a dehydration condensation reaction to cyclize, thereby obtaining the target benzoxazine compound represented by the general formula (1).
  • R 1 and X are defined as in general formula (1).
  • a bisphenol compound represented by the general formula (2) an amine compound represented by the general formula (3), and a formaldehyde compound are used as starting materials.
  • Specific examples of the bisphenol compound represented by the general formula (2) include bisphenol Z (1,1-bis(4-hydroxyphenyl)cyclohexane), 1,1-bis(4-hydroxyphenyl)-3-methylcyclohexane, 1,1-bis(4-hydroxyphenyl)-4-methylcyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 1,1-bis(4-hydroxyphenyl)cyclododecane, 2,2-bis(4-hydroxyphenyl)bicyclo[2.2.1]heptane, 2,2-bis(4-hydroxyphenyl)-1,7,7-trimethylbicyclo[2.2.1]heptane, 2,2-bis(4-hydroxyphenyl)-4,7,7-trimethylbicyclo[2.2.1]heptane
  • bisphenol Z (1,1-bis(4-hydroxyphenyl)cyclohexane), 1,1-bis(4-hydroxyphenyl)-3-methylcyclohexane, 1,1-bis(4-hydroxyphenyl)-4-methylcyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane or 1,1-bis(4-hydroxyphenyl)cyclododecane is preferred, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane or 1,1-bis(4-hydroxyphenyl)cyclododecane is more preferred, and 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane is particularly preferred.
  • amine compound represented by the general formula (3) examples include allylamine, 3-butene-1-amine, and 4-pentene-1-amine. Of these, allylamine is preferred.
  • the amine compound represented by the general formula (3) can also be used as a salt with an inorganic acid such as hydrochloric acid or sulfuric acid. In such a case, the reaction is carried out in the further presence of an alkaline aqueous solution in which sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, or the like is dissolved in water.
  • formaldehydes include aqueous formaldehyde solutions, 1,3,5-trioxane, and paraformaldehyde.
  • the amount of formaldehyde used is preferably in the range of 4.0 to 20.0 mol, more preferably in the range of 4.0 to 16.0 mol, and even more preferably in the range of 4.0 to 12.0 mol, per mol of the bisphenol compound represented by general formula (2).
  • the amount of the amine compound represented by general formula (3) used is preferably in the range of 2.0 to 10.0 mol, more preferably in the range of 2.0 to 8.0 mol, and even more preferably in the range of 2.0 to 6.0 mol, per 1 mol of the bisphenol compound represented by general formula (2).
  • an acid catalyst or base catalyst can be used as necessary.
  • acid catalysts that can be used include concentrated hydrochloric acid, hydrochloric acid gas, trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, benzoic acid, and mixtures thereof
  • base catalysts examples include, but are not limited to, sodium hydroxide, sodium carbonate, triethylamine, triethanolamine, and mixtures thereof.
  • p-toluenesulfonic acid and sodium hydroxide are preferred, and sodium hydroxide is even more preferred.
  • the reaction is usually carried out in the presence of a solvent.
  • a solvent there are no particular limitations on the solvent as long as it does not inhibit the reaction, but preferred examples include aromatic hydrocarbons with 6 to 9 carbon atoms, such as toluene and xylene, aliphatic alkyls with 5 to 8 carbon atoms, such as hexane, heptane, and cyclohexane, aliphatic esters with 3 to 6 carbon atoms, such as methyl acetate, ethyl acetate, methyl propionate, and butyl acetate, and water.
  • aromatic hydrocarbons with 6 to 9 carbon atoms and aliphatic esters with 3 to 6 carbon atoms are more preferred, and aliphatic esters with 3 to 6 carbon atoms are even more preferred.
  • These solvents can be used alone or in combination. There are no particular limitations on the amount of solvent used as long as it does not interfere with the reaction, but usually, the amount is preferably in the range of 200 to 400 parts by weight, and more preferably in the range of 250 to 300 parts by weight, per 100 parts by weight of the bisphenol compound represented by general formula (2).
  • the reaction temperature is usually preferably in the range of 30 to 100°C, more preferably in the range of 30 to 80°C, and particularly preferably in the range of 40 to 70°C.
  • the reaction may be carried out under normal pressure, or under increased or reduced pressure.
  • (a) a method of mixing an amine compound represented by general formula (3) with a mixture containing a bisphenol compound represented by general formula (2) and formaldehydes to carry out a reaction and (b) a method of mixing a bisphenol compound represented by general formula (2) with a mixture containing formaldehydes and an amine compound represented by general formula (3), etc.
  • These mixtures may contain the above-mentioned solvents and catalysts, and there is no limitation on the method of mixing the catalyst, but it is preferable to mix the catalyst before mixing the amine compound represented by general formula (3).
  • the method for mixing the remaining raw materials with the raw material mixture there is no limitation on the method for mixing the remaining raw materials with the raw material mixture.
  • the method may include a procedure for removing water derived from the raw materials or water generated during the reaction from the system.
  • the procedure for removing the generated water from the reaction solution is not particularly limited, and can be carried out by azeotropically distilling the generated water with the solvent system in the reaction solution.
  • the generated water can be removed from the reaction system by using, for example, a pressure-equalizing dropping funnel equipped with a cock, a Dimroth condenser, a Dean-Stark apparatus, or the like.
  • the benzoxazine compound represented by general formula (1) can be obtained from the resulting reaction mixture by a known method.
  • the reaction mixture may be subjected to a treatment such as deactivating the catalyst used or washing with water, and the target product can be obtained as a residual liquid by distilling off the remaining raw materials and solvent from the reaction mixture.
  • a treatment such as deactivating the catalyst used or washing with water
  • the target product can be obtained as a residual liquid by distilling off the remaining raw materials and solvent from the reaction mixture.
  • the benzoxazine compound extracted by the above method can be made into a high-purity product by ordinary purification means such as washing with a solvent or water or recrystallization.
  • the resin raw material composition of the present invention is characterized by containing a benzoxazine compound represented by general formula (1), and can be obtained by distilling off the remaining raw materials and the solvent from the above-mentioned reaction mixture.
  • the residual liquid can be added to a poor solvent to obtain a precipitated target product, or a solvent can be added to the reaction mixture to crystallize and filter to obtain a powder or granular resin raw material composition of the present invention.
  • the resin raw material composition of the present invention which contains a large amount of the benzoxazine compound represented by general formula (1), can be obtained by carrying out normal purification such as washing with a solvent or water or recrystallization.
  • the resin raw material composition in the present invention may contain a compound that is a by-product in the reaction for producing the benzoxazine compound represented by general formula (1).
  • by-products include compounds having a higher molecular weight than the benzoxazine compound represented by general formula (1).
  • the content of the benzoxazine compound represented by general formula (1) is not particularly limited, but the content can be analyzed by gel permeation chromatography using a differential refractometer as a detector, and is usually in the range of 10 to 100 area %, preferably in the range of 20 to 100 area %, more preferably in the range of 40 to 100 area %, and particularly preferably in the range of 60 to 100 area %, based on the areas of all peaks detected in such analysis.
  • the benzoxazine compound of the present invention represented by the general formula (1) or a resin raw material composition containing the same can be used as a curable resin composition containing the compound as an essential component.
  • One embodiment of the present invention is a curable resin composition obtained by mixing a benzoxazine compound represented by general formula (1) or a resin raw material composition containing the same with an inorganic filler such as silicon oxide, aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, or hexagonal boron nitride, or a reinforcing fiber such as carbon fiber, glass fiber, organic fiber, boron fiber, steel fiber, or aramid fiber.
  • Another embodiment is a curable resin composition that contains, as an essential component, the benzoxazine compound represented by the general formula (1) or a resin raw material composition containing the same, and also contains other polymer materials.
  • the polymer material constituting the curable resin composition of the present invention is not particularly limited, but may contain an epoxy resin, a phenolic resin, a bismaleimide compound, a benzoxazine compound other than the benzoxazine compound represented by general formula (1), and raw materials for each of them.
  • epoxy resins examples include orthocresol type epoxy resins, biphenyl type epoxy resins, biphenyl aralkyl type epoxy resins, naphthalene type epoxy resins, anthracene dihydride type epoxy resins, brominated novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, cycloalkylidene bisphenol type epoxy, phenol novolac type epoxy resins, cresol novolac type epoxy resins, resorcinol type epoxy resins, trisphenylmethane type epoxy resins, dicyclopentadiene type epoxy resins, and alicyclic epoxy resins.
  • At least one epoxy resin selected from cycloalkylidene bisphenol type epoxy, dicyclopentadiene type epoxy resin, and alicyclic epoxy resin, which are epoxy resins having a cyclic aliphatic structure.
  • biphenyl-type epoxy resins include, for example, "jER” YX4000H, “jER” YX4000, and “jER” YL6616 (manufactured by Mitsubishi Chemical Corporation).
  • An example of a commercially available biphenyl aralkyl type epoxy resin is NC-3000 (manufactured by Nippon Kayaku Co., Ltd.).
  • Commercially available naphthalene-type epoxy resins include, for example, "Epiclon” HP4032 (manufactured by DIC Corporation), NC-7000, and NC-7300 (manufactured by Nippon Kayaku Co., Ltd.).
  • bisphenol A type epoxy resins include, for example, "jER” 825, “jER” 826, “jER” 827, “jER” 828, and “jER” 834 (manufactured by Mitsubishi Chemical Corporation), “Epiclon” (registered trademark, the same applies below) 850 (manufactured by DIC Corporation), “Epotohto” (registered trademark, the same applies below) YD-128 (manufactured by Nippon Steel Chemical Co., Ltd.), and DER-331 and DER-332 (manufactured by The Dow Chemical Company).
  • bisphenol F type epoxy resins include, for example, "jER” 806, “jER” 807, “jER” 1750, “jER” 4007P, “jER” 4010P (manufactured by Mitsubishi Chemical Corporation), “Epiclon” 830 (manufactured by DIC Corporation), “Epototo” YD-170, “Epototo” YDF2001, and “Epototo” YDF2004 (manufactured by Nippon Steel Chemical Co., Ltd.).
  • An example of the bisphenol S type epoxy resin is EXA-1515 (manufactured by DIC Corporation).
  • cycloalkylidene bisphenol type epoxy examples include compounds represented by the following formula:
  • Commercially available phenol novolac type epoxy resins include, for example, “jER” 152, “jER” 154 (manufactured by Mitsubishi Chemical Corporation), “Epiclon” N-740, “Epiclon” N-770, and “Epiclon” N-775 (manufactured by DIC Corporation).
  • cresol novolac epoxy resins include, for example, "Epicron” N-660, “Epicron” N-665, “Epicron” N-670, “Epicron” N-673, and “Epicron” N-695 (manufactured by DIC Corporation), EOCN-1020, EOCN-102S, and EOCN-104S (manufactured by Nippon Kayaku Co., Ltd.).
  • An example of a commercially available resorcinol type epoxy resin is "Denacol” (registered trademark, the same applies below) EX-201 (manufactured by Nagase ChemteX Corporation).
  • dicyclopentadiene type epoxy resins include compounds represented by the following formula.
  • Commercially available dicyclopentadiene type epoxy resins include, for example, "Epicron” HP7200, “Epicron” HP7200L, “Epicron” HP7200H (manufactured by DIC Corporation), "Tactix” (registered trademark) 558 (manufactured by Huntsman Advanced Materials, Inc.), and XD-1000 (manufactured by Nippon Kayaku Co., Ltd.).
  • alicyclic epoxy resin examples include (3',4'-epoxycyclohexane)methyl-3,4-epoxycyclohexanecarboxylate, (3',4'-epoxycyclohexane)octyl-3,4-epoxycyclohexanecarboxylate, 1-methyl-4-(2-methyloxiranyl)-7-oxabicyclo[4.1.0]heptane, limonene dioxide, 1,2-epoxy-4-vinylcyclohexane, and compounds represented by the following formula:
  • Commercially available products of (3',4'-epoxycyclohexane)methyl-3,4-epoxycyclohexanecarboxylate include, for example, "Celloxide” (registered trademark, the same applies below) 2021P (manufactured by Daicel Corporation) and CY179 (manufactured by Huntsman Advanced Materials).
  • phenolic resins include novolac-type phenolic resins such as phenol novolac resin, cresol novolac resin, naphthol novolac resin, aminotriazine novolac resin, and trisphenylmethane-type phenol novolac resin; modified phenolic resins such as terpene-modified phenolic resin and dicyclopentadiene-modified phenolic resin; aralkyl-type resins such as phenol aralkyl resins having a phenylene skeleton and/or biphenylene skeleton, and naphthol aralkyl resins having a phenylene skeleton and/or biphenylene skeleton; and resol-type phenolic resins.
  • novolac-type phenolic resins such as phenol novolac resin, cresol novolac resin, naphthol novolac resin, aminotriazine novolac resin, and trisphenylmethane-type phenol novolac resin
  • Examples of the bismaleimide compound include raw materials for bismaleimide compounds having the following structures:
  • benzoxazine compounds other than the benzoxazine compound represented by general formula (1) include benzoxazine compounds having structures represented by the following general formulas (A) to (C).
  • Ra represents a divalent group having 1 to 30 carbon atoms
  • each Rb represents a monovalent group having 1 to 10 carbon atoms which may have a substituent
  • each n represents independently 0 or 1.
  • Rc represents a divalent group having 1 to 30 carbon atoms, a direct bond, an oxygen atom, a sulfur atom, a carbonyl group, or a sulfonyl group
  • each Rd independently represents a monovalent group having 1 to 10 carbon atoms.
  • each Re independently represents a monovalent group having 1 to 10 carbon atoms
  • m represents 0 or 1.
  • Ra represents a divalent group having 1 to 30 carbon atoms.
  • alkylene groups such as 1,2-ethylene, 1,4-butylene, and 1,6-hexylene
  • alkylene groups containing a cyclic structure such as 1,4-cyclohexylene, dicyclopentadienylene, and adamantylene
  • arylene groups such as 1,4-phenylene, 4,4'-biphenylene, diphenylether-4,4'-diyl, diphenylether-3,4'-diyl, diphenylketone-4,4'-diyl, and diphenylsulfone-4,4'-diyl.
  • Rb each independently represents a monovalent group having 1 to 10 carbon atoms. Specific examples thereof include alkyl groups such as methyl, ethyl, propyl, and butyl groups, alkenyl groups such as vinyl and allyl groups, alkynyl groups such as ethynyl and propargyl groups, and aryl groups such as phenyl and naphthyl groups.
  • These groups may further have a substituent such as an alkoxy group having 1 to 4 carbon atoms, an acyl group having 1 to 4 carbon atoms, a halogen atom, a carboxyl group, a sulfo group, an allyloxy group, a hydroxyl group, or a thiol group.
  • a substituent such as an alkoxy group having 1 to 4 carbon atoms, an acyl group having 1 to 4 carbon atoms, a halogen atom, a carboxyl group, a sulfo group, an allyloxy group, a hydroxyl group, or a thiol group.
  • benzoxazine compounds having a structure represented by general formula (A) include Pd-type benzoxazine manufactured by Shikoku Kasei Corporation, and JBZ-OP100N and JBZ-BP100N manufactured by JFE Chemical Corporation.
  • Rc represents a divalent group having 1 to 30 carbon atoms, a direct bond, an oxygen atom, a sulfur atom, a carbonyl group, or a sulfonyl group.
  • Examples of the divalent group having 1 to 30 carbon atoms include alkylene groups such as methylene, 1,2-ethylene, 1,4-butylene, and 1,6-hexylene, alkylene groups containing a cyclic structure such as 1,4-cyclohexylene, dicyclopentadienylene, and adamantylene, and alkylidene groups such as ethylidene, propylidene, isopropylidene, butylidene, phenylethylidene, cyclopentylidene, cyclohexylidene, cycloheptylidene, cyclododecylidene, 3,3,5-trimethylcyclohexylidene, and fluorenylidene.
  • alkylene groups such as methylene, 1,2-ethylene, 1,4-butylene, and 1,6-hexylene
  • alkylene groups containing a cyclic structure such as 1,4-cyclohexy
  • Rd each independently represents a monovalent group having 1 to 10 carbon atoms.
  • Rd include alkyl groups such as methyl, ethyl, propyl, and butyl groups, alkenyl groups such as vinyl and allyl groups (except when Rc is a cycloalkylidene group having 5 to 20 carbon atoms), alkynyl groups such as ethynyl and propargyl groups, and aryl groups such as phenyl and naphthyl groups.
  • substituents may further have substituents such as alkoxy groups having 1 to 4 carbon atoms, acyl groups having 1 to 4 carbon atoms, halogen atoms, carboxyl groups, sulfo groups, allyloxy groups, hydroxy groups, and thiol groups.
  • substituents such as alkoxy groups having 1 to 4 carbon atoms, acyl groups having 1 to 4 carbon atoms, halogen atoms, carboxyl groups, sulfo groups, allyloxy groups, hydroxy groups, and thiol groups.
  • benzoxazine compounds having the structure represented by general formula (B) include Fa-type benzoxazine manufactured by Shikoku Kasei Co., Ltd. and BS-BXZ manufactured by Konishi Chemical Industry Co., Ltd.
  • each Re independently represents a monovalent group having 1 to 10 carbon atoms.
  • alkyl groups such as methyl, ethyl, propyl, and butyl groups, alkenyl groups such as vinyl and allyl groups, alkynyl groups such as ethynyl and propargyl groups, and aryl groups such as phenyl and naphthyl groups.
  • the curable resin composition of the present invention preferably contains a benzoxazine compound represented by general formula (1) or a resin raw material composition containing the same, and one or more compounds selected from the group consisting of an epoxy resin, a benzoxazine compound other than the benzoxazine compound represented by general formula (1), a phenolic resin, and a bismaleimide compound.
  • the mixing amount of the benzoxazine compound represented by general formula (1) or the resin raw material composition containing the same and the other polymer materials is in the range of 0.01 parts by weight to 100 parts by weight per 1 part by weight of the benzoxazine compound represented by general formula (1) or the resin raw material composition containing the same.
  • the curable resin composition of the present invention can be obtained by adding the benzoxazine compound represented by the general formula (1) or a resin raw material composition containing the same to the polymeric material as necessary, but the method of addition is not particularly limited and any conventionally known method can be used.
  • the method of adding the compound during synthesis or polymerization of the polymeric material the method of adding a resin made of the polymeric material to a molten resin melted in, for example, a melt extrusion process, and the like, and the method of impregnating a resin product made of the polymeric material can be mentioned.
  • the curable resin composition of the present invention if the composition contains water or residual solvent, bubbles will be generated during curing, so it is preferable to perform a vacuum degassing treatment as a pretreatment to prevent this.
  • the temperature of this vacuum degassing treatment is not particularly limited as long as it is a temperature at which the curable resin composition of the present invention is in a molten state, but it is preferable to perform the treatment with an upper limit of 150°C because curing does not proceed and degassing is easy.
  • the pressure of the vacuum degassing treatment is not particularly limited, but it is better to have a low pressure (high degree of vacuum), and it may be performed either in air or in a nitrogen-substituted atmosphere. This vacuum degassing treatment is performed until bubbles can no longer be visually confirmed.
  • the curable resin composition of the present invention can be used in combination with inorganic fillers such as silicon oxide, aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, and hexagonal boron nitride, or reinforcing fibers such as carbon fiber, glass fiber, organic fiber, boron fiber, steel fiber, and aramid fiber, depending on the needs of the application.
  • inorganic fillers such as silicon oxide, aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, and hexagonal boron nitride
  • reinforcing fibers such as carbon fiber, glass fiber, organic fiber, boron fiber, steel fiber, and aramid fiber, depending on the needs of the application.
  • the cured product of the present invention can be obtained by curing the curable resin composition of the present invention, which contains, as an essential component, the benzoxazine compound represented by general formula (1) of the present invention or a resin raw material composition containing the same.
  • Examples of methods for producing the cured product of the present invention include a method of heating to a predetermined temperature to cure, a method of heating and melting the composition and pouring it into a mold or the like and further heating the mold to cure and mold it, a method of injecting the molten material into a pre-heated mold to cure it, a method of preparing a varnish containing the curable resin composition of the present invention and a solvent, removing the solvent and drying the mixture, pouring it into a mold and heating to cure it, and a method of preparing a varnish, casting it on a support such as a polyimide or polyester film, or a glass substrate, removing the solvent and drying the resulting film, and heating to cure it.
  • the cured product of the present invention can be cured by ring-opening polymerization under the same curing conditions as those for ordinary benzoxazine.
  • the curing temperature is usually in the range of 70 to 300° C., preferably in the range of 100 to 280° C., and more preferably in the range of 100 to 260° C., but in order to improve the mechanical properties of the obtained cured product, it is particularly preferable to set the temperature in the range of 100 to 240° C.
  • the reaction time may be about 1 to 10 hours.
  • the curing accelerator that can be used is not particularly limited, and examples thereof include tertiary amines such as 1,8-diaza-bicyclo[5.4.0]undecene-7, triethylenediamine, and tris(2,4,6-dimethylaminomethyl)phenol, imidazoles such as 2-ethyl-4-methylimidazole and 2-methylimidazole, phosphorus compounds such as triphenylphosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, and tetra-n-butylphosphonium-O,O-diethylphosphorodithioate, quaternary ammonium salts, organic metal salts, and derivatives thereof. These may be used alone or
  • the benzoxazine compound of the present invention and the resin raw material composition and curable resin composition containing the same can be suitably used as resin raw materials for varnishes that can be applied to various substrates, prepregs impregnated with the varnish, copper-clad laminates, printed circuit boards, sealants for semiconductors and electronic components, electrical and electronic molded parts, automobile parts, laminates, paints, resist inks, etc., and the cured products can be suitably used as material resins for these products.
  • the cured products obtained using the benzoxazine compound of the present invention have excellent heat resistance and dielectric properties, and are therefore useful as resin materials for prepregs, copper-clad laminates, printed circuit boards, sealants for semiconductors and electronic components, and electrical and electronic molded parts.
  • LC Measurement device High performance liquid chromatography Analysis device: Prominence UFLC (Shimadzu Corporation) Pump: LC-20AD Column oven: CTO-20A Detector: SPD-20A Column: HALO-C18 (inner diameter 3 mm, length 75 mm) Oven temperature: 50°C Flow rate: 0.7 mL/min.
  • Measurement conditions 3-point bending Measurement temperature: 30 to 310°C Measurement frequency: 1.0 (Hz) Sample dimensions: (60mm x 15mm x 2mm) Heating rate: 1.0° C./min. 5. Evaluation of Dielectric Properties The films (sample size: width 1.5 mm, length 8.0 mm) prepared in the examples and comparative examples were measured for relative dielectric constant and dielectric loss tangent using the following device (sample size: width 1.5 mm, length 8.0 mm).
  • Example 1 Synthesis of the benzoxazine compound of the present invention represented by formula (1-4)
  • a 2L four-neck flask equipped with a thermometer, a stirrer, a cooling tube, and a dropping funnel 130 g (1.3 mol) of allylamine hydrochloride was added, and then 110 g (1.3 mol) of 48% NaOH aqueous solution was added slowly over 5 minutes while stirring, while checking the temperature rise. After that, after it was confirmed that the pH of the aqueous layer was about 9 to 10, 107 g (3.3 mol) of paraformaldehyde (purity: 92%) was added in small portions over 30 minutes.
  • the temperature of the liquid in the flask was then raised to 55° C., and the reaction was carried out for 24 hours, 3 hours at 60° C., 5 hours at 65° C., and 1 hour at 70° C., and the disappearance of 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane was confirmed.
  • the temperature of the liquid in the flask was cooled to 40° C.
  • Analysis of the reaction liquid by GPC showed that the proportion of benzoxazine compounds present in the reaction liquid was 75 area %, and the remaining 25 area % was a compound with a higher molecular weight than the benzoxazine compound (high molecular weight component).
  • the solid thus obtained was analyzed by 1 H-NMR, and as a result, peaks derived from 3,3,5-trimethylcyclohexylidene groups were observed around 0.4 and 0.8-1.0 ppm, a peak derived from the benzoxazine moiety was observed around 3.3-4.0 ppm, a peak derived from allylamine was observed around 4.8-5.2 ppm, and a peak derived from aromatics was observed around 6.6-7.3 ppm.
  • the 1 H-NMR spectrum is shown in FIG. 1. From the results of this analysis, it was revealed that the target compound was a benzoxazine compound represented by formula (1-4).
  • Example 2 Synthesis of the benzoxazine compound of the present invention represented by formula (1-5)
  • 120 g (1.2 mol) of allylamine hydrochloride was added, and then 101 g (1.2 mol) of 48% NaOH aqueous solution was added slowly over 5 minutes while stirring, while checking the temperature rise.
  • the pH of the aqueous layer was about 9 to 10
  • 96 g (3.0 mol) of paraformaldehyde (purity: 92%) was added in small portions over 1 hour.
  • the temperature of the liquid in the flask was cooled to 40° C.
  • the proportion of benzoxazine compounds present in the reaction liquid was 73 area %, and the remaining 27 area % was a compound (high molecular weight component) having a higher molecular weight than the benzoxazine compound.
  • the reaction mixture was mixed with 400 g of pure water, stirred for 30 minutes, and then left to stand to confirm separation from the organic layer, after which the aqueous layer was removed. This water washing procedure was repeated six times, and it was confirmed that the pH of the aqueous layer was 7 to 8.
  • the solvent was removed by distillation under reduced pressure at 40° C. After the solvent was distilled off, the mixture was cooled to obtain a solid benzoxazine compound with no fluidity.
  • the result of measuring the obtained benzoxazine compound by GPC under the above-mentioned analytical conditions was that the purity was 70 area % and the content of high molecular weight components was 30 area %.
  • the obtained distillation residue was heated to 90°C, poured into a metal tray, cooled to room temperature, and crushed to obtain 308 g of a yellow solid benzoxazine compound.
  • the amount of the solvent contained in the solid was 9.9 wt %.
  • the yield was 90 mol % based on the 1,1-bis(4-hydroxyphenyl)cyclododecane used.
  • the solid was analyzed by 1 H-NMR, and the peaks derived from cyclododecane were observed at around 0.4 and 0.8-1.0 ppm, the peaks derived from benzoxazine were observed at around 3.3-4.0 ppm, the peaks derived from allylamine were observed at around 4.8-5.2 ppm, and the peaks derived from aromatic compounds were observed at around 6.6-7.3 ppm.
  • the 1 H-NMR spectrum is shown in FIG. 2. From the results of this analysis, it was revealed that the target compound was a benzoxazine compound represented by formula (1-5).
  • the purity of the compound of formula (1-4) obtained in Example 1 of the present invention did not change at room temperature (30° C.) and at a higher temperature of 50° C., compared with that before heating, and therefore it was revealed that the compound can be stored for a long period of time.
  • the purity of the compound of formula (1-5) obtained in Example 2 did not change under high temperature conditions of 50° C. compared with that before heating, and the change was suppressed under room temperature conditions (30° C.), making it clear that the compound can be stored for a long period of time.
  • Example 3 15 g of the compound of formula (1-4) obtained in Example 1, 16.5 g of dicyclopentadiene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd.: trade name "XD-1000"), 0.64 g of triphenylphosphine as a curing accelerator, and 40.0 g of methyl ethyl ketone were left to stand until completely dissolved. After preparing a varnish in which each component was completely dissolved, the solution was transferred to a tray and dried overnight in a draft, and then dried in a vacuum dryer at 60 ° C. for 4 to 5 hours.
  • dicyclopentadiene type epoxy resin manufactured by Nippon Kayaku Co., Ltd.: trade name "XD-1000”
  • the film of the obtained composition was added to a mold ( ⁇ 100 mm press mold) and cured at 3 MPa under the conditions of 100 ° C. / 1 hour and 130 ° C. / 2 hours in a heat press tester. Thereafter, post-curing treatment was performed in a hot air circulation oven at 140 ° C. / 2 hours, 150 ° C. / 2 hours, 160 ° C. / 2 hours, and 180 ° C. / 2 hours to obtain a cured product.
  • Comparative Synthesis Example 2 A cured product was obtained in the same manner as in Example 3, except that 10.0 g of a novolac type curing agent (manufactured by Aica Kogyo Co., Ltd.: product name "BRG-555”), 24.0 g of a dicyclopentadiene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd.: product name "XD-1000”), 0.64 g of triphenylphosphine, and 40.0 g of methyl ethyl ketone were used.
  • a novolac type curing agent manufactured by Aica Kogyo Co., Ltd.: product name "BRG-555
  • a dicyclopentadiene type epoxy resin manufactured by Nippon Kayaku Co., Ltd.: product name "XD-1000
  • triphenylphosphine 0.64 g
  • 40.0 g of methyl ethyl ketone were used.
  • Tg glass transition temperature
  • dielectric properties of the cured products obtained in Example 3 and Comparative Synthesis Example 2 were measured under the above-mentioned analytical conditions. The results are shown in Table 2.
  • the obtained cured product exhibits good heat resistance (Tg) and dielectric properties.
  • Tg heat resistance
  • the benzoxazine compound of the present invention can give a cured product having excellent heat resistance and dielectric properties by mixing it with an epoxy resin or the like to form a curable resin composition.
  • it is extremely useful as a resin material for prepregs, copper-clad laminates, printed circuit boards, sealants for semiconductors and electronic components, electric and electronic molded parts, automobile parts, laminates, paints, resist inks, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

The present invention addresses the problem of providing a new benzoxazine compound that can be stored for an extended period of time even under room temperature conditions, a resin material composition containing the benzoxazine compound, a curable resin composition, and a cured product of the same. As a solution to the problem, provided is a benzoxazine compound represented by general formula (1). (In the formula, each R1 independently represents an alkylene group having 1-4 carbon atoms, and X represents a cycloalkylidene group having 5-20 carbon atoms.)

Description

ベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物Benzoxazine compound, resin raw material composition containing the same, curable resin composition, and cured product thereof

 本発明は、ベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物に関する。詳しくは、シクロアルキリデン基の両末端にベンゾオキサジン環を有し、さらにアリル基を有するベンゾオキサジン化合物や、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物に関する。 The present invention relates to a benzoxazine compound, a resin raw material composition containing the same, a curable resin composition, and a cured product thereof. More specifically, the present invention relates to a benzoxazine compound having benzoxazine rings at both ends of a cycloalkylidene group and further having an allyl group, a resin raw material composition containing the same, a curable resin composition, and a cured product thereof.

 ベンゾオキサジン化合物は、フェノール類、アミン類及びホルムアルデヒドを反応させることにより合成される化合物であり、加熱することにより揮発性の副生物を生ずることなく、ベンゾオキサジン環が開環重合して硬化する熱硬化性樹脂原料として知られており、絶縁基板用材料として利用可能な成形体、液晶配向剤、半導体封止用樹脂組成物などの原料として利用されている。かかる用途では、高温下での安定性や信頼性に優れた耐熱性が求められている。
 一方で、200℃以上の耐熱性を有していないなど耐熱性に関する課題が残っており、これらの改善のためにアリル基を導入したベンゾオキサジン組成物が報告されている(特許文献1)。
Benzoxazine compounds are compounds synthesized by reacting phenols, amines, and formaldehyde, and are known as thermosetting resin raw materials that cure by ring-opening polymerization of benzoxazine rings without producing volatile by-products when heated, and are used as raw materials for molded products that can be used as materials for insulating substrates, liquid crystal alignment agents, semiconductor encapsulation resin compositions, etc. For such applications, heat resistance with excellent stability and reliability at high temperatures is required.
On the other hand, problems remain regarding heat resistance, such as the lack of heat resistance at 200° C. or higher, and in order to improve these problems, a benzoxazine composition into which an allyl group has been introduced has been reported (Patent Document 1).

特開2003-286320号公報JP 2003-286320 A

 アリル基を有するベンゾオキサジンモノマーのうち、式(i)で表されるベンゾオキサジン化合物は、室温条件下においても重合反応が進行してしまうことにより純度が低下し、樹脂原料としての取扱いに課題があることが明らかになった。
 本発明は、室温条件下でも長期保存が可能である、新規なアリル基を有するベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物を提供することを課題とする。
It has become clear that, among benzoxazine monomers having an allyl group, the benzoxazine compound represented by formula (i) undergoes a polymerization reaction even at room temperature, resulting in a decrease in purity, and thus posing a problem in its handling as a resin raw material.
An object of the present invention is to provide a novel benzoxazine compound having an allyl group, which can be stored for a long period of time even under room temperature conditions, a resin raw material composition containing the same, a curable resin composition, and a cured product thereof.

 本発明者は、上述の課題解決のために鋭意検討した結果、シクロアルキリデンビスフェノールを原料として用い、シクロアルキリデン基の両末端にベンゾオキサジン環を有し、さらにアリル基を有するベンゾオキサジン化合物が、室温条件下でも長期保存が可能であることを見出し、本発明を完成した。 As a result of extensive research into solving the above problems, the present inventors discovered that a benzoxazine compound using cycloalkylidene bisphenol as a raw material, having benzoxazine rings at both ends of the cycloalkylidene group, and further having an allyl group, can be stored for long periods even at room temperature, thus completing the present invention.

 本発明は以下のとおりである。
1.一般式(1)で表されるベンゾオキサジン化合物。
(式中、Rは各々独立して炭素原子数1~4のアルキレン基を示し、Xは炭素原子数5~20のシクロアルキリデン基を示す。)
2.前記Xが、シクロヘキシリデン基、3-メチルシクロヘキシリデン基、4-メチルシクロヘキシリデン基、3,3,5-トリメチルシクロヘキシリデン基又はシクロドデカニリデン基である、1.に記載のベンゾオキサジン化合物。
3.1.に記載のベンゾオキサジン化合物を含む樹脂原料組成物。
4.前記一般式(1)で表されるベンゾオキサジン化合物の含有量が、示差屈折計を検出器とするゲル浸透クロマトグラフィーによる分析で検出されるすべてのピークの面積に対して、10~100面積%の範囲である、3.に記載の樹脂原料組成物。
5.1.に記載のベンゾオキサジン化合物又は3.に記載の樹脂原料組成物を含む、硬化性樹脂組成物。
6.1.に記載のベンゾオキサジン化合物又は3.に記載の樹脂原料組成物と、エポキシ樹脂、前記一般式(1)で表されるベンゾオキサジン化合物以外のベンゾオキサジン化合物、フェノール樹脂及びビスマレイミド化合物からなる群より選択される1種以上を含有する、5.に記載の硬化性樹脂組成物。
7.5.に記載の硬化性樹脂組成物を硬化させた硬化物。
The present invention is as follows.
1. A benzoxazine compound represented by general formula (1):
(In the formula, each R 1 independently represents an alkylene group having 1 to 4 carbon atoms, and X represents a cycloalkylidene group having 5 to 20 carbon atoms.)
2. The benzoxazine compound according to 1., wherein X is a cyclohexylidene group, a 3-methylcyclohexylidene group, a 4-methylcyclohexylidene group, a 3,3,5-trimethylcyclohexylidene group, or a cyclododecanylidene group.
3. A resin raw material composition comprising the benzoxazine compound according to 1.
4. The resin raw material composition according to 3., wherein the content of the benzoxazine compound represented by the general formula (1) is in the range of 10 to 100 area % based on the area of all peaks detected by analysis by gel permeation chromatography using a differential refractometer as a detector.
5. A curable resin composition comprising the benzoxazine compound according to 1. or the resin raw material composition according to 3.
6. The curable resin composition according to 5., comprising the benzoxazine compound according to 1. or the resin raw material composition according to 3., and one or more selected from the group consisting of an epoxy resin, a benzoxazine compound other than the benzoxazine compound represented by general formula (1), a phenolic resin, and a bismaleimide compound.
7.5. A cured product obtained by curing the curable resin composition described in 7.5.

 本発明のベンゾオキサジン化合物並びにそれを含有する樹脂原料組成物は、従来公知の式(i)で表されるベンゾオキサジン化合物に比べて、室温条件下でも長期保存が可能であるので非常に有用である。
 さらに、本発明のベンゾオキサジン化合物並びにそれを含有する樹脂原料組成物を含む硬化性樹脂組成物は、優れた耐熱性と誘電特性を有する硬化物を得ることができる。このことから、プリプレグ、プリント回路基板、半導体や電子部品の封止剤、電気・電子成形部品、自動車部品、積層材、塗料、レジストインク等の樹脂材料として非常に有用である。
The benzoxazine compound of the present invention and the resin raw material composition containing the same are extremely useful because they can be stored for a long period of time even under room temperature conditions, as compared with the conventionally known benzoxazine compounds represented by formula (i).
Furthermore, the benzoxazine compound of the present invention and the curable resin composition containing the resin raw material composition containing the same can give a cured product having excellent heat resistance and dielectric properties, which makes them very useful as resin materials for prepregs, printed circuit boards, sealants for semiconductors and electronic parts, electric and electronic molded parts, automobile parts, laminates, paints, resist inks, etc.

実施例1で得られた式(1-4)で表されるベンゾオキサジン化合物のH NMR分析によるスペクトルを示す図である。FIG. 1 is a diagram showing a spectrum by 1 H NMR analysis of the benzoxazine compound represented by formula (1-4) obtained in Example 1. 実施例2で得られた式(1-5)で表されるベンゾオキサジン化合物のH NMR分析によるスペクトルを示す図である。FIG. 2 is a diagram showing a spectrum by 1 H NMR analysis of the benzoxazine compound represented by formula (1-5) obtained in Example 2.

<本発明のベンゾオキサジン化合物>
 本発明のベンゾオキサジン化合物は、一般式(1)で表される。
(式中、Rは各々独立して炭素原子数1~4のアルキレン基を示し、Xは炭素原子数5~20のシクロアルキリデン基を示す。)
 一般式(1)中のRは、各々独立して炭素原子数1~4のアルキレン基であり、炭素原子数1~2のアルキレン基が好ましく、メチレン基又は1,2-エチレン基がより好ましく、メチレン基が特に好ましい。
 一般式(1)におけるXは、炭素原子数5~20のシクロアルキリデン基を示し、分岐鎖としてのアルキル基を含んでいてもよく、この場合は、分岐鎖としてのアルキル基の炭素原子数も、炭素原子数5~20に含まれる。シクロアルキリデン基は炭素原子数5~15であることが好ましく、炭素原子数6~12であることがより好ましく、炭素原子数6~10であることがさらに好ましく、炭素原子数6~9であることが特に好ましい。
 シクロアルキリデン基としては、具体的には、例えば、シクロペンチリデン基(炭素原子数5)、シクロヘキシリデン基(炭素原子数6)、3-メチルシクロヘキシリデン基(炭素原子数7)、4-メチルシクロヘキシリデン基(炭素原子数7)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロヘプチリデン基(炭素原子数7)、ビシクロ[2.2.1]ヘプタン-2,2-ジイル基(炭素原子数7)、1,7,7-トリメチルビシクロ[2.2.1]ヘプタン-2,2-ジイル基(炭素原子数10)、4,7,7-トリメチルビシクロ[2.2.1]ヘプタン-2,2-ジイル基(炭素原子数10)、トリシクロ[5.2.1.02,6]デカン-8,8-ジイル基(炭素原子数10)、2,2-アダマンチリデン基(炭素原子数10)、シクロドデカニリデン基(炭素原子数12)等が挙げられる。好ましくはシクロヘキシリデン基(炭素原子数6)、3-メチルシクロヘキシリデン基(炭素原子数7)、4-メチルシクロヘキシリデン基(炭素原子数7)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)又はシクロドデカニリデン基(炭素原子数12)であり、より好ましくはシクロヘキシリデン基(炭素原子数6)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)又はシクロドデカニリデン基(炭素原子数12)であり、特に好ましくは、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)である。
<Benzoxazine Compound of the Present Invention>
The benzoxazine compound of the present invention is represented by the general formula (1).
(In the formula, each R 1 independently represents an alkylene group having 1 to 4 carbon atoms, and X represents a cycloalkylidene group having 5 to 20 carbon atoms.)
In general formula (1), R 1 's are each independently an alkylene group having 1 to 4 carbon atoms, preferably an alkylene group having 1 to 2 carbon atoms, more preferably a methylene group or 1,2-ethylene group, and particularly preferably a methylene group.
X in general formula (1) represents a cycloalkylidene group having 5 to 20 carbon atoms, which may contain an alkyl group as a branched chain, in which case the number of carbon atoms of the alkyl group as a branched chain is also included in the number of carbon atoms of 5 to 20. The cycloalkylidene group preferably has 5 to 15 carbon atoms, more preferably has 6 to 12 carbon atoms, further preferably has 6 to 10 carbon atoms, and particularly preferably has 6 to 9 carbon atoms.
Specific examples of the cycloalkylidene group include a cyclopentylidene group (5 carbon atoms), a cyclohexylidene group (6 carbon atoms), a 3-methylcyclohexylidene group (7 carbon atoms), a 4-methylcyclohexylidene group (7 carbon atoms), a 3,3,5-trimethylcyclohexylidene group (9 carbon atoms), a cycloheptylidene group (7 carbon atoms), a bicyclo[2.2.1]heptane-2,2-diyl group (7 carbon atoms), a 1,7,7-trimethylbicyclo[2.2.1]heptane-2,2-diyl group (10 carbon atoms), a 4,7,7-trimethylbicyclo[2.2.1]heptane-2,2-diyl group (10 carbon atoms), a tricyclo[5.2.1.0 2,6 ]decane-8,8-diyl group (10 carbon atoms), 2,2-adamantylidene group (10 carbon atoms), cyclododecanylidene group (12 carbon atoms), etc. are preferred. A cyclohexylidene group (6 carbon atoms), a 3-methylcyclohexylidene group (7 carbon atoms), a 4-methylcyclohexylidene group (7 carbon atoms), a 3,3,5-trimethylcyclohexylidene group (9 carbon atoms) or a cyclododecanylidene group (12 carbon atoms) is preferred, a cyclohexylidene group (6 carbon atoms), a 3,3,5-trimethylcyclohexylidene group (9 carbon atoms) or a cyclododecanylidene group (12 carbon atoms) is more preferred, and a 3,3,5-trimethylcyclohexylidene group (9 carbon atoms) is particularly preferred.

 本発明における、一般式(1)で表されるベンゾオキサジン化合物の具体例として、下記式(1-1)~(1-20)で表される化合物を示す。このうち、化合物(1-1)~(1-5)及び化合物(1-11)~(1-15)が好ましく、化合物(1-1)、(1-4)、(1-5)、(1-11)、(1-14)及び(1-15)がより好ましく、化合物(1-4)、(1-5)、(1-14)及び(1-15)がさらに好ましく、化合物(1-4)及び(1-14)が特に好ましい。
Specific examples of the benzoxazine compound represented by general formula (1) in the present invention include compounds represented by the following formulas (1-1) to (1-20). Among these, compounds (1-1) to (1-5) and compounds (1-11) to (1-15) are preferred, compounds (1-1), (1-4), (1-5), (1-11), (1-14) and (1-15) are more preferred, compounds (1-4), (1-5), (1-14) and (1-15) are even more preferred, and compounds (1-4) and (1-14) are particularly preferred.

<本発明化合物の製造方法>
 本発明における、一般式(1)で表されるベンゾオキサジン化合物については、その製造における出発原料、製造方法について特に制限はない。例えば、下記反応式で例示するとおり、一般式(2)で表されるビスフェノール化合物と一般式(3)で表されるアミン化合物とホルムアルデヒドを脱水縮合反応させて環化し、目的とする一般式(1)で表されるベンゾオキサジン化合物を得る製造方法が挙げられる。
(式中、R、Xは一般式(1)の定義と同じである。)
<Production Method of the Compound of the Present Invention>
The starting material and the manufacturing method for the benzoxazine compound represented by the general formula (1) in the present invention are not particularly limited. For example, as illustrated in the following reaction formula, a manufacturing method can be mentioned in which a bisphenol compound represented by the general formula (2), an amine compound represented by the general formula (3), and formaldehyde are subjected to a dehydration condensation reaction to cyclize, thereby obtaining the target benzoxazine compound represented by the general formula (1).
(In the formula, R 1 and X are defined as in general formula (1).)

 上記製造方法において、出発原料として一般式(2)で表されるビスフェノール化合物、一般式(3)で表されるアミン化合物及びホルムアルデヒド類を使用する。
 一般式(2)で表されるビスフェノール化合物としては、具体的には、例えば、ビスフェノールZ(1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン)、1,1-ビス(4-ヒドロキシフェニル)-3-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、2,2-ビス(4-ヒドロキシフェニル)ビシクロ[2.2.1]ヘプタン、2,2-ビス(4-ヒドロキシフェニル)-1,7,7-トリメチルビシクロ[2.2.1]ヘプタン、2,2-ビス(4-ヒドロキシフェニル)-4,7,7-トリメチルビシクロ[2.2.1]ヘプタン、4,4’-(トリシクロ[5.2.1.02,6]デカン-8,8-ジイル)ビスフェノール、2,2-ビス(4-ヒドロキシフェニル)アダマンタン等が挙げられる。中でも、ビスフェノールZ(1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン)、1,1-ビス(4-ヒドロキシフェニル)-3-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン又は1,1-ビス(4-ヒドロキシフェニル)シクロドデカンが好ましく、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン又は1,1-ビス(4-ヒドロキシフェニル)シクロドデカンがより好ましく、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンが特に好ましい。
 一般式(3)で表されるアミン化合物としては、具体的には、例えば、アリルアミン、3-ブテン-1-アミン、4-ペンテン-1-アミンが挙げられる。中でも、アリルアミンが好ましい。
 一般式(3)で表されるアミン化合物は、塩酸、硫酸などの無機酸との塩として使用することもでき、かかる場合、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムなどを水に溶解したアルカリ性水溶液がさらに存在する状態で反応を行う。
 ホルムアルデヒド類としては、具体的には、例えば、ホルムアルデヒド水溶液、1,3,5-トリオキサン、パラホルムアルデヒド等が挙げられる。
 上記製造方法において、ホルムアルデヒド類の使用量としては、一般式(2)で表されるビスフェノール化合物1モルに対して4.0~20.0モルの範囲であることが好ましく、4.0~16.0モルの範囲であることがより好ましく、4.0~12.0モルの範囲であることがさらに好ましい。
 上記製造方法において、一般式(3)で表されるアミン化合物の使用量としては、一般式(2)で表されるビスフェノール化合物1モルに対して、2.0~10.0モルの範囲であることが好ましく、2.0~8.0モルの範囲であることがより好ましく、2.0~6.0モルの範囲であることがさらに好ましい。
In the above production method, a bisphenol compound represented by the general formula (2), an amine compound represented by the general formula (3), and a formaldehyde compound are used as starting materials.
Specific examples of the bisphenol compound represented by the general formula (2) include bisphenol Z (1,1-bis(4-hydroxyphenyl)cyclohexane), 1,1-bis(4-hydroxyphenyl)-3-methylcyclohexane, 1,1-bis(4-hydroxyphenyl)-4-methylcyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 1,1-bis(4-hydroxyphenyl)cyclododecane, 2,2-bis(4-hydroxyphenyl)bicyclo[2.2.1]heptane, 2,2-bis(4-hydroxyphenyl)-1,7,7-trimethylbicyclo[2.2.1]heptane, 2,2-bis(4-hydroxyphenyl)-4,7,7-trimethylbicyclo[2.2.1]heptane, 4,4'-(tricyclo[5.2.1.0 2,6 ]decane-8,8-diyl)bisphenol, 2,2-bis(4-hydroxyphenyl)adamantane, etc. Among them, bisphenol Z (1,1-bis(4-hydroxyphenyl)cyclohexane), 1,1-bis(4-hydroxyphenyl)-3-methylcyclohexane, 1,1-bis(4-hydroxyphenyl)-4-methylcyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane or 1,1-bis(4-hydroxyphenyl)cyclododecane is preferred, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane or 1,1-bis(4-hydroxyphenyl)cyclododecane is more preferred, and 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane is particularly preferred.
Specific examples of the amine compound represented by the general formula (3) include allylamine, 3-butene-1-amine, and 4-pentene-1-amine. Of these, allylamine is preferred.
The amine compound represented by the general formula (3) can also be used as a salt with an inorganic acid such as hydrochloric acid or sulfuric acid. In such a case, the reaction is carried out in the further presence of an alkaline aqueous solution in which sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, or the like is dissolved in water.
Specific examples of formaldehydes include aqueous formaldehyde solutions, 1,3,5-trioxane, and paraformaldehyde.
In the above production method, the amount of formaldehyde used is preferably in the range of 4.0 to 20.0 mol, more preferably in the range of 4.0 to 16.0 mol, and even more preferably in the range of 4.0 to 12.0 mol, per mol of the bisphenol compound represented by general formula (2).
In the above production method, the amount of the amine compound represented by general formula (3) used is preferably in the range of 2.0 to 10.0 mol, more preferably in the range of 2.0 to 8.0 mol, and even more preferably in the range of 2.0 to 6.0 mol, per 1 mol of the bisphenol compound represented by general formula (2).

 反応を促進するための触媒は特に必要はないが、必要に応じて、酸触媒又は塩基触媒を使用することができる。この場合、使用できる酸触媒として、濃塩酸、塩酸ガス、トリフルオロ酢酸、メタンスルホン酸、p-トルエンスルホン酸、安息香酸及びそれらの混合物等が挙げられ、使用できる塩基触媒としては、水酸化ナトリウム、炭酸ナトリウム、トリエチルアミン、トリエタノールアミン及びそれらの混合物等が挙げられるが、これらに限定されるものではない。中でも、p-トルエンスルホン酸、水酸化ナトリウムが好ましく、水酸化ナトリウムがさらに好ましい。 No particular catalyst is required to promote the reaction, but an acid catalyst or base catalyst can be used as necessary. In this case, examples of acid catalysts that can be used include concentrated hydrochloric acid, hydrochloric acid gas, trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, benzoic acid, and mixtures thereof, while examples of base catalysts that can be used include, but are not limited to, sodium hydroxide, sodium carbonate, triethylamine, triethanolamine, and mixtures thereof. Among these, p-toluenesulfonic acid and sodium hydroxide are preferred, and sodium hydroxide is even more preferred.

 反応は通常、溶媒の存在下に行われる。溶媒としては、反応を阻害しないものであれば特に制限はないが、トルエン、キシレン等の炭素原子数6~9の芳香族炭化水素類、ヘキサン、ヘプタン、シクロヘキサン等の炭素原子数5~8の脂肪族アルキル類、酢酸メチル、酢酸エチル、プロピオン酸メチル、酢酸ブチル等の炭素原子数3~6の脂肪族エステル類、水等が好ましく挙げられる。この中でも、炭素原子数6~9の芳香族炭化水素類、炭素原子数3~6の脂肪族エステル類がより好ましく、炭素原子数3~6の脂肪族エステル類がさらに好ましい。これらの溶媒は単独又は組み合わせて使用できる。また、溶媒の使用量は反応に支障なければ特に制限はないが、通常、一般式(2)で表されるビスフェノール化合物100重量部に対して、200~400重量部の範囲が好ましく、250~300重量部の範囲がより好ましい。 The reaction is usually carried out in the presence of a solvent. There are no particular limitations on the solvent as long as it does not inhibit the reaction, but preferred examples include aromatic hydrocarbons with 6 to 9 carbon atoms, such as toluene and xylene, aliphatic alkyls with 5 to 8 carbon atoms, such as hexane, heptane, and cyclohexane, aliphatic esters with 3 to 6 carbon atoms, such as methyl acetate, ethyl acetate, methyl propionate, and butyl acetate, and water. Among these, aromatic hydrocarbons with 6 to 9 carbon atoms and aliphatic esters with 3 to 6 carbon atoms are more preferred, and aliphatic esters with 3 to 6 carbon atoms are even more preferred. These solvents can be used alone or in combination. There are no particular limitations on the amount of solvent used as long as it does not interfere with the reaction, but usually, the amount is preferably in the range of 200 to 400 parts by weight, and more preferably in the range of 250 to 300 parts by weight, per 100 parts by weight of the bisphenol compound represented by general formula (2).

 反応温度は、通常30~100℃の範囲が好ましく、30~80℃の範囲がより好ましく、40~70℃の範囲が特に好ましい。
 反応圧力は常圧条件下で行ってもよく、また、加圧下でも、或は減圧下で行ってもよい。
 原料となる一般式(2)で表されるビスフェノール化合物、ホルムアルデヒド類、及び一般式(3)で表されるアミン化合物の混合方法に制限はない。例えば、(ア)一般式(2)で表されるビスフェノール化合物とホルムアルデヒド類を含む混合物に、一般式(3)で表されるアミン化合物を混合して反応を行う方法、(イ)ホルムアルデヒド類と一般式(3)で表されるアミン化合物を含む混合物に、一般式(2)で表されるビスフェノール化合物を混合する方法などが挙げられる。これらの混合物は上述の溶媒や触媒を含んでいてもよく、触媒を混合する方法にも制限はないが、一般式(3)で表されるアミン化合物を混合するその前に、触媒を混合することが好ましい。
 本発明の製造方法は、原料の混合物に対して、残る原料を混合する方法には制限はないが、反応選択率と副生物である高分子量成分の生成を抑える観点から、一気に混合するよりも、例えば、10分間から2時間かけて、連続的に若しくは断続的に混合することが好ましい。
The reaction temperature is usually preferably in the range of 30 to 100°C, more preferably in the range of 30 to 80°C, and particularly preferably in the range of 40 to 70°C.
The reaction may be carried out under normal pressure, or under increased or reduced pressure.
There is no limitation on the method of mixing the raw materials, bisphenol compound represented by general formula (2), formaldehydes, and amine compound represented by general formula (3). For example, (a) a method of mixing an amine compound represented by general formula (3) with a mixture containing a bisphenol compound represented by general formula (2) and formaldehydes to carry out a reaction, and (b) a method of mixing a bisphenol compound represented by general formula (2) with a mixture containing formaldehydes and an amine compound represented by general formula (3), etc. can be mentioned. These mixtures may contain the above-mentioned solvents and catalysts, and there is no limitation on the method of mixing the catalyst, but it is preferable to mix the catalyst before mixing the amine compound represented by general formula (3).
In the production method of the present invention, there is no limitation on the method for mixing the remaining raw materials with the raw material mixture. However, from the viewpoint of reaction selectivity and suppressing the production of high molecular weight components as by-products, it is preferable to mix the raw materials continuously or intermittently, for example, over a period of 10 minutes to 2 hours, rather than mixing them all at once.

 別の態様として、原料に由来する水若しくは反応中に生成した水を系外に除去する手順を含むことができる。反応溶液から生成した水を除去する手順は特に制限されず、生成した水を反応溶液中の溶媒系と共沸的に蒸留することにより行うことができる。生成した水は、例えばコックを備えた等圧滴下漏斗、ジムロート冷却器、ディーンスターク装置等の使用により反応系外に除去することができる。 As another embodiment, the method may include a procedure for removing water derived from the raw materials or water generated during the reaction from the system. The procedure for removing the generated water from the reaction solution is not particularly limited, and can be carried out by azeotropically distilling the generated water with the solvent system in the reaction solution. The generated water can be removed from the reaction system by using, for example, a pressure-equalizing dropping funnel equipped with a cock, a Dimroth condenser, a Dean-Stark apparatus, or the like.

 得られた反応終了混合物は、反応終了後、公知の方法によりこの混合物から一般式(1)で表されるベンゾオキサジン化合物を得ることができる。例えば、反応後、反応混合物に対して使用した触媒の失活処理や水洗処理などを行ってもよく、反応混合物から残存原料や溶媒を留去することにより残液として目的物を得ることができる。また、残液を貧溶媒に添加して沈殿させた目的物を得ることや、反応混合物に溶媒を添加して晶析し、ろ過することにより粉体若しくは粒状の目的物を得ることも考えられる。上記方法により、取り出されたベンゾオキサジン化合物は、例えば、溶媒や水での洗浄や再結晶等の通常の精製手段により、高純度品とすることができる。 After the reaction is completed, the benzoxazine compound represented by general formula (1) can be obtained from the resulting reaction mixture by a known method. For example, after the reaction, the reaction mixture may be subjected to a treatment such as deactivating the catalyst used or washing with water, and the target product can be obtained as a residual liquid by distilling off the remaining raw materials and solvent from the reaction mixture. It is also possible to obtain the target product by precipitating the target product by adding a poor solvent to the residual liquid, or to obtain the target product in powder or granular form by adding a solvent to the reaction mixture to crystallize and filter it. The benzoxazine compound extracted by the above method can be made into a high-purity product by ordinary purification means such as washing with a solvent or water or recrystallization.

<一般式(1)で表されるベンゾオキサジン化合物を含む樹脂原料組成物>
 本発明の樹脂原料組成物は、一般式(1)で表されるベンゾオキサジン化合物を含むことを特徴としており、前述の反応混合物から残存原料や溶媒を留去することにより得ることができる。また、残液を貧溶媒に添加して沈殿させた目的物を得ることや、反応混合物に溶媒を添加して晶析し、ろ過することにより粉体若しくは粒状の本発明の樹脂原料組成物を得ることができる。例えば、溶媒や水での洗浄や再結晶等の通常の精製を行うことにより、前記一般式(1)で表されるベンゾオキサジン化合物の含有量が多い、本発明の樹脂原料組成物を得ることができる。
<Resin raw material composition containing benzoxazine compound represented by general formula (1)>
The resin raw material composition of the present invention is characterized by containing a benzoxazine compound represented by general formula (1), and can be obtained by distilling off the remaining raw materials and the solvent from the above-mentioned reaction mixture. The residual liquid can be added to a poor solvent to obtain a precipitated target product, or a solvent can be added to the reaction mixture to crystallize and filter to obtain a powder or granular resin raw material composition of the present invention. For example, the resin raw material composition of the present invention, which contains a large amount of the benzoxazine compound represented by general formula (1), can be obtained by carrying out normal purification such as washing with a solvent or water or recrystallization.

 本発明における樹脂原料組成物は、一般式(1)で表されるベンゾオキサジン化合物を製造する反応において副生する化合物を含有していてもよい。かかる副生物として、例えば、一般式(1)で表されるベンゾオキサジン化合物よりも高分子量の化合物が挙げられる。
 本発明の樹脂原料組成物において、一般式(1)で表されるベンゾオキサジン化合物の含有量については特に限定されないが、その含有量は、示差屈折計を検出器とするゲル浸透クロマトグラフィーにより分析することができ、通常、かかる分析で検出されるすべてのピークの面積に対して、10~100面積%の範囲であり、好ましくは20~100面積%の範囲であり、より好ましくは40~100面積%の範囲であり、特に好ましくは60~100面積%の範囲である。
The resin raw material composition in the present invention may contain a compound that is a by-product in the reaction for producing the benzoxazine compound represented by general formula (1). Examples of such by-products include compounds having a higher molecular weight than the benzoxazine compound represented by general formula (1).
In the resin raw material composition of the present invention, the content of the benzoxazine compound represented by general formula (1) is not particularly limited, but the content can be analyzed by gel permeation chromatography using a differential refractometer as a detector, and is usually in the range of 10 to 100 area %, preferably in the range of 20 to 100 area %, more preferably in the range of 40 to 100 area %, and particularly preferably in the range of 60 to 100 area %, based on the areas of all peaks detected in such analysis.

<一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物を含む、硬化性樹脂組成物>
 本発明の一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物は、これを必須成分とする硬化性樹脂組成物として使用することができる。
 その一態様として、一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物と、酸化珪素、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化珪素、炭化珪素があり、六方晶窒化ホウ素等の無機フィラーや、炭素繊維、ガラス繊維、有機繊維、ボロン繊維、スチール繊維、アラミド繊維等の強化繊維とを混合した硬化性樹脂組成物がある。
 その他の態様として、一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物を必須成分として含有し、その他の高分子材料を含有する硬化性樹脂組成物がある。
 本発明の硬化性樹脂組成物を構成する高分子材料としては、特に制限はないが、エポキシ樹脂、フェノール樹脂、ビスマレイミド化合物、一般式(1)で表されるベンゾオキサジン化合物以外のベンゾオキサジン化合物、それぞれの原料を含有することができる。
<Curable resin composition containing a benzoxazine compound represented by general formula (1) or a resin raw material composition containing the same>
The benzoxazine compound of the present invention represented by the general formula (1) or a resin raw material composition containing the same can be used as a curable resin composition containing the compound as an essential component.
One embodiment of the present invention is a curable resin composition obtained by mixing a benzoxazine compound represented by general formula (1) or a resin raw material composition containing the same with an inorganic filler such as silicon oxide, aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, or hexagonal boron nitride, or a reinforcing fiber such as carbon fiber, glass fiber, organic fiber, boron fiber, steel fiber, or aramid fiber.
Another embodiment is a curable resin composition that contains, as an essential component, the benzoxazine compound represented by the general formula (1) or a resin raw material composition containing the same, and also contains other polymer materials.
The polymer material constituting the curable resin composition of the present invention is not particularly limited, but may contain an epoxy resin, a phenolic resin, a bismaleimide compound, a benzoxazine compound other than the benzoxazine compound represented by general formula (1), and raw materials for each of them.

 エポキシ樹脂としては、例えば、オルソクレゾール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセンジヒドリド型エポキシ樹脂、臭素化ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、シクロアルキリデンビスフェノール型エポキシ、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂、トリスフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂等が挙げられる。
 これらの中でも、得られる硬化物の耐熱性と誘電特性の観点から、環状脂肪族構造を有するエポキシ樹脂である、シクロアルキリデンビスフェノール型エポキシ、ジシクロペンタジエン型エポキシ樹脂及び脂環式エポキシ樹脂から選択される少なくとも1種以上のエポキシ樹脂を使用することは好ましい。
Examples of epoxy resins include orthocresol type epoxy resins, biphenyl type epoxy resins, biphenyl aralkyl type epoxy resins, naphthalene type epoxy resins, anthracene dihydride type epoxy resins, brominated novolac type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, cycloalkylidene bisphenol type epoxy, phenol novolac type epoxy resins, cresol novolac type epoxy resins, resorcinol type epoxy resins, trisphenylmethane type epoxy resins, dicyclopentadiene type epoxy resins, and alicyclic epoxy resins.
Among these, from the viewpoint of the heat resistance and dielectric properties of the obtained cured product, it is preferable to use at least one epoxy resin selected from cycloalkylidene bisphenol type epoxy, dicyclopentadiene type epoxy resin, and alicyclic epoxy resin, which are epoxy resins having a cyclic aliphatic structure.

 ビフェニル型エポキシ樹脂の市販品としては、例えば、「jER」YX4000H、「jER」YX4000、「jER」YL6616(三菱化学(株)製)が挙げられる。
 ビフェニルアラルキル型エポキシ樹脂の市販品としては、例えば、NC-3000(日本化薬(株)製)が挙げられる。
 ナフタレン型エポキシ樹脂の市販品としては、例えば、「エピクロン」HP4032(DIC(株)製)、NC-7000、NC-7300(日本化薬(株)製)が挙げられる。
 ビスフェノールA型エポキシ樹脂の市販品としては、例えば、「jER」825、「jER」826、「jER」827、「jER」828、「jER」834、(三菱化学(株)製)、「エピクロン」(登録商標、以下同じ)850(DIC(株)製)、「エポトート」(登録商標、以下同じ)YD-128(新日鐵化学(株)製)、DER-331、DER-332(ダウケミカル社製)が挙げられる。
 ビスフェノールF型エポキシ樹脂の市販品としては、例えば、「jER」806、「jER」807、「jER」1750、「jER」4007P、「jER」4010P(三菱化学(株)製)、「エピクロン」830 (DIC(株)製)、「エポトート」YD-170、「エポトート」YDF2001、「エポトート」YDF2004(新日鐵化学(株)製)が挙げられる。
 ビスフェノールS型エポキシ樹脂としては、例えば、EXA-1515(DIC(株)製)が挙げられる。
 シクロアルキリデンビスフェノール型エポキシとしては、具体的には、例えば、下記式で表される化合物が挙げられる。
 フェノールノボラック型エポキシ樹脂の市販品としては、例えば、「jER」152、「jER」154(三菱化学(株)製)、「エピクロン」N-740、「エピクロン」N-770、「エピクロン」N-775(DIC(株)製)が挙げられる。
 クレゾールノボラック型エポキシ樹脂の市販品としては、例えば、「エピクロン」N-660、「エピクロン」N-665、「エピクロン」N-670、「エピクロン」N-673、「エピクロン」N-695(DIC(株)製)、EOCN-1020、EOCN-102S、EOCN-104S(日本化薬(株)製)が挙げられる。
 レゾルシノール型エポキシ樹脂の市販品としては、例えば、「デナコール」(登録商標、以下同じ)EX-201(ナガセケムテックス(株)製)が挙げられる。
 トリスフェニルメタン型エポキシ樹脂の市販品としては、例えば、TMH-574(住友化学(株)製)が挙げられる。
 ジシクロペンタジエン型エポキシ樹脂としては、例えば、下記式で表される化合物が挙げられる。
 ジシクロペンタジエン型エポキシ樹脂の市販品としては、例えば、「エピクロン」HP7200、「エピクロン」HP7200L、「エピクロン」HP7200H(DIC(株)製)、「Tactix」(登録商標)558(ハンツマン・アドバンスト・マテリアルズ社製)、XD-1000(日本化薬(株)製)が挙げられる。
 脂環式エポキシ樹脂としては、例えば、(3’,4’-エポキシシクロヘキサン)メチル-3,4-エポキシシクロヘキサンカルボキシレート、(3’,4’-エポキシシクロヘキサン)オクチル-3,4-エポキシシクロヘキサンカルボキシレート、1-メチル-4-(2-メチルオキシラニル)-7-オキサビシクロ[4.1.0]ヘプタン、リモネンジオキサイド、1,2-エポキシ-4-ビニルシクロヘキサンや、下記式で表される化合物が挙げられる。
 (3’,4’-エポキシシクロヘキサン)メチル-3,4-エポキシシクロヘキサンカルボキシレートの市販品としては、例えば、「セロキサイド」(登録商標、以下同じ)2021P((株)ダイセル製)、CY179(ハンツマン・アドバンスト・マテリアルズ社製)が挙げられる。
Commercially available biphenyl-type epoxy resins include, for example, "jER" YX4000H, "jER" YX4000, and "jER" YL6616 (manufactured by Mitsubishi Chemical Corporation).
An example of a commercially available biphenyl aralkyl type epoxy resin is NC-3000 (manufactured by Nippon Kayaku Co., Ltd.).
Commercially available naphthalene-type epoxy resins include, for example, "Epiclon" HP4032 (manufactured by DIC Corporation), NC-7000, and NC-7300 (manufactured by Nippon Kayaku Co., Ltd.).
Commercially available bisphenol A type epoxy resins include, for example, "jER" 825, "jER" 826, "jER" 827, "jER" 828, and "jER" 834 (manufactured by Mitsubishi Chemical Corporation), "Epiclon" (registered trademark, the same applies below) 850 (manufactured by DIC Corporation), "Epotohto" (registered trademark, the same applies below) YD-128 (manufactured by Nippon Steel Chemical Co., Ltd.), and DER-331 and DER-332 (manufactured by The Dow Chemical Company).
Commercially available bisphenol F type epoxy resins include, for example, "jER" 806, "jER" 807, "jER" 1750, "jER" 4007P, "jER" 4010P (manufactured by Mitsubishi Chemical Corporation), "Epiclon" 830 (manufactured by DIC Corporation), "Epototo" YD-170, "Epototo" YDF2001, and "Epototo" YDF2004 (manufactured by Nippon Steel Chemical Co., Ltd.).
An example of the bisphenol S type epoxy resin is EXA-1515 (manufactured by DIC Corporation).
Specific examples of cycloalkylidene bisphenol type epoxy include compounds represented by the following formula:
Commercially available phenol novolac type epoxy resins include, for example, "jER" 152, "jER" 154 (manufactured by Mitsubishi Chemical Corporation), "Epiclon" N-740, "Epiclon" N-770, and "Epiclon" N-775 (manufactured by DIC Corporation).
Commercially available cresol novolac epoxy resins include, for example, "Epicron" N-660, "Epicron" N-665, "Epicron" N-670, "Epicron" N-673, and "Epicron" N-695 (manufactured by DIC Corporation), EOCN-1020, EOCN-102S, and EOCN-104S (manufactured by Nippon Kayaku Co., Ltd.).
An example of a commercially available resorcinol type epoxy resin is "Denacol" (registered trademark, the same applies below) EX-201 (manufactured by Nagase ChemteX Corporation).
An example of a commercially available trisphenylmethane type epoxy resin is TMH-574 (manufactured by Sumitomo Chemical Co., Ltd.).
Examples of dicyclopentadiene type epoxy resins include compounds represented by the following formula.
Commercially available dicyclopentadiene type epoxy resins include, for example, "Epicron" HP7200, "Epicron" HP7200L, "Epicron" HP7200H (manufactured by DIC Corporation), "Tactix" (registered trademark) 558 (manufactured by Huntsman Advanced Materials, Inc.), and XD-1000 (manufactured by Nippon Kayaku Co., Ltd.).
Examples of the alicyclic epoxy resin include (3',4'-epoxycyclohexane)methyl-3,4-epoxycyclohexanecarboxylate, (3',4'-epoxycyclohexane)octyl-3,4-epoxycyclohexanecarboxylate, 1-methyl-4-(2-methyloxiranyl)-7-oxabicyclo[4.1.0]heptane, limonene dioxide, 1,2-epoxy-4-vinylcyclohexane, and compounds represented by the following formula:
Commercially available products of (3',4'-epoxycyclohexane)methyl-3,4-epoxycyclohexanecarboxylate include, for example, "Celloxide" (registered trademark, the same applies below) 2021P (manufactured by Daicel Corporation) and CY179 (manufactured by Huntsman Advanced Materials).

 フェノール樹脂としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂、アミノトリアジンノボラック樹脂、トリスフェニルメタン型のフェノールノボラック樹脂等のノボラック型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン骨格及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;レゾール型フェノール樹脂等が挙げられる。 Examples of phenolic resins include novolac-type phenolic resins such as phenol novolac resin, cresol novolac resin, naphthol novolac resin, aminotriazine novolac resin, and trisphenylmethane-type phenol novolac resin; modified phenolic resins such as terpene-modified phenolic resin and dicyclopentadiene-modified phenolic resin; aralkyl-type resins such as phenol aralkyl resins having a phenylene skeleton and/or biphenylene skeleton, and naphthol aralkyl resins having a phenylene skeleton and/or biphenylene skeleton; and resol-type phenolic resins.

 ビスマレイミド化合物としては、例えば、下記構造を有するビスマレイミド化合物の原料等が挙げられる。
Examples of the bismaleimide compound include raw materials for bismaleimide compounds having the following structures:

 一般式(1)で表されるベンゾオキサジン化合物以外のベンゾオキサジン化合物としては、例えば、下記一般式(A)~(C)で表される構造を有するベンゾオキサジン化合物等が挙げられる。
(式中、Raは炭素原子数1~30の2価の基を示し、Rbは各々独立して置換基を有してもよい炭素原子数1~10の1価の基を示し、nは各々独立して0又は1を示す。)
(式中、Rcは炭素原子数1~30の2価の基、直接結合、酸素原子、硫黄原子、カルボニル基、又はスルホニル基を示し、Rdは各々独立して炭素原子数1~10の1価の基を示す。)
(式中、Reは各々独立して炭素原子数1~10の1価の基を示し、mは0又は1を示す。)
Examples of benzoxazine compounds other than the benzoxazine compound represented by general formula (1) include benzoxazine compounds having structures represented by the following general formulas (A) to (C).
(In the formula, Ra represents a divalent group having 1 to 30 carbon atoms, each Rb represents a monovalent group having 1 to 10 carbon atoms which may have a substituent, and each n represents independently 0 or 1.)
(In the formula, Rc represents a divalent group having 1 to 30 carbon atoms, a direct bond, an oxygen atom, a sulfur atom, a carbonyl group, or a sulfonyl group, and each Rd independently represents a monovalent group having 1 to 10 carbon atoms.)
(In the formula, each Re independently represents a monovalent group having 1 to 10 carbon atoms, and m represents 0 or 1.)

 一般式(A)で表される構造を有するベンゾオキサジン化合物におけるRaは、炭素原子数1~30の2価の基を示す。その具体例としては、1,2-エチレン、1,4-ブチレン、1,6-ヘキシレン等のアルキレン基、1,4-シクロヘキシレン、ジシクロペンタジエニレン、アダマンチレン等の環状構造を含むアルキレン基、1,4-フェニレン、4,4’-ビフェニレン、ジフェニルエーテル-4,4’-ジイル、ジフェニルエーテル-3,4’-ジイル、ジフェニルケトン-4,4’-ジイル、ジフェニルスルホン-4,4’-ジイル等のアリーレン基が挙げられる。
 一般式(A)で表される構造を有するベンゾオキサジン化合物におけるRbは、各々独立して炭素原子数1~10の1価の基を示す。その具体例としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、ビニル基、アリル基等のアルケニル基、エチニル基、プロパルギル基等のアルキニル基、フェニル基、ナフチル基等のアリール基等が挙げられ、これらの基には更に、炭素原子数1~4のアルコキシ基、炭素原子数1~4のアシル基、ハロゲン原子、カルボキシル基、スルホ基、アリルオキシ基、ヒドロキシ基、チオール基等の置換基を有してもよい。
 一般式(A)で表される構造を有するベンゾオキサジン化合物としては、例えば、四国化成社製P-d型ベンゾオキサジン、JFEケミカル社製JBZ-OP100N、JBZ-BP100Nが挙げられる。
In the benzoxazine compound having a structure represented by general formula (A), Ra represents a divalent group having 1 to 30 carbon atoms. Specific examples thereof include alkylene groups such as 1,2-ethylene, 1,4-butylene, and 1,6-hexylene, alkylene groups containing a cyclic structure such as 1,4-cyclohexylene, dicyclopentadienylene, and adamantylene, and arylene groups such as 1,4-phenylene, 4,4'-biphenylene, diphenylether-4,4'-diyl, diphenylether-3,4'-diyl, diphenylketone-4,4'-diyl, and diphenylsulfone-4,4'-diyl.
In the benzoxazine compound having a structure represented by general formula (A), Rb each independently represents a monovalent group having 1 to 10 carbon atoms. Specific examples thereof include alkyl groups such as methyl, ethyl, propyl, and butyl groups, alkenyl groups such as vinyl and allyl groups, alkynyl groups such as ethynyl and propargyl groups, and aryl groups such as phenyl and naphthyl groups. These groups may further have a substituent such as an alkoxy group having 1 to 4 carbon atoms, an acyl group having 1 to 4 carbon atoms, a halogen atom, a carboxyl group, a sulfo group, an allyloxy group, a hydroxyl group, or a thiol group.
Examples of benzoxazine compounds having a structure represented by general formula (A) include Pd-type benzoxazine manufactured by Shikoku Kasei Corporation, and JBZ-OP100N and JBZ-BP100N manufactured by JFE Chemical Corporation.

 一般式(B)で表される構造を有するベンゾオキサジン化合物におけるRcは、炭素原子数1~30の2価の基、直接結合、酸素原子、硫黄原子、カルボニル基又はスルホニル基を示す。炭素原子数1~30の2価の基としては、メチレン、1,2-エチレン、1,4-ブチレン、1,6-ヘキシレン等のアルキレン基、1,4-シクロヘキシレン、ジシクロペンタジエニレン、アダマンチレン等の環状構造を含むアルキレン基、エチリデン、プロピリデン、イソプロピリデン、ブチリデン、フェニルエチリデン、シクロペンチリデン、シクロヘキシリデン、シクロヘプチリデン、シクロドデシリデン、3,3,5-トリメチルシクロヘキシリデン、フルオレニリデン等のアルキリデン基等が挙げられる。
 一般式(B)で表される構造を有するベンゾオキサジン化合物におけるRdは、各々独立して炭素原子数1~10の1価の基を示す。その具体例としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、ビニル基、アリル基等のアルケニル基(Rcが炭素原子数5~20のシクロアルキリデン基である場合を除く)、エチニル基、プロパルギル基等のアルキニル基、フェニル基、ナフチル基等のアリール基が挙げられ、これらの置換基には更に、炭素原子数1~4のアルコキシ基、炭素原子数1~4のアシル基、ハロゲン原子、カルボキシル基、スルホ基、アリルオキシ基、ヒドロキシ基、チオール基等の置換基を有してもよい。
 一般式(B)で表される構造を有するベンゾオキサジン化合物としては、例えば、四国化成社製F-a型ベンゾオキサジン、小西化学工業社製BS-BXZが挙げられる。
In the benzoxazine compound having a structure represented by general formula (B), Rc represents a divalent group having 1 to 30 carbon atoms, a direct bond, an oxygen atom, a sulfur atom, a carbonyl group, or a sulfonyl group. Examples of the divalent group having 1 to 30 carbon atoms include alkylene groups such as methylene, 1,2-ethylene, 1,4-butylene, and 1,6-hexylene, alkylene groups containing a cyclic structure such as 1,4-cyclohexylene, dicyclopentadienylene, and adamantylene, and alkylidene groups such as ethylidene, propylidene, isopropylidene, butylidene, phenylethylidene, cyclopentylidene, cyclohexylidene, cycloheptylidene, cyclododecylidene, 3,3,5-trimethylcyclohexylidene, and fluorenylidene.
In the benzoxazine compound having a structure represented by general formula (B), Rd each independently represents a monovalent group having 1 to 10 carbon atoms. Specific examples thereof include alkyl groups such as methyl, ethyl, propyl, and butyl groups, alkenyl groups such as vinyl and allyl groups (except when Rc is a cycloalkylidene group having 5 to 20 carbon atoms), alkynyl groups such as ethynyl and propargyl groups, and aryl groups such as phenyl and naphthyl groups. These substituents may further have substituents such as alkoxy groups having 1 to 4 carbon atoms, acyl groups having 1 to 4 carbon atoms, halogen atoms, carboxyl groups, sulfo groups, allyloxy groups, hydroxy groups, and thiol groups.
Examples of benzoxazine compounds having the structure represented by general formula (B) include Fa-type benzoxazine manufactured by Shikoku Kasei Co., Ltd. and BS-BXZ manufactured by Konishi Chemical Industry Co., Ltd.

 一般式(C)で表される構造を有するベンゾオキサジン化合物におけるReは、各々独立して炭素原子数1~10の1価の基を示す。その具体例としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、ビニル基、アリル基等のアルケニル基、エチニル基、プロパルギル基等のアルキニル基、フェニル基、ナフチル基等のアリール基が挙げられ、これらの置換基には更に、炭素原子数1~4のアルコキシ基、炭素原子数1~4のアシル基、ハロゲン原子、カルボキシル基、スルホ基、アリルオキシ基、ヒドロキシ基、チオール基等の置換基を有してもよい。
 中でも、本発明の硬化性樹脂組成物は、一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物と、エポキシ樹脂、一般式(1)で表されるベンゾオキサジン化合物以外のベンゾオキサジン化合物、フェノール樹脂、ビスマレイミド化合物からなる群より選択される1種以上を含有することが好ましい。
In the benzoxazine compound having a structure represented by general formula (C), each Re independently represents a monovalent group having 1 to 10 carbon atoms. Specific examples thereof include alkyl groups such as methyl, ethyl, propyl, and butyl groups, alkenyl groups such as vinyl and allyl groups, alkynyl groups such as ethynyl and propargyl groups, and aryl groups such as phenyl and naphthyl groups. These substituents may further have substituents such as alkoxy groups having 1 to 4 carbon atoms, acyl groups having 1 to 4 carbon atoms, halogen atoms, carboxyl groups, sulfo groups, allyloxy groups, hydroxy groups, and thiol groups.
In particular, the curable resin composition of the present invention preferably contains a benzoxazine compound represented by general formula (1) or a resin raw material composition containing the same, and one or more compounds selected from the group consisting of an epoxy resin, a benzoxazine compound other than the benzoxazine compound represented by general formula (1), a phenolic resin, and a bismaleimide compound.

 本発明の硬化性樹脂組成物における、一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物と、その他の高分子材料の混合量は、一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物1重量部に対して、0.01重量部~100重量部の範囲である。
 本発明の硬化性樹脂組成物は、一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物を、その他必要に応じて前記高分子材料に添加することによって得られるが、かかる添加方法は特に限定されず、従来公知の方法を採用することができる。例えば、高分子材料の合成や重合中に添加する方法、高分子材料からなる樹脂を例えば溶融押出工程等において溶融した溶融樹脂に添加する方法、高分子材料からなる樹脂製品等に含浸する方法等を挙げることができる。
 本発明の硬化性樹脂組成物は、組成物中に水や残存溶媒を含んでいると硬化時に気泡が発生してしまうので、これを防ぐために前処理として真空脱気処理を行うことが好ましい。この真空脱気処理の温度は、本発明の硬化性樹脂組成物が溶融状態となる温度であれば特に制限されないが、硬化が進行せず、かつ、脱気がしやすいとの理由により150℃を上限として行うのが好ましい。真空脱気処理の圧力は、特に制限はないが、低い(減圧度の高い)方がよく、空気中でも窒素置換雰囲気下中の何れで行ってもよい。この真空脱気処理は、気泡が目視で確認できなくなるまで行う。
 本発明の硬化性樹脂組成物は、用途の必要に応じて、酸化珪素、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化珪素、炭化珪素があり、六方晶窒化ホウ素等の無機フィラーや、炭素繊維、ガラス繊維、有機繊維、ボロン繊維、スチール繊維、アラミド繊維等の強化繊維と混合して使用することができる。
In the curable resin composition of the present invention, the mixing amount of the benzoxazine compound represented by general formula (1) or the resin raw material composition containing the same and the other polymer materials is in the range of 0.01 parts by weight to 100 parts by weight per 1 part by weight of the benzoxazine compound represented by general formula (1) or the resin raw material composition containing the same.
The curable resin composition of the present invention can be obtained by adding the benzoxazine compound represented by the general formula (1) or a resin raw material composition containing the same to the polymeric material as necessary, but the method of addition is not particularly limited and any conventionally known method can be used. For example, the method of adding the compound during synthesis or polymerization of the polymeric material, the method of adding a resin made of the polymeric material to a molten resin melted in, for example, a melt extrusion process, and the like, and the method of impregnating a resin product made of the polymeric material can be mentioned.
In the curable resin composition of the present invention, if the composition contains water or residual solvent, bubbles will be generated during curing, so it is preferable to perform a vacuum degassing treatment as a pretreatment to prevent this. The temperature of this vacuum degassing treatment is not particularly limited as long as it is a temperature at which the curable resin composition of the present invention is in a molten state, but it is preferable to perform the treatment with an upper limit of 150°C because curing does not proceed and degassing is easy. The pressure of the vacuum degassing treatment is not particularly limited, but it is better to have a low pressure (high degree of vacuum), and it may be performed either in air or in a nitrogen-substituted atmosphere. This vacuum degassing treatment is performed until bubbles can no longer be visually confirmed.
The curable resin composition of the present invention can be used in combination with inorganic fillers such as silicon oxide, aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, and hexagonal boron nitride, or reinforcing fibers such as carbon fiber, glass fiber, organic fiber, boron fiber, steel fiber, and aramid fiber, depending on the needs of the application.

<本発明の硬化性樹脂組成物を硬化させた硬化物>
 本発明の硬化物は、本発明の一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物を必須成分とする、本発明の硬化性樹脂組成物を硬化させて得ることができる。
 本発明の硬化物の製造方法としては、例えば、所定の温度まで加熱して硬化させる方法、加熱融解させて金型等に注ぎ金型を更に加熱して硬化成型させる方法、溶融物を予め加熱された金型に注入して硬化させる方法、本発明の硬化性樹脂組成物と溶剤を含むワニスを調製し、溶媒を除去して乾燥させた混合物を金型に入れて、加熱して硬化させる方法、ワニスを調製し、ポリイミドやポリエステルのフィルム、ガラス基板等の支持体に流延し、溶媒を除去して乾燥させた膜を加熱して硬化させる方法等を挙げることができる。
<Cured product obtained by curing the curable resin composition of the present invention>
The cured product of the present invention can be obtained by curing the curable resin composition of the present invention, which contains, as an essential component, the benzoxazine compound represented by general formula (1) of the present invention or a resin raw material composition containing the same.
Examples of methods for producing the cured product of the present invention include a method of heating to a predetermined temperature to cure, a method of heating and melting the composition and pouring it into a mold or the like and further heating the mold to cure and mold it, a method of injecting the molten material into a pre-heated mold to cure it, a method of preparing a varnish containing the curable resin composition of the present invention and a solvent, removing the solvent and drying the mixture, pouring it into a mold and heating to cure it, and a method of preparing a varnish, casting it on a support such as a polyimide or polyester film, or a glass substrate, removing the solvent and drying the resulting film, and heating to cure it.

 本発明の硬化物は、通常のベンゾオキサジンと同様の硬化条件にて、開環重合を行い硬化することができる。硬化温度は、通常70~300℃の範囲であり、好ましくは100~280℃の範囲であり、より好ましくは100~260℃の範囲であるが、得られる硬化物の機械物性を良くするためには、特に100~240℃の範囲とすることが好ましい。このような温度の範囲において硬化を行う場合には、反応時間は1~10時間程度であればよい。
 本発明の樹脂組成物は、熱のみで硬化できるが、一般式(1)で表されるベンゾオキサジン化合物以外の成分やその含有量等によっては、硬化促進剤を用いた方が好ましい。使用できる硬化促進剤としては、特に限定されるものではなく、例えば、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、トリエチレンジアミン、トリス(2,4,6-ジメチルアミノメチル)フェノール等の第三級アミン類、2-エチル-4-メチルイミダゾール、2-メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート、テトラ-n-ブチルホスホニウム-О,О-ジエチルホスホロジチオエート等のリン化合物、4級アンモニウム塩、有機金属塩類、及びこれらの誘導体等が挙げられる。これらは単独で使用してもよく、あるいは、併用してもよい。これら硬化促進剤の中では、第三級アミン類、イミダゾール類及びリン化合物を用いることが好ましい。
The cured product of the present invention can be cured by ring-opening polymerization under the same curing conditions as those for ordinary benzoxazine. The curing temperature is usually in the range of 70 to 300° C., preferably in the range of 100 to 280° C., and more preferably in the range of 100 to 260° C., but in order to improve the mechanical properties of the obtained cured product, it is particularly preferable to set the temperature in the range of 100 to 240° C. When curing is performed in such a temperature range, the reaction time may be about 1 to 10 hours.
Although the resin composition of the present invention can be cured only by heat, depending on the components other than the benzoxazine compound represented by the general formula (1) and their contents, it is preferable to use a curing accelerator. The curing accelerator that can be used is not particularly limited, and examples thereof include tertiary amines such as 1,8-diaza-bicyclo[5.4.0]undecene-7, triethylenediamine, and tris(2,4,6-dimethylaminomethyl)phenol, imidazoles such as 2-ethyl-4-methylimidazole and 2-methylimidazole, phosphorus compounds such as triphenylphosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, and tetra-n-butylphosphonium-O,O-diethylphosphorodithioate, quaternary ammonium salts, organic metal salts, and derivatives thereof. These may be used alone or in combination. Among these curing accelerators, it is preferable to use tertiary amines, imidazoles, and phosphorus compounds.

 本発明のベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物は、各種基材に塗布可能なワニス、ワニスを含浸させたプリプレグ、銅張積層板、プリント回路基板、半導体や電子部品の封止剤、電気・電子成形部品、自動車部品、積層材、塗料、レジストインク等の樹脂原料として、硬化物はそれらの材料樹脂として好適に用いることができる。この中でも、本発明のベンゾオキサジン化合物を使用して得られる硬化物は、優れた耐熱性と誘電特性を有することから、プリプレグ、銅張積層板、プリント回路基板、半導体や電子部品の封止剤、電気・電子成形部品の樹脂材料に有用である。 The benzoxazine compound of the present invention, and the resin raw material composition and curable resin composition containing the same can be suitably used as resin raw materials for varnishes that can be applied to various substrates, prepregs impregnated with the varnish, copper-clad laminates, printed circuit boards, sealants for semiconductors and electronic components, electrical and electronic molded parts, automobile parts, laminates, paints, resist inks, etc., and the cured products can be suitably used as material resins for these products. Among these, the cured products obtained using the benzoxazine compound of the present invention have excellent heat resistance and dielectric properties, and are therefore useful as resin materials for prepregs, copper-clad laminates, printed circuit boards, sealants for semiconductors and electronic components, and electrical and electronic molded parts.

 以下、実施例により、本発明をさらに具体的に説明する。
<分析方法>
1.液体クロマトグラフィー:LC
 測定装置:高速液体クロマトグラフィー分析装置:Prominence UFLC((株)島津製作所製)
 ポンプ:LC-20AD
 カラムオーブン:CTO-20A
 検出器:SPD-20A
 カラム:HALO-C18(内径3mm、長さ75mm)
 オーブン温度:50℃
 流量:0.7mL/min.
 検出波長:280nm
 移動相:(A)0.2体積%酢酸水溶液、(B)テトラヒドロフラン
 グラジエント条件:(A)体積%(分析開始からの時間)
 20%(0min.)→40%(10min.)→60%(20min.)→100%(37min.)→100%(40min.)
2.ゲル浸透クロマトグラフィー:GPC
 装置 :HLC-8320/東ソー(株)製
 検出器:示差屈折計(RI)
[測定条件]
 流量 :1mL/min.
 溶出液:テトラヒドロフラン
 温度 :40℃
 波長 :254nm
 サンプリングピッチ:100sec.
 測定試料:ベンゾオキサジン化合物10mgをテトラヒドロフランで50倍に希釈した溶液
 注入量:10μL
[カラム](上流から)
 Guard ColumnHXL-L+G4000HXL+G3000HXL+G2000HXL×2本(7.8mmID×30cm、東ソー(株)製)
3.NMR分析
 測定装置:フーリエ変換核磁気共鳴AVANCE III HD 400(BRUKER製)
 測定サンプルを重クロロホルムに溶解し、H-NMRスペクトルを測定した。
4.ガラス転移温度(Tg)の測定(動的粘弾性測定(DMA))
 装置:DMA850/ティー・エイ・インスツルメント・ジャパン(株)製
 測定条件:3点曲げ
 測定温度:30~310℃
 測定周波数:1.0(Hz)
 サンプルの寸法:(60mm×15mm×2mm)
 昇温速度:1.0℃/min.
5.誘電特性評価
 実施例及び比較例で作成したフィルム(サンプルサイズ:幅1.5mm、長さ8.0mm)を、下記装置を用いて(サンプルサイズ:幅1.5mm、長さ8.0mm)、比誘電率及び誘電正接を測定した。
 測定装置:PNAネットワークアナライザ N522B(キーサイト・テクノロジー(株)製)
 空洞共振器:10GHz用 CP531((株)関東電子応用開発製)
[測定条件]
 試験方法:IEC 62180準拠(空洞共振器摂動法)
 試験条件:周波数;10GHz
 測定数:n=2
The present invention will now be described more specifically with reference to examples.
<Analysis method>
1. Liquid Chromatography: LC
Measurement device: High performance liquid chromatography Analysis device: Prominence UFLC (Shimadzu Corporation)
Pump: LC-20AD
Column oven: CTO-20A
Detector: SPD-20A
Column: HALO-C18 (inner diameter 3 mm, length 75 mm)
Oven temperature: 50°C
Flow rate: 0.7 mL/min.
Detection wavelength: 280 nm
Mobile phase: (A) 0.2% by volume acetic acid aqueous solution, (B) tetrahydrofuran Gradient conditions: (A) vol.% (time from start of analysis)
20% (0 min.) → 40% (10 min.) → 60% (20 min.) → 100% (37 min.) → 100% (40 min.)
2. Gel Permeation Chromatography: GPC
Apparatus: HLC-8320/Tosoh Corporation Detector: Differential refractometer (RI)
[Measurement condition]
Flow rate: 1 mL/min.
Eluent: Tetrahydrofuran Temperature: 40°C
Wavelength: 254 nm
Sampling pitch: 100 sec.
Measurement sample: 10 mg of benzoxazine compound diluted 50 times with tetrahydrofuran Injection volume: 10 μL
[Column] (from upstream)
Guard Column HXL-L + G4000HXL + G3000HXL + G2000HXL x 2 (7.8mm ID x 30cm, Tosoh Corporation)
3. NMR analysis Measurement device: Fourier transform nuclear magnetic resonance AVANCE III HD 400 (manufactured by BRUKER)
The measurement sample was dissolved in deuterated chloroform, and the 1 H-NMR spectrum was measured.
4. Measurement of glass transition temperature (Tg) (dynamic mechanical analysis (DMA))
Apparatus: DMA850/manufactured by TA Instruments Japan, Inc. Measurement conditions: 3-point bending Measurement temperature: 30 to 310°C
Measurement frequency: 1.0 (Hz)
Sample dimensions: (60mm x 15mm x 2mm)
Heating rate: 1.0° C./min.
5. Evaluation of Dielectric Properties The films (sample size: width 1.5 mm, length 8.0 mm) prepared in the examples and comparative examples were measured for relative dielectric constant and dielectric loss tangent using the following device (sample size: width 1.5 mm, length 8.0 mm).
Measurement device: PNA network analyzer N522B (Keysight Technologies, Inc.)
Cavity resonator: CP531 for 10 GHz (manufactured by Kanto Electronics Application Development Co., Ltd.)
[Measurement condition]
Test method: Compliant with IEC 62180 (cavity resonator perturbation method)
Test conditions: Frequency: 10 GHz
Number of measurements: n = 2

<実施例1>(式(1-4)で表される本発明のベンゾオキサジン化合物の合成)
 温度計、撹拌機、冷却管、滴下ロートを備えた2Lの4つ口フラスコに、アリルアミン塩酸塩を130g(1.3mol)加えた後、撹拌しながら48%NaOH水溶液110g(1.3mol)を、昇温を確認しながらゆっくりと5分かけて添加した。その後水層のpHが9~10程度である事を確認した後に、パラホルムアルデヒド(純度:92%)107g(3.3mol)を30分かけて小分けしながら添加した。この際に反応系の温度は30℃から55℃まで昇温が確認された。その後撹拌をしながら空冷し、温度が30℃に下がったのを確認した後に30℃で1時間撹拌を行った。
 撹拌終了後、フラスコ内に酢酸エチル586gと、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン210gを添加した。その後、フラスコ内液の温度を55℃まで昇温し、24時間、60℃で3時間、65℃で5時間、70℃で1時間反応を行ったところ、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンの消失を確認した。フラスコ内液の温度を40℃まで冷却した。GPCにより反応液を分析した結果、反応液中に存在するベンゾオキサジン化合物の割合は75面積%であり、残り25面積%はベンゾオキサジン化合物よりも高分子量の化合物(高分子量成分)であった。
 反応終了液に純水400gを混合した後、30分撹拌を行い、静置して有機層との分離を確認した後に水層を除去した。この水洗操作を6回行い、水層のpHが7~8である事を確認した。
 その後、40℃減圧下にて蒸留により溶媒を除去した。溶媒を留去した後、冷却して、流動性のない固体のベンゾオキサジン化合物を取得した。得られたベンゾオキサジン化合物を上記分析条件によりGPCで測定した結果、純度は70面積%、高分子量成分の含有量は30面積%であった。
 得られた蒸留残渣を90℃に加熱して、金属バットに流し出し、室温まで冷却し、解砕し、黄色の固体のベンゾオキサジン化合物250gを取得した。固体に含まれる溶媒量は、1.0重量%であった。収率は使用した1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンに対して78モル%であった。
 得られた固体をH-NMR分析した結果、0.4及び0.8~1.0ppm付近に3,3,5-トリメチルシクロヘキシリデン基に由来するピークが観測され、3.3~4.0ppm付近にベンゾオキサジン部由来のピークが観測され、4.8~5.2ppmにアリルアミン由来のピークが観測され、6.6~7.3ppm付近に芳香族に由来するピークが観測された。H-NMRスペクトルを図1に示す。本分析結果から、目的化合物である式(1-4)で表されるベンゾオキサジン化合物であることが明らかになった。
Example 1 (Synthesis of the benzoxazine compound of the present invention represented by formula (1-4))
In a 2L four-neck flask equipped with a thermometer, a stirrer, a cooling tube, and a dropping funnel, 130 g (1.3 mol) of allylamine hydrochloride was added, and then 110 g (1.3 mol) of 48% NaOH aqueous solution was added slowly over 5 minutes while stirring, while checking the temperature rise. After that, after it was confirmed that the pH of the aqueous layer was about 9 to 10, 107 g (3.3 mol) of paraformaldehyde (purity: 92%) was added in small portions over 30 minutes. At this time, it was confirmed that the temperature of the reaction system rose from 30°C to 55°C. Then, it was air-cooled while stirring, and after it was confirmed that the temperature had dropped to 30°C, it was stirred at 30°C for 1 hour.
After the stirring was completed, 586 g of ethyl acetate and 210 g of 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane were added to the flask. The temperature of the liquid in the flask was then raised to 55° C., and the reaction was carried out for 24 hours, 3 hours at 60° C., 5 hours at 65° C., and 1 hour at 70° C., and the disappearance of 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane was confirmed. The temperature of the liquid in the flask was cooled to 40° C. Analysis of the reaction liquid by GPC showed that the proportion of benzoxazine compounds present in the reaction liquid was 75 area %, and the remaining 25 area % was a compound with a higher molecular weight than the benzoxazine compound (high molecular weight component).
The reaction mixture was mixed with 400 g of pure water, stirred for 30 minutes, and then left to stand to confirm separation from the organic layer, after which the aqueous layer was removed. This water washing procedure was repeated six times, and it was confirmed that the pH of the aqueous layer was 7 to 8.
Thereafter, the solvent was removed by distillation under reduced pressure at 40° C. After the solvent was distilled off, the mixture was cooled to obtain a solid benzoxazine compound with no fluidity. The result of measuring the obtained benzoxazine compound by GPC under the above-mentioned analytical conditions was that the purity was 70 area % and the content of high molecular weight components was 30 area %.
The obtained distillation residue was heated to 90°C, poured into a metal tray, cooled to room temperature, and crushed to obtain 250 g of a yellow solid benzoxazine compound. The amount of the solvent contained in the solid was 1.0 wt %. The yield was 78 mol % based on the 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane used.
The solid thus obtained was analyzed by 1 H-NMR, and as a result, peaks derived from 3,3,5-trimethylcyclohexylidene groups were observed around 0.4 and 0.8-1.0 ppm, a peak derived from the benzoxazine moiety was observed around 3.3-4.0 ppm, a peak derived from allylamine was observed around 4.8-5.2 ppm, and a peak derived from aromatics was observed around 6.6-7.3 ppm. The 1 H-NMR spectrum is shown in FIG. 1. From the results of this analysis, it was revealed that the target compound was a benzoxazine compound represented by formula (1-4).

<実施例2>(式(1-5)で表される本発明のベンゾオキサジン化合物の合成)
 温度計、撹拌機、冷却管、滴下ロートを備えた2Lの4つ口フラスコに、アリルアミン塩酸塩を120g(1.2mol)加えた後、撹拌しながら48%NaOH水溶液101g(1.2mol)を、昇温を確認しながらゆっくりと5分かけて添加した。その後水層のpHが9~10程度である事を確認した後に、パラホルムアルデヒド(純度:92%)96g(3.0mol)を1時間かけて小分けしながら添加した。この際に反応系の温度は30℃から45℃まで昇温が確認された。その後撹拌をしながら空冷し、温度が30℃に下がったのを確認した後に30℃で1時間撹拌を行った。
 撹拌終了後、フラスコ内に酢酸エチル584gと、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン211gを添加した。その後、フラスコ内液の温度を55℃まで昇温し、32時間反応を行った。1,1-ビス(4-ヒドロキシフェニル)シクロドデカンが残存していたため、更に60℃で4時間反応を行ったところ、1,1-ビス(4-ヒドロキシフェニル)シクロドデカンの消失を確認した。フラスコ内液の温度を40℃まで冷却した。GPCにより反応液を分析した結果、反応液中に存在するベンゾオキサジン化合物の割合は73面積%であり、残り27面積%はベンゾオキサジン化合物よりも高分子量の化合物(高分子量成分)であった。
 反応終了液に純水400gを混合した後、30分撹拌を行い、静置して有機層との分離を確認した後に水層を除去した。この水洗操作を6回行い、水層のpHが7~8である事を確認した。
 その後、40℃減圧下にて蒸留により溶媒を除去した。溶媒を留去した後、冷却して、流動性のない固体のベンゾオキサジン化合物を取得した。得られたベンゾオキサジン化合物を上記分析条件によりGPCで測定した結果、純度は70面積%、高分子量成分の含有量は30面積%であった。
 得られた蒸留残渣を90℃に加熱して、金属バットに流し出し、室温まで冷却し、解砕し、黄色の固体のベンゾオキサジン化合物308gを取得した。固体に含まれる溶媒量は、9.9重量%であった。収率は使用した1,1-ビス(4-ヒドロキシフェニル)シクロドデカンに対して90モル%であった。
 得られた固体をH-NMR分析した結果、0.4及び0.8~1.0ppm付近にシクロドデカンに由来するピークが観測され、3.3~4.0ppm付近にベンゾオキサジンに由来のピークが観測され、4.8~5.2ppmにアリルアミン由来のピークが観測され、6.6~7.3ppm付近に芳香族に由来するピークが観測された。H-NMRスペクトルを図2に示す。本分析結果から、目的化合物である式(1-5)で表されるベンゾオキサジン化合物であることが明らかになった。
Example 2 (Synthesis of the benzoxazine compound of the present invention represented by formula (1-5))
In a 2L four-neck flask equipped with a thermometer, a stirrer, a cooling tube, and a dropping funnel, 120 g (1.2 mol) of allylamine hydrochloride was added, and then 101 g (1.2 mol) of 48% NaOH aqueous solution was added slowly over 5 minutes while stirring, while checking the temperature rise. After that, after it was confirmed that the pH of the aqueous layer was about 9 to 10, 96 g (3.0 mol) of paraformaldehyde (purity: 92%) was added in small portions over 1 hour. At this time, it was confirmed that the temperature of the reaction system rose from 30°C to 45°C. Then, it was air-cooled while stirring, and after it was confirmed that the temperature had dropped to 30°C, it was stirred at 30°C for 1 hour.
After the stirring was completed, 584 g of ethyl acetate and 211 g of 1,1-bis(4-hydroxyphenyl)cyclododecane were added to the flask. The temperature of the liquid in the flask was then raised to 55° C., and the reaction was carried out for 32 hours. Since 1,1-bis(4-hydroxyphenyl)cyclododecane remained, the reaction was further carried out at 60° C. for 4 hours, and the disappearance of 1,1-bis(4-hydroxyphenyl)cyclododecane was confirmed. The temperature of the liquid in the flask was cooled to 40° C. As a result of analyzing the reaction liquid by GPC, the proportion of benzoxazine compounds present in the reaction liquid was 73 area %, and the remaining 27 area % was a compound (high molecular weight component) having a higher molecular weight than the benzoxazine compound.
The reaction mixture was mixed with 400 g of pure water, stirred for 30 minutes, and then left to stand to confirm separation from the organic layer, after which the aqueous layer was removed. This water washing procedure was repeated six times, and it was confirmed that the pH of the aqueous layer was 7 to 8.
Thereafter, the solvent was removed by distillation under reduced pressure at 40° C. After the solvent was distilled off, the mixture was cooled to obtain a solid benzoxazine compound with no fluidity. The result of measuring the obtained benzoxazine compound by GPC under the above-mentioned analytical conditions was that the purity was 70 area % and the content of high molecular weight components was 30 area %.
The obtained distillation residue was heated to 90°C, poured into a metal tray, cooled to room temperature, and crushed to obtain 308 g of a yellow solid benzoxazine compound. The amount of the solvent contained in the solid was 9.9 wt %. The yield was 90 mol % based on the 1,1-bis(4-hydroxyphenyl)cyclododecane used.
The solid was analyzed by 1 H-NMR, and the peaks derived from cyclododecane were observed at around 0.4 and 0.8-1.0 ppm, the peaks derived from benzoxazine were observed at around 3.3-4.0 ppm, the peaks derived from allylamine were observed at around 4.8-5.2 ppm, and the peaks derived from aromatic compounds were observed at around 6.6-7.3 ppm. The 1 H-NMR spectrum is shown in FIG. 2. From the results of this analysis, it was revealed that the target compound was a benzoxazine compound represented by formula (1-5).

<比較合成例1>(式(i)で表されるベンゾオキサジン化合物の合成)
 温度計、撹拌機、冷却管を備えた500mLの4つ口フラスコに水19.5g、NaOH(顆粒状)を19.5g仕込み、撹拌した。このアルカリ溶液にアリルアミン塩酸塩を19.5g加え、窒素雰囲気下で1時間撹拌した。その後、パラホルムアルデヒド(純度:92%)39.1gを少量ずつ加え、5時間撹拌した。この溶液に酢酸エチル93g、ビスフェノールF50gを加え、30~40℃で13時間撹拌を行った。途中、粘性が上がったため酢酸エチルを46g追加で加えた。高速液体クロマトグラフィー(HPLC)によりビスフェノールFの消失を確認した。GPCにより反応液を分析した結果、反応溶液中に存在する式(i)で表されるベンゾオキサジン化合物の割合は65面積%であり、残り35面積%は高分子量成分であった。
 反応終了後、塩および未反応のパラホルムアルデヒドをろ過で取り除いた。ろ液を水50mLで5回洗浄した。
 洗浄したろ液を40℃、減圧下に蒸留を行い、溶媒を除去した。蒸留時の圧力は徐々に減圧し、最終的に1.4kPaとした。
 溶媒を留去した後、冷却して、流動性のあるオイル状物の式(i)で表されるベンゾオキサジン化合物55gを取得した。オイル状物に含まれる溶媒量は、1.0重量%であった。得られたオイル状物を上記分析条件によりGPCで測定した結果、純度は61面積%、高分子量成分は39面積%であった。
Comparative Synthesis Example 1 (Synthesis of benzoxazine compound represented by formula (i))
19.5 g of water and 19.5 g of NaOH (granular) were charged into a 500 mL four-neck flask equipped with a thermometer, a stirrer, and a cooling tube, and stirred. 19.5 g of allylamine hydrochloride was added to this alkaline solution, and the mixture was stirred for 1 hour under a nitrogen atmosphere. Then, 39.1 g of paraformaldehyde (purity: 92%) was added little by little, and the mixture was stirred for 5 hours. 93 g of ethyl acetate and 50 g of bisphenol F were added to this solution, and the mixture was stirred at 30 to 40 ° C for 13 hours. During the process, 46 g of ethyl acetate was added because the viscosity increased. The disappearance of bisphenol F was confirmed by high performance liquid chromatography (HPLC). As a result of analyzing the reaction solution by GPC, the proportion of the benzoxazine compound represented by formula (i) present in the reaction solution was 65 area %, and the remaining 35 area % was a high molecular weight component.
After the reaction was completed, the salt and unreacted paraformaldehyde were removed by filtration, and the filtrate was washed five times with 50 mL of water.
The washed filtrate was distilled under reduced pressure at 40° C. to remove the solvent. The pressure during distillation was gradually reduced to a final pressure of 1.4 kPa.
After distilling off the solvent, the mixture was cooled to obtain 55 g of a benzoxazine compound represented by formula (i) as a fluid oily product. The amount of the solvent contained in the oily product was 1.0 wt %. The result of measuring the obtained oily product by GPC under the above analytical conditions showed that the purity was 61 area % and the high molecular weight component was 39 area %.

(保存安定性の評価)
 実施例1、2と比較合成例1により得られたベンゾオキサジン化合物5gを、それぞれ試験管に、大気下において加えて密封した後、試料が入った試験管を恒温槽に入れ、下記表1に示す温度及び時間の条件で加熱を行い、加熱前後の純度をGPCで測定し、その変化量を算出した。その結果を表1にまとめて示す。
(Evaluation of storage stability)
5 g of the benzoxazine compounds obtained in Examples 1 and 2 and Comparative Synthesis Example 1 were added to test tubes in the atmosphere and sealed, and then the test tubes containing the samples were placed in a thermostatic chamber and heated under the temperature and time conditions shown in Table 1 below. The purity before and after heating was measured by GPC, and the change in purity was calculated. The results are summarized in Table 1.

 表1に示すとおり、比較合成例1で得た式(i)で表されるベンゾオキサジン化合物の純度は、加熱前と比較して、室温条件(30℃)下に7日間保存後では5.4面積%低下し、より高温の50℃の条件下に7時間保存後では29.7面積%低下した。
 この結果より、式(i)で表されるベンゾオキサジン化合物は、保存中に重合反応が進行して純度が低下してしまい、そのために、樹脂原料としての取扱いに課題があることが明らかになった。
 一方、本発明の実施例1で得た式(1-4)化合物の純度は、加熱前と比較しても、室温条件(30℃)及びより高温の50℃の条件下において変化がなかったことから、長期保存が可能であることが明らかになった。
 また、実施例2で得た式(1-5)化合物の純度は、加熱前と比較して、高温の50℃の条件下において変化がなく、室温条件(30℃)の条件において、変化が抑制されたことから、長期保存が可能であることが明らかになった。
As shown in Table 1, the purity of the benzoxazine compound represented by formula (i) obtained in Comparative Synthesis Example 1 decreased by 5.4 area % after storage for 7 days at room temperature (30° C.), and decreased by 29.7 area % after storage for 7 hours at a higher temperature of 50° C., compared to that before heating.
From these results, it became clear that the benzoxazine compound represented by formula (i) undergoes a polymerization reaction during storage, resulting in a decrease in purity, and therefore poses a problem in handling it as a resin raw material.
On the other hand, the purity of the compound of formula (1-4) obtained in Example 1 of the present invention did not change at room temperature (30° C.) and at a higher temperature of 50° C., compared with that before heating, and therefore it was revealed that the compound can be stored for a long period of time.
In addition, the purity of the compound of formula (1-5) obtained in Example 2 did not change under high temperature conditions of 50° C. compared with that before heating, and the change was suppressed under room temperature conditions (30° C.), making it clear that the compound can be stored for a long period of time.

<実施例3>
 15gの実施例1で得られた式(1-4)化合物と、16.5gのジシクロペンタジエン型エポキシ樹脂(日本化薬株式会社製:商品名「XD-1000」)と、硬化促進剤として、0.64gのトリフェニルホスフィンと、40.0gのメチルエチルケトンを完全に溶解するまで静置した。各成分を完全に溶解したワニスを調製した後、溶液をバットに移してドラフト内にて終夜乾燥させた後、真空乾燥機で60℃、4~5時間乾燥を行った。その後、得られた組成物の膜を金型(φ100mm押し込み型)に加え、熱プレス試験機にて3MPaで100℃/1時間、130℃/2時間の条件で硬化処理を行った。その後、熱風循環式オーブンにて140℃/2時間、150℃/2時間、160℃/2時間、180℃/2時間で後硬化処理を行い、硬化物を得た。
Example 3
15 g of the compound of formula (1-4) obtained in Example 1, 16.5 g of dicyclopentadiene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd.: trade name "XD-1000"), 0.64 g of triphenylphosphine as a curing accelerator, and 40.0 g of methyl ethyl ketone were left to stand until completely dissolved. After preparing a varnish in which each component was completely dissolved, the solution was transferred to a tray and dried overnight in a draft, and then dried in a vacuum dryer at 60 ° C. for 4 to 5 hours. Thereafter, the film of the obtained composition was added to a mold (φ100 mm press mold) and cured at 3 MPa under the conditions of 100 ° C. / 1 hour and 130 ° C. / 2 hours in a heat press tester. Thereafter, post-curing treatment was performed in a hot air circulation oven at 140 ° C. / 2 hours, 150 ° C. / 2 hours, 160 ° C. / 2 hours, and 180 ° C. / 2 hours to obtain a cured product.

<比較合成例2>
 10.0gのノボラック型硬化剤10.0g(アイカ工業株式会社製:商品名「BRG-555」)と、24.0gのジシクロペンタジエン型エポキシ樹脂(日本化薬株式会社製:商品名「XD-1000」)と、0.64gのトリフェニルホスフィンと、40.0gのメチルエチルケトンを用いた以外は実施例3と同様にして、硬化物を得た。
Comparative Synthesis Example 2
A cured product was obtained in the same manner as in Example 3, except that 10.0 g of a novolac type curing agent (manufactured by Aica Kogyo Co., Ltd.: product name "BRG-555"), 24.0 g of a dicyclopentadiene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd.: product name "XD-1000"), 0.64 g of triphenylphosphine, and 40.0 g of methyl ethyl ketone were used.

 実施例3及び比較合成例2で得た硬化物の上記分析条件による、ガラス転移温度(Tg)の測定と誘電特性評価を行った。その結果を表2にまとめて示す。
The glass transition temperature (Tg) and dielectric properties of the cured products obtained in Example 3 and Comparative Synthesis Example 2 were measured under the above-mentioned analytical conditions. The results are shown in Table 2.

 実施例1で得られた式(1-4)化合物を硬化性樹脂の成分として用いることにより、得られる硬化物は良好な耐熱性(Tg)及び誘電特性を示す事が確認された。
 以上のことから、本発明のベンゾオキサジン化合物は、エポキシ樹脂などと混合した硬化性樹脂組成物の硬化物とすることにより、優れた耐熱性及び誘電特性を有する硬化物を得ることができることが明らかになった。
 このことから、プリプレグ、銅張積層板、プリント回路基板、半導体や電子部品の封止剤、電気・電子成形部品、自動車部品、積層材、塗料、レジストインク等の樹脂材料として、非常に有用である。
It was confirmed that by using the compound of formula (1-4) obtained in Example 1 as a component of a curable resin, the obtained cured product exhibits good heat resistance (Tg) and dielectric properties.
From the above, it has become clear that the benzoxazine compound of the present invention can give a cured product having excellent heat resistance and dielectric properties by mixing it with an epoxy resin or the like to form a curable resin composition.
For these reasons, it is extremely useful as a resin material for prepregs, copper-clad laminates, printed circuit boards, sealants for semiconductors and electronic components, electric and electronic molded parts, automobile parts, laminates, paints, resist inks, and the like.

Claims (7)

 一般式(1)で表されるベンゾオキサジン化合物。
(式中、Rは各々独立して炭素原子数1~4のアルキレン基を示し、Xは炭素原子数5~20のシクロアルキリデン基を示す。)
A benzoxazine compound represented by general formula (1):
(In the formula, each R 1 independently represents an alkylene group having 1 to 4 carbon atoms, and X represents a cycloalkylidene group having 5 to 20 carbon atoms.)
 前記Xが、シクロヘキシリデン基、3-メチルシクロヘキシリデン基、4-メチルシクロヘキシリデン基、3,3,5-トリメチルシクロヘキシリデン基又はシクロドデカニリデン基である、請求項1に記載のベンゾオキサジン化合物。 The benzoxazine compound according to claim 1, wherein X is a cyclohexylidene group, a 3-methylcyclohexylidene group, a 4-methylcyclohexylidene group, a 3,3,5-trimethylcyclohexylidene group, or a cyclododecanylidene group.  請求項1に記載のベンゾオキサジン化合物を含む樹脂原料組成物。 A resin raw material composition containing the benzoxazine compound according to claim 1.  前記一般式(1)で表されるベンゾオキサジン化合物の含有量が、示差屈折計を検出器とするゲル浸透クロマトグラフィーによる分析で検出されるすべてのピークの面積に対して、10~100面積%の範囲である、請求項3に記載の樹脂原料組成物。 The resin raw material composition according to claim 3, wherein the content of the benzoxazine compound represented by the general formula (1) is in the range of 10 to 100 area % relative to the area of all peaks detected by analysis by gel permeation chromatography using a differential refractometer as a detector.  請求項1に記載のベンゾオキサジン化合物又は請求項3に記載の樹脂原料組成物を含む、硬化性樹脂組成物。 A curable resin composition comprising the benzoxazine compound according to claim 1 or the resin raw material composition according to claim 3.  請求項1に記載のベンゾオキサジン化合物又は請求項3に記載の樹脂原料組成物と、エポキシ樹脂、前記一般式(1)で表されるベンゾオキサジン化合物以外のベンゾオキサジン化合物、フェノール樹脂及びビスマレイミド化合物からなる群より選択される1種以上を含有する、請求項5に記載の硬化性樹脂組成物。 The curable resin composition according to claim 5, which contains the benzoxazine compound according to claim 1 or the resin raw material composition according to claim 3, and one or more selected from the group consisting of an epoxy resin, a benzoxazine compound other than the benzoxazine compound represented by the general formula (1), a phenolic resin, and a bismaleimide compound.  請求項5に記載の硬化性樹脂組成物を硬化させた硬化物。
 
A cured product obtained by curing the curable resin composition according to claim 5 .
PCT/JP2023/041382 2022-11-17 2023-11-17 Benzoxazine compound, resin material composition containing same, curable resin composition, and cured product of same WO2024106523A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380073041.0A CN119998267A (en) 2022-11-17 2023-11-17 Benzoxazine compound, resin raw material composition containing the compound, curable resin composition, and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-183951 2022-11-17
JP2022183951 2022-11-17

Publications (1)

Publication Number Publication Date
WO2024106523A1 true WO2024106523A1 (en) 2024-05-23

Family

ID=91084561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041382 WO2024106523A1 (en) 2022-11-17 2023-11-17 Benzoxazine compound, resin material composition containing same, curable resin composition, and cured product of same

Country Status (3)

Country Link
CN (1) CN119998267A (en)
TW (1) TW202428567A (en)
WO (1) WO2024106523A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025105148A1 (en) * 2023-11-17 2025-05-22 本州化学工業株式会社 Benzoxazine resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472205A (en) * 2003-07-11 2004-02-04 北京化工大学 Benzoxazine intermediate containing N-allyl and composition and preparation thereof
JP2016074871A (en) * 2014-03-04 2016-05-12 四国化成工業株式会社 Bismaleimide resin composition and use of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472205A (en) * 2003-07-11 2004-02-04 北京化工大学 Benzoxazine intermediate containing N-allyl and composition and preparation thereof
JP2016074871A (en) * 2014-03-04 2016-05-12 四国化成工業株式会社 Bismaleimide resin composition and use of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUMAR K, NAIR C. P. REGHUNADHAN; NINAN K. N.; KULKARNI A. D.; WADGAONKAR P. P.: "Synthesis and properties of new polybenzoxazines containing (substituted) cyclohexyl moieties", POLYMERS FOR ADVANCED TECHNOLOGIES, WILEY & SONS , BOGNOR REGIS, GB, vol. 20, no. 12, 1 December 2009 (2009-12-01), GB , pages 1107 - 1113, XP093171684, ISSN: 1042-7147, DOI: 10.1002/pat.1370 *
VENGATESAN M R, DEVARAJU S.; KUMAR A. ASHOK; ALAGAR M.: "Studies on thermal and dielectric properties of Octa (maleimido phenyl) silsesquioxane (OMPS) - polybenzoxazine (PBZ) hybrid nanocomposites", HIGH PERFORMANCE POLYMERS, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL, GB, vol. 23, no. 6, 1 September 2011 (2011-09-01), GB , pages 441 - 456, XP093171682, ISSN: 0954-0083, DOI: 10.1177/0954008311414446 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025105148A1 (en) * 2023-11-17 2025-05-22 本州化学工業株式会社 Benzoxazine resin composition

Also Published As

Publication number Publication date
TW202428567A (en) 2024-07-16
CN119998267A (en) 2025-05-13

Similar Documents

Publication Publication Date Title
JP6925853B2 (en) New benzoxazine resin composition and cured product thereof
JP6515255B1 (en) Curable resin composition, varnish, prepreg, cured product, and laminate or copper-clad laminate
US20170088666A1 (en) Fluorine-Containing Polymerizable Monomer and Polymer Compound Using Same
WO2024106523A1 (en) Benzoxazine compound, resin material composition containing same, curable resin composition, and cured product of same
JP6238845B2 (en) Phenol resin, phenol resin mixture, epoxy resin, epoxy resin composition and cured products thereof
CN116888102A (en) Novel benzoxazine compound, resin raw material composition containing the compound, curable resin composition, and cured product thereof
JP6513372B2 (en) Phenolic resin, epoxy resin, epoxy resin composition and cured product thereof
TWI478955B (en) Epoxy resin composition, manufacturing method for the same, and cured article thereof
WO2022097598A1 (en) Benzoxazine compound-containing composition, curable resin composition, and cured product thereof
JPH09291127A (en) Naphthol-containing novolac resin, naphthol novolac epoxy resin, epoxy resin composition, and cured product thereof
WO2025105148A1 (en) Benzoxazine resin composition
JP3636409B2 (en) Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
JP2004359672A (en) Aniline-based compound and method for producing the same
US20250051509A1 (en) Curable resin composition, varnish, cured product, and method for producing cured product
TWI887520B (en) Novel benzoxazine compound, resin raw material composition containing the benzoxazine compound, curable resin composition and cured product thereof
KR20170038312A (en) Benzoxazine and Method of Preparing Polybenzoxazine using the Same
KR20240051121A (en) Novel benzoxazine compound, resin raw material composition containing it, curable resin composition, and cured product thereof
WO2022075325A1 (en) Curable compound product
WO2022075324A1 (en) Curable compound product
TW202432540A (en) Ester compound, ester compound composition for resin raw material
WO2022163552A1 (en) Novel benzoxazine compound, resin raw material composition containing same, curable resin composition, and cured product thereof
JP2022013418A (en) Benzoxazine compound-containing mixture, curable composition containing the same, and cured product obtained by curing the curable composition
JP2004161872A (en) Polyhydric phenol compound, epoxy resin composition, and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891668

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024558948

Country of ref document: JP