[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024105852A1 - Processing system - Google Patents

Processing system Download PDF

Info

Publication number
WO2024105852A1
WO2024105852A1 PCT/JP2022/042714 JP2022042714W WO2024105852A1 WO 2024105852 A1 WO2024105852 A1 WO 2024105852A1 JP 2022042714 W JP2022042714 W JP 2022042714W WO 2024105852 A1 WO2024105852 A1 WO 2024105852A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
target object
measurement
light
workpiece
Prior art date
Application number
PCT/JP2022/042714
Other languages
French (fr)
Japanese (ja)
Inventor
兼行 内藤
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2022/042714 priority Critical patent/WO2024105852A1/en
Publication of WO2024105852A1 publication Critical patent/WO2024105852A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring

Definitions

  • the present invention relates to the technical field of processing systems capable of processing objects, for example.
  • Patent Document 1 describes a processing system that processes an object by irradiating the object with laser light. This type of processing system is required to process the object appropriately.
  • a processing system comprising a processing device that processes a target object by irradiating the target object with a processing beam, and a control device that controls the processing device, the processing device comprising an irradiation optical system capable of irradiating the target object with the processing beam and a measurement beam for measuring the target object, a first detector that detects a first return beam generated from the target object as the measurement beam is irradiated onto the target object, and a second detector that detects a second return beam generated from the target object as the processing beam is irradiated onto the target object, the control device generating position information regarding the position of the target object based on the detection result of the first return beam and the detection result of the second return beam, and controlling the processing device to process the target object based on the position information.
  • a processing system that includes a processing device that processes a target object by irradiating the target object with a processing beam, and a control device that controls the processing device, the processing device includes an irradiation optical system that can irradiate the target object with the processing beam and a measurement beam for measuring the target object, and a detector that detects a return beam generated from the target object irradiated with the measurement beam, and the control device calculates a position of a first part of the target object and a position of a second part of the target object having a predetermined positional relationship with the first part based on the detection result of the return beam, performs an averaging process to calculate an average value of the positions of the first part and the second part as the position of the first part, and controls the processing device to process the target object based on the position of the first part calculated by the averaging process.
  • a processing system that includes a processing device that processes a target object by irradiating the target object with a processing beam, and a control device that controls the processing device, the processing device includes an irradiation optical system that can irradiate the target object with the processing beam and a measurement beam for measuring the target object, and a detector that detects a return beam emitted from the target object irradiated with the measurement beam, the processing device irradiates the measurement beam to the target object having a first relative attitude with respect to the irradiation optical system, and irradiates the measurement beam to the target object having a second relative attitude with respect to the irradiation optical system that is different from the first attitude, the control device calculates a first position that is the position of the target object in the first attitude and a second position that is the position of the target object in the second attitude based on the detection result of the return beam, performs an averaging process to calculate an average value of the first position and the
  • a processing system that includes a processing device that processes a target object by irradiating the target object with a processing beam, and a control device that controls the processing device, the processing device includes an irradiation optical system that can irradiate the target object with the processing beam and a measurement beam for measuring the target object, a first detector that detects a first return beam generated from the target object when the measurement beam is irradiated onto the target object, and a second detector that detects a second return beam generated from the target object when the processing beam is irradiated onto the target object, and the control device generates position information regarding the position of the target object based on the detection result of the first return beam and the detection result of the second return beam.
  • a processing system comprising a processing device that processes a target object by irradiating the target object with a processing beam, and a control device that controls the processing device, the processing device comprising a first measurement device that obtains a first distance measurement result of the target object based on a return beam generated from the target object by irradiating the target object with a measurement beam for measuring the target object, and a second measurement device that obtains the first distance measurement result of the target object using a method different from that of the first measurement device, and the control device that generates position information regarding the position of the target object based on the first distance measurement result and the second distance measurement result.
  • a processing system comprising a processing device that processes a target object by irradiating the target object with a processing beam, and a control device that controls the processing device, the processing device comprising an irradiation optical system capable of irradiating the target object with the processing beam and a measurement beam for measuring the target object, a first detector that detects a first return beam generated from the target object as the measurement beam is irradiated onto the target object, and a second detector that detects a second return beam generated from the target object as the processing beam is irradiated onto the target object, and the control device controls the irradiation position of the processing beam in processing the target object based on the detection result of the first return beam and the detection result of the second return beam.
  • a processing system includes a processing device that processes a target object by irradiating the target object with a processing beam, and a control device that controls the processing device, the processing device includes a first measurement device that obtains a first distance measurement result of the target object based on a return beam generated from the target object by irradiating the target object with a measurement beam for measuring the target object, and a second measurement device that obtains a second distance measurement result of the target object using a method different from that of the first measurement device, and the control device controls the irradiation position of the processing beam in processing the target object based on the first distance measurement result and the second distance measurement result.
  • FIG. 1 is a cross-sectional view illustrating a schematic example of a configuration of a processing system according to a first embodiment.
  • FIG. 2 is a block diagram showing an example of the configuration of the machining system according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing the configuration of the machining head in the first embodiment.
  • FIG. 4 is a graph showing the relationship between the focusing position of the processing light and the amount of the processing light detected by the detector.
  • FIG. 5 is a timing chart showing the measurement light incident on the detector and the interference light detected by the detector.
  • FIG. 6 is a graph showing an example of ideal position information that should be generated based on the detection result of the measurement return light, and an example of position information actually generated based on the detection result of the measurement return light.
  • Figure 7(a) is a cross-sectional view showing a workpiece having a tiny recess on its surface where the Z position is to be measured
  • Figure 7(b) is a graph showing an example of position information actually generated based on the detection results of the measurement return light.
  • FIG. 8 is a flowchart showing the flow of an operation for generating position information based on both the detection results of the measurement return light and the detection results of the processing return light.
  • FIG. 9 is a graph showing the Z position of the target portion of the workpiece calculated based on the detection results of the measurement return light, and the Z position of the target portion of the workpiece calculated based on the detection results of the processing return light.
  • FIG. 10 is a graph showing the Z position of the workpiece corrected using the position correction amount.
  • FIG. 11(a) and FIG. 11(b) is a plan view showing at least one second portion of a workpiece having a predetermined positional relationship with a first portion of the workpiece.
  • FIG. 12 is a graph showing the intermediate value of the Z position of the workpiece calculated based on the detection results of the measurement return light, and the final value of the Z position of the workpiece calculated by averaging processing.
  • FIG. 13 is a cross-sectional view showing an operation of irradiating the workpiece with the measurement light while changing the attitude of the workpiece with respect to the machining head.
  • FIG. 14 is a graph showing the intermediate value of the Z position of the workpiece calculated based on the detection results of the measurement return light, and the final value of the Z position of the workpiece calculated by averaging processing.
  • FIG. 15A and 15B each show a schematic diagram of a measurement error calculation model.
  • FIG. 16 is a flowchart showing the flow of a model generating method for generating a measurement error calculation model.
  • FIG. 17 is a cross-sectional view showing the configuration of a machining head in the fifth embodiment.
  • FIG. 1 is a cross-sectional view illustrating a schematic example of a configuration of a processing system according to the sixth embodiment.
  • the rotation directions (in other words, tilt directions) around the X-axis, Y-axis, and Z-axis are referred to as the ⁇ X direction, ⁇ Y direction, and ⁇ Z direction, respectively.
  • the Z-axis direction may be the direction of gravity.
  • the XY plane may be horizontal.
  • Fig. 1 is a cross-sectional view showing a schematic example of the configuration of the machining system SYSa in the first embodiment.
  • Fig. 2 is a block diagram showing an example of the configuration of the machining system SYSa in the first embodiment.
  • the processing system SYS includes a processing unit 1 and a control unit 2.
  • the processing unit 1 may be referred to as a processing device, and the control unit 2 may be referred to as a control device.
  • At least a part of the processing unit 1 may be accommodated in the internal space SP1 of the housing 3.
  • the internal space SP1 of the housing 3 may be purged with a purge gas (i.e., gas), or may not be purged with a purge gas.
  • the purge gas may include, for example, at least one of an inert gas and CDA (Clean Dry Air).
  • the inert gas may include, for example, at least one of nitrogen gas and argon gas.
  • the internal space SP1 of the housing 3 may be evacuated, or may not be evacuated. However, the processing unit 1 may not be accommodated in the internal space SP1 of the housing 3.
  • a local space surrounding only a part of the processing unit 1 may be purged with a purge gas, or may be evacuated.
  • the processing unit 1 is capable of processing a workpiece W, which is an object to be processed (which may also be referred to as a base material), under the control of the control unit 2.
  • the workpiece W may be, for example, a metal, an alloy (e.g., duralumin, etc.), a semiconductor (e.g., silicon), a resin, a composite material such as CFRP (Carbon Fiber Reinforced Plastic), paint (one example being a paint layer applied to a substrate), glass, or an object made of any other material.
  • the processing unit 1 irradiates the processing light EL onto the workpiece W in order to process the workpiece W.
  • the processing light EL may be any type of light as long as it can process the workpiece W by irradiating it onto the workpiece W.
  • the processing light EL is described as a laser light, but the processing light EL may be a type of light other than laser light.
  • the wavelength of the processing light EL may be any wavelength as long as it can process the workpiece W by irradiating it onto the workpiece W.
  • the processing light EL may be visible light or invisible light (for example, at least one of infrared light, ultraviolet light, and extreme ultraviolet light).
  • the processing light EL may include pulsed light.
  • the processing light EL may not include pulsed light.
  • the processing light EL may be continuous light. Since light is an example of an energy beam, the processing light EL may be called a processing beam.
  • the processing unit 1 can further measure the measurement object M under the control of the control unit 2.
  • the processing unit 1 irradiates the measurement object M with measurement light ML for measuring the measurement object M.
  • the processing unit 1 measures the measurement object M by irradiating the measurement object M with the measurement light ML and detecting (i.e., receiving) at least a portion of the light returning from the measurement object M irradiated with the measurement light ML.
  • the light returning from the measurement object M irradiated with the measurement light ML is light from the measurement object M that is generated from the measurement object M by irradiation with the measurement light ML.
  • the measurement light ML may be any type of light as long as it is capable of measuring the measurement object M by irradiating it on the measurement object M.
  • the measurement light ML is laser light.
  • the measurement light ML may be a type of light other than laser light.
  • the wavelength of the measurement light ML may be any wavelength as long as it is capable of measuring the measurement object M by irradiating it on the measurement object M.
  • the measurement light ML may be visible light or invisible light (e.g., at least one of infrared light, ultraviolet light, and extreme ultraviolet light).
  • the measurement light ML may include pulsed light (e.g., pulsed light having an emission time of picoseconds or less). Alternatively, the measurement light ML may not include pulsed light. In other words, the measurement light ML may be continuous light. Since light is an example of an energy beam, the measurement light ML may be called a measurement beam.
  • the processing unit 1 may be capable of measuring the characteristics of the measurement object M using the measurement light ML.
  • the characteristics of the measurement object M may include, for example, at least one of the position of the measurement object M, the shape of the measurement object M, the reflectance of the measurement object M, the transmittance of the measurement object M, the temperature of the measurement object M, and the surface roughness of the measurement object M.
  • the processing unit 1 at least measures the position of the measurement object M.
  • the position of the measurement object M may include the position of the surface of the measurement object M.
  • the position of the surface of the measurement object M may include the position of at least a part of the surface of the measurement object M.
  • the position of the measurement object M may mean the position of the measurement object M with respect to the processing head 13 described below (i.e., the relative position).
  • the position of the measurement object M may mean the position of the measurement object M in a measurement coordinate system based on the processing head 13.
  • the operation of measuring the position of the measurement object M may include an operation of measuring the shape of the measurement object M. This is because the shape of the measurement object M can be calculated from the position of the measurement object M.
  • the measurement object M may include, for example, the workpiece W that is processed by the processing unit 1.
  • the measurement object M may include, for example, any object that is placed on the stage 15 described below.
  • the measurement object M may include, for example, the stage 15.
  • the processing unit 1 includes a processing light source 11, a measurement light source 12, a processing head 13, a head drive system 14, a stage 15, and a stage drive system 16.
  • the processing light source 11 generates the processing light EL.
  • the processing light source 11 may include, for example, a laser diode.
  • the processing light source 11 may be a light source capable of pulse oscillation.
  • the processing light source 11 is capable of generating pulsed light as the processing light EL.
  • the processing light source 11 may be a CW light source that generates a CW (continuous wave).
  • the measurement light source 12 generates the measurement light ML.
  • the measurement light source 12 may include, for example, a laser diode.
  • the measurement light source 12 may be a light source capable of pulse oscillation.
  • the measurement light source 12 is capable of generating pulsed light as the measurement light ML.
  • the measurement light source 12 may be a CW light source that generates a CW (continuous wave).
  • the wavelength of the measurement light ML may be different from the wavelength of the processing light EL.
  • the wavelength of the measurement light ML may mean a peak wavelength, which is a wavelength at which the intensity is maximum in the wavelength band of the measurement light ML.
  • the wavelength of the measurement light ML may mean a wavelength band of the measurement light ML.
  • the wavelength band of the measurement light ML may mean a range of wavelengths at which the intensity of the measurement light ML is a certain value or more.
  • the wavelength of the processing light EL may mean a peak wavelength, which is a wavelength at which the intensity is maximum in the wavelength band of the processing light EL.
  • the wavelength of the processing light EL may mean a wavelength band of the processing light EL.
  • the wavelength band of the processing light EL may mean a range of wavelengths at which the intensity of the processing light EL is a certain value or more.
  • the wavelength of the measurement light ML may be the same as the wavelength of the processing light EL.
  • the machining head 13 irradiates the workpiece W with the machining light EL generated by the machining light source 11 and irradiates the measurement object M with the measurement light ML generated by the measurement light source 12.
  • the machining head 13 includes a machining optical system 131, a measurement optical system 132, a synthesis optical system 133, a deflection optical system 134, and an irradiation optical system 135.
  • the machining head 13 irradiates the workpiece W with the machining light EL via the machining optical system 131, the synthesis optical system 133, the deflection optical system 134, and the irradiation optical system 135.
  • the machining head 13 also irradiates the measurement light ML to the measurement object M via the measurement optical system 132, the synthesis optical system 133, the deflection optical system 134, and the irradiation optical system 135.
  • the configuration of the machining head 13 will be described in detail later with reference to FIG. 3.
  • the head drive system 14 moves the processing head 13. For this reason, the head drive system 14 may be referred to as a moving device. Since the processing head 13 is equipped with the processing optical system 131, the measurement optical system 132, the synthesis optical system 133, the deflection optical system 134, and the irradiation optical system 135, the head drive system 14 may be considered to move the processing optical system 131, the measurement optical system 132, the synthesis optical system 133, the deflection optical system 134, and the irradiation optical system 135. The head drive system 14 may move (i.e., move linearly) the processing head 13 along a movement axis along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction, for example.
  • the head drive system 14 may move (i.e., move linearly) the processing head 13 along a movement axis along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction, for example.
  • the head drive system 14 may move the processing head 13 along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction, in addition to or instead of at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction, for example. That is, the head drive system 14 may rotate (i.e., rotate) the processing head 13 around at least one of the rotational axes along the X-axis direction (i.e., A-axis), the rotational axis along the Y-axis direction (i.e., B-axis), and the rotational axis along the Z-axis direction (i.e., C-axis).
  • the head drive system 14 may rotate (i.e., rotate) the processing head 13 around at least one of the rotational axes along the X-axis direction (i.e., A-axis), the rotational axis along the Y-axis direction (i.e., B-axis), and the rotational
  • the relative positional relationship between the processing head 13 and the stage 15 changes.
  • the relative positional relationship between the irradiation area PA onto which the processing head 13 irradiates the processing light EL and the workpiece W changes. That is, the irradiation area PA onto which the processing head 13 irradiates the processing light EL moves relative to the workpiece W.
  • the position on the workpiece W onto which the processing head 13 irradiates the processing light EL is changed.
  • the processing unit 1 may process the workpiece W while moving the processing head 13. Specifically, the processing unit 1 may process the desired position of the workpiece W by moving the processing head 13 so that the processing light EL is irradiated onto the desired position of the workpiece W.
  • the head drive system 14 moves the processing head 13
  • the relative positional relationship between the irradiation area MA onto which the processing head 13 irradiates the measurement light ML and the workpiece W changes. That is, the irradiation area MA onto which the processing head 13 irradiates the measurement light ML moves relative to the workpiece W. In other words, the position on the workpiece W onto which the processing head 13 irradiates the measurement light ML is changed.
  • the processing unit 1 may measure the workpiece W while moving the processing head 13. Specifically, the processing unit 1 may measure the desired position of the workpiece W by moving the processing head 13 so that the measurement light ML is irradiated onto the desired position of the workpiece W.
  • the head drive system 14 moves the machining head 13
  • the positional relationship between the machining head 13 (particularly, the irradiation optical system 135 provided in the machining head 13) and the workpiece W placed on the stage 15 changes.
  • the positional relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction may change.
  • the positional relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction may change.
  • the head drive system 14 may be considered to function as a change device that can change the positional relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W.
  • the positional relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction may be considered to be the attitude relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W. Therefore, the head drive system 14 may be considered to function as an attitude changing device that can change the attitude relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W. In other words, the head drive system 14 may be considered to function as an attitude changing device that can change the attitude of the machining head 13 (particularly, the irradiation optical system 135) relative to the workpiece W.
  • the stage 15 may be referred to as a placement device or an object placement device.
  • the workpiece W is placed on a placement surface 151, which is at least a part of the upper surface of the stage 15.
  • the stage 15 is capable of supporting the workpiece W placed on the stage 15.
  • the stage 15 may be capable of holding the workpiece W placed on the stage 15.
  • the stage 15 may be equipped with at least one of a mechanical chuck, an electrostatic chuck, a vacuum chuck, and the like, in order to hold the workpiece W.
  • a jig for holding the workpiece W may hold the workpiece W, and the stage 15 may hold the jig that holds the workpiece W.
  • the stage 15 may not hold the workpiece W placed on the stage 15. In this case, the workpiece W may be placed on the stage 15 without being clamped.
  • the stage drive system 16 moves the stage 15. For this reason, the stage drive system 16 may be referred to as a moving device.
  • the stage drive system 16 may, for example, move the stage 15 (i.e., move linearly) along a movement axis along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the stage drive system 16 may, for example, move the stage 15 along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction in addition to or instead of at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the stage drive system 16 may rotate (i.e., rotate and move) the stage 15 around at least one of the rotation axes along the X-axis direction (i.e., the A-axis), the rotation axis along the Y-axis direction (i.e., the B-axis), and the rotation axis along the Z-axis direction (i.e., the C-axis).
  • the stage drive system 16 moves the stage 15
  • the relative positional relationship between the processing head 13 and the stage 15 changes.
  • the relative positional relationship between the irradiation area PA onto which the processing head 13 irradiates the processing light EL and the workpiece W changes. That is, the irradiation area PA onto which the processing head 13 irradiates the processing light EL moves relative to the workpiece W.
  • the position on the workpiece W onto which the processing head 13 irradiates the processing light EL is changed.
  • the processing unit 1 may process the workpiece W while moving the stage 15. Specifically, the processing unit 1 may process the desired position of the workpiece W by moving the stage 15 so that the processing light EL is irradiated onto the desired position of the workpiece W.
  • the stage drive system 16 moves the stage 15
  • the relative positional relationship between the workpiece W and the irradiation area MA onto which the machining head 13 irradiates the measurement light ML changes. That is, the irradiation area MA onto which the machining head 13 irradiates the measurement light ML moves relative to the workpiece W. In other words, the position on the workpiece W onto which the machining head 13 irradiates the measurement light ML is changed.
  • the machining unit 1 may measure the workpiece W while moving the stage 15. Specifically, the machining unit 1 may measure the desired position of the workpiece W by moving the stage 15 so that the measurement light ML is irradiated onto the desired position of the workpiece W.
  • the stage drive system 16 moves the stage 15, the positional relationship between the machining head 13 (particularly, the irradiation optical system 135 provided in the machining head 13) and the workpiece W placed on the stage 15 changes.
  • the positional relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction may change.
  • the positional relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction may change.
  • the stage drive system 16 may be considered to function as a change device that can change the positional relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W.
  • the positional relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction may be considered to be the attitude relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W. Therefore, the stage drive system 16 may be considered to function as an attitude changing device that can change the attitude relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W. In other words, the stage drive system 16 may be considered to function as an attitude changing device that can change the attitude of the stage 15 relative to the machining head 13 (particularly, the irradiation optical system 135).
  • the control unit 2 controls the operation of the processing unit 1.
  • the control unit 2 may control the operation of the processing head 13 provided in the processing unit 1.
  • the control unit 2 may control the operation of at least one of the processing optical system 131, the measurement optical system 132, the synthesis optical system 133, the deflection optical system 134, and the irradiation optical system 135 provided in the processing head 13.
  • the control unit 2 may control the operation of the head drive system 14 provided in the processing unit 1 (for example, the movement of the processing head 13).
  • the control unit 2 may control the operation of the stage drive system 16 provided in the processing unit 1 (for example, the movement of the stage 15).
  • the control unit 2 may control the operation of the processing unit 1 based on the measurement results of the measurement object M by the processing unit 1. Specifically, the control unit 2 may generate measurement information of the measurement object M (e.g., measurement information including position information regarding the position of the measurement object M) based on the measurement results of the measurement object M, and control the operation of the processing unit 1 based on the generated measurement information. For example, the control unit 2 may generate measurement information of at least a part of the workpiece W based on the measurement results of the workpiece W, which is an example of the measurement object M (e.g., calculate the position of at least a part of the workpiece W), and control the operation of the processing unit 1 to process the workpiece W based on the measurement information.
  • measurement information of the measurement object M e.g., measurement information including position information regarding the position of the measurement object M
  • the control unit 1 may generate measurement information of at least a part of the workpiece W based on the measurement results of the workpiece W, which is an example of the measurement object M (e.g
  • the control unit 2 may include, for example, a calculation device 21 and a storage device 22.
  • the calculation device 21 may include, for example, at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • the storage device 22 may include, for example, a memory.
  • the control unit 2 functions as a device that controls the operation of the machining unit 1 by the calculation device 21 executing a computer program.
  • This computer program is a computer program for making the calculation device 21 perform (i.e., execute) the operation to be performed by the control unit 2, which will be described later.
  • this computer program is a computer program for making the control unit 2 function so as to make the machining unit 1 perform the operation to be described later.
  • the computer program executed by the calculation device 21 may be recorded in the storage device 22 (i.e., a recording medium) provided in the control unit 2, or may be recorded in any storage medium (e.g., a hard disk or a semiconductor memory) built into the control unit 2 or externally attachable to the control unit 2.
  • the computing device 21 may download the computer program to be executed from a device external to the control unit 2 via a network interface.
  • the control unit 2 does not have to be provided inside the processing unit 1.
  • the control unit 2 may be provided outside the processing unit 1 as a server or the like.
  • the control unit 2 and the processing unit 1 may be connected by a wired and/or wireless network (or a data bus and/or a communication line).
  • a wired network a network using a serial bus type interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485, and USB may be used.
  • a network using a parallel bus type interface may be used as the wired network.
  • a network using an interface compliant with Ethernet (registered trademark) represented by at least one of 10BASE-T, 100BASE-TX, and 1000BASE-T may be used.
  • a network using radio waves may be used.
  • An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of a wireless LAN and Bluetooth (registered trademark)).
  • a network using infrared rays may be used as a wireless network.
  • a network using optical communication may be used as a wireless network.
  • the control unit 2 and the processing unit 1 may be configured to be able to transmit and receive various information via the network.
  • the control unit 2 may also be able to transmit information such as commands and control parameters to the processing unit 1 via the network.
  • the processing unit 1 may be equipped with a receiving device that receives information such as commands and control parameters from the control unit 2 via the network.
  • the processing unit 1 may be equipped with a transmitting device (i.e., an output device that outputs information to the control unit 2) that transmits information such as commands and control parameters to the control unit 2 via the network.
  • a first control device that performs a part of the processing performed by the control unit 2 may be provided inside the processing unit 1, while a second control device that performs another part of the processing performed by the control unit 2 may be provided outside the processing unit 1.
  • a computation model that can be constructed by machine learning may be implemented by the computation device 21 executing a computer program.
  • An example of a computation model that can be constructed by machine learning is, for example, a computation model including a neural network (so-called artificial intelligence (AI)).
  • learning of the computation model may include learning of parameters of the neural network (for example, at least one of weights and biases).
  • the control unit 2 may use the computation model to control the operation of the machining unit 1.
  • the operation of controlling the operation of the machining unit 1 may include the operation of controlling the operation of the machining unit 1 using the computation model.
  • the control unit 2 may be implemented with a computation model that has been constructed by offline machine learning using teacher data.
  • control unit 2 may control the operation of the machining unit 1 using a computation model implemented in an external device of the control unit 2 (i.e., a device provided outside the machining unit 1) in addition to or instead of the computation model implemented in the control unit 2.
  • the recording medium for recording the computer program executed by the control unit 2 may be at least one of the following: CD-ROM, CD-R, CD-RW, flexible disk, MO, DVD-ROM, DVD-RAM, DVD-R, DVD+R, DVD-RW, DVD+RW, optical disks such as Blu-ray (registered trademark), magnetic media such as magnetic tape, magneto-optical disk, semiconductor memory such as USB memory, and any other medium capable of storing a program.
  • the recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which a computer program is implemented in a state in which it can be executed in at least one of the forms of software and firmware, etc.).
  • each process or function included in the computer program may be realized by a logical processing block realized in the control unit 2 by the control unit 2 (i.e., the computer) executing the computer program, or may be realized by hardware such as a predetermined gate array (FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit)) provided in the control unit 2, or may be realized in a form that combines logical processing blocks and partial hardware modules that realize some elements of the hardware.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • Fig. 3 is a cross-sectional view showing an example of the configuration of the machining head 13.
  • the processing light EL generated by the processing light source 11 is incident on the processing head 13 via an optical transmission member 111 such as an optical fiber.
  • the processing light EL may also be incident on the processing head 13 by spatial transmission using a mirror.
  • the processing light source 11 may be disposed outside the processing head 13.
  • the processing light source 11 may be disposed inside the processing head 13.
  • the processing light EL may also be incident on the processing head 13 without passing through an optical transmission member 111 such as an optical fiber.
  • the processing head 13 includes a processing optical system 131, a measurement optical system 132, a synthesis optical system 133, a deflection optical system 134, and an irradiation optical system 135.
  • the processing optical system 131 is an optical system into which the processing light EL generated by the processing light source 11 is incident.
  • the processing optical system 131 is an optical system that emits the processing light EL incident on the processing optical system 131 toward the synthesis optical system 133.
  • the processing optical system 131 is an optical system that emits the processing light EL incident on the processing optical system 131 toward the deflection optical system 134 via the synthesis optical system 133.
  • the processing optical system 131 is an optical system that emits the processing light EL incident on the processing optical system 131 toward the irradiation optical system 135 via the synthesis optical system 133 and the deflection optical system 134.
  • the processing light EL emitted by the processing optical system 131 is irradiated onto the workpiece W via the synthesis optical system 133, the deflection optical system 134, and the irradiation optical system 135.
  • the processing optical system 131 may include, for example, a focus control optical system 1311, a half-wave plate 1312, a beam splitter 1313, a half-wave plate 1314, a galvanometer mirror 1315, a focusing lens 1316, and a detector 1317.
  • the processing light EL generated by the processing light source 11 may be incident on the focus control optical system 1311.
  • the focus control optical system 1311 is an optical member capable of changing the focusing position CP of the processing light EL. Specifically, the focus control optical system 1311 can change the focusing position CP of the processing light EL along the irradiation direction of the processing light EL irradiated to the workpiece W.
  • the irradiation direction of the processing light EL irradiated to the workpiece W is a direction in which the Z-axis direction is the main component. In this case, the focus control optical system 1311 can change the focusing position CP of the processing light EL along the Z-axis direction.
  • the processing head 13 irradiates the processing light EL to the workpiece W from above the workpiece W
  • the irradiation direction of the processing light EL is a direction that intersects with the surface (particularly, the upper surface) of the workpiece W.
  • the focus control optical system 1311 may be considered to be capable of changing the focusing position CP of the processing light EL along a direction that intersects with the surface (particularly, the upper surface) of the workpiece W.
  • the focus control optical system 1311 may be considered to be capable of changing the focusing position CP of the processing light EL along the direction of the optical axis EX of the irradiation optical system 135, which will be described later.
  • the processing light EL that has passed through the focus control optical system 1311 is incident on the beam splitter 1313 via the half-wave plate 1312.
  • the beam splitter 1313 emits the processing light EL that has entered the beam splitter 1313 from the focus control optical system 1311 toward the galvanometer mirror 1315 via the half-wave plate 1314.
  • the processing light EL that has entered the beam splitter 1313 from the focus control optical system 1311 is incident on the galvanometer mirror 1315 via the beam splitter 1313.
  • the beam splitter 1313 may be a polarizing beam splitter. In this case, in the example shown in FIG.
  • the processing light EL that has entered the beam splitter 1313 from the focus control optical system 1311 passes through the polarization separation surface of the beam splitter 1313 and is incident on the galvanometer mirror 1315.
  • the half-wave plate 1312 may control the polarization direction of the processed light EL that is incident on the beam splitter 1313 so that the processed light EL is incident on the polarization separation surface of the beam splitter 1313 in a state in which the processed light EL has a polarization direction that allows it to pass through the polarization separation surface of the beam splitter 1313 (for example, a polarization direction that is p-polarized with respect to the polarization separation surface).
  • the processing light EL that passes through the beam splitter 1313 is incident on the galvanometer mirror 1315 via the half-wave plate 1314.
  • the galvanometer mirror 1315 is a deflection optical system that deflects the processing light EL (i.e., changes the emission angle of the processing light EL). By deflecting the processing light EL, the galvanometer mirror 1315 changes the focusing position CP of the processing light EL in a plane that intersects with the optical axis EX of the irradiation optical system 135 (i.e., in a plane along the XY plane). Normally, as shown in FIG.
  • the processing head 13 irradiates the processing light EL on the workpiece W in a state in which the optical axis EX and the surface of the workpiece W intersect. Therefore, when the focusing position CP of the processing light EL in the plane that intersects with the optical axis EX is changed, the irradiation area PA of the processing light EL on the surface of the workpiece W moves in a direction along the surface of the workpiece W. In other words, the irradiation area PA of the processing light EL moves along at least one of the X-axis direction and the Y-axis direction.
  • the galvanometer mirror 1315 includes an X-scanning mirror 1315X and a Y-scanning mirror 1315Y.
  • Each of the X-scanning mirror 1315X and the Y-scanning mirror 1315Y is an inclination angle variable mirror that changes the angle with respect to the optical path of the processing light EL incident on the galvanometer mirror 1315.
  • the X-scanning mirror 1315X deflects the processing light EL so that the irradiation area PA of the processing light EL on the workpiece W moves along the X-axis direction.
  • the X-scanning mirror 1315X may be rotatable or oscillating around the Y-axis.
  • the galvanometer mirror 1315 may be able to move the irradiation area PA of the processing light EL on the workpiece W along the X-axis direction by changing the position of the X-scanning mirror 1315X in the ⁇ Y direction (or the attitude around the Y-axis).
  • the Y-scanning mirror 1315Y deflects the processing light EL so that the irradiation area PA of the processing light EL on the workpiece W moves along the Y-axis direction.
  • the Y scanning mirror 1315Y may be capable of rotating or swinging around the X axis.
  • the galvanometer mirror 1315 may be capable of moving the irradiation area PA of the processing light EL on the workpiece W along the Y axis direction by changing the position of the Y scanning mirror 1315Y in the ⁇ X direction (or the orientation around the X axis).
  • the processing light EL emitted from the processing optical system 131 (in this case, the processing light EL emitted from the galvanometer mirror 1315) is incident on the synthesis optical system 133.
  • the synthesis optical system 133 includes a dichroic mirror 1331.
  • the dichroic mirror 1331 has optical properties that allow light of one of the wavelengths of the processing light EL and the measurement light ML to be reflected by the dichroic mirror 1331, while light of the other wavelength of the processing light EL and the measurement light ML passes through the dichroic mirror 1331.
  • Figure 3 shows an example of the processing light EL passing through the dichroic mirror 1331.
  • the processed light EL that passes through the dichroic mirror 1331 enters the deflection optical system 134.
  • the deflection optical system 134 emits the processed light EL that entered the deflection optical system 134 toward the irradiation optical system 135.
  • the processing light EL is incident on the dichroic mirror 1331 in addition to the measurement light ML#2-2.
  • the dichroic mirror 1331 outputs the processing light EL and the measurement light ML#2-2, which are incident on the dichroic mirror 1331 from different directions, in the same direction (i.e., toward the same deflection optical system 134). Therefore, the dichroic mirror 1331 essentially functions as a combining optical element that combines the processing light EL and the measurement light ML#2-2.
  • the combining optical system 133 may include a beam splitter (e.g., an amplitude-splitting beam splitter or a polarizing beam splitter) as a combining optical element instead of the dichroic mirror 1331. Even in this case, the combining optical system 133 can combine the processing light EL and the measurement light ML#2-2 using the beam splitter (i.e., combine the optical path of the processing light EL with the optical path of the measurement light ML#2-2).
  • a beam splitter e.g., an amplitude-splitting beam splitter or a polarizing beam splitter
  • the deflection optical system 134 includes a galvanometer mirror 1341.
  • the processing light EL incident on the deflection optical system 134 is incident on the galvanometer mirror 1341.
  • the galvanometer mirror 1341 deflects the processing light EL (i.e., changes the emission angle of the processing light EL).
  • the galvanometer mirror 1341 changes the focusing position CP of the processing light EL in a plane intersecting the optical axis EX of the irradiation optical system 135 (i.e., in a plane along the XY plane). Normally, as shown in FIG.
  • the processing head 13 irradiates the processing light EL on the workpiece W in a state in which the optical axis EX intersects with the surface of the workpiece W. Therefore, when the focusing position CP of the processing light EL in the plane intersecting the optical axis EX is changed, the irradiation area PA of the processing light EL on the surface of the workpiece W moves in a direction along the surface of the workpiece W. In other words, the irradiation area PA of the processing light EL moves along at least one of the X-axis direction and the Y-axis direction.
  • the galvanometer mirror 1341 includes an X-scanning mirror 1341X and a Y-scanning mirror 1341Y.
  • Each of the X-scanning mirror 1341X and the Y-scanning mirror 1341Y is an inclination angle variable mirror in which the angle with respect to the optical path of the processing light EL incident on the galvanometer mirror 1341 is changed.
  • the X-scanning mirror 1341X deflects the processing light EL so that the irradiation area PA of the processing light EL on the workpiece W moves along the X-axis direction.
  • the X-scanning mirror 1341X may be rotatable or oscillating around the Y-axis.
  • the galvanometer mirror 1341 may be able to move the irradiation area PA of the processing light EL on the workpiece W along the X-axis direction by changing the position of the X-scanning mirror 1341X in the ⁇ Y direction (or the attitude around the Y-axis).
  • the Y-scanning mirror 1341Y deflects the processing light EL so that the irradiation area PA of the processing light EL on the workpiece W moves along the Y-axis direction.
  • the Y scanning mirror 1341Y may be capable of rotating or swinging around the X axis.
  • the galvanometer mirror 1341 may be capable of moving the irradiation area PA of the processing light EL on the workpiece W along the Y axis direction by changing the position of the Y scanning mirror 1341Y in the ⁇ X direction (or the orientation around the X axis).
  • the processing light EL emitted from the deflection optical system 134 is incident on the irradiation optical system 135.
  • the irradiation optical system 135 is an optical system capable of irradiating the processing light EL onto the workpiece W.
  • the irradiation optical system 135 may be equipped with an f ⁇ lens 1351.
  • the processing light EL emitted from the deflection optical system 134 is incident on the f ⁇ lens 1351.
  • the f ⁇ lens 1351 irradiates the processing light EL emitted from the deflection optical system 134 onto the workpiece W.
  • the optical axis EX of the irradiation optical system 135 may be the optical axis of the f ⁇ lens 1351.
  • the f ⁇ lens 1351 may focus the processing light EL from the galvanometer mirror 1341 onto the workpiece W.
  • the f ⁇ lens 1351 may be considered to function as a focusing optical system.
  • the processing light EL emitted from the f ⁇ lens 1351 may be irradiated onto the workpiece W without passing through another optical element (in other words, an optical member such as a lens) having power.
  • the f ⁇ lens 1351 may be called the final optical element or objective optical system because it is the optical element having the final stage of power (i.e., the optical element closest to the workpiece W) among the multiple optical elements arranged on the optical path of the processing light EL.
  • the power of the optical element may be the reciprocal of the focal length of the optical element.
  • the processing light EL from the galvanometer mirror 1341 may be a parallel light beam.
  • the irradiation optical system 135 may be equipped with an objective optical system having projection characteristics different from f ⁇ .
  • At least one of the X scanning mirror 1341X and the Y scanning mirror 1341Y constituting the galvanometer mirror 1341, and the X scanning mirror 1315X and the Y scanning mirror 1315Y constituting the galvanometer mirror 1315 may be disposed at the entrance pupil position of the f ⁇ lens 1351 as the irradiation optical system and/or its conjugate position. At least one of the X scanning mirror 1341X and the Y scanning mirror 1341Y, and the X scanning mirror 1315X and the Y scanning mirror 1315Y may be disposed at a position optically conjugate with the entrance pupil position of the f ⁇ lens 1351.
  • a relay optical system for making each scanning mirror optically conjugate with each other may be disposed between the scanning mirrors.
  • the irradiation optical system 135 may further include a quarter-wave plate 1352.
  • the processing light EL that has passed through the f ⁇ lens 1351 may be irradiated onto the workpiece W via the quarter-wave plate 1352.
  • the quarter-wave plate 1352 is not an optical member that has power, and therefore the quarter-wave plate 1352 may not be considered to be the final optical element.
  • the f ⁇ lens 1351 may function as the final optical element, in the same way as when the irradiation optical system 135 includes the quarter-wave plate 1352.
  • the light resulting from the irradiation of the processing light EL may include processing light EL reflected by the workpiece W (i.e., reflected light).
  • At least a portion of the light generated from the workpiece W due to the irradiation of the processing light EL is incident on the processing head 13 as light returning from the workpiece W to the processing head 13.
  • the light returning from the workpiece W irradiated with the processing light EL to the processing head 13 is referred to as the processing return light REL.
  • the light traveling along the optical path of the processing light EL incident on the workpiece W is incident on the irradiation optical system 135 as the processing return light REL.
  • the optical path of the processing light EL emitted from the irradiation optical system 135 and incident on the workpiece W may be the same as the optical path of the processing return light REL emitted from the workpiece W and incident on the irradiation optical system 135.
  • the processing return light REL incident on the irradiation optical system 135 is incident on the deflection optical system 134 via the quarter-wave plate 1352 and the f ⁇ lens 1351.
  • the processing return light REL that is incident on the deflection optical system 134 is incident on the synthesis optical system 133 via the galvanometer mirror 1341.
  • the processing return light REL that is incident on the synthesis optical system 133 passes through the dichroic mirror 1331.
  • the processing return light REL that passes through the dichroic mirror 1331 is incident on the processing optical system 131.
  • the processing return light REL incident on the processing optical system 131 is incident on the beam splitter 1313 via the galvanometer mirror 1315 and the 1/2 wavelength plate 1314.
  • the processing light EL emitted from the processing light source 11 passes through the 1/2 wavelength plate 1312 to become p-polarized light, and then passes through the beam splitter 1313.
  • the processing light EL which is p-polarized light, is then irradiated onto the workpiece W via the 1/4 wavelength plate 1352. Therefore, the processing light EL, which is either right-handed circularly polarized light or left-handed circularly polarized light, is irradiated onto the workpiece W.
  • the processing return light REL includes the processing light EL reflected by the workpiece W (i.e., reflected light)
  • the processing return light REL incident on the 1/4 wavelength plate 1352 from the workpiece W is the other of right-handed circularly polarized light and left-handed circularly polarized light.
  • the processing return light REL that has passed through the 1/4 wavelength plate 1352 is s-polarized light. Therefore, the processing return light REL, which is s-polarized light, enters the beam splitter 1313.
  • the processing return light REL that enters the beam splitter 1313 is reflected by the polarization separation surface of the beam splitter 1313.
  • the beam splitter 1313 which is disposed on the optical paths of both the processing light EL and the processing return light REL, may be considered to function as a beam splitting member that splits the processing return light REL into an optical path different from the optical path of the processing light EL.
  • the processing return light REL reflected by the beam splitter 1313 is incident on the detector 1317 via the condenser lens 1316.
  • the beam splitter 1313 arranged on the optical paths of both the processing light EL and the processing return light REL may be considered to function as a beam splitting member that splits the processing return light REL into an optical path different from the optical path of the processing light EL and makes it incident on the detector 1317.
  • the detector 1317 detects the processing return light REL.
  • the detector 1317 detects the processing return light REL generated from the workpiece W via the irradiation optical system 135 (e.g., the f ⁇ lens 1351 and the 1/4 wavelength plate 1352), the deflection optical system 134 (e.g., the galvanometer mirror 1341), and the synthesis optical system 133 (e.g., the dichroic mirror 1331).
  • the detection result of the detector 1317 is output to the control unit 2.
  • the control unit 2 acquires the detection results of the detector 1317.
  • the control unit 2 may generate measurement information of the workpiece W (e.g., measurement information including position information regarding the position of the workpiece W) based on the detection results of the detector 1317.
  • measurement information of the workpiece W e.g., measurement information including position information regarding the position of the workpiece W
  • FIG. 4 an example of a method for generating measurement information of the workpiece W based on the detection results of the detector 1317 will be described.
  • Figure 4 is a graph showing the relationship between the focusing position CP of the processing light EL in the Z-axis direction and the detection result of the detector 1317. Note that Figure 4 shows an example in which the amount of light of the processing return light REL detected by the detector 1317 is used as the detection result of the detector 1317.
  • the amount of light of the processing return light REL may mean the amount of light of the processing return light REL per unit area on the light detection surface of the detector 1317. In this case, the amount of light of the processing return light REL may be considered to be substantially equivalent to the intensity of the processing return light REL. In other words, the intensity of the processing light EL detected by the detector 1317 may be used as the detection result of the detector 1317.
  • the control unit 2 may calculate (in other words, measure) the position of the workpiece W in a direction along the optical path of the processing light EL (e.g., the Z-axis direction) based on the relationship between the focusing position CP of the processing light EL in the Z-axis direction and the detection result of the detector 1317 (i.e., the relationship shown in FIG. 4). In other words, the control unit 2 may calculate the distance between the processing head 13 and the workpiece W in a direction along the optical path of the processing light EL (e.g., the Z-axis direction). More specifically, the control unit 2 may calculate the position of the irradiated portion of the workpiece W irradiated with the processing light EL. The control unit 2 may calculate the distance between the irradiated portion of the workpiece W irradiated with the processing light EL and the processing head 13.
  • the control unit 2 may calculate the distance between the irradiated portion of the workpiece W irradiated with the processing light EL and the processing
  • the detection result of the processing return light REL used to generate position information indicating the position of the workpiece W in the Z-axis direction may be considered to include information about the measurement result of the distance between the processing head 13 and the workpiece W in the Z-axis direction.
  • the detection result of the processing return light REL may be considered to be information about the distance measurement result.
  • the position information generated based on the detection result of the processing return light REL may be considered to be information about the distance measurement result.
  • the workpiece W and the detector 1317 may be aligned so that the workpiece W and the light detection surface of the detector 1317 or a surface near the light detection surface are optically conjugate.
  • the light detection surface of the detector 1317 may mean the light receiving surface of a light receiving element (e.g., a photodetector) used by the detector 1317 to detect the processing light EL.
  • the amount of light of the processing return light REL detected by the detector 1317 is maximum when the focusing position CP of the processing light EL coincides with the surface (particularly the top surface) of the workpiece W.
  • the amount of light of the processing return light REL detected by the detector 1317 decreases as the focusing position CP of the processing light EL moves away from the surface (particularly the top surface) of the workpiece W. Therefore, the focusing position CP of the processing light EL when the amount of light of the processing return light REL is maximum is equivalent to the position of the workpiece W (for example, the position of the surface (particularly the top surface) of the workpiece W).
  • control unit 2 may calculate the focus position CP of the processing light EL at the time when the focus position CP of the processing light EL is located on the surface (particularly, the upper surface) of the workpiece W as the position of the workpiece W (for example, the position of the surface (particularly, the upper surface) of the workpiece W).
  • the processing system SYSa may be considered to measure the position of the workpiece W by measuring the focus position CP of the processing light EL using the confocal method.
  • the processing unit 1 may alternately repeat, under the control of the control unit 2, an irradiation operation for irradiating a position of the workpiece W with the processing light EL and a focus operation for moving the focus position CP of the processing light EL along the Z-axis direction using the focus control optical system 1311.
  • the processing unit 1 may alternately repeat the irradiation operation and the focus operation without changing the position on the workpiece W of the irradiation area PA to which the processing light EL is irradiated. In this case, the processing head 13 and the stage 15 do not need to move.
  • the focus operation may be considered to be substantially equivalent to an operation for changing the positional relationship between the workpiece W and the focus position CP of the processing light EL in the Z-axis direction.
  • the control unit 2 acquires a plurality of pieces of information indicating the light amount of the processing light EL (i.e., the detection result of the detector 1317) corresponding to a plurality of different focus positions CP in the Z-axis direction. In this case, as shown in FIG.
  • control unit 2 may plot multiple plot points on a graph, each of which indicates multiple pieces of information indicating the light amount of the processing light EL (i.e., multiple detection results of the detector 1317), and may interpolate between the multiple plot points to obtain the relationship between the focusing position CP of the processing light EL and the detection results of the detector 1317.
  • the control unit 2 may calculate the position of the irradiated portion in a direction intersecting the optical path of the processing light EL (e.g., at least one of the X-axis direction and the Y-axis direction) based on the drive state of the galvanometer mirrors 1341 and 1315. As a result, the control unit 2 may generate position information indicating the position of the irradiated portion in a measurement coordinate system based on the processing head 13 (e.g., a position in a three-dimensional coordinate space).
  • the processing head 13 may irradiate multiple parts of the workpiece W with the processing light EL.
  • at least one of the galvanometer mirrors 1341 and 1315 may change the irradiation position of the processing light EL on the workpiece W so that the processing head 13 irradiates multiple parts of the workpiece W with the processing light EL.
  • at least one of the processing head 13 and the stage 15 may move so that the processing head 13 irradiates multiple parts of the workpiece W with the processing light EL.
  • the control unit 2 may generate position information indicating the positions of the multiple parts of the workpiece W as measurement information.
  • the control unit 2 may generate shape information indicating the shape of the workpiece W as measurement information based on the position information indicating the positions of the multiple parts.
  • the control unit 2 may generate shape information indicating the shape of the workpiece W by calculating a three-dimensional shape consisting of a virtual plane (or a curved surface) connecting the multiple parts whose positions have been identified as the shape of the workpiece W.
  • the measurement light ML generated by the measurement light source 12 is further incident on the processing head 13 via an optical transmission member 121 such as an optical fiber.
  • the measurement light ML may also be incident on the processing head 13 by spatial transmission using a mirror.
  • the measurement light source 12 may be disposed outside the processing head 13.
  • the measurement light source 12 may be disposed inside the processing head 13.
  • the measurement light ML may be incident on the processing head 13 without passing through an optical transmission member 121 such as an optical fiber.
  • the optical transmission member 121 may also be a polarization-preserving optical fiber.
  • the measurement light source 12 may include an optical comb light source.
  • An optical comb light source is a light source capable of generating light containing frequency components equally spaced on the frequency axis (hereinafter referred to as an "optical frequency comb") as pulsed light.
  • the measurement light source 12 emits pulsed light containing frequency components equally spaced on the frequency axis as the measurement light ML.
  • the measurement light source 12 may include a light source other than the optical comb light source.
  • the processing system SYSa includes multiple measurement light sources 12.
  • the processing system SYSa may include a measurement light source 12#1 and a measurement light source 12#2.
  • the multiple measurement light sources 12 may each emit multiple measurement light beams ML that are phase-synchronized and coherent with each other.
  • the multiple measurement light sources 12 may have different oscillation frequencies. Therefore, the multiple measurement light beams ML emitted by the multiple measurement light sources 12 may have different pulse frequencies (e.g., the number of pulsed lights per unit time, which is the reciprocal of the emission period of the pulsed lights).
  • the processing system SYSa may include a single measurement light source 12.
  • the measurement light ML emitted from the measurement light source 12 is incident on the measurement optical system 132.
  • the measurement optical system 132 is an optical system that emits the measurement light ML incident on the measurement optical system 132 toward the synthesis optical system 133.
  • the measurement optical system 132 is an optical system that emits the measurement light ML incident on the measurement optical system 132 toward the deflection optical system 134 via the synthesis optical system 133.
  • the measurement optical system 132 is an optical system that emits the measurement light ML incident on the measurement optical system 132 toward the irradiation optical system 135 via the synthesis optical system 133 and the deflection optical system 134.
  • the measurement light ML emitted by the measurement optical system 132 is irradiated onto the workpiece W via the synthesis optical system 133, the deflection optical system 134, and the irradiation optical system 135.
  • the measurement optical system 132 includes, for example, a mirror 1320, a beam splitter 1321, a beam splitter 1322, a detector 1323, a beam splitter 1324, a mirror 1325, a detector 1326, a mirror 1327, and a galvanometer mirror 1328.
  • the measurement light ML emitted from the measurement light source 12 is incident on the beam splitter 1321.
  • the measurement light ML emitted from the measurement light source 12#1 (hereinafter referred to as "measurement light ML#1") is incident on the beam splitter 1321.
  • the measurement light ML emitted from the measurement light source 12#2 (hereinafter referred to as “measurement light ML#2”) is incident on the beam splitter 1321 via the mirror 1320.
  • the beam splitter 1321 emits the measurement light ML#1 and ML#2 incident on the beam splitter 1321 toward the beam splitter 1322. In other words, the beam splitter 1321 emits the measurement light ML#1 and ML#2 incident on the beam splitter 1321 from different directions toward the same direction (i.e., the direction in which the beam splitter 1322 is disposed).
  • Beam splitter 1322 reflects measurement light ML#1-1, which is a part of measurement light ML#1 incident on beam splitter 1322, toward detector 1323. Beam splitter 1322 emits measurement light ML#1-2, which is the other part of measurement light ML#1 incident on beam splitter 1322, toward beam splitter 1324. Beam splitter 1322 reflects measurement light ML#2-1, which is a part of measurement light ML#2 incident on beam splitter 1322, toward detector 1323. Beam splitter 1322 emits measurement light ML#2-2, which is the other part of measurement light ML#2 incident on beam splitter 1322, toward beam splitter 1324.
  • the measurement light ML#1-1 and ML#2-1 emitted from the beam splitter 1322 are incident on the detector 1323.
  • the detector 1323 receives (i.e., detects) the measurement light ML#1-1 and the measurement light ML#2-1.
  • the detector 1323 receives interference light (in other words, an interference beam) generated by the interference between the measurement light ML#1-1 and the measurement light ML#2-1.
  • the operation of receiving the interference light generated by the interference between the measurement light ML#1-1 and the measurement light ML#2-1 may be considered equivalent to the operation of receiving the measurement light ML#1-1 and the measurement light ML#2-1.
  • the detection result of the detector 1323 is output to the control unit 2.
  • the measurement light ML#1-2 and ML#2-2 emitted from the beam splitter 1322 enter the beam splitter 1324.
  • the beam splitter 1324 emits at least a portion of the measurement light ML#1-2 that entered the beam splitter 1324 toward the mirror 1325.
  • the beam splitter 1324 emits at least a portion of the measurement light ML#2-2 that entered the beam splitter 1324 toward the mirror 1327.
  • the measurement light ML#1-2 emitted from the beam splitter 1324 is incident on the mirror 1325.
  • the measurement light ML#1-2 incident on the mirror 1325 is reflected by the reflecting surface of the mirror 1325 (the reflecting surface may be referred to as a reference surface).
  • the mirror 1325 reflects the measurement light ML#1-2 incident on the mirror 1325 toward the beam splitter 1324.
  • the mirror 1325 emits the measurement light ML#1-2 incident on the mirror 1325 as the reflected light, measurement light ML#1-3, toward the beam splitter 1324.
  • the measurement light ML#1-3 may be referred to as a reference light.
  • the measurement light ML#1-3 emitted from the mirror 1325 is incident on the beam splitter 1324.
  • the measurement light ML#2-2 emitted from the beam splitter 1324 is incident on the mirror 1327.
  • the mirror 1327 reflects the measurement light ML#2-2 incident on the mirror 1327 toward the galvanometer mirror 1328. In other words, the mirror 1327 emits the measurement light ML#2-2 incident on the mirror 1327 toward the galvanometer mirror 1328.
  • the galvanometer mirror 1328 deflects the measurement light ML#2-2 (i.e., changes the emission angle of the measurement light ML#2-2). By deflecting the measurement light ML#2-2, the galvanometer mirror 1328 changes the focusing position of the measurement light ML#2-2 in a plane intersecting the optical axis EX of the irradiation optical system 135 (i.e., in a plane along the XY plane). Normally, as shown in FIG. 3, the machining head 13 irradiates the workpiece W with the measurement light ML#2-2 in a state in which the optical axis EX and the surface of the workpiece W intersect.
  • the irradiation area MA of the measurement light ML#2-2 on the surface of the workpiece W moves in a direction along the surface of the workpiece W.
  • the irradiation area MA of the measurement light ML#2-2 moves along at least one of the X-axis direction and the Y-axis direction.
  • the galvanometer mirror 1328 includes an X-scanning mirror 1328X and a Y-scanning mirror 1328Y.
  • Each of the X-scanning mirror 1328X and the Y-scanning mirror 1328Y is a tilt-angle variable mirror that changes the angle with respect to the optical path of the measurement light ML#2-2 incident on the galvanometer mirror 1328.
  • the X-scanning mirror 1328X deflects the measurement light ML#2-2 so that the irradiation area MA of the measurement light ML#2-2 on the workpiece W moves along the X-axis direction.
  • the X-scanning mirror 1328X may be rotatable or oscillating around the Y-axis.
  • the galvanometer mirror 1328 may be able to move the irradiation area MA of the measurement light ML#2-2 on the workpiece W along the X-axis direction by changing the position of the X-scanning mirror 1328X in the ⁇ Y direction (or the attitude around the Y-axis).
  • the Y-scanning mirror 1328Y deflects the measurement light ML#2-2 so that the irradiation area MA of the measurement light ML#2-2 on the workpiece W moves along the Y-axis direction.
  • the Y-scanning mirror 1328Y may be capable of rotating or swinging around the X-axis.
  • the galvanometer mirror 1328 may be capable of moving the irradiation area MA of the measurement light ML#2-2 on the workpiece W along the Y-axis direction by changing the position of the Y-scanning mirror 1328Y in the ⁇ X direction (or the orientation around the X-axis).
  • the measurement light ML#2-2 emitted from the measurement optical system 132 (in this case, the measurement light ML#2-2 emitted from the galvanometer mirror 1328) is incident on the synthesis optical system 133.
  • the dichroic mirror 1331 provided in the synthesis optical system 133 has optical properties that enable light of one of the wavelengths of the processing light EL and the measurement light ML to be reflected by the dichroic mirror 1331, while light of the other wavelength of the processing light EL and the measurement light ML to pass through the dichroic mirror 1331.
  • the measurement light ML#2-2 is reflected by the dichroic mirror 1331.
  • the measurement light ML#2-2 reflected by the dichroic mirror 1331 is incident on the deflection optical system 134.
  • the galvanometer mirror 1328 may not be provided, and the measurement light ML#2-2 from the mirror 1327 (or the beam splitter 1324) may be directly incident on the dichroic mirror 1331.
  • the processing light EL is incident on the dichroic mirror 1331 in addition to the measurement light ML#2-2. That is, both the measurement light ML#2-2 and the processing light EL are incident on the deflection optical system 134 via the dichroic mirror 1331.
  • the dichroic mirror 1331 outputs the processing light EL and the measurement light ML#2-2, which are incident on the dichroic mirror 1331 from different directions, in the same direction (that is, toward the same deflection optical system 134). Therefore, the dichroic mirror 1331 essentially functions as a combining optical element that combines the processing light EL and the measurement light ML#2-2.
  • the measurement light ML#2-2 emitted from the synthesis optical system 133 is incident on the deflection optical system 134.
  • the deflection optical system 134 emits the measurement light ML#2-2 incident on the deflection optical system 134 toward the irradiation optical system 135.
  • the measurement light ML#2-2 incident on the deflection optical system 134 is incident on the galvanometer mirror 1341.
  • the galvanometer mirror 1341 deflects the measurement light ML#2-2 in the same manner as when deflecting the processing light EL. Therefore, the galvanometer mirror 1341 can move the irradiation area MA of the measurement light ML#2-2 on the surface of the workpiece W in a direction along the surface of the workpiece W. In other words, the galvanometer mirror 1341 may be able to move the irradiation area MA of the measurement light ML#2-2 on the workpiece W along the X-axis direction by changing the position of the X-scanning mirror 1341X in the ⁇ Y direction (or the orientation around the Y-axis).
  • the galvanometer mirror 1341 may be able to move the irradiation area MA of the measurement light ML#2-2 on the workpiece W along the Y-axis direction by changing the position of the Y-scanning mirror 1341Y in the ⁇ X direction (or the orientation around the X-axis).
  • the processing light EL is incident on the galvanometer mirror 1341 in addition to the measurement light ML#2-2.
  • the processing light EL and measurement light ML#2-2 combined by the dichroic mirror 1331 are incident on the galvanometer mirror 1341. Therefore, both the measurement light ML#2-2 and the processing light EL pass through the same galvanometer mirror 1341.
  • the galvanometer mirror 1341 can move the irradiation area PA of the processing light EL and the irradiation area MA of the measurement light ML#2-2 in synchronization.
  • the galvanometer mirror 1341 can move the irradiation area PA of the processing light EL and the irradiation area MA of the measurement light ML#2-2 in conjunction with each other.
  • the processing system SYSa can use the galvanometer mirror 1328 to independently move the irradiation area MA of the measurement light ML#2-2 with respect to the irradiation area PA of the processing light EL.
  • the processing system SYSa can use the galvanometer mirror 1328 to change the relative positional relationship between the irradiation area PA of the processing light EL and the irradiation area MA of the measurement light ML#2-2.
  • the processing system SYSa can use the galvanometer mirror 1328 to change the relative positional relationship between the irradiation area PA of the processing light EL and the irradiation area MA of the measurement light ML#2-2 along a direction intersecting the irradiation direction of the measurement light ML#2-2 (at least one of the X-axis direction and the Y-axis direction in the example shown in FIG. 3).
  • the processing system SYSa can use the galvanometer mirror 1315 to independently move the irradiation area PA of the processing light EL relative to the irradiation area MA of the measurement light ML#2-2. In other words, the processing system SYSa can use the galvanometer mirror 1315 to change the relative positional relationship between the irradiation area PA of the processing light EL and the irradiation area MA of the measurement light ML#2-2.
  • the processing system SYSa can use the galvanometer mirror 1328 to change the relative positional relationship between the irradiation area PA of the processing light EL and the irradiation area MA of the measurement light ML#2-2 along a direction intersecting the irradiation direction of the processing light EL (at least one of the X-axis direction and the Y-axis direction in the example shown in FIG. 3).
  • the measurement light ML#2-2 emitted from the deflection optical system 134 enters the irradiation optical system 135.
  • the irradiation optical system 135 is an optical system capable of irradiating the measurement light ML#2-2 onto the workpiece W.
  • the f ⁇ lens 1351 irradiates the measurement light ML#2-2 emitted from the deflection optical system 134 onto the workpiece W.
  • the f ⁇ lens 1351 emits the measurement light ML#2-2 in a direction along the optical axis EX of the irradiation optical system 135.
  • the measurement light ML#2-2 emitted by the f ⁇ lens 1351 travels along the optical axis EX and enters the workpiece W.
  • the irradiation optical system 135 is equipped with a quarter-wave plate 1352, the measurement light ML#2-2 emitted by the f ⁇ lens 1351 may enter the workpiece W via the quarter-wave plate 1352.
  • the f ⁇ lens 1351 may focus the measurement light ML#2-2 emitted from the deflection optical system 134 onto the workpiece W.
  • the f ⁇ lens 1351 may be considered to function as a focusing optical system.
  • the measurement light ML#2-2 emitted from the f ⁇ lens 1351 may be irradiated onto the workpiece W without passing through another optical element having power (in other words, an optical member such as a lens).
  • the f ⁇ lens 1351 may be called the final optical element or objective optical system because it is the optical element having the final stage of power (i.e., the optical element closest to the workpiece W) among the multiple optical elements arranged on the optical path of the measurement light ML#2-2.
  • the measurement light ML#2-2 emitted from the deflection optical system 134 and incident on the f ⁇ lens 1351 may be a parallel light beam.
  • the irradiation optical system 135 may be equipped with an objective optical system having projection characteristics different from f ⁇ .
  • the light resulting from the irradiation of the measurement light ML#2-2 may include at least one of the measurement light ML#2-2 reflected by the workpiece W (i.e., reflected light), the measurement light ML#2-2 scattered by the workpiece W (i.e., scattered light), the measurement light ML#2-2 diffracted by the workpiece W (i.e., diffracted light), and the measurement light ML#2-2 transmitted through the workpiece W (i.e., transmitted light).
  • At least a portion of the light emitted from the workpiece W due to the irradiation of the measurement light ML#2-2 is incident on the machining head 13 as light returning from the workpiece W to the machining head 13.
  • the light returning from the workpiece W irradiated with the measurement light ML#2-2 to the machining head 13 is referred to as the measurement return light RML.
  • the measurement return light RML the light returning from the workpiece W irradiated with the measurement light ML#2-2 to the machining head 13.
  • the measurement return light RML the light traveling along the optical path of the measurement light ML#2-2 incident on the workpiece W is incident on the irradiation optical system 135 as the measurement return light RML.
  • the optical path of the measurement light ML#2-2 emitted from the irradiation optical system 135 and incident on the workpiece W may be the same as the optical path of the measurement return light RML emitted from the workpiece W and incident on the irradiation optical system 135.
  • the measurement return light RML incident on the irradiation optical system 135 is incident on the deflection optical system 134 via the quarter-wave plate 1352 and the f ⁇ lens 1351.
  • the measurement return light RML that is incident on the deflection optical system 134 is incident on the synthesis optical system 133 via the galvanometer mirror 1341.
  • the dichroic mirror 1331 of the synthesis optical system 133 reflects the measurement return light RML that is incident on the dichroic mirror 1331 toward the measurement optical system 132.
  • the measurement return light RML emitted from the dichroic mirror 1331 is incident on the galvanometer mirror 1328 of the measurement optical system 132.
  • the galvanometer mirror 1328 emits the measurement return light RML incident on the galvanometer mirror 1328 toward the mirror 1327.
  • the mirror 1327 reflects the measurement return light RML incident on the mirror 1327 toward the beam splitter 1324.
  • the beam splitter 1324 emits at least a portion of the measurement return light RML incident on the beam splitter 1324 toward the beam splitter 1322.
  • the beam splitter 1322 emits at least a portion of the measurement return light RML incident on the beam splitter 1322 toward the detector 1326.
  • the measurement light ML#1-3 is incident on the detector 1326. That is, the measurement return light RML that travels toward the detector 1326 via the workpiece W, and the measurement light ML#1-3 that travels toward the detector 1326 without traveling through the workpiece W are incident on the detector 1326.
  • the detector 1326 receives (i.e., detects) the measurement light ML#1-3 and the measurement return light RML.
  • the detector 1326 receives interference light (in other words, interference beam) generated by interference between the measurement light ML#1-3 and the measurement return light RML.
  • the operation of receiving the interference light generated by interference between the measurement light ML#1-3 and the measurement return light RML may be considered equivalent to the operation of receiving the measurement light ML#1-3 and the measurement return light RML.
  • the detection result of the detector 1326 is output to the control unit 2.
  • the control unit 2 acquires the detection results of the detector 1323 and the detector 1326.
  • the control unit 2 may generate measurement information of the workpiece W (e.g., measurement information including position information regarding the position of the workpiece W) based on the detection results of the detector 1323 and the detector 1326.
  • measurement information of the workpiece W e.g., measurement information including position information regarding the position of the workpiece W
  • FIG. 5 a method of generating measurement information of the workpiece W based on the detection results of the detector 1143 and the detector 1146 will be described with reference to FIG. 5.
  • the pulse frequency of measurement light ML#1 is different from the pulse frequency of measurement light ML#2
  • the pulse frequency of measurement light ML#1-1 is different from the pulse frequency of measurement light ML#2-1.
  • the interference light between measurement light ML#1-1 and measurement light ML#2-1 is interference light in which pulse light appears in synchronization with the timing when the pulse light constituting measurement light ML#1-1 and the pulse light constituting measurement light ML#2-1 are simultaneously incident on detector 1323.
  • the pulse frequency of measurement light ML#1-3 is different from the pulse frequency of measurement return light RML. Therefore, the interference light between the measurement light ML#1-3 and the measurement return light RML is an interference light in which a pulsed light appears in synchronization with the timing when the pulsed light constituting the measurement light ML#1-3 and the pulsed light constituting the measurement return light RML are simultaneously incident on the detector 1326.
  • the position (position on the time axis) of the pulsed light of interference light detected by detector 1326 varies depending on the positional relationship between the machining head 13 and the workpiece W. This is because the interference light detected by detector 1326 is interference light between the measurement return light RML heading toward detector 1326 via the workpiece W and the measurement light ML#1-3 heading toward detector 1326 without going through the workpiece W.
  • the position (position on the time axis) of the pulsed light of interference light detected by detector 1323 does not vary depending on the positional relationship between the machining head 13 and the workpiece W (that is, essentially, the positional relationship between the machining head 13 and the workpiece W).
  • the time difference between the pulsed light of interference light detected by detector 1326 and the pulsed light of interference light detected by detector 1323 indirectly indicates the positional relationship between the machining head 13 and the workpiece W. Specifically, it can be said that the time difference between the pulsed light of the interference light detected by the detector 1326 and the pulsed light of the interference light detected by the detector 1323 indirectly indicates the distance between the machining head 13 and the workpiece W in the direction along the optical path of the measurement light ML (that is, the direction along the traveling direction of the measurement light ML).
  • the control unit 2 can calculate (in other words, measure) the distance between the machining head 13 and the workpiece W in the direction along the optical path of the measurement light ML (for example, the Z-axis direction) based on the time difference between the pulsed light of the interference light detected by the detector 1326 and the pulsed light of the interference light detected by the detector 1323. In other words, the control unit 2 can calculate the position of the workpiece W in the direction along the optical path of the measurement light ML (for example, the Z-axis direction). More specifically, the control unit 2 can calculate the distance between the irradiated portion of the workpiece W irradiated with the measurement light ML#2-2 and the machining head 13.
  • the control unit 2 can calculate the position of the irradiated portion in the direction along the optical path of the measurement light ML (for example, the Z-axis direction). As a result, the control unit 2 can generate, as measurement information, position information indicating the position of the irradiated portion in the Z-axis direction (typically, the distance to the irradiated portion in the Z-axis direction) in a measurement coordinate system based on the processing head 13.
  • the measurement optical system 132 may be considered to function as a measurement device that measures the position of the irradiated portion in the Z-axis direction (typically, the distance to the irradiated portion in the Z-axis direction).
  • the detection result of the measurement return light RML used to generate position information indicating the position of the workpiece W in the Z-axis direction may be considered to include information about the measurement result of the distance between the machining head 13 and the workpiece W in the Z-axis direction.
  • the detection result of the measurement return light RML may be considered to be information about the distance measurement result.
  • the position information generated based on the detection result of the measurement return light RML may be considered to be information about the distance measurement result.
  • the control unit 2 may calculate the position of the irradiated portion in a direction intersecting the optical path of the measurement light ML (e.g., at least one of the X-axis direction and the Y-axis direction) based on the drive state of the galvanometer mirrors 1341 and 1328. As a result, the control unit 2 may generate position information indicating the position of the irradiated portion in a measurement coordinate system based on the machining head 13 (e.g., a position in a three-dimensional coordinate space).
  • the machining head 13 may irradiate multiple portions of the workpiece W with the measurement light ML#2-2.
  • at least one of the galvanometer mirrors 1341 and 1328 may change the irradiation position of the measurement light ML#2-2 on the workpiece W so that the machining head 13 irradiates multiple portions of the workpiece W with the measurement light ML#2-2.
  • at least one of the machining head 13 and the stage 15 may move so that the machining head 13 irradiates multiple portions of the workpiece W with the measurement light ML#2-2.
  • the control unit 2 may generate position information indicating the positions of the multiple portions of the workpiece W as measurement information.
  • the machining head 13 can irradiate multiple portions of the workpiece W with the measurement light ML#2-2 in a relatively short time.
  • the machining system SYSa can quickly measure the positions of multiple parts of the workpiece W.
  • the control unit 2 may generate shape information indicating the shape of the workpiece W as measurement information based on the position information indicating the positions of the multiple parts. For example, the control unit 2 may generate shape information indicating the shape of the workpiece W by calculating, as the shape of the workpiece W, a three-dimensional shape composed of a virtual plane (or a curved surface) connecting the multiple parts whose positions have been identified.
  • the processing system SYSa can process the workpiece W by irradiating the processing light EL onto the workpiece W.
  • the processing system SYSa may perform a processing operation for processing the workpiece W using the processing light EL.
  • the processing unit 1 may perform removal processing on the workpiece W. That is, the processing unit 1 may perform removal processing to remove a part of the workpiece W.
  • the processing unit 1 may perform removal processing by utilizing the principle of non-thermal processing (e.g., ablation processing). That is, the processing unit 1 may perform non-thermal processing (e.g., ablation processing) on the workpiece W.
  • the processing unit 1 may use light with a high photon density (in other words, fluence) as the processing light EL.
  • the processing unit 1 may use light including pulse light having an emission time of nanoseconds or less, picoseconds or less, or femtoseconds or less as the processing light EL.
  • the processing unit 1 may use light including pulse light having a pulse width of nanoseconds or less, picoseconds or less, or femtoseconds or less as the processing light EL.
  • the material constituting the energy transmission part of the workpiece W to which the energy of the processing light EL is transmitted evaporates and disperses instantly. That is, the material constituting the energy transmission part of the workpiece W evaporates and disperses within a time sufficiently shorter than the thermal diffusion time of the workpiece W.
  • the material constituting the energy transfer portion of the workpiece W may sublimate without going through a molten state.
  • the material constituting the energy transfer portion of the workpiece W may be released from the workpiece W as at least one of ions, atoms, radicals, molecules, clusters, and solid pieces.
  • the processing unit 1 may also perform removal processing using the principle of thermal processing.
  • the processing unit 1 may perform additive processing on the workpiece W.
  • the processing unit 1 may perform additive processing to form a model on the workpiece W.
  • the processing unit 1 may be considered to be capable of functioning as a 3D printer.
  • powder bed fusion may be used, laser metal deposition (LMD) or directed energy deposition (DED) may be used.
  • LMD laser metal deposition
  • DED directed energy deposition
  • the workpiece W may be a modeling plate or a powder layer.
  • the processing unit 1 may perform melt processing to melt the surface of the workpiece W and solidify the melted surface.
  • the melt processing may be referred to as remelt processing.
  • the processing unit 1 may perform planar processing to make the surface of the workpiece W closer to a flat surface compared to before the melt processing by performing melt processing.
  • the processing unit 1 may perform melt processing using the principle of thermal processing. That is, the processing unit 1 may perform thermal processing on the workpiece W.
  • the processing unit 1 may use light including pulsed light of milliseconds or more or nanoseconds or more as the processing light EL.
  • the processing unit 1 may use continuous light as the processing light EL.
  • the processing unit 1 when the processing unit 1 performs both non-thermal processing and thermal processing, the processing unit 1 may be provided with a processing light source 11, which will be described later, that generates processing light EL used for non-thermal processing and a processing light source that generates processing light EL used for thermal processing separately.
  • the processing light source that generates processing light EL used for non-thermal processing may be disposed inside the processing head 13.
  • the processing unit 1 may perform a marking process to form a desired mark on the surface of the workpiece W.
  • the processing unit 1 may perform a surface modification process to change the characteristics of the surface of the workpiece W.
  • the processing unit 1 may perform a peening process to change the characteristics of the surface of the workpiece W.
  • the processing unit 1 may perform a peeling process to peel off the surface of the workpiece W.
  • the processing unit 1 may perform a welding process to join one workpiece W to another workpiece W.
  • the processing unit 1 may perform a cutting process to cut the workpiece W.
  • the processing unit 1 may process the workpiece W to form a desired structure on the surface of the workpiece W. However, the processing unit 1 may perform processing other than the processing for forming the desired structure on the surface of the workpiece W.
  • processing other than the processing for forming the desired structure on the surface of the workpiece W may be flattening processing of the workpiece W.
  • the flattening processing of the workpiece W may include processing for grinding the surface of the workpiece W to make it flat.
  • the riblet structure may include a structure that can reduce the resistance of the surface of the workpiece W to the fluid (particularly, at least one of frictional resistance and turbulent frictional resistance). For this reason, the riblet structure may be formed on a workpiece W having a member that is installed (in other words, located) in the fluid.
  • the "fluid" here means a medium (e.g., at least one of gas and liquid) that is flowing relative to the surface of the workpiece W.
  • this medium may be referred to as a fluid.
  • the state in which the medium is stationary may mean a state in which the medium is not moving relative to a predetermined reference object (e.g., the ground surface).
  • Examples of the workpiece W on which the riblet structure is formed include at least one of an aircraft, a windmill, an engine turbine, and a power generation turbine.
  • the workpiece W becomes easier to move relative to the fluid. This reduces the resistance that impedes the movement of the workpiece W relative to the fluid, leading to energy savings.
  • the workpiece W is a member exposed to the surface of the aircraft body (e.g., at least a part of the aircraft), the resistance that impedes the movement of the aircraft is reduced, leading to fuel savings in the aircraft.
  • the workpiece W is a windmill (e.g., at least a part of the windmill)
  • the resistance that impedes the movement (typically, rotation) of the windmill is reduced, leading to high efficiency of the windmill.
  • the workpiece W is an engine turbine (e.g., at least a part of the engine turbine)
  • the resistance that impedes the movement (typically, rotation) of the engine turbine is reduced, leading to high efficiency or energy savings of the engine turbine.
  • the processing unit 1 may be able to contribute to "13.2.2 Reduce total greenhouse gas emissions per year" in Goal 13 of the United Nations-led Sustainable Development Goals (SDGs), "Take urgent action to combat climate change and its impacts.”
  • SDGs United Nations-led Sustainable Development Goals
  • a desired structure is a hole structure.
  • a desired structure is a carved structure.
  • the processing system SYSa can measure the measurement object M based on the detection result of the measurement return light RML generated from the measurement object M by irradiating the measurement light ML on the measurement object M. That is, the processing system SYSa may perform a measurement operation for measuring the measurement object M using the measurement light ML.
  • the processing system SYSa can measure the position of the measurement object M (particularly, the position of the measurement object M in the Z-axis direction, and essentially the distance) based on the detection result of the measurement return light RML.
  • the measurement object M is a workpiece W and the processing system SYSa measures the position of the workpiece W in the Z-axis direction.
  • the position of the workpiece W in the Z-axis direction will be referred to as the Z position of the workpiece W.
  • the processing system SYSa may perform the measurement operation described below.
  • the machining system SYSa measures the position (e.g., Z position) of the measurement object M
  • the machining system SYSa may perform the measurement operation described below.
  • the processing system SYSa can measure the Z position of the workpiece W based on the detection result of the processing return light REL generated from the workpiece W by irradiating the workpiece W with the processing light EL instead of the detection result of the measurement return light RML.
  • the processing system SYSa may perform a measurement operation to measure the Z position of the workpiece W using the processing light EL instead of the measurement light ML.
  • the processing system SYSa may measure the Z position of the workpiece W based on both the detection result of the measurement return light RML of the measurement light ML and the detection result of the processing return light REL of the processing light EL.
  • the control unit 2 may calculate the Z position of the workpiece W based on both the detection result of the measurement return light RML by each of the detectors 1323 and 1326 and the detection result of the processing return light REL by the detector 1317.
  • the control unit 2 may generate position information indicating the Z position of the workpiece W as measurement information based on both the detection result of the measurement return light RML and the detection result of the processing return light REL.
  • the control unit 2 can generate position information indicating the Z position of the workpiece W based on the detection results of the measurement return light RML without using the detection results of the processing return light REL.
  • the position information generated based on the detection results of the measurement return light RML without using the detection results of the processing return light REL may not accurately indicate the Z position of the workpiece W.
  • the position information generated based on the detection results of the measurement return light RML without using the detection results of the processing return light REL may contain errors.
  • Figure 6 shows by a dotted line the ideal position information that should be generated based on the detection results of the measurement return light RML, and also shows in solid lines an example of position information that is actually generated based on the detection results of the measurement return light RML.
  • the ideal position information indicates the actual Z position of the workpiece W at each position within a surface along the XY plane
  • the generated position information indicates the measurement results of the Z position of the workpiece W at each position within a surface along the XY plane.
  • the position information generated based on the detection results of the measurement return light RML may be erroneous position information indicating that the Z position of the workpiece W is farther toward the -Z side than the actual Z position of the workpiece W indicated by the ideal position information.
  • the position information generated based on the detection results of the measurement return light RML may be erroneous position information indicating that the distance in the Z axis direction between the machining head 13 and the workpiece W is longer than the distance in the Z axis direction between the machining head 13 and the workpiece W indicated by the ideal position information.
  • the position information generated based on the detection results of the measurement return light RML may contain a measurement error equivalent to the difference between the position information generated based on the detection results of the measurement return light RML and the ideal position information.
  • FIG. 7(a) shows a workpiece W having a minute recess CC on the surface WS whose Z position is to be measured.
  • the measurement light ML may be irradiated not only to the surface WS of the workpiece W whose Z position is to be measured (particularly the part where the recess CC is not formed), but also to the recess CC recessed on the -Z side of the surface WS of the workpiece W.
  • the phenomenon in which the measurement light ML is irradiated to the recess CC recessed on the -Z side of the surface WS of the workpiece W is referred to as "penetration of the measurement light ML".
  • the timing at which the measurement return light RML generated from the recess CC enters the detector 1326 differs from the timing at which the measurement return light RML generated from the surface WS of the workpiece W enters the detector 1326. This is because the distance from the processing head 13 to the recess CC (particularly, the distance to the bottom forming the recess CC) differs from the distance from the processing head 13 to the surface WS of the workpiece W.
  • the timing at which the measurement return light RML generated from the recess CC enters the detector 1326 is delayed by a time corresponding to the penetration amount of the measurement light ML with respect to the timing at which the measurement return light RML generated from the surface WS of the workpiece W enters the detector 1326.
  • the penetration amount of the measurement light ML may mean the distance that the measurement light ML has advanced toward the -Z side from the surface WS of the workpiece W, as shown in FIG. 7A.
  • the penetration amount of the measurement light ML may refer to the distance traveled by the measurement light ML inside a recess CC recessed toward the -Z side from the surface WS of the workpiece W.
  • the position information generated based on the detection results of the measurement return light RML includes not only information about the Z position of the surface of the workpiece W, but also information about the Z position of the recess CC recessed toward the -Z side from the surface WS of the workpiece W. For this reason, the method of generating position information based on the detection results of the measurement return light RML has a technical problem in that the measurement error described using FIG. 6 may be included in the position information.
  • the cause of the penetration of the measurement light ML is not limited to a change in the timing of the measurement return light RML generated from the minute recess CC.
  • the penetration of the measurement light ML may occur due to interference caused by diffuse reflection of at least one of the measurement light ML and the measurement return light RML inside the minute recess.
  • the penetration of the measurement light ML may occur due to variations in the optical transparency of the workpiece W. In either case, a technical problem arises in that measurement errors may be included in the position information.
  • the control unit 2 can generate position information indicating the Z position of the workpiece W based on the detection result of the processing return light REL without using the detection result of the measurement return light RML.
  • the method of generating position information based on the detection result of the processing return light REL does not cause the above-mentioned technical problems that arise when generating position information based on the detection result of the measurement return light RML.
  • the position information generated based on the detection result of the processing return light REL is usually more accurate than the position information generated based on the detection result of the measurement return light RML.
  • the position information generated based on the detection result of the processing return light REL usually indicates the Z position of the workpiece W with higher accuracy than the position information generated based on the detection result of the measurement return light RML.
  • the processing unit 1 when position information is generated based on the detection results of the processing return light REL, as described above, the processing unit 1, under the control of the control unit 2, must alternately repeat an irradiation operation of irradiating a position on the workpiece W with the processing light EL and a focusing operation of moving the focusing position CP of the processing light EL along the Z-axis direction. For this reason, the time required to generate position information based on the detection results of the processing return light REL is longer than the time required to generate position information based on the detection results of the measurement return light RML. In other words, the method of generating position information based on the detection results of the processing return light REL poses a technical problem in that the time required to generate position information may be long.
  • the processing system SYSa generates position information while solving the above-mentioned technical problems by combining a method of generating position information based on the detection result of the measurement return light RML and a method of generating position information based on the detection result of the processing return light REL. Specifically, the processing system SYSa generates position information indicating the Z position of each part of the surface WS of the workpiece W based on the detection result of the measurement return light RML in principle. As a result, the processing system SYSa can reduce the time required to generate position information compared to the case where position information indicating the Z position of each part of the surface WS of the workpiece W is generated based on the detection result of the processing return light REL.
  • the processing system SYSa corrects the position information generated based on the detection result of the measurement return light RML using the detection result of the processing return light REL that indicates the Z position of the workpiece W with higher accuracy. More specifically, the processing system SYSa corrects the relatively low-precision position information generated based on the detection result of the measurement return light RML using the relatively high-precision position information generated based on the detection result of the processing return light REL. As a result, the processing system SYSa can generate position information that indicates the Z position of the workpiece W with higher accuracy than when position information indicating the Z position of each part of the surface WS of the workpiece W is generated based on the detection results of the measurement return light RML without using the detection results of the processing return light REL.
  • Fig. 8 is a flowchart showing the flow of operation for generating position information based on both the detection result of the measurement return light RML and the detection result of the processing return light REL.
  • the processing unit 1 irradiates the workpiece W with the measurement light ML under the control of the control unit 2 (step S101).
  • the processing unit 1 may irradiate each of a plurality of different parts of the workpiece W with the measurement light ML.
  • the processing unit 1 may irradiate each of a plurality of different parts of the workpiece W with the measurement light ML by moving the irradiation area MA of the measurement light ML relative to the workpiece W using at least one of the galvanometer mirrors 1328 and 1341.
  • the processing unit 1 may irradiate each of a plurality of different parts of the workpiece W with the measurement light ML by moving at least one of the processing head 13 and the stage 15 to move the irradiation area MA of the measurement light ML relative to the workpiece W.
  • the control unit 2 calculates the Z position of the workpiece W based on the detection result of the measurement return light RML generated from the workpiece W by irradiating the workpiece W with the measurement light ML (step S102).
  • the control unit 2 generates position information indicating the Z position of the workpiece W (step S102). For example, when the measurement light ML is irradiated onto each of multiple different parts of the workpiece W, the control unit 2 may generate position information indicating the Z position of each of the multiple different parts of the workpiece W.
  • the processing unit 1 may irradiate a first portion of the workpiece W with the measurement light ML, and may also irradiate a second portion of the workpiece W that is different from the first portion with the measurement light ML. Thereafter, the control unit 2 may calculate the Z position of the first portion of the workpiece W based on the detection result of the measurement return light RML generated from the first portion of the workpiece W when the measurement light ML is irradiated onto the first portion of the workpiece W. Furthermore, the control unit 2 may calculate the Z position of the second portion of the workpiece W based on the detection result of the measurement return light RML generated from the second portion of the workpiece W when the measurement light ML is irradiated onto the second portion of the workpiece W. In other words, the control unit 2 may generate position information indicating the Z positions of the first and second portions of the workpiece W.
  • the processing unit 1 irradiates the workpiece W with the processing light EL under the control of the control unit 2 (step S103).
  • the processing unit 1 irradiates the processing light EL to at least one of the multiple different parts of the workpiece W irradiated with the measurement light ML in step S101.
  • the processing unit 1 irradiates the processing light EL to any one of the multiple different parts of the workpiece W irradiated with the measurement light ML in step S101.
  • the processing unit 1 when the processing unit 1 irradiates the measurement light ML to each of the first and second parts of the workpiece W in step S101, the processing unit 1 may irradiate the processing light EL to the first or second part of the workpiece W in step S103.
  • a part of the workpiece W irradiated with the processing light EL in step S103 to generate position information is referred to as a "target part".
  • the processing unit 1 may irradiate the processing light EL to an area near at least one of the multiple different parts of the workpiece W irradiated with the measurement light ML in step S101.
  • the processing unit 1 may irradiate the processing light EL to an area near the first or second part of the workpiece W in step S103.
  • the characteristics of the processing light EL irradiated to the workpiece W to generate position information may be different from the characteristics of the processing light EL irradiated to the workpiece W to process the workpiece W.
  • An example of the characteristics of the processing light EL is at least one of the intensity of the processing light EL and the irradiation time of the processing light EL.
  • the intensity of the processing light EL may mean the fluence.
  • an example of the characteristics of the processing light EL is at least one of the number of pulsed lights per unit time (i.e., the number of pulses) and the pulse length.
  • the intensity of the processing light EL When the intensity of the processing light EL is used as the characteristic of the processing light EL, the intensity of the processing light EL irradiated to the workpiece W to generate position information may be lower than the intensity of the processing light EL irradiated to the workpiece W to process the workpiece W. As a result, the possibility of the workpiece W being unintentionally processed by the processing light EL irradiated to the workpiece W to generate position information is reduced. Typically, the intensity of the processing light EL irradiated to the workpiece W to generate position information may be lower than the intensity of the processing light EL capable of processing the workpiece W. As a result, the possibility of the workpiece W being unintentionally processed by the processing light EL irradiated to the workpiece W to generate position information is reduced.
  • the control unit 2 may control the processing light source 11 to control the intensity of the processing light EL emitted from the processing light source 11.
  • the processing unit 1 may place an attenuation member capable of attenuating the processing light EL in the optical path of the processing light EL.
  • the angle of incidence of the processing light EL on the target portion of the workpiece W in step S103 may be the same as the angle of incidence of the measurement light ML on the target portion of the workpiece W in step S101.
  • the penetration amount of the processing light EL in step S103 will be the same as the penetration amount of the measurement light ML in step S101.
  • the detector 1317 detects the processing return light REL that is generated from the target portion of the workpiece W as a result of the processing light EL being irradiated onto the target portion of the workpiece W (step S104).
  • the processing unit 1 alternately repeats a focusing operation (step S106) that changes the focusing position CP of the processing light EL and an irradiation operation (steps S103 to S104) that irradiates the target portion of the workpiece W with the processing light EL and detects the processing return light REL until the target portion of the workpiece W is irradiated the processing light EL the required number of times (step S105).
  • the control unit 2 calculates the Z position of the target portion of the workpiece W based on the detection result of the processing return light REL in step S104 (step S107).
  • the control unit 2 calculates a position correction amount for correcting the Z position of the workpiece W calculated based on the detection results of the measurement return light RML based on the Z position of the workpiece W calculated based on the detection results of the measurement return light RML in step S102 and the Z position of the workpiece W calculated based on the detection results of the processing return light REL in step S107 (step S108). Specifically, the control unit 2 calculates the position correction amount based on the Z position of the target portion of the workpiece W calculated based on the detection results of the measurement return light RML in step S102 and the Z position of the same target portion of the workpiece W calculated based on the detection results of the processing return light REL in step S107.
  • control unit 2 may calculate the position correction amount based on the relationship between the Z position of the target portion of the workpiece W calculated based on the detection result of the measurement return light RML and the Z position of the same target portion of the workpiece W calculated based on the detection result of the processing return light REL.
  • the Z position of the workpiece W calculated based on the detection result of the processing return light REL indicates the Z position of the workpiece W with high accuracy compared to the Z position of the workpiece W calculated based on the detection result of the measurement return light RML.
  • the control unit 2 may calculate the difference between the Z position of the target portion of the workpiece W calculated based on the detection result of the measurement return light RML and the Z position of the same target portion of the workpiece W calculated based on the detection result of the processing return light REL as the position correction amount.
  • the control unit 2 then corrects the Z position of the workpiece W calculated in step S102 based on the detection result of the measurement return light RML using the position correction amount calculated in step S108 (step S109). Specifically, the control unit 2 adds the position correction amount calculated in step S108 to the Z position of the workpiece W calculated in step S102 based on the detection result of the measurement return light RML of the measurement light ML (step S109). That is, the control unit 2 adds the position correction amount to each of the Z positions of multiple different parts of the workpiece W calculated based on the detection result of the measurement return light RML (step S109). As a result, the Z position to which the position correction amount has been added is calculated as the corrected Z position. That is, position information indicating the corrected Z position of the workpiece W (i.e., corrected position information) is generated.
  • position information indicating the corrected Z position of the workpiece W i.e., corrected position information
  • the control unit 2 may calculate the difference between the Z position of the first portion of the workpiece W calculated based on the detection result of the measurement return light RML and the Z position of the first portion of the workpiece W calculated based on the detection result of the processing return light REL as the position correction amount. Thereafter, the control unit 2 may correct the Z position of the first portion of the workpiece W by adding the position correction amount to the Z position of the first portion of the workpiece W calculated based on the detection result of the measurement return light RML.
  • control unit 2 may correct the Z position of the second portion of the workpiece W by adding the position correction amount to the Z position of the second portion of the workpiece W calculated based on the detection result of the measurement return light RML.
  • the control unit 2 may generate position information indicating the Z position of the first part of the work W to which the position correction amount has been added (i.e., the corrected Z position of the first part of the work W) and the Z position of the second part of the work W to which the position correction amount has been added (i.e., the corrected Z position of the second part of the work W).
  • control unit 2 may control the operation of the processing unit 1 to process the workpiece W based on the corrected position information.
  • the processing system SYSa can generate position information indicating the Z position of the workpiece W based on both the detection result of the measurement return light RML and the detection result of the processing return light REL. Specifically, the processing system SYSa can correct the position information generated based on the detection result of the measurement return light RML using a position correction amount generated based on the detection result of the processing return light REL. As a result, the measurement error included in the corrected position information is smaller than the measurement error included in the position information generated based on the detection result of the measurement return light RML.
  • the processing system SYSa can process the workpiece W using the corrected position information that indicates the Z position of the workpiece W with high accuracy compared to the position information generated based on the detection result of the measurement return light RML. Therefore, the processing system SYSa can properly process the workpiece W.
  • the machining system SYSb in the second embodiment differs from the machining system SYSa in the first embodiment described above in that the method for calculating the Z position of the workpiece W based on the detection result of the measurement return light RML of the measurement light ML in step S102 of FIG. 8 is different.
  • Other features of the machining system SYSb may be the same as other features of the machining system SYSa.
  • the control unit 2 calculates the Z position of the first portion of the work W based on the detection result of the measurement return light RML generated by irradiating the first portion of the work W with the measurement light ML.
  • the control unit 2 may calculate the Z position of the first portion P1 of the work W based on both the detection result of the measurement return light RML generated by irradiating the first portion P1 of the work W with the measurement light ML and the detection result of the measurement return light RML generated by irradiating at least one second portion P2 of the work W having a predetermined positional relationship with the first portion P1. Note that FIG.
  • FIG. 11(a) shows an example in which the control unit 2 calculates the Z position of the first portion P1 of the work W based on both the detection result of the measurement return light RML generated by irradiating the first portion P1 of the work W with the measurement light ML and the detection result of the measurement return light RML generated by irradiating one second portion P2 of the work W with the measurement light ML.
  • FIG. 11(a) shows an example in which the control unit 2 calculates the Z position of the first portion P1 of the work W based on both the detection result of the measurement return light RML generated by irradiating the first portion P1 of the work W with the measurement light ML and the detection result of the measurement return light RML generated by irradiating one second portion P2 of the work W with the measurement light ML.
  • 11(b) shows an example in which the control unit 2 calculates the Z position of the first portion P1 of the workpiece W based on both the detection result of the measurement return light RML generated by irradiating the measurement light ML onto the first portion P1 of the workpiece W and the detection result of the measurement return light RML generated by irradiating the measurement light ML onto multiple second portions P2 of the workpiece W.
  • the second part P2 having a predetermined positional relationship with the first part P1 may be located within a predetermined distance from the first part P1.
  • the state in which "the first part P1 of the work W and the second part P2 of the work W have a predetermined positional relationship" may mean the state in which "the second part P2 of the work W is located within a predetermined distance from the first part P1 of the work W.”
  • the state in which "the first part P1 of the work W and the second part P2 of the work W have a predetermined positional relationship" may mean the state in which "the distance between the first part P1 of the work W and other parts of the work W is within a predetermined distance.”
  • the specified distance may be a constant fixed in advance.
  • the specified distance may be determined in advance based on the material of the workpiece W.
  • the specified distance may be determined in advance based on the shape of the workpiece W.
  • constant information specifying the predetermined distance fixed in advance may be input to the processing system SYSb.
  • the control unit 2 may store constant information specifying the predetermined distance fixed in advance in the storage device 22.
  • the control unit 2 may specify at least one second portion P2 located within a predetermined distance from the first portion P1 using the predetermined distance specified by the distance information, and calculate the Z position of the first portion P1 based on both the detection result of the measurement return light RML generated by irradiating the first portion P1 with the measurement light ML and the detection result of the measurement return light RML generated by irradiating the measurement light ML to at least one second portion P2.
  • the specified distance may be a variable that can be changed by a user of the processing system SYSb.
  • the user may change the specified distance based on the material of the workpiece W.
  • the user may change the specified distance based on the shape of the workpiece W.
  • the user may change the specified distance so that the specified distance becomes a distance desired by the user.
  • user instruction information regarding a user's instruction to change e.g., specify
  • the specified distance may be input to the processing system SYSb.
  • the specified distance may be a variable that can be changed by the control unit 2.
  • the control unit 2 may change the specified distance based on a specified distance change criterion without requiring a user's instruction.
  • control unit 2 may change the specified distance based on the material of the workpiece W. As another example, the control unit 2 may change the specified distance based on the shape of the workpiece W. If the specified distance is changeable, the control unit 2 may use the changed specified distance to specify at least one second portion P2 located within a specified distance from the first portion P1, and calculate the Z position of the first portion P1 based on both the detection result of the measurement return light RML generated by irradiating the measurement light ML onto the first portion P1 and the detection result of the measurement return light RML generated by irradiating the measurement light ML onto at least one second portion P2.
  • the control unit 2 may calculate the Z position of the first part P1 as an intermediate value based on the detection result of the measurement return light RML generated by irradiating the first part P1 with the measurement light ML, and may calculate the Z position of the second part P2 as an intermediate value based on the detection result of the measurement return light RML generated by irradiating the second part P2 with the measurement light ML. Thereafter, the control unit 2 may calculate the final value of the Z position of the first part P1 based on both the intermediate value of the Z position of the first part P1 and the intermediate value of the Z position of the second part P2.
  • control unit 2 may calculate the average value of the intermediate value of the Z position of the first part P1 and the intermediate value of the Z position of the second part P2 as the final value of the Z position of the first part P1.
  • control unit 2 may perform an averaging process to calculate the average value of the intermediate value of the Z position of the first part P1 and the intermediate value of the Z position of the second part P2 as the final value of the Z position of the first part P1.
  • the control unit 2 can more accurately calculate the Z position of the workpiece W based on the detection results of the measurement return light RML of the measurement light ML, compared to when the averaging process is not performed.
  • control unit 2 may calculate the position correction amount using the Z position of the target part calculated by the averaging process in step S108 of FIG. 8. Furthermore, the control unit 2 may add the position correction amount to the Z position of the workpiece W calculated by the averaging process in step S109 of FIG. 8.
  • control unit 2 when the Z position of the workpiece W is calculated by the averaging process in step S102 of FIG. 8, the control unit 2 does not need to correct the Z position of the workpiece W calculated by the averaging process based on the detection result of the processing return light REL. In other words, the control unit 2 may control the processing unit 1 to process the workpiece W using position information indicating the Z position of the workpiece W calculated by the averaging process. In this case, the processing system SYSb does not need to perform the operations from steps S103 to S109 of FIG. 8.
  • the machining system SYSc in the third embodiment differs from at least one of the machining systems SYSa in the first embodiment to SYSb in the second embodiment described above in that the method for calculating the Z position of the workpiece W based on the detection result of the measurement return light RML in step S102 of FIG. 8 is different.
  • Other features of the machining system SYSc may be the same as other features of at least one of the machining systems SYSa and SYSb.
  • the control unit 2 irradiates the workpiece W with the measurement light ML without changing the attitude of the workpiece W relative to the processing head 13 (particularly, the attitude of the workpiece W relative to the irradiation optical system 135).
  • the control unit 2 may irradiate the workpiece W with the measurement light ML while changing the attitude of the workpiece W relative to the processing head 13.
  • control unit 2 may irradiate the workpiece W with the measurement light ML while changing the attitude of the workpiece W relative to the processing head 13 by moving at least one of the processing head 13 and the stage 15 along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction.
  • control unit 2 may irradiate the workpiece W with the measurement light ML while changing the attitude of the workpiece W relative to the processing head 13 by rotating at least one of the processing head 13 and the stage 15 around at least one of the rotation axes along the X axis, the Y axis, and the Z axis.
  • the control unit 2 may control the head drive system 14 and the stage drive system 16 so that the attitude of the work W relative to the processing head 13 becomes a first attitude. Thereafter, the processing unit 1 may irradiate the measurement light ML to the work W in the first attitude. Specifically, the processing unit 1 may irradiate the measurement light ML to each of the multiple different parts of the work W in the first attitude. As a result, as shown in FIG. 14, the control unit 2 may calculate the Z position of the work W in the first attitude as the intermediate value of the Z position of the work W based on the detection result of the measurement return light RML.
  • control unit 2 may calculate the Z position of each of the multiple different parts of the work W in the first attitude as the intermediate value of the Z position of the work W based on the detection result of the measurement return light RML. Thereafter, as shown in FIG. 13, the control unit 2 may control the head drive system 14 and the stage drive system 16 so that the attitude of the work W relative to the processing head 13 becomes a second attitude different from the first attitude. 13 shows an example in which the stage drive system 16 moves the stage 15 so as to change the attitude of the workpiece W relative to the processing head 13, but the head drive system 14 may move the processing head 13 so as to change the attitude of the workpiece W relative to the processing head 13.
  • the processing unit 1 may irradiate the measurement light ML to the workpiece W in the second attitude. Specifically, the processing unit 1 may irradiate the measurement light ML to each of a plurality of different parts of the workpiece W in the second attitude.
  • the control unit 2 may calculate the Z position of the workpiece W in the second attitude as the intermediate value of the Z position of the workpiece W based on the detection result of the measurement return light RML. Specifically, the control unit 2 may calculate the Z position of each of a plurality of different parts of the workpiece W in the second attitude as the intermediate value of the Z position of the workpiece W based on the detection result of the measurement return light RML.
  • the machining system SYSc may repeat the same operation until the Z position of the workpiece W is calculated the required number of times. In other words, if the required number of times is N (where N is an integer equal to or greater than 2), the machining system SYSc may repeat the same operation until each of the Z positions of the workpiece W in the first posture to the Nth posture is calculated as the intermediate value of the Z position of the workpiece W.
  • Figures 13 and 14 show an example in which the machining system SYSc repeats the operation of changing the posture of the workpiece W relative to the machining head 13, the operation of irradiating the measurement light ML onto the workpiece W, and the operation of calculating the Z position of the workpiece W until the Z position of the workpiece W in the first posture, the Z position of the workpiece W in the second posture, and the Z position of the workpiece W in the third posture are calculated.
  • control unit 2 may calculate the final value of the Z position of the workpiece W based on the intermediate value of the Z position of the workpiece W in the first posture to the intermediate value of the Z position of the workpiece W in the Nth posture. As an example, as shown in FIG. 14, the control unit 2 may calculate the average value of the intermediate value of the Z position of the workpiece W in the first posture to the intermediate value of the Z position of the workpiece W in the Nth posture as the final value of the Z position of the workpiece W.
  • control unit 2 may perform an averaging process to calculate the average value of the intermediate value of the Z position of the workpiece W in the first posture to the intermediate value of the Z position of the workpiece W in the Nth posture as the final value of the Z position of the workpiece W.
  • control unit 2 may calculate the final Z position value of each of the multiple different parts of the workpiece W by repeating an averaging process for multiple different parts of the workpiece W to calculate the average value of the intermediate value of the Z position of one part of the workpiece W in the first posture, the intermediate value of the Z position of the same part of the workpiece W in the second posture, ..., the intermediate value of the Z position of the same part of the workpiece W in the Nth posture as the final Z position value of the one part of the workpiece W.
  • control unit 2 may perform tilt correction processing according to the attitude of the workpiece W relative to the machining head 13 on the intermediate value of the Z position of the workpiece W, and then perform averaging processing.
  • control unit 2 may perform tilt correction processing according to the amount of rotation of the workpiece W relative to the machining head 13 on the intermediate value of the Z position of the workpiece W, and then perform averaging processing.
  • control unit 2 may perform tilt correction processing according to the second attitude of the workpiece W, in which the intermediate value of the Z position of the workpiece W in the second attitude is rotated in a direction opposite to the direction of rotation of the workpiece W in the second attitude based on the workpiece W in the first attitude by the same amount of rotation as the amount of rotation of the workpiece W in the second attitude based on the workpiece W in the first attitude.
  • control unit 2 may perform a process of rotating the intermediate value of the Z position of the workpiece W in the third posture in a direction opposite to the direction of rotation of the workpiece W in the third posture based on the workpiece W in the first posture by the same amount of rotation as the amount of rotation of the workpiece W in the third posture based on the workpiece W in the first posture, as a tilt correction process according to the third posture of the workpiece W.
  • the variation of the measurement error included in the position information generated based on the detection result of the measurement return light RML of the measurement light ML can be averaged.
  • the posture of the work W with respect to the processing head 13 changes, the relationship between the extension direction of the recess CC (see FIG. 7A) present on the surface of the work W and the traveling direction of the measurement light ML may change. Therefore, when the posture of the work W with respect to the processing head 13 changes, the amount of penetration of the measurement light ML into the work W may change.
  • the control unit 2 performs the above-mentioned averaging process to generate position information including the measurement error obtained by averaging the measurement error that may change depending on the posture of the work W. In other words, the control unit 2 performs the above-mentioned averaging process to generate position information including a measurement error that is substantially uniform regardless of the posture of the work W.
  • the control unit 2 may calculate a position correction amount using the Z position of the target part calculated by the averaging process in step S108 of FIG. 8. Furthermore, the control unit 2 may add a position correction amount to the Z position of the workpiece W calculated by the averaging process in step S109 of FIG. 8. As a result, the machining system SYSc can appropriately calculate the Z position of the workpiece W even if the posture of the workpiece W changes.
  • control unit 2 when the Z position of the workpiece W is calculated by the averaging process in step S102 of FIG. 8, the control unit 2 does not need to correct the Z position of the workpiece W calculated by the averaging process based on the detection result of the processing return light REL. In other words, the control unit 2 may control the processing unit 1 to process the workpiece W using position information indicating the Z position of the workpiece W calculated by the averaging process. In this case, the processing system SYSc does not need to perform the operations from steps S103 to S109 of FIG. 8.
  • the machining system SYSd in the fourth embodiment differs from at least one of the machining systems SYSa in the first embodiment to SYSc in the third embodiment described above in that the method for calculating the position correction amount in step S108 in FIG. 8 is different.
  • Other features of the machining system SYSd may be the same as other features of at least one of the machining systems SYSa to SYSc.
  • control unit 2 calculates the position correction amount based on the Z position of the workpiece W calculated based on the detection results of the measurement return light RML and the Z position of the workpiece W calculated based on the detection results of the processing return light REL.
  • control unit 2 may calculate the position correction amount using the measurement error calculation model 4.
  • the measurement error calculation model 4 is a calculation model capable of outputting the measurement error contained in the position information generated based on the detection results of the measurement return light RML. Considering that a position correction amount is added to the position information to correct the measurement error contained in the position information (as a result, the measurement error is offset by the position correction amount), the measurement error output by the measurement error calculation model 4 can be used as a position correction amount. In this case, the measurement error calculation model may be referred to as a position correction amount calculation model.
  • the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when calculating the Z position of the workpiece W based on the detection result of the measurement return light RML for each type of workpiece W.
  • the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when calculating the Z position of the workpiece W of the type indicated by the information based on the detection result of the measurement return light RML.
  • the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when calculating the Z position of the first type of workpiece W based on the detection result of the measurement return light RML.
  • the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when calculating the Z position of the second type of workpiece W based on the detection result of the measurement return light RML.
  • the types of workpieces W may include types that can be distinguished by the material of the workpieces W.
  • the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when the Z position of the workpieces W is calculated based on the detection results of the measurement return light RML for each material of the workpieces W.
  • the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when the Z position of the workpieces W made of the first material is calculated based on the detection results of the measurement return light RML when information indicating that the material of the workpieces W is a first material is input.
  • the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when the Z position of the workpieces W made of the second material is calculated based on the detection results of the measurement return light RML when information indicating that the type of the workpieces W is a second material different from the first material is input.
  • the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when the Z position of the workpieces W made of aluminum is calculated based on the detection results of the measurement return light RML when information indicating that the material of the workpieces W is aluminum is input.
  • the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when the Z position of the anodized aluminum workpiece W is calculated based on the detection results of the measurement return light RML.
  • the control unit 2 may calculate the measurement error based on information about the type of workpiece W for which position information is to be generated and the measurement error calculation model 4.
  • the calculated measurement error corresponds to the difference between the actual Z position of the workpiece W (i.e., ideal position information) and the calculated value of the Z position of the workpiece W based on the measurement return light RML (i.e., actually generated position information). Therefore, the control unit 2 may use the calculated measurement error as a position correction amount.
  • the control unit 2 may use multiple measurement error calculation models 4 corresponding to multiple types of workpieces W, respectively.
  • Each measurement error calculation model 4 may be capable of outputting a measurement error that occurs when calculating the Z position of one type of workpiece W corresponding to each measurement error calculation model 4 based on the detection result of the measurement return light RML.
  • the control unit 2 may select one measurement error calculation model 4 corresponding to the type of workpiece W for which position information is to be generated from the multiple measurement error calculation models 4, and calculate the measurement error based on the selected one measurement error calculation model 4.
  • the control unit 2 may also use the calculated measurement error as a position correction amount.
  • the measurement error calculation model 4 used by the machining system SYSd may be generated by the model generation method shown in FIG. 16.
  • the model generation method for generating the measurement error calculation model 4 will be described with reference to FIG. 16.
  • FIG. 16 is a flowchart showing the flow of the model generation method for generating the measurement error calculation model 4.
  • the model generation method may be performed by the machining system SYSd.
  • the model generation method may be performed by a device different from the machining system SYSd.
  • the following describes an example in which the machining system SYSd performs the model generation method.
  • a sample workpiece SW is placed on the stage 15 of the machining system SYSd (step S200).
  • the sample workpiece SW is an object used to generate the measurement error calculation model 4.
  • an object of the same type as the type of workpiece W to be machined by the machining system SYSd through its machining operation may be used as the sample workpiece SW.
  • an object having the same material as the material of the workpiece W to be machined by the machining system SYSd through its machining operation may be used as the sample workpiece SW.
  • the workpiece W to be machined by the machining system SYSd through its machining operation itself may also be used as the sample workpiece SW.
  • step S201 the machining unit 1 irradiates the sample workpiece SW with the measurement light ML (step S201).
  • the operation of step S201 may be the same as the operation of step S101 in FIG. 8 described above, except that the sample workpiece SW is used instead of the workpiece W. For this reason, a detailed description of the operation of step S201 will be omitted.
  • the processing unit 1 may irradiate the measurement light ML to a sample area SA, which is a part of the surface of the sample work SW.
  • the processing unit 1 may irradiate the measurement light ML to each of multiple different parts in the sample area SA, which is a part of the surface of the sample work SW.
  • the sample area SA may be an area having a predetermined size on the surface of the sample work SW.
  • the sample area SA may be a rectangular area having a size of 0.2 mm x 0.2 mm.
  • the sample area SA may be an area of any shape that is the same as or smaller than the scanning area in which at least one of the galvanometer mirrors 1328 and 1341 can scan the measurement light ML.
  • step S202 the control unit 2 calculates the Z position of the sample work SW based on the detection result of the measurement return light RML generated from the sample work SW when the measurement light ML is irradiated onto the sample work SW.
  • the operation of step S202 may be the same as the operation of step S102 in FIG. 8 described above, except that the sample work SW is used instead of the work W. For this reason, a detailed description of the operation of step S202 will be omitted.
  • the processing unit 1 may calculate the Z position of the sample area SA, which is a part of the surface of the sample work SW.
  • the processing unit 1 may calculate the Z position of each of multiple different parts within the sample area SA, which is a part of the surface of the sample work SW.
  • control unit 2 acquires a reference value for the Z position of the sample work SW (step S203). In particular, the control unit 2 acquires a reference value for the Z position of the sample area SA of the sample work SW.
  • the reference value for the Z position of the sample work SW is the Z position of the sample work SW obtained (e.g., measured or calculated) using a method different from the method for calculating the Z position of the sample work SW based on the detection results of the measurement return light RML.
  • the Z position of the sample work SW measured using an optical microscope may be used as the reference value for the Z position of the sample work SW.
  • the Z position of the sample work SW measured using an electron microscope may be used as the reference value for the Z position of the sample work SW.
  • the Z position of the sample work SW measured using a probe that contacts the sample work SW may be used as the reference value for the Z position of the sample work SW.
  • control unit 2 generates information regarding the relationship between the Z position of the sample work SW calculated in step S202 and the reference value of the Z position of the sample work SW acquired in step S203 (step S204).
  • the control unit 2 generates the difference (i.e., measurement error) between the Z position of the sample work SW calculated in step S202 and the reference value of the Z position of the sample work SW acquired in step S203 as information regarding the relationship between the Z position of the sample work SW calculated in step S202 and the reference value of the Z position of the sample work SW acquired in step S203.
  • the control unit 2 may associate the measurement error calculated in step S204 with information about the type of sample work SW and store it in the storage device 22.
  • the control unit 2 may store in the storage device 22 sample measurement information in which the measurement error calculated in step S204 is associated with information about the type of sample work SW.
  • step S205 determines whether or not to perform the operations from step S200 to step S204 using a different type of sample work SW. If the result of the determination in step S204 is that the operations from step S200 to step S204 are to be performed using a different type of sample work SW (step S205: Yes), the operations from step S201 to step S204 are performed after a new sample work SW of the different type is placed on the stage 15 (step S200). As a result, multiple pieces of sample measurement information are acquired in which the measurement error calculated in step S204 is associated with information on the type of sample work SW.
  • step S204 determines whether the operations from step S200 to step S204 are not performed using another type of sample work SW.
  • the control unit 2 uses the sample measurement information stored in the storage device 22 to generate a measurement error calculation model 4 (step S206).
  • a model capable of outputting the measurement error occurring in the sample work SW for each type of sample work SW may be generated as a measurement error calculation model 4 capable of outputting the measurement error occurring when calculating the Z position of the work W based on the detection result of the measurement return light RML for each type of work W.
  • a plurality of models capable of outputting a plurality of measurement errors corresponding to each type of sample work SW may be generated as a plurality of measurement error calculation models 4 corresponding to each type of work W.
  • the control unit 2 may generate the measurement error calculation model 4 using a so-called machine learning technique.
  • the machining system SYSd in the fourth embodiment can calculate the position correction amount using the measurement error calculation model 4. Therefore, the machining system SYSd does not need to perform the operation of calculating the Z position of the workpiece W based on the detection result of the processing return light REL. Specifically, the machining system SYSd does not need to perform the operations from step S103 to step S107 in FIG. 8. Therefore, the machining system SYSd can calculate the position correction amount relatively easily while shortening the time required to calculate the position correction amount.
  • the machining system SYSe in the fifth embodiment differs from at least one of the machining systems SYSa in the first embodiment to SYSd in the fourth embodiment in that it includes a machining unit 1e instead of the machining unit 1.
  • Other features of the machining system SYSe may be the same as other features of at least one of the machining systems SYSa to SYSd.
  • the machining unit 1e differs from the machining unit 1 in that it includes a machining head 13e instead of the machining head 13.
  • Other features of the machining unit 1e may be the same as other features of the machining unit 1. For this reason, the configuration of the machining head 13e in the fifth embodiment will be described below with reference to FIG. 17.
  • FIG. 17 is a cross-sectional view showing the configuration of the machining head 13e in the fifth embodiment.
  • the processing head 13e differs from the processing head 13 in that it has a processing optical system 131e instead of the processing optical system 131.
  • Other features of the processing head 13e may be the same as other features of the processing head 13.
  • the processing optical system 131e differs from the processing optical system 131 in that it has a toric lens 1316e instead of the condenser lens 1316. Other features of the processing optical system 131e may be the same as other features of the processing optical system 131.
  • the processing system SYSe may measure the position of the workpiece W by measuring the focal position CP of the processing light EL using the astigmatism method instead of the confocal method.
  • the processing system SYSe of the fifth embodiment can enjoy the same effects as those that can be enjoyed by at least one of the processing systems SYSa of the first embodiment to SYSd of the fourth embodiment described above.
  • the processing optical system 131e may be equipped with an optical system including a cylindrical lens and a normal lens instead of the toric lens 1316e. Even in this case, the processing system SYSe can measure the position of the workpiece W by measuring the focusing position CP of the processing light EL using the astigmatism method instead of the confocal method.
  • At least one of the processing systems SYSa in the first embodiment to the processing systems SYSe in the fifth embodiment generates position information indicating the Z position of the workpiece W based on both the detection results of the measurement return light RML and the detection results of the processing return light REL.
  • at least one of the processing systems SYSa to SYSe generates third position information indicating the Z position of the workpiece W with higher accuracy than the first position information based on both the first position information (first distance measurement result) generated based on the detection results of the measurement return light RML and the second position information (second distance measurement result) generated based on the detection results of the processing return light REL.
  • the processing system SYSf in the sixth embodiment may generate third position information indicating the Z position of the workpiece W with higher accuracy than the first position information based on both the first position information generated based on the detection result of the measurement return light RML and any second position information generated using any method other than the method for generating the first position information.
  • the processing system SYSa may generate third position information indicating the Z position of the workpiece W with higher accuracy than the first position information based on both the first position information generated using the measurement optical system 132 and any second position information generated using a measurement device that measures the position of the workpiece W using a method other than the method using the measurement optical system 132.
  • the second position information generated based on the detection result of the processing return light REL described above is an example of any second position information generated using any method other than the method for generating the first position information based on the detection result of the measurement return light RML.
  • the processing system SYSf may include a processing head 13 (particularly, a measurement optical system 132) capable of functioning as a first measurement device used to generate first position information, as well as a second measurement device 5f used to generate second position information using a method different from that of the first measurement device.
  • a processing head 13 particularly, a measurement optical system 132 capable of functioning as a first measurement device used to generate first position information
  • a second measurement device 5f used to generate second position information using a method different from that of the first measurement device.
  • An example of the second measuring device 5f is a measuring device including an oblique incidence autofocus sensor described in U.S. Pat. No. 5,502,311.
  • Another example of the second measuring device 5f is a measuring device including a fluid gauge sensor described in at least one of U.S. Pat. No. 4,953,388 and Japanese Patent Application Laid-Open No. 4-043210.
  • the processing system SYS generates position information indicating the position of the workpiece W based on both the detection result of the measurement return light RML generated from the measurement object M by irradiating the measurement light ML on the measurement object M and the detection result of the processing return light REL generated from the workpiece W by irradiating the workpiece W with the processing light EL.
  • the processing system SYS may process the workpiece W based on the detection result of the measurement return light RML and the detection result of the processing return light REL without generating position information.
  • the control unit 2 may control the processing unit 1 to process the workpiece W based on the detection result of the measurement return light RML and the detection result of the processing return light REL without generating position information.
  • control unit 2 may generate processing path information indicating the movement path of the irradiation area PA on which the processing light EL is irradiated to process the workpiece W based on the detection result of the measurement return light RML and the detection result of the processing return light REL without generating position information, and control the processing unit 1 to process the workpiece W based on the generated processing path information.
  • the machining unit 1 is provided with a head drive system 14. However, the machining unit 1 does not have to be provided with a head drive system 14. In other words, the machining head 13 does not have to be movable. Also, in the above description, the machining unit 1 is provided with a stage drive system 16. However, the machining unit 1 does not have to be provided with a stage drive system 16. In other words, the stage 15 does not have to be movable.
  • the processing system SYS includes one processing unit 1.
  • the processing system SYS may include multiple processing units 1.
  • the processing system SYS may include multiple control units 2 that respectively control the multiple processing units 1.
  • the processing system SYS may include a first processing unit 1, a second processing unit 1, a first control unit 2 that controls the first processing unit 1, and a second control unit 2 that controls the second processing unit 1.
  • the processing system SYS may include a control unit 2 that controls at least two of the multiple processing units 1.
  • the processing system SYS may include a first processing unit 1, a second processing unit 1, and one control unit 2 that controls the first processing unit 1 and the second processing unit 1.
  • the processing system SYS processes the workpiece W by irradiating the workpiece W with processing light EL.
  • the processing system SYS processes the workpiece W by irradiating the workpiece W with an energy beam in the form of light.
  • the processing system SYS may irradiate the workpiece W with any energy beam other than light to process the workpiece W.
  • An example of the arbitrary energy beam is at least one of a charged particle beam and an electromagnetic wave.
  • An example of the charged particle beam is at least one of an electron beam and an ion beam.
  • the processing system SYS processes the workpiece W by irradiating the workpiece W with measurement light ML.
  • the processing system SYS may irradiate the workpiece W with any energy beam other than light to measure the workpiece W.
  • Measuring the position of the sample object comprises: measuring a position of a first sample object based on a detection result of a first sample return beam generated from a first sample object by irradiating the measurement beam onto the first sample object; measuring a position of the first sample object based on a detection result of a second sample return beam generated from a second sample object by irradiating the measurement beam onto the second sample object, the second sample object being a sample object of a different type from the first sample object; generating the sample related information generating, as the sample relationship information, first sample relationship information relating to a relationship between a position of the first sample object calculated based on a detection result of the first sample return beam and a reference value of the position of the first sample object obtained using a method other than measuring the position of the first sample object; generating, as the sample relationship information, second sample relationship information relating to a relationship between a position of the second sample object calculated based on a detection result of the second sample return beam and a reference value of the
  • the model generation method of claim 1, wherein generating the computational model includes generating the computational model based on the generated first and second sample relationship information and information regarding types of the first and second sample works.
  • the sample-related information includes information regarding a difference between a position of the sample object calculated based on a detection result of the sample return beam and a reference value of a position of the sample object;
  • the target relation information includes information regarding a difference between a position of the target object calculated based on a detection result of the target return beam and a reference value of the position of the target object.
  • the processing system includes: a processing device that processes the target object by irradiating the target object with a processing beam; A control device for controlling the processing device, The processing device includes: an irradiation optical system capable of irradiating the processing beam and the measurement beam onto the target object; a detector for detecting the object return beam emitted from the object irradiated with the measurement beam, The control device includes: obtaining the target relationship information based on the computational model and information regarding the type of the target object; Calculating a position of the target object based on the detection of the target return beam; The processing system according to claim 5, further comprising: correcting the calculated position of the target object based on the acquired target relation information.
  • the control device controls the processing device to process the object based on the corrected position of the target object.
  • the target relation information includes information regarding a difference between a position of the target object calculated based on a detection result of the target return beam and a correct value of the position of the target object; The processing system described in Appendix 6 or 7, wherein the control device corrects the position of the target object calculated based on the detection result of the target return beam by adding the difference to the position of the target object calculated based on the detection result of the target return beam.
  • a processing device that processes a target object by irradiating the target object with a processing beam;
  • a control device for controlling the processing device includes: an irradiation optical system capable of irradiating the target object with the processing beam and a measurement beam for measuring the target object; a detector for detecting a return beam generated from the object irradiated with the measurement beam,
  • the control device includes: Calculating a position of a first portion of the target object and a position of a second portion of the target object having a predetermined positional relationship with the first portion based on a detection result of the return beam; performing an averaging process to calculate an average value of the position of the first portion and the position of the second portion as the position of the first portion; and controlling the processing device so as to process the target object based on the position of the first portion calculated by the averaging process.
  • the control device includes: Calculating a position of a first portion of the target object and positions of a plurality of second portions of the target object having a predetermined positional relationship with the first portion based on a detection result of the return beam; The machining system according to claim 9 or 10, wherein the averaging process is performed to calculate an average value of the position of the first portion and the positions of the plurality of second portions as the position of the first portion.
  • the processing apparatus When the detector is a first detector and the return beam is a first return beam, the processing apparatus further includes a second detector that detects a second return beam emitted from the target object irradiated with the processing beam, The control device includes: performing a first correction process to correct the position of the first portion calculated by the averaging process based on a detection result of the second return beam; The processing system according to any one of appendixes 9 to 11, further comprising: controlling the processing device to process the target object based on a result of the position of the first portion corrected by the first correction process.
  • the control device includes: performing a second correction process to correct the position of the first portion calculated by the averaging process, using the computation model generated by the model generation method according to any one of Supplementary Notes 1 to 8;
  • the processing system according to any one of appendixes 9 to 12, further comprising: controlling the processing device to process the target object based on a result of the position of the first portion corrected by the second correction process.
  • the second correction process includes a process of acquiring the target relation information based on the computational model and information related to the type of the target object; and correcting the position of the first portion calculated by the averaging process based on the acquired object relation information.
  • the processing apparatus irradiates the measurement beam onto the target object having a first posture relative to the irradiation optical system, and irradiates the measurement beam onto the target object having a second posture relative to the irradiation optical system different from the first posture;
  • the control device calculates, based on a detection result of the return beam, a first position that is a position of the target object in the first attitude and a second position that is a position of the target object in the second attitude;
  • the processing system according to any one of appendixes 9 to 15, wherein the averaging process is a process of calculating an average value of the first position and the second position as the position of the target object.
  • a processing method for processing a target object using a processing device that irradiates the target object with a processing beam comprising: irradiating the target object with the processing beam and a measurement beam for measuring the target object; detecting a first return beam generated from the target object by irradiating the target object with the measurement beam; detecting a second return beam generated from the target object by irradiating the target object with the processing beam; the control device generates position information regarding a position of the target object based on a detection result of the first return beam and a detection result of the second return beam; and controlling the processing device to process the target object based on the position information.
  • a processing method for processing a target object using a processing device that irradiates the target object with a processing beam comprising: irradiating the target object with the processing beam and a measurement beam for measuring the target object; detecting a return beam originating from the object illuminated by the measurement beam; Calculating a position of a first portion of the target object and a position of a second portion of the target object having a predetermined positional relationship with the first portion based on a detection result of the return beam; and performing an averaging process to calculate an average value of the positions of the first portion and the second portion as the position of the first portion. and controlling the processing device to process the target object based on the position of the first portion calculated by the averaging process.
  • a processing method for processing a target object using a processing device that irradiates the target object with a processing beam comprising: Irradiating the processing beam onto the target object using an irradiation optical system included in a processing apparatus; irradiating the measurement beam onto the target object, the target object having a first posture relative to the irradiation optical system, using the irradiation optical system; irradiating the measurement beam onto the target object, the target object having a second orientation relative to the irradiation optical system that is different from the first orientation, using the irradiation optical system; detecting a return beam emitted from the target object irradiated with the measurement beam; and calculating a first position that is a position of the target object in the first orientation and a second position that is a position of the target object in the second orientation based on a detection result of the return beam.
  • a processing method for processing a target object using a processing device that irradiates the target object with a processing beam comprising: irradiating the target object with the processing beam and a measurement beam for measuring the target object; detecting a first return beam generated from the target object by irradiating the target object with the measurement beam;
  • a processing method comprising: detecting a second return beam generated from the target object when the processing beam is irradiated onto the target object; and generating position information regarding the position of the target object based on the detection result of the first return beam and the detection result of the second return beam.
  • a processing method for processing a target object using a processing device that irradiates the target object with a processing beam comprising: obtaining a first distance measurement result of the target object based on a return beam generated from the target object by irradiating the target object with a measurement beam for measuring the target object;
  • a processing method comprising: obtaining a second distance measurement result of the target object using a method different from a method for obtaining the first distance measurement result; and generating position information regarding a position of the target object based on the first distance measurement result and the second distance measurement result.
  • a processing method for processing a target object using a processing device that irradiates the target object with a processing beam comprising: irradiating the target object with the processing beam and a measurement beam for measuring the target object; detecting a first return beam generated from the target object by irradiating the target object with the measurement beam;
  • a processing method comprising: detecting a second return beam generated from the target object when the processing beam is irradiated onto the target object; and controlling the irradiation position of the processing beam in processing the target object based on the detection result of the first return beam and the detection result of the second return beam.
  • a processing method for processing a target object using a processing device that irradiates the target object with a processing beam comprising: obtaining a first distance measurement result of the target object based on a return beam generated from the target object by irradiating the target object with a measurement beam for measuring the target object; obtaining a second distance measurement of the target object using a technique different from the technique for obtaining the first distance measurement; and controlling an irradiation position of the processing beam in processing the target object based on the first distance measurement result and the second distance measurement result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

This processing system comprises a processing device that processes a target object by irradiating the target object with a processing beam, and a control device that controls the processing device. The processing device comprises: an irradiation optical system that is able to irradiate the target object with the processing beam and a measurement beam, a first detector that detects a first return beam of the measurement beam, and a second detector that detects a second return beam of the processing beam. The control device generates position information pertaining to the position of the target object on the basis of the detection result of the first return beam and the detection result of the second return beam, and controls the processing device so as to process the target object on the basis of the position information.

Description

加工システムProcessing System
 本発明は、例えば、物体を加工可能な加工システムの技術分野に関する。 The present invention relates to the technical field of processing systems capable of processing objects, for example.
 特許文献1には、レーザ光を物体に照射することで物体を加工する加工システムが記載されている。この種の加工システムでは、物体を適切に加工することが要求されている。 Patent Document 1 describes a processing system that processes an object by irradiating the object with laser light. This type of processing system is required to process the object appropriately.
米国特許出願公開第2002/0017509号明細書US Patent Application Publication No. 2002/0017509
 第1の態様によれば、加工ビームを対象物体に照射することで前記対象物体を加工する加工装置と、前記加工装置を制御する制御装置とを備え、前記加工装置は、前記加工ビームと、前記対象物体を計測するための計測ビームとを前記対象物体に照射可能な照射光学系と、前記対象物体に前記計測ビームが照射されることによって前記対象物体から生じる第1戻りビームを検出する第1検出器と、前記対象物体に前記加工ビームが照射されることによって前記対象物体から生じる第2戻りビームを検出する第2検出器とを備え、前記制御装置は、前記第1戻りビームの検出結果と、前記第2戻りビームの検出結果とに基づいて、前記対象物体の位置に関する位置情報を生成し、前記位置情報に基づいて、前記対象物体を加工するように前記加工装置を制御する加工システムが提供される。 According to a first aspect, there is provided a processing system comprising a processing device that processes a target object by irradiating the target object with a processing beam, and a control device that controls the processing device, the processing device comprising an irradiation optical system capable of irradiating the target object with the processing beam and a measurement beam for measuring the target object, a first detector that detects a first return beam generated from the target object as the measurement beam is irradiated onto the target object, and a second detector that detects a second return beam generated from the target object as the processing beam is irradiated onto the target object, the control device generating position information regarding the position of the target object based on the detection result of the first return beam and the detection result of the second return beam, and controlling the processing device to process the target object based on the position information.
 第2の態様によれば、加工ビームを対象物体に照射することで前記対象物体を加工する加工装置と、前記加工装置を制御する制御装置とを備え、前記加工装置は、前記加工ビームと、前記対象物体を計測するための計測ビームとを前記対象物体に照射可能な照射光学系と、前記計測ビームが照射された前記対象物体から生じる戻りビームを検出する検出器とを備え、前記制御装置は、前記戻りビームの検出結果に基づいて、前記対象物体の第1部分の位置と、前記第1部分と所定の位置関係を有する前記対象物体の第2部分の位置とを算出し、前記第1部分の位置と前記第2部分の位置との平均値を、前記第1部分の位置として算出する平均化処理を行い、前記平均化処理によって算出された前記第1部分の位置に基づいて、前記対象物体を加工するように前記加工装置を制御する加工システムが提供される。 According to a second aspect, there is provided a processing system that includes a processing device that processes a target object by irradiating the target object with a processing beam, and a control device that controls the processing device, the processing device includes an irradiation optical system that can irradiate the target object with the processing beam and a measurement beam for measuring the target object, and a detector that detects a return beam generated from the target object irradiated with the measurement beam, and the control device calculates a position of a first part of the target object and a position of a second part of the target object having a predetermined positional relationship with the first part based on the detection result of the return beam, performs an averaging process to calculate an average value of the positions of the first part and the second part as the position of the first part, and controls the processing device to process the target object based on the position of the first part calculated by the averaging process.
 第3の態様によれば、加工ビームを対象物体に照射することで前記対象物体を加工する加工装置と、前記加工装置を制御する制御装置とを備え、前記加工装置は、前記加工ビームと、前記対象物体を計測するための計測ビームとを前記対象物体に照射可能な照射光学系と、前記計測ビームが照射された前記対象物体から射出される戻りビームを検出する検出器とを備え、前記加工装置は、前記照射光学系に対する相対的な姿勢が第1姿勢となっている前記対象物体に前記計測ビームを照射し、且つ、前記照射光学系に対する相対的な姿勢が前記第1姿勢とは異なる第2姿勢となっている前記対象物体に前記計測ビームを照射し、前記制御装置は、前記戻りビームの検出結果に基づいて、前記第1姿勢となっている前記対象物体の位置である第1位置と、前記第2姿勢となっている前記対象物体の位置である第2位置とを算出し、前記第1位置と前記第2位置との平均値を、前記対象物体の位置として算出する平均化処理を行い、前記平均化処理によって算出された前記対象物体の位置に基づいて、前記対象物体を加工するように前記加工装置を制御する加工システムが提供される。 According to a third aspect, there is provided a processing system that includes a processing device that processes a target object by irradiating the target object with a processing beam, and a control device that controls the processing device, the processing device includes an irradiation optical system that can irradiate the target object with the processing beam and a measurement beam for measuring the target object, and a detector that detects a return beam emitted from the target object irradiated with the measurement beam, the processing device irradiates the measurement beam to the target object having a first relative attitude with respect to the irradiation optical system, and irradiates the measurement beam to the target object having a second relative attitude with respect to the irradiation optical system that is different from the first attitude, the control device calculates a first position that is the position of the target object in the first attitude and a second position that is the position of the target object in the second attitude based on the detection result of the return beam, performs an averaging process to calculate an average value of the first position and the second position as the position of the target object, and controls the processing device to process the target object based on the position of the target object calculated by the averaging process.
 第4の態様によれば、加工ビームを対象物体に照射することで前記対象物体を加工する加工装置と、前記加工装置を制御する制御装置とを備え、前記加工装置は、前記加工ビームと、前記対象物体を計測するための計測ビームとを前記対象物体に照射可能な照射光学系と、前記対象物体に前記計測ビームが照射されることによって前記対象物体から生じる第1戻りビームを検出する第1検出器と、前記対象物体に前記加工ビームが照射されることによって前記対象物体から生じる第2戻りビームを検出する第2検出器とを備え、前記制御装置は、前記第1戻りビームの検出結果と、前記第2戻りビームの検出結果とに基づいて、前記対象物体の位置に関する位置情報を生成する加工システムが提供される。 According to a fourth aspect, there is provided a processing system that includes a processing device that processes a target object by irradiating the target object with a processing beam, and a control device that controls the processing device, the processing device includes an irradiation optical system that can irradiate the target object with the processing beam and a measurement beam for measuring the target object, a first detector that detects a first return beam generated from the target object when the measurement beam is irradiated onto the target object, and a second detector that detects a second return beam generated from the target object when the processing beam is irradiated onto the target object, and the control device generates position information regarding the position of the target object based on the detection result of the first return beam and the detection result of the second return beam.
 第5の態様によれば、加工ビームを対象物体に照射することで前記対象物体を加工する加工装置と、前記加工装置を制御する制御装置とを備え、前記加工装置は、前記対象物体を計測するための計測ビームを前記対象物体に照射することによって前記対象物体から生じる戻りビームに基づいて、前記対象物体の第1距離計測結果を得る第1計測装置と、前記第1計測装置とは異なる手法を用いて前記対象物体の第1距離計測結果を得る第2計測装置とを備え、前記制御装置は、前記第1距離計測結果と、前記第2距離計測結果とに基づいて、前記対象物体の位置に関する位置情報を生成する加工システムが提供される。 According to a fifth aspect, there is provided a processing system comprising a processing device that processes a target object by irradiating the target object with a processing beam, and a control device that controls the processing device, the processing device comprising a first measurement device that obtains a first distance measurement result of the target object based on a return beam generated from the target object by irradiating the target object with a measurement beam for measuring the target object, and a second measurement device that obtains the first distance measurement result of the target object using a method different from that of the first measurement device, and the control device that generates position information regarding the position of the target object based on the first distance measurement result and the second distance measurement result.
 第6の態様によれば、加工ビームを対象物体に照射することで前記対象物体を加工する加工装置と、前記加工装置を制御する制御装置とを備え、前記加工装置は、前記加工ビームと、前記対象物体を計測するための計測ビームとを前記対象物体に照射可能な照射光学系と、前記対象物体に前記計測ビームが照射されることによって前記対象物体から生じる第1戻りビームを検出する第1検出器と、前記対象物体に前記加工ビームが照射されることによって前記対象物体から生じる第2戻りビームを検出する第2検出器とを備え、前記制御装置は、前記第1戻りビームの検出結果と、前記第2戻りビームの検出結果とに基づいて、前記対象物体の加工における前記加工ビームの照射位置を制御する加工システムが提供される。 According to a sixth aspect, there is provided a processing system comprising a processing device that processes a target object by irradiating the target object with a processing beam, and a control device that controls the processing device, the processing device comprising an irradiation optical system capable of irradiating the target object with the processing beam and a measurement beam for measuring the target object, a first detector that detects a first return beam generated from the target object as the measurement beam is irradiated onto the target object, and a second detector that detects a second return beam generated from the target object as the processing beam is irradiated onto the target object, and the control device controls the irradiation position of the processing beam in processing the target object based on the detection result of the first return beam and the detection result of the second return beam.
 第7の態様によれば、加工ビームを対象物体に照射することで前記対象物体を加工する加工装置と、前記加工装置を制御する制御装置とを備え、前記加工装置は、前記対象物体を計測するための計測ビームを前記対象物体に照射することによって前記対象物体から生じる戻りビームに基づいて、前記対象物体の第1距離計測結果を得る第1計測装置と、前記第1計測装置とは異なる手法を用いて前記対象物体の第2距離計測結果を得る第2計測装置とを備え、前記制御装置は、前記第1距離計測結果と、前記第2距離計測結果とに基づいて、前記対象物体の加工における前記加工ビームの照射位置を制御する加工システムが提供される。 According to the seventh aspect, a processing system is provided that includes a processing device that processes a target object by irradiating the target object with a processing beam, and a control device that controls the processing device, the processing device includes a first measurement device that obtains a first distance measurement result of the target object based on a return beam generated from the target object by irradiating the target object with a measurement beam for measuring the target object, and a second measurement device that obtains a second distance measurement result of the target object using a method different from that of the first measurement device, and the control device controls the irradiation position of the processing beam in processing the target object based on the first distance measurement result and the second distance measurement result.
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The operation and other advantages of the present invention will become apparent from the following detailed description of the embodiment.
図1は、第1実施形態における加工システムの構成の一例を模式的に示す断面である。FIG. 1 is a cross-sectional view illustrating a schematic example of a configuration of a processing system according to a first embodiment. 図2は、第1実施形態における加工システムの構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of the configuration of the machining system according to the first embodiment. 図3は、第1実施形態における加工ヘッドの構成を示す断面図である。FIG. 3 is a cross-sectional view showing the configuration of the machining head in the first embodiment. 図4は、加工光の集光位置と、検出器が検出した加工光の光量との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the focusing position of the processing light and the amount of the processing light detected by the detector. 図5は、検出器に入射する計測光と、検出器が検出した干渉光とを示すタイミングチャートである。FIG. 5 is a timing chart showing the measurement light incident on the detector and the interference light detected by the detector. 図6は、計測戻り光の検出結果に基づいて生成されるべき理想的な位置情報と、計測戻り光の検出結果に基づいて実際に生成された位置情報の一例とを示すグラフである。FIG. 6 is a graph showing an example of ideal position information that should be generated based on the detection result of the measurement return light, and an example of position information actually generated based on the detection result of the measurement return light. 図7(a)は、Z位置を計測するべき表面に微小な凹部が存在するワークを示す断面図であり、図7(b)は、計測戻り光の検出結果に基づいて実際に生成された位置情報の一例を示すグラフである。Figure 7(a) is a cross-sectional view showing a workpiece having a tiny recess on its surface where the Z position is to be measured, and Figure 7(b) is a graph showing an example of position information actually generated based on the detection results of the measurement return light. 図8は、計測戻り光の検出結果と加工戻り光の検出結果との双方に基づいて位置情報を生成する動作の流れを示すフローチャートである。FIG. 8 is a flowchart showing the flow of an operation for generating position information based on both the detection results of the measurement return light and the detection results of the processing return light. 図9は、計測戻り光の検出結果に基づいて算出されたワークの対象部分のZ位置と、加工戻り光の検出結果に基づいて算出されたワークの対象部分のZ位置とを示すグラフである。FIG. 9 is a graph showing the Z position of the target portion of the workpiece calculated based on the detection results of the measurement return light, and the Z position of the target portion of the workpiece calculated based on the detection results of the processing return light. 図10は、位置補正量を用いて補正されたワークのZ位置を示すグラフである。FIG. 10 is a graph showing the Z position of the workpiece corrected using the position correction amount. 図11(a)及び図11(b)のそれぞれは、ワークの第1部分と所定の位置関係を有するワークの少なくとも一つの第2部分を示す平面図である。Each of FIG. 11(a) and FIG. 11(b) is a plan view showing at least one second portion of a workpiece having a predetermined positional relationship with a first portion of the workpiece. 図12は、計測戻り光の検出結果に基づいて算出されるワークのZ位置の中間値と、平均化処理によって算出されるワークのZ位置の最終値とを示すグラフである。FIG. 12 is a graph showing the intermediate value of the Z position of the workpiece calculated based on the detection results of the measurement return light, and the final value of the Z position of the workpiece calculated by averaging processing. 図13は、加工ヘッドに対するワークの姿勢を変更しながらワークに計測光を照射する動作を示す断面図である。FIG. 13 is a cross-sectional view showing an operation of irradiating the workpiece with the measurement light while changing the attitude of the workpiece with respect to the machining head. 図14は、計測戻り光の検出結果に基づいて算出されるワークのZ位置の中間値と、平均化処理によって算出されるワークのZ位置の最終値とを示すグラフである。FIG. 14 is a graph showing the intermediate value of the Z position of the workpiece calculated based on the detection results of the measurement return light, and the final value of the Z position of the workpiece calculated by averaging processing. 図15(a)及び図15(b)のそれぞれは、計測誤差算出モデルを模式的に示す。15A and 15B each show a schematic diagram of a measurement error calculation model. 図16は、計測誤差算出モデルを生成するためのモデル生成方法の流れを示すフローチャートである。FIG. 16 is a flowchart showing the flow of a model generating method for generating a measurement error calculation model. 図17は、第5実施形態における加工ヘッドの構成を示す断面図である。FIG. 17 is a cross-sectional view showing the configuration of a machining head in the fifth embodiment. 図1は、第6実施形態における加工システムの構成の一例を模式的に示す断面である。FIG. 1 is a cross-sectional view illustrating a schematic example of a configuration of a processing system according to the sixth embodiment.
 以下、図面を参照しながら、加工システムの実施形態について説明する。以下では、物体の一例であるワークWを加工可能な加工システムSYSを用いて、加工システムの実施形態を説明する。但し、本発明が以下に説明する実施形態に限定されることはない。 Below, an embodiment of a processing system will be described with reference to the drawings. Below, an embodiment of a processing system will be described using a processing system SYS capable of processing a workpiece W, which is an example of an object. However, the present invention is not limited to the embodiment described below.
 また、以下の説明では、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系を用いて、加工システムSYSを構成する各種構成要素の位置関係について説明する。尚、以下の説明では、説明の便宜上、X軸方向及びY軸方向のそれぞれが水平方向(つまり、水平面内の所定方向)であり、Z軸方向が鉛直方向(つまり、水平面に直交する方向であり、実質的には上下方向)であるものとする。また、X軸、Y軸及びZ軸周りの回転方向(言い換えれば、傾斜方向)を、それぞれ、θX方向、θY方向及びθZ方向と称する。ここで、Z軸方向を重力方向としてもよい。また、XY平面を水平方向としてもよい。 Furthermore, in the following explanation, the positional relationships of the various components that make up the machining system SYS will be explained using an XYZ Cartesian coordinate system defined by mutually orthogonal X-axis, Y-axis, and Z-axis. For the sake of convenience, in the following explanation, it is assumed that the X-axis direction and the Y-axis direction are horizontal (i.e., a specific direction within a horizontal plane), and the Z-axis direction is vertical (i.e., a direction perpendicular to the horizontal plane, essentially an up-down direction). Furthermore, the rotation directions (in other words, tilt directions) around the X-axis, Y-axis, and Z-axis are referred to as the θX direction, θY direction, and θZ direction, respectively. Here, the Z-axis direction may be the direction of gravity. Furthermore, the XY plane may be horizontal.
 (1)第1実施形態の加工システムSYS
 (1-1)第1実施形態の加工システムSYSの構成
 初めに、第1実施形態における加工システムSYSについて説明する。尚、以下の説明では、第1実施形態における加工システムSYSを、“加工システムSYSa”と称する。
(1) Machining system SYS of the first embodiment
(1-1) Configuration of the Machining System SYS of the First Embodiment First, a description will be given of the machining system SYS of the first embodiment. In the following description, the machining system SYS of the first embodiment will be referred to as a "machining system SYSa."
 (1-1-1)加工システムSYSaの全体構成
 初めに、図1及び図2を参照しながら、第1実施形態における加工システムSYSaの構成について説明する。図1は、第1実施形態における加工システムSYSaの構成の一例を模式的に示す断面図である。図2は、第1実施形態における加工システムSYSaの構成の一例を示すブロック図である。
(1-1-1) Overall Configuration of Machining System SYSa First, the configuration of the machining system SYSa in the first embodiment will be described with reference to Fig. 1 and Fig. 2. Fig. 1 is a cross-sectional view showing a schematic example of the configuration of the machining system SYSa in the first embodiment. Fig. 2 is a block diagram showing an example of the configuration of the machining system SYSa in the first embodiment.
 図1及び図2に示すように、加工システムSYSは、加工ユニット1と、制御ユニット2とを備えている。尚、加工ユニット1は、加工装置と称されてもよいし、制御ユニット2は、制御装置と称されてもよい。加工ユニット1の少なくとも一部は、筐体3の内部空間SP1に収容されていてもよい。筐体3の内部空間SP1は、パージガス(つまり、気体)でパージされていてもよいし、パージガスでパージされていなくてもよい。パージガスは、例えば、不活性ガス及びCDA(Clean Dry Air)の少なくとも一方を含んでいてもよい。不活性ガスは、例えば、窒素ガス及びアルゴンガス等の少なくとも一つを含んでいてもよい。筐体3の内部空間SP1は、真空引きされてもよいし、真空引きされていなくてもよい。但し、加工ユニット1は、筐体3の内部空間SP1に収容されていなくてもよい。加工ユニット1の一部のみを囲う局所空間が、パージガスでパージされていてもよいし、真空引きされていてもよい。 1 and 2, the processing system SYS includes a processing unit 1 and a control unit 2. The processing unit 1 may be referred to as a processing device, and the control unit 2 may be referred to as a control device. At least a part of the processing unit 1 may be accommodated in the internal space SP1 of the housing 3. The internal space SP1 of the housing 3 may be purged with a purge gas (i.e., gas), or may not be purged with a purge gas. The purge gas may include, for example, at least one of an inert gas and CDA (Clean Dry Air). The inert gas may include, for example, at least one of nitrogen gas and argon gas. The internal space SP1 of the housing 3 may be evacuated, or may not be evacuated. However, the processing unit 1 may not be accommodated in the internal space SP1 of the housing 3. A local space surrounding only a part of the processing unit 1 may be purged with a purge gas, or may be evacuated.
 加工ユニット1は、制御ユニット2の制御下で、加工対象物(母材と称されてもよい)であるワークWを加工可能である。ワークWは、例えば、金属であってもよいし、合金(例えば、ジュラルミン等)であってもよいし、半導体(例えば、シリコン)であってもよいし、樹脂であってもよいし、CFRP(Carbon Fiber Reinforced Plastic)等の複合材料であってもよいし、塗料(一例として基材に塗布された塗料層)であってもよいし、ガラスであってもよいし、それ以外の任意の材料から構成される物体であってもよい。 The processing unit 1 is capable of processing a workpiece W, which is an object to be processed (which may also be referred to as a base material), under the control of the control unit 2. The workpiece W may be, for example, a metal, an alloy (e.g., duralumin, etc.), a semiconductor (e.g., silicon), a resin, a composite material such as CFRP (Carbon Fiber Reinforced Plastic), paint (one example being a paint layer applied to a substrate), glass, or an object made of any other material.
 加工ユニット1は、ワークWを加工するために、ワークWに対して加工光ELを照射する。加工光ELは、ワークWに照射されることでワークWを加工可能である限りは、どのような種類の光であってもよい。第1実施形態では、加工光ELがレーザ光である例を用いて説明を進めるが、加工光ELは、レーザ光とは異なる種類の光であってもよい。更に、加工光ELの波長は、ワークWに照射されることでワークWを加工可能である限りは、どのような波長であってもよい。例えば、加工光ELは、可視光であってもよいし、不可視光(例えば、赤外光、紫外光及び極端紫外光等の少なくとも一つ)であってもよい。加工光ELは、パルス光を含んでいてもよい。或いは、加工光ELは、パルス光を含んでいなくてもよい。言い換えると、加工光ELは、連続光であってもよい。尚、光は、エネルギビームの一例であるがゆえに、加工光ELは、加工ビームと称されてもよい。 The processing unit 1 irradiates the processing light EL onto the workpiece W in order to process the workpiece W. The processing light EL may be any type of light as long as it can process the workpiece W by irradiating it onto the workpiece W. In the first embodiment, the processing light EL is described as a laser light, but the processing light EL may be a type of light other than laser light. Furthermore, the wavelength of the processing light EL may be any wavelength as long as it can process the workpiece W by irradiating it onto the workpiece W. For example, the processing light EL may be visible light or invisible light (for example, at least one of infrared light, ultraviolet light, and extreme ultraviolet light). The processing light EL may include pulsed light. Alternatively, the processing light EL may not include pulsed light. In other words, the processing light EL may be continuous light. Since light is an example of an energy beam, the processing light EL may be called a processing beam.
 加工ユニット1は更に、制御ユニット2の制御下で、計測対象物Mを計測可能である。加工ユニット1は、計測対象物Mを計測するために、計測対象物Mに対して、計測対象物Mを計測するための計測光MLを照射する。具体的には、加工ユニット1は、計測光MLを計測対象物Mに照射し、且つ、計測光MLが照射された計測対象物Mから戻ってくる光の少なくとも一部を検出する(つまり、受光する)ことで、計測対象物Mを計測する。計測光MLが照射された計測対象物Mから戻ってくる光は、計測光MLの照射によって計測対象物Mから生じる計測対象物Mからの光である。 The processing unit 1 can further measure the measurement object M under the control of the control unit 2. In order to measure the measurement object M, the processing unit 1 irradiates the measurement object M with measurement light ML for measuring the measurement object M. Specifically, the processing unit 1 measures the measurement object M by irradiating the measurement object M with the measurement light ML and detecting (i.e., receiving) at least a portion of the light returning from the measurement object M irradiated with the measurement light ML. The light returning from the measurement object M irradiated with the measurement light ML is light from the measurement object M that is generated from the measurement object M by irradiation with the measurement light ML.
 計測光MLは、計測対象物Mに照射されることで計測対象物Mを計測可能である限りは、どのような種類の光であってもよい。第1実施形態では、計測光MLがレーザ光である例を用いて説明を進める。但し、計測光MLは、レーザ光とは異なる種類の光であってもよい。更に、計測光MLの波長は、計測対象物Mに照射されることで計測対象物Mを計測可能である限りは、どのような波長であってもよい。例えば、計測光MLは、可視光であってもよいし、不可視光(例えば、赤外光、紫外光及び極端紫外光等の少なくとも一つ)であってもよい。計測光MLは、パルス光(例えば、発光時間がピコ秒以下のパルス光)を含んでいてもよい。或いは、計測光MLは、パルス光を含んでいなくてもよい。言い換えると、計測光MLは、連続光であってもよい。尚、光は、エネルギビームの一例であるがゆえに、計測光MLは、計測ビームと称されてもよい。 The measurement light ML may be any type of light as long as it is capable of measuring the measurement object M by irradiating it on the measurement object M. In the first embodiment, the description will be given using an example in which the measurement light ML is laser light. However, the measurement light ML may be a type of light other than laser light. Furthermore, the wavelength of the measurement light ML may be any wavelength as long as it is capable of measuring the measurement object M by irradiating it on the measurement object M. For example, the measurement light ML may be visible light or invisible light (e.g., at least one of infrared light, ultraviolet light, and extreme ultraviolet light). The measurement light ML may include pulsed light (e.g., pulsed light having an emission time of picoseconds or less). Alternatively, the measurement light ML may not include pulsed light. In other words, the measurement light ML may be continuous light. Since light is an example of an energy beam, the measurement light ML may be called a measurement beam.
 加工ユニット1は、計測光MLを用いて、計測対象物Mの特性を計測可能であってもよい。計測対象物Mの特性は、例えば、計測対象物Mの位置、計測対象物Mの形状、計測対象物Mの反射率、計測対象物Mの透過率、計測対象物Mの温度、及び、計測対象物Mの表面粗さの少なくとも一つを含んでいてもよい。 The processing unit 1 may be capable of measuring the characteristics of the measurement object M using the measurement light ML. The characteristics of the measurement object M may include, for example, at least one of the position of the measurement object M, the shape of the measurement object M, the reflectance of the measurement object M, the transmittance of the measurement object M, the temperature of the measurement object M, and the surface roughness of the measurement object M.
 以下の説明では、加工ユニット1が計測対象物Mの位置を少なくとも計測する例について説明する。計測対象物Mの位置は、計測対象物Mの表面の位置を含んでいてもよい。計測対象物Mの表面の位置は、計測対象物Mの表面の少なくとも一部の位置を含んでいてもよい。また、計測対象物Mの位置は、後述する加工ヘッド13に対する計測対象物Mの位置(つまり、相対位置)を意味していてもよい。つまり、計測対象物Mの位置は、加工ヘッド13を基準とする計測座標系における計測対象物Mの位置を意味していてもよい。また、後述するように、計測対象物Mの位置を計測する動作は、計測対象物Mの形状を計測する動作を含んでいてもよい。なぜならば、計測対象物Mの位置から、計測対象物Mの形状を算出可能であるからである。 In the following explanation, an example will be described in which the processing unit 1 at least measures the position of the measurement object M. The position of the measurement object M may include the position of the surface of the measurement object M. The position of the surface of the measurement object M may include the position of at least a part of the surface of the measurement object M. Furthermore, the position of the measurement object M may mean the position of the measurement object M with respect to the processing head 13 described below (i.e., the relative position). In other words, the position of the measurement object M may mean the position of the measurement object M in a measurement coordinate system based on the processing head 13. Furthermore, as described below, the operation of measuring the position of the measurement object M may include an operation of measuring the shape of the measurement object M. This is because the shape of the measurement object M can be calculated from the position of the measurement object M.
 計測対象物Mは、例えば、加工ユニット1が加工するワークWを含んでいてもよい。計測対象物Mは、例えば、後述するステージ15に載置される任意の物体を含んでいてもよい。計測対象物Mは、例えば、ステージ15を含んでいてもよい。 The measurement object M may include, for example, the workpiece W that is processed by the processing unit 1. The measurement object M may include, for example, any object that is placed on the stage 15 described below. The measurement object M may include, for example, the stage 15.
 ワークWを加工し且つ計測対象物Mを計測するために、加工ユニット1は、加工光源11と、計測光源12と、加工ヘッド13と、ヘッド駆動系14と、ステージ15と、ステージ駆動系16とを備える。 In order to process the workpiece W and measure the measurement object M, the processing unit 1 includes a processing light source 11, a measurement light source 12, a processing head 13, a head drive system 14, a stage 15, and a stage drive system 16.
 加工光源11は、加工光ELを生成する。加工光ELがレーザ光である場合には、加工光源11は、例えば、レーザダイオードを含んでいてもよい。更に、加工光源11は、パルス発振可能な光源であってもよい。この場合、加工光源11は、パルス光を加工光ELとして生成可能である。尚、加工光源11は、CW(連続波)を生成するCW光源であってもよい。 The processing light source 11 generates the processing light EL. When the processing light EL is a laser light, the processing light source 11 may include, for example, a laser diode. Furthermore, the processing light source 11 may be a light source capable of pulse oscillation. In this case, the processing light source 11 is capable of generating pulsed light as the processing light EL. In addition, the processing light source 11 may be a CW light source that generates a CW (continuous wave).
 計測光源12は、計測光MLを生成する。計測光MLがレーザ光である場合には、計測光源12は、例えば、レーザダイオードを含んでいてもよい。更に、計測光源12は、パルス発振可能な光源であってもよい。この場合、計測光源12は、パルス光を計測光MLとして生成可能である。尚、計測光源12は、CW(連続波)を生成するCW光源であってもよい。 The measurement light source 12 generates the measurement light ML. When the measurement light ML is laser light, the measurement light source 12 may include, for example, a laser diode. Furthermore, the measurement light source 12 may be a light source capable of pulse oscillation. In this case, the measurement light source 12 is capable of generating pulsed light as the measurement light ML. In addition, the measurement light source 12 may be a CW light source that generates a CW (continuous wave).
 計測光MLの波長は、加工光ELの波長と異なっていてもよい。尚、計測光MLの波長は、計測光MLの波長帯域において強度が最大となる波長であるピーク波長を意味していてもよい。計測光MLの波長は、計測光MLの波長帯域を意味していてもよい。計測光MLの波長帯域は、計測光MLの強度が一定値以上となる波長の範囲を意味していてもよい。加工光ELの波長は、加工光ELの波長帯域において強度が最大となる波長であるピーク波長を意味していてもよい。加工光ELの波長は、加工光ELの波長帯域を意味していてもよい。加工光ELの波長帯域は、加工光ELの強度が一定値以上となる波長の範囲を意味していてもよい。但し、計測光MLの波長は、加工光ELの波長と同一であってもよい。 The wavelength of the measurement light ML may be different from the wavelength of the processing light EL. The wavelength of the measurement light ML may mean a peak wavelength, which is a wavelength at which the intensity is maximum in the wavelength band of the measurement light ML. The wavelength of the measurement light ML may mean a wavelength band of the measurement light ML. The wavelength band of the measurement light ML may mean a range of wavelengths at which the intensity of the measurement light ML is a certain value or more. The wavelength of the processing light EL may mean a peak wavelength, which is a wavelength at which the intensity is maximum in the wavelength band of the processing light EL. The wavelength of the processing light EL may mean a wavelength band of the processing light EL. The wavelength band of the processing light EL may mean a range of wavelengths at which the intensity of the processing light EL is a certain value or more. However, the wavelength of the measurement light ML may be the same as the wavelength of the processing light EL.
 加工ヘッド13は、加工光源11が生成した加工光ELをワークWに照射し且つ計測光源12が生成した計測光MLを計測対象物Mに照射する。加工光ELをワークWに照射し且つ計測光MLを計測対象物Mに照射するために、加工ヘッド13は、加工光学系131と、計測光学系132と、合成光学系133と、偏向光学系134と、照射光学系135とを備える。加工ヘッド13は、加工光学系131、合成光学系133、偏向光学系134及び照射光学系135を介して、加工光ELをワークWに照射する。また、加工ヘッド13は、計測光学系132、合成光学系133、偏向光学系134及び照射光学系135を介して、計測光MLを計測対象物Mに照射する。尚、加工ヘッド13の構成の詳細については、図3を参照しながら、後に詳述する。 The machining head 13 irradiates the workpiece W with the machining light EL generated by the machining light source 11 and irradiates the measurement object M with the measurement light ML generated by the measurement light source 12. In order to irradiate the workpiece W with the machining light EL and the measurement object M with the measurement light ML, the machining head 13 includes a machining optical system 131, a measurement optical system 132, a synthesis optical system 133, a deflection optical system 134, and an irradiation optical system 135. The machining head 13 irradiates the workpiece W with the machining light EL via the machining optical system 131, the synthesis optical system 133, the deflection optical system 134, and the irradiation optical system 135. The machining head 13 also irradiates the measurement light ML to the measurement object M via the measurement optical system 132, the synthesis optical system 133, the deflection optical system 134, and the irradiation optical system 135. The configuration of the machining head 13 will be described in detail later with reference to FIG. 3.
 ヘッド駆動系14は、加工ヘッド13を移動させる。このため、ヘッド駆動系14は、移動装置と称されてもよい。尚、加工ヘッド13が加工光学系131、計測光学系132、合成光学系133、偏向光学系134及び照射光学系135を備えているがゆえに、ヘッド駆動系14は、加工光学系131、計測光学系132、合成光学系133、偏向光学系134及び照射光学系135を移動させているとみなしてもよい。ヘッド駆動系14は、例えば、X軸方向、Y軸方向、Z軸方向のうちの少なくとも一つに沿った移動軸に沿って加工ヘッド13を移動(つまり、直線移動)させてもよい。ヘッド駆動系14は、例えば、X軸方向、Y軸方向及びZ軸方向のうちの少なくとも一つに加えて又は代えて、θX方向、θY方向及びθZ方向の少なくとも一つに沿って加工ヘッド13を移動させてもよい。つまり、ヘッド駆動系14は、X軸方向に沿った回転軸(つまり、A軸)、Y軸方向に沿った回転軸(つまり、B軸)及びZ軸方向に沿った回転軸(つまり、C軸)のうちの少なくとも一つの回転軸の周りに加工ヘッド13を回転(つまり、回転移動)させてもよい。 The head drive system 14 moves the processing head 13. For this reason, the head drive system 14 may be referred to as a moving device. Since the processing head 13 is equipped with the processing optical system 131, the measurement optical system 132, the synthesis optical system 133, the deflection optical system 134, and the irradiation optical system 135, the head drive system 14 may be considered to move the processing optical system 131, the measurement optical system 132, the synthesis optical system 133, the deflection optical system 134, and the irradiation optical system 135. The head drive system 14 may move (i.e., move linearly) the processing head 13 along a movement axis along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction, for example. The head drive system 14 may move the processing head 13 along at least one of the θX direction, the θY direction, and the θZ direction, in addition to or instead of at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction, for example. That is, the head drive system 14 may rotate (i.e., rotate) the processing head 13 around at least one of the rotational axes along the X-axis direction (i.e., A-axis), the rotational axis along the Y-axis direction (i.e., B-axis), and the rotational axis along the Z-axis direction (i.e., C-axis).
 ヘッド駆動系14が加工ヘッド13を移動させると、加工ヘッド13とステージ15(更には、ステージ15に載置されるワークW)との相対的な位置関係が変わる。このため、加工ヘッド13が加工光ELを照射する照射領域PAとワークWとの相対的な位置関係が変わる。つまり、ワークWに対して、加工ヘッド13が加工光ELを照射する照射領域PAが移動する。言い換えれば、加工ヘッド13が加工光ELを照射するワークW上の位置が変更される。加工ユニット1は、加工ヘッド13を移動させつつワークWを加工してもよい。具体的には、加工ユニット1は、ワークWの所望位置に加工光ELが照射されるように加工ヘッド13を移動させることで、ワークWの所望位置を加工してもよい。 When the head drive system 14 moves the processing head 13, the relative positional relationship between the processing head 13 and the stage 15 (and further, the workpiece W placed on the stage 15) changes. As a result, the relative positional relationship between the irradiation area PA onto which the processing head 13 irradiates the processing light EL and the workpiece W changes. That is, the irradiation area PA onto which the processing head 13 irradiates the processing light EL moves relative to the workpiece W. In other words, the position on the workpiece W onto which the processing head 13 irradiates the processing light EL is changed. The processing unit 1 may process the workpiece W while moving the processing head 13. Specifically, the processing unit 1 may process the desired position of the workpiece W by moving the processing head 13 so that the processing light EL is irradiated onto the desired position of the workpiece W.
 更に、ヘッド駆動系14が加工ヘッド13を移動させると、加工ヘッド13が計測光MLを照射する照射領域MAとワークWとの相対的な位置関係が変わる。つまり、ワークWに対して、加工ヘッド13が計測光MLを照射する照射領域MAが移動する。言い換えれば、加工ヘッド13が計測光MLを照射するワークW上の位置が変更される。加工ユニット1は、加工ヘッド13を移動させつつワークWを計測してもよい。具体的には、加工ユニット1は、ワークWの所望位置に計測光MLが照射されるように加工ヘッド13を移動させることで、ワークWの所望位置を計測してもよい。 Furthermore, when the head drive system 14 moves the processing head 13, the relative positional relationship between the irradiation area MA onto which the processing head 13 irradiates the measurement light ML and the workpiece W changes. That is, the irradiation area MA onto which the processing head 13 irradiates the measurement light ML moves relative to the workpiece W. In other words, the position on the workpiece W onto which the processing head 13 irradiates the measurement light ML is changed. The processing unit 1 may measure the workpiece W while moving the processing head 13. Specifically, the processing unit 1 may measure the desired position of the workpiece W by moving the processing head 13 so that the measurement light ML is irradiated onto the desired position of the workpiece W.
 更に、ヘッド駆動系14が加工ヘッド13を移動させると、加工ヘッド13(特に、加工ヘッド13が備える照射光学系135)とステージ15に載置されたワークWとの位置関係が変わる。例えば、X軸方向、Y軸方向及びZ軸方向の少なくとも一つに沿った加工ヘッド13(特に、照射光学系135)とワークWとの位置関係が変わってもよい。例えば、θX方向、θY方向及びθZ方向の少なくとも一つに沿った加工ヘッド13(特に、照射光学系135)とワークWとの位置関係が変わってもよい。このため、ヘッド駆動系14は、加工ヘッド13(特に、照射光学系135)とワークWとの位置関係を変更可能な変更装置として機能しているとみなしてもよい。 Furthermore, when the head drive system 14 moves the machining head 13, the positional relationship between the machining head 13 (particularly, the irradiation optical system 135 provided in the machining head 13) and the workpiece W placed on the stage 15 changes. For example, the positional relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction may change. For example, the positional relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W along at least one of the θX direction, the θY direction, and the θZ direction may change. For this reason, the head drive system 14 may be considered to function as a change device that can change the positional relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W.
 θX方向、θY方向及びθZ方向の少なくとも一つに沿った加工ヘッド13(特に、照射光学系135)とワークWとの位置関係は、加工ヘッド13(特に、照射光学系135)とワークWとの姿勢関係であるとみなしてもよい。このため、ヘッド駆動系14は、加工ヘッド13(特に、照射光学系135)とワークWとの姿勢関係を変更可能な姿勢変更装置として機能しているとみなしてもよい。言い換えれば、ヘッド駆動系14は、ワークWに対する加工ヘッド13(特に、照射光学系135)の姿勢を変更可能な姿勢変更装置として機能しているとみなしてもよい。 The positional relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W along at least one of the θX direction, the θY direction, and the θZ direction may be considered to be the attitude relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W. Therefore, the head drive system 14 may be considered to function as an attitude changing device that can change the attitude relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W. In other words, the head drive system 14 may be considered to function as an attitude changing device that can change the attitude of the machining head 13 (particularly, the irradiation optical system 135) relative to the workpiece W.
 尚、ヘッド駆動系14が加工ヘッド13を移動させることで加工ヘッド13(特に、照射光学系135)とワークWとの位置関係を変更するだけでは、ワークW上での加工光ELの照射領域PAと計測光MLの照射領域MAとの位置関係が変更されることはない。つまり、ヘッド駆動系14が加工ヘッド13を移動させることで加工ヘッド13(特に、照射光学系135)とワークWとの位置関係を変更したとしても、ワークW上での加工光ELの照射領域PAと計測光MLの照射領域MAとの位置関係は維持される。なぜならば、同じ加工ヘッド13から加工光EL及び計測光MLが照射されるからである。 Furthermore, simply changing the positional relationship between the processing head 13 (particularly, the irradiation optical system 135) and the workpiece W by moving the processing head 13 with the head drive system 14 does not change the positional relationship between the irradiation area PA of the processing light EL and the irradiation area MA of the measurement light ML on the workpiece W. In other words, even if the head drive system 14 changes the positional relationship between the processing head 13 (particularly, the irradiation optical system 135) and the workpiece W by moving the processing head 13, the positional relationship between the irradiation area PA of the processing light EL and the irradiation area MA of the measurement light ML on the workpiece W is maintained. This is because the processing light EL and the measurement light ML are irradiated from the same processing head 13.
 ステージ15には、ワークWが載置される。このため、ステージ15は、載置装置又は物体載置装置と称されてもよい。具体的には、ステージ15の上面の少なくとも一部である載置面151に、ワークWが載置される。ステージ15は、ステージ15に載置されたワークWを支持可能である。ステージ15は、ステージ15に載置されたワークWを保持可能であってもよい。この場合、ステージ15は、ワークWを保持するために、機械的なチャック、静電チャック及び真空吸着チャック等の少なくとも一つを備えていてもよい。或いは、ワークWを保持するための治具がワークWを保持し、ステージ15は、ワークWを保持した治具を保持してもよい。或いは、ステージ15は、ステージ15に載置されたワークWを保持しなくてもよい。この場合、ワークWは、クランプレスでステージ15に載置されていてもよい。 The workpiece W is placed on the stage 15. Therefore, the stage 15 may be referred to as a placement device or an object placement device. Specifically, the workpiece W is placed on a placement surface 151, which is at least a part of the upper surface of the stage 15. The stage 15 is capable of supporting the workpiece W placed on the stage 15. The stage 15 may be capable of holding the workpiece W placed on the stage 15. In this case, the stage 15 may be equipped with at least one of a mechanical chuck, an electrostatic chuck, a vacuum chuck, and the like, in order to hold the workpiece W. Alternatively, a jig for holding the workpiece W may hold the workpiece W, and the stage 15 may hold the jig that holds the workpiece W. Alternatively, the stage 15 may not hold the workpiece W placed on the stage 15. In this case, the workpiece W may be placed on the stage 15 without being clamped.
 ステージ駆動系16は、ステージ15を移動させる。このため、ステージ駆動系16は、移動装置と称されてもよい。ステージ駆動系16は、例えば、X軸方向、Y軸方向、Z軸方向のうちの少なくとも一つに沿った移動軸に沿ってステージ15を移動(つまり、直線移動)させてもよい。ステージ駆動系16は、例えば、X軸方向、Y軸方向及びZ軸方向のうちの少なくとも一つに加えて又は代えて、θX方向、θY方向及びθZ方向の少なくとも一つに沿ってステージ15を移動させてもよい。つまり、ステージ駆動系16は、X軸方向に沿った回転軸(つまり、A軸)、Y軸方向に沿った回転軸(つまり、B軸)及びZ軸方向に沿った回転軸(つまり、C軸)のうちの少なくとも一つの回転軸の周りにステージ15を回転(つまり、回転移動)させてもよい。 The stage drive system 16 moves the stage 15. For this reason, the stage drive system 16 may be referred to as a moving device. The stage drive system 16 may, for example, move the stage 15 (i.e., move linearly) along a movement axis along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction. The stage drive system 16 may, for example, move the stage 15 along at least one of the θX direction, the θY direction, and the θZ direction in addition to or instead of at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction. In other words, the stage drive system 16 may rotate (i.e., rotate and move) the stage 15 around at least one of the rotation axes along the X-axis direction (i.e., the A-axis), the rotation axis along the Y-axis direction (i.e., the B-axis), and the rotation axis along the Z-axis direction (i.e., the C-axis).
 ステージ駆動系16がステージ15を移動させると、加工ヘッド13とステージ15(更には、ステージ15に載置されるワークW)との相対的な位置関係が変わる。このため、加工ヘッド13が加工光ELを照射する照射領域PAとワークWとの相対的な位置関係が変わる。つまり、ワークWに対して、加工ヘッド13が加工光ELを照射する照射領域PAが移動する。言い換えれば、加工ヘッド13が加工光ELを照射するワークW上の位置が変更される。加工ユニット1は、ステージ15を移動させつつワークWを加工してもよい。具体的には、加工ユニット1は、ワークWの所望位置に加工光ELが照射されるようにステージ15を移動させることで、ワークWの所望位置を加工してもよい。 When the stage drive system 16 moves the stage 15, the relative positional relationship between the processing head 13 and the stage 15 (and further, the workpiece W placed on the stage 15) changes. As a result, the relative positional relationship between the irradiation area PA onto which the processing head 13 irradiates the processing light EL and the workpiece W changes. That is, the irradiation area PA onto which the processing head 13 irradiates the processing light EL moves relative to the workpiece W. In other words, the position on the workpiece W onto which the processing head 13 irradiates the processing light EL is changed. The processing unit 1 may process the workpiece W while moving the stage 15. Specifically, the processing unit 1 may process the desired position of the workpiece W by moving the stage 15 so that the processing light EL is irradiated onto the desired position of the workpiece W.
 更に、ステージ駆動系16がステージ15を移動させると、加工ヘッド13が計測光MLを照射する照射領域MAとワークWとの相対的な位置関係が変わる。つまり、ワークWに対して、加工ヘッド13が計測光MLを照射する照射領域MAが移動する。言い換えれば、加工ヘッド13が計測光MLを照射するワークW上の位置が変更される。加工ユニット1は、ステージ15を移動させつつワークWを計測してもよい。具体的には、加工ユニット1は、ワークWの所望位置に計測光MLが照射されるようにステージ15を移動させることで、ワークWの所望位置を計測してもよい。 Furthermore, when the stage drive system 16 moves the stage 15, the relative positional relationship between the workpiece W and the irradiation area MA onto which the machining head 13 irradiates the measurement light ML changes. That is, the irradiation area MA onto which the machining head 13 irradiates the measurement light ML moves relative to the workpiece W. In other words, the position on the workpiece W onto which the machining head 13 irradiates the measurement light ML is changed. The machining unit 1 may measure the workpiece W while moving the stage 15. Specifically, the machining unit 1 may measure the desired position of the workpiece W by moving the stage 15 so that the measurement light ML is irradiated onto the desired position of the workpiece W.
 更に、ステージ駆動系16がステージ15を移動させると、加工ヘッド13(特に、加工ヘッド13が備える照射光学系135)とステージ15に載置されたワークWとの位置関係が変わる。例えば、X軸方向、Y軸方向及びZ軸方向の少なくとも一つに沿った加工ヘッド13(特に、照射光学系135)とワークWとの位置関係が変わってもよい。例えば、θX方向、θY方向及びθZ方向の少なくとも一つに沿った加工ヘッド13(特に、照射光学系135)とワークWとの位置関係が変わってもよい。このため、ステージ駆動系16は、加工ヘッド13(特に、照射光学系135)とワークWとの位置関係を変更可能な変更装置として機能しているとみなしてもよい。 Furthermore, when the stage drive system 16 moves the stage 15, the positional relationship between the machining head 13 (particularly, the irradiation optical system 135 provided in the machining head 13) and the workpiece W placed on the stage 15 changes. For example, the positional relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W along at least one of the X-axis direction, the Y-axis direction, and the Z-axis direction may change. For example, the positional relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W along at least one of the θX direction, the θY direction, and the θZ direction may change. For this reason, the stage drive system 16 may be considered to function as a change device that can change the positional relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W.
 θX方向、θY方向及びθZ方向の少なくとも一つに沿った加工ヘッド13(特に、照射光学系135)とワークWとの位置関係は、加工ヘッド13(特に、照射光学系135)とワークWとの姿勢関係であるとみなしてもよい。このため、ステージ駆動系16は、加工ヘッド13(特に、照射光学系135)とワークWとの姿勢関係を変更可能な姿勢変更装置として機能しているとみなしてもよい。言い換えれば、ステージ駆動系16は、加工ヘッド13(特に、照射光学系135)に対するステージ15の姿勢を変更可能な姿勢変更装置として機能しているとみなしてもよい。 The positional relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W along at least one of the θX direction, the θY direction, and the θZ direction may be considered to be the attitude relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W. Therefore, the stage drive system 16 may be considered to function as an attitude changing device that can change the attitude relationship between the machining head 13 (particularly, the irradiation optical system 135) and the workpiece W. In other words, the stage drive system 16 may be considered to function as an attitude changing device that can change the attitude of the stage 15 relative to the machining head 13 (particularly, the irradiation optical system 135).
 尚、ステージ駆動系16がステージ15を移動させることで加工ヘッド13(特に、照射光学系135)とワークWとの位置関係を変更するだけでは、ワークW上での加工光ELの照射領域PAと計測光MLの照射領域MAとの位置関係が変更されることはない。つまり、ステージ駆動系16がステージ15を移動させることで加工ヘッド13(特に、照射光学系135)とワークWとの位置関係を変更したとしても、ワークW上での加工光ELの照射領域PAと計測光MLの照射領域MAとの位置関係は維持される。なぜならば、同じ加工ヘッド13から加工光EL及び計測光MLが照射されるからである。 Furthermore, simply changing the positional relationship between the processing head 13 (particularly, the irradiation optical system 135) and the workpiece W by moving the stage 15 using the stage drive system 16 does not change the positional relationship between the irradiation area PA of the processing light EL and the irradiation area MA of the measurement light ML on the workpiece W. In other words, even if the stage drive system 16 changes the positional relationship between the processing head 13 (particularly, the irradiation optical system 135) and the workpiece W by moving the stage 15 using the stage drive system 16, the positional relationship between the irradiation area PA of the processing light EL and the irradiation area MA of the measurement light ML on the workpiece W is maintained. This is because the processing light EL and the measurement light ML are irradiated from the same processing head 13.
 制御ユニット2は、加工ユニット1の動作を制御する。例えば、制御ユニット2は、加工ユニット1が備える加工ヘッド13の動作を制御してもよい。例えば、制御ユニット2は、加工ヘッド13が備える加工光学系131、計測光学系132、合成光学系133、偏向光学系134及び照射光学系135の少なくとも一つの動作を制御してもよい。例えば、制御ユニット2は、加工ユニット1が備えるヘッド駆動系14の動作(例えば、加工ヘッド13の移動)を制御してもよい。例えば、制御ユニット2は、加工ユニット1が備えるステージ駆動系16の動作(例えば、ステージ15の移動)を制御してもよい。 The control unit 2 controls the operation of the processing unit 1. For example, the control unit 2 may control the operation of the processing head 13 provided in the processing unit 1. For example, the control unit 2 may control the operation of at least one of the processing optical system 131, the measurement optical system 132, the synthesis optical system 133, the deflection optical system 134, and the irradiation optical system 135 provided in the processing head 13. For example, the control unit 2 may control the operation of the head drive system 14 provided in the processing unit 1 (for example, the movement of the processing head 13). For example, the control unit 2 may control the operation of the stage drive system 16 provided in the processing unit 1 (for example, the movement of the stage 15).
 制御ユニット2は、加工ユニット1による計測対象物Mの計測結果に基づいて、加工ユニット1の動作を制御してもよい。具体的には、制御ユニット2は、計測対象物Mの計測結果に基づいて、計測対象物Mの計測情報(例えば、計測対象物Mの位置に関する位置情報を含む計測情報)を生成し、生成した計測情報に基づいて、加工ユニット1の動作を制御してもよい。例えば、制御ユニット2は、計測対象物Mの一例であるワークWの計測結果に基づいて、ワークWの少なくとも一部の計測情報を生成し(例えば、ワークWの少なくとも一部の位置を算出し)、計測情報に基づいて、ワークWを加工するように加工ユニット1の動作を制御してもよい。 The control unit 2 may control the operation of the processing unit 1 based on the measurement results of the measurement object M by the processing unit 1. Specifically, the control unit 2 may generate measurement information of the measurement object M (e.g., measurement information including position information regarding the position of the measurement object M) based on the measurement results of the measurement object M, and control the operation of the processing unit 1 based on the generated measurement information. For example, the control unit 2 may generate measurement information of at least a part of the workpiece W based on the measurement results of the workpiece W, which is an example of the measurement object M (e.g., calculate the position of at least a part of the workpiece W), and control the operation of the processing unit 1 to process the workpiece W based on the measurement information.
 制御ユニット2は、例えば、演算装置21と、記憶装置22とを備えていてもよい。演算装置21は、例えば、CPU(Central Processing Unit)及びGPU(Graphics Processing Unit)の少なくとも一方を含んでいてもよい。記憶装置22は、例えば、メモリを含んでいてもよい。制御ユニット2は、演算装置21がコンピュータプログラムを実行することで、加工ユニット1の動作を制御する装置として機能する。このコンピュータプログラムは、制御ユニット2が行うべき後述する動作を演算装置21に行わせる(つまり、実行させる)ためのコンピュータプログラムである。つまり、このコンピュータプログラムは、加工ユニット1に後述する動作を行わせるように制御ユニット2を機能させるためのコンピュータプログラムである。演算装置21が実行するコンピュータプログラムは、制御ユニット2が備える記憶装置22(つまり、記録媒体)に記録されていてもよいし、制御ユニット2に内蔵された又は制御ユニット2に外付け可能な任意の記憶媒体(例えば、ハードディスクや半導体メモリ)に記録されていてもよい。或いは、演算装置21は、実行するべきコンピュータプログラムを、ネットワークインタフェースを介して、制御ユニット2の外部の装置からダウンロードしてもよい。 The control unit 2 may include, for example, a calculation device 21 and a storage device 22. The calculation device 21 may include, for example, at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit). The storage device 22 may include, for example, a memory. The control unit 2 functions as a device that controls the operation of the machining unit 1 by the calculation device 21 executing a computer program. This computer program is a computer program for making the calculation device 21 perform (i.e., execute) the operation to be performed by the control unit 2, which will be described later. In other words, this computer program is a computer program for making the control unit 2 function so as to make the machining unit 1 perform the operation to be described later. The computer program executed by the calculation device 21 may be recorded in the storage device 22 (i.e., a recording medium) provided in the control unit 2, or may be recorded in any storage medium (e.g., a hard disk or a semiconductor memory) built into the control unit 2 or externally attachable to the control unit 2. Alternatively, the computing device 21 may download the computer program to be executed from a device external to the control unit 2 via a network interface.
 制御ユニット2は、加工ユニット1の内部に設けられていなくてもよい。例えば、制御ユニット2は、加工ユニット1外にサーバ等として設けられていてもよい。この場合、制御ユニット2と加工ユニット1とは、有線及び/又は無線のネットワーク(或いは、データバス及び/又は通信回線)で接続されていてもよい。有線のネットワークとして、例えばIEEE1394、RS-232x、RS-422、RS-423、RS-485及びUSBの少なくとも一つに代表されるシリアルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、パラレルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、10BASE-T、100BASE-TX及び1000BASE-Tの少なくとも一つに代表されるイーサネット(登録商標)に準拠したインタフェースを用いるネットワークが用いられてもよい。無線のネットワークとして、電波を用いたネットワークが用いられてもよい。電波を用いたネットワークの一例として、IEEE802.1xに準拠したネットワーク(例えば、無線LAN及びBluetooth(登録商標)の少なくとも一方)があげられる。無線のネットワークとして、赤外線を用いたネットワークが用いられてもよい。無線のネットワークとして、光通信を用いたネットワークが用いられてもよい。この場合、制御ユニット2と加工ユニット1とはネットワークを介して各種の情報の送受信が可能となるように構成されていてもよい。また、制御ユニット2は、ネットワークを介して加工ユニット1にコマンドや制御パラメータ等の情報を送信可能であってもよい。加工ユニット1は、制御ユニット2からのコマンドや制御パラメータ等の情報を、上記ネットワークを介して受信する受信装置を備えていてもよい。加工ユニット1は、制御ユニット2に対してコマンドや制御パラメータ等の情報を、上記ネットワークを介して送信する送信装置(つまり、制御ユニット2に対して情報を出力する出力装置)を備えていてもよい。或いは、制御ユニット2が行う処理のうちの一部を行う第1制御装置が加工ユニット1の内部に設けられている一方で、制御ユニット2が行う処理のうちの他の一部を行う第2制御装置が加工ユニット1の外部に設けられていてもよい。 The control unit 2 does not have to be provided inside the processing unit 1. For example, the control unit 2 may be provided outside the processing unit 1 as a server or the like. In this case, the control unit 2 and the processing unit 1 may be connected by a wired and/or wireless network (or a data bus and/or a communication line). As the wired network, a network using a serial bus type interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485, and USB may be used. As the wired network, a network using a parallel bus type interface may be used. As the wired network, a network using an interface compliant with Ethernet (registered trademark) represented by at least one of 10BASE-T, 100BASE-TX, and 1000BASE-T may be used. As the wireless network, a network using radio waves may be used. An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of a wireless LAN and Bluetooth (registered trademark)). A network using infrared rays may be used as a wireless network. A network using optical communication may be used as a wireless network. In this case, the control unit 2 and the processing unit 1 may be configured to be able to transmit and receive various information via the network. The control unit 2 may also be able to transmit information such as commands and control parameters to the processing unit 1 via the network. The processing unit 1 may be equipped with a receiving device that receives information such as commands and control parameters from the control unit 2 via the network. The processing unit 1 may be equipped with a transmitting device (i.e., an output device that outputs information to the control unit 2) that transmits information such as commands and control parameters to the control unit 2 via the network. Alternatively, a first control device that performs a part of the processing performed by the control unit 2 may be provided inside the processing unit 1, while a second control device that performs another part of the processing performed by the control unit 2 may be provided outside the processing unit 1.
 制御ユニット2内には、演算装置21がコンピュータプログラムを実行することで、機械学習によって構築可能な演算モデルが実装されてもよい。機械学習によって構築可能な演算モデルの一例として、例えば、ニューラルネットワークを含む演算モデル(いわゆる、人工知能(AI:Artificial Intelligence))があげられる。この場合、演算モデルの学習は、ニューラルネットワークのパラメータ(例えば、重み及びバイアスの少なくとも一つ)の学習を含んでいてもよい。制御ユニット2は、演算モデルを用いて、加工ユニット1の動作を制御してもよい。つまり、加工ユニット1の動作を制御する動作は、演算モデルを用いて加工ユニット1の動作を制御する動作を含んでいてもよい。尚、制御ユニット2には、教師データを用いたオフラインでの機械学習により構築済みの演算モデルが実装されてもよい。また、制御ユニット2に実装された演算モデルは、制御ユニット2上においてオンラインでの機械学習によって更新されてもよい。或いは、制御ユニット2は、制御ユニット2に実装されている演算モデルに加えて又は代えて、制御ユニット2の外部の装置(つまり、加工ユニット1の外部に設けられる装置)に実装された演算モデルを用いて、加工ユニット1の動作を制御してもよい。 In the control unit 2, a computation model that can be constructed by machine learning may be implemented by the computation device 21 executing a computer program. An example of a computation model that can be constructed by machine learning is, for example, a computation model including a neural network (so-called artificial intelligence (AI)). In this case, learning of the computation model may include learning of parameters of the neural network (for example, at least one of weights and biases). The control unit 2 may use the computation model to control the operation of the machining unit 1. In other words, the operation of controlling the operation of the machining unit 1 may include the operation of controlling the operation of the machining unit 1 using the computation model. Note that the control unit 2 may be implemented with a computation model that has been constructed by offline machine learning using teacher data. In addition, the computation model implemented in the control unit 2 may be updated by online machine learning on the control unit 2. Alternatively, the control unit 2 may control the operation of the machining unit 1 using a computation model implemented in an external device of the control unit 2 (i.e., a device provided outside the machining unit 1) in addition to or instead of the computation model implemented in the control unit 2.
 尚、制御ユニット2が実行するコンピュータプログラムを記録する記録媒体としては、CD-ROM、CD-R、CD-RWやフレキシブルディスク、MO、DVD-ROM、DVD-RAM、DVD-R、DVD+R、DVD-RW、DVD+RW及びBlu-ray(登録商標)等の光ディスク、磁気テープ等の磁気媒体、光磁気ディスク、USBメモリ等の半導体メモリ、及び、その他プログラムを格納可能な任意の媒体の少なくとも一つが用いられてもよい。記録媒体には、コンピュータプログラムを記録可能な機器(例えば、コンピュータプログラムがソフトウェア及びファームウェア等の少なくとも一方の形態で実行可能な状態に実装された汎用機器又は専用機器)が含まれていてもよい。更に、コンピュータプログラムに含まれる各処理や機能は、制御ユニット2(つまり、コンピュータ)がコンピュータプログラムを実行することで制御ユニット2内に実現される論理的な処理ブロックによって実現されてもよいし、制御ユニット2が備える所定のゲートアレイ(FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Cricuit))等のハードウェアによって実現されてもよいし、論理的な処理ブロックとハードウェアの一部の要素を実現する部分的ハードウェアモジュールとが混在する形式で実現してもよい。 The recording medium for recording the computer program executed by the control unit 2 may be at least one of the following: CD-ROM, CD-R, CD-RW, flexible disk, MO, DVD-ROM, DVD-RAM, DVD-R, DVD+R, DVD-RW, DVD+RW, optical disks such as Blu-ray (registered trademark), magnetic media such as magnetic tape, magneto-optical disk, semiconductor memory such as USB memory, and any other medium capable of storing a program. The recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which a computer program is implemented in a state in which it can be executed in at least one of the forms of software and firmware, etc.). Furthermore, each process or function included in the computer program may be realized by a logical processing block realized in the control unit 2 by the control unit 2 (i.e., the computer) executing the computer program, or may be realized by hardware such as a predetermined gate array (FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit)) provided in the control unit 2, or may be realized in a form that combines logical processing blocks and partial hardware modules that realize some elements of the hardware.
 (1-1-2)加工ヘッド13の構成
 続いて、図3を参照しながら、加工ヘッド13の構成の一例について説明する。図3は、加工ヘッド13の構成の一例を示す断面図である。
(1-1-2) Configuration of the Machining Head 13 Next, an example of the configuration of the machining head 13 will be described with reference to Fig. 3. Fig. 3 is a cross-sectional view showing an example of the configuration of the machining head 13.
 図3に示すように、加工ヘッド13には、光ファイバ等の光伝送部材111を介して、加工光源11が生成した加工光ELが入射する。但し、加工ヘッド13には、ミラーを用いた空間伝送によって、加工光ELが入射してもよい。加工光源11は、加工ヘッド13の外部に配置されていてもよい。加工光源11は、加工ヘッド13の内部に配置されていてもよい。尚、加工光ELは、光ファイバ等の光伝送部材111を介することなく、加工ヘッド13に入射してもよい。 As shown in FIG. 3, the processing light EL generated by the processing light source 11 is incident on the processing head 13 via an optical transmission member 111 such as an optical fiber. However, the processing light EL may also be incident on the processing head 13 by spatial transmission using a mirror. The processing light source 11 may be disposed outside the processing head 13. The processing light source 11 may be disposed inside the processing head 13. The processing light EL may also be incident on the processing head 13 without passing through an optical transmission member 111 such as an optical fiber.
 加工ヘッド13は、上述したように、加工光学系131と、計測光学系132と、合成光学系133と、偏向光学系134と、照射光学系135とを備える。 As described above, the processing head 13 includes a processing optical system 131, a measurement optical system 132, a synthesis optical system 133, a deflection optical system 134, and an irradiation optical system 135.
 加工光学系131は、加工光源11が生成した加工光ELが入射する光学系である。加工光学系131は、加工光学系131に入射した加工光ELを、合成光学系133に向けて射出する光学系である。加工光学系131は、加工光学系131に入射した加工光ELを、合成光学系133を介して偏向光学系134に向けて射出する光学系である。加工光学系131は、加工光学系131に入射した加工光ELを、合成光学系133及び偏向光学系134を介して照射光学系135に向けて射出する光学系である。加工光学系131が射出した加工光ELは、合成光学系133、偏向光学系134及び照射光学系135を介してワークWに照射される。 The processing optical system 131 is an optical system into which the processing light EL generated by the processing light source 11 is incident. The processing optical system 131 is an optical system that emits the processing light EL incident on the processing optical system 131 toward the synthesis optical system 133. The processing optical system 131 is an optical system that emits the processing light EL incident on the processing optical system 131 toward the deflection optical system 134 via the synthesis optical system 133. The processing optical system 131 is an optical system that emits the processing light EL incident on the processing optical system 131 toward the irradiation optical system 135 via the synthesis optical system 133 and the deflection optical system 134. The processing light EL emitted by the processing optical system 131 is irradiated onto the workpiece W via the synthesis optical system 133, the deflection optical system 134, and the irradiation optical system 135.
 加工光学系131は、例えば、フォーカス制御光学系1311と、1/2波長板1312と、ビームスプリッタ1313と、1/2波長板1314と、ガルバノミラー1315と、集光レンズ1316と、検出器1317とを含んでいてもよい。 The processing optical system 131 may include, for example, a focus control optical system 1311, a half-wave plate 1312, a beam splitter 1313, a half-wave plate 1314, a galvanometer mirror 1315, a focusing lens 1316, and a detector 1317.
 加工光源11が生成した加工光ELは、フォーカス制御光学系1311に入射してもよい。フォーカス制御光学系1311は、加工光ELの集光位置CPを変更可能な光学部材である。具体的には、フォーカス制御光学系1311は、加工光ELの集光位置CPを、ワークWに照射される加工光ELの照射方向に沿って変更可能である。図3に示す例では、ワークWに照射される加工光ELの照射方向は、Z軸方向が主成分となる方向である。この場合、フォーカス制御光学系1311は、加工光ELの集光位置CPをZ軸方向に沿って変更可能である。また、加工ヘッド13がワークWの上方から加工光ELをワークWに照射するがゆえに、加工光ELの照射方向は、ワークWの表面(特に、上面)に交差する方向である。このため、フォーカス制御光学系1311は、加工光ELの集光位置CPを、ワークWの表面(特に、上面)に交差する方向に沿って変更可能であるとみなしてもよい。フォーカス制御光学系1311は、加工光ELの集光位置CPを、後述する照射光学系135の光軸EXの方向に沿って変更可能であるとみなしてもよい。 The processing light EL generated by the processing light source 11 may be incident on the focus control optical system 1311. The focus control optical system 1311 is an optical member capable of changing the focusing position CP of the processing light EL. Specifically, the focus control optical system 1311 can change the focusing position CP of the processing light EL along the irradiation direction of the processing light EL irradiated to the workpiece W. In the example shown in FIG. 3, the irradiation direction of the processing light EL irradiated to the workpiece W is a direction in which the Z-axis direction is the main component. In this case, the focus control optical system 1311 can change the focusing position CP of the processing light EL along the Z-axis direction. Also, since the processing head 13 irradiates the processing light EL to the workpiece W from above the workpiece W, the irradiation direction of the processing light EL is a direction that intersects with the surface (particularly, the upper surface) of the workpiece W. For this reason, the focus control optical system 1311 may be considered to be capable of changing the focusing position CP of the processing light EL along a direction that intersects with the surface (particularly, the upper surface) of the workpiece W. The focus control optical system 1311 may be considered to be capable of changing the focusing position CP of the processing light EL along the direction of the optical axis EX of the irradiation optical system 135, which will be described later.
 フォーカス制御光学系1311を通過した加工光ELは、1/2波長板1312を介して、ビームスプリッタ1313に入射する。ビームスプリッタ1313は、フォーカス制御光学系1311からビームスプリッタ1313に入射した加工光ELを、1/2波長板1314を介して、ガルバノミラー1315に向けて射出する。つまり、フォーカス制御光学系1311からビームスプリッタ1313に入射した加工光ELは、ビームスプリッタ1313を介して、ガルバノミラー1315に入射する。第1実施形態では、ビームスプリッタ1313は、偏光ビームスプリッタであってもよい。この場合、図3に示す例では、フォーカス制御光学系1311からビームスプリッタ1313に入射した加工光ELは、ビームスプリッタ1313の偏光分離面を通過して、ガルバノミラー1315に入射する。このため、1/2波長板1312は、加工光ELが、ビームスプリッタ1313の偏光分離面を通過可能な偏光方向(例えば、偏光分離面に対してp偏光となる偏光方向)を有する状態でビームスプリッタ1313の偏光分離面に入射するように、ビームスプリッタ1313に入射する加工光ELの偏光方向を制御してもよい。 The processing light EL that has passed through the focus control optical system 1311 is incident on the beam splitter 1313 via the half-wave plate 1312. The beam splitter 1313 emits the processing light EL that has entered the beam splitter 1313 from the focus control optical system 1311 toward the galvanometer mirror 1315 via the half-wave plate 1314. In other words, the processing light EL that has entered the beam splitter 1313 from the focus control optical system 1311 is incident on the galvanometer mirror 1315 via the beam splitter 1313. In the first embodiment, the beam splitter 1313 may be a polarizing beam splitter. In this case, in the example shown in FIG. 3, the processing light EL that has entered the beam splitter 1313 from the focus control optical system 1311 passes through the polarization separation surface of the beam splitter 1313 and is incident on the galvanometer mirror 1315. For this reason, the half-wave plate 1312 may control the polarization direction of the processed light EL that is incident on the beam splitter 1313 so that the processed light EL is incident on the polarization separation surface of the beam splitter 1313 in a state in which the processed light EL has a polarization direction that allows it to pass through the polarization separation surface of the beam splitter 1313 (for example, a polarization direction that is p-polarized with respect to the polarization separation surface).
 ビームスプリッタ1313を通過した加工光ELは、1/2波長板1314を介して、ガルバノミラー1315に入射する。ガルバノミラー1315は、加工光ELを偏向する(つまり、加工光ELの射出角度を変更する)偏向光学系である。ガルバノミラー1315は、加工光ELを偏向することで、照射光学系135の光軸EXに交差する面内(つまり、XY平面に沿った面内)における加工光ELの集光位置CPを変更する。通常、図3に示すように、加工ヘッド13は、光軸EXとワークWの表面とが交差する状態で、ワークWに加工光ELを照射する。このため、光軸EXに交差する面内における加工光ELの集光位置CPが変更されると、ワークWの表面における加工光ELの照射領域PAが、ワークWの表面に沿った方向において移動する。つまり、X軸方向及びY軸方向の少なくとも一方に沿って、加工光ELの照射領域PAが移動する。 The processing light EL that passes through the beam splitter 1313 is incident on the galvanometer mirror 1315 via the half-wave plate 1314. The galvanometer mirror 1315 is a deflection optical system that deflects the processing light EL (i.e., changes the emission angle of the processing light EL). By deflecting the processing light EL, the galvanometer mirror 1315 changes the focusing position CP of the processing light EL in a plane that intersects with the optical axis EX of the irradiation optical system 135 (i.e., in a plane along the XY plane). Normally, as shown in FIG. 3, the processing head 13 irradiates the processing light EL on the workpiece W in a state in which the optical axis EX and the surface of the workpiece W intersect. Therefore, when the focusing position CP of the processing light EL in the plane that intersects with the optical axis EX is changed, the irradiation area PA of the processing light EL on the surface of the workpiece W moves in a direction along the surface of the workpiece W. In other words, the irradiation area PA of the processing light EL moves along at least one of the X-axis direction and the Y-axis direction.
 ガルバノミラー1315は、X走査ミラー1315Xと、Y走査ミラー1315Yとを含む。X走査ミラー1315X及びY走査ミラー1315Yのそれぞれは、ガルバノミラー1315に入射する加工光ELの光路に対する角度が変更される傾斜角可変ミラーである。X走査ミラー1315Xは、ワークW上での加工光ELの照射領域PAがX軸方向に沿って移動するよう、加工光ELを偏向する。この場合、X走査ミラー1315Xは、Y軸廻りに回転又は揺動可能であってもよい。つまり、ガルバノミラー1315は、X走査ミラー1315XのθY方向の位置(或いは、Y軸周りの姿勢)を変更することで、ワークW上での加工光ELの照射領域PAをX軸方向に沿って移動可能であってもよい。Y走査ミラー1315Yは、ワークW上での加工光ELの照射領域PAがY軸方向に沿って移動するように、加工光ELを偏向する。この場合、Y走査ミラー1315Yは、X軸廻りに回転又は揺動可能であってもよい。つまり、ガルバノミラー1315は、Y走査ミラー1315YのθX方向の位置(或いは、X軸周りの姿勢)を変更することで、ワークW上での加工光ELの照射領域PAをY軸方向に沿って移動可能であってもよい。 The galvanometer mirror 1315 includes an X-scanning mirror 1315X and a Y-scanning mirror 1315Y. Each of the X-scanning mirror 1315X and the Y-scanning mirror 1315Y is an inclination angle variable mirror that changes the angle with respect to the optical path of the processing light EL incident on the galvanometer mirror 1315. The X-scanning mirror 1315X deflects the processing light EL so that the irradiation area PA of the processing light EL on the workpiece W moves along the X-axis direction. In this case, the X-scanning mirror 1315X may be rotatable or oscillating around the Y-axis. In other words, the galvanometer mirror 1315 may be able to move the irradiation area PA of the processing light EL on the workpiece W along the X-axis direction by changing the position of the X-scanning mirror 1315X in the θY direction (or the attitude around the Y-axis). The Y-scanning mirror 1315Y deflects the processing light EL so that the irradiation area PA of the processing light EL on the workpiece W moves along the Y-axis direction. In this case, the Y scanning mirror 1315Y may be capable of rotating or swinging around the X axis. In other words, the galvanometer mirror 1315 may be capable of moving the irradiation area PA of the processing light EL on the workpiece W along the Y axis direction by changing the position of the Y scanning mirror 1315Y in the θX direction (or the orientation around the X axis).
 加工光学系131から射出された加工光EL(この場合、ガルバノミラー1315から射出された加工光EL)は、合成光学系133に入射する。合成光学系133は、ダイクロイックミラー1331を含む。ダイクロイックミラー1331は、加工光EL及び計測光MLのいずれか一方の波長の光がダイクロイックミラー1331によって反射される一方で、加工光EL及び計測光MLのいずれか他方の波長の光がダイクロイックミラー1331を通過するようことが可能な光学特性を有している。図3は、加工光ELがダイクロイックミラー1331を通過する例を示している。 The processing light EL emitted from the processing optical system 131 (in this case, the processing light EL emitted from the galvanometer mirror 1315) is incident on the synthesis optical system 133. The synthesis optical system 133 includes a dichroic mirror 1331. The dichroic mirror 1331 has optical properties that allow light of one of the wavelengths of the processing light EL and the measurement light ML to be reflected by the dichroic mirror 1331, while light of the other wavelength of the processing light EL and the measurement light ML passes through the dichroic mirror 1331. Figure 3 shows an example of the processing light EL passing through the dichroic mirror 1331.
 ダイクロイックミラー1331を通過した加工光EL(つまり、合成光学系133から射出された加工光EL)は、偏向光学系134に入射する。偏向光学系134は、偏向光学系134に入射した加工光ELを、照射光学系135に向けて射出する。 The processed light EL that passes through the dichroic mirror 1331 (i.e., the processed light EL emitted from the synthesis optical system 133) enters the deflection optical system 134. The deflection optical system 134 emits the processed light EL that entered the deflection optical system 134 toward the irradiation optical system 135.
 ここで、上述したように、ダイクロイックミラー1331には、計測光ML#2-2に加えて加工光ELが入射する。ダイクロイックミラー1331は、ダイクロイックミラー1331に異なる方向からそれぞれ入射してきた加工光EL及び計測光ML#2-2を、同じ方向に向けて(つまり、同じ偏向光学系134に向けて)射出する。従って、ダイクロイックミラー1331は、実質的には、加工光EL及び計測光ML#2-2を合成する合成光学部材として機能する。 As described above, the processing light EL is incident on the dichroic mirror 1331 in addition to the measurement light ML#2-2. The dichroic mirror 1331 outputs the processing light EL and the measurement light ML#2-2, which are incident on the dichroic mirror 1331 from different directions, in the same direction (i.e., toward the same deflection optical system 134). Therefore, the dichroic mirror 1331 essentially functions as a combining optical element that combines the processing light EL and the measurement light ML#2-2.
 尚、加工光ELの波長と計測光MLの波長とが同一である場合には、合成光学系133は、合成光学部材として、ダイクロイックミラー1331に代えて、ビームスプリッタ(例えば、振幅分割型のビームスプリッタ又は偏光ビームスプリッタ)を備えていてもよい。この場合であっても、合成光学系133は、ビームスプリッタを用いて、加工光EL及び計測光ML#2-2を合成する(つまり、加工光ELの光路と計測光ML#2-2の光路とを合成する)ことができる。 In addition, when the wavelengths of the processing light EL and the measurement light ML are the same, the combining optical system 133 may include a beam splitter (e.g., an amplitude-splitting beam splitter or a polarizing beam splitter) as a combining optical element instead of the dichroic mirror 1331. Even in this case, the combining optical system 133 can combine the processing light EL and the measurement light ML#2-2 using the beam splitter (i.e., combine the optical path of the processing light EL with the optical path of the measurement light ML#2-2).
 偏向光学系134は、ガルバノミラー1341を備える。偏向光学系134に入射した加工光ELは、ガルバノミラー1341に入射する。ガルバノミラー1341は、加工光ELを偏向する(つまり、加工光ELの射出角度を変更する)。ガルバノミラー1341は、加工光ELを偏向することで、照射光学系135の光軸EXに交差する面内(つまり、XY平面に沿った面内)における加工光ELの集光位置CPを変更する。通常、図3に示すように、加工ヘッド13は、光軸EXとワークWの表面とが交差する状態で、ワークWに加工光ELを照射する。このため、光軸EXに交差する面内における加工光ELの集光位置CPが変更されると、ワークWの表面における加工光ELの照射領域PAが、ワークWの表面に沿った方向において移動する。つまり、X軸方向及びY軸方向の少なくとも一方に沿って、加工光ELの照射領域PAが移動する。 The deflection optical system 134 includes a galvanometer mirror 1341. The processing light EL incident on the deflection optical system 134 is incident on the galvanometer mirror 1341. The galvanometer mirror 1341 deflects the processing light EL (i.e., changes the emission angle of the processing light EL). By deflecting the processing light EL, the galvanometer mirror 1341 changes the focusing position CP of the processing light EL in a plane intersecting the optical axis EX of the irradiation optical system 135 (i.e., in a plane along the XY plane). Normally, as shown in FIG. 3, the processing head 13 irradiates the processing light EL on the workpiece W in a state in which the optical axis EX intersects with the surface of the workpiece W. Therefore, when the focusing position CP of the processing light EL in the plane intersecting the optical axis EX is changed, the irradiation area PA of the processing light EL on the surface of the workpiece W moves in a direction along the surface of the workpiece W. In other words, the irradiation area PA of the processing light EL moves along at least one of the X-axis direction and the Y-axis direction.
 ガルバノミラー1341は、X走査ミラー1341Xと、Y走査ミラー1341Yとを含む。X走査ミラー1341X及びY走査ミラー1341Yのそれぞれは、ガルバノミラー1341に入射する加工光ELの光路に対する角度が変更される傾斜角可変ミラーである。X走査ミラー1341Xは、ワークW上での加工光ELの照射領域PAがX軸方向に沿って移動するように、加工光ELを偏向する。この場合、X走査ミラー1341Xは、Y軸廻りに回転又は揺動可能であってもよい。つまり、ガルバノミラー1341は、X走査ミラー1341XのθY方向の位置(或いは、Y軸周りの姿勢)を変更することで、ワークW上での加工光ELの照射領域PAをX軸方向に沿って移動可能であってもよい。Y走査ミラー1341Yは、ワークW上での加工光ELの照射領域PAがY軸方向に沿って移動するように、加工光ELを偏向する。この場合、Y走査ミラー1341Yは、X軸廻りに回転又は揺動可能であってもよい。つまり、ガルバノミラー1341は、Y走査ミラー1341YのθX方向の位置(或いは、X軸周りの姿勢)を変更することで、ワークW上での加工光ELの照射領域PAをY軸方向に沿って移動可能であってもよい。 The galvanometer mirror 1341 includes an X-scanning mirror 1341X and a Y-scanning mirror 1341Y. Each of the X-scanning mirror 1341X and the Y-scanning mirror 1341Y is an inclination angle variable mirror in which the angle with respect to the optical path of the processing light EL incident on the galvanometer mirror 1341 is changed. The X-scanning mirror 1341X deflects the processing light EL so that the irradiation area PA of the processing light EL on the workpiece W moves along the X-axis direction. In this case, the X-scanning mirror 1341X may be rotatable or oscillating around the Y-axis. In other words, the galvanometer mirror 1341 may be able to move the irradiation area PA of the processing light EL on the workpiece W along the X-axis direction by changing the position of the X-scanning mirror 1341X in the θY direction (or the attitude around the Y-axis). The Y-scanning mirror 1341Y deflects the processing light EL so that the irradiation area PA of the processing light EL on the workpiece W moves along the Y-axis direction. In this case, the Y scanning mirror 1341Y may be capable of rotating or swinging around the X axis. In other words, the galvanometer mirror 1341 may be capable of moving the irradiation area PA of the processing light EL on the workpiece W along the Y axis direction by changing the position of the Y scanning mirror 1341Y in the θX direction (or the orientation around the X axis).
 偏向光学系134から射出された加工光ELは、照射光学系135に入射する。照射光学系135は、加工光ELをワークWに照射可能な光学系である。加工光ELをワークWに照射するために、照射光学系135は、fθレンズ1351を備えていてもよい。fθレンズ1351には、偏向光学系134から射出された加工光ELが入射する。fθレンズ1351は、偏向光学系134から射出された加工光ELを、ワークWに照射する。尚、照射光学系135の光軸EXは、fθレンズ1351の光軸であってもよい。 The processing light EL emitted from the deflection optical system 134 is incident on the irradiation optical system 135. The irradiation optical system 135 is an optical system capable of irradiating the processing light EL onto the workpiece W. In order to irradiate the processing light EL onto the workpiece W, the irradiation optical system 135 may be equipped with an fθ lens 1351. The processing light EL emitted from the deflection optical system 134 is incident on the fθ lens 1351. The fθ lens 1351 irradiates the processing light EL emitted from the deflection optical system 134 onto the workpiece W. The optical axis EX of the irradiation optical system 135 may be the optical axis of the fθ lens 1351.
 fθレンズ1351は、ガルバノミラー1341からの加工光ELを、ワークW上に集光してもよい。この場合、fθレンズ1351は、集光光学系として機能しているとみなしてもよい。 The fθ lens 1351 may focus the processing light EL from the galvanometer mirror 1341 onto the workpiece W. In this case, the fθ lens 1351 may be considered to function as a focusing optical system.
 fθレンズ1351が加工光ELをワークW上に集光する場合、fθレンズ1351から射出された加工光ELは、パワーを有する他の光学要素(言い換えれば、光学部材であって、例えばレンズ等)を介することなく、ワークWに照射されてもよい。この場合、fθレンズ1351は、加工光ELの光路上に配置される複数の光学要素のうちの最終段のパワーを有する光学要素(つまり、最もワークWに近い光学要素)であるため、最終光学素子又は対物光学系と称されてもよい。尚、光学要素のパワーは、光学要素の焦点距離の逆数であってもよい。また、この場合、ガルバノミラー1341からの加工光ELは、平行光束であってもよい。尚、照射光学系135は、fθとは異なる射影特性を有する対物光学系を備えていてもよい。 When the fθ lens 1351 focuses the processing light EL on the workpiece W, the processing light EL emitted from the fθ lens 1351 may be irradiated onto the workpiece W without passing through another optical element (in other words, an optical member such as a lens) having power. In this case, the fθ lens 1351 may be called the final optical element or objective optical system because it is the optical element having the final stage of power (i.e., the optical element closest to the workpiece W) among the multiple optical elements arranged on the optical path of the processing light EL. The power of the optical element may be the reciprocal of the focal length of the optical element. In this case, the processing light EL from the galvanometer mirror 1341 may be a parallel light beam. The irradiation optical system 135 may be equipped with an objective optical system having projection characteristics different from fθ.
 尚、ガルバノミラー1341を構成するX走査ミラー1341X及びY走査ミラー1341Y、並びに、ガルバノミラー1315を構成するX走査ミラー1315X及びY走査ミラー1315Yのうちの少なくとも一つは、照射光学系としてのfθレンズ1351の入射瞳位置及び/又はその共役位置に配置されていてもよい。X走査ミラー1341X及びY走査ミラー1341Y、並びに、X走査ミラー1315X及びY走査ミラー1315Yのうちの少なくとも一つは、fθレンズ1351の入射瞳位置と光学的に共役な位置に配置されていてもよい。ガルバノミラー1341及び1315を構成する走査ミラーが複数存在する場合、各走査ミラーを互いに光学的に共役にするためのリレー光学系が走査ミラー間に配置されていてもよい。 In addition, at least one of the X scanning mirror 1341X and the Y scanning mirror 1341Y constituting the galvanometer mirror 1341, and the X scanning mirror 1315X and the Y scanning mirror 1315Y constituting the galvanometer mirror 1315 may be disposed at the entrance pupil position of the fθ lens 1351 as the irradiation optical system and/or its conjugate position. At least one of the X scanning mirror 1341X and the Y scanning mirror 1341Y, and the X scanning mirror 1315X and the Y scanning mirror 1315Y may be disposed at a position optically conjugate with the entrance pupil position of the fθ lens 1351. When there are multiple scanning mirrors constituting the galvanometer mirrors 1341 and 1315, a relay optical system for making each scanning mirror optically conjugate with each other may be disposed between the scanning mirrors.
 照射光学系135は更に、1/4波長板1352を備えていてもよい。fθレンズ1351を通過した加工光ELは、1/4波長板1352を介してワークWに照射されてもよい。尚、1/4波長板1352は、パワーを有する光学部材ではないため、1/4波長板1352は最終光学素子ではないとみなしてもよい。つまり、照射光学系135が1/4波長板1352を備えている場合であっても、照射光学系135が1/4波長板1352を備えている場合と同様に、fθレンズ1351が最終光学素子として機能してもよい。 The irradiation optical system 135 may further include a quarter-wave plate 1352. The processing light EL that has passed through the fθ lens 1351 may be irradiated onto the workpiece W via the quarter-wave plate 1352. Note that the quarter-wave plate 1352 is not an optical member that has power, and therefore the quarter-wave plate 1352 may not be considered to be the final optical element. In other words, even if the irradiation optical system 135 includes the quarter-wave plate 1352, the fθ lens 1351 may function as the final optical element, in the same way as when the irradiation optical system 135 includes the quarter-wave plate 1352.
 ワークWに加工光ELが照射されると、加工光ELの照射に起因した光がワークWから生じる。つまり、ワークWに加工光ELが照射されると、加工光ELの照射に起因した光がワークWから射出される。加工光ELの照射に起因した光(言い換えれば、加工光ELの照射に起因してワークWから射出される光)は、ワークWで反射された加工光EL(つまり、反射光)を含んでいてもよい。 When the workpiece W is irradiated with the processing light EL, light resulting from the irradiation of the processing light EL is generated from the workpiece W. In other words, when the workpiece W is irradiated with the processing light EL, light resulting from the irradiation of the processing light EL is emitted from the workpiece W. The light resulting from the irradiation of the processing light EL (in other words, the light emitted from the workpiece W due to the irradiation of the processing light EL) may include processing light EL reflected by the workpiece W (i.e., reflected light).
 加工光ELの照射に起因してワークWから生じる光の少なくとも一部は、ワークWから加工ヘッド13に戻ってくる光として、加工ヘッド13に入射する。尚、以下の説明では、加工光ELが照射されたワークWから加工ヘッド13に戻ってくる光を、加工戻り光RELと称する。具体的には、加工光ELの照射に起因してワークWから射出される光のうちの、ワークWに入射する加工光ELの光路に沿って進行する光が、加工戻り光RELとして照射光学系135に入射する。この場合、照射光学系135から射出されてワークWに入射する加工光ELの光路と、ワークWから射出されて照射光学系135に入射する加工戻り光RELの光路とは同じであってもよい。照射光学系135に入射した加工戻り光RELは、1/4波長板1352及びfθレンズ1351を介して、偏向光学系134に入射する。偏向光学系134に入射した加工戻り光RELは、ガルバノミラー1341を介して、合成光学系133に入射する。合成光学系133に入射した加工戻り光RELは、ダイクロイックミラー1331を通過する。ダイクロイックミラー1331を通過した加工戻り光RELは、加工光学系131に入射する。 At least a portion of the light generated from the workpiece W due to the irradiation of the processing light EL is incident on the processing head 13 as light returning from the workpiece W to the processing head 13. In the following description, the light returning from the workpiece W irradiated with the processing light EL to the processing head 13 is referred to as the processing return light REL. Specifically, of the light emitted from the workpiece W due to the irradiation of the processing light EL, the light traveling along the optical path of the processing light EL incident on the workpiece W is incident on the irradiation optical system 135 as the processing return light REL. In this case, the optical path of the processing light EL emitted from the irradiation optical system 135 and incident on the workpiece W may be the same as the optical path of the processing return light REL emitted from the workpiece W and incident on the irradiation optical system 135. The processing return light REL incident on the irradiation optical system 135 is incident on the deflection optical system 134 via the quarter-wave plate 1352 and the fθ lens 1351. The processing return light REL that is incident on the deflection optical system 134 is incident on the synthesis optical system 133 via the galvanometer mirror 1341. The processing return light REL that is incident on the synthesis optical system 133 passes through the dichroic mirror 1331. The processing return light REL that passes through the dichroic mirror 1331 is incident on the processing optical system 131.
 加工光学系131に入射した加工戻り光RELは、ガルバノミラー1315及び1/2波長板1314を介してビームスプリッタ1313に入射する。ここで、上述したように、加工光源11から射出される加工光ELは、1/2波長板1312を通過してp偏光となった後に、ビームスプリッタ1313を通過する。その後、p偏光である加工光ELは、1/4波長板1352を介してワークWに照射される。このため、右回りの円偏光及び左回りの円偏光のいずれか一方である加工光ELが、ワークWに照射される。更に、加工戻り光RELがワークWで反射された加工光EL(つまり、反射光)を含むがゆえに、ワークWから1/4波長板1352に入射する加工戻り光RELは、右回りの円偏光及び左回りの円偏光のいずれか他方である。その結果、1/4波長板1352を通過した加工戻り光RELは、s偏光となっている。このため、s偏光である加工戻り光RELが、ビームスプリッタ1313に入射する。その結果、ビームスプリッタ1313に入射した加工戻り光RELは、ビームスプリッタ1313の偏光分離面によって反射される。この場合、加工光EL及び加工戻り光RELの双方の光路上に配置されるビームスプリッタ1313は、加工戻り光RELを加工光ELの光路とは異なる光路に分岐するビーム分岐部材として機能しているとみなしてもよい。 The processing return light REL incident on the processing optical system 131 is incident on the beam splitter 1313 via the galvanometer mirror 1315 and the 1/2 wavelength plate 1314. Here, as described above, the processing light EL emitted from the processing light source 11 passes through the 1/2 wavelength plate 1312 to become p-polarized light, and then passes through the beam splitter 1313. The processing light EL, which is p-polarized light, is then irradiated onto the workpiece W via the 1/4 wavelength plate 1352. Therefore, the processing light EL, which is either right-handed circularly polarized light or left-handed circularly polarized light, is irradiated onto the workpiece W. Furthermore, since the processing return light REL includes the processing light EL reflected by the workpiece W (i.e., reflected light), the processing return light REL incident on the 1/4 wavelength plate 1352 from the workpiece W is the other of right-handed circularly polarized light and left-handed circularly polarized light. As a result, the processing return light REL that has passed through the 1/4 wavelength plate 1352 is s-polarized light. Therefore, the processing return light REL, which is s-polarized light, enters the beam splitter 1313. As a result, the processing return light REL that enters the beam splitter 1313 is reflected by the polarization separation surface of the beam splitter 1313. In this case, the beam splitter 1313, which is disposed on the optical paths of both the processing light EL and the processing return light REL, may be considered to function as a beam splitting member that splits the processing return light REL into an optical path different from the optical path of the processing light EL.
 ビームスプリッタ1313によって反射された加工戻り光RELは、集光レンズ1316を介して検出器1317に入射する。この場合、加工光EL及び加工戻り光RELの双方の光路上に配置されるビームスプリッタ1313は、加工戻り光RELを加工光ELの光路とは異なる光路に分岐して検出器1317に入射させるビーム分岐部材として機能しているとみなしてもよい。検出器1317は、加工戻り光RELを検出する。このように、検出器1317は、ワークWから生じる加工戻り光RELを、照射光学系135(例えば、fθレンズ1351及び1/4波長板1352)、偏向光学系134(例えば、ガルバノミラー1341)、合成光学系133(例えば、ダイクロイックミラー1331)を介して検出する。検出器1317の検出結果は、制御ユニット2に出力される。 The processing return light REL reflected by the beam splitter 1313 is incident on the detector 1317 via the condenser lens 1316. In this case, the beam splitter 1313 arranged on the optical paths of both the processing light EL and the processing return light REL may be considered to function as a beam splitting member that splits the processing return light REL into an optical path different from the optical path of the processing light EL and makes it incident on the detector 1317. The detector 1317 detects the processing return light REL. In this way, the detector 1317 detects the processing return light REL generated from the workpiece W via the irradiation optical system 135 (e.g., the fθ lens 1351 and the 1/4 wavelength plate 1352), the deflection optical system 134 (e.g., the galvanometer mirror 1341), and the synthesis optical system 133 (e.g., the dichroic mirror 1331). The detection result of the detector 1317 is output to the control unit 2.
 制御ユニット2は、検出器1317の検出結果を取得する。制御ユニット2は、検出器1317の検出結果に基づいて、ワークWの計測情報(例えば、ワークWの位置に関する位置情報を含む計測情報)を生成してもよい。ここで、図4を参照しながら、検出器1317の検出結果に基づいてワークWの計測情報を生成する方法の一例について説明する。 The control unit 2 acquires the detection results of the detector 1317. The control unit 2 may generate measurement information of the workpiece W (e.g., measurement information including position information regarding the position of the workpiece W) based on the detection results of the detector 1317. Here, with reference to FIG. 4, an example of a method for generating measurement information of the workpiece W based on the detection results of the detector 1317 will be described.
 図4は、Z軸方向における加工光ELの集光位置CPと検出器1317の検出結果との関係を示すグラフである。尚、図4は、検出器1317の検出結果として、検出器1317が検出した加工戻り光RELの光量が用いられる例を示している。加工戻り光RELの光量は、検出器1317の光検出面上での単位面積当たりの加工戻り光RELの光量を意味していてもよい。この場合、加工戻り光RELの光量は、実質的には加工戻り光RELの強度と等価であるとみなしてもよい。つまり、検出器1317の検出結果として、検出器1317が検出した加工光ELの強度が用いられてもよい。 Figure 4 is a graph showing the relationship between the focusing position CP of the processing light EL in the Z-axis direction and the detection result of the detector 1317. Note that Figure 4 shows an example in which the amount of light of the processing return light REL detected by the detector 1317 is used as the detection result of the detector 1317. The amount of light of the processing return light REL may mean the amount of light of the processing return light REL per unit area on the light detection surface of the detector 1317. In this case, the amount of light of the processing return light REL may be considered to be substantially equivalent to the intensity of the processing return light REL. In other words, the intensity of the processing light EL detected by the detector 1317 may be used as the detection result of the detector 1317.
 第1実施形態では、制御ユニット2は、Z軸方向における加工光ELの集光位置CPと検出器1317の検出結果との関係(つまり、図4に示す関係)に基づいて、加工光ELの光路に沿った方向(例えば、Z軸方向)におけるワークWの位置を算出(言い換えれば、計測)してもよい。言い換えれば、制御ユニット2は、加工光ELの光路に沿った方向(例えば、Z軸方向)における加工ヘッド13とワークWとの間の距離を算出してもよい。より具体的には、制御ユニット2は、ワークWのうち加工光ELが照射された被照射部分の位置を算出してもよい。制御ユニット2は、ワークWのうち加工光ELが照射された被照射部分と加工ヘッド13との間の距離を算出してもよい。 In the first embodiment, the control unit 2 may calculate (in other words, measure) the position of the workpiece W in a direction along the optical path of the processing light EL (e.g., the Z-axis direction) based on the relationship between the focusing position CP of the processing light EL in the Z-axis direction and the detection result of the detector 1317 (i.e., the relationship shown in FIG. 4). In other words, the control unit 2 may calculate the distance between the processing head 13 and the workpiece W in a direction along the optical path of the processing light EL (e.g., the Z-axis direction). More specifically, the control unit 2 may calculate the position of the irradiated portion of the workpiece W irradiated with the processing light EL. The control unit 2 may calculate the distance between the irradiated portion of the workpiece W irradiated with the processing light EL and the processing head 13.
 尚、ワークWのZ軸方向の位置を示す位置情報を生成するために用いられる加工戻り光RELの検出結果は、Z軸方向における加工ヘッド13とワークWとの間の距離の計測結果に関する情報を含んでいるとみなしてもよい。この場合、加工戻り光RELの検出結果は、距離計測結果に関する情報であるとみなしてもよい。或いは、加工戻り光RELの検出結果に基づいて生成される位置情報が、距離計測結果に関する情報であるとみなしてもよい。 The detection result of the processing return light REL used to generate position information indicating the position of the workpiece W in the Z-axis direction may be considered to include information about the measurement result of the distance between the processing head 13 and the workpiece W in the Z-axis direction. In this case, the detection result of the processing return light REL may be considered to be information about the distance measurement result. Alternatively, the position information generated based on the detection result of the processing return light REL may be considered to be information about the distance measurement result.
 加工光ELの集光位置CPと検出器1317の検出結果との関係に基づいてワークWの位置を算出するために、第1実施形態では、ワークWと検出器1317の光検出面又は光検出面の近傍の面とが光学的に共役となるように、ワークWと検出器1317とが位置合わせされていてもよい。尚、検出器1317の光検出面は、検出器1317が加工光ELを検出するために用いる受光素子(例えば、フォトディテクタ)の受光面を意味していてもよい。 In order to calculate the position of the workpiece W based on the relationship between the focusing position CP of the processing light EL and the detection result of the detector 1317, in the first embodiment, the workpiece W and the detector 1317 may be aligned so that the workpiece W and the light detection surface of the detector 1317 or a surface near the light detection surface are optically conjugate. The light detection surface of the detector 1317 may mean the light receiving surface of a light receiving element (e.g., a photodetector) used by the detector 1317 to detect the processing light EL.
 この場合、図4に示すように、検出器1317が検出する加工戻り光RELの光量は、加工光ELの集光位置CPがワークWの表面(特に、上面)に一致する場合に最大となる。図4に示すように、検出器1317が検出する加工戻り光RELの光量は、加工光ELの集光位置CPがワークWの表面(特に、上面)から離れれば離れるほど少なくなる。このため、加工戻り光RELの光量が最大となる場合の加工光ELの集光位置CPは、ワークWの位置(例えば、ワークWの表面(特に、上面)の位置)と等価である。加工光ELの集光位置CPは、加工光ELの集光位置CPを制御するためのフォーカス制御光学系1311の動作を制御するための制御信号から特定可能である。このため、制御ユニット2は、加工光ELの集光位置CPと検出器1317の検出結果との関係と、フォーカス制御光学系1311の動作を制御するための制御信号とに基づいて、加工戻り光RELの光量が最大となる場合の加工光ELの集光位置CPを、ワークWの位置(例えば、ワークWの表面(特に、上面)の位置)として算出してもよい。つまり、制御ユニット2は、加工光ELの集光位置CPがワークWの表面(特に、上面)に位置する時点での加工光ELの集光位置CPを、ワークWの位置(例えば、ワークWの表面(特に、上面)の位置)として算出してもよい。この場合、加工システムSYSaは、共焦点法を用いて加工光ELの集光位置CPを計測することでワークWの位置を計測しているとみなしてもよい。 In this case, as shown in FIG. 4, the amount of light of the processing return light REL detected by the detector 1317 is maximum when the focusing position CP of the processing light EL coincides with the surface (particularly the top surface) of the workpiece W. As shown in FIG. 4, the amount of light of the processing return light REL detected by the detector 1317 decreases as the focusing position CP of the processing light EL moves away from the surface (particularly the top surface) of the workpiece W. Therefore, the focusing position CP of the processing light EL when the amount of light of the processing return light REL is maximum is equivalent to the position of the workpiece W (for example, the position of the surface (particularly the top surface) of the workpiece W). The focusing position CP of the processing light EL can be identified from a control signal for controlling the operation of the focus control optical system 1311 for controlling the focusing position CP of the processing light EL. Therefore, the control unit 2 may calculate the focus position CP of the processing light EL when the amount of light from the processing return light REL is maximum as the position of the workpiece W (for example, the position of the surface (particularly, the upper surface) of the workpiece W) based on the relationship between the focus position CP of the processing light EL and the detection result of the detector 1317 and the control signal for controlling the operation of the focus control optical system 1311. In other words, the control unit 2 may calculate the focus position CP of the processing light EL at the time when the focus position CP of the processing light EL is located on the surface (particularly, the upper surface) of the workpiece W as the position of the workpiece W (for example, the position of the surface (particularly, the upper surface) of the workpiece W). In this case, the processing system SYSa may be considered to measure the position of the workpiece W by measuring the focus position CP of the processing light EL using the confocal method.
 図4に示す加工光ELの集光位置CPと検出器1317の検出結果との関係を取得するために、加工ユニット1は、制御ユニット2の制御下で、加工光ELをワークWのある位置に照射する照射動作と、フォーカス制御光学系1311を用いて加工光ELの集光位置CPをZ軸方向に沿って移動させるフォーカス動作とを交互に繰り返してもよい。特に、加工ユニット1は、照射動作とフォーカス動作とを、加工光ELが照射される照射領域PAのワークW上での位置を変更することなく交互に繰り返してもよい。この場合、加工ヘッド13及びステージ15は、移動しなくてもよい。加工ヘッド13及びステージ15が移動しない場合には、フォーカス動作は、実質的には、Z軸方向におけるワークWと加工光ELの集光位置CPとの位置関係を変更する動作と等価であるとみなしてもよい。その結果、制御ユニット2は、Z軸方向において互いに異なる複数の集光位置CPにそれぞれ対応して、加工光ELの光量を示す情報(つまり、検出器1317の検出結果)を複数取得する。この場合、制御ユニット2は、図4に示すように、加工光ELの光量を示す複数の情報(つまり、検出器1317の複数回の検出結果)をそれぞれ示す複数のプロット点をグラフ上にプロットすると共に、当該複数のプロット点を補間することで、加工光ELの集光位置CPと検出器1317の検出結果との関係を取得してもよい。 4 and the detection result of the detector 1317, the processing unit 1 may alternately repeat, under the control of the control unit 2, an irradiation operation for irradiating a position of the workpiece W with the processing light EL and a focus operation for moving the focus position CP of the processing light EL along the Z-axis direction using the focus control optical system 1311. In particular, the processing unit 1 may alternately repeat the irradiation operation and the focus operation without changing the position on the workpiece W of the irradiation area PA to which the processing light EL is irradiated. In this case, the processing head 13 and the stage 15 do not need to move. When the processing head 13 and the stage 15 do not move, the focus operation may be considered to be substantially equivalent to an operation for changing the positional relationship between the workpiece W and the focus position CP of the processing light EL in the Z-axis direction. As a result, the control unit 2 acquires a plurality of pieces of information indicating the light amount of the processing light EL (i.e., the detection result of the detector 1317) corresponding to a plurality of different focus positions CP in the Z-axis direction. In this case, as shown in FIG. 4, the control unit 2 may plot multiple plot points on a graph, each of which indicates multiple pieces of information indicating the light amount of the processing light EL (i.e., multiple detection results of the detector 1317), and may interpolate between the multiple plot points to obtain the relationship between the focusing position CP of the processing light EL and the detection results of the detector 1317.
 更には、ワークW上での加工光ELの照射位置がガルバノミラー1341及び1315の駆動状態によって決定されるがゆえに、制御ユニット2は、ガルバノミラー1341及び1315の駆動状態に基づいて、加工光ELの光路に交差する方向(例えば、X軸方向及びY軸方向の少なくとも一つ)における被照射部分の位置を算出してもよい。その結果、制御ユニット2は、加工ヘッド13を基準とする計測座標系における被照射部分の位置(例えば、三次元座標空間内での位置)を示す位置情報を生成してもよい。 Furthermore, since the irradiation position of the processing light EL on the workpiece W is determined by the drive state of the galvanometer mirrors 1341 and 1315, the control unit 2 may calculate the position of the irradiated portion in a direction intersecting the optical path of the processing light EL (e.g., at least one of the X-axis direction and the Y-axis direction) based on the drive state of the galvanometer mirrors 1341 and 1315. As a result, the control unit 2 may generate position information indicating the position of the irradiated portion in a measurement coordinate system based on the processing head 13 (e.g., a position in a three-dimensional coordinate space).
 加工ヘッド13は、ワークWの複数の部分に加工光ELを照射してもよい。例えば、加工ヘッド13がワークWの複数の部分に加工光ELを照射するように、ガルバノミラー1341及び1315の少なくとも一方は、ワークW上での加工光ELの照射位置を変更してもよい。例えば、加工ヘッド13がワークWの複数の部分に加工光ELを照射するように、加工ヘッド13及びステージ15の少なくとも一方が移動してもよい。加工光ELがワークWの複数の部分に照射される場合には、制御ユニット2は、ワークWの複数の部分の位置を示す位置情報を、計測情報として生成してもよい。その結果、制御ユニット2は、複数の部分の位置を示す位置情報に基づいて、ワークWの形状を示す形状情報を、計測情報として生成してもよい。例えば、制御ユニット2は、位置が特定された複数の部分を結ぶ仮想的な平面(或いは、曲面)から構成される三次元形状を、ワークWの形状として算出することで、ワークWの形状を示す形状情報を生成してもよい。 The processing head 13 may irradiate multiple parts of the workpiece W with the processing light EL. For example, at least one of the galvanometer mirrors 1341 and 1315 may change the irradiation position of the processing light EL on the workpiece W so that the processing head 13 irradiates multiple parts of the workpiece W with the processing light EL. For example, at least one of the processing head 13 and the stage 15 may move so that the processing head 13 irradiates multiple parts of the workpiece W with the processing light EL. When the processing light EL is irradiated to multiple parts of the workpiece W, the control unit 2 may generate position information indicating the positions of the multiple parts of the workpiece W as measurement information. As a result, the control unit 2 may generate shape information indicating the shape of the workpiece W as measurement information based on the position information indicating the positions of the multiple parts. For example, the control unit 2 may generate shape information indicating the shape of the workpiece W by calculating a three-dimensional shape consisting of a virtual plane (or a curved surface) connecting the multiple parts whose positions have been identified as the shape of the workpiece W.
 加工ヘッド13には更に、光ファイバ等の光伝送部材121を介して、計測光源12が生成した計測光MLが入射する。但し、加工ヘッド13には、ミラーを用いた空間伝送によって、計測光MLが入射してもよい。計測光源12は、加工ヘッド13の外部に配置されていてもよい。計測光源12は、加工ヘッド13の内部に配置されていてもよい。尚、計測光MLは、光ファイバ等の光伝送部材121を介することなく、加工ヘッド13に入射してもよい。また、光伝送部材121は、偏波面保存型の光ファイバであってもよい。 The measurement light ML generated by the measurement light source 12 is further incident on the processing head 13 via an optical transmission member 121 such as an optical fiber. However, the measurement light ML may also be incident on the processing head 13 by spatial transmission using a mirror. The measurement light source 12 may be disposed outside the processing head 13. The measurement light source 12 may be disposed inside the processing head 13. The measurement light ML may be incident on the processing head 13 without passing through an optical transmission member 121 such as an optical fiber. The optical transmission member 121 may also be a polarization-preserving optical fiber.
 計測光源12は、光コム光源を含んでいてもよい。光コム光源は、周波数軸上で等間隔に並んだ周波数成分を含む光(以降、“光周波数コム”と称する)をパルス光として生成可能な光源である。この場合、計測光源12は、周波数軸上で等間隔に並んだ周波数成分を含むパルス光を、計測光MLとして射出する。但し、計測光源12は、光コム光源とは異なる光源を含んでいてもよい。 The measurement light source 12 may include an optical comb light source. An optical comb light source is a light source capable of generating light containing frequency components equally spaced on the frequency axis (hereinafter referred to as an "optical frequency comb") as pulsed light. In this case, the measurement light source 12 emits pulsed light containing frequency components equally spaced on the frequency axis as the measurement light ML. However, the measurement light source 12 may include a light source other than the optical comb light source.
 図3に示す例では、加工システムSYSaは、複数の計測光源12を備えている。例えば、加工システムSYSaは、計測光源12#1と、計測光源12#2とを備えていてもよい。複数の計測光源12は、互いに位相同期され且つ干渉性のある複数の計測光MLをそれぞれ射出してもよい。例えば、複数の計測光源12は、発振周波数が異なっていてもよい。このため、複数の計測光源12がそれぞれ射出する複数の計測光MLは、パルス周波数(例えば、単位時間当たりのパルス光の数であり、パルス光の発光周期の逆数)が異なる複数の計測光MLとなっていてもよい。但し、加工システムSYSaは、単一の計測光源12を備えていてもよい。 In the example shown in FIG. 3, the processing system SYSa includes multiple measurement light sources 12. For example, the processing system SYSa may include a measurement light source 12#1 and a measurement light source 12#2. The multiple measurement light sources 12 may each emit multiple measurement light beams ML that are phase-synchronized and coherent with each other. For example, the multiple measurement light sources 12 may have different oscillation frequencies. Therefore, the multiple measurement light beams ML emitted by the multiple measurement light sources 12 may have different pulse frequencies (e.g., the number of pulsed lights per unit time, which is the reciprocal of the emission period of the pulsed lights). However, the processing system SYSa may include a single measurement light source 12.
 計測光源12から射出された計測光MLは、計測光学系132に入射する。計測光学系132は、計測光学系132に入射した計測光MLを、合成光学系133に向けて射出する光学系である。計測光学系132は、計測光学系132に入射した計測光MLを、合成光学系133を介して偏向光学系134に向けて射出する光学系である。計測光学系132は、計測光学系132に入射した計測光MLを、合成光学系133及び偏向光学系134を介して照射光学系135に向けて射出する光学系である。計測光学系132が射出した計測光MLは、合成光学系133、偏向光学系134及び照射光学系135を介してワークWに照射される。 The measurement light ML emitted from the measurement light source 12 is incident on the measurement optical system 132. The measurement optical system 132 is an optical system that emits the measurement light ML incident on the measurement optical system 132 toward the synthesis optical system 133. The measurement optical system 132 is an optical system that emits the measurement light ML incident on the measurement optical system 132 toward the deflection optical system 134 via the synthesis optical system 133. The measurement optical system 132 is an optical system that emits the measurement light ML incident on the measurement optical system 132 toward the irradiation optical system 135 via the synthesis optical system 133 and the deflection optical system 134. The measurement light ML emitted by the measurement optical system 132 is irradiated onto the workpiece W via the synthesis optical system 133, the deflection optical system 134, and the irradiation optical system 135.
 計測光学系132は、例えば、ミラー1320と、ビームスプリッタ1321と、ビームスプリッタ1322と、検出器1323と、ビームスプリッタ1324と、ミラー1325と、検出器1326と、ミラー1327と、ガルバノミラー1328とを備える。 The measurement optical system 132 includes, for example, a mirror 1320, a beam splitter 1321, a beam splitter 1322, a detector 1323, a beam splitter 1324, a mirror 1325, a detector 1326, a mirror 1327, and a galvanometer mirror 1328.
 計測光源12から射出された計測光MLは、ビームスプリッタ1321に入射する。具体的には、計測光源12#1から射出された計測光ML(以降、“計測光ML#1”と称する)は、ビームスプリッタ1321に入射する。計測光源12#2から射出された計測光ML(以降、“計測光ML#2”と称する)は、ミラー1320を介して、ビームスプリッタ1321に入射する。ビームスプリッタ1321は、ビームスプリッタ1321に入射した計測光ML#1及びML#2を、ビームスプリッタ1322に向けて射出する。つまり、ビームスプリッタ1321は、それぞれ異なる方向からビームスプリッタ1321に入射した計測光ML#1及びML#2を、同じ方向(つまり、ビームスプリッタ1322が配置されている方向)に向けて射出する。 The measurement light ML emitted from the measurement light source 12 is incident on the beam splitter 1321. Specifically, the measurement light ML emitted from the measurement light source 12#1 (hereinafter referred to as "measurement light ML#1") is incident on the beam splitter 1321. The measurement light ML emitted from the measurement light source 12#2 (hereinafter referred to as "measurement light ML#2") is incident on the beam splitter 1321 via the mirror 1320. The beam splitter 1321 emits the measurement light ML#1 and ML#2 incident on the beam splitter 1321 toward the beam splitter 1322. In other words, the beam splitter 1321 emits the measurement light ML#1 and ML#2 incident on the beam splitter 1321 from different directions toward the same direction (i.e., the direction in which the beam splitter 1322 is disposed).
 ビームスプリッタ1322は、ビームスプリッタ1322に入射した計測光ML#1の一部である計測光ML#1-1を、検出器1323に向けて反射する。ビームスプリッタ1322は、ビームスプリッタ1322に入射した計測光ML#1の他の一部である計測光ML#1-2を、ビームスプリッタ1324に向けて射出する。ビームスプリッタ1322は、ビームスプリッタ1322に入射した計測光ML#2の一部である計測光ML#2-1を、検出器1323に向けて反射する。ビームスプリッタ1322は、ビームスプリッタ1322に入射した計測光ML#2の他の一部である計測光ML#2-2を、ビームスプリッタ1324に向けて射出する。 Beam splitter 1322 reflects measurement light ML#1-1, which is a part of measurement light ML#1 incident on beam splitter 1322, toward detector 1323. Beam splitter 1322 emits measurement light ML#1-2, which is the other part of measurement light ML#1 incident on beam splitter 1322, toward beam splitter 1324. Beam splitter 1322 reflects measurement light ML#2-1, which is a part of measurement light ML#2 incident on beam splitter 1322, toward detector 1323. Beam splitter 1322 emits measurement light ML#2-2, which is the other part of measurement light ML#2 incident on beam splitter 1322, toward beam splitter 1324.
 ビームスプリッタ1322から射出された計測光ML#1-1及びML#2-1は、検出器1323に入射する。検出器1323は、計測光ML#1-1と計測光ML#2-1とを受光する(つまり、検出する)。特に、検出器1323は、計測光ML#1-1と計測光ML#2-1とが干渉することで生成される干渉光(言い換えれば、干渉ビーム)を受光する。尚、計測光ML#1-1と計測光ML#2-1とが干渉することで生成される干渉光を受光する動作は、計測光ML#1-1と計測光ML#2-1とを受光する動作と等価であるとみなしてもよい。検出器1323の検出結果は、制御ユニット2に出力される。 The measurement light ML#1-1 and ML#2-1 emitted from the beam splitter 1322 are incident on the detector 1323. The detector 1323 receives (i.e., detects) the measurement light ML#1-1 and the measurement light ML#2-1. In particular, the detector 1323 receives interference light (in other words, an interference beam) generated by the interference between the measurement light ML#1-1 and the measurement light ML#2-1. The operation of receiving the interference light generated by the interference between the measurement light ML#1-1 and the measurement light ML#2-1 may be considered equivalent to the operation of receiving the measurement light ML#1-1 and the measurement light ML#2-1. The detection result of the detector 1323 is output to the control unit 2.
 ビームスプリッタ1322から射出された計測光ML#1-2及びML#2-2は、ビームスプリッタ1324に入射する。ビームスプリッタ1324は、ビームスプリッタ1324に入射した計測光ML#1-2の少なくとも一部を、ミラー1325に向けて射出する。ビームスプリッタ1324は、ビームスプリッタ1324に入射した計測光ML#2-2の少なくとも一部を、ミラー1327に向けて射出する。 The measurement light ML#1-2 and ML#2-2 emitted from the beam splitter 1322 enter the beam splitter 1324. The beam splitter 1324 emits at least a portion of the measurement light ML#1-2 that entered the beam splitter 1324 toward the mirror 1325. The beam splitter 1324 emits at least a portion of the measurement light ML#2-2 that entered the beam splitter 1324 toward the mirror 1327.
 ビームスプリッタ1324から射出された計測光ML#1-2は、ミラー1325に入射する。ミラー1325に入射した計測光ML#1-2は、ミラー1325の反射面(反射面は、参照面と称されてもよい)によって反射される。具体的には、ミラー1325は、ミラー1325に入射した計測光ML#1-2をビームスプリッタ1324に向けて反射する。つまり、ミラー1325は、ミラー1325に入射した計測光ML#1-2を、その反射光である計測光ML#1-3としてビームスプリッタ1324に向けて射出する。この場合、計測光ML#1-3は、参照光と称されてもよい。ミラー1325から射出された計測光ML#1-3は、ビームスプリッタ1324に入射する。ビームスプリッタ1324は、ビームスプリッタ1324に入射した計測光ML#1-3をビームスプリッタ1322に向けて射出する。ビームスプリッタ1324から射出された計測光ML#1-3は、ビームスプリッタ1322に入射する。ビームスプリッタ1322は、ビームスプリッタ1322に入射した計測光ML#1-3を、検出器1326に向けて射出する。 The measurement light ML#1-2 emitted from the beam splitter 1324 is incident on the mirror 1325. The measurement light ML#1-2 incident on the mirror 1325 is reflected by the reflecting surface of the mirror 1325 (the reflecting surface may be referred to as a reference surface). Specifically, the mirror 1325 reflects the measurement light ML#1-2 incident on the mirror 1325 toward the beam splitter 1324. In other words, the mirror 1325 emits the measurement light ML#1-2 incident on the mirror 1325 as the reflected light, measurement light ML#1-3, toward the beam splitter 1324. In this case, the measurement light ML#1-3 may be referred to as a reference light. The measurement light ML#1-3 emitted from the mirror 1325 is incident on the beam splitter 1324. The beam splitter 1324 emits the measurement light ML#1-3 incident on the beam splitter 1324 toward the beam splitter 1322. The measurement light ML#1-3 emitted from the beam splitter 1324 is incident on the beam splitter 1322. The beam splitter 1322 emits the measurement light ML#1-3 incident on the beam splitter 1322 toward the detector 1326.
 一方で、ビームスプリッタ1324から射出された計測光ML#2-2は、ミラー1327に入射する。ミラー1327は、ミラー1327に入射した計測光ML#2-2をガルバノミラー1328に向けて反射する。つまり、ミラー1327は、ミラー1327に入射した計測光ML#2-2をガルバノミラー1328に向けて射出する。 Meanwhile, the measurement light ML#2-2 emitted from the beam splitter 1324 is incident on the mirror 1327. The mirror 1327 reflects the measurement light ML#2-2 incident on the mirror 1327 toward the galvanometer mirror 1328. In other words, the mirror 1327 emits the measurement light ML#2-2 incident on the mirror 1327 toward the galvanometer mirror 1328.
 ガルバノミラー1328は、計測光ML#2-2を偏向する(つまり、計測光ML#2-2の射出角度を変更する)。ガルバノミラー1328は、計測光ML#2-2を偏向することで、照射光学系135の光軸EXに交差する面内(つまり、XY平面に沿った面内)における計測光ML#2-2の集光位置を変更する。通常、図3に示すように、加工ヘッド13は、光軸EXとワークWの表面とが交差する状態で、ワークWに計測光ML#2-2を照射する。このため、光軸EXに交差する面内における計測光ML#2-2の集光位置が変更されると、ワークWの表面における計測光ML#2-2の照射領域MAが、ワークWの表面に沿った方向において移動する。つまり、X軸方向及びY軸方向の少なくとも一方に沿って、計測光ML#2-2の照射領域MAが移動される。 The galvanometer mirror 1328 deflects the measurement light ML#2-2 (i.e., changes the emission angle of the measurement light ML#2-2). By deflecting the measurement light ML#2-2, the galvanometer mirror 1328 changes the focusing position of the measurement light ML#2-2 in a plane intersecting the optical axis EX of the irradiation optical system 135 (i.e., in a plane along the XY plane). Normally, as shown in FIG. 3, the machining head 13 irradiates the workpiece W with the measurement light ML#2-2 in a state in which the optical axis EX and the surface of the workpiece W intersect. Therefore, when the focusing position of the measurement light ML#2-2 in the plane intersecting the optical axis EX is changed, the irradiation area MA of the measurement light ML#2-2 on the surface of the workpiece W moves in a direction along the surface of the workpiece W. In other words, the irradiation area MA of the measurement light ML#2-2 moves along at least one of the X-axis direction and the Y-axis direction.
 ガルバノミラー1328は、X走査ミラー1328Xと、Y走査ミラー1328Yとを含む。X走査ミラー1328X及びY走査ミラー1328Yのそれぞれは、ガルバノミラー1328に入射する計測光ML#2-2の光路に対する角度が変更される傾斜角可変ミラーである。X走査ミラー1328Xは、ワークW上での計測光ML#2-2の照射領域MAがX軸方向に沿って移動するよう、計測光ML#2-2を偏向する。この場合、X走査ミラー1328Xは、Y軸廻りに回転又は揺動可能であってもよい。つまり、ガルバノミラー1328は、X走査ミラー1328XのθY方向の位置(或いは、Y軸周りの姿勢)を変更することで、ワークW上での計測光ML#2-2の照射領域MAをX軸方向に沿って移動可能であってもよい。Y走査ミラー1328Yは、ワークW上での計測光ML#2-2の照射領域MAがY軸方向に沿って移動するよう、計測光ML#2-2を偏向する。この場合、Y走査ミラー1328Yは、X軸廻りに回転又は揺動可能であってもよい。つまり、ガルバノミラー1328は、Y走査ミラー1328YのθX方向の位置(或いは、X軸周りの姿勢)を変更することで、ワークW上での計測光ML#2-2の照射領域MAをY軸方向に沿って移動可能であってもよい。 The galvanometer mirror 1328 includes an X-scanning mirror 1328X and a Y-scanning mirror 1328Y. Each of the X-scanning mirror 1328X and the Y-scanning mirror 1328Y is a tilt-angle variable mirror that changes the angle with respect to the optical path of the measurement light ML#2-2 incident on the galvanometer mirror 1328. The X-scanning mirror 1328X deflects the measurement light ML#2-2 so that the irradiation area MA of the measurement light ML#2-2 on the workpiece W moves along the X-axis direction. In this case, the X-scanning mirror 1328X may be rotatable or oscillating around the Y-axis. In other words, the galvanometer mirror 1328 may be able to move the irradiation area MA of the measurement light ML#2-2 on the workpiece W along the X-axis direction by changing the position of the X-scanning mirror 1328X in the θY direction (or the attitude around the Y-axis). The Y-scanning mirror 1328Y deflects the measurement light ML#2-2 so that the irradiation area MA of the measurement light ML#2-2 on the workpiece W moves along the Y-axis direction. In this case, the Y-scanning mirror 1328Y may be capable of rotating or swinging around the X-axis. In other words, the galvanometer mirror 1328 may be capable of moving the irradiation area MA of the measurement light ML#2-2 on the workpiece W along the Y-axis direction by changing the position of the Y-scanning mirror 1328Y in the θX direction (or the orientation around the X-axis).
 計測光学系132から射出された計測光ML#2-2(この場合、ガルバノミラー1328から射出された計測光ML#2-2)は、合成光学系133に入射する。上述したように、合成光学系133が備えるダイクロイックミラー1331は、加工光EL及び計測光MLのいずれか一方の波長の光がダイクロイックミラー1331によって反射される一方で、加工光EL及び計測光MLのいずれか他方の波長の光がダイクロイックミラー1331を通過するようことが可能な光学特性を有している。上述したように、図3に示す例では、加工光ELがダイクロイックミラー1331を通過するがゆえに、計測光ML#2-2は、ダイクロイックミラー1331によって反射される。ダイクロイックミラー1331が反射した計測光ML#2-2は、偏向光学系134に入射する。尚、ガルバノミラー1328を設けず、ミラー1327(或いはビームスプリッタ1324)からの計測光ML#2-2が直接的にダイクロイックミラー1331に入射する構成であってもよい。 The measurement light ML#2-2 emitted from the measurement optical system 132 (in this case, the measurement light ML#2-2 emitted from the galvanometer mirror 1328) is incident on the synthesis optical system 133. As described above, the dichroic mirror 1331 provided in the synthesis optical system 133 has optical properties that enable light of one of the wavelengths of the processing light EL and the measurement light ML to be reflected by the dichroic mirror 1331, while light of the other wavelength of the processing light EL and the measurement light ML to pass through the dichroic mirror 1331. As described above, in the example shown in FIG. 3, since the processing light EL passes through the dichroic mirror 1331, the measurement light ML#2-2 is reflected by the dichroic mirror 1331. The measurement light ML#2-2 reflected by the dichroic mirror 1331 is incident on the deflection optical system 134. Alternatively, the galvanometer mirror 1328 may not be provided, and the measurement light ML#2-2 from the mirror 1327 (or the beam splitter 1324) may be directly incident on the dichroic mirror 1331.
 ここで、上述したように、ダイクロイックミラー1331には、計測光ML#2-2に加えて加工光ELが入射する。つまり、計測光ML#2-2及び加工光ELの双方がダイクロイックミラー1331を介して、偏向光学系134に入射する。ダイクロイックミラー1331は、ダイクロイックミラー1331に異なる方向からそれぞれ入射してきた加工光EL及び計測光ML#2-2を、同じ方向に向けて(つまり、同じ偏向光学系134に向けて)射出する。従って、ダイクロイックミラー1331は、実質的には、加工光EL及び計測光ML#2-2を合成する合成光学部材として機能する。 As described above, the processing light EL is incident on the dichroic mirror 1331 in addition to the measurement light ML#2-2. That is, both the measurement light ML#2-2 and the processing light EL are incident on the deflection optical system 134 via the dichroic mirror 1331. The dichroic mirror 1331 outputs the processing light EL and the measurement light ML#2-2, which are incident on the dichroic mirror 1331 from different directions, in the same direction (that is, toward the same deflection optical system 134). Therefore, the dichroic mirror 1331 essentially functions as a combining optical element that combines the processing light EL and the measurement light ML#2-2.
 合成光学系133から射出された計測光ML#2-2は、偏向光学系134に入射する。偏向光学系134は、偏向光学系134に入射した計測光ML#2-2を、照射光学系135に向けて射出する。 The measurement light ML#2-2 emitted from the synthesis optical system 133 is incident on the deflection optical system 134. The deflection optical system 134 emits the measurement light ML#2-2 incident on the deflection optical system 134 toward the irradiation optical system 135.
 偏向光学系134に入射した計測光ML#2-2は、ガルバノミラー1341に入射する。ガルバノミラー1341は、加工光ELを偏向する場合と同様に、計測光ML#2-2を偏向する。このため、ガルバノミラー1341は、ワークWの表面における計測光ML#2-2の照射領域MAを、ワークWの表面に沿った方向において移動可能である。つまり、ガルバノミラー1341は、X走査ミラー1341XのθY方向の位置(或いは、Y軸周りの姿勢)を変更することで、ワークW上での計測光ML#2-2の照射領域MAをX軸方向に沿って移動可能であってもよい。ガルバノミラー1341は、Y走査ミラー1341YのθX方向の位置(或いは、X軸周りの姿勢)を変更することで、ワークW上での計測光ML#2-2の照射領域MAをY軸方向に沿って移動可能であってもよい。 The measurement light ML#2-2 incident on the deflection optical system 134 is incident on the galvanometer mirror 1341. The galvanometer mirror 1341 deflects the measurement light ML#2-2 in the same manner as when deflecting the processing light EL. Therefore, the galvanometer mirror 1341 can move the irradiation area MA of the measurement light ML#2-2 on the surface of the workpiece W in a direction along the surface of the workpiece W. In other words, the galvanometer mirror 1341 may be able to move the irradiation area MA of the measurement light ML#2-2 on the workpiece W along the X-axis direction by changing the position of the X-scanning mirror 1341X in the θY direction (or the orientation around the Y-axis). The galvanometer mirror 1341 may be able to move the irradiation area MA of the measurement light ML#2-2 on the workpiece W along the Y-axis direction by changing the position of the Y-scanning mirror 1341Y in the θX direction (or the orientation around the X-axis).
 上述したように、ガルバノミラー1341には、計測光ML#2-2に加えて加工光ELが入射する。つまり、ガルバノミラー1341には、ダイクロイックミラー1331が合成した加工光EL及び計測光ML#2-2が入射する。従って、計測光ML#2-2及び加工光ELの双方が同じガルバノミラー1341を通過する。このため、ガルバノミラー1341は、加工光ELの照射領域PAと計測光ML#2-2の照射領域MAとを同期して移動可能である。つまり、ガルバノミラー1341は、加工光ELの照射領域PAと計測光ML#2-2の照射領域MAとを連動して移動可能である。 As described above, the processing light EL is incident on the galvanometer mirror 1341 in addition to the measurement light ML#2-2. In other words, the processing light EL and measurement light ML#2-2 combined by the dichroic mirror 1331 are incident on the galvanometer mirror 1341. Therefore, both the measurement light ML#2-2 and the processing light EL pass through the same galvanometer mirror 1341. For this reason, the galvanometer mirror 1341 can move the irradiation area PA of the processing light EL and the irradiation area MA of the measurement light ML#2-2 in synchronization. In other words, the galvanometer mirror 1341 can move the irradiation area PA of the processing light EL and the irradiation area MA of the measurement light ML#2-2 in conjunction with each other.
 一方で、上述したように、計測光ML#2-2は、ガルバノミラー1328を介してワークWに照射される一方で、加工光ELは、ガルバノミラー1328を介することなくワークWに照射される。このため、加工システムSYSaは、ガルバノミラー1328を用いて、加工光ELの照射領域PAに対して、計測光ML#2-2の照射領域MAを独立して移動させることができる。つまり、加工システムSYSaは、ガルバノミラー1328を用いて、加工光ELの照射領域PAと計測光ML#2-2の照射領域MAとの相対的な位置関係を変更することができる。特に、加工システムSYSaは、ガルバノミラー1328を用いて、加工光ELの照射領域PAと計測光ML#2-2の照射領域MAとの相対的な位置関係を、計測光ML#2-2の照射方向と交差する方向(図3に示す例では、X軸方向及びY軸方向の少なくとも一方)に沿って変更することができる。 On the other hand, as described above, the measurement light ML#2-2 is irradiated onto the workpiece W via the galvanometer mirror 1328, while the processing light EL is irradiated onto the workpiece W without passing through the galvanometer mirror 1328. Therefore, the processing system SYSa can use the galvanometer mirror 1328 to independently move the irradiation area MA of the measurement light ML#2-2 with respect to the irradiation area PA of the processing light EL. In other words, the processing system SYSa can use the galvanometer mirror 1328 to change the relative positional relationship between the irradiation area PA of the processing light EL and the irradiation area MA of the measurement light ML#2-2. In particular, the processing system SYSa can use the galvanometer mirror 1328 to change the relative positional relationship between the irradiation area PA of the processing light EL and the irradiation area MA of the measurement light ML#2-2 along a direction intersecting the irradiation direction of the measurement light ML#2-2 (at least one of the X-axis direction and the Y-axis direction in the example shown in FIG. 3).
 同様に、上述したように、加工光ELは、ガルバノミラー1315を介してワークWに照射される一方で、計測光ML#2-2は、ガルバノミラー1315を介することなくワークWに照射される。このため、加工システムSYSaは、ガルバノミラー1315を用いて、計測光ML#2-2の照射領域MAに対して、加工光ELの照射領域PAを独立して移動させることができる。つまり、加工システムSYSaは、ガルバノミラー1315を用いて、加工光ELの照射領域PAと計測光ML#2-2の照射領域MAとの相対的な位置関係を変更することができる。特に、加工システムSYSaは、ガルバノミラー1328を用いて、加工光ELの照射領域PAと計測光ML#2-2の照射領域MAとの相対的な位置関係を、加工光ELの照射方向と交差する方向(図3に示す例では、X軸方向及びY軸方向の少なくとも一方)に沿って変更することができる。 Similarly, as described above, the processing light EL is irradiated onto the workpiece W via the galvanometer mirror 1315, while the measurement light ML#2-2 is irradiated onto the workpiece W without passing through the galvanometer mirror 1315. Therefore, the processing system SYSa can use the galvanometer mirror 1315 to independently move the irradiation area PA of the processing light EL relative to the irradiation area MA of the measurement light ML#2-2. In other words, the processing system SYSa can use the galvanometer mirror 1315 to change the relative positional relationship between the irradiation area PA of the processing light EL and the irradiation area MA of the measurement light ML#2-2. In particular, the processing system SYSa can use the galvanometer mirror 1328 to change the relative positional relationship between the irradiation area PA of the processing light EL and the irradiation area MA of the measurement light ML#2-2 along a direction intersecting the irradiation direction of the processing light EL (at least one of the X-axis direction and the Y-axis direction in the example shown in FIG. 3).
 偏向光学系134から射出された計測光ML#2-2は、照射光学系135に入射する。照射光学系135は、計測光ML#2-2をワークWに照射可能な光学系である。具体的には、fθレンズ1351は、偏向光学系134から射出された計測光ML#2-2を、ワークWに照射する。具体的には、fθレンズ1351は、照射光学系135の光軸EXに沿った方向に向けて計測光ML#2-2を射出する。その結果、fθレンズ1351が射出した計測光ML#2-2は、光軸EXに沿った方向に沿って進行することでワークWに入射する。尚、照射光学系135が1/4波長板1352を備えている場合には、fθレンズ1351が射出した計測光ML#2-2は、1/4波長板1352を介してワークWに入射してもよい。 The measurement light ML#2-2 emitted from the deflection optical system 134 enters the irradiation optical system 135. The irradiation optical system 135 is an optical system capable of irradiating the measurement light ML#2-2 onto the workpiece W. Specifically, the fθ lens 1351 irradiates the measurement light ML#2-2 emitted from the deflection optical system 134 onto the workpiece W. Specifically, the fθ lens 1351 emits the measurement light ML#2-2 in a direction along the optical axis EX of the irradiation optical system 135. As a result, the measurement light ML#2-2 emitted by the fθ lens 1351 travels along the optical axis EX and enters the workpiece W. Note that if the irradiation optical system 135 is equipped with a quarter-wave plate 1352, the measurement light ML#2-2 emitted by the fθ lens 1351 may enter the workpiece W via the quarter-wave plate 1352.
 fθレンズ1351は、偏向光学系134から射出された計測光ML#2-2を、ワークW上に集光してもよい。この場合、fθレンズ1351は、集光光学系として機能しているとみなしてもよい。 The fθ lens 1351 may focus the measurement light ML#2-2 emitted from the deflection optical system 134 onto the workpiece W. In this case, the fθ lens 1351 may be considered to function as a focusing optical system.
 fθレンズ1351が計測光MLをワークW上に集光する場合、fθレンズ1351から射出された計測光ML#2-2は、パワーを有する他の光学要素(言い換えれば、光学部材であって、例えばレンズ等)を介することなく、ワークWに照射されてもよい。この場合、fθレンズ1351は、計測光ML#2-2の光路上に配置される複数の光学要素のうちの最終段のパワーを有する光学要素(つまり、最もワークWに近い光学要素)であるため、最終光学要素又は対物光学系と称されてもよい。この場合、偏向光学系134から射出されてfθレンズ1351に入射する計測光ML#2-2は、平行光束であってもよい。尚、照射光学系135は、fθとは異なる射影特性を有する対物光学系を備えていてもよい。 When the fθ lens 1351 focuses the measurement light ML on the workpiece W, the measurement light ML#2-2 emitted from the fθ lens 1351 may be irradiated onto the workpiece W without passing through another optical element having power (in other words, an optical member such as a lens). In this case, the fθ lens 1351 may be called the final optical element or objective optical system because it is the optical element having the final stage of power (i.e., the optical element closest to the workpiece W) among the multiple optical elements arranged on the optical path of the measurement light ML#2-2. In this case, the measurement light ML#2-2 emitted from the deflection optical system 134 and incident on the fθ lens 1351 may be a parallel light beam. The irradiation optical system 135 may be equipped with an objective optical system having projection characteristics different from fθ.
 ワークWに計測光ML#2-2が照射されると、計測光ML#2-2の照射に起因した光がワークWから発生する。つまり、ワークWに計測光ML#2-2が照射されると、計測光ML#2-2の照射に起因した光がワークWから射出される。計測光ML#2-2の照射に起因した光(言い換えれば、計測光ML#2-2の照射に起因してワークWから射出される光)は、ワークWで反射された計測光ML#2-2(つまり、反射光)、ワークWで散乱された計測光ML#2-2(つまり、散乱光)、ワークWで回折された計測光ML#2-2(つまり、回折光)、及びワークWを透過した計測光ML#2-2(つまり、透過光)のうちの少なくとも一つを含んでいてもよい。 When the workpiece W is irradiated with the measurement light ML#2-2, light resulting from the irradiation of the measurement light ML#2-2 is generated from the workpiece W. In other words, when the workpiece W is irradiated with the measurement light ML#2-2, light resulting from the irradiation of the measurement light ML#2-2 is emitted from the workpiece W. The light resulting from the irradiation of the measurement light ML#2-2 (in other words, the light emitted from the workpiece W due to the irradiation of the measurement light ML#2-2) may include at least one of the measurement light ML#2-2 reflected by the workpiece W (i.e., reflected light), the measurement light ML#2-2 scattered by the workpiece W (i.e., scattered light), the measurement light ML#2-2 diffracted by the workpiece W (i.e., diffracted light), and the measurement light ML#2-2 transmitted through the workpiece W (i.e., transmitted light).
 計測光ML#2-2の照射に起因してワークWから射出される光の少なくとも一部は、ワークWから加工ヘッド13に戻ってくる光として、加工ヘッド13に入射する。尚、以下の説明では、計測光ML#2-2が照射されたワークWから加工ヘッド13に戻ってくる光を、計測戻り光RMLと称する。具体的には、計測光ML#2-2の照射に起因してワークWから射出される光のうちの、ワークWに入射する計測光ML#2-2の光路に沿って進行する光が、計測戻り光RMLとして照射光学系135に入射する。この場合、照射光学系135から射出されてワークWに入射する計測光ML#2-2の光路と、ワークWから射出されて照射光学系135に入射する計測戻り光RMLの光路とは同じであってもよい。照射光学系135に入射した計測戻り光RMLは、1/4波長板1352及びfθレンズ1351を介して、偏向光学系134に入射する。偏向光学系134に入射した計測戻り光RMLは、ガルバノミラー1341を介して、合成光学系133に入射する。合成光学系133のダイクロイックミラー1331は、ダイクロイックミラー1331に入射した計測戻り光RMLを、計測光学系132に向けて反射する。 At least a portion of the light emitted from the workpiece W due to the irradiation of the measurement light ML#2-2 is incident on the machining head 13 as light returning from the workpiece W to the machining head 13. In the following description, the light returning from the workpiece W irradiated with the measurement light ML#2-2 to the machining head 13 is referred to as the measurement return light RML. Specifically, of the light emitted from the workpiece W due to the irradiation of the measurement light ML#2-2, the light traveling along the optical path of the measurement light ML#2-2 incident on the workpiece W is incident on the irradiation optical system 135 as the measurement return light RML. In this case, the optical path of the measurement light ML#2-2 emitted from the irradiation optical system 135 and incident on the workpiece W may be the same as the optical path of the measurement return light RML emitted from the workpiece W and incident on the irradiation optical system 135. The measurement return light RML incident on the irradiation optical system 135 is incident on the deflection optical system 134 via the quarter-wave plate 1352 and the fθ lens 1351. The measurement return light RML that is incident on the deflection optical system 134 is incident on the synthesis optical system 133 via the galvanometer mirror 1341. The dichroic mirror 1331 of the synthesis optical system 133 reflects the measurement return light RML that is incident on the dichroic mirror 1331 toward the measurement optical system 132.
 ダイクロイックミラー1331から射出された計測戻り光RMLは、計測光学系132のガルバノミラー1328に入射する。ガルバノミラー1328は、ガルバノミラー1328に入射した計測戻り光RMLをミラー1327に向けて射出する。ミラー1327は、ミラー1327に入射した計測戻り光RMLをビームスプリッタ1324に向けて反射する。ビームスプリッタ1324は、ビームスプリッタ1324に入射した計測戻り光RMLの少なくとも一部をビームスプリッタ1322に向けて射出する。ビームスプリッタ1322は、ビームスプリッタ1322に入射した計測戻り光RMLの少なくとも一部を検出器1326に向けて射出する。 The measurement return light RML emitted from the dichroic mirror 1331 is incident on the galvanometer mirror 1328 of the measurement optical system 132. The galvanometer mirror 1328 emits the measurement return light RML incident on the galvanometer mirror 1328 toward the mirror 1327. The mirror 1327 reflects the measurement return light RML incident on the mirror 1327 toward the beam splitter 1324. The beam splitter 1324 emits at least a portion of the measurement return light RML incident on the beam splitter 1324 toward the beam splitter 1322. The beam splitter 1322 emits at least a portion of the measurement return light RML incident on the beam splitter 1322 toward the detector 1326.
 上述したように、検出器1326には、計測戻り光RMLに加えて、計測光ML#1-3が入射する。つまり、検出器1326には、ワークWを介して検出器1326に向かう計測戻り光RMLと、ワークWを介することなく検出器1326に向かう計測光ML#1-3とが入射する。検出器1326は、計測光ML#1-3と計測戻り光RMLとを受光する(つまり、検出する)。特に、検出器1326は、計測光ML#1-3と計測戻り光RMLとが干渉することで生成される干渉光(言い換えれば、干渉ビーム)を受光する。尚、計測光ML#1-3と計測戻り光RMLとが干渉することで生成される干渉光を受光する動作は、計測光ML#1-3と計測戻り光RMLとを受光する動作と等価であるとみなしてもよい。検出器1326の検出結果は、制御ユニット2に出力される。 As described above, in addition to the measurement return light RML, the measurement light ML#1-3 is incident on the detector 1326. That is, the measurement return light RML that travels toward the detector 1326 via the workpiece W, and the measurement light ML#1-3 that travels toward the detector 1326 without traveling through the workpiece W are incident on the detector 1326. The detector 1326 receives (i.e., detects) the measurement light ML#1-3 and the measurement return light RML. In particular, the detector 1326 receives interference light (in other words, interference beam) generated by interference between the measurement light ML#1-3 and the measurement return light RML. Note that the operation of receiving the interference light generated by interference between the measurement light ML#1-3 and the measurement return light RML may be considered equivalent to the operation of receiving the measurement light ML#1-3 and the measurement return light RML. The detection result of the detector 1326 is output to the control unit 2.
 制御ユニット2は、検出器1323の検出結果及び検出器1326の検出結果を取得する。制御ユニット2は、検出器1323の検出結果及び検出器1326の検出結果に基づいて、ワークWの計測情報(例えば、ワークWの位置に関する位置情報を含む計測情報)を生成してもよい。ここで、図5を参照しながら、検出器1143の検出結果及び検出器1146の検出結果に基づいてワークWの計測情報を生成する方法について説明する。 The control unit 2 acquires the detection results of the detector 1323 and the detector 1326. The control unit 2 may generate measurement information of the workpiece W (e.g., measurement information including position information regarding the position of the workpiece W) based on the detection results of the detector 1323 and the detector 1326. Here, a method of generating measurement information of the workpiece W based on the detection results of the detector 1143 and the detector 1146 will be described with reference to FIG. 5.
 図5は、検出器1323に入射する計測光ML#1-1、検出器1323に入射する計測光ML#2-1、検出器1323が検出した干渉光、検出器1326に入射する計測光ML#1-3、検出器1326に入射する計測戻り光RML及び検出器1326が検出した干渉光を示すタイミングチャートである。計測光ML#1のパルス周波数と計測光ML#2のパルス周波数とが異なるため、計測光ML#1-1のパルス周波数と計測光ML#2-1のパルス周波数とが異なる。従って、計測光ML#1-1と計測光ML#2-1との干渉光は、計測光ML#1-1を構成するパルス光と計測光ML#2-1を構成するパルス光とが同時に検出器1323に入射したタイミングに同期してパルス光が現れる干渉光となる。同様に、計測光ML#1-3のパルス周波数と計測戻り光RMLのパルス周波数とが異なる。従って、計測光ML#1-3と計測戻り光RMLとの干渉光は、計測光ML#1-3を構成するパルス光と計測戻り光RMLを構成するパルス光とが同時に検出器1326に入射したタイミングに同期してパルス光が現れる干渉光となる。 5 is a timing chart showing the measurement light ML#1-1 incident on detector 1323, the measurement light ML#2-1 incident on detector 1323, the interference light detected by detector 1323, the measurement light ML#1-3 incident on detector 1326, the measurement return light RML incident on detector 1326, and the interference light detected by detector 1326. Since the pulse frequency of measurement light ML#1 is different from the pulse frequency of measurement light ML#2, the pulse frequency of measurement light ML#1-1 is different from the pulse frequency of measurement light ML#2-1. Therefore, the interference light between measurement light ML#1-1 and measurement light ML#2-1 is interference light in which pulse light appears in synchronization with the timing when the pulse light constituting measurement light ML#1-1 and the pulse light constituting measurement light ML#2-1 are simultaneously incident on detector 1323. Similarly, the pulse frequency of measurement light ML#1-3 is different from the pulse frequency of measurement return light RML. Therefore, the interference light between the measurement light ML#1-3 and the measurement return light RML is an interference light in which a pulsed light appears in synchronization with the timing when the pulsed light constituting the measurement light ML#1-3 and the pulsed light constituting the measurement return light RML are simultaneously incident on the detector 1326.
 ここで、検出器1326が検出する干渉光のパルス光の位置(時間軸上の位置)は、加工ヘッド13とワークWとの位置関係に応じて変動する。なぜならば、検出器1326が検出する干渉光は、ワークWを介して検出器1326に向かう計測戻り光RMLと、ワークWを介することなく検出器1326に向かう計測光ML#1-3との干渉光であるからである。一方で、検出器1323が検出する干渉光のパルス光の位置(時間軸上の位置)は、加工ヘッド13とワークWとの位置関係(つまり、実質的には、加工ヘッド13とワークWとの位置関係)に応じて変動することはない。このため、検出器1326が検出する干渉光のパルス光と検出器1323が検出する干渉光のパルス光との時間差は、加工ヘッド13とワークWとの位置関係を間接的に示していると言える。具体的には、検出器1326が検出する干渉光のパルス光と検出器1323が検出する干渉光のパルス光との時間差は、計測光MLの光路に沿った方向(つまり、計測光MLの進行方向に沿った方向)における加工ヘッド13とワークWとの間の距離を間接的に示していると言える。このため、制御ユニット2は、検出器1326が検出する干渉光のパルス光と検出器1323が検出する干渉光のパルス光との時間差に基づいて、計測光MLの光路に沿った方向(例えば、Z軸方向)における加工ヘッド13とワークWとの間の距離を算出する(言い換えれば、計測する)ことができる。言い換えれば、制御ユニット2は、計測光MLの光路に沿った方向(例えば、Z軸方向)におけるワークWの位置を算出することができる。より具体的には、制御ユニット2は、ワークWのうち計測光ML#2-2が照射された被照射部分と加工ヘッド13との間の距離を算出することができる。制御ユニット2は、計測光MLの光路に沿った方向(例えば、Z軸方向)における被照射部分の位置を算出することができる。その結果、制御ユニット2は、加工ヘッド13を基準とする計測座標系における被照射部分のZ軸方向の位置(典型的には、Z軸方向における被照射部分までの距離)を示す位置情報を、計測情報として生成することができる。この場合、計測光学系132は、被照射部分のZ軸方向の位置(典型的には、Z軸方向における被照射部分までの距離)を計測する計測装置として機能しているとみなしてもよい。 Here, the position (position on the time axis) of the pulsed light of interference light detected by detector 1326 varies depending on the positional relationship between the machining head 13 and the workpiece W. This is because the interference light detected by detector 1326 is interference light between the measurement return light RML heading toward detector 1326 via the workpiece W and the measurement light ML#1-3 heading toward detector 1326 without going through the workpiece W. On the other hand, the position (position on the time axis) of the pulsed light of interference light detected by detector 1323 does not vary depending on the positional relationship between the machining head 13 and the workpiece W (that is, essentially, the positional relationship between the machining head 13 and the workpiece W). For this reason, it can be said that the time difference between the pulsed light of interference light detected by detector 1326 and the pulsed light of interference light detected by detector 1323 indirectly indicates the positional relationship between the machining head 13 and the workpiece W. Specifically, it can be said that the time difference between the pulsed light of the interference light detected by the detector 1326 and the pulsed light of the interference light detected by the detector 1323 indirectly indicates the distance between the machining head 13 and the workpiece W in the direction along the optical path of the measurement light ML (that is, the direction along the traveling direction of the measurement light ML). Therefore, the control unit 2 can calculate (in other words, measure) the distance between the machining head 13 and the workpiece W in the direction along the optical path of the measurement light ML (for example, the Z-axis direction) based on the time difference between the pulsed light of the interference light detected by the detector 1326 and the pulsed light of the interference light detected by the detector 1323. In other words, the control unit 2 can calculate the position of the workpiece W in the direction along the optical path of the measurement light ML (for example, the Z-axis direction). More specifically, the control unit 2 can calculate the distance between the irradiated portion of the workpiece W irradiated with the measurement light ML#2-2 and the machining head 13. The control unit 2 can calculate the position of the irradiated portion in the direction along the optical path of the measurement light ML (for example, the Z-axis direction). As a result, the control unit 2 can generate, as measurement information, position information indicating the position of the irradiated portion in the Z-axis direction (typically, the distance to the irradiated portion in the Z-axis direction) in a measurement coordinate system based on the processing head 13. In this case, the measurement optical system 132 may be considered to function as a measurement device that measures the position of the irradiated portion in the Z-axis direction (typically, the distance to the irradiated portion in the Z-axis direction).
 尚、ワークWのZ軸方向の位置を示す位置情報を生成するために用いられる計測戻り光RMLの検出結果は、Z軸方向における加工ヘッド13とワークWとの間の距離の計測結果に関する情報を含んでいるとみなしてもよい。この場合、計測戻り光RMLの検出結果は、距離計測結果に関する情報であるとみなしてもよい。或いは、計測戻り光RMLの検出結果に基づいて生成される位置情報が、距離計測結果に関する情報であるとみなしてもよい。 The detection result of the measurement return light RML used to generate position information indicating the position of the workpiece W in the Z-axis direction may be considered to include information about the measurement result of the distance between the machining head 13 and the workpiece W in the Z-axis direction. In this case, the detection result of the measurement return light RML may be considered to be information about the distance measurement result. Alternatively, the position information generated based on the detection result of the measurement return light RML may be considered to be information about the distance measurement result.
 更には、ワークW上での計測光ML#2-2の照射位置がガルバノミラー1341及び1328の駆動状態によって決定されるがゆえに、制御ユニット2は、ガルバノミラー1341及び1328の駆動状態に基づいて、計測光MLの光路に交差する方向(例えば、X軸方向及びY軸方向の少なくとも一つ)における被照射部分の位置を算出してもよい。その結果、制御ユニット2は、加工ヘッド13を基準とする計測座標系における被照射部分の位置(例えば、三次元座標空間内での位置)を示す位置情報を生成してもよい。 Furthermore, since the irradiation position of the measurement light ML#2-2 on the workpiece W is determined by the drive state of the galvanometer mirrors 1341 and 1328, the control unit 2 may calculate the position of the irradiated portion in a direction intersecting the optical path of the measurement light ML (e.g., at least one of the X-axis direction and the Y-axis direction) based on the drive state of the galvanometer mirrors 1341 and 1328. As a result, the control unit 2 may generate position information indicating the position of the irradiated portion in a measurement coordinate system based on the machining head 13 (e.g., a position in a three-dimensional coordinate space).
 加工ヘッド13は、ワークWの複数の部分に計測光ML#2-2を照射してもよい。例えば、加工ヘッド13がワークWの複数の部分に計測光ML#2-2を照射するように、ガルバノミラー1341及び1328の少なくとも一方は、ワークW上での計測光ML#2-2の照射位置を変更してもよい。例えば、加工ヘッド13がワークWの複数の部分に計測光ML#2-2を照射するように、加工ヘッド13及びステージ15の少なくとも一方が移動してもよい。計測光ML#2-2がワークWの複数の部分に照射される場合には、制御ユニット2は、ワークWの複数の部分の位置を示す位置情報を、計測情報として生成してもよい。尚、加工ヘッド13がワークWの複数の部分に計測光ML#2-2を照射するようにガルバノミラー1341及び1328の少なくとも一方が計測光ML#2-2の照射位置を変更する場合には、加工ヘッド13は、比較的短い時間でワークWの多数の部分に計測光ML#2-2を照射することができる。その結果、加工システムSYSaは、ワークWの複数の部分の位置を迅速に計測することができる。 The machining head 13 may irradiate multiple portions of the workpiece W with the measurement light ML#2-2. For example, at least one of the galvanometer mirrors 1341 and 1328 may change the irradiation position of the measurement light ML#2-2 on the workpiece W so that the machining head 13 irradiates multiple portions of the workpiece W with the measurement light ML#2-2. For example, at least one of the machining head 13 and the stage 15 may move so that the machining head 13 irradiates multiple portions of the workpiece W with the measurement light ML#2-2. When the measurement light ML#2-2 is irradiated to multiple portions of the workpiece W, the control unit 2 may generate position information indicating the positions of the multiple portions of the workpiece W as measurement information. Note that when at least one of the galvanometer mirrors 1341 and 1328 changes the irradiation position of the measurement light ML#2-2 so that the machining head 13 irradiates multiple portions of the workpiece W with the measurement light ML#2-2, the machining head 13 can irradiate multiple portions of the workpiece W with the measurement light ML#2-2 in a relatively short time. As a result, the machining system SYSa can quickly measure the positions of multiple parts of the workpiece W.
 ワークWの複数の部分の位置を示す位置情報が生成された場合には、制御ユニット2は、複数の部分の位置を示す位置情報に基づいて、ワークWの形状を示す形状情報を、計測情報として生成してもよい。例えば、制御ユニット2は、位置が特定された複数の部分を結ぶ仮想的な平面(或いは、曲面)から構成される三次元形状を、ワークWの形状として算出することで、ワークWの形状を示す形状情報を生成してもよい。 When position information indicating the positions of multiple parts of the workpiece W is generated, the control unit 2 may generate shape information indicating the shape of the workpiece W as measurement information based on the position information indicating the positions of the multiple parts. For example, the control unit 2 may generate shape information indicating the shape of the workpiece W by calculating, as the shape of the workpiece W, a three-dimensional shape composed of a virtual plane (or a curved surface) connecting the multiple parts whose positions have been identified.
 (1-2)加工システムSYSaが行う動作
 続いて、加工システムSYSaが行う動作について説明する。
(1-2) Operations Performed by the Machining System SYSa Next, operations performed by the machining system SYSa will be described.
 (1-2-1)ワークWを加工する加工動作
 上述したように、加工システムSYSaは、加工光ELをワークWに照射することで、ワークWを加工可能である。つまり、加工システムSYSaは、加工光ELを用いてワークWを加工するための加工動作を行ってもよい。
(1-2-1) Processing Operation for Processing the Workpiece W As described above, the processing system SYSa can process the workpiece W by irradiating the processing light EL onto the workpiece W. In other words, the processing system SYSa may perform a processing operation for processing the workpiece W using the processing light EL.
 加工ユニット1は、ワークWに対して除去加工を行ってもよい。つまり、加工ユニット1は、ワークWの一部を除去する除去加工を行ってもよい。第1実施形態では、加工ユニット1は、非熱加工(例えば、アブレーション加工)の原理を利用して、除去加工を行ってもよい。つまり、加工ユニット1は、ワークWに対して非熱加工(例えば、アブレーション加工)を行ってもよい。非熱加工を行うために、加工ユニット1は、光子密度(言い換えれば、フルエンス)が高い光を加工光ELとして用いてもよい。一例として、加工ユニット1は、発光時間がナノ秒以下、ピコ秒以下又はフェムト秒以下のパルス光を含む光を、加工光ELとして用いてもよい。つまり、加工ユニット1は、パルス幅がナノ秒以下、ピコ秒以下又はフェムト秒以下のパルス光を含む光を、加工光ELとして用いてもよい。この場合、ワークWのうち加工光ELのエネルギーが伝達されたエネルギー伝達部分を構成する材料は、瞬時に蒸発及び飛散する。つまり、ワークWのうちエネルギー伝達部分を構成する材料は、ワークWの熱拡散時間よりも十分に短い時間内に蒸発及び飛散する。ワークWのうちエネルギー伝達部分を構成する材料は、溶融状態を経ずに昇華することもある。この場合、ワークWのエネルギー伝達部分を構成する材料は、イオン、原子、ラジカル、分子、クラスタ及び固体片のうちの少なくとも一つとして、ワークWから放出されてもよい。但し、加工ユニット1は、熱加工の原理を利用して、除去加工を行ってもよい。 The processing unit 1 may perform removal processing on the workpiece W. That is, the processing unit 1 may perform removal processing to remove a part of the workpiece W. In the first embodiment, the processing unit 1 may perform removal processing by utilizing the principle of non-thermal processing (e.g., ablation processing). That is, the processing unit 1 may perform non-thermal processing (e.g., ablation processing) on the workpiece W. To perform non-thermal processing, the processing unit 1 may use light with a high photon density (in other words, fluence) as the processing light EL. As an example, the processing unit 1 may use light including pulse light having an emission time of nanoseconds or less, picoseconds or less, or femtoseconds or less as the processing light EL. That is, the processing unit 1 may use light including pulse light having a pulse width of nanoseconds or less, picoseconds or less, or femtoseconds or less as the processing light EL. In this case, the material constituting the energy transmission part of the workpiece W to which the energy of the processing light EL is transmitted evaporates and disperses instantly. That is, the material constituting the energy transmission part of the workpiece W evaporates and disperses within a time sufficiently shorter than the thermal diffusion time of the workpiece W. The material constituting the energy transfer portion of the workpiece W may sublimate without going through a molten state. In this case, the material constituting the energy transfer portion of the workpiece W may be released from the workpiece W as at least one of ions, atoms, radicals, molecules, clusters, and solid pieces. However, the processing unit 1 may also perform removal processing using the principle of thermal processing.
 加工ユニット1は、ワークWに対して付加加工を行ってもよい。つまり、加工ユニット1は、ワークWに造形物を造形する付加加工を行ってもよい。この場合、加工ユニット1は、3Dプリンタとして機能可能であるとみなしてもよい。尚、付加加工を行うための方法として、粉末床溶融結合法(Powder Bed Fusion)が用いられてもよいし、レーザ肉盛溶接法(LMD:Laser Metal Deposition、又はDED(Directed Energy Deposition)が用いられてもよい。粉末床溶融結合法が用いられる場合、ワークWは造形プレートであってもよいし、粉末層であってもよい。 The processing unit 1 may perform additive processing on the workpiece W. In other words, the processing unit 1 may perform additive processing to form a model on the workpiece W. In this case, the processing unit 1 may be considered to be capable of functioning as a 3D printer. As a method for performing additive processing, powder bed fusion may be used, laser metal deposition (LMD) or directed energy deposition (DED) may be used. When powder bed fusion is used, the workpiece W may be a modeling plate or a powder layer.
 加工ユニット1は、ワークWの表面を溶融すると共に溶融させた表面を固化させる溶融加工を行ってもよい。尚、溶融加工は、リメルト加工と称されてもよい。加工ユニット1は、溶融加工を行うことで、溶融加工が行われる前と比較してワークWの表面を平面に近づけるための平面加工を行ってもよい。第1実施形態では、加工ユニット1は、熱加工の原理を利用して、溶融加工を行ってもよい。つまり、加工ユニット1は、ワークWに対して熱加工を行ってもよい。熱加工を行うために、加工ユニット1は、ミリ秒以上又はナノ秒以上のパルス光を含む光を、加工光ELとして用いてもよい。熱加工を行うために、加工ユニット1は、連続光を、加工光ELとして用いてもよい。 The processing unit 1 may perform melt processing to melt the surface of the workpiece W and solidify the melted surface. The melt processing may be referred to as remelt processing. The processing unit 1 may perform planar processing to make the surface of the workpiece W closer to a flat surface compared to before the melt processing by performing melt processing. In the first embodiment, the processing unit 1 may perform melt processing using the principle of thermal processing. That is, the processing unit 1 may perform thermal processing on the workpiece W. To perform thermal processing, the processing unit 1 may use light including pulsed light of milliseconds or more or nanoseconds or more as the processing light EL. To perform thermal processing, the processing unit 1 may use continuous light as the processing light EL.
 尚、加工ユニット1が非熱加工と熱加工との双方を行う場合には、加工ユニット1は、後述する加工光源11として、非熱加工に用いられる加工光ELを生成する加工光源と、熱加工に用いられる加工光ELを生成する加工光源とを別々に備えていてもよい。非熱加工に用いられる加工光ELを生成する加工光源は、加工ヘッド13の内部に配置されていてもよい。 In addition, when the processing unit 1 performs both non-thermal processing and thermal processing, the processing unit 1 may be provided with a processing light source 11, which will be described later, that generates processing light EL used for non-thermal processing and a processing light source that generates processing light EL used for thermal processing separately. The processing light source that generates processing light EL used for non-thermal processing may be disposed inside the processing head 13.
 加工ユニット1は、ワークWの表面に所望のマークを形成するマーキング加工を行ってもよい。加工ユニット1は、ワークWの表面の特性を変化させる表面改質加工を行ってもよい。加工ユニット1は、ワークWの表面の特性を変更するピーニング加工を行ってもよい。加工ユニット1は、ワークWの表面を剥離する剥離加工を行ってもよい。加工ユニット1は、一のワークWと他のワークWとを接合する溶接加工を行ってもよい。加工ユニット1は、ワークWを切断する切断加工を行ってもよい。 The processing unit 1 may perform a marking process to form a desired mark on the surface of the workpiece W. The processing unit 1 may perform a surface modification process to change the characteristics of the surface of the workpiece W. The processing unit 1 may perform a peening process to change the characteristics of the surface of the workpiece W. The processing unit 1 may perform a peeling process to peel off the surface of the workpiece W. The processing unit 1 may perform a welding process to join one workpiece W to another workpiece W. The processing unit 1 may perform a cutting process to cut the workpiece W.
 加工ユニット1は、ワークWを加工することで、ワークWの表面に所望構造を形成してもよい。但し、加工ユニット1は、ワークWの表面に所望構造を形成するための加工とは異なる加工を行ってもよい。ワークWの表面に所望構造を形成するための加工とは異なる加工の一例としては、ワークWの平面出し加工であってもよい。ワークWの平面出し加工は、ワークWの表面を研削して平らにする加工を含んでいてもよい。 The processing unit 1 may process the workpiece W to form a desired structure on the surface of the workpiece W. However, the processing unit 1 may perform processing other than the processing for forming the desired structure on the surface of the workpiece W. One example of processing other than the processing for forming the desired structure on the surface of the workpiece W may be flattening processing of the workpiece W. The flattening processing of the workpiece W may include processing for grinding the surface of the workpiece W to make it flat.
 所望構造の一例として、リブレット構造があげられる。リブレット構造は、ワークWの表面の流体に対する抵抗(特に、摩擦抵抗及び乱流摩擦抵抗の少なくとも一方)を低減可能な構造を含んでいてもよい。このため、リブレット構造は、流体中に設置される(言い換えれば、位置する)部材を有するワークWに形成されてもよい。尚、ここでいう「流体」とは、ワークWの表面に対して流れている媒質(例えば、気体及び液体の少なくとも一方)を意味する。例えば、媒質自体が静止している状況下でワークWの表面が媒質に対して移動する場合には、この媒質を流体と称してもよい。尚、媒質が静止している状態は、所定の基準物(例えば、地表面)に対して媒質が移動していない状態を意味していてもよい。 An example of a desired structure is a riblet structure. The riblet structure may include a structure that can reduce the resistance of the surface of the workpiece W to the fluid (particularly, at least one of frictional resistance and turbulent frictional resistance). For this reason, the riblet structure may be formed on a workpiece W having a member that is installed (in other words, located) in the fluid. Note that the "fluid" here means a medium (e.g., at least one of gas and liquid) that is flowing relative to the surface of the workpiece W. For example, when the surface of the workpiece W moves relative to the medium while the medium itself is stationary, this medium may be referred to as a fluid. Note that the state in which the medium is stationary may mean a state in which the medium is not moving relative to a predetermined reference object (e.g., the ground surface).
 リブレット構造が形成されるワークWの一例として、航空機、風車、エンジン用タービン、及び、発電用タービンのうちの少なくとも一つがあげられる。このようなリブレット構造がワークWに形成される場合には、ワークWは、流体に対して相対的に移動しやすくなる。このため、流体に対するワークWの移動を妨げる抵抗が低減されるがゆえに、省エネルギー化につながる。つまり、環境にやさしいワークWの製造が可能となる。例えば、ワークWが、航空機の機体表面に露出する部材である(例えば、航空機の少なくとも一部である)場合には、航空機の移動を妨げる抵抗が低減されるがゆえに、航空機の省燃費化につながる。例えば、ワークWが風車である(例えば、風車の少なくとも一部である)場合には、風車の移動(典型的には、回転)を妨げる抵抗が低減されるがゆえに、風車の高効率化につながる。例えば、ワークWがエンジン用タービンである(例えば、エンジン用タービンの少なくとも一部である)場合には、エンジン用タービンの移動(典型的には、回転)を妨げる抵抗が低減されるがゆえに、エンジン用タービンの高効率化又は省エネルギー化につながる。例えば、ワークWが発電用タービンである(例えば、発電用タービンの少なくとも一部である)場合には、発電用タービンの移動(典型的には、回転)を妨げる抵抗が低減されるがゆえに、発電用タービンの高効率化(つまり、発電効率の向上)につながる。このため、加工ユニット1は、国連が主導する持続可能な開発目標(SDGs)の目標13(Goal 13)「気候変動及びその影響を軽減するための緊急対策を講じる(Take urgent action to conbat climate chnage and its impact)」に掲げられている目標の中の「13.2.2 年間温室効果ガス総排出量(Total Greenhouse gas emissions per year)の削減」に貢献できる可能性がある。 Examples of the workpiece W on which the riblet structure is formed include at least one of an aircraft, a windmill, an engine turbine, and a power generation turbine. When such a riblet structure is formed on the workpiece W, the workpiece W becomes easier to move relative to the fluid. This reduces the resistance that impedes the movement of the workpiece W relative to the fluid, leading to energy savings. In other words, it is possible to manufacture an environmentally friendly workpiece W. For example, if the workpiece W is a member exposed to the surface of the aircraft body (e.g., at least a part of the aircraft), the resistance that impedes the movement of the aircraft is reduced, leading to fuel savings in the aircraft. For example, if the workpiece W is a windmill (e.g., at least a part of the windmill), the resistance that impedes the movement (typically, rotation) of the windmill is reduced, leading to high efficiency of the windmill. For example, if the workpiece W is an engine turbine (e.g., at least a part of the engine turbine), the resistance that impedes the movement (typically, rotation) of the engine turbine is reduced, leading to high efficiency or energy savings of the engine turbine. For example, if the workpiece W is a power generating turbine (e.g., at least a part of a power generating turbine), the resistance that impedes the movement (typically, rotation) of the power generating turbine is reduced, leading to higher efficiency of the power generating turbine (i.e., improved power generation efficiency). Therefore, the processing unit 1 may be able to contribute to "13.2.2 Reduce total greenhouse gas emissions per year" in Goal 13 of the United Nations-led Sustainable Development Goals (SDGs), "Take urgent action to combat climate change and its impacts."
 所望構造の他の一例として、穴構造があげられる。所望構造の他の一例として、彫り込み構造があげられる。 Another example of a desired structure is a hole structure.Another example of a desired structure is a carved structure.
 (1-2-2)計測動作
 上述したように、加工システムSYSaは、計測光MLを計測対象物Mに照射することで計測対象物Mから生じる計測戻り光RMLの検出結果に基づいて、計測対象物Mを計測可能である。つまり、加工システムSYSaは、計測光MLを用いて計測対象物Mを計測するための計測動作を行ってもよい。特に、第1実施形態では、加工システムSYSaは、計測戻り光RMLの検出結果に基づいて、計測対象物Mの位置(特に、Z軸方向における計測対象物Mの位置であり、実質的には、距離)を計測可能である。尚、以下の説明では、説明の便宜上、計測対象物MがワークWであり、且つ、加工システムSYSaがZ軸方向におけるワークWの位置を計測する例について説明する。また、以下の説明では、説明の便宜上、Z軸方向におけるワークWの位置を、ワークWのZ位置と称する。但し、計測対象物MがワークWとは異なる物体である場合であっても、加工システムSYSaは、以下に説明する計測動作を行ってもよい。加工システムSYSaが計測対象物Mの位置(例えば、Z位置)を計測する場合であっても、加工システムSYSaは、以下に説明する計測動作を行ってもよい。
(1-2-2) Measurement Operation As described above, the processing system SYSa can measure the measurement object M based on the detection result of the measurement return light RML generated from the measurement object M by irradiating the measurement light ML on the measurement object M. That is, the processing system SYSa may perform a measurement operation for measuring the measurement object M using the measurement light ML. In particular, in the first embodiment, the processing system SYSa can measure the position of the measurement object M (particularly, the position of the measurement object M in the Z-axis direction, and essentially the distance) based on the detection result of the measurement return light RML. In the following description, for convenience of explanation, an example will be described in which the measurement object M is a workpiece W and the processing system SYSa measures the position of the workpiece W in the Z-axis direction. In addition, in the following description, for convenience of explanation, the position of the workpiece W in the Z-axis direction will be referred to as the Z position of the workpiece W. However, even if the measurement object M is an object different from the workpiece W, the processing system SYSa may perform the measurement operation described below. Even when the machining system SYSa measures the position (e.g., Z position) of the measurement object M, the machining system SYSa may perform the measurement operation described below.
 更に、上述したように、加工システムSYSaは、計測戻り光RMLの検出結果に代えて、加工光ELをワークWに照射することでワークWから生じる加工戻り光RELの検出結果に基づいて、ワークWのZ位置を計測可能である。つまり、加工システムSYSaは、計測光MLに代えて加工光ELを用いてワークWのZ位置を計測するための計測動作を行ってもよい。 Furthermore, as described above, the processing system SYSa can measure the Z position of the workpiece W based on the detection result of the processing return light REL generated from the workpiece W by irradiating the workpiece W with the processing light EL instead of the detection result of the measurement return light RML. In other words, the processing system SYSa may perform a measurement operation to measure the Z position of the workpiece W using the processing light EL instead of the measurement light ML.
 第1実施形態では特に、加工システムSYSaは、計測光MLの計測戻り光RMLの検出結果と加工光ELの加工戻り光RELの検出結果との双方に基づいて、ワークWのZ位置を計測してもよい。つまり、制御ユニット2は、検出器1323及び1326のそれぞれによる計測戻り光RMLの検出結果と、検出器1317による加工戻り光RELの検出結果との双方に基づいて、ワークWのZ位置を算出してもよい。言い換えれば、制御ユニット2は、計測戻り光RMLの検出結果と加工戻り光RELの検出結果との双方に基づいて、ワークWのZ位置を示す位置情報を、計測情報として生成してもよい。 In particular, in the first embodiment, the processing system SYSa may measure the Z position of the workpiece W based on both the detection result of the measurement return light RML of the measurement light ML and the detection result of the processing return light REL of the processing light EL. In other words, the control unit 2 may calculate the Z position of the workpiece W based on both the detection result of the measurement return light RML by each of the detectors 1323 and 1326 and the detection result of the processing return light REL by the detector 1317. In other words, the control unit 2 may generate position information indicating the Z position of the workpiece W as measurement information based on both the detection result of the measurement return light RML and the detection result of the processing return light REL.
 以下、計測戻り光RMLの検出結果と加工戻り光RELの検出結果との双方に基づいて位置情報を生成する動作について更に詳細に説明する。 The operation of generating position information based on both the detection results of the measurement return light RML and the detection results of the processing return light REL will be explained in more detail below.
 (1-2-2-1)計測戻り光RMLの検出結果と加工戻り光RELの検出結果との双方に基づいて位置情報を生成する技術的理由
 はじめに、第1実施形態において計測戻り光RMLの検出結果及び加工戻り光RELの検出結果の双方に基づいて位置情報を生成する動作の説明の前提として、計測戻り光RMLの検出結果及び加工戻り光RELの検出結果の双方に基づいて位置情報を生成する技術的理由について説明する。
(1-2-2-1) Technical reasons for generating position information based on both the detection results of the measurement return light RML and the detection results of the processing return light REL First , as a premise for explaining the operation of generating position information based on both the detection results of the measurement return light RML and the detection results of the processing return light REL in the first embodiment, the technical reasons for generating position information based on both the detection results of the measurement return light RML and the detection results of the processing return light REL will be explained.
 上述したように、制御ユニット2は、加工戻り光RELの検出結果を用いることなく、計測戻り光RMLの検出結果に基づいて、ワークWのZ位置を示す位置情報を生成することができる。しかしながら、場合によっては、加工戻り光RELの検出結果を用いることなく計測戻り光RMLの検出結果に基づいて生成された位置情報は、ワークWのZ位置を正確に示していない可能性がある。つまり、加工戻り光RELの検出結果を用いることなく計測戻り光RMLの検出結果に基づいて生成された位置情報は、誤差を含んでいる可能性がある。 As described above, the control unit 2 can generate position information indicating the Z position of the workpiece W based on the detection results of the measurement return light RML without using the detection results of the processing return light REL. However, in some cases, the position information generated based on the detection results of the measurement return light RML without using the detection results of the processing return light REL may not accurately indicate the Z position of the workpiece W. In other words, the position information generated based on the detection results of the measurement return light RML without using the detection results of the processing return light REL may contain errors.
 例えば、図6は、計測戻り光RMLの検出結果に基づいて生成されるべき理想的な位置情報を点線で示し、且つ、計測戻り光RMLの検出結果に基づいて実際に生成された位置情報の一例を実践で示している。理想的な位置情報は、XY平面に沿った面内の各位置におけるワークWの実際のZ位置を示しており、生成された位置情報は、XY平面に沿った面内の各位置におけるワークWのZ位置の計測結果を示している。 For example, Figure 6 shows by a dotted line the ideal position information that should be generated based on the detection results of the measurement return light RML, and also shows in solid lines an example of position information that is actually generated based on the detection results of the measurement return light RML. The ideal position information indicates the actual Z position of the workpiece W at each position within a surface along the XY plane, and the generated position information indicates the measurement results of the Z position of the workpiece W at each position within a surface along the XY plane.
 図6に示すように、計測戻り光RMLの検出結果に基づいて生成された位置情報は、ワークWのZ位置が、理想的な位置情報が示すワークWの実際のZ位置よりも-Z側に向かって離れているということを示す誤った位置情報である可能性がある。つまり、計測戻り光RMLの検出結果に基づいて生成された位置情報は、加工ヘッド13とワークWとの間のZ軸方向における距離が、理想的な位置情報が示す加工ヘッド13とワークWとの間のZ軸方向における距離よりも長い距離であるということを示す誤った位置情報である可能性がある。このように計測戻り光RMLの検出結果に基づいて生成された位置情報は、計測戻り光RMLの検出結果に基づいて生成された位置情報と理想的な位置情報との差分に相当する計測誤差を含んでいる可能性がある。 As shown in FIG. 6, the position information generated based on the detection results of the measurement return light RML may be erroneous position information indicating that the Z position of the workpiece W is farther toward the -Z side than the actual Z position of the workpiece W indicated by the ideal position information. In other words, the position information generated based on the detection results of the measurement return light RML may be erroneous position information indicating that the distance in the Z axis direction between the machining head 13 and the workpiece W is longer than the distance in the Z axis direction between the machining head 13 and the workpiece W indicated by the ideal position information. In this way, the position information generated based on the detection results of the measurement return light RML may contain a measurement error equivalent to the difference between the position information generated based on the detection results of the measurement return light RML and the ideal position information.
 計測戻り光RMLの検出結果に基づいて生成された位置情報が計測誤差を含む技術的理由の一つとして、ワークWの表面の微小な凹部の影響に起因して、ワークWから生じる計測戻り光RMLが検出器1326によって検出されるタイミングが、本来のタイミングからずれてしまうことがあげられる。一例として、図7(a)は、Z位置を計測するべき表面WSに微小な凹部CCが存在するワークWを示している。この場合、計測光MLは、Z位置を計測するべきワークWの表面WS(特に、凹部CCが形成されていない部分)のみならず、ワークWの表面WSよりも-Z側にくぼんだ凹部CCにも照射される可能性がある。尚、第1実施形態では、ワークWの表面WSよりも-Z側にくぼんだ凹部CCに計測光MLが照射される現象を、説明の便宜上、“計測光MLの染み込み”と称する。このような計測光MLの染み込みが発生すると、凹部CCから生じる計測戻り光RMLが検出器1326に入射するタイミングは、ワークWの表面WSから生じる計測戻り光RMLが検出器1326に入射するタイミングと異なるものとなる。なぜならば、加工ヘッド13から凹部CCまでの距離(特に、凹部CCを形成する底部までの距離)が、加工ヘッド13からワークWの表面WSまでの距離とは異なるからである。典型的には、凹部CCから生じる計測戻り光RMLが検出器1326に入射するタイミングは、ワークWの表面WSから生じる計測戻り光RMLが検出器1326に入射するタイミングに対して、計測光MLの染み込み量に応じた時間だけ遅れる。尚、計測光MLの染み込み量は、図7(a)に示すように、ワークWの表面WSよりも-Z側に向かって計測光MLが進んだ距離を意味していてもよい。例えば、計測光MLの染み込み量は、ワークWの表面WSよりも-Z側に向かってくぼんだ凹部CCの内部を計測光MLが進んだ距離を意味していてもよい。その結果、図7(b)に示すように、計測戻り光RMLの検出結果に基づいて生成される位置情報は、ワークWの表面のZ位置に関する情報のみならず、ワークWの表面WSよりも-Z側にくぼんだ凹部CCのZ位置に関する情報をも含んでしまう。このため、計測戻り光RMLの検出結果に基づいて位置情報を生成する方法には、図6を用いて説明した計測誤差が位置情報に含まれる可能性があるという技術的問題が生じる。 One of the technical reasons why the position information generated based on the detection result of the measurement return light RML contains a measurement error is that the timing at which the measurement return light RML generated from the workpiece W is detected by the detector 1326 deviates from the original timing due to the influence of minute recesses on the surface of the workpiece W. As an example, FIG. 7(a) shows a workpiece W having a minute recess CC on the surface WS whose Z position is to be measured. In this case, the measurement light ML may be irradiated not only to the surface WS of the workpiece W whose Z position is to be measured (particularly the part where the recess CC is not formed), but also to the recess CC recessed on the -Z side of the surface WS of the workpiece W. In the first embodiment, for convenience of explanation, the phenomenon in which the measurement light ML is irradiated to the recess CC recessed on the -Z side of the surface WS of the workpiece W is referred to as "penetration of the measurement light ML". When such penetration of the measurement light ML occurs, the timing at which the measurement return light RML generated from the recess CC enters the detector 1326 differs from the timing at which the measurement return light RML generated from the surface WS of the workpiece W enters the detector 1326. This is because the distance from the processing head 13 to the recess CC (particularly, the distance to the bottom forming the recess CC) differs from the distance from the processing head 13 to the surface WS of the workpiece W. Typically, the timing at which the measurement return light RML generated from the recess CC enters the detector 1326 is delayed by a time corresponding to the penetration amount of the measurement light ML with respect to the timing at which the measurement return light RML generated from the surface WS of the workpiece W enters the detector 1326. The penetration amount of the measurement light ML may mean the distance that the measurement light ML has advanced toward the -Z side from the surface WS of the workpiece W, as shown in FIG. 7A. For example, the penetration amount of the measurement light ML may refer to the distance traveled by the measurement light ML inside a recess CC recessed toward the -Z side from the surface WS of the workpiece W. As a result, as shown in FIG. 7B, the position information generated based on the detection results of the measurement return light RML includes not only information about the Z position of the surface of the workpiece W, but also information about the Z position of the recess CC recessed toward the -Z side from the surface WS of the workpiece W. For this reason, the method of generating position information based on the detection results of the measurement return light RML has a technical problem in that the measurement error described using FIG. 6 may be included in the position information.
 尚、計測光MLの染み込みが発生する原因は、微小な凹部CCから生じる計測戻り光RMLのタイミングが変わることには限られない。例えば、計測光MLの染み込みは、微小な凹部の内部で計測光ML及び計測戻り光RMLのうち少なくとも一方の光が乱反射を起こして干渉が生じてしまうことに起因して発生する可能性もある。例えば、計測光MLの染み込みは、ワークWの光学的な透明さのばらつきに起因して発生する可能性もある。いずれの場合であっても、計測誤差が位置情報に含まれる可能性があるという技術的問題が生じる。 The cause of the penetration of the measurement light ML is not limited to a change in the timing of the measurement return light RML generated from the minute recess CC. For example, the penetration of the measurement light ML may occur due to interference caused by diffuse reflection of at least one of the measurement light ML and the measurement return light RML inside the minute recess. For example, the penetration of the measurement light ML may occur due to variations in the optical transparency of the workpiece W. In either case, a technical problem arises in that measurement errors may be included in the position information.
 一方で、上述したように、制御ユニット2は、計測戻り光RMLの検出結果を用いることなく加工戻り光RELの検出結果に基づいて、ワークWのZ位置を示す位置情報を生成することができる。ここで、加工戻り光RELの検出結果に基づいて位置情報を生成する方法は、計測戻り光RMLの検出結果に基づいて位置情報を生成する場合に生ずる上述した技術的問題が生じることはない。なぜならば、凹部CCから生じる加工戻り光RELが検出器1317に入射するタイミングが、ワークWの表面WSから生じる加工戻り光RELが検出器1317に入射するタイミングと異なっていたとしても、加工戻り光RELの検出結果として用いられる加工戻り光RELの光量が変動することはないからである。従って、通常は、加工戻り光RELの検出結果に基づいて生成される位置情報は、計測戻り光RMLの検出結果に基づいて生成される位置情報よりも正確である。つまり、通常は、加工戻り光RELの検出結果に基づいて生成される位置情報は、計測戻り光RMLの検出結果に基づいて生成される位置情報と比較して、ワークWのZ位置を高精度に示している。 On the other hand, as described above, the control unit 2 can generate position information indicating the Z position of the workpiece W based on the detection result of the processing return light REL without using the detection result of the measurement return light RML. Here, the method of generating position information based on the detection result of the processing return light REL does not cause the above-mentioned technical problems that arise when generating position information based on the detection result of the measurement return light RML. This is because even if the timing at which the processing return light REL generated from the recess CC enters the detector 1317 is different from the timing at which the processing return light REL generated from the surface WS of the workpiece W enters the detector 1317, the light amount of the processing return light REL used as the detection result of the processing return light REL does not fluctuate. Therefore, the position information generated based on the detection result of the processing return light REL is usually more accurate than the position information generated based on the detection result of the measurement return light RML. In other words, the position information generated based on the detection result of the processing return light REL usually indicates the Z position of the workpiece W with higher accuracy than the position information generated based on the detection result of the measurement return light RML.
 他方で、加工戻り光RELの検出結果に基づいて位置情報が生成される場合には、上述したように、加工ユニット1は、制御ユニット2の制御下で、加工光ELをワークWのある位置に照射する照射動作と、加工光ELの集光位置CPをZ軸方向に沿って移動させるフォーカス動作とを交互に繰り返す必要がある。このため、加工戻り光RELの検出結果に基づいて位置情報を生成するために必要な時間は、計測戻り光RMLの検出結果に基づいて位置情報を生成するために必要な時間よりも長くなる。つまり、加工戻り光RELの検出結果に基づいて位置情報を生成する方法には、位置情報を生成するために必要な時間が長くなる可能性があるという技術的問題が生じる。 On the other hand, when position information is generated based on the detection results of the processing return light REL, as described above, the processing unit 1, under the control of the control unit 2, must alternately repeat an irradiation operation of irradiating a position on the workpiece W with the processing light EL and a focusing operation of moving the focusing position CP of the processing light EL along the Z-axis direction. For this reason, the time required to generate position information based on the detection results of the processing return light REL is longer than the time required to generate position information based on the detection results of the measurement return light RML. In other words, the method of generating position information based on the detection results of the processing return light REL poses a technical problem in that the time required to generate position information may be long.
 そこで、第1実施形態では、加工システムSYSaは、計測戻り光RMLの検出結果に基づいて位置情報を生成する方法と、加工戻り光RELの検出結果に基づいて位置情報を生成する方法とを組み合わせることで、上述した技術的問題を解消しながら位置情報を生成する。具体的には、加工システムSYSaは、原則として、計測戻り光RMLの検出結果に基づいて、ワークWの表面WSの各部分のZ位置を示す位置情報を生成する。その結果、加工戻り光RELの検出結果に基づいてワークWの表面WSの各部分のZ位置を示す位置情報を生成する場合と比較して、加工システムSYSaは、位置情報を生成するために必要な時間を短縮することができる。更に、加工システムSYSaは、計測戻り光RMLの検出結果に基づいて生成された位置情報を、ワークWのZ位置をより高精度に示す加工戻り光RELの検出結果を用いて補正する。より具体的には、加工システムSYSaは、計測戻り光RMLの検出結果に基づいて生成された相対的に精度の低い位置情報を、加工戻り光RELの検出結果に基づいて生成された相対的に精度の高い位置情報を用いて補正する。その結果、加工戻り光RELの検出結果を用いることなく計測戻り光RMLの検出結果に基づいてワークWの表面WSの各部分のZ位置を示す位置情報を生成する場合と比較して、加工システムSYSaは、ワークWのZ位置をより高精度に示す位置情報を生成することができる。 Therefore, in the first embodiment, the processing system SYSa generates position information while solving the above-mentioned technical problems by combining a method of generating position information based on the detection result of the measurement return light RML and a method of generating position information based on the detection result of the processing return light REL. Specifically, the processing system SYSa generates position information indicating the Z position of each part of the surface WS of the workpiece W based on the detection result of the measurement return light RML in principle. As a result, the processing system SYSa can reduce the time required to generate position information compared to the case where position information indicating the Z position of each part of the surface WS of the workpiece W is generated based on the detection result of the processing return light REL. Furthermore, the processing system SYSa corrects the position information generated based on the detection result of the measurement return light RML using the detection result of the processing return light REL that indicates the Z position of the workpiece W with higher accuracy. More specifically, the processing system SYSa corrects the relatively low-precision position information generated based on the detection result of the measurement return light RML using the relatively high-precision position information generated based on the detection result of the processing return light REL. As a result, the processing system SYSa can generate position information that indicates the Z position of the workpiece W with higher accuracy than when position information indicating the Z position of each part of the surface WS of the workpiece W is generated based on the detection results of the measurement return light RML without using the detection results of the processing return light REL.
 (1-2-2-2)計測戻り光RMLの検出結果と加工戻り光RELの検出結果との双方に基づいて位置情報を生成する動作の具体的な流れ
 続いて、図8を参照しながら、計測戻り光RMLの検出結果と加工戻り光RELの検出結果との双方に基づいて位置情報を生成する動作の具体的な流れについて説明する。図8は、計測戻り光RMLの検出結果と加工戻り光RELの検出結果との双方に基づいて位置情報を生成する動作の流れを示すフローチャートである。
(1-2-2-2) Specific flow of operation for generating position information based on both the detection result of the measurement return light RML and the detection result of the processing return light REL Next, a specific flow of operation for generating position information based on both the detection result of the measurement return light RML and the detection result of the processing return light REL will be described with reference to Fig. 8. Fig. 8 is a flowchart showing the flow of operation for generating position information based on both the detection result of the measurement return light RML and the detection result of the processing return light REL.
 図8に示すように、加工ユニット1は、制御ユニット2の制御下で、ワークWに計測光MLを照射する(ステップS101)。例えば、加工ユニット1は、ワークWの複数の異なる部分のそれぞれに計測光MLを照射してもよい。この場合、加工ユニット1は、ガルバノミラー1328及び1341の少なくとも一方を用いて計測光MLの照射領域MAをワークWに対して移動させることで、ワークWの複数の異なる部分のそれぞれに計測光MLを照射してもよい。加工ユニット1は、加工ヘッド13及びステージ15の少なくとも一方を移動させて計測光MLの照射領域MAをワークWに対して移動させることで、ワークWの複数の異なる部分のそれぞれに計測光MLを照射してもよい。その後、制御ユニット2は、ワークWに計測光MLが照射されることによってワークWから生ずる計測戻り光RMLの検出結果に基づいて、ワークWのZ位置を算出する(ステップS102)。つまり、制御ユニット2は、ワークWのZ位置を示す位置情報を生成する(ステップS102)。例えば、ワークWの複数の異なる部分のそれぞれに計測光MLが照射された場合には、制御ユニット2は、ワークWの複数の異なる部分のそれぞれのZ位置を示す位置情報を生成してもよい。 8, the processing unit 1 irradiates the workpiece W with the measurement light ML under the control of the control unit 2 (step S101). For example, the processing unit 1 may irradiate each of a plurality of different parts of the workpiece W with the measurement light ML. In this case, the processing unit 1 may irradiate each of a plurality of different parts of the workpiece W with the measurement light ML by moving the irradiation area MA of the measurement light ML relative to the workpiece W using at least one of the galvanometer mirrors 1328 and 1341. The processing unit 1 may irradiate each of a plurality of different parts of the workpiece W with the measurement light ML by moving at least one of the processing head 13 and the stage 15 to move the irradiation area MA of the measurement light ML relative to the workpiece W. Thereafter, the control unit 2 calculates the Z position of the workpiece W based on the detection result of the measurement return light RML generated from the workpiece W by irradiating the workpiece W with the measurement light ML (step S102). In other words, the control unit 2 generates position information indicating the Z position of the workpiece W (step S102). For example, when the measurement light ML is irradiated onto each of multiple different parts of the workpiece W, the control unit 2 may generate position information indicating the Z position of each of the multiple different parts of the workpiece W.
 一例として、加工ユニット1は、ワークWの第1部分に計測光MLを照射し、且つ、第1部分とは異なるワークWの第2部分に計測光MLを照射してもよい。その後、制御ユニット2は、ワークWの第1部分に計測光MLが照射されることによってワークWの第1部分から生ずる計測戻り光RMLの検出結果に基づいて、ワークWの第1部分のZ位置を算出してもよい。更に、制御ユニット2は、ワークWの第2部分に計測光MLが照射されることによってワークWの第2部分から生ずる計測戻り光RMLの検出結果に基づいて、ワークWの第2部分のZ位置を算出してもよい。つまり、制御ユニット2は、ワークWの第1及び第2部分のそれぞれのZ位置を示す位置情報を生成してもよい。 As an example, the processing unit 1 may irradiate a first portion of the workpiece W with the measurement light ML, and may also irradiate a second portion of the workpiece W that is different from the first portion with the measurement light ML. Thereafter, the control unit 2 may calculate the Z position of the first portion of the workpiece W based on the detection result of the measurement return light RML generated from the first portion of the workpiece W when the measurement light ML is irradiated onto the first portion of the workpiece W. Furthermore, the control unit 2 may calculate the Z position of the second portion of the workpiece W based on the detection result of the measurement return light RML generated from the second portion of the workpiece W when the measurement light ML is irradiated onto the second portion of the workpiece W. In other words, the control unit 2 may generate position information indicating the Z positions of the first and second portions of the workpiece W.
 ステップS101からステップS102までの動作と並行して又は相前後して、加工ユニット1は、制御ユニット2の制御下で、ワークWに加工光ELを照射する(ステップS103)。特に、加工ユニット1は、ステップS101において計測光MLが照射されたワークWの複数の異なる部分のうちの少なくとも一つに、加工光ELを照射する。尚、以下の説明では、説明の便宜上、加工ユニット1が、ステップS101において計測光MLが照射されたワークWの複数の異なる部分のうちのいずれか一つに加工光ELを照射する例について説明する。一例として、ステップS101において加工ユニット1がワークWの第1及び第2部分のそれぞれに計測光MLを照射する場合には、ステップS103において、加工ユニット1は、ワークWの第1又は第2部分に加工光ELを照射してもよい。尚、以下の説明では、説明の便宜上、位置情報を生成するためにステップS103において加工光ELが照射されるワークWの一の部分を、“対象部分”と称する。 In parallel with or before or after the operations from step S101 to step S102, the processing unit 1 irradiates the workpiece W with the processing light EL under the control of the control unit 2 (step S103). In particular, the processing unit 1 irradiates the processing light EL to at least one of the multiple different parts of the workpiece W irradiated with the measurement light ML in step S101. In the following description, for convenience of explanation, an example will be described in which the processing unit 1 irradiates the processing light EL to any one of the multiple different parts of the workpiece W irradiated with the measurement light ML in step S101. As an example, when the processing unit 1 irradiates the measurement light ML to each of the first and second parts of the workpiece W in step S101, the processing unit 1 may irradiate the processing light EL to the first or second part of the workpiece W in step S103. In the following description, for convenience of explanation, a part of the workpiece W irradiated with the processing light EL in step S103 to generate position information is referred to as a "target part".
 但し、加工ユニット1は、ステップS101において計測光MLが照射されたワークWの複数の異なる部分のうちの少なくとも一つの近傍の領域に、加工光ELを照射してもよい。一例として、ステップS101において加工ユニット1がワークWの第1及び第2部分のそれぞれに計測光MLを照射する場合には、ステップS103において、加工ユニット1は、ワークWの第1又は第2部分の近傍の領域に加工光ELを照射してもよい。 However, the processing unit 1 may irradiate the processing light EL to an area near at least one of the multiple different parts of the workpiece W irradiated with the measurement light ML in step S101. As an example, if the processing unit 1 irradiates the measurement light ML to each of the first and second parts of the workpiece W in step S101, the processing unit 1 may irradiate the processing light EL to an area near the first or second part of the workpiece W in step S103.
 位置情報を生成するためにワークWに照射される加工光ELの特性は、ワークWを加工するためにワークWに照射される加工光ELの特性と異なっていてもよい。加工光ELの特性の一例として、加工光ELの強度及び加工光ELの照射時間の少なくとも一つがあげられる。加工光ELの強度は、フルエンスを意味していてもよい。加工光ELがパルス光を含む場合には、加工光ELの特性の一例として、単位時間当たりのパルス光の数(つまり、パルス数)及びパルス長の少なくとも一つがあげられる。 The characteristics of the processing light EL irradiated to the workpiece W to generate position information may be different from the characteristics of the processing light EL irradiated to the workpiece W to process the workpiece W. An example of the characteristics of the processing light EL is at least one of the intensity of the processing light EL and the irradiation time of the processing light EL. The intensity of the processing light EL may mean the fluence. In the case where the processing light EL includes pulsed light, an example of the characteristics of the processing light EL is at least one of the number of pulsed lights per unit time (i.e., the number of pulses) and the pulse length.
 加工光ELの特性として加工光ELの強度が用いられる場合には、位置情報を生成するためにワークWに照射される加工光ELの強度は、ワークWを加工するためにワークWに照射される加工光ELの強度よりも低くてもよい。その結果、位置情報を生成するためにワークWに照射される加工光ELによってワークWが意図せずに加工されてしまう可能性が低くなる。典型的には、位置情報を生成するためにワークWに照射される加工光ELの強度は、ワークWを加工可能な加工光ELの強度よりも低くてもよい。その結果、位置情報を生成するためにワークWに照射される加工光ELによってワークWが意図せずに加工されてしまう可能性がなくなる。 When the intensity of the processing light EL is used as the characteristic of the processing light EL, the intensity of the processing light EL irradiated to the workpiece W to generate position information may be lower than the intensity of the processing light EL irradiated to the workpiece W to process the workpiece W. As a result, the possibility of the workpiece W being unintentionally processed by the processing light EL irradiated to the workpiece W to generate position information is reduced. Typically, the intensity of the processing light EL irradiated to the workpiece W to generate position information may be lower than the intensity of the processing light EL capable of processing the workpiece W. As a result, the possibility of the workpiece W being unintentionally processed by the processing light EL irradiated to the workpiece W to generate position information is reduced.
 位置情報を生成するためにワークWに照射される加工光ELの強度を、ワークWを加工するためにワークWに照射される加工光ELの強度よりも低くするために、制御ユニット2は、加工光源11を制御して、加工光源11から射出される加工光ELの強度を制御してもよい。位置情報を生成するためにワークWに照射される加工光ELの強度を、ワークWを加工するためにワークWに照射される加工光ELの強度よりも低くするために、加工ユニット1は、加工光ELの光路に、加工光ELを減衰可能な減衰部材を配置してもよい。 In order to make the intensity of the processing light EL irradiated to the workpiece W to generate position information lower than the intensity of the processing light EL irradiated to the workpiece W to process the workpiece W, the control unit 2 may control the processing light source 11 to control the intensity of the processing light EL emitted from the processing light source 11. In order to make the intensity of the processing light EL irradiated to the workpiece W to generate position information lower than the intensity of the processing light EL irradiated to the workpiece W to process the workpiece W, the processing unit 1 may place an attenuation member capable of attenuating the processing light EL in the optical path of the processing light EL.
 ステップS103におけるワークWの対象部分に対する加工光ELの入射角は、ステップS101におけるワークWの対象部分に対する計測光MLの入射角と同じであってもよい。この場合、ステップS103における加工光ELの染み込み量が、ステップS101における計測光MLの染み込み量と同じになる。 The angle of incidence of the processing light EL on the target portion of the workpiece W in step S103 may be the same as the angle of incidence of the measurement light ML on the target portion of the workpiece W in step S101. In this case, the penetration amount of the processing light EL in step S103 will be the same as the penetration amount of the measurement light ML in step S101.
 加工光ELがワークWに照射されると、検出器1317は、ワークWの対象部分に加工光ELが照射されることによってワークWの対象部分から生ずる加工戻り光RELを検出する(ステップS104)。 When the processing light EL is irradiated onto the workpiece W, the detector 1317 detects the processing return light REL that is generated from the target portion of the workpiece W as a result of the processing light EL being irradiated onto the target portion of the workpiece W (step S104).
 その後、加工ユニット1は、制御ユニット2の制御下で、ワークWの対象部分に加工光ELが必要回数照射されるまで(ステップS105)、加工光ELの集光位置CPを変更するフォーカス動作(ステップS106)と、ワークWの対象部分に加工光ELを照射し且つ加工戻り光RELを検出する照射動作(ステップS103からステップS104)とを交互に繰り返す。その後、制御ユニット2は、ステップS104における加工戻り光RELの検出結果に基づいて、ワークWの対象部分のZ位置を算出する(ステップS107)。 Then, under the control of the control unit 2, the processing unit 1 alternately repeats a focusing operation (step S106) that changes the focusing position CP of the processing light EL and an irradiation operation (steps S103 to S104) that irradiates the target portion of the workpiece W with the processing light EL and detects the processing return light REL until the target portion of the workpiece W is irradiated the processing light EL the required number of times (step S105).Then, the control unit 2 calculates the Z position of the target portion of the workpiece W based on the detection result of the processing return light REL in step S104 (step S107).
 その後、制御ユニット2は、ステップS102において計測戻り光RMLの検出結果に基づいて算出されたワークWのZ位置と、ステップS107において加工戻り光RELの検出結果に基づいて算出されたワークWのZ位置とに基づいて、計測戻り光RMLの検出結果に基づいて算出されたワークWのZ位置を補正するための位置補正量を算出する(ステップS108)。具体的には、制御ユニット2は、ステップS102において計測戻り光RMLの検出結果に基づいて算出されたワークWの対象部分のZ位置と、ステップS107において加工戻り光RELの検出結果に基づいて算出されたワークWの同じ対象部分のZ位置とに基づいて、位置補正量を算出する。 Then, the control unit 2 calculates a position correction amount for correcting the Z position of the workpiece W calculated based on the detection results of the measurement return light RML based on the Z position of the workpiece W calculated based on the detection results of the measurement return light RML in step S102 and the Z position of the workpiece W calculated based on the detection results of the processing return light REL in step S107 (step S108). Specifically, the control unit 2 calculates the position correction amount based on the Z position of the target portion of the workpiece W calculated based on the detection results of the measurement return light RML in step S102 and the Z position of the same target portion of the workpiece W calculated based on the detection results of the processing return light REL in step S107.
 第1実施形態では、制御ユニット2は、計測戻り光RMLの検出結果に基づいて算出されたワークWの対象部分のZ位置と、加工戻り光RELの検出結果に基づいて算出されたワークWの同じ対象部分のZ位置との関係に基づいて、位置補正量を算出してもよい。一例として、上述したように、加工戻り光RELの検出結果に基づいて算出されたワークWのZ位置は、計測戻り光RMLの検出結果に基づいて算出されたワークWのZ位置と比較して、ワークWのZ位置を高精度に示している。このため、加工戻り光RELの検出結果に基づいて算出されたワークWのZ位置と、計測戻り光RMLの検出結果に基づいて算出されたワークWのZ位置との差分は、計測戻り光RMLの検出結果に基づいて算出されたワークWのZ位置に含まれている計測誤差を示している可能性が高い。そこで、第1実施形態では、図9に示すように、制御ユニット2は、計測戻り光RMLの検出結果に基づいて算出されたワークWの対象部分のZ位置と、加工戻り光RELの検出結果に基づいて算出されたワークWの同じ対象部分のZ位置との差分を、位置補正量として算出してもよい。 In the first embodiment, the control unit 2 may calculate the position correction amount based on the relationship between the Z position of the target portion of the workpiece W calculated based on the detection result of the measurement return light RML and the Z position of the same target portion of the workpiece W calculated based on the detection result of the processing return light REL. As an example, as described above, the Z position of the workpiece W calculated based on the detection result of the processing return light REL indicates the Z position of the workpiece W with high accuracy compared to the Z position of the workpiece W calculated based on the detection result of the measurement return light RML. Therefore, the difference between the Z position of the workpiece W calculated based on the detection result of the processing return light REL and the Z position of the workpiece W calculated based on the detection result of the measurement return light RML is likely to indicate a measurement error contained in the Z position of the workpiece W calculated based on the detection result of the measurement return light RML. Therefore, in the first embodiment, as shown in FIG. 9, the control unit 2 may calculate the difference between the Z position of the target portion of the workpiece W calculated based on the detection result of the measurement return light RML and the Z position of the same target portion of the workpiece W calculated based on the detection result of the processing return light REL as the position correction amount.
 再び図8において、その後、制御ユニット2は、ステップS102において計測戻り光RMLの検出結果に基づいて算出されたワークWのZ位置を、ステップS108において算出された位置補正量を用いて補正する(ステップS109)。具体的には、制御ユニット2は、ステップS102において計測光MLの計測戻り光RMLの検出結果に基づいて算出されたワークWのZ位置に対して、ステップS108において算出された位置補正量を加算する(ステップS109)。つまり、制御ユニット2は、計測戻り光RMLの検出結果に基づいて算出されたワークWの複数の異なる部分のそれぞれのZ位置に対して、位置補正量を加算する(ステップS109)。その結果、位置補正量が加算されたZ位置が、補正されたZ位置として算出される。つまり、補正されたワークWのZ位置を示す位置情報(つまり、補正された位置情報)が生成される。 Referring back to FIG. 8, the control unit 2 then corrects the Z position of the workpiece W calculated in step S102 based on the detection result of the measurement return light RML using the position correction amount calculated in step S108 (step S109). Specifically, the control unit 2 adds the position correction amount calculated in step S108 to the Z position of the workpiece W calculated in step S102 based on the detection result of the measurement return light RML of the measurement light ML (step S109). That is, the control unit 2 adds the position correction amount to each of the Z positions of multiple different parts of the workpiece W calculated based on the detection result of the measurement return light RML (step S109). As a result, the Z position to which the position correction amount has been added is calculated as the corrected Z position. That is, position information indicating the corrected Z position of the workpiece W (i.e., corrected position information) is generated.
 一例として、ステップS101において加工ユニット1がワークWの第1及び第2部分のそれぞれに計測光MLを照射し、且つ、ステップS103において加工ユニット1がワークWの第1部分に加工光ELを照射する場合には、制御ユニット2は、計測戻り光RMLの検出結果に基づいて算出されたワークWの第1部分のZ位置と、加工戻り光RELの検出結果に基づいて算出されたワークWの第1部分のZ位置との差分を、位置補正量として算出してもよい。その後、制御ユニット2は、計測戻り光RMLの検出結果に基づいて算出されたワークWの第1部分のZ位置に対して、位置補正量を加算することで、ワークWの第1部分のZ位置を補正してもよい。同様に、制御ユニット2は、計測戻り光RMLの検出結果に基づいて算出されたワークWの第2部分のZ位置に対して、位置補正量を加算することで、ワークWの第2部分のZ位置を補正してもよい。その結果、制御ユニット2は、位置補正量が加算されたワークWの第1部分のZ位置(つまり、補正されたワークWの第1部分のZ位置)と、位置補正量が加算されたワークWの第2部分のZ位置(つまり、補正されたワークWの第2部分のZ位置)とを示す位置情報を生成してもよい。 As an example, when the processing unit 1 irradiates the first and second portions of the workpiece W with the measurement light ML in step S101 and irradiates the first portion of the workpiece W with the processing light EL in step S103, the control unit 2 may calculate the difference between the Z position of the first portion of the workpiece W calculated based on the detection result of the measurement return light RML and the Z position of the first portion of the workpiece W calculated based on the detection result of the processing return light REL as the position correction amount. Thereafter, the control unit 2 may correct the Z position of the first portion of the workpiece W by adding the position correction amount to the Z position of the first portion of the workpiece W calculated based on the detection result of the measurement return light RML. Similarly, the control unit 2 may correct the Z position of the second portion of the workpiece W by adding the position correction amount to the Z position of the second portion of the workpiece W calculated based on the detection result of the measurement return light RML. As a result, the control unit 2 may generate position information indicating the Z position of the first part of the work W to which the position correction amount has been added (i.e., the corrected Z position of the first part of the work W) and the Z position of the second part of the work W to which the position correction amount has been added (i.e., the corrected Z position of the second part of the work W).
 位置情報が補正された場合には、制御ユニット2は、補正された位置情報に基づいて、ワークWを加工するように加工ユニット1の動作を制御してもよい。 When the position information is corrected, the control unit 2 may control the operation of the processing unit 1 to process the workpiece W based on the corrected position information.
 (1-3)技術的効果
 以上説明したように、加工システムSYSaは、計測戻り光RMLの検出結果と加工戻り光RELの検出結果との双方に基づいて、ワークWのZ位置を示す位置情報を生成することができる。具体的には、加工システムSYSaは、計測戻り光RMLの検出結果に基づいて生成された位置情報を、加工戻り光RELの検出結果に基づいて生成される位置補正量を用いて補正することができる。その結果、計測戻り光RMLの検出結果に基づいて生成された位置情報に含まれている計測誤差と比較して、補正された位置情報に含まれている計測誤差が小さくなる。このため、加工システムSYSaは、計測戻り光RMLの検出結果に基づいて生成された位置情報と比較してワークWのZ位置を高精度に示す補正された位置情報を用いて、ワークWを加工することができる。このため、加工システムSYSaは、ワークWを適切に加工することができる。
(1-3) Technical Effects As described above, the processing system SYSa can generate position information indicating the Z position of the workpiece W based on both the detection result of the measurement return light RML and the detection result of the processing return light REL. Specifically, the processing system SYSa can correct the position information generated based on the detection result of the measurement return light RML using a position correction amount generated based on the detection result of the processing return light REL. As a result, the measurement error included in the corrected position information is smaller than the measurement error included in the position information generated based on the detection result of the measurement return light RML. Therefore, the processing system SYSa can process the workpiece W using the corrected position information that indicates the Z position of the workpiece W with high accuracy compared to the position information generated based on the detection result of the measurement return light RML. Therefore, the processing system SYSa can properly process the workpiece W.
 (2)第2実施形態の加工システムSYS
 続いて、第2実施形態における加工システムSYSについて説明する。尚、以下の説明では、第2実施形態における加工システムSYSを、“加工システムSYSb”と称する。
(2) Machining system SYS of the second embodiment
Next, a description will be given of a machining system SYS in the second embodiment. In the following description, the machining system SYS in the second embodiment will be referred to as a "machining system SYSb."
 第2実施形態における加工システムSYSbは、上述した第1実施形態における加工システムSYSaと比較して、図8のステップS102において計測光MLの計測戻り光RMLの検出結果に基づいてワークWのZ位置を算出するための方法が異なるという点で異なる。加工システムSYSbのその他の特徴は、加工システムSYSaのその他の特徴と同一であってもよい。 The machining system SYSb in the second embodiment differs from the machining system SYSa in the first embodiment described above in that the method for calculating the Z position of the workpiece W based on the detection result of the measurement return light RML of the measurement light ML in step S102 of FIG. 8 is different. Other features of the machining system SYSb may be the same as other features of the machining system SYSa.
 具体的には、上述した第1実施形態では、制御ユニット2は、ワークWの第1部分に計測光MLを照射することで生じる計測戻り光RMLの検出結果に基づいて、ワークWの第1部分のZ位置を算出している。一方で、第2実施形態では、図11(a)及び図11(b)に示すように、制御ユニット2は、ワークWの第1部分P1に計測光MLを照射することで生じる計測戻り光RMLの検出結果と、第1部分P1と所定の位置関係を有するワークWの少なくとも一つの第2部分P2に計測光MLを照射することで生じる計測戻り光RMLの検出結果との双方に基づいて、ワークWの第1部分P1のZ位置を算出してもよい。尚、図11(a)は、制御ユニット2が、ワークWの第1部分P1に計測光MLを照射することで生じる計測戻り光RMLの検出結果と、ワークWの一つの第2部分P2に計測光MLを照射することで生じる計測戻り光RMLの検出結果との双方に基づいて、ワークWの第1部分P1のZ位置を算出する例を示している。一方で、図11(b)は、制御ユニット2は、ワークWの第1部分P1に計測光MLを照射することで生じる計測戻り光RMLの検出結果と、ワークWの複数の第2部分P2に計測光MLを照射することで生じる計測戻り光RMLの検出結果との双方に基づいて、ワークWの第1部分P1のZ位置を算出する例を示している。 Specifically, in the first embodiment described above, the control unit 2 calculates the Z position of the first portion of the work W based on the detection result of the measurement return light RML generated by irradiating the first portion of the work W with the measurement light ML. On the other hand, in the second embodiment, as shown in FIG. 11(a) and FIG. 11(b), the control unit 2 may calculate the Z position of the first portion P1 of the work W based on both the detection result of the measurement return light RML generated by irradiating the first portion P1 of the work W with the measurement light ML and the detection result of the measurement return light RML generated by irradiating at least one second portion P2 of the work W having a predetermined positional relationship with the first portion P1. Note that FIG. 11(a) shows an example in which the control unit 2 calculates the Z position of the first portion P1 of the work W based on both the detection result of the measurement return light RML generated by irradiating the first portion P1 of the work W with the measurement light ML and the detection result of the measurement return light RML generated by irradiating one second portion P2 of the work W with the measurement light ML. On the other hand, FIG. 11(b) shows an example in which the control unit 2 calculates the Z position of the first portion P1 of the workpiece W based on both the detection result of the measurement return light RML generated by irradiating the measurement light ML onto the first portion P1 of the workpiece W and the detection result of the measurement return light RML generated by irradiating the measurement light ML onto multiple second portions P2 of the workpiece W.
 図11(a)及び図11(b)に示すように、第1部分P1と所定の位置関係を有する第2部分P2は、第1部分P1から所定距離以内の位置に位置していてもよい。つまり、第2実施形態における「ワークWの第1部分P1とワークWの第2部分P2とが所定の位置関係を有する」状態は、「ワークWの第2部分P2がワークWの第1部分P1から所定距離以内の位置に位置する」状態を意味していてもよい。第2実施形態における「ワークWの第1部分P1とワークWの第2部分P2とが所定の位置関係を有する」状態は、「ワークWの第1部分P1とワークWの他の部分との間の距離が所定距離以内である」状態を意味していてもよい。 As shown in Figures 11(a) and 11(b), the second part P2 having a predetermined positional relationship with the first part P1 may be located within a predetermined distance from the first part P1. In other words, in the second embodiment, the state in which "the first part P1 of the work W and the second part P2 of the work W have a predetermined positional relationship" may mean the state in which "the second part P2 of the work W is located within a predetermined distance from the first part P1 of the work W." In the second embodiment, the state in which "the first part P1 of the work W and the second part P2 of the work W have a predetermined positional relationship" may mean the state in which "the distance between the first part P1 of the work W and other parts of the work W is within a predetermined distance."
 所定距離は、予め固定された定数であってもよい。例えば、所定距離は、ワークWの材質に基づいて予め定められていてもよい。例えば、所定距離は、ワークWの形状に基づいて予め定められていてもよい。この場合、予め固定された所定距離を指定する定数情報が加工システムSYSbに入力されてもよい。或いは、制御ユニット2は、予め固定された所定距離を指定する定数情報を記憶装置22に格納しておいてもよい。制御ユニット2は、距離情報が指定する所定距離を用いて第1部分P1から所定距離以内の位置に位置している少なくとも一つの第2部分P2を指定し、第1部分P1に計測光MLを照射することで生じる計測戻り光RMLの検出結果と、少なくとも一つの第2部分P2に計測光MLを照射することで生じる計測戻り光RMLの検出結果との双方に基づいて、第1部分P1のZ位置を算出してもよい。 The specified distance may be a constant fixed in advance. For example, the specified distance may be determined in advance based on the material of the workpiece W. For example, the specified distance may be determined in advance based on the shape of the workpiece W. In this case, constant information specifying the predetermined distance fixed in advance may be input to the processing system SYSb. Alternatively, the control unit 2 may store constant information specifying the predetermined distance fixed in advance in the storage device 22. The control unit 2 may specify at least one second portion P2 located within a predetermined distance from the first portion P1 using the predetermined distance specified by the distance information, and calculate the Z position of the first portion P1 based on both the detection result of the measurement return light RML generated by irradiating the first portion P1 with the measurement light ML and the detection result of the measurement return light RML generated by irradiating the measurement light ML to at least one second portion P2.
 所定距離は、加工システムSYSbのユーザが変更可能な変数であってもよい。一例として、ユーザは、ワークWの材質に基づいて、所定距離を変更してもよい。他の一例として、ユーザは、ワークWの形状に基づいて、所定距離を変更してもよい。他の一例として、ユーザは、所定距離がユーザの望む距離となるように、所定距離を変更してもよい。この場合、所定距離を変更する(例えば、指定する)ユーザの指示に関するユーザ指示情報が加工システムSYSbに入力されてもよい。或いは、所定距離は、制御ユニット2が変更可能な変数であってもよい。この場合、制御ユニット2は、ユーザの指示を必要とすることなく、所定の距離変更基準に基づいて所定距離を変更してもよい。一例として、制御ユニット2は、ワークWの材質に基づいて、所定距離を変更してもよい。他の一例として、制御ユニット2は、ワークWの形状に基づいて、所定距離を変更してもよい。所定距離が変更可能である場合には、制御ユニット2は、変更された所定距離を用いて第1部分P1から所定距離以内の位置に位置している少なくとも一つの第2部分P2を指定し、第1部分P1に計測光MLを照射することで生じる計測戻り光RMLの検出結果と、少なくとも一つの第2部分P2に計測光MLを照射することで生じる計測戻り光RMLの検出結果との双方に基づいて、第1部分P1のZ位置を算出してもよい。 The specified distance may be a variable that can be changed by a user of the processing system SYSb. As an example, the user may change the specified distance based on the material of the workpiece W. As another example, the user may change the specified distance based on the shape of the workpiece W. As another example, the user may change the specified distance so that the specified distance becomes a distance desired by the user. In this case, user instruction information regarding a user's instruction to change (e.g., specify) the specified distance may be input to the processing system SYSb. Alternatively, the specified distance may be a variable that can be changed by the control unit 2. In this case, the control unit 2 may change the specified distance based on a specified distance change criterion without requiring a user's instruction. As an example, the control unit 2 may change the specified distance based on the material of the workpiece W. As another example, the control unit 2 may change the specified distance based on the shape of the workpiece W. If the specified distance is changeable, the control unit 2 may use the changed specified distance to specify at least one second portion P2 located within a specified distance from the first portion P1, and calculate the Z position of the first portion P1 based on both the detection result of the measurement return light RML generated by irradiating the measurement light ML onto the first portion P1 and the detection result of the measurement return light RML generated by irradiating the measurement light ML onto at least one second portion P2.
 制御ユニット2は、第1部分P1に計測光MLを照射することで生じる計測戻り光RMLの検出結果に基づいて第1部分P1のZ位置を中間値として算出し、第2部分P2に計測光MLを照射することで生じる計測戻り光RMLの検出結果に基づいて第2部分P2のZ位置を中間値として算出してもよい。その後、制御ユニット2は、第1部分P1のZ位置の中間値と第2部分P2のZ位置の中間値との双方に基づいて、第1部分P1のZ位置の最終値を算出してもよい。 The control unit 2 may calculate the Z position of the first part P1 as an intermediate value based on the detection result of the measurement return light RML generated by irradiating the first part P1 with the measurement light ML, and may calculate the Z position of the second part P2 as an intermediate value based on the detection result of the measurement return light RML generated by irradiating the second part P2 with the measurement light ML. Thereafter, the control unit 2 may calculate the final value of the Z position of the first part P1 based on both the intermediate value of the Z position of the first part P1 and the intermediate value of the Z position of the second part P2.
 一例として、制御ユニット2は、第1部分P1のZ位置の中間値と第2部分P2のZ位置の中間値との平均値を、第1部分P1のZ位置の最終値として算出してもよい。つまり、制御ユニット2は、第1部分P1のZ位置の中間値と第2部分P2のZ位置の中間値との平均値を、第1部分P1のZ位置の最終値として算出するための平均化処理を行ってもよい。このような平均化処理により、計測光MLの計測戻り光RMLの検出結果に基づいて生成される位置情報に含まれる計測誤差が小さくなる。具体的には、図12は、計測光MLの計測戻り光RMLの検出結果に基づいて算出されるワークWのZ位置の中間値と、平均化処理によって算出されるワークWのZ位置の最終値とを示している。図12に示すように、平均化処理によって、XY平面に沿った面内でのワークWのZ位置の最終値のばらつきは、XY平面に沿った面内でのワークWのZ位置の中間値のばらつきよりも少なくなる。算出されるワークWのZ位置のばらつきは、上述した計測光MLのワークWへの染み込み量に依存し、且つ、算出されるワークWのZ位置のばらつきが大きくなればなるほど、位置情報に含まれる計測誤差が大きくなるがゆえに、平均化処理によって位置情報に含まれる計測誤差が小さくなることが分かる。その結果、制御ユニット2は、平均化処理が行われない場合と比較して、計測光MLの計測戻り光RMLの検出結果に基づいてワークWのZ位置をより高精度に算出することができる。 As an example, the control unit 2 may calculate the average value of the intermediate value of the Z position of the first part P1 and the intermediate value of the Z position of the second part P2 as the final value of the Z position of the first part P1. In other words, the control unit 2 may perform an averaging process to calculate the average value of the intermediate value of the Z position of the first part P1 and the intermediate value of the Z position of the second part P2 as the final value of the Z position of the first part P1. By such an averaging process, the measurement error contained in the position information generated based on the detection result of the measurement return light RML of the measurement light ML is reduced. Specifically, FIG. 12 shows the intermediate value of the Z position of the workpiece W calculated based on the detection result of the measurement return light RML of the measurement light ML and the final value of the Z position of the workpiece W calculated by the averaging process. As shown in FIG. 12, by the averaging process, the variation of the final value of the Z position of the workpiece W in the plane along the XY plane becomes smaller than the variation of the intermediate value of the Z position of the workpiece W in the plane along the XY plane. It can be seen that the variation in the calculated Z position of the workpiece W depends on the amount of penetration of the measurement light ML into the workpiece W described above, and the greater the variation in the calculated Z position of the workpiece W, the greater the measurement error contained in the position information; therefore, the averaging process reduces the measurement error contained in the position information. As a result, the control unit 2 can more accurately calculate the Z position of the workpiece W based on the detection results of the measurement return light RML of the measurement light ML, compared to when the averaging process is not performed.
 このように図8のステップS102において平均化処理によってワークWのZ位置が算出される場合には、制御ユニット2は、図8のステップS108において、平均化処理によって算出された対象部分のZ位置を用いて、位置補正量を算出してもよい。更に、制御ユニット2は、図8のステップS109において、平均化処理によって算出されたワークWのZ位置に対して位置補正量を加算してもよい。 In this way, when the Z position of the workpiece W is calculated by the averaging process in step S102 of FIG. 8, the control unit 2 may calculate the position correction amount using the Z position of the target part calculated by the averaging process in step S108 of FIG. 8. Furthermore, the control unit 2 may add the position correction amount to the Z position of the workpiece W calculated by the averaging process in step S109 of FIG. 8.
 或いは、図8のステップS102において平均化処理によってワークWのZ位置が算出される場合には、制御ユニット2は、平均化処理によって算出されたワークWのZ位置を、加工戻り光RELの検出結果に基づいて補正しなくてもよい。つまり、制御ユニット2は、平均化処理によって算出されたワークWのZ位置を示す位置情報を用いて、ワークWを加工するように加工ユニット1を制御してもよい。この場合、加工システムSYSbは、図8のステップS103から109までの動作を行わなくてもよい。 Alternatively, when the Z position of the workpiece W is calculated by the averaging process in step S102 of FIG. 8, the control unit 2 does not need to correct the Z position of the workpiece W calculated by the averaging process based on the detection result of the processing return light REL. In other words, the control unit 2 may control the processing unit 1 to process the workpiece W using position information indicating the Z position of the workpiece W calculated by the averaging process. In this case, the processing system SYSb does not need to perform the operations from steps S103 to S109 of FIG. 8.
 (3)第3実施形態の加工システムSYS
 続いて、第3実施形態における加工システムSYSについて説明する。尚、以下の説明では、第3実施形態における加工システムSYSを、“加工システムSYSc”と称する。
(3) Machining system SYS of the third embodiment
Next, a machining system SYS in the third embodiment will be described. In the following description, the machining system SYS in the third embodiment will be referred to as a "machining system SYSc."
 第3実施形態における加工システムSYScは、上述した第1実施形態における加工システムSYSaから第2実施形態における加工システムSYSbの少なくとも一つと比較して、図8のステップS102において計測戻り光RMLの検出結果に基づいてワークWのZ位置を算出するための方法が異なるという点で異なる。加工システムSYScのその他の特徴は、加工システムSYSa及びSYSbの少なくとも一つのその他の特徴と同一であってもよい。 The machining system SYSc in the third embodiment differs from at least one of the machining systems SYSa in the first embodiment to SYSb in the second embodiment described above in that the method for calculating the Z position of the workpiece W based on the detection result of the measurement return light RML in step S102 of FIG. 8 is different. Other features of the machining system SYSc may be the same as other features of at least one of the machining systems SYSa and SYSb.
 具体的には、上述した第1及び第2実施形態のそれぞれでは、制御ユニット2は、加工ヘッド13に対するワークWの姿勢(特に、照射光学系135に対するワークWの姿勢)を変更することなく、ワークWに計測光MLを照射している。一方で、第3実施形態では、制御ユニット2は、加工ヘッド13に対するワークWの姿勢を変更しながら、ワークWに計測光MLを照射してもよい。つまり、制御ユニット2は、加工ヘッド13及びステージ15の少なくとも一方をθX方向、θY方向及びθZ方向の少なくとも一つに沿って移動させることで加工ヘッド13に対するワークWの姿勢を変更しながら、ワークWに計測光MLを照射してもよい。言い換えれば、つまり、制御ユニット2は、加工ヘッド13及びステージ15の少なくとも一方をX軸に沿った回転軸、Y軸に沿った回転軸及びZ軸に沿った回転軸の少なくとも一つの回転軸の周りに回転させることで加工ヘッド13に対するワークWの姿勢を変更しながら、ワークWに計測光MLを照射してもよい。 Specifically, in each of the first and second embodiments described above, the control unit 2 irradiates the workpiece W with the measurement light ML without changing the attitude of the workpiece W relative to the processing head 13 (particularly, the attitude of the workpiece W relative to the irradiation optical system 135). On the other hand, in the third embodiment, the control unit 2 may irradiate the workpiece W with the measurement light ML while changing the attitude of the workpiece W relative to the processing head 13. That is, the control unit 2 may irradiate the workpiece W with the measurement light ML while changing the attitude of the workpiece W relative to the processing head 13 by moving at least one of the processing head 13 and the stage 15 along at least one of the θX direction, the θY direction, and the θZ direction. In other words, the control unit 2 may irradiate the workpiece W with the measurement light ML while changing the attitude of the workpiece W relative to the processing head 13 by rotating at least one of the processing head 13 and the stage 15 around at least one of the rotation axes along the X axis, the Y axis, and the Z axis.
 具体的には、図13に示すように、制御ユニット2は、加工ヘッド13に対するワークWの姿勢が第1姿勢となるようにヘッド駆動系14及びステージ駆動系16を制御してもよい。その後、加工ユニット1は、第1姿勢となっているワークWに計測光MLを照射してもよい。具体的には、加工ユニット1は、第1姿勢となっているワークWの複数の異なる部分のそれぞれに計測光MLを照射してもよい。その結果、図14に示すように、制御ユニット2は、計測戻り光RMLの検出結果に基づいて、第1姿勢にあるワークWのZ位置を、ワークWのZ位置の中間値として算出してもよい。具体的には、制御ユニット2は、計測戻り光RMLの検出結果に基づいて、第1姿勢にあるワークWの複数の異なる部分のそれぞれのZ位置を、ワークWのZ位置の中間値として算出してもよい。その後、図13に示すように、制御ユニット2は、加工ヘッド13に対するワークWの姿勢が、第1姿勢とは異なる第2姿勢となるようにヘッド駆動系14及びステージ駆動系16を制御してもよい。尚、図13は、加工ヘッド13に対するワークWの姿勢を変更するようにステージ駆動系16がステージ15を移動させる例を示しているが、加工ヘッド13に対するワークWの姿勢を変更するようにヘッド駆動系14が加工ヘッド13を移動させてもよい。その後、加工ユニット1は、第2姿勢となっているワークWに計測光MLを照射してもよい。具体的には、加工ユニット1は、第2姿勢となっているワークWの複数の異なる部分のそれぞれに計測光MLを照射してもよい。その結果、図14に示すように、制御ユニット2は、計測戻り光RMLの検出結果に基づいて、第2姿勢にあるワークWのZ位置を、ワークWのZ位置の中間値として算出してもよい。具体的には、制御ユニット2は、計測戻り光RMLの検出結果に基づいて、第2姿勢にあるワークWの複数の異なる部分のそれぞれのZ位置を、ワークWのZ位置の中間値として算出してもよい。 Specifically, as shown in FIG. 13, the control unit 2 may control the head drive system 14 and the stage drive system 16 so that the attitude of the work W relative to the processing head 13 becomes a first attitude. Thereafter, the processing unit 1 may irradiate the measurement light ML to the work W in the first attitude. Specifically, the processing unit 1 may irradiate the measurement light ML to each of the multiple different parts of the work W in the first attitude. As a result, as shown in FIG. 14, the control unit 2 may calculate the Z position of the work W in the first attitude as the intermediate value of the Z position of the work W based on the detection result of the measurement return light RML. Specifically, the control unit 2 may calculate the Z position of each of the multiple different parts of the work W in the first attitude as the intermediate value of the Z position of the work W based on the detection result of the measurement return light RML. Thereafter, as shown in FIG. 13, the control unit 2 may control the head drive system 14 and the stage drive system 16 so that the attitude of the work W relative to the processing head 13 becomes a second attitude different from the first attitude. 13 shows an example in which the stage drive system 16 moves the stage 15 so as to change the attitude of the workpiece W relative to the processing head 13, but the head drive system 14 may move the processing head 13 so as to change the attitude of the workpiece W relative to the processing head 13. After that, the processing unit 1 may irradiate the measurement light ML to the workpiece W in the second attitude. Specifically, the processing unit 1 may irradiate the measurement light ML to each of a plurality of different parts of the workpiece W in the second attitude. As a result, as shown in FIG. 14, the control unit 2 may calculate the Z position of the workpiece W in the second attitude as the intermediate value of the Z position of the workpiece W based on the detection result of the measurement return light RML. Specifically, the control unit 2 may calculate the Z position of each of a plurality of different parts of the workpiece W in the second attitude as the intermediate value of the Z position of the workpiece W based on the detection result of the measurement return light RML.
 以降、加工システムSYScは、ワークWのZ位置が必要回数算出されるまで、同様の動作を繰り返してもよい。つまり、加工システムSYScは、必要回数がN(尚、Nは2以上の整数)回である場合には、第1姿勢にあるワークWのZ位置から第N姿勢にあるワークWのZ位置のそれぞれがワークWのZ位置の中間値として算出されるまで、同様の動作を繰り返してもよい。尚、図13及び図14は、第1姿勢にあるワークWのZ位置と、第2姿勢にあるワークWのZ位置と、第3姿勢にあるワークWのZ位置とが算出されるまで、加工ヘッド13に対するワークWの姿勢を変更する動作と、ワークWに計測光MLを照射する動作と、ワークWのZ位置を算出する動作とを加工システムSYScが繰り返す例を示している。 Then, the machining system SYSc may repeat the same operation until the Z position of the workpiece W is calculated the required number of times. In other words, if the required number of times is N (where N is an integer equal to or greater than 2), the machining system SYSc may repeat the same operation until each of the Z positions of the workpiece W in the first posture to the Nth posture is calculated as the intermediate value of the Z position of the workpiece W. Note that Figures 13 and 14 show an example in which the machining system SYSc repeats the operation of changing the posture of the workpiece W relative to the machining head 13, the operation of irradiating the measurement light ML onto the workpiece W, and the operation of calculating the Z position of the workpiece W until the Z position of the workpiece W in the first posture, the Z position of the workpiece W in the second posture, and the Z position of the workpiece W in the third posture are calculated.
 その後、制御ユニット2は、第1姿勢にあるワークWのZ位置の中間値から第N姿勢にあるワークWのZ位置の中間値に基づいて、ワークWのZ位置の最終値を算出してもよい。一例として、図14に示すように、制御ユニット2は、第1姿勢にあるワークWのZ位置の中間値から第N姿勢にあるワークWのZ位置の中間値の平均値を、ワークWのZ位置の最終値として算出してもよい。つまり、制御ユニット2は、第1姿勢にあるワークWのZ位置の中間値から第N姿勢にあるワークWのZ位置の中間値の平均値を、ワークWのZ位置の最終値として算出するための平均化処理を行ってもよい。具体的には、制御ユニット2は、第1姿勢にあるワークWの一の部分のZ位置の中間値と第2姿勢にあるワークWの同じ一の部分のZ位置の中間値と、・・・、第N姿勢にあるワークWの同じ一の部分のZ位置の中間値との平均値を、ワークWの一の部分のZ位置の最終値として算出するための平均化処理を、ワークWの複数の異なる部分を対象に繰り返すことで、ワークWの複数の異なる部分のそれぞれのZ位置の最終値を算出してもよい。 Then, the control unit 2 may calculate the final value of the Z position of the workpiece W based on the intermediate value of the Z position of the workpiece W in the first posture to the intermediate value of the Z position of the workpiece W in the Nth posture. As an example, as shown in FIG. 14, the control unit 2 may calculate the average value of the intermediate value of the Z position of the workpiece W in the first posture to the intermediate value of the Z position of the workpiece W in the Nth posture as the final value of the Z position of the workpiece W. In other words, the control unit 2 may perform an averaging process to calculate the average value of the intermediate value of the Z position of the workpiece W in the first posture to the intermediate value of the Z position of the workpiece W in the Nth posture as the final value of the Z position of the workpiece W. Specifically, the control unit 2 may calculate the final Z position value of each of the multiple different parts of the workpiece W by repeating an averaging process for multiple different parts of the workpiece W to calculate the average value of the intermediate value of the Z position of one part of the workpiece W in the first posture, the intermediate value of the Z position of the same part of the workpiece W in the second posture, ..., the intermediate value of the Z position of the same part of the workpiece W in the Nth posture as the final Z position value of the one part of the workpiece W.
 この際、図14に示すように、制御ユニット2は、ワークWのZ位置の中間値に対して、加工ヘッド13に対するワークWの姿勢に応じたチルト補正処理を行った上で、平均化処理を行ってもよい。つまり、制御ユニット2は、ワークWのZ位置の中間値に対して、加工ヘッド13に対するワークWの回転量に応じたチルト補正処理を行った上で、平均化処理を行ってもよい。例えば、制御ユニット2は、第2姿勢にあるワークWのZ位置の中間値を、第1姿勢にあるワークWを基準とする第2姿勢にあるワークWの回転方向とは逆の回転方向に向かって、第1姿勢にあるワークWを基準とする第2姿勢にあるワークWの回転量と同じ回転量だけ回転させる処理を、ワークWの第2姿勢に応じたチルト補正処理として行ってもよい。例えば、制御ユニット2は、第3姿勢にあるワークWのZ位置の中間値を、第1姿勢にあるワークWを基準とする第3姿勢にあるワークWの回転方向とは逆の回転方向に向かって、第1姿勢にあるワークWを基準とする第3姿勢にあるワークWの回転量と同じ回転量だけ回転させる処理を、ワークWの第3姿勢に応じたチルト補正処理として行ってもよい。 14, the control unit 2 may perform tilt correction processing according to the attitude of the workpiece W relative to the machining head 13 on the intermediate value of the Z position of the workpiece W, and then perform averaging processing. In other words, the control unit 2 may perform tilt correction processing according to the amount of rotation of the workpiece W relative to the machining head 13 on the intermediate value of the Z position of the workpiece W, and then perform averaging processing. For example, the control unit 2 may perform tilt correction processing according to the second attitude of the workpiece W, in which the intermediate value of the Z position of the workpiece W in the second attitude is rotated in a direction opposite to the direction of rotation of the workpiece W in the second attitude based on the workpiece W in the first attitude by the same amount of rotation as the amount of rotation of the workpiece W in the second attitude based on the workpiece W in the first attitude. For example, the control unit 2 may perform a process of rotating the intermediate value of the Z position of the workpiece W in the third posture in a direction opposite to the direction of rotation of the workpiece W in the third posture based on the workpiece W in the first posture by the same amount of rotation as the amount of rotation of the workpiece W in the third posture based on the workpiece W in the first posture, as a tilt correction process according to the third posture of the workpiece W.
 このような平均化処理により、計測光MLの計測戻り光RMLの検出結果に基づいて生成される位置情報に含まれる計測誤差のばらつきを平均化することができる。具体的には、加工ヘッド13に対するワークWの姿勢が変わると、ワークWの表面に存在する凹部CC(図7(a)参照)の延びる方向と計測光MLの進行方向との関係が変わる可能性がある。このため、加工ヘッド13に対するワークWの姿勢が変わると、ワークWに対する計測光MLの染み込み量が変わる可能性がある。このため、位置情報に含まれる計測誤差がワークWに対する計測光MLの染み込み量に依存するがゆえに、加工ヘッド13に対するワークWの姿勢が変わると、位置情報に含まれる計測誤差が変わる可能性がある。第3実施形態では、制御ユニット2は、上述した平均化処理を行うことで、ワークWの姿勢に応じて変わる可能性がある計測誤差を平均化することで得られる計測誤差を含む位置情報を生成することができる。つまり、制御ユニット2は、上述した平均化処理を行うことで、ワークWの姿勢によらずに実質的に均一化された計測誤差を含む位置情報を生成することができる。 By such averaging process, the variation of the measurement error included in the position information generated based on the detection result of the measurement return light RML of the measurement light ML can be averaged. Specifically, when the posture of the work W with respect to the processing head 13 changes, the relationship between the extension direction of the recess CC (see FIG. 7A) present on the surface of the work W and the traveling direction of the measurement light ML may change. Therefore, when the posture of the work W with respect to the processing head 13 changes, the amount of penetration of the measurement light ML into the work W may change. Therefore, since the measurement error included in the position information depends on the amount of penetration of the measurement light ML into the work W, when the posture of the work W with respect to the processing head 13 changes, the measurement error included in the position information may change. In the third embodiment, the control unit 2 performs the above-mentioned averaging process to generate position information including the measurement error obtained by averaging the measurement error that may change depending on the posture of the work W. In other words, the control unit 2 performs the above-mentioned averaging process to generate position information including a measurement error that is substantially uniform regardless of the posture of the work W.
 このように図8のステップS102において平均化処理によってワークWのZ位置が算出される場合には、制御ユニット2は、図8のステップS108において、平均化処理によって算出された対象部分のZ位置を用いて、位置補正量を算出してもよい。更に、制御ユニット2は、図8のステップS109において、平均化処理によって算出されたワークWのZ位置に対して位置補正量を加算してもよい。その結果、加工システムSYScは、ワークWの姿勢が変わる場合であっても、ワークWのZ位置を適切に算出することができる。 When the Z position of the workpiece W is calculated by the averaging process in step S102 of FIG. 8 in this manner, the control unit 2 may calculate a position correction amount using the Z position of the target part calculated by the averaging process in step S108 of FIG. 8. Furthermore, the control unit 2 may add a position correction amount to the Z position of the workpiece W calculated by the averaging process in step S109 of FIG. 8. As a result, the machining system SYSc can appropriately calculate the Z position of the workpiece W even if the posture of the workpiece W changes.
 或いは、図8のステップS102において平均化処理によってワークWのZ位置が算出される場合には、制御ユニット2は、平均化処理によって算出されたワークWのZ位置を、加工戻り光RELの検出結果に基づいて補正しなくてもよい。つまり、制御ユニット2は、平均化処理によって算出されたワークWのZ位置を示す位置情報を用いて、ワークWを加工するように加工ユニット1を制御してもよい。この場合、加工システムSYScは、図8のステップS103から109までの動作を行わなくてもよい。 Alternatively, when the Z position of the workpiece W is calculated by the averaging process in step S102 of FIG. 8, the control unit 2 does not need to correct the Z position of the workpiece W calculated by the averaging process based on the detection result of the processing return light REL. In other words, the control unit 2 may control the processing unit 1 to process the workpiece W using position information indicating the Z position of the workpiece W calculated by the averaging process. In this case, the processing system SYSc does not need to perform the operations from steps S103 to S109 of FIG. 8.
 (4)第4実施形態の加工システムSYS
 続いて、第4実施形態における加工システムSYSについて説明する。尚、以下の説明では、第4実施形態における加工システムSYSを、“加工システムSYSd”と称する。
(4) Machining system SYS of the fourth embodiment
Next, a machining system SYS in the fourth embodiment will be described. In the following description, the machining system SYS in the fourth embodiment will be referred to as a "machining system SYSd."
 第4実施形態における加工システムSYSdは、上述した第1実施形態における加工システムSYSaから第3実施形態における加工システムSYScの少なくとも一つと比較して、図8のステップS108において位置補正量を算出するための方法が異なるという点で異なる。加工システムSYSdのその他の特徴は、加工システムSYSaからSYScの少なくとも一つのその他の特徴と同一であってもよい。 The machining system SYSd in the fourth embodiment differs from at least one of the machining systems SYSa in the first embodiment to SYSc in the third embodiment described above in that the method for calculating the position correction amount in step S108 in FIG. 8 is different. Other features of the machining system SYSd may be the same as other features of at least one of the machining systems SYSa to SYSc.
 具体的には、上述した第1から第3実施形態のそれぞれでは、制御ユニット2は、計測戻り光RMLの検出結果に基づいて算出されたワークWのZ位置と、加工戻り光RELの検出結果に基づいて算出されたワークWのZ位置とに基づいて、位置補正量を算出している。一方で、第4実施形態では、制御ユニット2は、計測誤差算出モデル4を用いて、位置補正量を算出してもよい。 Specifically, in each of the first to third embodiments described above, the control unit 2 calculates the position correction amount based on the Z position of the workpiece W calculated based on the detection results of the measurement return light RML and the Z position of the workpiece W calculated based on the detection results of the processing return light REL. On the other hand, in the fourth embodiment, the control unit 2 may calculate the position correction amount using the measurement error calculation model 4.
 計測誤差算出モデル4は、計測戻り光RMLの検出結果に基づいて生成される位置情報に含まれる計測誤差を出力可能な演算モデルである。位置情報に含まれる計測誤差を補正するために位置補正量が位置情報に加算される(その結果、計測誤差が位置補正量によって相殺される)ことを考慮すれば、計測誤差算出モデル4が出力する計測誤差は、位置補正量として利用可能である。この場合、計測誤差算出モデルは、位置補正量算出モデルと称されてもよい。 The measurement error calculation model 4 is a calculation model capable of outputting the measurement error contained in the position information generated based on the detection results of the measurement return light RML. Considering that a position correction amount is added to the position information to correct the measurement error contained in the position information (as a result, the measurement error is offset by the position correction amount), the measurement error output by the measurement error calculation model 4 can be used as a position correction amount. In this case, the measurement error calculation model may be referred to as a position correction amount calculation model.
 このような計測誤差を出力可能な計測誤差算出モデル4の一例が、図15(a)及び図15(b)に示されている。 An example of a measurement error calculation model 4 capable of outputting such measurement errors is shown in Figures 15(a) and 15(b).
 図15(a)に示すように、計測誤差算出モデル4は、計測戻り光RMLの検出結果に基づいてワークWのZ位置を算出する場合に生ずる計測誤差を、ワークWの種類ごとに出力可能であってもよい。一例として、計測誤差算出モデル4は、ワークWの種類を示す情報が入力された場合に、当該情報が示す種類のワークWのZ位置を計測戻り光RMLの検出結果に基づいて算出する場合に生ずる計測誤差を出力可能であってもよい。例えば、計測誤差算出モデル4は、ワークWの種類が第1種類である場合に、第1種類のワークWのZ位置を計測戻り光RMLの検出結果に基づいて算出する場合に生ずる計測誤差を出力可能であってもよい。例えば、計測誤差算出モデル4は、ワークWの種類が第1種類とは異なる第2種類である場合に、第2種類のワークWのZ位置を計測戻り光RMLの検出結果に基づいて算出する場合に生ずる計測誤差を出力可能であってもよい。 15(a), the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when calculating the Z position of the workpiece W based on the detection result of the measurement return light RML for each type of workpiece W. As an example, when information indicating the type of workpiece W is input, the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when calculating the Z position of the workpiece W of the type indicated by the information based on the detection result of the measurement return light RML. For example, when the type of workpiece W is a first type, the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when calculating the Z position of the first type of workpiece W based on the detection result of the measurement return light RML. For example, when the type of workpiece W is a second type different from the first type, the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when calculating the Z position of the second type of workpiece W based on the detection result of the measurement return light RML.
 ワークWの種類は、ワークWの材質によって区別可能な種類を含んでいてもよい。この場合、計測誤差算出モデル4は、計測戻り光RMLの検出結果に基づいてワークWのZ位置を算出する場合に生ずる計測誤差を、ワークWの材質ごとに出力可能であってもよい。例えば、計測誤差算出モデル4は、ワークWの材質が第1材質であることを示す情報が入力された場合に、第1材質のワークWのZ位置を計測戻り光RMLの検出結果に基づいて算出する場合に生ずる計測誤差を出力可能であってもよい。例えば、計測誤差算出モデル4は、ワークWの種類が第1材質とは異なる第2材質であることを示す情報が入力された場合に、第2材質のワークWのZ位置を計測戻り光RMLの検出結果に基づいて算出する場合に生ずる計測誤差を出力可能であってもよい。一例として、計測誤差算出モデル4は、ワークWの材質がアルミニウムであることを示す情報が入力された場合に、アルミニウムのワークWのZ位置を計測戻り光RMLの検出結果に基づいて算出する場合に生ずる計測誤差を出力可能であってもよい。例えば、計測誤差算出モデル4は、ワークWの種類がアルマイトであることを示す情報が入力された場合に、アルマイトのワークWのZ位置を計測戻り光RMLの検出結果に基づいて算出する場合に生ずる計測誤差を出力可能であってもよい。 The types of workpieces W may include types that can be distinguished by the material of the workpieces W. In this case, the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when the Z position of the workpieces W is calculated based on the detection results of the measurement return light RML for each material of the workpieces W. For example, the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when the Z position of the workpieces W made of the first material is calculated based on the detection results of the measurement return light RML when information indicating that the material of the workpieces W is a first material is input. For example, the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when the Z position of the workpieces W made of the second material is calculated based on the detection results of the measurement return light RML when information indicating that the type of the workpieces W is a second material different from the first material is input. As an example, the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when the Z position of the workpieces W made of aluminum is calculated based on the detection results of the measurement return light RML when information indicating that the material of the workpieces W is aluminum is input. For example, when information indicating that the type of workpiece W is anodized aluminum is input, the measurement error calculation model 4 may be capable of outputting the measurement error that occurs when the Z position of the anodized aluminum workpiece W is calculated based on the detection results of the measurement return light RML.
 制御ユニット2は、位置情報の生成対象であるワークWの種類に関する情報と、計測誤差算出モデル4とに基づいて、計測誤差を算出してもよい。算出された計測誤差は、ワークWの実際のZ位置(つまり、理想的な位置情報)と計測戻り光RMLに基づくワークWのZ位置の算出値(つまり、実際に生成された位置情報)との差分に相当する。このため、制御ユニット2は、算出された計測誤差を、位置補正量として用いてもよい。 The control unit 2 may calculate the measurement error based on information about the type of workpiece W for which position information is to be generated and the measurement error calculation model 4. The calculated measurement error corresponds to the difference between the actual Z position of the workpiece W (i.e., ideal position information) and the calculated value of the Z position of the workpiece W based on the measurement return light RML (i.e., actually generated position information). Therefore, the control unit 2 may use the calculated measurement error as a position correction amount.
 或いは、図15(b)に示すように、制御ユニット2は、複数のワークWの種類にそれぞれ対応する複数の計測誤差算出モデル4を用いてもよい。各計測誤差算出モデル4は、各計測誤差算出モデル4に対応する一の種類のワークWのZ位置を計測戻り光RMLの検出結果に基づいて算出する場合に生ずる計測誤差を出力可能であってもよい。この場合、制御ユニット2は、複数の計測誤差算出モデル4の中から、位置情報の生成対象であるワークWの種類に対応する一の計測誤差算出モデル4を選択し、選択した一の計測誤差算出モデル4に基づいて計測誤差を算出してもよい。この場合も、制御ユニット2は、算出された計測誤差を、位置補正量として用いてもよい。 Alternatively, as shown in FIG. 15(b), the control unit 2 may use multiple measurement error calculation models 4 corresponding to multiple types of workpieces W, respectively. Each measurement error calculation model 4 may be capable of outputting a measurement error that occurs when calculating the Z position of one type of workpiece W corresponding to each measurement error calculation model 4 based on the detection result of the measurement return light RML. In this case, the control unit 2 may select one measurement error calculation model 4 corresponding to the type of workpiece W for which position information is to be generated from the multiple measurement error calculation models 4, and calculate the measurement error based on the selected one measurement error calculation model 4. In this case, the control unit 2 may also use the calculated measurement error as a position correction amount.
 加工システムSYSdが用いる計測誤差算出モデル4は、図16に示すモデル生成方法によって生成されてもよい。以下、図16を参照しながら、計測誤差算出モデル4を生成するためのモデル生成方法について説明する。図16は、計測誤差算出モデル4を生成するためのモデル生成方法の流れを示すフローチャートである。 The measurement error calculation model 4 used by the machining system SYSd may be generated by the model generation method shown in FIG. 16. Hereinafter, the model generation method for generating the measurement error calculation model 4 will be described with reference to FIG. 16. FIG. 16 is a flowchart showing the flow of the model generation method for generating the measurement error calculation model 4.
 尚、モデル生成方法は、加工システムSYSdによって行われてもよい。モデル生成方法は、加工システムSYSdとは異なる装置によって行われてもよい。以下では、説明の便宜上、加工システムSYSdがモデル生成方法を行う例について説明する。 The model generation method may be performed by the machining system SYSd. The model generation method may be performed by a device different from the machining system SYSd. For ease of explanation, the following describes an example in which the machining system SYSd performs the model generation method.
 図16に示すように、サンプルワークSWが加工システムSYSdのステージ15に載置される(ステップS200)。サンプルワークSWは、計測誤差算出モデル4を生成するために用いられる物体である。一例として、加工システムSYSdが加工動作によって加工するべきワークWの種類と同じ種類の物体が、サンプルワークSWとして用いられてもよい。他の一例として、加工システムSYSdが加工動作によって加工するべきワークWの材質と同じ材質を有する物体が、サンプルワークSWとして用いられてもよい。但し、加工システムSYSdが加工動作によって加工するべきワークWそのものが、サンプルワークSWとして用いられてもよい。 As shown in FIG. 16, a sample workpiece SW is placed on the stage 15 of the machining system SYSd (step S200). The sample workpiece SW is an object used to generate the measurement error calculation model 4. As one example, an object of the same type as the type of workpiece W to be machined by the machining system SYSd through its machining operation may be used as the sample workpiece SW. As another example, an object having the same material as the material of the workpiece W to be machined by the machining system SYSd through its machining operation may be used as the sample workpiece SW. However, the workpiece W to be machined by the machining system SYSd through its machining operation itself may also be used as the sample workpiece SW.
 その後、加工ユニット1は、制御ユニット2の制御下で、サンプルワークSWに計測光MLを照射する(ステップS201)。尚、ステップS201の動作は、ワークWに代えてサンプルワークSWが用いられる点を除いて、上述した図8のステップS101の動作と同一であってもよい。このため、ステップS201の動作の詳細な説明は省略する。 Then, under the control of the control unit 2, the machining unit 1 irradiates the sample workpiece SW with the measurement light ML (step S201). Note that the operation of step S201 may be the same as the operation of step S101 in FIG. 8 described above, except that the sample workpiece SW is used instead of the workpiece W. For this reason, a detailed description of the operation of step S201 will be omitted.
 但し、ステップS201では、加工ユニット1は、サンプルワークSWの表面の一部であるサンプル領域SAに計測光MLを照射してもよい。加工ユニット1は、サンプルワークSWの表面の一部であるサンプル領域SA内の複数の異なる部分のそれぞれに計測光MLを照射してもよい。サンプル領域SAは、サンプルワークSWの表面上で所定サイズを有する領域であってもよい。一例として、サンプル領域SAは、0.2mm×0.2mmのサイズを有する矩形の領域であってもよい。他の一例として、サンプル領域SAは、ガルバノミラー1328及び1341の少なくとも一方が計測光MLを走査可能な走査領域と同じ又は小さい任意の形状の領域であってもよい。 However, in step S201, the processing unit 1 may irradiate the measurement light ML to a sample area SA, which is a part of the surface of the sample work SW. The processing unit 1 may irradiate the measurement light ML to each of multiple different parts in the sample area SA, which is a part of the surface of the sample work SW. The sample area SA may be an area having a predetermined size on the surface of the sample work SW. As an example, the sample area SA may be a rectangular area having a size of 0.2 mm x 0.2 mm. As another example, the sample area SA may be an area of any shape that is the same as or smaller than the scanning area in which at least one of the galvanometer mirrors 1328 and 1341 can scan the measurement light ML.
 その後、制御ユニット2は、サンプルワークSWに計測光MLが照射されることによってサンプルワークSWから生ずる計測戻り光RMLの検出結果に基づいて、サンプルワークSWのZ位置を算出する(ステップS202)。尚、ステップS202の動作は、ワークWに代えてサンプルワークSWが用いられる点を除いて、上述した図8のステップS102の動作と同一であってもよい。このため、ステップS202の動作の詳細な説明は省略する。但し、ステップS202では、加工ユニット1は、サンプルワークSWの表面の一部であるサンプル領域SAのZ位置を算出してもよい。加工ユニット1は、サンプルワークSWの表面の一部であるサンプル領域SA内の複数の異なる部分のそれぞれのZ位置を算出してもよい。 Then, the control unit 2 calculates the Z position of the sample work SW based on the detection result of the measurement return light RML generated from the sample work SW when the measurement light ML is irradiated onto the sample work SW (step S202). The operation of step S202 may be the same as the operation of step S102 in FIG. 8 described above, except that the sample work SW is used instead of the work W. For this reason, a detailed description of the operation of step S202 will be omitted. However, in step S202, the processing unit 1 may calculate the Z position of the sample area SA, which is a part of the surface of the sample work SW. The processing unit 1 may calculate the Z position of each of multiple different parts within the sample area SA, which is a part of the surface of the sample work SW.
 ステップS200からステップS202までの動作と並行して又は相前後して、制御ユニット2は、サンプルワークSWのZ位置の参照値を取得する(ステップS203)。特に、制御ユニット2は、サンプルワークSWのサンプル領域SAのZ位置の参照値を取得する。 In parallel with or before or after the operations from step S200 to step S202, the control unit 2 acquires a reference value for the Z position of the sample work SW (step S203). In particular, the control unit 2 acquires a reference value for the Z position of the sample area SA of the sample work SW.
 サンプルワークSWのZ位置の参照値は、計測戻り光RMLの検出結果に基づいてサンプルワークSWのZ位置を算出する手法とは異なる手法を用いて得られた(例えば、計測又は算出された)サンプルワークSWのZ位置である。例えば、光学顕微鏡を用いて計測されたサンプルワークSWのZ位置が、サンプルワークSWのZ位置の参照値として用いられてもよい。例えば、電子顕微鏡を用いて計測されたサンプルワークSWのZ位置が、サンプルワークSWのZ位置の参照値として用いられてもよい。例えば、サンプルワークSWに接触するプローブを用いて計測されたサンプルワークSWのZ位置が、サンプルワークSWのZ位置の参照値として用いられてもよい。 The reference value for the Z position of the sample work SW is the Z position of the sample work SW obtained (e.g., measured or calculated) using a method different from the method for calculating the Z position of the sample work SW based on the detection results of the measurement return light RML. For example, the Z position of the sample work SW measured using an optical microscope may be used as the reference value for the Z position of the sample work SW. For example, the Z position of the sample work SW measured using an electron microscope may be used as the reference value for the Z position of the sample work SW. For example, the Z position of the sample work SW measured using a probe that contacts the sample work SW may be used as the reference value for the Z position of the sample work SW.
 その後、制御ユニット2は、ステップS202において算出されたサンプルワークSWのZ位置と、ステップS203において取得されたサンプルワークSWのZ位置の参照値との間の関係に関する情報を生成する(ステップS204)。第4実施形態では、制御ユニット2が、ステップS202において算出されたサンプルワークSWのZ位置と、ステップS203において取得されたサンプルワークSWのZ位置の参照値との間の差分(つまり、計測誤差)を、ステップS202において算出されたサンプルワークSWのZ位置と、ステップS203において取得されたサンプルワークSWのZ位置の参照値との間の関係に関する情報として生成する例について説明する。 Then, the control unit 2 generates information regarding the relationship between the Z position of the sample work SW calculated in step S202 and the reference value of the Z position of the sample work SW acquired in step S203 (step S204). In the fourth embodiment, an example will be described in which the control unit 2 generates the difference (i.e., measurement error) between the Z position of the sample work SW calculated in step S202 and the reference value of the Z position of the sample work SW acquired in step S203 as information regarding the relationship between the Z position of the sample work SW calculated in step S202 and the reference value of the Z position of the sample work SW acquired in step S203.
 制御ユニット2は、ステップS204において算出された計測誤差を、サンプルワークSWの種類に関する情報と関連付けた上で、記憶装置22に格納してもよい。つまり、制御ユニット2は、ステップS204において算出された計測誤差とサンプルワークSWの種類に関する情報とが関連付けられたサンプル計測情報を、記憶装置22に格納してもよい。 The control unit 2 may associate the measurement error calculated in step S204 with information about the type of sample work SW and store it in the storage device 22. In other words, the control unit 2 may store in the storage device 22 sample measurement information in which the measurement error calculated in step S204 is associated with information about the type of sample work SW.
 その後、制御ユニット2は、別の種類のサンプルワークSWを用いてステップS200からステップS204までの動作を行うか否かを判定する(ステップS205)。ステップS204における判定の結果、別の種類のサンプルワークSWを用いてステップS200からステップS204までの動作を行うと判定された場合には(ステップS205:Yes)、別の種類のサンプルワークSWがステージ15に新たに載置された後に(ステップS200)、ステップS201からステップS204までの動作が行われる。その結果、ステップS204において算出された計測誤差とサンプルワークSWの種類に関する情報とが関連付けられたサンプル計測情報が、複数取得される。 Then, the control unit 2 determines whether or not to perform the operations from step S200 to step S204 using a different type of sample work SW (step S205). If the result of the determination in step S204 is that the operations from step S200 to step S204 are to be performed using a different type of sample work SW (step S205: Yes), the operations from step S201 to step S204 are performed after a new sample work SW of the different type is placed on the stage 15 (step S200). As a result, multiple pieces of sample measurement information are acquired in which the measurement error calculated in step S204 is associated with information on the type of sample work SW.
 一方で、ステップS204における判定の結果、別の種類のサンプルワークSWを用いてステップS200からステップS204までの動作を行わないと判定された場合には(ステップS205:No)、制御ユニット2は、記憶装置22に格納されているサンプル計測情報を用いて、計測誤差算出モデル4を生成する(ステップS206)。例えば、サンプルワークSWに生ずる計測誤差をサンプルワークSWの種類ごとに出力可能なモデルを、計測戻り光RMLの検出結果に基づいてワークWのZ位置を算出する場合に生ずる計測誤差をワークWの種類ごとに出力可能な計測誤差算出モデル4として生成してもよい。例えば、複数のサンプルワークSWの種類にそれぞれ対応する複数の計測誤差をそれぞれ出力可能な複数のモデルを、複数のワークWの種類にそれぞれ対応する複数の計測誤差算出モデル4として生成してもよい。この際、制御ユニット2は、いわゆる機械学習の手法を用いて、計測誤差算出モデル4を生成してもよい。 On the other hand, if it is determined in step S204 that the operations from step S200 to step S204 are not performed using another type of sample work SW (step S205: No), the control unit 2 uses the sample measurement information stored in the storage device 22 to generate a measurement error calculation model 4 (step S206). For example, a model capable of outputting the measurement error occurring in the sample work SW for each type of sample work SW may be generated as a measurement error calculation model 4 capable of outputting the measurement error occurring when calculating the Z position of the work W based on the detection result of the measurement return light RML for each type of work W. For example, a plurality of models capable of outputting a plurality of measurement errors corresponding to each type of sample work SW may be generated as a plurality of measurement error calculation models 4 corresponding to each type of work W. In this case, the control unit 2 may generate the measurement error calculation model 4 using a so-called machine learning technique.
 このような第4実施形態における加工システムSYSdは、計測誤差算出モデル4を用いて位置補正量を算出することができる。このため、加工システムSYSdは、加工戻り光RELの検出結果に基づいてワークWのZ位置を算出するための動作を行わなくてもよくなる。具体的には、加工システムSYSdは、図8のステップS103からステップS107の動作を行わなくてもよくなる。このため、加工システムSYSdは、位置補正量を比較的容易に算出しながら、位置補正量を算出するために必要な時間を短縮することができる。 The machining system SYSd in the fourth embodiment can calculate the position correction amount using the measurement error calculation model 4. Therefore, the machining system SYSd does not need to perform the operation of calculating the Z position of the workpiece W based on the detection result of the processing return light REL. Specifically, the machining system SYSd does not need to perform the operations from step S103 to step S107 in FIG. 8. Therefore, the machining system SYSd can calculate the position correction amount relatively easily while shortening the time required to calculate the position correction amount.
 (5)第5実施形態の加工システムSYS
 続いて、第5実施形態における加工システムSYSについて説明する。尚、以下の説明では、第5実施形態における加工システムSYSを、“加工システムSYSe”と称する。
(5) Machining system SYS of the fifth embodiment
Next, a machining system SYS in the fifth embodiment will be described. In the following description, the machining system SYS in the fifth embodiment will be referred to as a "machining system SYSe."
 第5実施形態における加工システムSYSeは、上述した第1実施形態における加工システムSYSaから第4実施形態における加工システムSYSdの少なくとも一つと比較して、加工ユニット1に代えて加工ユニット1eを備えているという点で異なる。加工システムSYSeのその他の特徴は、加工システムSYSaからSYSdの少なくとも一つのその他の特徴と同一であってもよい。加工ユニット1eは、加工ユニット1と比較して、加工ヘッド13に代えて加工ヘッド13eを備えているという点で異なる。加工ユニット1eのその他の特徴は、加工ユニット1のその他の特徴と同一であってもよい。このため、以下では、図17を参照しながら、第5実施形態における加工ヘッド13eの構成について説明する。図17は、第5実施形態における加工ヘッド13eの構成を示す断面図である。 The machining system SYSe in the fifth embodiment differs from at least one of the machining systems SYSa in the first embodiment to SYSd in the fourth embodiment in that it includes a machining unit 1e instead of the machining unit 1. Other features of the machining system SYSe may be the same as other features of at least one of the machining systems SYSa to SYSd. The machining unit 1e differs from the machining unit 1 in that it includes a machining head 13e instead of the machining head 13. Other features of the machining unit 1e may be the same as other features of the machining unit 1. For this reason, the configuration of the machining head 13e in the fifth embodiment will be described below with reference to FIG. 17. FIG. 17 is a cross-sectional view showing the configuration of the machining head 13e in the fifth embodiment.
 図17に示すように、加工ヘッド13eは、加工ヘッド13と比較して、加工光学系131に代えて加工光学系131eを備えているという点で異なる。加工ヘッド13eのその他の特徴は、加工ヘッド13のその他の特徴と同一であってもよい。 As shown in FIG. 17, the processing head 13e differs from the processing head 13 in that it has a processing optical system 131e instead of the processing optical system 131. Other features of the processing head 13e may be the same as other features of the processing head 13.
 加工光学系131eは、加工光学系131と比較して、集光レンズ1316に代えてトーリックレンズ1316eを備えているという点で異なる。加工光学系131eのその他の特徴は、加工光学系131のその他の特徴と同一であってもよい。 The processing optical system 131e differs from the processing optical system 131 in that it has a toric lens 1316e instead of the condenser lens 1316. Other features of the processing optical system 131e may be the same as other features of the processing optical system 131.
 このような第5実施形態では、加工システムSYSeは、共焦点法に代えて非点収差法を用いて加工光ELの集光位置CPを計測することでワークWの位置を計測してもよい。その結果、第5実施形態の加工システムSYSeは、上述した第1実施形態の加工システムSYSaから第4実施形態における加工システムSYSdの少なくとも一つが享受可能な効果と同様の効果を享受することができる。 In this fifth embodiment, the processing system SYSe may measure the position of the workpiece W by measuring the focal position CP of the processing light EL using the astigmatism method instead of the confocal method. As a result, the processing system SYSe of the fifth embodiment can enjoy the same effects as those that can be enjoyed by at least one of the processing systems SYSa of the first embodiment to SYSd of the fourth embodiment described above.
 尚、加工光学系131eは、トーリックレンズ1316eに代えて、シリンドリカルレンズと通常のレンズとを含む光学系を備えていてもよい。この場合であっても、加工システムSYSeは、共焦点法に代えて非点収差法を用いて加工光ELの集光位置CPを計測することでワークWの位置を計測することができる。 In addition, the processing optical system 131e may be equipped with an optical system including a cylindrical lens and a normal lens instead of the toric lens 1316e. Even in this case, the processing system SYSe can measure the position of the workpiece W by measuring the focusing position CP of the processing light EL using the astigmatism method instead of the confocal method.
 (6)第6実施形態の加工システムSYS
 続いて、第6実施形態における加工システムSYSについて説明する。尚、以下の説明では、第6実施形態における加工システムSYSを、“加工システムSYSf”と称する。
(6) Machining system SYS of the sixth embodiment
Next, a machining system SYS in the sixth embodiment will be described. In the following description, the machining system SYS in the sixth embodiment will be referred to as a "machining system SYSf."
 上述した説明では、上述した第1実施形態における加工システムSYSaから第5実施形態における加工システムSYSeの少なくとも一つは、計測戻り光RMLの検出結果と、加工戻り光RELの検出結果との双方に基づいて、ワークWのZ位置を示す位置情報を生成している。つまり、加工システムSYSaからSYSeの少なくとも一つは、計測戻り光RMLの検出結果に基づいて生成される第1位置情報(第1距離計測結果)と、加工戻り光RELの検出結果に基づいて生成される第2位置情報(第2距離計測結果)との双方に基づいて、第1位置情報よりも高精度にワークWのZ位置を示す第3位置情報を生成している。 In the above description, at least one of the processing systems SYSa in the first embodiment to the processing systems SYSe in the fifth embodiment generates position information indicating the Z position of the workpiece W based on both the detection results of the measurement return light RML and the detection results of the processing return light REL. In other words, at least one of the processing systems SYSa to SYSe generates third position information indicating the Z position of the workpiece W with higher accuracy than the first position information based on both the first position information (first distance measurement result) generated based on the detection results of the measurement return light RML and the second position information (second distance measurement result) generated based on the detection results of the processing return light REL.
 一方で、第6実施形態における加工システムSYSfは、計測戻り光RMLの検出結果に基づいて生成される第1位置情報と、第1位置情報を生成するための手法とは異なる任意の手法を用いて生成される任意の第2位置情報との双方に基づいて、第1位置情報よりもワークWのZ位置を高精度に示す第3位置情報を生成してもよい。言い換えれば、加工システムSYSaは、計測光学系132を用いて生成される第1位置情報と、計測光学系132を用いる手法とは異なる手法を用いてワークWの位置を計測する計測装置を用いて生成される任意の第2位置情報との双方に基づいて、第1位置情報よりもワークWのZ位置を高精度に示す第3位置情報を生成してもよい。尚、上述した加工戻り光RELの検出結果に基づいて生成される第2位置情報は、計測戻り光RMLの検出結果に基づいて第1位置情報を生成するための手法とは異なる任意の手法を用いて生成される任意の第2位置情報の一例である。 On the other hand, the processing system SYSf in the sixth embodiment may generate third position information indicating the Z position of the workpiece W with higher accuracy than the first position information based on both the first position information generated based on the detection result of the measurement return light RML and any second position information generated using any method other than the method for generating the first position information. In other words, the processing system SYSa may generate third position information indicating the Z position of the workpiece W with higher accuracy than the first position information based on both the first position information generated using the measurement optical system 132 and any second position information generated using a measurement device that measures the position of the workpiece W using a method other than the method using the measurement optical system 132. The second position information generated based on the detection result of the processing return light REL described above is an example of any second position information generated using any method other than the method for generating the first position information based on the detection result of the measurement return light RML.
 この場合、加工システムSYSfは、加工システムSYSfの構成を模式的に示す断面図である図18に示すように、第1位置情報を生成するために用いられる第1計測装置として機能可能な加工ヘッド13(特に、計測光学系132)に加えて、第1計測装置とは異なる手法を用いて第2位置情報を生成するために用いられる第2計測装置5fを備えていてもよい。 In this case, as shown in FIG. 18, which is a cross-sectional view showing a schematic configuration of the processing system SYSf, the processing system SYSf may include a processing head 13 (particularly, a measurement optical system 132) capable of functioning as a first measurement device used to generate first position information, as well as a second measurement device 5f used to generate second position information using a method different from that of the first measurement device.
 第2計測装置5fの一例として、米国特許第5,502,311号公報に記載された斜入射オートフォーカスセンサを含む計測装置があげられる。第2計測装置5fの他の一例として、米国特許第4,953,388号公報及び特開平4-043210号公報の少なくとも一方に記載された流体ゲージセンサを含む計測装置があげられる。 An example of the second measuring device 5f is a measuring device including an oblique incidence autofocus sensor described in U.S. Pat. No. 5,502,311. Another example of the second measuring device 5f is a measuring device including a fluid gauge sensor described in at least one of U.S. Pat. No. 4,953,388 and Japanese Patent Application Laid-Open No. 4-043210.
 このような第6実施形態の加工システムSYSfであっても、上述した第1実施形態の加工システムSYSaから第5実施形態における加工システムSYSeの少なくとも一つが享受可能な効果と同様の効果を享受することができる。 Even with the machining system SYSf of the sixth embodiment, it is possible to obtain the same effects as those obtainable by at least one of the machining systems SYSa of the first embodiment to SYSe of the fifth embodiment described above.
 (7)変形例
 上述した説明では、加工システムSYSは、計測光MLを計測対象物Mに照射することで計測対象物Mから生じる計測戻り光RMLの検出結果と、加工光ELをワークWに照射することでワークWから生じる加工戻り光RELの検出結果との双方に基づいて、ワークWの位置を示す位置情報を生成している。しかしながら、加工システムSYSは、位置情報を生成することなく、計測戻り光RMLの検出結果と加工戻り光RELの検出結果とに基づいて、ワークWを加工してもよい。例えば、制御ユニット2は、位置情報を生成することなく、計測戻り光RMLの検出結果と加工戻り光RELの検出結果とに基づいて、ワークWを加工するように加工ユニット1を制御してもよい。一例として、制御ユニット2は、位置情報を生成することなく、計測戻り光RMLの検出結果と加工戻り光RELの検出結果とに基づいて、ワークWを加工するために加工光ELが照射される照射領域PAの移動経路を示す加工パス情報を生成し、生成した加工パス情報に基づいて、ワークWを加工するように加工ユニット1を制御してもよい。
(7) Modification In the above description, the processing system SYS generates position information indicating the position of the workpiece W based on both the detection result of the measurement return light RML generated from the measurement object M by irradiating the measurement light ML on the measurement object M and the detection result of the processing return light REL generated from the workpiece W by irradiating the workpiece W with the processing light EL. However, the processing system SYS may process the workpiece W based on the detection result of the measurement return light RML and the detection result of the processing return light REL without generating position information. For example, the control unit 2 may control the processing unit 1 to process the workpiece W based on the detection result of the measurement return light RML and the detection result of the processing return light REL without generating position information. As an example, the control unit 2 may generate processing path information indicating the movement path of the irradiation area PA on which the processing light EL is irradiated to process the workpiece W based on the detection result of the measurement return light RML and the detection result of the processing return light REL without generating position information, and control the processing unit 1 to process the workpiece W based on the generated processing path information.
 上述した説明では、加工ユニット1は、ヘッド駆動系14を備えている。しかしながら、加工ユニット1は、ヘッド駆動系14を備えていなくてもよい。つまり、加工ヘッド13は、移動可能でなくてもよい。また、上述した説明では、加工ユニット1は、ステージ駆動系16を備えている。しかしながら、加工ユニット1は、ステージ駆動系16を備えていなくてもよい。つまり、ステージ15は、移動可能でなくてもよい。 In the above description, the machining unit 1 is provided with a head drive system 14. However, the machining unit 1 does not have to be provided with a head drive system 14. In other words, the machining head 13 does not have to be movable. Also, in the above description, the machining unit 1 is provided with a stage drive system 16. However, the machining unit 1 does not have to be provided with a stage drive system 16. In other words, the stage 15 does not have to be movable.
 上述した説明では、加工システムSYSは、一つの加工ユニット1を備えている。しかしながら、加工システムSYSは、複数の加工ユニット1を備えていてもよい。この場合、加工システムSYSは、複数の加工ユニット1をそれぞれ制御する複数の制御ユニット2を備えていてもよい。一例として、加工システムSYSは、第1の加工ユニット1と、第2の加工ユニット1と、第1の加工ユニット1を制御する第1の制御ユニット2と、第2の加工ユニット1を制御する第2の制御ユニット2とを備えていてもよい。或いは、加工システムSYSは、複数の加工ユニット1のうちの少なくとも二つを制御する制御ユニット2を備えていてもよい。一例として、加工システムSYSは、第1の加工ユニット1と、第2の加工ユニット1と、第1の加工ユニット1を制御し且つ第2の加工ユニット1を制御する一つの制御ユニット2とを備えていてもよい。 In the above description, the processing system SYS includes one processing unit 1. However, the processing system SYS may include multiple processing units 1. In this case, the processing system SYS may include multiple control units 2 that respectively control the multiple processing units 1. As an example, the processing system SYS may include a first processing unit 1, a second processing unit 1, a first control unit 2 that controls the first processing unit 1, and a second control unit 2 that controls the second processing unit 1. Alternatively, the processing system SYS may include a control unit 2 that controls at least two of the multiple processing units 1. As an example, the processing system SYS may include a first processing unit 1, a second processing unit 1, and one control unit 2 that controls the first processing unit 1 and the second processing unit 1.
 上述した説明では、加工システムSYSは、ワークWに加工光ELを照射することで、ワークWを加工している。つまり、加工システムSYSは、光という形態のエネルギビームをワークWに照射することで、ワークWを加工している。しかしながら、加工システムSYSは、光とは異なる任意のエネルギビームをワークWに照射して、ワークWを加工させてもよい。任意のエネルギビームの一例として、荷電粒子ビーム及び電磁波の少なくとも一方があげられる。荷電粒子ビームの一例として、電子ビーム及びイオンビームの少なくとも一方があげられる。また、上述した説明では、加工システムSYSは、ワークWに計測光MLを照射することで、ワークWを加工している。しかしながら、加工システムSYSは、光とは異なる任意のエネルギビームをワークWに照射して、ワークWを計測させてもよい。 In the above description, the processing system SYS processes the workpiece W by irradiating the workpiece W with processing light EL. In other words, the processing system SYS processes the workpiece W by irradiating the workpiece W with an energy beam in the form of light. However, the processing system SYS may irradiate the workpiece W with any energy beam other than light to process the workpiece W. An example of the arbitrary energy beam is at least one of a charged particle beam and an electromagnetic wave. An example of the charged particle beam is at least one of an electron beam and an ion beam. Also, in the above description, the processing system SYS processes the workpiece W by irradiating the workpiece W with measurement light ML. However, the processing system SYS may irradiate the workpiece W with any energy beam other than light to measure the workpiece W.
 (8)付記
 以上説明した実施形態に関して、更に以下の付記を開示する。
[付記1]
 サンプル物体を計測するための計測ビームを前記サンプル物体に照射することによって前記サンプル物体から生じるサンプル戻りビームの検出結果に基づいて、前記サンプル物体の位置を計測することと、
 前記サンプル戻りビームの検出結果に基づいて算出される前記サンプル物体の位置と、前記サンプル物体の位置を計測することとは異なる手法を用いて得られた前記サンプル物体の位置の参照値との間の関係に関するサンプル関係情報を生成することと、
 前記計測ビームを対象物体に照射することによって前記対象物体から生じる対象戻りビームを検出して前記対象物体の位置を計測することと、
 前記生成されたサンプル関係情報と、前記サンプルワークの種類に関する情報と、前記対象物体の種類に関する情報とに基づいて、演算モデルを生成することと
 を含み、
 前記演算モデルは、前記対象戻りビームの検出結果に基づいて算出される前記対象物体の前記位置と前記対象物体の位置の参照値との間の関係に関する対象関係情報を出力可能な演算モデルを生成することと
 を含むモデル生成方法。
[付記2]
 前記サンプル物体の位置を計測することは、
 前記計測ビームを前記サンプル物体としての第1サンプル物体に照射することによって前記第1サンプル物体から生じる第1サンプル戻りビームの検出結果に基づいて、前記第1サンプル物体の位置を計測することと、
 前記計測ビームを前記第1サンプル物体とは種類が異なる前記サンプル物体としての第2サンプル物体に照射することによって前記第2サンプル物体から生じる第2サンプル戻りビームの検出結果に基づいて、前記第1サンプル物体の位置を計測することと
 を含み、
 前記サンプル関係情報を生成することは、
 前記第1サンプル戻りビームの検出結果に基づいて算出される前記第1サンプル物体の位置と、前記第1サンプル物体の位置を計測することとは異なる手法を用いて得られた前記第1サンプル物体の位置の参照値との間の関係に関する第1サンプル関係情報を、前記サンプル関係情報として生成することと、
 前記第2サンプル戻りビームの検出結果に基づいて算出される前記第2サンプル物体の位置と、前記第2サンプル物体の位置を計測することとは異なる手法を用いて得られた前記第2サンプル物体の位置の参照値との間の関係に関する第2サンプル関係情報を、前記サンプル関係情報として生成することと
 を含み、
 前記演算モデルを生成することは、前記生成された第1及び第2サンプル関係情報と、前記第1及び第2サンプルワークの種類に関する情報とに基づいて、前記演算モデルを生成することを含む
 付記1に記載のモデル生成方法。
[付記3]
 前記サンプル関係情報は、前記サンプル戻りビームの検出結果に基づいて算出される前記サンプル物体の位置と、前記サンプル物体の位置の参照値との間の差分に関する情報を含み、
 前記対象関係情報は、前記対象戻りビームの検出結果に基づいて算出される前記対象物体の位置と、前記対象物体の位置の参照値との間の差分に関する情報を含む
 付記1又は2に記載のモデル生成方法。
[付記4]
 前記サンプルワークの種類は、前記サンプルワークの材質によって区別可能な種類を含む
 付記1から3のいずれか一項に記載のモデル生成方法。
[付記5]
 付記1から4のいずれか一項に記載のモデル生成方法によって生成された前記演算モデルを用いて、前記対象物体を加工する
 加工システム。
[付記6]
 前記加工システムは、
 加工ビームを前記対象物体に照射することで前記対象物体を加工する加工装置と、
 前記加工装置を制御する制御装置と
 を備え、
 前記加工装置は、
 前記加工ビームと前記計測ビームとを前記対象物体に照射可能な照射光学系と、
 前記計測ビームが照射された前記対象物体から射出される前記対象戻りビームを検出する検出器と
 を備え、
 前記制御装置は、
 前記演算モデルと前記対象物体の種類に関する情報とに基づいて、前記対象関係情報を取得し、
 前記対象戻りビームの検出結果に基づいて、前記対象物体の位置を算出し、
 前記取得した対象関係情報に基づいて、算出された前記対象物体の位置を補正する
 付記5に記載の加工システム。
[付記7]
 前記制御装置は、補正された前記対象物体の位置に基づいて、前記物体を加工するように前記加工装置を制御する
 付記6に記載の加工システム。
[付記8]
 前記対象関係情報は、前記対象戻りビームの検出結果に基づいて算出される前記対象物体の位置と、前記対象物体の位置の正解値との間の差分に関する情報を含み、
 前記制御装置は、前記対象戻りビームの検出結果に基づいて算出された前記対象物体の位置に前記差分を加算することで、前記対象戻りビームの検出結果に基づいて算出された前記対象物体の位置を補正する
 付記6又は7に記載の加工システム。
[付記9]
 加工ビームを対象物体に照射することで前記対象物体を加工する加工装置と、
 前記加工装置を制御する制御装置と
 を備え、
 前記加工装置は、
 前記加工ビームと、前記対象物体を計測するための計測ビームとを前記対象物体に照射可能な照射光学系と、
 前記計測ビームが照射された前記対象物体から生じる戻りビームを検出する検出器と
 を備え、
 前記制御装置は、
 前記戻りビームの検出結果に基づいて、前記対象物体の第1部分の位置と、前記第1部分と所定の位置関係を有する前記対象物体の第2部分の位置とを算出し、
 前記第1部分の位置と前記第2部分の位置との平均値を、前記第1部分の位置として算出する平均化処理を行い、
 前記平均化処理によって算出された前記第1部分の位置に基づいて、前記対象物体を加工するように前記加工装置を制御する
 加工システム。
[付記10]
 前記第2部分は、前記第1部分から所定距離以内の位置に位置する
 付記9に記載の加工システム。
[付記11]
 前記制御装置は、
 前記戻りビームの検出結果に基づいて、前記対象物体の第1部分の位置と、前記第1部分と所定の位置関係を有する前記対象物体の複数の前記第2部分の位置とを算出し、
 前記第1部分の位置と前記複数の第2部分の位置との平均値を、前記第1部分の位置として算出する前記平均化処理を行う
 付記9又は10に記載の加工システム。
[付記12]
 前記検出器を第1検出器とし、前記戻りビームを第1戻りビームとするとき、前記加工装置は、前記加工ビームが照射された前記対象物体から射出される第2戻りビームを検出する第2検出器を更に備え、
 前記制御装置は、
 前記平均化処理によって算出された前記第1部分の位置を、前記第2戻りビームの検出結果に基づいて補正する第1補正処理を行い、
 前記第1補正処理によって補正された前記第1部分の位置の結果に基づいて、前記対象物体を加工するように前記加工装置を制御する
 付記9から11のいずれか一項に記載の加工システム。
[付記13]
 前記制御装置は、
 前記平均化処理によって算出された前記第1部分の位置を、付記1から8のいずれか一項に記載のモデル生成方法によって生成された前記演算モデルを用いて補正する第2補正処理を行い、
 前記第2補正処理によって補正された前記第1部分の位置の結果に基づいて、前記対象物体を加工するように前記加工装置を制御する
 付記9から12のいずれか一項に記載の加工システム。
[付記14]
 前記第2補正処理は、前記演算モデルと前記対象物体の種類に関する情報とに基づいて、前記対象関係情報を取得する処理と、
 前記取得した対象関係情報に基づいて、前記平均化処理によって算出された前記第1部分の位置を補正する処理と
 を含む付記13に記載の加工システム。
[付記15]
 前記加工装置は、前記照射光学系に対する相対的な姿勢が第1姿勢となっている前記対象物体に前記計測ビームを照射し、且つ、前記照射光学系に対する相対的な姿勢が前記第1姿勢とは異なる第2姿勢となっている前記対象物体に前記計測ビームを照射し、
 前記制御装置は、前記戻りビームの検出結果に基づいて、前記第1姿勢となっている前記対象物体の位置である第1位置と、前記第2姿勢となっている前記対象物体の位置である第2位置とを算出し、
 前記第1位置と前記第2位置との平均値を、前記対象物体の位置として算出する処理を、前記平均化処理として行う
 付記9から15のいずれか一項に記載の加工システム。
[付記16]
 加工ビームを対象物体に照射する加工装置を用いて前記対象物体を加工する加工方法であって、
 前記加工ビームと、前記対象物体を計測するための計測ビームとを前記対象物体に照射することと、
 前記対象物体に前記計測ビームが照射されることによって前記対象物体から生じる第1戻りビームを検出することと、
 前記対象物体に前記加工ビームが照射されることによって前記対象物体から生じる第2戻りビームを検出することと、
 前記制御装置は、前記第1戻りビームの検出結果と、前記第2戻りビームの検出結果とに基づいて、前記対象物体の位置に関する位置情報を生成することと、
 前記位置情報に基づいて、前記対象物体を加工するように前記加工装置を制御することと
 を含む加工方法。
[付記17]
 加工ビームを対象物体に照射する加工装置を用いて前記対象物体を加工する加工方法であって、
 前記加工ビームと、前記対象物体を計測するための計測ビームとを前記対象物体に照射することと、
 前記計測ビームが照射された前記対象物体から生じる戻りビームを検出することと、
 前記戻りビームの検出結果に基づいて、前記対象物体の第1部分の位置と、前記第1部分と所定の位置関係を有する前記対象物体の第2部分の位置とを算出することと
 前記第1部分の位置と前記第2部分の位置との平均値を、前記第1部分の位置として算出する平均化処理を行うことと、
 前記平均化処理によって算出された前記第1部分の位置に基づいて、前記対象物体を加工するように前記加工装置を制御することと
 を含む加工方法。
[付記18]
 加工ビームを対象物体に照射する加工装置を用いて前記対象物体を加工する加工方法であって、
 加工装置が備える照射光学系を用いて、前記加工ビームを前記対象物体に照射することと、
 前記照射光学系を用いて、前記照射光学系に対する相対的な姿勢が第1姿勢となっている前記対象物体に前記計測ビームを照射することと、
 前記照射光学系を用いて、前記照射光学系に対する相対的な姿勢が前記第1姿勢とは異なる第2姿勢となっている前記対象物体に前記計測ビームを照射することと、
 前記計測ビームが照射された前記対象物体から射出される戻りビームを検出することと
 前記戻りビームの検出結果に基づいて、前記第1姿勢となっている前記対象物体の位置である第1位置と、前記第2姿勢となっている前記対象物体の位置である第2位置とを算出することと、
 前記第1位置と前記第2位置との平均値を、前記対象物体の位置として算出する平均化処理を行うことと、
 前記平均化処理によって算出された前記対象物体の位置に基づいて、前記対象物体を加工するように前記加工装置を制御することと
 を含む加工方法。
[付記19]
 加工ビームを対象物体に照射する加工装置を用いて前記対象物体を加工する加工方法であって、
 前記加工ビームと、前記対象物体を計測するための計測ビームとを前記対象物体に照射することと、
 前記対象物体に前記計測ビームが照射されることによって前記対象物体から生じる第1戻りビームを検出することと、
 前記対象物体に前記加工ビームが照射されることによって前記対象物体から生じる第2戻りビームを検出することと
 前記第1戻りビームの検出結果と、前記第2戻りビームの検出結果とに基づいて、前記対象物体の位置に関する位置情報を生成することと
 を含む加工方法。
[付記20]
 加工ビームを対象物体に照射する加工装置を用いて前記対象物体を加工する加工方法であって、
 前記対象物体を計測するための計測ビームを前記対象物体に照射することによって前記対象物体から生じる戻りビームに基づいて、前記対象物体の第1距離計測結果を得ることと、
 前記第1距離計測結果を得る手法とは異なる手法を用いて前記対象物体の第2距離計測結果を得ることと
 前記第1距離計測結果と、前記第2距離計測結果とに基づいて、前記対象物体の位置に関する位置情報を生成することと
 を含む加工方法。
[付記21]
 加工ビームを対象物体に照射する加工装置を用いて前記対象物体を加工する加工方法であって、
 前記加工ビームと、前記対象物体を計測するための計測ビームとを前記対象物体に照射することと、
 前記対象物体に前記計測ビームが照射されることによって前記対象物体から生じる第1戻りビームを検出することと、
 前記対象物体に前記加工ビームが照射されることによって前記対象物体から生じる第2戻りビームを検出することと
 前記第1戻りビームの検出結果と、前記第2戻りビームの検出結果とに基づいて、前記対象物体の加工における前記加工ビームの照射位置を制御することと
 を含む加工方法。
[付記22]
 加工ビームを対象物体に照射する加工装置を用いて前記対象物体を加工する加工方法であって、
 前記対象物体を計測するための計測ビームを前記対象物体に照射することによって前記対象物体から生じる戻りビームに基づいて、前記対象物体の第1距離計測結果を得ることと、
 前記第1距離計測結果を得る手法とは異なる手法を用いて前記対象物体の第2距離計測結果を得ることと、
 前記第1距離計測結果と、前記第2距離計測結果とに基づいて、前記対象物体の加工における前記加工ビームの照射位置を制御することと
 を含む加工方法。
[付記23]
 付記1から4のいずれか一項に記載のモデル生成方法によって生成された前記演算モデルを用いて、前記対象物体を加工する
 加工方法。
(8) Supplementary Notes The following supplementary notes are further disclosed with respect to the embodiment described above.
[Appendix 1]
measuring a position of the sample object based on a detection result of a sample return beam generated from the sample object by irradiating the sample object with a measurement beam for measuring the sample object;
generating sample related information regarding a relationship between a position of the sample object calculated based on the detection result of the sample return beam and a reference value of the position of the sample object obtained using a technique other than measuring the position of the sample object;
measuring a position of a target object by detecting a return beam generated from the target object by irradiating the measurement beam onto the target object;
generating a computational model based on the generated sample relationship information, information about the type of the sample workpiece, and information about the type of the target object;
A model generation method comprising: generating a computational model capable of outputting target relationship information regarding a relationship between the position of the target object calculated based on a detection result of the target return beam and a reference value of the position of the target object.
[Appendix 2]
Measuring the position of the sample object comprises:
measuring a position of a first sample object based on a detection result of a first sample return beam generated from a first sample object by irradiating the measurement beam onto the first sample object;
measuring a position of the first sample object based on a detection result of a second sample return beam generated from a second sample object by irradiating the measurement beam onto the second sample object, the second sample object being a sample object of a different type from the first sample object;
generating the sample related information
generating, as the sample relationship information, first sample relationship information relating to a relationship between a position of the first sample object calculated based on a detection result of the first sample return beam and a reference value of the position of the first sample object obtained using a method other than measuring the position of the first sample object;
generating, as the sample relationship information, second sample relationship information relating to a relationship between a position of the second sample object calculated based on a detection result of the second sample return beam and a reference value of the position of the second sample object obtained using a technique different from measuring the position of the second sample object;
2. The model generation method of claim 1, wherein generating the computational model includes generating the computational model based on the generated first and second sample relationship information and information regarding types of the first and second sample works.
[Appendix 3]
the sample-related information includes information regarding a difference between a position of the sample object calculated based on a detection result of the sample return beam and a reference value of a position of the sample object;
The model generation method according to claim 1 or 2, wherein the target relation information includes information regarding a difference between a position of the target object calculated based on a detection result of the target return beam and a reference value of the position of the target object.
[Appendix 4]
The model generating method according to any one of claims 1 to 3, wherein the types of the sample workpieces include types that can be distinguished by the material of the sample workpieces.
[Appendix 5]
A processing system that processes the target object using the computational model generated by the model generation method according to any one of appendixes 1 to 4.
[Appendix 6]
The processing system includes:
a processing device that processes the target object by irradiating the target object with a processing beam;
A control device for controlling the processing device,
The processing device includes:
an irradiation optical system capable of irradiating the processing beam and the measurement beam onto the target object;
a detector for detecting the object return beam emitted from the object irradiated with the measurement beam,
The control device includes:
obtaining the target relationship information based on the computational model and information regarding the type of the target object;
Calculating a position of the target object based on the detection of the target return beam;
The processing system according to claim 5, further comprising: correcting the calculated position of the target object based on the acquired target relation information.
[Appendix 7]
The processing system of claim 6, wherein the control device controls the processing device to process the object based on the corrected position of the target object.
[Appendix 8]
the target relation information includes information regarding a difference between a position of the target object calculated based on a detection result of the target return beam and a correct value of the position of the target object;
The processing system described in Appendix 6 or 7, wherein the control device corrects the position of the target object calculated based on the detection result of the target return beam by adding the difference to the position of the target object calculated based on the detection result of the target return beam.
[Appendix 9]
a processing device that processes a target object by irradiating the target object with a processing beam;
A control device for controlling the processing device,
The processing device includes:
an irradiation optical system capable of irradiating the target object with the processing beam and a measurement beam for measuring the target object;
a detector for detecting a return beam generated from the object irradiated with the measurement beam,
The control device includes:
Calculating a position of a first portion of the target object and a position of a second portion of the target object having a predetermined positional relationship with the first portion based on a detection result of the return beam;
performing an averaging process to calculate an average value of the position of the first portion and the position of the second portion as the position of the first portion;
and controlling the processing device so as to process the target object based on the position of the first portion calculated by the averaging process.
[Appendix 10]
The processing system of claim 9, wherein the second portion is located within a predetermined distance from the first portion.
[Appendix 11]
The control device includes:
Calculating a position of a first portion of the target object and positions of a plurality of second portions of the target object having a predetermined positional relationship with the first portion based on a detection result of the return beam;
The machining system according to claim 9 or 10, wherein the averaging process is performed to calculate an average value of the position of the first portion and the positions of the plurality of second portions as the position of the first portion.
[Appendix 12]
When the detector is a first detector and the return beam is a first return beam, the processing apparatus further includes a second detector that detects a second return beam emitted from the target object irradiated with the processing beam,
The control device includes:
performing a first correction process to correct the position of the first portion calculated by the averaging process based on a detection result of the second return beam;
The processing system according to any one of appendixes 9 to 11, further comprising: controlling the processing device to process the target object based on a result of the position of the first portion corrected by the first correction process.
[Appendix 13]
The control device includes:
performing a second correction process to correct the position of the first portion calculated by the averaging process, using the computation model generated by the model generation method according to any one of Supplementary Notes 1 to 8;
The processing system according to any one of appendixes 9 to 12, further comprising: controlling the processing device to process the target object based on a result of the position of the first portion corrected by the second correction process.
[Appendix 14]
the second correction process includes a process of acquiring the target relation information based on the computational model and information related to the type of the target object;
and correcting the position of the first portion calculated by the averaging process based on the acquired object relation information.
[Appendix 15]
the processing apparatus irradiates the measurement beam onto the target object having a first posture relative to the irradiation optical system, and irradiates the measurement beam onto the target object having a second posture relative to the irradiation optical system different from the first posture;
the control device calculates, based on a detection result of the return beam, a first position that is a position of the target object in the first attitude and a second position that is a position of the target object in the second attitude;
The processing system according to any one of appendixes 9 to 15, wherein the averaging process is a process of calculating an average value of the first position and the second position as the position of the target object.
[Appendix 16]
A processing method for processing a target object using a processing device that irradiates the target object with a processing beam, comprising:
irradiating the target object with the processing beam and a measurement beam for measuring the target object;
detecting a first return beam generated from the target object by irradiating the target object with the measurement beam;
detecting a second return beam generated from the target object by irradiating the target object with the processing beam;
the control device generates position information regarding a position of the target object based on a detection result of the first return beam and a detection result of the second return beam;
and controlling the processing device to process the target object based on the position information.
[Appendix 17]
A processing method for processing a target object using a processing device that irradiates the target object with a processing beam, comprising:
irradiating the target object with the processing beam and a measurement beam for measuring the target object;
detecting a return beam originating from the object illuminated by the measurement beam;
Calculating a position of a first portion of the target object and a position of a second portion of the target object having a predetermined positional relationship with the first portion based on a detection result of the return beam; and performing an averaging process to calculate an average value of the positions of the first portion and the second portion as the position of the first portion.
and controlling the processing device to process the target object based on the position of the first portion calculated by the averaging process.
[Appendix 18]
A processing method for processing a target object using a processing device that irradiates the target object with a processing beam, comprising:
Irradiating the processing beam onto the target object using an irradiation optical system included in a processing apparatus;
irradiating the measurement beam onto the target object, the target object having a first posture relative to the irradiation optical system, using the irradiation optical system;
irradiating the measurement beam onto the target object, the target object having a second orientation relative to the irradiation optical system that is different from the first orientation, using the irradiation optical system;
detecting a return beam emitted from the target object irradiated with the measurement beam; and calculating a first position that is a position of the target object in the first orientation and a second position that is a position of the target object in the second orientation based on a detection result of the return beam.
performing an averaging process of calculating an average value of the first position and the second position as the position of the target object;
and controlling the processing device so as to process the target object based on the position of the target object calculated by the averaging process.
[Appendix 19]
A processing method for processing a target object using a processing device that irradiates the target object with a processing beam, comprising:
irradiating the target object with the processing beam and a measurement beam for measuring the target object;
detecting a first return beam generated from the target object by irradiating the target object with the measurement beam;
A processing method comprising: detecting a second return beam generated from the target object when the processing beam is irradiated onto the target object; and generating position information regarding the position of the target object based on the detection result of the first return beam and the detection result of the second return beam.
[Appendix 20]
A processing method for processing a target object using a processing device that irradiates the target object with a processing beam, comprising:
obtaining a first distance measurement result of the target object based on a return beam generated from the target object by irradiating the target object with a measurement beam for measuring the target object;
A processing method comprising: obtaining a second distance measurement result of the target object using a method different from a method for obtaining the first distance measurement result; and generating position information regarding a position of the target object based on the first distance measurement result and the second distance measurement result.
[Appendix 21]
A processing method for processing a target object using a processing device that irradiates the target object with a processing beam, comprising:
irradiating the target object with the processing beam and a measurement beam for measuring the target object;
detecting a first return beam generated from the target object by irradiating the target object with the measurement beam;
A processing method comprising: detecting a second return beam generated from the target object when the processing beam is irradiated onto the target object; and controlling the irradiation position of the processing beam in processing the target object based on the detection result of the first return beam and the detection result of the second return beam.
[Appendix 22]
A processing method for processing a target object using a processing device that irradiates the target object with a processing beam, comprising:
obtaining a first distance measurement result of the target object based on a return beam generated from the target object by irradiating the target object with a measurement beam for measuring the target object;
obtaining a second distance measurement of the target object using a technique different from the technique for obtaining the first distance measurement;
and controlling an irradiation position of the processing beam in processing the target object based on the first distance measurement result and the second distance measurement result.
[Appendix 23]
A processing method for processing the target object using the computational model generated by the model generation method according to any one of Supplementary Notes 1 to 4.
 上述の各実施形態の構成要件の少なくとも一部は、上述の各実施形態の構成要件の少なくとも他の一部と適宜組み合わせることができる。上述の各実施形態の構成要件のうちの一部が用いられなくてもよい。また、法令で許容される限りにおいて、上述の各実施形態で引用した全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。 At least some of the constituent elements of each of the above-mentioned embodiments may be appropriately combined with at least some of the other constituent elements of each of the above-mentioned embodiments. Some of the constituent elements of each of the above-mentioned embodiments may not be used. In addition, to the extent permitted by law, the disclosures of all publications and U.S. patents cited in each of the above-mentioned embodiments are incorporated by reference into the present text.
 本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う加工システムもまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, but may be modified as appropriate within the scope of the claims and the overall specification without violating the spirit or concept of the invention, and processing systems involving such modifications are also included within the technical scope of the present invention.
 SYS 加工システム
 1 加工ユニット
 13 加工ヘッド
 131 加工光学系
 1313 ガルバノミラー
 132 計測光学系
 1328 ガルバノミラー
 133 合成光学系
 134 偏向光学系
 1341 ガルバノミラー
 135 照射光学系
 1351 fθレンズ
 2 制御ユニット
 W ワーク
 M 計測対象物
 EL 加工光
 REL 戻り光
 ML 計測光
 RML 戻り光
 CP 集光位置
SYS Machining system 1 Machining unit 13 Machining head 131 Machining optical system 1313 Galvanometer mirror 132 Measurement optical system 1328 Galvanometer mirror 133 Synthesis optical system 134 Deflection optical system 1341 Galvanometer mirror 135 Irradiation optical system 1351 fθ lens 2 Control unit W Workpiece M Measurement object EL Machining light REL Return light ML Measurement light RML Return light CP Focus position

Claims (28)

  1.  加工ビームを対象物体に照射することで前記対象物体を加工する加工装置と、
     前記加工装置を制御する制御装置と
     を備え、
     前記加工装置は、
     前記加工ビームと、前記対象物体を計測するための計測ビームとを前記対象物体に照射可能な照射光学系と、
     前記対象物体に前記計測ビームが照射されることによって前記対象物体から生じる第1戻りビームを検出する第1検出器と、
     前記対象物体に前記加工ビームが照射されることによって前記対象物体から生じる第2戻りビームを検出する第2検出器と
     を備え、
     前記制御装置は、前記第1戻りビームの検出結果と、前記第2戻りビームの検出結果とに基づいて、前記対象物体の位置に関する位置情報を生成し、前記位置情報に基づいて、前記対象物体を加工するように前記加工装置を制御する
     加工システム。
    a processing device that processes a target object by irradiating the target object with a processing beam;
    A control device for controlling the processing device,
    The processing device includes:
    an irradiation optical system capable of irradiating the target object with the processing beam and a measurement beam for measuring the target object;
    a first detector that detects a first return beam generated from the target object when the measurement beam is irradiated onto the target object;
    a second detector that detects a second return beam generated from the target object when the target object is irradiated with the processing beam;
    The control device generates position information regarding the position of the target object based on the detection result of the first return beam and the detection result of the second return beam, and controls the processing device to process the target object based on the position information.
  2.  前記第1検出器は、前記照射光学系の光路において最も前記対象物体側に配置される最終光学素子を介して前記対象物体に照射された前記計測ビームによって前記対象物体から生じる前記第1戻りビームを、前記最終光学素子を介して検出し、
     前記第2検出器は、前記最終光学素子を介して前記対象物体に照射された前記加工ビームによって前記対象物体から生じる前記第2戻りビームを、前記最終光学素子を介して検出する
     請求項1に記載の加工システム。
    the first detector detects, via a final optical element, the first return beam generated from the target object by the measurement beam irradiated onto the target object via the final optical element disposed closest to the target object in the optical path of the irradiation optical system;
    The processing system of claim 1 , wherein the second detector detects, via the final optical element, the second return beam generated from the target object by the processing beam irradiated onto the target object via the final optical element.
  3.  前記制御装置は、前記第1戻りビームの検出結果に基づいて得られる情報を、前記第2戻りビームの検出結果を用いて補正することで、前記位置情報を生成する
     請求項1又は2に記載の加工システム。
    The processing system according to claim 1 or 2, wherein the control device generates the position information by correcting information obtained based on the detection result of the first return beam using the detection result of the second return beam.
  4.  前記制御装置は、前記第1戻りビームの検出結果に基づいて、前記対象物体の位置を算出し、前記第1戻りビームの検出結果に基づいて算出された前記対象物体の位置を、前記第2戻りビームの検出結果を用いて補正することで、前記位置情報を生成する
     請求項1から3のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 1 to 3, wherein the control device calculates the position of the target object based on the detection result of the first return beam, and generates the position information by correcting the position of the target object calculated based on the detection result of the first return beam using the detection result of the second return beam.
  5.  前記加工システムは、前記第1戻りビームの検出結果と前記第2戻りビームの検出結果とのうちのいずれか一方を取得するために前記計測ビームと前記加工ビームとのうちのいずれか一方が照射される前記対象物体の部分に、前記計測ビームと前記加工ビームとのうちのいずれか他方を照射して、前記第1戻りビームの検出結果と前記第2戻りビームの検出結果とのうちのいずれか他方を取得する
     請求項1から4のいずれか一項に記載の加工システム。
    The processing system according to any one of claims 1 to 4, wherein the processing system irradiates a portion of the target object where one of the measurement beam and the processing beam is irradiated with the other of the measurement beam and the processing beam in order to obtain one of the detection result of the first return beam and the detection result of the second return beam, and obtains the other of the detection result of the first return beam and the detection result of the second return beam.
  6.  前記第1戻りビームの検出結果を取得するために前記計測ビームが照射される前記対象物体の部分に対する前記計測ビームの入射角と、前記第2戻りビームの検出結果を取得するために前記加工ビームが照射される前記対象物体の部分に対する前記加工ビームの入射角と同じである
     請求項1から4のいずれか一項に記載の加工システム。
    The processing system described in any one of claims 1 to 4, wherein an incidence angle of the measurement beam with respect to a portion of the target object where the measurement beam is irradiated to obtain the detection result of the first return beam is the same as an incidence angle of the processing beam with respect to a portion of the target object where the processing beam is irradiated to obtain the detection result of the second return beam.
  7.  前記加工装置は、前記対象物体の第1部分に前記加工ビーム及び前記計測ビームのそれぞれを照射し、且つ、前記対象物体の第2部分に前記計測ビームを照射し、
     前記制御装置は、前記第1部分から生じる前記第1戻りビームの検出結果に基づいて、前記対象物体の前記第1部分の位置としての第1位置を算出し、前記第1部分から生じる前記第2戻りビームの検出結果に基づいて、前記対象物体の前記第1部分の位置としての第2位置を算出し、前記第2部分から生じる前記第1戻りビームの検出結果に基づいて、前記対象物体の前記第2部分の位置としての第3位置を算出し、前記第1位置と第2位置との間の関係に基づいて前記第3位置を補正することで、前記補正された第3位置に関する情報を含む前記位置情報を生成する
     請求項1から6のいずれか一項に記載の加工システム。
    the processing device irradiates a first portion of the target object with each of the processing beam and the measurement beam, and irradiates a second portion of the target object with the measurement beam;
    The processing system of any one of claims 1 to 6, wherein the control device calculates a first position as the position of the first portion of the target object based on a detection result of the first return beam generated from the first portion, calculates a second position as the position of the first portion of the target object based on a detection result of the second return beam generated from the first portion, calculates a third position as the position of the second portion of the target object based on a detection result of the first return beam generated from the second portion, and corrects the third position based on a relationship between the first position and the second position, thereby generating the position information including information regarding the corrected third position.
  8.  前記第1位置と第2位置との間の関係は、前記第1位置と前記第2位置との差分を含む
     請求項7に記載の加工システム。
    The processing system of claim 7 , wherein the relationship between the first position and the second position includes a difference between the first position and the second position.
  9.  前記制御装置は、前記差分を前記第3位置に加算することで、前記第3位置を補正する
     請求項8に記載の加工システム。
    The machining system according to claim 8 , wherein the control device corrects the third position by adding the difference to the third position.
  10.  前記加工装置は、前記照射光学系の光軸に沿った方向における前記対象物体の前記第1部分と前記加工ビームの集光位置との間の位置関係を変更しながら、前記対象物体の第1部分に前記加工ビームを照射し、
     前記制御装置は、前記第1部分から生じる前記第2戻りビームの検出結果に基づいて、前記加工ビームの集光位置が前記第1部分の表面に位置する時点での前記加工ビームの集光位置を、前記第2位置として算出する
     請求項7から9のいずれか一項に記載の加工システム。
    the processing device irradiates the first portion of the target object with the processing beam while changing a positional relationship between the first portion of the target object and a focusing position of the processing beam in a direction along an optical axis of the irradiation optical system;
    The processing system according to any one of claims 7 to 9, wherein the control device calculates, based on a detection result of the second return beam generated from the first portion, the focal position of the processing beam at a point in time when the focal position of the processing beam is located on the surface of the first portion as the second position.
  11.  前記加工装置は、前記対象物体が載置される物体載置装置と前記照射光学系との少なくとも一方を移動させて前記計測ビーム及び前記加工ビームが照射される前記対象物体上の位置を変更する移動装置を備える
     請求項1から10のいずれか一項に記載の加工システム。
    11. The processing system according to claim 1 , wherein the processing device includes a moving device that moves at least one of an object mounting device on which the target object is placed and the irradiation optical system to change a position on the target object at which the measurement beam and the processing beam are irradiated.
  12.  前記位置情報は、前記照射光学系の光軸に沿った方向における前記対象物体の位置に関する情報を含む
     請求項1から11のいずれか一項に記載の加工システム。
    The processing system according to claim 1 , wherein the position information includes information regarding a position of the target object in a direction along an optical axis of the irradiation optical system.
  13.  前記加工ビームの波長は、前記計測ビームの波長とは異なる
     請求項1から12のいずれか一項に記載の加工システム。
    The processing system of claim 1 , wherein a wavelength of the processing beam is different from a wavelength of the metrology beam.
  14.  前記加工装置は、前記計測ビームを前記照射光学系に向けて射出する計測光学系を含み、
     前記第1検出器は、前記第1戻りビームと前記計測ビームの一部との干渉ビームを受光する
     請求項1から13のいずれか一項に記載の加工システム。
    the processing apparatus includes a measurement optical system that emits the measurement beam toward the irradiation optical system,
    The processing system according to claim 1 , wherein the first detector receives an interference beam between the first return beam and a portion of the measurement beam.
  15.  前記加工装置は、前記加工ビーム及び前記第2戻りビームの光路に配置されており、且つ、前記第2戻りビームを前記加工ビームの光路とは異なる光路に分岐して前記第2検出器に入射させるビーム分岐部材を備える
     請求項14に記載の加工システム。
    The processing system according to claim 14, wherein the processing device comprises a beam splitting member disposed in the optical paths of the processing beam and the second return beam, and splitting the second return beam into an optical path different from the optical path of the processing beam to be incident on the second detector.
  16.  前記対象物体と前記第2検出器の光検出面又は前記光検出面の近傍の面とは、光学的に共役である
     請求項15に記載の加工システム。
    The processing system according to claim 15 , wherein the target object and a light detection surface of the second detector or a surface adjacent to the light detection surface are optically conjugate.
  17.  前記対象物体を加工する際の前記加工ビームの特性と、前記第2戻りビームを検出する際に前記対象物体に照射される前記加工ビームの特性とが異なる
     請求項1から16のいずれか一項に記載の加工システム。
    The processing system according to claim 1 , wherein a characteristic of the processing beam when processing the target object is different from a characteristic of the processing beam irradiated to the target object when detecting the second return beam.
  18.  加工ビームを対象物体に照射することで前記対象物体を加工する加工装置と、
     前記加工装置を制御する制御装置と
     を備え、
     前記加工装置は、
     前記加工ビームと、前記対象物体を計測するための計測ビームとを前記対象物体に照射可能な照射光学系と、
     前記計測ビームが照射された前記対象物体から生じる戻りビームを検出する検出器と
     を備え、
     前記制御装置は、
     前記戻りビームの検出結果に基づいて、前記対象物体の第1部分の位置と、前記第1部分と所定の位置関係を有する前記対象物体の第2部分の位置とを算出し、
     前記第1部分の位置と前記第2部分の位置との平均値を、前記第1部分の位置として算出する平均化処理を行い、
     前記平均化処理によって算出された前記第1部分の位置に基づいて、前記対象物体を加工するように前記加工装置を制御する
     加工システム。
    a processing device that processes a target object by irradiating the target object with a processing beam;
    A control device for controlling the processing device,
    The processing device includes:
    an irradiation optical system capable of irradiating the target object with the processing beam and a measurement beam for measuring the target object;
    a detector for detecting a return beam generated from the object irradiated with the measurement beam,
    The control device includes:
    Calculating a position of a first portion of the target object and a position of a second portion of the target object having a predetermined positional relationship with the first portion based on a detection result of the return beam;
    performing an averaging process to calculate an average value of the position of the first portion and the position of the second portion as the position of the first portion;
    and controlling the processing device so as to process the target object based on the position of the first portion calculated by the averaging process.
  19.  前記第2部分は、前記第1部分から所定距離以内の位置に位置する
     請求項18に記載の加工システム。
    The processing system of claim 18 , wherein the second portion is located within a predetermined distance from the first portion.
  20.  前記第2部分は、複数である
     請求項18又は19に記載の加工システム。
    The processing system according to claim 18 or 19, wherein the second portion is a plurality of portions.
  21.  前記制御装置は、
     前記戻りビームの検出結果に基づいて、前記対象物体の第1部分の位置と、前記第1部分と所定の位置関係を有する前記対象物体の複数の前記第2部分の位置とを算出し、
     前記第1部分の位置と前記複数の第2部分の位置との平均値を、前記第1部分の位置として算出する前記平均化処理を行う
     請求項18から20のいずれか一項に記載の加工システム。
    The control device includes:
    Calculating a position of a first portion of the target object and positions of a plurality of second portions of the target object having a predetermined positional relationship with the first portion based on a detection result of the return beam;
    The machining system according to claim 18 , wherein the averaging process is performed to calculate an average value of the position of the first portion and the positions of the plurality of second portions as the position of the first portion.
  22.  前記検出器を第1検出器とし、前記戻りビームを第1戻りビームとするとき、前記加工装置は、前記加工ビームが照射された前記対象物体から射出される第2戻りビームを検出する第2検出器を更に備え、
     前記制御装置は、
     前記平均化処理によって算出された前記第1部分の位置を、前記第2戻りビームの検出結果に基づいて補正する第1補正処理を行い、
     前記第1補正処理によって補正された前記第1部分の位置の結果に基づいて、前記対象物体を加工するように前記加工装置を制御する
     請求項18から21のいずれか一項に記載の加工システム。
    When the detector is a first detector and the return beam is a first return beam, the processing apparatus further includes a second detector that detects a second return beam emitted from the target object irradiated with the processing beam,
    The control device includes:
    performing a first correction process to correct the position of the first portion calculated by the averaging process based on a detection result of the second return beam;
    The processing system according to claim 18 , further comprising: controlling the processing device to process the target object based on a result of the position of the first portion corrected by the first correction process.
  23.  前記加工装置は、前記照射光学系に対する相対的な姿勢が第1姿勢となっている前記対象物体に前記計測ビームを照射し、且つ、前記照射光学系に対する相対的な姿勢が前記第1姿勢とは異なる第2姿勢となっている前記対象物体に前記計測ビームを照射し、
     前記制御装置は、前記戻りビームの検出結果に基づいて、前記第1姿勢となっている前記対象物体の位置である第1位置と、前記第2姿勢となっている前記対象物体の位置である第2位置とを算出し、
     前記第1位置と前記第2位置との平均値を、前記対象物体の位置として算出する処理を、前記平均化処理として行う
     請求項18から22のいずれか一項に記載の加工システム。
    the processing apparatus irradiates the measurement beam onto the target object having a first posture relative to the irradiation optical system, and irradiates the measurement beam onto the target object having a second posture relative to the irradiation optical system different from the first posture;
    the control device calculates, based on a detection result of the return beam, a first position that is a position of the target object in the first attitude and a second position that is a position of the target object in the second attitude;
    The machining system according to claim 18 , wherein the averaging process includes a process of calculating an average value of the first position and the second position as the position of the target object.
  24.  加工ビームを対象物体に照射することで前記対象物体を加工する加工装置と、
     前記加工装置を制御する制御装置と
     を備え、
     前記加工装置は、
     前記加工ビームと、前記対象物体を計測するための計測ビームとを前記対象物体に照射可能な照射光学系と、
     前記計測ビームが照射された前記対象物体から射出される戻りビームを検出する検出器と
     を備え、
     前記加工装置は、前記照射光学系に対する相対的な姿勢が第1姿勢となっている前記対象物体に前記計測ビームを照射し、且つ、前記照射光学系に対する相対的な姿勢が前記第1姿勢とは異なる第2姿勢となっている前記対象物体に前記計測ビームを照射し、
     前記制御装置は、
     前記戻りビームの検出結果に基づいて、前記第1姿勢となっている前記対象物体の位置である第1位置と、前記第2姿勢となっている前記対象物体の位置である第2位置とを算出し、
     前記第1位置と前記第2位置との平均値を、前記対象物体の位置として算出する平均化処理を行い、
     前記平均化処理によって算出された前記対象物体の位置に基づいて、前記対象物体を加工するように前記加工装置を制御する
     加工システム。
    a processing device that processes a target object by irradiating the target object with a processing beam;
    A control device for controlling the processing device,
    The processing device includes:
    an irradiation optical system capable of irradiating the target object with the processing beam and a measurement beam for measuring the target object;
    a detector for detecting a return beam emitted from the object irradiated with the measurement beam,
    the processing apparatus irradiates the measurement beam onto the target object having a first posture relative to the irradiation optical system, and irradiates the measurement beam onto the target object having a second posture relative to the irradiation optical system different from the first posture;
    The control device includes:
    Calculating a first position, which is a position of the target object in the first attitude, and a second position, which is a position of the target object in the second attitude, based on a detection result of the return beam;
    performing an averaging process to calculate an average value of the first position and the second position as the position of the target object;
    and controlling the processing device so as to process the target object based on the position of the target object calculated by the averaging process.
  25.  加工ビームを対象物体に照射することで前記対象物体を加工する加工装置と、
     前記加工装置を制御する制御装置と
     を備え、
     前記加工装置は、
     前記加工ビームと、前記対象物体を計測するための計測ビームとを前記対象物体に照射可能な照射光学系と、
     前記対象物体に前記計測ビームが照射されることによって前記対象物体から生じる第1戻りビームを検出する第1検出器と、
     前記対象物体に前記加工ビームが照射されることによって前記対象物体から生じる第2戻りビームを検出する第2検出器と
     を備え、
     前記制御装置は、前記第1戻りビームの検出結果と、前記第2戻りビームの検出結果とに基づいて、前記対象物体の位置に関する位置情報を生成する
     加工システム。
    a processing device that processes a target object by irradiating the target object with a processing beam;
    A control device for controlling the processing device,
    The processing device includes:
    an irradiation optical system capable of irradiating the target object with the processing beam and a measurement beam for measuring the target object;
    a first detector that detects a first return beam generated from the target object when the measurement beam is irradiated onto the target object;
    a second detector that detects a second return beam generated from the target object when the target object is irradiated with the processing beam;
    The control device generates position information regarding a position of the target object based on the detection results of the first return beam and the detection results of the second return beam.
  26.  加工ビームを対象物体に照射することで前記対象物体を加工する加工装置と、
     前記加工装置を制御する制御装置と
     を備え、
     前記加工装置は、
     前記対象物体を計測するための計測ビームを前記対象物体に照射することによって前記対象物体から生じる戻りビームに基づいて、前記対象物体の第1距離計測結果を得る第1計測装置と、
     前記第1計測装置とは異なる手法を用いて前記対象物体の第2距離計測結果を得る第2計測装置と
     を備え、
     前記制御装置は、前記第1距離計測結果と、前記第2距離計測結果とに基づいて、前記対象物体の位置に関する位置情報を生成する
     加工システム。
    a processing device that processes a target object by irradiating the target object with a processing beam;
    A control device for controlling the processing device,
    The processing device includes:
    a first measurement device that obtains a first distance measurement result of the target object based on a return beam generated from the target object by irradiating the target object with a measurement beam for measuring the target object;
    a second measurement device that obtains a second distance measurement result of the target object using a method different from that of the first measurement device,
    The control device generates position information regarding a position of the target object based on the first distance measurement result and the second distance measurement result.
  27.  加工ビームを対象物体に照射することで前記対象物体を加工する加工装置と、
     前記加工装置を制御する制御装置と
     を備え、
     前記加工装置は、
     前記加工ビームと、前記対象物体を計測するための計測ビームとを前記対象物体に照射可能な照射光学系と、
     前記対象物体に前記計測ビームが照射されることによって前記対象物体から生じる第1戻りビームを検出する第1検出器と、
     前記対象物体に前記加工ビームが照射されることによって前記対象物体から生じる第2戻りビームを検出する第2検出器と
     を備え、
     前記制御装置は、前記第1戻りビームの検出結果と、前記第2戻りビームの検出結果とに基づいて、前記対象物体の加工における前記加工ビームの照射位置を制御する
     加工システム。
    a processing device that processes a target object by irradiating the target object with a processing beam;
    A control device for controlling the processing device,
    The processing device includes:
    an irradiation optical system capable of irradiating the target object with the processing beam and a measurement beam for measuring the target object;
    a first detector that detects a first return beam generated from the target object when the measurement beam is irradiated onto the target object;
    a second detector that detects a second return beam generated from the target object when the target object is irradiated with the processing beam;
    The control device controls an irradiation position of the processing beam in processing the target object based on a detection result of the first return beam and a detection result of the second return beam.
  28.  加工ビームを対象物体に照射することで前記対象物体を加工する加工装置と、
     前記加工装置を制御する制御装置と
     を備え、
     前記加工装置は、
     前記対象物体を計測するための計測ビームを前記対象物体に照射することによって前記対象物体から生じる戻りビームに基づいて、前記対象物体の第1距離計測結果を得る第1計測装置と、
     前記第1計測装置とは異なる手法を用いて前記対象物体の第2距離計測結果を得る第2計測装置と
     を備え、
     前記制御装置は、前記第1距離計測結果と、前記第2距離計測結果とに基づいて、前記対象物体の加工における前記加工ビームの照射位置を制御する
     加工システム。
    a processing device that processes a target object by irradiating the target object with a processing beam;
    A control device for controlling the processing device,
    The processing device includes:
    a first measurement device that obtains a first distance measurement result of the target object based on a return beam generated from the target object by irradiating the target object with a measurement beam for measuring the target object;
    a second measurement device that obtains a second distance measurement result of the target object using a method different from that of the first measurement device,
    The control device controls an irradiation position of the processing beam in processing the target object based on the first distance measurement result and the second distance measurement result.
PCT/JP2022/042714 2022-11-17 2022-11-17 Processing system WO2024105852A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042714 WO2024105852A1 (en) 2022-11-17 2022-11-17 Processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042714 WO2024105852A1 (en) 2022-11-17 2022-11-17 Processing system

Publications (1)

Publication Number Publication Date
WO2024105852A1 true WO2024105852A1 (en) 2024-05-23

Family

ID=91084080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042714 WO2024105852A1 (en) 2022-11-17 2022-11-17 Processing system

Country Status (1)

Country Link
WO (1) WO2024105852A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115185A (en) * 1997-06-11 1999-01-12 Nikon Corp Laser processing device
JP2008032524A (en) * 2006-07-28 2008-02-14 National Institute Of Advanced Industrial & Technology Laser beam machining device, and focal point detection method of laser light for measurement
JP2009082932A (en) * 2007-09-28 2009-04-23 Pulstec Industrial Co Ltd Laser beam machining apparatus and laser beam machining method
JP2011110591A (en) * 2009-11-27 2011-06-09 Pioneer Electronic Corp Laser machining device
WO2021095699A1 (en) * 2019-11-13 2021-05-20 ヌヴォトンテクノロジージャパン株式会社 Laser processing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115185A (en) * 1997-06-11 1999-01-12 Nikon Corp Laser processing device
JP2008032524A (en) * 2006-07-28 2008-02-14 National Institute Of Advanced Industrial & Technology Laser beam machining device, and focal point detection method of laser light for measurement
JP2009082932A (en) * 2007-09-28 2009-04-23 Pulstec Industrial Co Ltd Laser beam machining apparatus and laser beam machining method
JP2011110591A (en) * 2009-11-27 2011-06-09 Pioneer Electronic Corp Laser machining device
WO2021095699A1 (en) * 2019-11-13 2021-05-20 ヌヴォトンテクノロジージャパン株式会社 Laser processing device

Similar Documents

Publication Publication Date Title
CN105829828B (en) Method for measuring penetration depth of laser beam into workpiece and laser processing equipment
CN112930242B (en) Processing system and processing method
JP2010082663A (en) Laser beam machine
JP7533712B2 (en) Processing system and processing method
WO2024105852A1 (en) Processing system
JP7540441B2 (en) Processing System
JP2024040305A (en) Beam processing-device
WO2021171371A1 (en) Processing system
WO2020254738A1 (en) System and method for controlled manufacturing
WO2022162893A1 (en) Machine tool, optical systems, and measuring device
WO2024166291A1 (en) Information processing method, information processing device, machining device, and machining method
WO2024105851A1 (en) Processing system
WO2024084694A1 (en) Optical device, optical processing device, optical processing method, and correction member
JP2008296256A (en) Laser beam machining apparatus
WO2023228401A1 (en) Machining system
JP7505549B2 (en) Processing System
WO2023032053A1 (en) Machining system
WO2024042681A1 (en) Machining system
WO2023032054A1 (en) Movement error calculating system, machine tool, calculating device, calibration method, and optical measuring device
JP7435613B2 (en) Mobile equipment and processing systems
JP2024160350A (en) Processing System
JP2006260663A (en) Method for adjusting light source unit
IE20040525A1 (en) Microdevice processing systems and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965828

Country of ref document: EP

Kind code of ref document: A1