WO2024105765A1 - Optical module and method for producing optical module - Google Patents
Optical module and method for producing optical module Download PDFInfo
- Publication number
- WO2024105765A1 WO2024105765A1 PCT/JP2022/042350 JP2022042350W WO2024105765A1 WO 2024105765 A1 WO2024105765 A1 WO 2024105765A1 JP 2022042350 W JP2022042350 W JP 2022042350W WO 2024105765 A1 WO2024105765 A1 WO 2024105765A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- optical
- optical fiber
- glass
- precursor material
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims description 81
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 239000013307 optical fiber Substances 0.000 claims abstract description 137
- 239000000835 fiber Substances 0.000 claims abstract description 87
- 239000011521 glass Substances 0.000 claims abstract description 82
- 239000010410 layer Substances 0.000 claims abstract description 27
- 239000012790 adhesive layer Substances 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims description 41
- 239000002243 precursor Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 31
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000003780 insertion Methods 0.000 claims description 6
- 230000037431 insertion Effects 0.000 claims description 6
- 229920001709 polysilazane Polymers 0.000 description 29
- 239000000853 adhesive Substances 0.000 description 28
- 230000001070 adhesive effect Effects 0.000 description 28
- 239000011347 resin Substances 0.000 description 17
- 229920005989 resin Polymers 0.000 description 17
- 238000001723 curing Methods 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 8
- 235000012239 silicon dioxide Nutrition 0.000 description 7
- 239000007791 liquid phase Substances 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000003848 UV Light-Curing Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 239000012792 core layer Substances 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910007991 Si-N Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910006294 Si—N Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- -1 silicon alkoxide Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/30—Optical coupling means for use between fibre and thin-film device
Definitions
- the present disclosure relates to an optical module in which a planar lightwave circuit is optically connected to an optical fiber, and which is resistant to high-energy light such as visible light used in optical sensing, and a method for manufacturing the optical module.
- optical devices that have been used in communications to be applied to non-communications fields.
- optical devices based on waveguide-type optical elements such as quartz-based planar lightwave circuits (PLCs) are expected to have the potential to exceed the performance of existing Vasque-Optics-type optical elements, and are expected to be applied to fields such as displays, life sciences, quantum computers, and space.
- Important issues include making quartz-based PLCs compatible with visible wavelengths, increasing their output, making them smaller, and reducing the cost.
- Quartz-based PLCs use semiconductor process techniques such as photolithography and dry etching to form optical waveguides consisting of cores and cladding on quartz or silicon substrates.
- PLCs can also be realized as splitters that branch light, optical switches that change the path of optical signals, and lasers and modulators that serve as light sources.
- PLCs are usually used with optical fibers connected to the optical input and output terminals rather than used alone.
- FIG. 1 shows an optical module 10 including a laser light source (LD) 11, an optical fiber 12 connected to the LD, a PLC 13 that propagates and outputs light input from the optical fiber 12, a fiber block 14 for fixing the optical fiber 12 to the PLC 13, and a photodiode 16 for receiving light emitted from the PLC 13.
- the PLC 13 and the fiber block 14 are usually bonded together with a UV-curable resin adhesive 15.
- UV-curable resin adhesives are generally used because they have a short curing time, can connect the optical fiber and the PLC while maintaining their relative positions, and can fix the optical fiber to the PLC with precise relative positions.
- the fiber block is placed at the tip of the optical fiber to obtain an adhesive area for the PLC.
- a glass member such as a V-groove substrate or a capillary is generally used as the fiber block.
- the relative position of the optical fiber and the PLC is determined by fixing the PLC and the optical fiber to a fine adjustment device, applying a UV-curable resin adhesive to the connection gap while bringing the fiber block with the optical fiber inserted close to the PLC, and then adjusting with sub-micron precision so that the light receiving intensity of the PD is maximized.
- the optical fiber and PLC are then fixed by irradiating them with UV light to harden the UV-curable resin adhesive.
- a UV-curable resin adhesive to connect the optical fiber and the PLC (for example, Patent Document 1: JP 2014-048628 A).
- this UV-curing resin adhesive is known to deteriorate as it absorbs high-energy visible light.
- a connection method is used in which only the parts of the adhesive at the PLC and optical fiber through which light does not pass are fixed with UV-curing resin adhesive, leaving gaps in the parts through which light passes.
- this connection method has the problem that dust can collect in the gaps through which light passes, increasing connection loss.
- Patent Document 2 JP Patent Publication 2018-194802.
- the optical module 20 includes an optical fiber 21, a PLC 22 connected to the optical fiber 21, a fiber block 23 into which the optical fiber 21 is inserted and fixed, a UV-curable resin adhesive layer 24 that bonds and fixes a portion between the connection end faces of the PLC 22 and the fiber block 23 through which light input and output between the optical fiber 21 and the PLC 22 does not pass, and a glass layer 25 that bonds and fixes a portion between the connection end faces of the PLC 22 and the fiber block 23 through which light input and output between the optical fiber 21 and the PLC 22 passes.
- the glass layer 25 of the optical module 20 is generated, for example, by a liquid phase synthesis method.
- the material of the fiber or fiber block may not wet well and may be repelled, making it difficult to stably perform the work of dropping polysilazane into a gap of several micrometers wide as shown in Patent Document 2 and filling the optical axis part.
- Patent Document 3 JP Patent Publication 2013-001721
- the curing shrinkage rate of polysilazane is large, and air gaps and voids are generated after curing, making it difficult to form a SiO 2 glass layer in the optical axis part.
- polysilazane is often doped with Pb compounds, which are dehydrogenation and oxidation catalysts, and amine-based catalysts that promote reactions with moisture, but these catalysts often absorb high-energy visible light and need to be sufficiently volatilized after curing.
- Pb compounds which are dehydrogenation and oxidation catalysts, and amine-based catalysts that promote reactions with moisture
- these catalysts often absorb high-energy visible light and need to be sufficiently volatilized after curing.
- the polysilazane in the optical axis part (fiber part) that needs to be volatilized is located in a position that is difficult to volatilize, near the center of the polysilazane filling area between the fiber block and the PLC.
- the optical connection technology of conventional optical modules has the problem of being unable to achieve stable optical connections that are reliable over the long term.
- This disclosure has been made in consideration of the above problems, and aims to provide an optical module that is resistant to high-energy visible light and a method for manufacturing the optical module.
- an optical module comprising one or more optical fibers, a planar lightwave circuit optically connected to the one or more optical fibers, a fiber block into which the one or more optical fibers are inserted and fixed, a glass layer that bonds and fixes the optical fiber and the planar lightwave circuit, and an adhesive layer that bonds and fixes the fiber block and the planar lightwave circuit, wherein the glass layer is provided only between the end face of the optical fiber and the planar lightwave circuit, and the fiber block is provided with an opening so that the connection between the optical fiber and the planar lightwave circuit is exposed.
- a manufacturing method of an optical module is a manufacturing method of an optical module in which one or more optical fibers inserted and fixed in a fiber block are optically connected to a planar lightwave circuit, and is characterized by including the steps of: inserting an optical fiber into the fiber block; applying a glass precursor material to an end surface of the optical fiber; adjusting the positions of the optical fiber and the planar lightwave circuit using a fine alignment device and bringing the glass precursor material applied to the end surface of the optical fiber into contact with the planar lightwave circuit; semi-curing the glass precursor material and temporarily bonding and fixing the optical fiber and the planar lightwave circuit; bonding and fixing the fiber block to the end surface of the planar lightwave circuit and bonding and fixing the fiber block and the optical fiber at the same time; and fully curing the glass precursor material between the optical fiber and the planar lightwave circuit.
- FIG. 1 is a diagram for explaining a conventional method for connecting a PLC and an optical fiber.
- FIG. 2 is a diagram for explaining another conventional example of a method for connecting a PLC and an optical fiber.
- FIG. 3 is a cross-sectional view of an optical module according to a first embodiment of the present disclosure.
- FIG. 4 is a perspective view of the optical module according to the first embodiment of the present disclosure in a state in which the PLC and the fiber block are separated.
- FIG. 5 is a flowchart showing a process of connecting an optical fiber and a PLC in a manufacturing method for an optical module according to each embodiment of the present disclosure.
- FIG. 1 is a diagram for explaining a conventional method for connecting a PLC and an optical fiber.
- FIG. 2 is a diagram for explaining another conventional example of a method for connecting a PLC and an optical fiber.
- FIG. 3 is a cross-sectional view of an optical module according to a first embodiment of the present disclosure.
- FIG. 4 is a
- FIG. 6 is a diagram illustrating an example of a method for applying a glass precursor material to an end face of an optical fiber in a connection process of an optical module according to each embodiment of the present disclosure.
- FIG. 7 is a cross-sectional view of an optical module according to a second embodiment of the present disclosure.
- FIG. 8 is a perspective view of an optical module according to a second embodiment of the present disclosure in a state in which the PLC and the fiber block are separated.
- FIG. 9 is a cross-sectional view of an optical module according to a third embodiment of the present invention.
- FIG. 3 is a cross-sectional view of an optical module 100 according to a first embodiment of the present disclosure.
- Fig. 3 shows the optical module 100 including an optical fiber 101, a PLC 102 optically connected to the optical fiber 101, a fiber block 103 into which the optical fiber is inserted and fixed, a glass layer 104 that bonds and fixes the optical fiber 101 and the PLC 102, and an adhesive layer 105 that bonds and fixes the fiber block and the PLC.
- Fig. 3 shows a configuration in which the optical fiber is connected only to the input side of the PLC.
- the fiber block 103 is composed of a V-groove plate 106 in which a V-groove 108 for placing the optical fiber is formed, an upper plate 107, and an adhesive layer 109 that fixes them in place.
- the fiber block is provided with a 50 ⁇ m-long opening 110 so that the connection between the optical fiber and the PLC is exposed.
- the fiber insertion section on the opposite side of the opening 110 also has the same structure. By making the front and rear shapes of the fiber block the same in this way, the fiber block can be connected without worrying about the front-to-rear direction.
- the PLC 102 has an embedded waveguide structure in which a core 112 layer is embedded in a cladding 113 layer on a Si substrate 111.
- the glass layer 104 is provided only between the optical fiber end surface and the PLC, and the glass layer 104 is generated by a liquid phase synthesis method.
- the liquid phase synthesis method include a sol-gel method in which a liquid raw material is polymerized to form a gel, which is then left at room temperature or baked to harden to form glass, a polysilazane method, which is a type of sol-gel method, in which polysilazane is left at room temperature or baked to harden to form glass, and a liquid phase deposition method in which a liquid raw material is hydrolyzed to harden to form glass.
- polysilazane is used as the precursor material of the glass layer.
- inorganic polymer materials such as polysilazane that have SiH 2 NH as a basic unit
- materials that have silicon alkoxide (Si(OC 2 H 5 ) 4 ) as the main component or hydrogen silicofluoride (H 2 SiF 6 ) as the main component can be used.
- the adhesive layer 105 can be formed using adhesives with a short hardening time, such as UV-curable resin adhesives, thermosetting adhesives, and two-liquid adhesives.
- the PLC can be fabricated, for example, by the following procedure.
- An undercladding layer made of quartz glass with a thickness of 20 ⁇ m and a core layer made of quartz glass with a thickness of 3 ⁇ m and with a high refractive index due to Ge doping are sequentially deposited on a Si substrate.
- the core layer is shaped into an optical waveguide pattern by general exposure and development techniques and etching techniques.
- an overcladding layer made of quartz glass is laminated to a thickness of 20 ⁇ m to form an optical waveguide, and then the wafer is cut to cut out chips with a size of 10.0 mm ⁇ 10.0 mm, thereby fabricating a quartz-based PLC.
- the fiber block can be fabricated, for example, by the following procedure.
- a V-groove of ⁇ 125 ⁇ m for fixing the fiber is formed by machining a glass plate having a thickness of 1.0 mm and a size of 5.0 mm ⁇ 5.0 mm to fabricate a V-groove plate.
- a glass plate having a thickness of 0.5 mm and a size of 5.0 mm ⁇ 4.9 mm is prepared and fixed to the center of the previously fabricated V-groove plate with adhesive. If an adhesive with oxygen inhibition properties is used at this time, the adhesive will not harden even if it flows into the V-groove portion, so that the adhesive that has flowed into the V-groove portion can be removed by washing with ethanol after hardening.
- (Connection process between PLC and optical fiber) 5 is a flowchart showing a process of connecting an optical fiber and a PLC in a manufacturing method of an optical module according to each embodiment of the present disclosure. The process of connecting an optical fiber and an optical waveguide of a PLC will be described with reference to FIG.
- a glass precursor material (polysilazane in this example) is applied to the end face of the tip of the optical fiber (203). Note that after applying the glass precursor material to the end face of the optical fiber (203), the optical fiber may be inserted into the fiber block (201), and then the PLC and the optical fiber may be fixed to the fine adjustment device (202).
- FIG. 6 is a diagram showing an example of a method for applying glass precursor material to the end face of an optical fiber.
- a glass precursor material 302 specifically, for example, polysilazane
- the glass plate 301 is preheated to volatilize the catalyst contained in the glass precursor material 302 to a certain extent.
- the guideline is that the polysilazane 302 dropped onto the glass plate 301 does not drip even when the glass plate is placed vertically.
- the glass plate 301 is fixed to a fine adjustment device, and the optical fiber 303, which has been fixed to the fine adjustment device in advance, is butted against the polysilazane 302 on the glass plate 301, so that polysilazane can be applied to the end face of the optical fiber 303.
- the optical fiber 303 is shown inserted into the fiber block 304, but even if multiple optical fibers are inserted into the fiber block, the glass precursor material can be applied to the end face of the optical fiber at once using a similar method.
- a fine adjustment device is used to adjust the positions of the PLC and the optical fiber, so that the glass precursor material applied to the end face of the optical fiber comes into contact with the PLC (204). Specifically, the positions of the PLC and the optical fiber are adjusted on the fine adjustment device to align their optical axes, the distance between the PLC and the optical fiber is reduced to about 1 ⁇ m, and the polysilazane applied to the end face of the optical fiber comes into contact with the PLC.
- a heater capable of localized heating is used to semi-cure the glass precursor material, and the PLC and the optical fiber are temporarily bonded and fixed (205).
- the polysilazane is semi-cure by heating at 150°C for about 5 minutes.
- the fiber block and the PLC are bonded and fixed together, and at the same time, the fiber block and the optical fiber are bonded and fixed together (206).
- a UV-curable resin adhesive is applied to the fiber block, the fiber block into which the optical fiber has already been inserted is moved to the connection with the PLC, the fiber block is brought into contact with the PLC, and UV light is applied to harden it.
- the UV-curable resin adhesive spreads into the V-groove of the fiber block due to capillary action, so that the PLC and fiber block are fixed together, and the optical fiber and fiber block are fixed together.
- the glass precursor material was fully cured using an electric furnace (207).
- the polysilazane was fully cured by heating at 150° C. for 48 hours. Even if a glass layer was not formed on the optical axis portion due to the cure shrinkage of polysilazane, in each embodiment of the present disclosure, the connection portion between the optical fiber and the PLC is largely exposed due to the opening provided in the fiber block, so that a glass layer can be formed by dropping polysilazane from the opening of the fiber block and heating it again. In this manner, the optical module according to each embodiment of the present disclosure can be manufactured.
- a glass precursor material is applied only to the end surface of the optical fiber, and then the end surface of the optical fiber and the PLC are brought into contact and semi-cured to temporarily bond and fix the optical fiber, and the fiber block and the PLC and the fiber block and the optical fiber are simultaneously bonded and fixed with a UV-curable resin adhesive, after which the glass precursor material is fully cured by heat treatment.
- the glass layer that bonds and fixes the optical fiber and the PLC is formed only between the end surface of the optical fiber and the PLC. Therefore, in all of the optical modules of this embodiment, the connection portion between the optical fiber and the PLC is formed of a glass layer, making the optical module resistant to high-energy visible light.
- the glass precursor is applied to only the end surface of the optical fiber in the optical module of each embodiment of the present disclosure.
- the application area of the glass driver can be limited to a very small area of about ⁇ 125 ⁇ m, which makes it possible to suppress optical axis misalignment caused by stress resulting from curing shrinkage.
- the glass precursor material is locally heated from the outside during pre-curing and heated in an electric furnace during final curing, but the fiber blocks in each embodiment of the present disclosure are provided with an opening that exposes the connection between the optical fiber and the PLC, allowing for effective heating. Also, because the connection between the optical fiber and the PLC is exposed through the opening, the catalyst added to the glass precursor material can be efficiently volatilized during heating and after curing.
- the glass precursor material is hardened by heating both during the semi-hardening and the full hardening stages, but either or both of the hardening stages may be performed by leaving the glass precursor material at room temperature.
- the glass precursor material applied to the optical fiber is used in a state in which the catalyst has been volatilized to a certain extent, further reducing the occurrence of air gaps and voids due to cure shrinkage.
- a fiber block consisting of a V-groove plate and an upper plate is used, but as shown in Figs. 7 and 8, the fiber block can also use a capillary.
- Figure 7 is a cross-sectional view of an optical module 400 using a capillary as a fiber block according to a second embodiment of the present invention.
- Figure 7 shows an optical module 400 that includes an optical fiber 401, a PLC 402 that is optically connected to the optical fiber 401, a fiber block 403 into which the optical fiber is inserted and fixed, a glass layer 404 that bonds and fixes the optical fiber 401 and the PLC 402, and an adhesive layer 405 that bonds and fixes the fiber block and the PLC.
- Figure 7 also shows the configuration when the optical fiber is connected only to the input side of the PLC.
- the fiber block 403 has a hole 408 through which the optical fiber 401 passes.
- the fiber block 403 also has an opening 410 of 50 ⁇ m length to expose the connection between the optical fiber and the PLC. This opening can be manufactured by removing the upper half of the capillary's fiber insertion port by machining.
- the fiber insertion portion on the opposite side to the opening 410 has the same structure.
- the PLC 402 has an embedded waveguide structure in which a core 412 layer is embedded in a cladding 413 layer on a Si substrate 411, similar to the first embodiment in FIG. 5.
- the glass layer 404 is provided only between the optical fiber end face and the PLC.
- FIG. 9 shows an optical module 500 including an optical fiber 501, a PLC 502 optically connected to the optical fiber 501, a fiber block 503 for inserting and fixing the optical fiber, a glass layer 504 for bonding and fixing the optical fiber 501 and the PLC 502, and an adhesive layer 505 for bonding and fixing the fiber block and the PLC.
- FIG. 9 also shows a configuration for connecting the optical fiber only to the input side of the PLC.
- the fiber block 503 is composed of a V-groove plate 506 in which a V-groove is formed for arranging the optical fiber, an upper plate 507, and an adhesive layer for fixing them.
- the fiber block is provided with an opening 510 of 50 ⁇ m length so that the connection between the optical fiber and the PLC is exposed.
- the fiber insertion portion on the opposite side to the opening 510 has the same structure.
- the glass layer 504 is provided only between the end surface of the optical fiber and the PLC.
- an adhesive reinforcing plate 515 is provided to bond the upper surface of the PLC 502 to the upper plate 507. This improves the adhesive strength between the fiber block and the PLC.
- optical modules according to the second and third embodiments can also be manufactured by the manufacturing method for the optical module according to the first embodiment described above.
- the glass precursor material is semi-cured to temporarily connect the optical fiber to the PLC, and then the fiber block and the PLC and the fiber block and the optical fiber are simultaneously fixed with a UV-curable resin adhesive, and then the glass precursor material is fully cured by heat treatment.
- the fixing with the UV-curable resin adhesive and the fully cured are performed after the optical axis adjustment using the fine adjustment device is completed, so there is no need for optical axis adjustment using the fine adjustment device, and it can be performed on multiple optical fibers at once, so mass productivity is not significantly reduced. Therefore, the manufacturing method of the optical module disclosed herein makes it possible to realize stable manufacturing of optical connections that are resistant to high-energy light by taking advantage of the advantages of glass precursor materials. Therefore, the present disclosure will greatly contribute to expanding the range of applications of PLC.
- the optical module in each of the above embodiments of the present disclosure is exemplified as a configuration in which one optical fiber is connected to the input end of the PLC, but the present invention is not limited to this, and the optical fiber can also be connected to the output end of the PLC.
- a configuration in which multiple V-grooves or insertion holes for inserting and fixing multiple optical fibers in the fiber block and multiple optical waveguides are formed in the PLC, with multiple optical fibers connected to each of the input and output ends of the PLC can be used.
- multiple fiber blocks can be used to connect multiple optical fibers to each of the input and output ends of the PLC.
- This disclosure makes it possible to provide an optical module that is resistant to high-energy visible light and a method for manufacturing the optical module.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
本開示は、光センシング等に用いられる可視光などの高エネルギーな光に耐性がある、平面光波回路と光ファイバとが光接続された光モジュールおよび光モジュールの製造方法に関する。 The present disclosure relates to an optical module in which a planar lightwave circuit is optically connected to an optical fiber, and which is resistant to high-energy light such as visible light used in optical sensing, and a method for manufacturing the optical module.
近年、これまで通信で用いられてきた光デバイスの、非通信分野への応用が求められている。中でも、石英系の平面光波回路(以下、PLC:Planer Lightwave Circuit)などの導波路型光素子を基本とした光デバイスは、既存のバスクオプティクス型光素子の性能を超える可能性があるとして、ディスプレイ・ライフサイエンス・量子・宇宙等分野への適用が期待されており、石英系PLCの可視波長対応・高出力化・小型化・低コスト化が重要な課題となっている。 In recent years, there has been a demand for optical devices that have been used in communications to be applied to non-communications fields. In particular, optical devices based on waveguide-type optical elements such as quartz-based planar lightwave circuits (PLCs) are expected to have the potential to exceed the performance of existing Vasque-Optics-type optical elements, and are expected to be applied to fields such as displays, life sciences, quantum computers, and space. Important issues include making quartz-based PLCs compatible with visible wavelengths, increasing their output, making them smaller, and reducing the cost.
石英系PLCは、フォトリソグラフィやドライエッチングといった半導体プロセスの技術を応用し、石英基板やシリコン基板等の上に、コアおよびクラッドからなる光導波路を形成したものである。光を分岐するスプリッタや、光信号の経路を切り替える光スイッチ、また光源となるレーザや変調器なども広義のPLCで実現される。通常、PLCは単体で利用されるよりも光ファイバを光の入出力端に接続した状態で利用される。 Quartz-based PLCs use semiconductor process techniques such as photolithography and dry etching to form optical waveguides consisting of cores and cladding on quartz or silicon substrates. In the broad sense, PLCs can also be realized as splitters that branch light, optical switches that change the path of optical signals, and lasers and modulators that serve as light sources. PLCs are usually used with optical fibers connected to the optical input and output terminals rather than used alone.
図1を用いて、PLCと光ファイバを接続する方法の一例を説明する。図1には、レーザ光源(LD)11と、LDに接続された光ファイバ12と、光ファイバ12から入力された光を伝搬して出力するPLC13と、光ファイバ12をPLC13に固定するためのファイバブロック14と、PLC13からの出射光を受光するフォトダイオード16とを備えた光モジュール10が示されている。PLC13とファイバブロック14との間は、通常、UV硬化樹脂接着剤15で接着されている。UV硬化樹脂接着剤は硬化時間が短く、光ファイバとPLCとの相対位置を維持した状態のまま接続することができ、相対位置を精度よく合わせて光ファイバをPLCに固定することができるため、一般的に用いられている。ファイバブロックは、PLCに対して接着面積を得るために光ファイバの先端に設置される。ファイバブロックとしては、V溝基板やキャピラリ等のガラス部材を用いるのが一般的である。
An example of a method for connecting a PLC and an optical fiber will be described with reference to FIG. 1. FIG. 1 shows an
光ファイバとPLCとの相対位置は、PLCと光ファイバとを微動調芯装置に固定した後、光ファイバが挿入されたファイバブロックをPLCに近接させた状態でUV硬化樹脂接着剤を接続隙間に塗布した後に、PDの受光強度が最大になるようにサブミクロンオーダーの精度で調整することによって決定される。その後、UV光を照射してUV硬化樹脂接着剤を硬化させることにより、光ファイバおよびPLCを固定する。このように、光ファイバとPLCとの接続には、UV硬化樹脂接着剤を用いるのが一般的である(例えば、特許文献1:特開2014-048628号公報)。 The relative position of the optical fiber and the PLC is determined by fixing the PLC and the optical fiber to a fine adjustment device, applying a UV-curable resin adhesive to the connection gap while bringing the fiber block with the optical fiber inserted close to the PLC, and then adjusting with sub-micron precision so that the light receiving intensity of the PD is maximized. The optical fiber and PLC are then fixed by irradiating them with UV light to harden the UV-curable resin adhesive. In this way, it is common to use a UV-curable resin adhesive to connect the optical fiber and the PLC (for example, Patent Document 1: JP 2014-048628 A).
しかし、このUV硬化樹脂接着剤は、高エネルギーな可視光を吸収して劣化してしまうことが知られている。この劣化を抑制するため、PLCと光ファイバの接着部において、光が通過しない部分のみをUV硬化樹脂接着剤で固定しておき、光が通過する部分を空隙にしておく接続方法が取られる。しかし、この接続方法では、光が通過する空隙部分に集塵現象が生じ、接続損失が増大してしまうという問題がある。 However, this UV-curing resin adhesive is known to deteriorate as it absorbs high-energy visible light. To prevent this deterioration, a connection method is used in which only the parts of the adhesive at the PLC and optical fiber through which light does not pass are fixed with UV-curing resin adhesive, leaving gaps in the parts through which light passes. However, this connection method has the problem that dust can collect in the gaps through which light passes, increasing connection loss.
そこで、特許文献2(特開2018-194802号公報)に示されているように、接着部の光が通過する部分にガラスを充填する方法が提案されている。 As a result, a method has been proposed in which glass is filled into the part of the adhesive through which light passes, as shown in Patent Document 2 (JP Patent Publication 2018-194802).
図2は、特許文献2に記載されている光モジュール20を示している。光モジュール20は、光ファイバ21と光ファイバ21と接続されるPLC22と、光ファイバ21を挿入・固定するファイバブロック23と、PLC22とファイバブロック23との接続端面間において光ファイバ21およびPLC22間で入出力される光が通過しない部分を接着・固定するUV硬化樹脂接着剤層24と、PLC22とファイバブロック23との接続端面間において光ファイバ21およびPLC22間で入出力される光が通過する部分を接着・固定するガラス層25と、を備えている。この光モジュール20のガラス層25は、例えば、液相合成法で生成される。液相合成法の簡単な方法の一つとして、ポリシラザンをガラス前駆体として用いる方法などがある。ポリシラザンは[(R1)(R2)Si-N(R3)](R1,R2,R3=水素、アルキル基、ビニル基)を基本ユニットとするポリマー材料であり、水と反応することによりSiO2ガラスに転化するため、高エネルギーな光への耐性がある。
2 shows an
しかし、ポリシラザンの種類によっては、ファイバやファイバブロックの材質に対する濡れが悪くはじいてしまうことがあり、特許文献2に示されるような数マイクロメートル幅の空隙部分にポリシラザンを滴下し、光軸部に充填する作業を安定して行なうことが困難であった。また、充填できたとしても、特許文献3(特開2013-001721号公報)に示されているように、ポリシラザンの硬化収縮率が大きく、硬化後にエアギャップやボイドが発生し、光軸部にSiO2ガラス層を形成することが困難であった。また、充分に充填するためにポリシラザンの滴下量を増やしたとしても、光軸部以外にもポリシラザンが侵入してしまうことから、硬化収縮により応力がかかり、硬化後に光軸がずれてしまうという問題があった。 However, depending on the type of polysilazane, the material of the fiber or fiber block may not wet well and may be repelled, making it difficult to stably perform the work of dropping polysilazane into a gap of several micrometers wide as shown in Patent Document 2 and filling the optical axis part. Even if it is possible to fill it, as shown in Patent Document 3 (JP Patent Publication 2013-001721), the curing shrinkage rate of polysilazane is large, and air gaps and voids are generated after curing, making it difficult to form a SiO 2 glass layer in the optical axis part. Even if the amount of polysilazane dropped is increased to fill it sufficiently, polysilazane penetrates into areas other than the optical axis part, so there is a problem that stress is applied due to curing shrinkage and the optical axis is shifted after curing.
さらに、SiO2ガラスへの転化温度を下げるため、ポリシラザンには脱水素および酸化触媒であるPb化合物や水分との反応を促進させるアミン系の触媒がドーパントとして添加されていることが多いが、これらの触媒は高エネルギーな可視光を吸収することが多く、硬化後に十分に揮発させる必要がある。しかし、光軸部(ファイバ部)を含めたファイバブロックとPLCとの間にあるポリシラザンの触媒を揮発させるには時間がかかる。その理由は、揮発させたい光軸部(ファイバ部)のポリシラザンが、ファイバブロックとPLCとの間のポリシラザン充填領域の中央付近という揮発しにくい位置にあることによる。ここで、ポリシラザンは、反応を促進させる触媒が添加されていたとしてもUV硬化樹脂接着剤のような短い時間で硬化させることは難しいため、UV硬化樹脂接着剤の代用としてポリシラザンを用いることが困難であることは言うまでもない。 Furthermore, in order to lower the conversion temperature to SiO2 glass, polysilazane is often doped with Pb compounds, which are dehydrogenation and oxidation catalysts, and amine-based catalysts that promote reactions with moisture, but these catalysts often absorb high-energy visible light and need to be sufficiently volatilized after curing. However, it takes time to volatilize the catalyst in the polysilazane between the fiber block including the optical axis part (fiber part) and the PLC. The reason for this is that the polysilazane in the optical axis part (fiber part) that needs to be volatilized is located in a position that is difficult to volatilize, near the center of the polysilazane filling area between the fiber block and the PLC. Here, even if a catalyst that promotes the reaction is added to polysilazane, it is difficult to cure in a short time like UV-curable resin adhesives, so it goes without saying that it is difficult to use polysilazane as a substitute for UV-curable resin adhesives.
以上のように、従来の光接続技術では、可視光などの高エネルギーな光を伝搬させると、光接続部に用いるUV硬化樹脂接着剤が劣化したり、光接続部が空隙の場合は集塵現象が生じたり、空隙部分をガラスで充填しようとしても、上述したように実際には困難であった。そのため、従来の光モジュールの光接続技術では、安定でかつ長期信頼性のある光接続が実現できないという問題があった。 As described above, with conventional optical connection technology, when high-energy light such as visible light is transmitted, the UV-curable resin adhesive used in the optical connection section deteriorates, and if there is a gap in the optical connection section, dust collection occurs, and as mentioned above, even if you try to fill the gap with glass, it is actually difficult to do so. Therefore, the optical connection technology of conventional optical modules has the problem of being unable to achieve stable optical connections that are reliable over the long term.
本開示は、上記課題に鑑みてなされたものであり、高エネルギーな可視光に耐性がある光モジュールおよび光モジュールの製造方法を提供することを目的とする。 This disclosure has been made in consideration of the above problems, and aims to provide an optical module that is resistant to high-energy visible light and a method for manufacturing the optical module.
このような目的を達成するために、本開示の一実施態様の光モジュールは、1または複数の光ファイバと、1または複数の光ファイバと光接続される平面光波回路と、1または複数の光ファイバが挿入・固定されたファイバブロックと、光ファイバと平面光波回路とを接着・固定するガラス層と、ファイバブロックと平面光波回路とを接着・固定する接着剤層と、を備えた光モジュールであって、ガラス層は、光ファイバの端面部と平面光波回路との間にのみ設けられており、ファイバブロックは、光ファイバと平面光波回路との接続部が露出するように開口部が設けられていることを特徴とする。 In order to achieve this objective, an optical module according to one embodiment of the present disclosure is an optical module comprising one or more optical fibers, a planar lightwave circuit optically connected to the one or more optical fibers, a fiber block into which the one or more optical fibers are inserted and fixed, a glass layer that bonds and fixes the optical fiber and the planar lightwave circuit, and an adhesive layer that bonds and fixes the fiber block and the planar lightwave circuit, wherein the glass layer is provided only between the end face of the optical fiber and the planar lightwave circuit, and the fiber block is provided with an opening so that the connection between the optical fiber and the planar lightwave circuit is exposed.
また、本開示の一実施態様の光モジュールの製造方法は、ファイバブロックに挿入・固定された1または複数の光ファイバと平面光波回路とが光接続された光モジュールの製造方法であって、ファイバブロックに光ファイバを挿入する工程と、光ファイバの端面部にガラス前駆体材料を塗布する工程と、微動調芯装置を用いて、光ファイバと平面光波回路との位置を調整し、光ファイバの端面部に塗布されたガラス前駆体材料を平面光波回路に接触させる工程と、ガラス前駆体材料を半硬化し、光ファイバと平面光波回路とを仮接着・仮固定する工程と、ファイバブロックを平面光波回路端面に接着・固定すると同時にファイバブロックと光ファイバを接着・固定する工程と、光ファイバと平面光波回路との間のガラス前駆体材料を本硬化させる工程と、を含むことを特徴とする。 In addition, a manufacturing method of an optical module according to one embodiment of the present disclosure is a manufacturing method of an optical module in which one or more optical fibers inserted and fixed in a fiber block are optically connected to a planar lightwave circuit, and is characterized by including the steps of: inserting an optical fiber into the fiber block; applying a glass precursor material to an end surface of the optical fiber; adjusting the positions of the optical fiber and the planar lightwave circuit using a fine alignment device and bringing the glass precursor material applied to the end surface of the optical fiber into contact with the planar lightwave circuit; semi-curing the glass precursor material and temporarily bonding and fixing the optical fiber and the planar lightwave circuit; bonding and fixing the fiber block to the end surface of the planar lightwave circuit and bonding and fixing the fiber block and the optical fiber at the same time; and fully curing the glass precursor material between the optical fiber and the planar lightwave circuit.
以下、図面を参照しながら本開示の実施形態について詳細に説明する。 Below, an embodiment of the present disclosure will be described in detail with reference to the drawings.
(実施例)
図3は、本開示の第1の実施例に係る光モジュール100の横断面図である。図3には、光ファイバ101と、光ファイバ101と光接続されるPLC102と、光ファイバを挿入・固定するファイバブロック103と、光ファイバ101とPLC102とを接着・固定するガラス層104と、ファイバブロックとPLCとを接着・固定する接着剤層105と、を備えた光モジュール100が示されている。図3では、簡略化のため、PLCの入力側のみに光ファイバを接続する際の構成を示している。
(Example)
Fig. 3 is a cross-sectional view of an
ファイバブロック103は、図4に示すように、光ファイバを配置するV溝108が形成されたV溝板106と、上板107、およびそれらを固定する接着剤層109から構成されている。ファイバブロックには光ファイバとPLCとの接続部が露出するよう50μm長の開口部110が設けられている。また、開口部110とは反対側のファイバ挿入部も同じ構造となっている。このようにファイバブロックの前後の形状を同じとしておけば、ファイバブロックを接続する場合に、ファイバブロックの前後方向を気にせず用いることができる。PLC102は、Si基板111上でコア112層をクラッド113層で埋め込んだ埋め込み型導波路構造を有する。
As shown in FIG. 4, the
図3に示すように、本開示の実施例においては、ガラス層104は、光ファイバ端面部とPLCとの間のみに設けられており、ガラス層104は、液相合成法で生成される。液相合成法としては、例えば、液体原料が重合することによりゲル状になりこれを室温放置または焼成することにより硬化させてガラスを生成するゾル-ゲル法や、ゾル-ゲル法の一種でありポリシラザンを室温放置または焼成することにより硬化させてガラスを生成するポリシラザン法や、液体原料が加水分解することにより硬化してガラスを生成する液相析出法を用いることができる。本実施例では、ガラス層の前駆体材料は、ポリシラザンを用いている。ポリシラザンのようなSiH2NHを基本ユニットとする無機ポリマー材料の他に、例えば、シリコンアルコシド(Si(OC2H5)4)を主成分とするものやケイフッ化水素(H2SiF6)を主成分にするものなどを用いることができる。接着剤層105は、UV硬化樹脂接着剤をはじめ、熱硬化型接着剤、2液性接着剤等の硬化時間が短い接着剤を用いて形成することができる。
As shown in FIG. 3, in the embodiment of the present disclosure, the
以下、本開示の各実施例に係る光モジュールの製造方法を説明する。 The manufacturing method of the optical module according to each embodiment of the present disclosure will be described below.
(PLCの作製)
PLCは、例えば、次の手順で作製することができる。Si基板上に厚さ20μmの石英ガラスで構成されたアンダークラッド層と、Geドープにより屈折率を高めた厚さ3μmの石英ガラスで構成されたコア層と、を順に堆積する。一般的な露光現像技術およびエッチング技術により、コア層を光導波路のパターンに成形する。その後、石英ガラスで構成されたオーバークラッド層を20μm積層して光導波路を形成した後に、ウエハをカットし、10.0mm×10.0mmのサイズのチップを切り出すことにより、石英系のPLCが作製される。
(Preparation of PLC)
The PLC can be fabricated, for example, by the following procedure. An undercladding layer made of quartz glass with a thickness of 20 μm and a core layer made of quartz glass with a thickness of 3 μm and with a high refractive index due to Ge doping are sequentially deposited on a Si substrate. The core layer is shaped into an optical waveguide pattern by general exposure and development techniques and etching techniques. After that, an overcladding layer made of quartz glass is laminated to a thickness of 20 μm to form an optical waveguide, and then the wafer is cut to cut out chips with a size of 10.0 mm×10.0 mm, thereby fabricating a quartz-based PLC.
(ファイバブロックの作製)
ファイバブロックは、例えば、次の手順で作製することができる。厚さ1.0mm、5.0mm×5.0mmのサイズのガラス板にφ125μmのファイバ固定用のV溝を機械加工により形成し、V溝板を作製する。次に、厚さ0.5mm、5.0mm×4.9mmのサイズのガラス板を用意し、先に作製したV溝板の中央に接着剤で固定する。このとき、酸素阻害性のある接着剤を用いれば、V溝部に接着剤が流入したとしても硬化しないので、硬化後にエタノールで洗浄することでV溝部に流入した接着剤を除去することができる。
(Fabrication of Fiber Block)
The fiber block can be fabricated, for example, by the following procedure. A V-groove of φ125 μm for fixing the fiber is formed by machining a glass plate having a thickness of 1.0 mm and a size of 5.0 mm×5.0 mm to fabricate a V-groove plate. Next, a glass plate having a thickness of 0.5 mm and a size of 5.0 mm×4.9 mm is prepared and fixed to the center of the previously fabricated V-groove plate with adhesive. If an adhesive with oxygen inhibition properties is used at this time, the adhesive will not harden even if it flows into the V-groove portion, so that the adhesive that has flowed into the V-groove portion can be removed by washing with ethanol after hardening.
(PLCと光ファイバとの接続工程)
図5は、本開示の各実施例に係る光モジュールの製造方法における光ファイバとPLCの接続工程を示すフローチャートである。図5を参照して、光ファイバとPLCの光導波路との接続工程について説明する。
(Connection process between PLC and optical fiber)
5 is a flowchart showing a process of connecting an optical fiber and a PLC in a manufacturing method of an optical module according to each embodiment of the present disclosure. The process of connecting an optical fiber and an optical waveguide of a PLC will be described with reference to FIG.
予めファイバブロックに光ファイバを挿入する(201)。その後、PLCと光ファイバとを微動調芯装置に固定する(202)。 First, insert the optical fiber into the fiber block (201). After that, the PLC and the optical fiber are fixed to the fine adjustment device (202).
光ファイバの先端部の端面にガラス前駆体材料(この例ではポリシラザン)を塗布する(203)。なお、光ファイバの端面にガラス前駆体材料を塗布(203)してから、光ファイバをファイバブロックに挿入(201)し、その後にPLCと光ファイバとを微動調芯装置に固定(202)してもよい。 A glass precursor material (polysilazane in this example) is applied to the end face of the tip of the optical fiber (203). Note that after applying the glass precursor material to the end face of the optical fiber (203), the optical fiber may be inserted into the fiber block (201), and then the PLC and the optical fiber may be fixed to the fine adjustment device (202).
光ファイバの先端部の端面へのガラス前駆体材料(ポリシラザン)の塗布は、例えば、図6で示す手順で実施することができる。図6は光ファイバ端面へのガラス前駆体材料の塗布方法の例を示す図である。ガラス板301上にガラス前駆体材料302、具体的には、例えば、ポリシラザンを滴下し、ガラス板301を予備加熱してガラス前駆体材料302に含まれる触媒をある程度揮発させておく。ここでは、ガラス板301上の滴下したポリシラザン302が、ガラス板を垂直に置いたとしても液垂れしない状態を目安とした。その後に、微動調芯装置にガラス板301を固定し、予め微動調芯装置に固定してあった光ファイバ303をガラス板301のポリシラザン302に突き当てることによって、光ファイバ303の端面にポリシラザンを塗布することができる。なお、図6においては、ファイバブロック304に挿通された光ファイバ303の本数は1本のものが例示されているが、ファイバブロックに複数本の光ファイバが挿通されている場合であっても同様の方法により、一度に光ファイバの端面にガラス前駆体材料を塗布することができる。
The application of glass precursor material (polysilazane) to the end face of the tip of the optical fiber can be performed, for example, by the procedure shown in FIG. 6. FIG. 6 is a diagram showing an example of a method for applying glass precursor material to the end face of an optical fiber. A
図5に戻り、光ファイバの先端部の端面にガラス前駆体材料であるポリシラザンを塗布(203)した後、微動調芯装置を用いてPLCと光ファイバとの位置を調整することで、光ファイバの端面に塗布したガラス前駆体材料をPLC側に接触させる(204)。具体的には、微動調芯装置上でPLCと光ファイバとの光軸合わせのため位置を調整し、PLCと光ファイバ間の距離を1μm程度まで近付け、光ファイバ端面に塗布したポリシラザンをPLC側に接触させるようにすればよい。 Returning to Figure 5, after applying polysilazane, a glass precursor material, to the end face of the tip of the optical fiber (203), a fine adjustment device is used to adjust the positions of the PLC and the optical fiber, so that the glass precursor material applied to the end face of the optical fiber comes into contact with the PLC (204). Specifically, the positions of the PLC and the optical fiber are adjusted on the fine adjustment device to align their optical axes, the distance between the PLC and the optical fiber is reduced to about 1 μm, and the polysilazane applied to the end face of the optical fiber comes into contact with the PLC.
その後、局所加熱可能なヒーターを用い、ガラス前駆体材料を半硬化させて、PLCと光ファイバとを仮接着・仮固定する(205)。ここでは、例えば、150℃で約5分間加熱することでポリシラザンを半硬化させる。 Then, a heater capable of localized heating is used to semi-cure the glass precursor material, and the PLC and the optical fiber are temporarily bonded and fixed (205). Here, for example, the polysilazane is semi-cure by heating at 150°C for about 5 minutes.
その後、ファイバブロックとPLCとを接着・固定すると同時にファイバブロックと光ファイバとを接着・固定する(206)。具体的には、ファイバブロック側にUV硬化樹脂接着剤を塗布し、予め光ファイバを挿入してあったファイバブロックをPLCとの接続部まで移動させ、ファイバブロックをPLCに接触させ、UV光を照射して硬化することにより行なえばよい。このとき、UV硬化樹脂接着剤は毛細管現象によりファイバブロックのV溝にも広がるので、PLCとファイバブロックを固定すると同時に、光ファイバとファイバブロックも固定することができる。 Then, the fiber block and the PLC are bonded and fixed together, and at the same time, the fiber block and the optical fiber are bonded and fixed together (206). Specifically, a UV-curable resin adhesive is applied to the fiber block, the fiber block into which the optical fiber has already been inserted is moved to the connection with the PLC, the fiber block is brought into contact with the PLC, and UV light is applied to harden it. At this time, the UV-curable resin adhesive spreads into the V-groove of the fiber block due to capillary action, so that the PLC and fiber block are fixed together, and the optical fiber and fiber block are fixed together.
接着・固定したPLCと光ファイバおよびファイバブロックとを微動調芯装置から取り外した後、電気炉を用いてガラス前駆体材料を本硬化させた(207)。ここでは、150℃、48時間加熱することによってポリシラザンを本硬化させた。ここで、仮にポリシラザンの硬化収縮により光軸部にガラス層が形成されなかったとしても、本開示の各実施例においては、ファイバブロックに設けた開口部により、光ファイバとPLCの接続部分が大きく露出しているため、ファイバブロックの開口部からポリシラザンを滴下して、再度加熱することで、ガラス層を形成することができる。
以上のようにして、本開示の各実施例に係る光モジュールを製造することができる。
After the bonded and fixed PLC, optical fiber, and fiber block were removed from the fine adjustment device, the glass precursor material was fully cured using an electric furnace (207). Here, the polysilazane was fully cured by heating at 150° C. for 48 hours. Even if a glass layer was not formed on the optical axis portion due to the cure shrinkage of polysilazane, in each embodiment of the present disclosure, the connection portion between the optical fiber and the PLC is largely exposed due to the opening provided in the fiber block, so that a glass layer can be formed by dropping polysilazane from the opening of the fiber block and heating it again.
In this manner, the optical module according to each embodiment of the present disclosure can be manufactured.
このように、本開示の製造方法においては、まず光ファイバの端面部のみにガラス前駆体材料を塗布し、光ファイバ端面とPLCとを接触させて半硬化させることで仮接着・仮固定し、ファイバブロックとPLCおよびファイバブロックと光ファイバをUV硬化樹脂接着剤で同時に接着・固定した後に、熱処理によりガラス前駆体材料を本硬化させている。これにより、光ファイバとPLCとを接着・固定するガラス層は、光ファイバ端面部とPLCとの間にのみ形成される。したがって、本実施の形態の光モジュールはいずれも光ファイバとPLCの接続部分はガラス層で形成されることから、高エネルギーな可視光に耐性がある光モジュールとなる。 In this manner, in the manufacturing method of the present disclosure, first, a glass precursor material is applied only to the end surface of the optical fiber, and then the end surface of the optical fiber and the PLC are brought into contact and semi-cured to temporarily bond and fix the optical fiber, and the fiber block and the PLC and the fiber block and the optical fiber are simultaneously bonded and fixed with a UV-curable resin adhesive, after which the glass precursor material is fully cured by heat treatment. As a result, the glass layer that bonds and fixes the optical fiber and the PLC is formed only between the end surface of the optical fiber and the PLC. Therefore, in all of the optical modules of this embodiment, the connection portion between the optical fiber and the PLC is formed of a glass layer, making the optical module resistant to high-energy visible light.
また、本開示の各実施例の光モジュールのガラス前駆体の塗布領域は光ファイバ端面部のみである。これにより、例えば、標準的な光ファイバの場合には、ガラス駆動体の塗布領域はφ125μm程度の微小な領域のみとできることから、硬化収縮起因の応力による光軸ずれを抑制することができる。 In addition, the glass precursor is applied to only the end surface of the optical fiber in the optical module of each embodiment of the present disclosure. As a result, for example, in the case of a standard optical fiber, the application area of the glass driver can be limited to a very small area of about φ125 μm, which makes it possible to suppress optical axis misalignment caused by stress resulting from curing shrinkage.
加えて、ガラス前駆体材料の仮硬化時には外部から局所加熱し、本硬化時には電気炉により加熱しているが、本開示の各実施例のファイバブロックには、光ファイバとPLCとの接続部を露出させる開口部が設けられているので、効果的に加熱が行える。また、開口部により光ファイバとPLCとの接続部が露出していることから、加熱時および硬化後に効率的にガラス前駆体材料に添加されている触媒を揮発させることができる。 In addition, the glass precursor material is locally heated from the outside during pre-curing and heated in an electric furnace during final curing, but the fiber blocks in each embodiment of the present disclosure are provided with an opening that exposes the connection between the optical fiber and the PLC, allowing for effective heating. Also, because the connection between the optical fiber and the PLC is exposed through the opening, the catalyst added to the glass precursor material can be efficiently volatilized during heating and after curing.
なお、上記においては、ガラス前駆体材料の硬化は、半硬化時、本硬化時のいずれも加熱により行っているが、いずれか一方または両方の硬化は、ガラス前駆体材料を室温で放置することにより行なってもよい。 In the above, the glass precursor material is hardened by heating both during the semi-hardening and the full hardening stages, but either or both of the hardening stages may be performed by leaving the glass precursor material at room temperature.
さらに、図6の光ファイバ端部へのガラス前駆体材料の塗布方法を用いる場合は、光ファイバへ塗布するガラス前駆体材料は、触媒をある程度揮発させた状態で用いられるから、硬化収縮によるエアギャップやボイドの発生がさらに低減される。 Furthermore, when using the method of applying glass precursor material to the end of the optical fiber shown in Figure 6, the glass precursor material applied to the optical fiber is used in a state in which the catalyst has been volatilized to a certain extent, further reducing the occurrence of air gaps and voids due to cure shrinkage.
(第2の実施例)
本開示の第1の実施例では、V溝板と上板からなるファイバブロックを用いたが、図7および図8に示すように、ファイバブロックは、キャピラリを用いることもできる。
Second Example
In the first embodiment of the present disclosure, a fiber block consisting of a V-groove plate and an upper plate is used, but as shown in Figs. 7 and 8, the fiber block can also use a capillary.
図7は本発明の第2の実施例に係るファイバブロックとしてキャピラリを用いた光モジュール400の横断面図である。図7には、光ファイバ401と、光ファイバ401と光接続されるPLC402と、光ファイバを挿入・固定するファイバブロック403と、光ファイバ401とPLC402とを接着・固定するガラス層404と、ファイバブロックとPLCとを接着・固定する接着剤層405と、を備えた光モジュール400が示されている。図7でも、簡略化のため、PLCの入力側のみに光ファイバを接続する際の構成を示している。
Figure 7 is a cross-sectional view of an
ファイバブロック403には、図8に示すように、光ファイバ401が貫通する孔408が形成されている。また、ファイバブロック403には光ファイバとPLCとの接続部が露出するよう50μm長の開口部410が設けられている。この開口部は、キャピラリのファイバ挿入口の上半分を、機械加工により除去するようにして製造することができる。また、開口部410とは反対側のファイバ挿入部も同じ構造となっている。PLC402は、図5の第1の実施例と同様に、Si基板411上でコア412層をクラッド413層で埋め込んだ埋め込み型導波路構造を有するものである。
As shown in FIG. 8, the
この第2の実施例においても、図7に示すように、ガラス層404は、光ファイバ端面部とPLCとの間にのみに設けられている。
In this second embodiment, as shown in FIG. 7, the
(第3の実施例)
続いて、図9を参照して、本開示の第3の実施例に係る光モジュールを説明する。
(Third Example)
Next, an optical module according to a third embodiment of the present disclosure will be described with reference to FIG.
図9には、光ファイバ501と、光ファイバ501と光接続されるPLC502と、光ファイバを挿入・固定するファイバブロック503と、光ファイバ501とPLC502とを接着・固定するガラス層504と、ファイバブロックとPLCとを接着・固定する接着剤層505と、を備えた光モジュール500が示されている。図9でも、簡略化のため、PLCの入力側のみに光ファイバを接続する際の構成を示している。また、第1の実施例と同様に、ファイバブロック503は、光ファイバを配置するV溝が形成されたV溝板506と、上板507、およびそれらを固定する接着剤層から構成されている。ファイバブロックには光ファイバとPLCとの接続部が露出するよう50μm長の開口部510が設けられている。また、開口部510とは反対側のファイバ挿入部も同じ構造となっている。この実施例においても、図9に示すように、ガラス層504は、光ファイバ端面部とPLCとの間のみに設けられている。この実施例では、PLC502の上面と上板507とを接着するための接着補強板515が設けられている。これにより、ファイバブロックとPLCの接着強度を向上させることができる。
9 shows an
上記の第2および第3の実施例に係る光モジュールも上述した第1の実施例に係る光モジュールの製造方法により製造することができる。 The optical modules according to the second and third embodiments can also be manufactured by the manufacturing method for the optical module according to the first embodiment described above.
上述した本開示の実施例に係る光モジュールの製造方法では、ガラス前駆体材料を半硬化させることにより光ファイバをガラス前駆体材料によりPLCに仮接続し、その後にファイバブロックとPLCおよびファイバブロックと光ファイバをUV硬化樹脂接着剤で同時に固定してから熱処理によりガラス前駆体材料を本硬化させている。このうち、UV硬化樹脂接着剤での固定と本硬化は、微動調芯装置を用いた光軸調整が完了した後に行われるから、微動調芯装置を用いた光軸調整を必要とせず、複数の光ファイバについてまとめて実施できるので、量産性が大きく低下するものではない。
よって、本開示の光モジュールの製造方法により、ガラス前駆体材料の利点を生かした高エネルギーな光に耐性のある光接続の安定的な製造を実現できた。従って、本開示は、PLCの適応先拡大に大きく貢献するものである。
In the manufacturing method of the optical module according to the embodiment of the present disclosure described above, the glass precursor material is semi-cured to temporarily connect the optical fiber to the PLC, and then the fiber block and the PLC and the fiber block and the optical fiber are simultaneously fixed with a UV-curable resin adhesive, and then the glass precursor material is fully cured by heat treatment. Among these, the fixing with the UV-curable resin adhesive and the fully cured are performed after the optical axis adjustment using the fine adjustment device is completed, so there is no need for optical axis adjustment using the fine adjustment device, and it can be performed on multiple optical fibers at once, so mass productivity is not significantly reduced.
Therefore, the manufacturing method of the optical module disclosed herein makes it possible to realize stable manufacturing of optical connections that are resistant to high-energy light by taking advantage of the advantages of glass precursor materials. Therefore, the present disclosure will greatly contribute to expanding the range of applications of PLC.
なお、本開示の上記各実施例の光モジュールとして、簡略化のため、PLCの入力端に1本の光ファイバを接続した構成を例示しているが、これに限定されず、PLCの出力端にも光ファイバを接続した構成とすることができる。また、ファイバブロックに複数の光ファイバを挿入・固定するための複数のV溝や挿通孔を形成し、PLCに複数本の光導波路を形成して、その入出力端にそれぞれ複数の光ファイバを接続した構成とすることができる。さらに、ファイバブロックを複数用いてPLCの入出力端にそれぞれ複数の光ファイバを接続することもできる。 For the sake of simplicity, the optical module in each of the above embodiments of the present disclosure is exemplified as a configuration in which one optical fiber is connected to the input end of the PLC, but the present invention is not limited to this, and the optical fiber can also be connected to the output end of the PLC. In addition, a configuration in which multiple V-grooves or insertion holes for inserting and fixing multiple optical fibers in the fiber block and multiple optical waveguides are formed in the PLC, with multiple optical fibers connected to each of the input and output ends of the PLC can be used. Furthermore, multiple fiber blocks can be used to connect multiple optical fibers to each of the input and output ends of the PLC.
本開示により、高エネルギーな可視光に耐性がある光モジュールおよび光モジュールの製造方法を提供することができる。 This disclosure makes it possible to provide an optical module that is resistant to high-energy visible light and a method for manufacturing the optical module.
Claims (8)
前記1または複数の光ファイバと光接続される平面光波回路と、
前記1または複数の光ファイバが挿入・固定されたファイバブロックと、
前記光ファイバと前記平面光波回路とを接着・固定するガラス層と、
前記ファイバブロックと前記平面光波回路とを接着・固定する接着剤層と、
を備えた光モジュールであって、
前記ガラス層は、前記光ファイバの端面部と前記平面光波回路との間にのみ設けられており、
前記ファイバブロックは、前記光ファイバと前記平面光波回路との接続部が露出するように開口部が設けられている、
ことを特徴とする光モジュール。 one or more optical fibers;
a planar lightwave circuit optically connected to the one or more optical fibers;
a fiber block into which the one or more optical fibers are inserted and fixed;
a glass layer for bonding and fixing the optical fiber and the planar lightwave circuit;
an adhesive layer for bonding and fixing the fiber block and the planar lightwave circuit;
An optical module comprising:
the glass layer is provided only between the end face of the optical fiber and the planar lightwave circuit,
the fiber block is provided with an opening so that a connection portion between the optical fiber and the planar lightwave circuit is exposed.
1. An optical module comprising:
前記ファイバブロックに前記光ファイバを挿入する工程と、
前記光ファイバの端面部にガラス前駆体材料を塗布する工程と、
微動調芯装置を用いて、前記光ファイバと前記平面光波回路との位置を調整し、前記光ファイバの前記端面部に塗布された前記ガラス前駆体材料を前記平面光波回路に接触させる工程と、
前記ガラス前駆体材料を半硬化し、前記光ファイバと前記平面光波回路とを仮接着・仮固定する工程と、
前記ファイバブロックを前記平面光波回路の端面に接着・固定すると同時に前記ファイバブロックと前記光ファイバを接着・固定する工程と、
前記光ファイバと前記平面光波回路との間の前記ガラス前駆体材料を本硬化させる工程と、
を含むことを特徴とする光モジュールの製造方法。 A method for manufacturing an optical module in which one or more optical fibers inserted and fixed in a fiber block are optically connected to a planar lightwave circuit, comprising the steps of:
inserting the optical fiber into the fiber block;
applying a glass precursor material to an end surface of the optical fiber;
a step of adjusting the positions of the optical fiber and the planar lightwave circuit using a fine adjustment device, and bringing the glass precursor material applied to the end surface of the optical fiber into contact with the planar lightwave circuit;
a step of semi-curing the glass precursor material and temporarily bonding and fixing the optical fiber and the planar lightwave circuit;
a step of adhering and fixing the fiber block to an end face of the planar lightwave circuit and at the same time adhering and fixing the fiber block and the optical fiber;
permanently curing the glass precursor material between the optical fiber and the planar lightwave circuit;
A method for manufacturing an optical module comprising the steps of:
ガラス板上に前記ガラス前駆体材料を滴下する工程と、
前記ガラス前駆体材料が滴下された前記ガラス板を予備加熱する工程と、
前記ガラス板を前記微動調芯装置に取り付けて、前記微動調芯装置を用いて前記光ファイバを前記ガラス板に塗布された前記ガラス前駆体材料に接触させる工程と、
を含むことを特徴とする請求項6に記載の光モジュールの製造方法。 applying the glass precursor material to an end surface of the optical fiber;
Dropping the glass precursor material onto a glass plate;
preheating the glass plate onto which the glass precursor material has been dropped;
attaching the glass plate to the fine alignment device and using the fine alignment device to bring the optical fiber into contact with the glass precursor material applied to the glass plate;
7. The method for manufacturing an optical module according to claim 6, further comprising:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/042350 WO2024105765A1 (en) | 2022-11-15 | 2022-11-15 | Optical module and method for producing optical module |
JP2024558524A JPWO2024105765A1 (en) | 2022-11-15 | 2022-11-15 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/042350 WO2024105765A1 (en) | 2022-11-15 | 2022-11-15 | Optical module and method for producing optical module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024105765A1 true WO2024105765A1 (en) | 2024-05-23 |
Family
ID=91083964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/042350 WO2024105765A1 (en) | 2022-11-15 | 2022-11-15 | Optical module and method for producing optical module |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2024105765A1 (en) |
WO (1) | WO2024105765A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63237004A (en) * | 1987-03-26 | 1988-10-03 | Seiko Instr & Electronics Ltd | Process for connecting optical fiber to optical waveguide |
JPH05196838A (en) * | 1992-01-20 | 1993-08-06 | Sumitomo Electric Ind Ltd | Coupling method for optical waveguide and optical fiber |
US6526204B1 (en) * | 2000-07-11 | 2003-02-25 | Shipley Company Llc | Optical fiber array for preventing flow of glue between fibers and waveguide |
JP2010286734A (en) * | 2009-06-12 | 2010-12-24 | Sumitomo Bakelite Co Ltd | Composite optical waveguide |
JP2018194802A (en) * | 2017-05-22 | 2018-12-06 | 日本電信電話株式会社 | Optical module and manufacturing method thereof |
WO2022018816A1 (en) * | 2020-07-20 | 2022-01-27 | 日本電信電話株式会社 | Optical module |
-
2022
- 2022-11-15 JP JP2024558524A patent/JPWO2024105765A1/ja active Pending
- 2022-11-15 WO PCT/JP2022/042350 patent/WO2024105765A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63237004A (en) * | 1987-03-26 | 1988-10-03 | Seiko Instr & Electronics Ltd | Process for connecting optical fiber to optical waveguide |
JPH05196838A (en) * | 1992-01-20 | 1993-08-06 | Sumitomo Electric Ind Ltd | Coupling method for optical waveguide and optical fiber |
US6526204B1 (en) * | 2000-07-11 | 2003-02-25 | Shipley Company Llc | Optical fiber array for preventing flow of glue between fibers and waveguide |
JP2010286734A (en) * | 2009-06-12 | 2010-12-24 | Sumitomo Bakelite Co Ltd | Composite optical waveguide |
JP2018194802A (en) * | 2017-05-22 | 2018-12-06 | 日本電信電話株式会社 | Optical module and manufacturing method thereof |
WO2022018816A1 (en) * | 2020-07-20 | 2022-01-27 | 日本電信電話株式会社 | Optical module |
Also Published As
Publication number | Publication date |
---|---|
JPWO2024105765A1 (en) | 2024-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110554459B (en) | Method of manufacturing a device for adiabatic coupling, corresponding device and system | |
JP5323646B2 (en) | Hybrid integrated optical module | |
KR100713498B1 (en) | Optical Waveguide Device and Manufacturing Method Thereof | |
US6975798B2 (en) | Waveguides assembled for transverse-transfer of optical power | |
EP0484011A2 (en) | Packaging of silicon optical components | |
JP6767925B2 (en) | Optical module and its manufacturing method | |
JP7372578B2 (en) | optical module | |
JP4934565B2 (en) | Optical module | |
US20040165829A1 (en) | Passive alignment of optical fibers with optical elements | |
WO2024105765A1 (en) | Optical module and method for producing optical module | |
JP4185409B2 (en) | Manufacturing method of optical waveguide | |
US10338325B1 (en) | Nanofiller in an optical interface | |
JP2018004830A (en) | High heat-resistant optical fiber module and manufacture method of the same | |
JP7617474B2 (en) | Integrated optical device and method for manufacturing the same | |
JP3644037B2 (en) | Method for manufacturing waveguide optical device | |
WO2021100150A1 (en) | Optical module | |
JP4018852B2 (en) | Optical waveguide substrate | |
KR100393622B1 (en) | Planar lightwave circuit module | |
WO2023079720A1 (en) | Optical element, optical integrated element, and method for manufacturing optical integrated element | |
JP3681439B2 (en) | Connection method between optical waveguide and optical fiber | |
US12124086B2 (en) | Optical fiber connection structure | |
JP2010286549A (en) | Light signal processing circuit, semiconductor device with the light signal processing circuit, and method of manufacturing the light signal processing circuit | |
WO2022038763A1 (en) | Optical module | |
CA2520569A1 (en) | Optical waveguide circuit component and production method therefor | |
JP2001249245A (en) | Connection method between optical waveguide and optical fiber and optical module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22965741 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024558524 Country of ref document: JP |