DESCRIPCIÓN Procedimiento de obtención de energía libre en ciclo termodinámico cíclico e instalación para la puesta en práctica del mismo. SECTOR DE LA TÉCNICA La presente invención se refiere a un proceso de obtención de energía libre en ciclo termodinámico cíclico, cuya evidente finalidad es la de permitir liberar energía indefinidamente en base a un ciclo termodinámico con unas condiciones específicas. La invención se sitúa pues en el ámbito del sector energético. OBJETO DE LA INVENCIÓN La presente invención tiene los siguientes objetivos: • Explicar porque un ciclo de Carnot, siendo cíclico también aumenta el rendimiento térmico, contando con un tanto por cien de presión absoluta menor de 100% en el foco frio. • Explicar el ciclo térmico objeto de esta patente, que, asemejándose a un ciclo de Carnot, libera energía del foco frio, cuando este, se encuentra a presión absoluta inferior de 100%. • Explicar que al tratarse de un ciclo que se produce físicamente, cuenta con medidas de superficies, caudales de flujos, tiempos y otras circunstancias, que pueden ser optimizadas para mejorar parámetros que aumenten la potencia en el motor (3). • También proponer esta tecnología como solución del almacenamiento de energía a bajas temperaturas, transformando directamente esta energía térmica, de fácil almacenamiento, en energía eléctrica. 2
• Demostrar científicamente que, el 0 absoluto de presión, es igual al 0% termodinámico, y con este valor, el rendimiento en este ciclo térmico objeto de invención, al igual que en un Ciclo de Carnot, siempre es de 100%, siendo proporcionado dicho rendimiento térmico, por liberación de energía del foco frio. • Consecuentemente al párrafo anterior, dejar demostrado científica y matemáticamente, porque se produce aumento de energía en los confines del universo contando con foco frio a 0 presión absoluta y 0 grados Kelvin. Siendo que nada es igual a 0 absoluto. • Concluir con el descubrimiento de un nuevo vector energético limpio. A modo aclaratorio, en la presente solicitud, cuando decimos obtención de energía libre, nos referimos a la energía que se libera indefinidamente, contando con presión por debajo de un bar absoluto en un foco frio, y cumpliendo el ciclo térmico objeto de esta patente, sin aportar energía externa. Explicaremos matemáticamente; Que; en un ciclo de Carnot, también se produce liberación de energía del foco frio, y del mismo modo, siendo que el rendimiento térmico en un Ciclo Carnot, aumenta cuando el foco frio cuenta con presión inferior a un bar absoluto, y sin aporte de energía externa. Primero explicaremos la importancia de equiparar una temperatura dada, a otra temperatura termodinámica teniendo en cuenta la presión absoluta del medio en el que se encuentra dicha temperatura dada. Una temperatura dada, se expresa habitualmente, con valor de presión absoluta del 100%. Por tanto, su valor absoluto termodinámico multiplicado por 1 no varía. Un bar absoluto equivale a un bar manométrico. Por esto, Las temperaturas del foco caliente y el foco frio, que intervienen en un Ciclo de Carnot, siendo en el planeta tierra, de forma sistemática, se multiplican por 100%. Una temperatura dada, encontrándose en un medio que proporciona menor presión de un bar absoluto, reduce su valor absoluto de 100%. 3
El valor absoluto de una temperatura dada, dentro de un medio, proporcionando menor presión de un bar absoluto, decae hasta llegar al mínimo valor, siendo este, de 0 %, 0 bar absoluto. Así mismo, -0,4 bar manométricos equivalen al 60% absoluto, -0,8 bar manométricos equivalen al 20% absoluto, y así sucesivamente. La propia formula del rendimiento térmico en un ciclo Carnot se debe de expresar como: 100% absoluto, menos, temperatura absoluta de foco frio / temperatura absoluta foco caliente. Ejemplo de cómo aumenta de rendimiento térmico en un Ciclo Carnot, disminuyendo el valor absoluto en la temperatura dada del foco frio. Contando foco caliente con temperatura 150ºC, y foco frio 18ºC. (100%) – (291%/323) = 10% rendimiento térmico. Ahora, el foco frio proporcionando un reservorio a -0,7 bar de presión manométrica, a la misma temperatura dada de 18ºC. (100%) -(291*(30%) /323) = 73% rendimiento térmico. Se produce una diferencia de 63% de aumento de rendimiento térmico, sin aumento de calor adicional, o trabajo externo. Esta diferencia de rendimiento térmico del 63%, es proporcionada por; liberación de energía del foco frio, contando este, con el 30% absoluto de la temperatura dada a 18ºC. En un Ciclo de Carnot se produce un rendimiento térmico, y, además, una recuperación térmica en su última etapa de compresión adiabática, del 100% de temperatura y calor inicial, como es sabido, tratándose de un ciclo térmico cíclico. En el ciclo térmico objeto de esta invención, no se pierde la presión en el foco frio (depósito 6), por encontrarse suficientemente alejada térmicamente del foco caliente, obteniendo del 4
mismo modo energía libre de este foco frio. Y no decimos; por encontrarse suficientemente alejada termodinámicamente del foco caliente, porque la presión del depósito (6), permanece invariable permanentemente, y proporcionando succión del vapor proveniente del foco caliente (1) necesaria para la acción del motor (10), y sin aporte de calor o trabajo externo. Para comprender este párrafo anterior, hay que saber que, aunque dos cuerpos pueden estar alejados térmicamente, uno, puede estar influido por la presión del otro, en este ciclo térmico objeto de la invención, la presión de succión, se transmite más lejos y más rápidamente que la temperatura, siendo que la temperatura del depósito (1), ni se transmite, ni afecta térmicamente a la temperatura del depósito (6). ANTECEDENTES DE LA INVENCIÓN Basándonos en los principios de la termodinámica, conocemos que no puede existir un ciclo térmico cuyo rendimiento sea mayor del 100%, la fórmula que soporta esta afirmación es bien conocida: Rendimiento= 100% – (Temperatura foco frio/Temperatura foco caliente) en grados Kelvin. Se trata de una función de estado, esto implica que no intervienen en ella medidas de longitud, peso, tiempo, caudal o en general medidas de espacios. Esta función de estado fue deducida al interpretar de forma matemática el proceso termodinámico descrito en un ciclo de Carnot, dicho ciclo térmico es reversible, cíclico y no puede ser reproducido físicamente, se produce a nivel macroscópico y por lo tanto no pude ser medido visualmente. Cuando se analiza científicamente el ciclo de Carnot, se dice que; la temperatura en el foco caliente es constante por contar con un reservorio inagotable, y aunque esta afirmación es correcta para comenzar el ciclo, también es cierto que dicho ciclo térmico es cíclico por qué; al final de su última etapa de compresión adiabática, cuenta con la misma temperatura inicial, con lo cual, no es necesario aportar más calor para mantener el ciclo indefinidamente. 5
Básicamente, hay que comprender qué; un Ciclo de Carnot cuenta con un rendimiento térmico determinado, dependiendo exclusivamente de temperaturas en foco caliente y foco frio, así como también cuenta con un 100% de recuperación térmica al final del ciclo. El ciclo térmico objeto de esta patente, trabajando solo por succión, también recupera el 100% de calor y temperatura inicial, habiendo pasado el vapor succionado por el mencionado motor neumático (3), y habiendo obteniendo con este, un rendimiento de trabajo dinámico. Cuando un ciclo térmico de Carnot, cuenta con un foco frio a presión absoluta inferior al 100%, el rendimiento térmico aumenta. Porque disminuye su temperatura absoluta. Aclarar que, tratándose de un ciclo térmico cíclico, el foco frio tampoco varia. Se comprende mejor con el ejemplo; contando con un foco frio a presión de -0,2 bar manométricos, equivaliendo a un 80% de temperatura absoluta, multiplicando (Temperatura foco frio) por 80%, la temperatura termodinámica disminuirá, consecuentemente, el resultado de dividir (Temperatura foco frio / temperatura foco caliente) disminuye, por tanto, el rendimiento aumenta. De igual forma se puede demostrar matemáticamente que, del vacío absoluto en el foco frio, se puede obtener el mayor rendimiento térmico, ya que cuando la temperatura del foco frio cuente con presión de 0% absoluto, la temperatura termodinámica será del 0% por lo tanto, dividiendo por cualquier temperatura del foco caliente el resultado es cero, y consecuentemente, el rendimiento térmico en este caso será siempre de 100%. Un Ciclo Carnot contando con dos temperaturas dadas en foco frio y foco caliente, cuenta con un rendimiento térmico determinado, cuando el foco frio cuenta con un valor termodinámico menor de 100% absoluto, el rendimiento térmico de dicho ciclo aumenta un tanto por cien, siendo aportado este aumento de rendimiento por la liberación de energía del foco frio. El foco caliente nunca puede disminuir valor termodinámico, siempre permanece influido, y 6
determinado por el valor absoluto de su propia temperatura al 100%. El rendimiento térmico de esta energía liberada, más el rendimiento térmico determinado por las dos temperaturas dadas, matemáticamente, nunca puede superar el 100%. El objeto de esta patente es dar a conocer un ciclo termodinámico físico en el que se puede obtener energía libre de un foco frio, contando con un valor absoluto de temperatura inferior a 100%, y sin contravenir los principios de la termodinámica. Que como hemos comprobado matemáticamente nunca pueden superar un rendimiento térmico superior a 100%. Nosotros describimos el objeto de la invención de un ciclo termodinámico de obtención de energía libre que a diferencia de un ciclo Carnot, se realiza físicamente, y esto implica perdidas por aislamiento térmico, por rozamiento y por el calor perdido en la zona de refrigeración. Así como un aumento del tiempo de realización del ciclo, dependiendo del caudal de paso en el motor neumático (3). Este ciclo termodinámico comporta; el recorrido de una molécula de agua, que estando en el foco caliente a una determinada temperatura, es succionada en forma vapor, y realiza una carrera del ciclo térmico, regresando en forma líquida al mismo foco caliente, y contando con su temperatura y calor inicial. La temperatura y superficie de agua expuesta a vaporización en el foco caliente, además de la presión de succión del foco frio, determina el caudal de evaporación en el foco caliente Aumentando el caudal de evaporación; cuanto mayor temperatura y superficie de agua en el depósito (1). Aumentando el caudal de evaporación y rendimiento térmico cuanto menor presión en el foco frio. Aclarar que, tratándose de un ciclo térmico cuasi cíclico, se ha comprobado tras dias de ensayo que la presión del foco frio no varia y la temperatura en el depósito (1) solo decae por perdida en aislamiento térmico. 7
La aerotermia obtiene energía del calor que existe en el aire, incluso cuando está por debajo de cero grados centígrados, el vector energético objeto de esta patente, obtiene energía de la succión que proporciona un foco frio contando con presión inferior a un bar absoluto. Como podemos comprobar, no se parecen en su comportamiento termodinámico, pero los dos extraen energía de una fuente, el primero, de una fuente de calor, a temperatura por encima de 0 grados Kelvin, y el segundo, de otra fuente, de presión de succión, estando el foco frio por debajo de 1 bar absoluto. En la naturaleza también se produce liberación de energía de un foco frio, cuando este foco frio se encuentra por debajo de presión atmosférica, y se dan condiciones termodinámicas similares al ciclo térmico objeto de esta invención. Hay épocas estivales en las que se produce un calentamiento superficial del agua marina, contando con la temperatura adecuada, dicha agua se evapora y este vapor es arrastrado por corrientes verticales de aire hasta alcanzar el foco frio que; estando a kilómetros de altura cuenta con menor presión y baja temperatura, al igual que sucede en el ciclo térmico objeto de la patente, el vapor se condensa instantáneamente al encontrarse con gotas de agua líquida fría en suspensión, creando una zona de menor presión y por lo tanto mayor caudal de succión de vapor, dicha succión provoca al reducción de presión a la altura del mar, disminuye la temperatura termodinámica a la que se ocasiona ebullición del agua , y consecuentemente, aumenta el caudal de subida de vapor retroalimentando la potencia del huracán, girando por efecto Coriolis, cuando este sale del mar y no puede succionar vapor de agua, carecerá de uno de los elementos necesarios para que se cumpla el ciclo térmico y terminara perdiendo su fuerza paulatinamente. Aumentando la temperatura del agua del mar encontraremos nuestro peor enemigo en este cambio climático en el que estamos inmersos. Por ello recalcamos la importancia de aprender de los ecosistemas, y desarrollar cuanto antes, este novedoso vector energético que no daña el medio ambiente. 8
EXPLICACIÓN DE LA INVENCIÓN La presente invención se refiere a un procedimiento termodinámico de obtención de energía libre que aporta esenciales características de novedad y notables ventajas con respecto a los diferentes vectores de obtención de energía conocidos hasta ahora. En la presente patente, damos a conocer un ciclo térmico cíclico, que se produce físicamente, y en el intervienen elementos tangibles y que pueden ser medidos en todo momento. Se trata de un ciclo termodinámico que cuenta con agua, como líquido de condensación y del mismo modo con agua como elemento de evaporación, siendo que H2O, es la única molécula conocida capaz de condensar instantáneamente por disminución térmica. El único elemento que ocupa el circuito es agua, en estado líquido o gaseoso, para ello se debe vaciar todo el circuito de aire, antes de comenzar el ciclo térmico. El elemento succionado del foco caliente, debe de ser vapor, pudiendo contar con temperatura incluso por debajo de 100ºC, siendo que la succión hacia el foco frio, cuenta con presión por debajo de atmosférica. Para entender porque no se pierde; capacidad de succión del foco frio, temperatura o calor inicial, hay que ser consciente de que el vapor succionado hacia un depósito aislado térmicamente del medio acabara por condensar aportando todo el calor inicial. Y quedando a presión con que contaba el mencionado depósito antes de ingresar vapor. El aire del interior del depósito de vacío, es succionado con un compresor de vacío antes de comenzar el ciclo térmico objeto de esta invención, desconectándolo después definitivamente. El ciclo termodinámico desarrollado en la presente memoria resulta sencillo de fabricar y da a conocer un nuevo vector energético hasta ahora desconocido por el estado de la técnica. Aumentando la temperatura en el foco caliente, no se proporciona mayor rendimiento 9
térmico, pero si se consigue mayor caudal para proporcionar mayor potencia, con lo cual. Este ciclo termodinámico trabajando a aproximadamente 100ºC, supone un logro tecnológico para solucionar el almacenamiento de energía con sales térmicas, siendo que estas se almacenan a temperatura superior. Se trata de un ciclo termodinámico que puede ser recreado en cualquier lugar donde sea necesario, no siendo necesario transformadores o líneas de alta tensión para el traslado de energía eléctrica. El abaratamiento de los costes para obtener energía eléctrica conlleva el abaratamiento de procesos de producción industrial, electrolisis, desalación por osmosis, y en general procesos que hoy en día son inviables por sus altos costes energéticos. Se trata de un vector energético desconocido, siendo totalmente limpio y natural, del cual debemos aprender, para comprender preguntas termodinámicas que hoy en día todavía no tienen respuesta. DESCRIPCIÓN DE LOS DIBUJOS Para complementar la descripción que seguidamente se va a realizar y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego plano en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: La figura 1.- Muestra una representación esquemática de una instalación para la puesta en práctica del procedimiento de obtención energía libre en ciclo termodinámico cíclico objeto de la presente invención. REALIZACIÓN PREFERENTE DE LA INVENCIÓN A la vista de la figura reseñada, puede observarse como para poner en práctica el procedimiento de la invención se parte de una instalación en la que participa un primer depósito (1) que cuenta en su interior con bandejas (2) o capas de superficie participadas 10
con una altura mínima de agua, contando con la mayor superficie de evaporación posible dentro del mencionado depósito. El depósito se complementa con un sistema de calentamiento (3) que puede ser preferentemente una resistencia eléctrica para mantener en todo momento la temperatura de succión de vapor más idónea. En la instalación participa estructura (4) rematada en un soporte (5), situado a cierta altura del primer depósito, sobre el que se sitúa un depósito de condensación (6) conectado al primer depósito (1), altura suficiente como para conseguir que el vapor condensado en el depósito de condensación (6), decante por gravedad regresando al primer depósito (1), siendo que el recorrido permanece aislado térmicamente, devuelto el calor a la misma temperatura inicial. Dicho primer deposito (1) cuenta con un sistema de calentamiento (3), accionando el mismo para alcanzar la temperatura de evaporación adecuada en el arranque del ciclo térmico, y manteniendo dicha temperatura para suplir las posibles pérdidas por aislamiento térmico y pérdidas de calor en la refrigeración de un serpentín (7), conectado al depósito de condensación (6) y dispuesto por encima de éste. De forma más concreta, el depósito de condensación (6) se caracteriza por estar lleno de agua, produciendo condensación instantánea del vapor que intenta atravesarlo en el recorrido de succión con dirección hacia un segundo depósito (8) situado mas arriba. La salida superior del segundo depósito (6), determina el final de foco caliente, y comienzo de foco frio. La instalación se complementa con un compresor de vacío (9) que reduce la presión en el depósito de vacío (8), siendo desconectado de forma permanente una vez comienza el ciclo termodinámico. Como podemos observar en la figura 1, la instalación cuenta con un motor (10) preferentemente neumático, trabajando por succión de vapor, y transmitiendo las revoluciones necesarias en un alternador (11) que permite alimentar eléctricamente el 11
sistema de calentamiento (3). y la salida a demanda red Aumentando la superficie de agua habilitada para evaporización en el depósito (1), se puede satisfacer cualquier solicitud de demanda de energía eléctrica, por grande que esta sea. Describimos un ciclo termodinámico cíclico de obtención de energía libre que cuenta con 4 etapas, y realizándose en un circuito termodinámico físico, cuenta con pérdidas de calor residuales. Primera etapa: Se produce una expansión isotérmica en el primer depósito (1), aun contando con temperatura por debajo de 100ºC, ya que el vapor es succionado hacia el motor (10), con presión por debajo de un bar absoluto. Segunda etapa: Se ocasiona una expansión adiabática disminuyendo la temperatura, y contando que todo el recorrido se encuentra aislado térmicamente del medio. Tercera etapa: Se produce una compresión isotérmica en el depósito de condensación (6) estando lleno de agua líquida. En dicho depósito de condensación (6) se produce cambio de vapor a liquido instantáneamente, con cavitación, y micro explosiones audibles. Cuarta etapa: Se ocasiona una compresión adiabática en el mencionado depósito de condensación (6), devolviendo al agua que alberga, todo el calor, y a temperatura inicial del ciclo, decantándose por gravedad al depósito (1) que cuenta con menor altura. 12
Perdida residual de calor: Se produce una pérdida de vapor en el depósito de condensación (6) con dirección de la succión ocasionada por el depósito de vacío o tercer depósito (8), seguidamente se ocasiona el regreso del mismo en forma de líquido ya que se condensa en el recorrido por el serpentín (7) de refrigeración, que cuenta con mayor cota de altura. En este caso se produce pérdida residual de calor. Dicha perdida de calor es suplida por el sistema de calentamiento (3) manteniendo la temperatura inicial, en el primer depósito (1). Se ha comprobado que colocando una válvula de corte (12) en la salida superior del depósito (6) y contando con altura necesaria en tubería de presión de retorno a deposito (1) se consigue un ciclo térmico ideal sin pérdidas. Siendo que dicha tubería cuenta con menor presión en su parte más alta y mayor presión en su parte más baja. Este ciclo termodinámico siendo cíclico, proporciona un rendimiento térmico de trabajo en el motor (10), y una recuperación térmica teórica de 100%. Aunque al rendimiento térmico y recuperación térmica, del ciclo térmico objeto de invención, sean menores que los teóricos, se ha comprobado que; sí se puede obtener energía indefinidamente, sin aporte de calor externo. Al igual que un Ciclo de Carnot, el ciclo térmico objeto de esta invención, obtiene rendimiento térmico de un diferencial “termodinámico” entre foco caliente y foco frio, y se sustenta en las mismas fórmulas matemáticas en las que se apoyan los principios y leyes termodinámicas. Una máquina de Carnot, cuenta con un determinado rendimiento térmico, producido por transferencia del calor del foco caliente al foco frio. Una máquina de Carnot, también cuenta con un determinado rendimiento térmico, producido por transferencia de succión al foco frio, cuando este permanece a presión 13
inferior de un bar absoluto. Un Ciclo de Carnot, siendo cíclico, y estando aislado térmicamente del medio, cuenta con el 100% de recuperación térmica al final del mismo ciclo. Los esquemas que interpretan una máquina de Carnot deberían representarla al final de la segunda fase de expansión adiabática y antes de la tercera de compresión isotérmica, y de igual forma que actúa el motor térmico objeto de esta invención, dentro del propio ciclo térmico. 14
DESCRIPTION Procedure for obtaining free energy in a cyclic thermodynamic cycle and installation for its implementation. TECHNICAL SECTOR The present invention refers to a process for obtaining free energy in a cyclic thermodynamic cycle, whose obvious purpose is to allow energy to be released indefinitely based on a thermodynamic cycle with specific conditions. The invention is therefore located in the field of the energy sector. OBJECT OF THE INVENTION The present invention has the following objectives: • Explain why a Carnot cycle, being cyclic, also increases thermal performance, with a percentage of absolute pressure less than 100% in the cold focus. • Explain the thermal cycle object of this patent, which, resembling a Carnot cycle, releases energy from the cold source, when it is at an absolute pressure of less than 100%. • Explain that since it is a cycle that is physically produced, it has measurements of surfaces, flow rates, times and other circumstances, which can be optimized to improve parameters that increase the power in the engine (3). • Also propose this technology as a solution for energy storage at low temperatures, directly transforming this easily stored thermal energy into electrical energy. 2 • Scientifically demonstrate that 0 absolute pressure is equal to 0% thermodynamic, and with this value, the performance in this thermal cycle object of invention, as in a Carnot Cycle, is always 100%, being proportionate said thermal performance, due to the release of energy from the cold source. • Consequent to the previous paragraph, let it be demonstrated scientifically and mathematically, because an increase in energy occurs in the confines of the universe with a cold focus at 0 absolute pressure and 0 degrees Kelvin. Since nothing is equal to absolute 0. • Conclude with the discovery of a new clean energy vector. By way of clarification, in the present application, when we say obtaining free energy, we refer to the energy that is released indefinitely, with pressure below an absolute bar in a cold source, and complying with the thermal cycle object of this patent, without providing external energy. We will explain mathematically; That; In a Carnot cycle, energy is also released from the cold focus, and in the same way, the thermal performance in a Carnot Cycle increases when the cold focus has a pressure lower than one absolute bar, and without energy input. external. First we will explain the importance of equating a given temperature to another thermodynamic temperature taking into account the absolute pressure of the medium in which said given temperature is located. A given temperature is usually expressed with an absolute pressure value of 100%. Therefore, its absolute thermodynamic value multiplied by 1 does not change. One absolute bar is equivalent to one gauge bar. For this reason, the temperatures of the hot focus and the cold focus, which intervene in a Carnot Cycle, being on planet Earth, are systematically multiplied by 100%. A given temperature, being in a medium that provides less pressure than one bar absolute, reduces its absolute value by 100%. 3 The absolute value of a given temperature, within a medium, providing a lower pressure of one bar absolute, decays until it reaches the minimum value, which is 0%, 0 bar absolute. Likewise, -0.4 bar gauge is equivalent to 60% absolute, -0.8 bar gauge is equivalent to 20% absolute, and so on. The formula for thermal performance in a Carnot cycle must be expressed as: 100% absolute, minus, absolute cold spot temperature / hot spot absolute temperature. Example of how thermal performance increases in a Carnot Cycle, decreasing the absolute value at the given temperature of the cold focus. Counting hot focus with temperature 150ºC, and cold focus 18ºC. (100%) – (291%/323) = 10% thermal efficiency. Now, the cold focus providing a reservoir at -0.7 bar gauge pressure, at the same given temperature of 18ºC. (100%) -(291*(30%) /323) = 73% thermal efficiency. A difference of 63% increase in thermal performance occurs, without additional heat gain, or external work. This difference in thermal performance of 63% is provided by; release of energy from the cold focus, counting this, with 30% absolute of the temperature given at 18ºC. In a Carnot Cycle, thermal performance occurs, and, in addition, thermal recovery in its last stage of adiabatic compression, of 100% of initial temperature and heat, as is known, being a cyclic thermal cycle. In the thermal cycle object of this invention, the pressure is not lost in the cold focus (tank 6), because it is sufficiently far away thermally from the hot focus, obtaining 4 Likewise free energy of this cold focus. And we don't say; because it is sufficiently thermodynamically far from the hot focus, because the pressure of the tank (6) remains permanently unchanged, and providing suction of the steam from the hot focus (1) necessary for the action of the motor (10), and without heat or heat input. external work. To understand this previous paragraph, you must know that, although two bodies may be thermally distant, one may be influenced by the pressure of the other, in this thermal cycle object of the invention, the suction pressure is transmitted further and further. quickly than the temperature, being that the temperature of the tank (1) is neither transmitted nor thermally affected by the temperature of the tank (6). BACKGROUND OF THE INVENTION Based on the principles of thermodynamics, we know that there cannot be a thermal cycle whose efficiency is greater than 100%, the formula that supports this statement is well known: Efficiency = 100% – (Cold focus temperature / Focus temperature hot) in degrees Kelvin. It is a state function, this implies that measurements of length, weight, time, flow or in general measurements of spaces do not intervene in it. This state function was deduced by mathematically interpreting the thermodynamic process described in a Carnot cycle. This thermal cycle is reversible, cyclic and cannot be reproduced physically. It occurs at a macroscopic level and therefore could not be measured visually. When the Carnot cycle is scientifically analyzed, it is said that; The temperature in the hot spot is constant due to having an inexhaustible reservoir, and although this statement is correct to begin the cycle, it is also true that said thermal cycle is cyclical because; At the end of its last adiabatic compression stage, it has the same initial temperature, so it is not necessary to add more heat to maintain the cycle indefinitely. 5 Basically, you have to understand what; A Carnot Cycle has a certain thermal performance, depending exclusively on temperatures in the hot focus and cold focus, as well as 100% thermal recovery at the end of the cycle. The thermal cycle object of this patent, working only by suction, also recovers 100% of the heat and initial temperature, having passed the sucked steam through the aforementioned pneumatic motor (3), and having obtained with it a dynamic work performance. When a Carnot thermal cycle has a cold focus at an absolute pressure of less than 100%, thermal performance increases. Because its absolute temperature decreases. Clarify that, being a cyclical thermal cycle, the cold focus does not change either. It is better understood by example; counting on a cold focus at a pressure of -0.2 bar gauge, equivalent to 80% of absolute temperature, multiplying (cold focus temperature) by 80%, the thermodynamic temperature will decrease, consequently, the result of dividing (cold focus temperature / hot bulb temperature) decreases, therefore, performance increases. In the same way, it can be demonstrated mathematically that, from the absolute vacuum in the cold focus, the highest thermal performance can be obtained, since when the temperature of the cold focus has a pressure of 0% absolute, the thermodynamic temperature will therefore be 0%. Therefore, dividing by any temperature of the hot spot the result is zero, and consequently, the thermal performance in this case will always be 100%. A Carnot Cycle with two temperatures given in the cold focus and the hot focus has a certain thermal performance. When the cold focus has a thermodynamic value of less than 100% absolute, the thermal performance of said cycle increases by a factor of one hundred, being This increase in performance has been contributed by the release of energy from the cold focus. The hot focus can never decrease the thermodynamic value, it always remains influenced, and 6 determined by the absolute value of its own temperature at 100%. The thermal efficiency of this released energy, plus the thermal efficiency determined by the two given temperatures, can mathematically never exceed 100%. The purpose of this patent is to disclose a physical thermodynamic cycle in which free energy can be obtained from a cold source, with an absolute temperature value of less than 100%, and without contravening the principles of thermodynamics. Which, as we have mathematically verified, can never exceed a thermal performance greater than 100%. We describe the object of the invention of a thermodynamic cycle for obtaining free energy that, unlike a Carnot cycle, is carried out physically, and this involves losses due to thermal insulation, friction and heat lost in the refrigeration zone. As well as an increase in the cycle completion time, depending on the flow rate in the pneumatic motor (3). This thermodynamic cycle involves; the path of a water molecule, which, being in the hot spot at a certain temperature, is sucked in vapor form, and carries out a run of the thermal cycle, returning in liquid form to the same hot spot, and counting on its initial temperature and heat . The temperature and surface of water exposed to vaporization in the hot focus, in addition to the suction pressure of the cold focus, determines the evaporation flow rate in the hot focus Increasing the evaporation flow rate; the higher the temperature and water surface in the tank (1). Increasing the evaporation flow rate and thermal performance the lower the pressure in the cold source. Clarify that, being a quasi-cyclic thermal cycle, it has been verified after days of testing that the pressure of the cold source does not vary and the temperature in the tank (1) only decreases due to loss of thermal insulation. 7 Aerothermal energy obtains energy from the heat that exists in the air, even when it is below zero degrees Celsius, the energy vector object of this patent, obtains energy from the suction provided by a cold source with a pressure of less than one bar absolute. As we can see, they are not similar in their thermodynamic behavior, but both extract energy from a source, the first, from a heat source, at a temperature above 0 degrees Kelvin, and the second, from another source, pressure of suction, with the cold focus being below 1 bar absolute. In nature, energy release from a cold source also occurs when this cold source is below atmospheric pressure, and thermodynamic conditions similar to the thermal cycle that is the object of this invention occur. There are summer periods in which a surface heating of the seawater occurs, with the appropriate temperature, said water evaporates and this vapor is dragged by vertical air currents until it reaches the cold focus that; Being kilometers high, it has lower pressure and low temperature, just as happens in the thermal cycle that is the subject of the patent, the steam condenses instantly when it encounters droplets of cold liquid water in suspension, creating an area of lower pressure and therefore Therefore, a greater steam suction flow rate, said suction causes a reduction in pressure at sea level, decreases the thermodynamic temperature at which the water boils, and consequently, increases the steam rise flow rate, feeding back the power of the hurricane. , rotating due to the Coriolis effect, when it leaves the sea and cannot suck water vapor, it will lack one of the elements necessary for the thermal cycle to be completed and will end up gradually losing its strength. By increasing the temperature of sea water we will find our worst enemy in this climate change in which we are immersed. For this reason, we emphasize the importance of learning from ecosystems, and developing as soon as possible, this new energy vector that does not harm the environment. 8 EXPLANATION OF THE INVENTION The present invention refers to a thermodynamic procedure for obtaining free energy that provides essential novelty characteristics and notable advantages with respect to the different energy obtaining vectors known until now. In this patent, we disclose a cyclic thermal cycle, which occurs physically, and involves tangible elements that can be measured at all times. It is a thermodynamic cycle that has water as a condensation liquid and in the same way with water as an evaporation element, with H2O being the only known molecule capable of condensing instantly due to thermal decrease. The only element that occupies the circuit is water, in liquid or gaseous state. To do this, the entire air circuit must be emptied before starting the thermal cycle. The element sucked from the hot focus must be steam, and may have a temperature even below 100ºC, while the suction towards the cold focus has a pressure below atmospheric. To understand why it is not lost; suction capacity of the cold source, temperature or initial heat, one must be aware that the vapor sucked into a tank thermally isolated from the medium will end up condensing, providing all the initial heat. And remaining at the pressure that the aforementioned tank had before entering steam. The air inside the vacuum tank is sucked with a vacuum compressor before starting the thermal cycle that is the object of this invention, disconnecting it definitively afterwards. The thermodynamic cycle developed in this report is easy to manufacture and reveals a new energy vector hitherto unknown by the state of the art. Increasing the temperature in the hot spot does not provide greater performance 9 thermal, but a greater flow rate is achieved to provide greater power, thereby. This thermodynamic cycle, working at approximately 100ºC, represents a technological achievement to solve the storage of energy with thermal salts, since these are stored at a higher temperature. It is a thermodynamic cycle that can be recreated anywhere where necessary, without transformers or high voltage lines being necessary to transfer electrical energy. The lowering of the costs of obtaining electrical energy entails the lowering of industrial production processes, electrolysis, desalination by osmosis, and in general processes that today are unviable due to their high energy costs. It is an unknown energy vector, being totally clean and natural, from which we must learn to understand thermodynamic questions that today still have no answers. DESCRIPTION OF THE DRAWINGS To complement the description that will be made below and in order to help a better understanding of the characteristics of the invention, in accordance with a preferred example of practical embodiment thereof, it is attached as an integral part of said description, a flat game where, for illustrative and non-limiting purposes, the following has been represented: Figure 1.- Shows a schematic representation of an installation for the implementation of the procedure for obtaining free energy in a cyclic thermodynamic cycle that is the object of the present invention. . PREFERRED EMBODIMENT OF THE INVENTION In view of the figure outlined, it can be seen that to put the procedure of the invention into practice, the starting point is an installation in which a first tank (1) participates, which has trays (2) inside. or surface layers involved 10 with a minimum water height, having the largest possible evaporation surface within the aforementioned tank. The tank is complemented by a heating system (3) which can preferably be an electrical resistance to maintain the most suitable steam suction temperature at all times. The installation involves a structure (4) topped with a support (5), located at a certain height of the first tank, on which a condensation tank (6) connected to the first tank (1) is located, sufficient height to ensure that The condensed steam in the condensation tank (6) settles by gravity returning to the first tank (1), and the path remains thermally isolated, returning the heat at the same initial temperature. Said first tank (1) has a heating system (3), activating it to reach the appropriate evaporation temperature at the start of the thermal cycle, and maintaining said temperature to compensate for possible losses due to thermal insulation and heat losses in the cooling of a coil (7), connected to the condensation tank (6) and arranged above it. More specifically, the condensation tank (6) is characterized by being full of water, producing instantaneous condensation of the vapor that tries to pass through it in the suction path towards a second tank (8) located higher up. The upper outlet of the second tank (6) determines the end of the hot focus and the beginning of the cold focus. The installation is complemented by a vacuum compressor (9) that reduces the pressure in the vacuum tank (8), being permanently disconnected once the thermodynamic cycle begins. As we can see in Figure 1, the installation has a preferably pneumatic motor (10), working by steam suction, and transmitting the necessary revolutions in an alternator (11) that allows electrical power to the 11. heating system (3). and the output on demand network By increasing the surface of water enabled for evaporation in the tank (1), any electrical energy demand request can be satisfied, no matter how large it may be. We describe a cyclical thermodynamic cycle for obtaining free energy that has 4 stages, and being carried out in a physical thermodynamic circuit, it has residual heat losses. First stage: An isothermal expansion occurs in the first tank (1), even with a temperature below 100ºC, since the steam is sucked towards the engine (10), with a pressure below one bar absolute. Second stage: An adiabatic expansion is caused by decreasing the temperature, and considering that the entire route is thermally isolated from the environment. Third stage: An isothermal compression occurs in the condensation tank (6) being filled with liquid water. In said condensation tank (6), a change from vapor to liquid occurs instantly, with cavitation, and audible microexplosions. Fourth stage: An adiabatic compression is caused in the aforementioned condensation tank (6), returning all the heat to the water it houses, and at the initial temperature of the cycle, decanting by gravity to the tank (1) that has a lower height. 12 Residual heat loss: A loss of vapor occurs in the condensation tank (6) with the direction of suction caused by the vacuum tank or third tank (8), then it returns in the form of liquid since It condenses as it travels through the cooling coil (7), which has a higher height. In this case residual heat loss occurs. This heat loss is supplied by the heating system (3), maintaining the initial temperature in the first tank (1). It has been proven that by placing a shut-off valve (12) at the upper outlet of the tank (6) and having the necessary height in the return pressure pipe to the tank (1), an ideal thermal cycle is achieved without losses. Being that said pipe has lower pressure in its highest part and higher pressure in its lower part. This thermodynamic cycle, being cyclic, provides a working thermal efficiency in the engine (10), and a theoretical thermal recovery of 100%. Although the thermal performance and thermal recovery of the thermal cycle object of the invention are lower than the theoretical ones, it has been proven that; Yes, energy can be obtained indefinitely, without external heat input. Like a Carnot Cycle, the thermal cycle object of this invention obtains thermal performance from a “thermodynamic” differential between hot focus and cold focus, and is based on the same mathematical formulas on which the thermodynamic principles and laws are based. . A Carnot engine has a certain thermal efficiency, produced by heat transfer from the hot focus to the cold focus. A Carnot machine also has a certain thermal performance, produced by transfer of suction to the cold source, when it remains under pressure 13 lower than an absolute bar. A Carnot Cycle, being cyclical, and being thermally isolated from the environment, has 100% thermal recovery at the end of the same cycle. The diagrams that interpret a Carnot engine should represent it at the end of the second phase of adiabatic expansion and before the third phase of isothermal compression, and in the same way that the heat engine object of this invention acts, within the thermal cycle itself. 14