WO2024103745A1 - 一种主板防护系统和方法 - Google Patents
一种主板防护系统和方法 Download PDFInfo
- Publication number
- WO2024103745A1 WO2024103745A1 PCT/CN2023/103409 CN2023103409W WO2024103745A1 WO 2024103745 A1 WO2024103745 A1 WO 2024103745A1 CN 2023103409 W CN2023103409 W CN 2023103409W WO 2024103745 A1 WO2024103745 A1 WO 2024103745A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processor
- output
- voltage inverter
- signal
- programmable logic
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000012544 monitoring process Methods 0.000 claims abstract description 125
- 230000005856 abnormality Effects 0.000 claims description 33
- 230000008859 change Effects 0.000 claims description 14
- 238000003860 storage Methods 0.000 claims description 8
- 238000004590 computer program Methods 0.000 claims description 6
- 230000003993 interaction Effects 0.000 claims description 6
- 230000002159 abnormal effect Effects 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 abstract description 12
- 230000002265 prevention Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 22
- 238000001514 detection method Methods 0.000 description 14
- 230000009471 action Effects 0.000 description 9
- 238000013461 design Methods 0.000 description 7
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 4
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013481 data capture Methods 0.000 description 1
- 230000010259 detection of temperature stimulus Effects 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/30—Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3003—Monitoring arrangements specially adapted to the computing system or computing system component being monitored
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3058—Monitoring arrangements for monitoring environmental properties or parameters of the computing system or of the computing system component, e.g. monitoring of power, currents, temperature, humidity, position, vibrations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H1/00—Details of emergency protective circuit arrangements
- H02H1/0007—Details of emergency protective circuit arrangements concerning the detecting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/08—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
Definitions
- the present application relates to the technical field of motherboard design, and in particular to a motherboard protection system and method.
- E-Fuse one-time programmable memory
- the expected effect of preventing the board from burning out was not achieved, and the customer's room continued to experience board burning.
- the root cause is that the back-end components or PCB cannot be completely short-circuited when an abnormality occurs, but will be in a low-impedance state for a long time. This state is not enough to trigger the overcurrent or short-circuit protection of the front-end E-Fuse chip, but it can generate a large amount of heat energy, which eventually causes the board to burn out.
- the overcurrent protection point of the E-Fuse chip on the 12V (volt) power supply path is set to a current of 50A (ampere).
- a capacitor at the back end fails, and the impedance after failure is 1ohm (ohm).
- a current of 12A will pass through the failed capacitor, but it cannot trigger the overcurrent protection function of the E-Fuse chip.
- a large amount of heat energy is generated on the failed capacitor, causing the board to burn out.
- the purpose of the embodiments of the present application is to provide a motherboard protection system and method, which can reduce the occurrence of motherboard burnout.
- a motherboard protection system comprising a power supply, an overcurrent protection component, a voltage inverter and a load connected to the voltage inverter, and also comprising a precision resistor arranged between the overcurrent protection component and the voltage inverter, the precision resistor being connected to a current monitoring chip; the current monitoring chip being connected to a complex programmable logic device, and the complex programmable logic device being connected to a processor;
- the current monitoring chip is configured to transmit a warning signal to the complex programmable logic device when a voltage difference across the precision resistor is detected to be greater than a set threshold;
- a complex programmable logic device is configured to send an interrupt signal to a processor upon receiving the warning signal
- the processor is configured to shut down the output of the overcurrent protection component when receiving an interrupt signal sent by the complex programmable logic device.
- the status pin of the current monitoring chip is connected to the general input and output interface of the complex programmable logic device, and is configured to pull down the signal of the status pin when it is detected that the voltage difference of the precision resistor is greater than a set threshold;
- the complex programmable logic device is configured to send an interrupt signal to the processor when detecting that the signal of the status pin is a low level signal.
- the processor is connected to the current monitoring chip via the I2C bus, and is configured to obtain the signal recorded in the register of the current monitoring chip via the I2C bus when an interrupt signal is received; determine whether the signal includes a warning signal; and if the signal includes a warning signal, turn off the output of the overcurrent protection component.
- the processor is connected to the power supply and the overcurrent protection component respectively, and is configured to detect the output current of the power supply and the overcurrent protection component; when the difference between the output current of the power supply and the output current of the overcurrent protection component is greater than a set first threshold, the output of the power supply is turned off.
- the voltage inverter, the precision resistor and the current monitoring chip have a one-to-one correspondence; when there are multiple voltage inverters, the processor is configured to collect the output currents of all current monitoring chips; when the difference between the output current of the overcurrent protection component and the sum of the output currents of all current monitoring chips is greater than a set second threshold, the output of the overcurrent protection component is turned off.
- the complex programmable logic device is connected to the voltage inverter and is configured to transmit a prompt message of the voltage inverter abnormality to the processor when an abnormality of the voltage inverter is detected;
- the processor is configured to shut down the output of the overcurrent protection component when receiving a prompt message indicating that the voltage inverter is abnormal.
- the GPIO of the complex programmable logic device is connected to the power good pin of the voltage inverter and is configured to transmit a power good signal to the processor when a power good signal of the power good pin is detected to be a low level signal.
- a good signal is a low-level signal.
- the power good signal is at a high level; when an abnormality occurs in the voltage inverter, the output of the voltage inverter is turned off and the power good signal becomes a low level.
- the processor is connected to the voltage inverter via the I2C bus, and is configured to obtain voltage inverter information recorded in the register of the voltage inverter via the I2C bus when receiving a prompt message that the power good signal is a low-level signal, and after saving the voltage inverter information to a set cache area, turn off the output of the overcurrent protection component.
- the processor is configured to read the voltage inverter information from a set buffer area when receiving a voltage inverter query instruction.
- a human-computer interaction interface is provided on the processor, and the human-computer interaction interface is configured to input query instructions.
- the processor is configured to collect and save internal register information of the voltage inverter after receiving the prompt information, wherein the internal register information is used to locate the cause of the problem of the voltage inverter.
- a temperature sensor for detecting the temperature of the load is also included;
- the processor is connected to the temperature sensor and is configured to obtain the temperature value collected by the temperature sensor; when a temperature value greater than a temperature threshold value appears, the counting function is turned on; when the current temperature value obtained is greater than the previous temperature value, the count value is increased by one; until the count value reaches the set count upper limit value, the output of the overcurrent protection component is turned off.
- the processor is configured to enable the counting function and, when the current temperature value obtained is less than or equal to the previous temperature value, clear the counting value.
- the processor is configured to, after clearing the count value, turn off the counting function when the acquired current temperature value is less than or equal to the temperature threshold.
- the processor is configured to, after the counting function is turned on, turn off the output of the overcurrent protection component when the rate of change between the current temperature value and the previous temperature value exceeds a preset change threshold.
- the current monitoring chip is connected to the processor and is configured to, when it is detected that the voltage difference of the precision resistor is greater than a set threshold, transmit a warning signal to the complex programmable logic device, and then determine whether the voltage difference of the precision resistor is still greater than the set threshold within a preset time; if the voltage difference of the precision resistor is still greater than the set threshold within the preset time, transmit an alarm signal to the processor;
- the processor is configured to shut down the output of the overcurrent protection component when receiving an alarm signal transmitted by the current monitoring chip.
- the processor is a micro control unit, or a baseboard management controller.
- a motherboard protection method which is applicable to the above-mentioned motherboard protection system, and the method comprises:
- the output of the overcurrent protection component is turned off; wherein the interrupt signal is an interrupt signal sent by the complex programmable logic device when the complex programmable logic device receives a warning signal transmitted to the complex programmable logic device by the current monitoring chip when it detects that the voltage difference of the precision resistor is greater than the set threshold.
- the method before shutting down the output of the overcurrent protection component, the method further includes:
- the signal includes a warning signal
- a step of shutting down an output of the overcurrent protection component is performed.
- it also includes:
- it also includes:
- it also includes:
- the output of the overcurrent protection component is turned off; wherein the prompt information is the information transmitted to the processor when the complex programmable logic device detects the voltage inverter abnormality.
- the method further includes:
- the voltage inverter information recorded in the register of the voltage inverter is obtained through the I2C bus. After the voltage inverter information is saved in the set buffer area, the step of closing the output of the overcurrent protection component is executed.
- the method further includes:
- voltage inverter information is read from a setting buffer area.
- it also includes:
- the counting function When the temperature value is greater than the temperature threshold, the counting function is turned on;
- the method further includes:
- the counting function is turned off.
- the output of the overcurrent protection component is turned off.
- it also includes:
- the output of the overcurrent protection component is turned off.
- a computer non-volatile readable storage medium characterized in that a computer program is stored in the computer non-volatile readable storage medium, wherein the computer program implements the steps of the above-mentioned motherboard protection method when executed by a processor.
- the motherboard protection system includes a power supply, an overcurrent protection component, a voltage inverter, and a load connected to the voltage inverter, and also includes a precision resistor set between the overcurrent protection component and the voltage inverter, and the precision resistor is connected to a current monitoring chip; the current monitoring chip is connected to a complex programmable logic device, and the complex programmable logic device is connected to a processor.
- the current monitoring chip detects that the voltage difference of the precision resistor is greater than the set threshold, it indicates that a short circuit or a weak short circuit has occurred.
- the current monitoring chip can transmit an early warning signal to the complex programmable logic device.
- the complex programmable logic device receives the early warning signal, it sends an interrupt signal to the processor.
- the processor receives the interrupt signal sent by the complex programmable logic device, it turns off the output of the overcurrent protection component. Reduce the occurrence of burning.
- overcurrent protection can be achieved for each branch where the voltage inverter is located.
- FIG1 is a schematic structural diagram of a motherboard protection system provided in an embodiment of the present application.
- FIG2 is a schematic diagram of a circuit connection relationship of a motherboard protection system provided in an embodiment of the present application
- FIG3 is a flow chart of a motherboard protection method provided in an embodiment of the present application.
- FIG4 is a flow chart of a method for checking an interrupt signal provided in an embodiment of the present application.
- FIG5 is a flow chart of a method for safety detection between a power supply and an overcurrent protection component provided by an embodiment of the present application
- FIG6 is a flow chart of a method for safety detection between an overcurrent protection component and a current monitoring chip provided in an embodiment of the present application
- FIG7 is a flow chart of a method for voltage inverter safety detection provided in an embodiment of the present application.
- FIG8 is a flow chart of a method for load safety detection provided in an embodiment of the present application.
- FIG1 is a schematic diagram of the structure of a motherboard protection system provided by an embodiment of the present application, the system includes a power supply 11, an overcurrent protection component 12, a voltage inverter 13 and a load connected to the voltage inverter 13, and also includes a precision resistor 14 arranged between the overcurrent protection component 12 and the voltage inverter 13, the precision resistor 14 is connected to a current monitoring chip 15; the current monitoring chip 15 is connected to a complex programmable logic device 16, and the complex programmable logic device 16 is connected to a processor 17.
- the motherboard protection system often includes multiple loads, each of which is connected to a corresponding voltage inverter 13, which is configured to provide the load with the required voltage.
- a precision resistor 14 can be respectively set between the overcurrent protection component 12 and each voltage inverter 13, and the corresponding Current monitoring chip 15.
- FIG1 takes three loads as an example, and accordingly, three precision resistors 14 and three current monitoring chips 15 may be provided. It should be noted that FIG1 includes three loads for illustrative purposes only, and in actual applications, the motherboard protection system may include more or fewer loads, which is not limited here.
- the current monitoring chip 15 is configured to transmit a warning signal to the complex programmable logic device 16 when it is detected that the voltage difference of the precision resistor 14 is greater than a set threshold.
- Each current monitoring chip 15 is responsible for detecting its corresponding precision resistor 14 .
- the detection method of each current monitoring chip 15 is the same. In the embodiment of the present application, one current monitoring chip 15 is used as an example for the introduction.
- the voltage difference of the precision resistor 14 should be equal to or approximately equal to the set threshold. Once a short circuit or weak short circuit occurs, the voltage difference of the precision resistor 14 will increase. Therefore, when the current monitoring chip 15 detects that the voltage difference of the precision resistor 14 is greater than the set threshold, it indicates that a short circuit or weak short circuit has occurred. In order to avoid the occurrence of a large amount of heat generated in this situation and causing the board to burn, the current monitoring chip 15 can transmit an early warning signal to the complex programmable logic device 16.
- the complex programmable logic device 16 is configured to send an interrupt signal to the processor 17 when receiving a warning signal; the processor 17 is configured to shut down the output of the overcurrent protection component 12 when receiving an interrupt signal sent by the complex programmable logic device 16.
- the status pin of the current monitoring chip 15 can be connected to the general input and output interface of the complex programmable logic device 16.
- the signal of the status pin can be pulled low; correspondingly, when the complex programmable logic device 16 detects that the signal of the status pin is at a low level, it sends an interrupt signal to the processor 17.
- the status pin can output an Alert signal (alarm signal).
- the Alert signal is presented in the form of high and low levels.
- the Alert signal of the current monitoring chip 15 is at a high level, it means that there is no abnormality in the branch where the precision resistor 14 connected to the current monitoring chip 15 is located.
- the current monitoring chip 15 detects that the voltage difference of the precision resistor 14 is greater than the set threshold, the Alert signal can be lowered. At this time, the Alert signal is at a low level.
- the complex programmable logic device 16 detects that the Alert signal is at a low level, it will send an interrupt signal to the processor 17.
- the processor 17 may be an MCU (Microcontroller Unit) or a BMC (Baseboard Management Controller).
- MCU Microcontroller Unit
- BMC Baseboard Management Controller
- FIG2 is a schematic diagram of a circuit connection relationship of a motherboard protection system provided in an embodiment of the present application, wherein a power supply unit (Power Supply Unit, PSU) outputs a power supply P12V_PSU (12V Power Supply Unit, 12V power supply Device), as the input of the overcurrent protection component (E-Fuse chip), the I2C (Inter-Integrated Circuit) of the PSU and the E-Fuse chip are connected to the same bus and connected to the I2C0 of the MCU.
- the output power supply P12V of the E-Fuse chip is divided into three branches, and precision resistors are placed on each branch to monitor the current on the branch.
- Figure 2 takes the three precision resistors, precision resistor R1, precision resistor R2 and precision resistor R3, as an example.
- each precision resistor The two ends of each precision resistor are connected to its corresponding current monitoring chip.
- the current monitoring chips corresponding to each precision resistor are current monitoring chip U1, current monitoring chip U2 and current monitoring chip U3.
- the I2C of the current monitoring chip is connected to the I2C bus and then to the I2C2 of the MCU.
- the Alert signal of the current monitoring chip is connected to the GPIO (General-Purpose Input/Output) of the CPLD (Complex Programmable Logic Device).
- FIG2 takes three VRs (Voltage Regulators) as an example, and different numbers are added after each VR to distinguish different VRs, such as voltage inverter 1 (VR1), voltage inverter 2 (VR2), and voltage inverter 3 (VR3).
- VR1 Voltage Regulators
- P12V is converted into power supply P12V_1 as input of VR1 through precision resistor R1.
- VR1, VR2 and VR3 are voltage inverters, which can also be called power conversion chips. They can convert the input 12V voltage into a voltage level that the load can work normally. For example, P12V_1 is converted into VOUT1 through VR1 to provide the voltage required for normal operation of load 1.
- the I2C of VR1, VR2 and VR3 are connected in parallel and connected to I2C2 of MCU; the PGOOD (Power Good) signal of VR1, VR2 and VR3 is connected to the GPIO pin of CPLD respectively; temperature sensor 1, temperature sensor 2 and temperature sensor 3 are placed near load 1, load 2 and load 3 respectively, and are set to monitor the load temperature, and are connected to I2C1 of MCU through I2C bus; GPIO6 of CPLD is connected to GPIO pin of MCU to provide interrupt signal; I2C of CPLD is also connected to I2C2 of MCU.
- the CPLD includes GPIO0 ⁇ GPIO6 pins and I2C pins.
- GPIO0 ⁇ GPIO5 pins are input pins.
- the CPLD will only receive the level status of these pins and will not control them.
- the GPIO6 pin is an output pin.
- the CPLD After receiving the alarm from the current monitoring chip, that is, the GPIO pin detects that the Alert signal becomes low, the CPLD will actively control the GPIO6 pin to a low level and trigger the MCU interrupt.
- the I2C pin of the CPLD is connected to the I2C2 of the MCU. After receiving the alarm from the current monitoring chip, the CPLD will transmit the voltage difference abnormality information of the precision resistor to the MCU through the I2C bus.
- the MCU can edit a threshold value and write this threshold value into the current monitoring chip 15 through the I2C bus.
- the current monitoring chip 15 collects the voltage difference across the precision resistor 14 in real time and compares it with the threshold value. When the voltage difference across the precision resistor 14 collected by the current monitoring chip 15 is greater than the threshold value, the current monitoring chip 15 will pull the Alert signal low. After the GPIO pin of the CPLD receives the Alert signal and becomes low, the alarm mechanism is triggered. The GPIO6 pin of the CPLD sends an interrupt signal to the MCU. The interrupt signal is valid at a low level. After the CPLD triggers the alarm mechanism, the level of the GPIO6 pin will be pulled low.
- the motherboard protection system includes a power supply, an overcurrent protection component, a voltage inverter
- the load connected to the voltage inverter also includes a precision resistor set between the overcurrent protection component and the voltage inverter, and the precision resistor is connected to a current monitoring chip; the current monitoring chip is connected to a complex programmable logic device, and the complex programmable logic device is connected to a processor.
- the current monitoring chip detects that the voltage difference of the precision resistor is greater than the set threshold, it indicates that a short circuit or a weak short circuit has occurred.
- the current monitoring chip can transmit an early warning signal to the complex programmable logic device.
- the complex programmable logic device When the complex programmable logic device receives the early warning signal, it sends an interrupt signal to the processor. When the processor receives the interrupt signal sent by the complex programmable logic device, it turns off the output of the overcurrent protection component. Reduce the occurrence of burning.
- the processor by setting a precision resistor and a current monitoring chip between the overcurrent protection component and the voltage inverter, overcurrent protection can be achieved for each branch where the voltage inverter is located. Even if a weak short circuit occurs at the rear end of the voltage inverter, protection can be performed more quickly, thereby improving the safety of the network system.
- the processor 17 can obtain the signal recorded in the register of the corresponding current monitoring chip 15 when receiving the interrupt signal sent by the complex programmable logic device 16, thereby ensuring that the current monitoring chip 15 has indeed detected an abnormal voltage difference of the precision resistor 14, and it is not that the complex programmable logic device 16 mistakenly sent an interrupt signal.
- the processor 17 can be connected to the current monitoring chip 15 via the I2C bus.
- the processor 17 receives an interrupt signal, it can obtain the signal recorded in the register of the current monitoring chip 15 via the I2C bus to determine whether the signal includes a warning signal; when the signal includes a warning signal, it means that the precision resistor 14 has determined that a voltage difference abnormality has occurred, and the processor 17 can then turn off the output of the overcurrent protection component 12.
- the early warning signal is used to indicate that the Alert signal is at a low level. When the Alert signal is at a high level, there will be no early warning signal.
- the processor 17 can be connected to the power supply 11 and the overcurrent protection component 12 respectively, and is configured to implement safety detection of the circuit between the power supply 11 and the overcurrent protection component 12.
- the processor can detect the output current of the power supply 11 and the overcurrent protection component 12; when the difference between the output current of the power supply 11 and the output current of the overcurrent protection component 12 is greater than a set first threshold, the output of the power supply 11 is turned off.
- the first threshold may be a smaller value, which may be preset by a management personnel and is not limited here.
- the output current of the power supply 11 should be equal to or nearly equal to the output current of the overcurrent protection component 12. Therefore, when the difference between the output current of the power supply 11 and the output current of the overcurrent protection component 12 is greater than the set first threshold, it means that an abnormality has occurred in the circuit between the power supply 11 and the overcurrent protection component 12. At this time, the processor 17 can turn off the output of the power supply 11, thereby avoiding the occurrence of a circuit abnormality causing a burnout.
- the processor 17 can perform safety detection on the circuit between the overcurrent protection component 12 and the current monitoring chip.
- the voltage inverter 13, the precision resistor 14 and the current monitoring chip 15 have a one-to-one correspondence; in practical applications, there are often multiple voltage inverters 13, so correspondingly, there are also multiple current control chips 15.
- the processor 17 can collect the output currents of all current monitoring chips 15. When the difference between the output current of the overcurrent protection component 12 and the sum of the output currents of all current monitoring chips 15 is greater than the set second threshold, the output of the overcurrent protection component 12 is turned off.
- the second threshold value may be a smaller value, which may be preset by the administrator.
- the value of the second threshold value may be the same as or different from the value of the first threshold value, which is not limited here.
- the output current of the overcurrent protection component 12 should be equal to or nearly equal to the sum of the output currents of all the current monitoring chips 15. Therefore, when the difference between the output current of the overcurrent protection component 12 and the sum of the output currents of all the current monitoring chips 15 is greater than the set second threshold, it indicates that there is an abnormality in the circuit between the overcurrent protection component 12 and the current monitoring chip 15, and the processor 17 can turn off the output of the overcurrent protection component 12.
- the complex programmable logic device 16 can be connected to each voltage inverter 13 respectively, so as to realize the safety detection of the voltage inverter 13.
- the complex programmable logic device 16 can transmit the prompt information of the abnormality of the voltage inverter 13 to the processor 17 when the abnormality of the voltage inverter 13 is detected; the processor 17 turns off the output of the overcurrent protection component 12 when receiving the prompt information of the abnormality of the voltage inverter 13.
- the general input and output interface of the complex programmable logic device 16 can be connected to the power good pin of the voltage inverter 13.
- the complex programmable logic device 16 detects that the power good signal of the power good pin is a low-level signal, it transmits a prompt information that the power good signal is a low-level signal to the processor 17.
- the power good pin can output a PGOOD signal.
- the PGOOD signal is at a high level.
- the output of the voltage inverter 13 is turned off, and the PGOOD signal becomes a low level.
- Each voltage inverter 13 has a corresponding register, in which the voltage inverter 13 generates a signal during operation. This information can provide a basis for fault analysis.
- the processor 17 can be connected to the voltage inverter 13 via the I2C bus.
- the processor 17 receives the prompt information that the power good signal is a low-level signal, it can obtain the voltage inverter 13 information recorded in the register of the voltage inverter 13 via the I2C bus, and after saving the voltage inverter 13 information to the set buffer area, turn off the output of the overcurrent protection component 12.
- the problem analyst can input a query instruction of the voltage inverter 13 through the human-machine interaction interface provided by the processor 17.
- the processor 17 receives the query instruction of the voltage inverter 13, it can read the voltage inverter 13 information from the set buffer area.
- a corresponding temperature sensor 18 can be set for each load.
- the temperature sensor 18 can be set near the load and is configured to detect the temperature of the load.
- the processor 17 is connected to the temperature sensor 18 and is configured to obtain the temperature value collected by the temperature sensor 18; when a temperature value greater than the temperature threshold appears, the counting function is turned on; when the current temperature value obtained is greater than the previous temperature value, the count value is increased by one; when the current temperature value obtained is less than or equal to the previous temperature value, the count value is cleared; until the count value reaches the set count upper limit value, the output of the overcurrent protection component 12 is turned off.
- the value of the count upper limit can be set based on actual needs, for example, it can be set to 10.
- the processor 17 clears the count value, if the current temperature value obtained is less than or equal to the temperature threshold, it means that the load does not have a problem of over-temperature, and the counting function can be turned off at this time.
- the rate of change of the current temperature value and the previous temperature value can be compared with the preset change threshold.
- the processor 17 can turn off the output of the overcurrent protection component 12. At this time, the processor 17 can also issue an alarm prompt for load detection, so that the management personnel can promptly detect whether the load is damaged to ensure the motherboard protection system. Subsequent safe operation.
- the complex programmable logic device 16 may be damaged or there may be problems in the link transmission between the complex programmable logic device 16 and the current monitoring chip 15, resulting in the complex programmable logic device 16 being unable to promptly detect that the Alert signal of the current monitoring chip 15 is at a low level, and thus being unable to transmit an interrupt signal to the processor 17.
- the current monitoring chip 15 can be connected to the processor 17.
- the current monitoring chip 15 detects that the voltage difference of the precision resistor 14 is greater than the set threshold, it transmits a warning signal to the complex programmable logic device 16, and then determines whether the voltage difference of the precision resistor 14 is still greater than the set threshold within a preset time.
- the value of the preset time can be set based on actual needs and is not limited here.
- the processor 17 If the voltage difference of the precision resistor 14 is still greater than the set threshold within the preset time, it means that the processor 17 has not turned off the output of the overcurrent protection component 12, resulting in current still passing through the precision resistor 14. At this time, the current monitoring chip 15 can transmit an alarm signal to the processor 17, so that the processor 17 can turn off the output of the overcurrent protection component 12 when receiving the alarm signal transmitted by the current monitoring chip 15.
- FIG3 is a flow chart of a motherboard protection method provided in an embodiment of the present application, which is applicable to the above-mentioned motherboard protection system.
- the method includes:
- S301 Determine whether an interrupt signal sent by a complex programmable logic device is received.
- the complex programmable logic device can detect the current monitoring chip. When the voltage difference across the precision resistor collected by the current monitoring chip is greater than the threshold, the current monitoring chip will pull the Alert signal low. After the GPIO pin of the complex programmable logic device receives the Alert signal and becomes low, the alarm mechanism is triggered. The GPIO6 pin of the complex programmable logic device sends an interrupt signal to the processor. The interrupt signal is valid at a low level. After the complex programmable logic device triggers the alarm mechanism, it will pull the level of the GPIO6 pin low.
- the processor When the processor receives an interrupt signal, it indicates that there is a short circuit or weak short circuit in the motherboard. In order to avoid a large amount of heat energy generated by a long-term low-impedance state, which eventually causes the board to burn out, the processor can first turn off the output of the overcurrent protection component when it receives an interrupt signal sent by a complex programmable logic device, thereby effectively protecting the motherboard by cutting off the transmission of current on the motherboard.
- the register information of the current monitoring chip can be obtained to ensure the reliability of the interrupt signal.
- FIG4 is a flow chart of a method for checking an interrupt signal provided in an embodiment of the present application, the method comprising:
- S401 Determine whether an interrupt signal sent by a complex programmable logic device is received.
- S402 Acquire the signal recorded in the register of the current monitoring chip through the I2C bus.
- the current monitoring chip when the current monitoring chip detects that the voltage difference between the two ends of the precision resistor it collects is greater than the threshold, it will pull down the Alert signal, and the register will record the Alert signal as a low level.
- the register will record the corresponding signal.
- the low-level Alert signal can be called a warning signal.
- S403 Determine whether the signal includes a warning signal.
- the signal includes a warning signal
- the interrupt signal is consistent with the signal recorded in the register, and there is no case where the complex programmable logic device falsely triggers the interrupt signal.
- S404 can be executed.
- the processor sets the protection threshold for the current monitoring chip through the I2C bus.
- the current monitoring chip will set different protection thresholds according to the actual working current of the back end.
- the set protection threshold is usually 1.5 times the maximum working current of the branch.
- the current monitoring chip collects the voltage difference across the precision resistor and compares it with the protection threshold. When the voltage difference across the precision resistor is greater than the protection threshold set by the processor, the current monitoring chip actively pulls down the Alert signal; after detecting the low-level signal, the GPIO pin of the complex programmable logic device will send an interrupt signal to the processor through the GPIO6 pin. After receiving the interrupt signal, in order to ensure the accuracy of the interrupt signal and prevent the signal from being interfered with or the complex programmable logic device from misreporting, the processor accesses the corresponding Alert signal identification register inside the power monitoring chip through the I2C bus. If the register indicates that the Alert signal is indeed low, the processor confirms that the anti-burn board protection mechanism is triggered, and the processor turns off the overcurrent protection component output through the I2C bus to complete the power-off protection action.
- the processor when the processor obtains an interrupt signal, it can ensure the reliability of the interrupt signal by querying the signal recorded in the register of the current monitoring chip, thereby avoiding the complex programmable logic device from erroneously triggering the interrupt signal and causing the mainboard to accidentally power off.
- FIG5 is a flow chart of a method for safety detection between a power supply and an overcurrent protection component provided by an embodiment of the present application, the method comprising:
- S501 Detect output current of the power supply and the overcurrent protection component.
- S502 Determine whether the difference between the output current of the power supply and the output current of the overcurrent protection component is greater than a set first threshold.
- the processor can collect the output current values of the power supply and the overcurrent protection component through the I2C bus, and perform subtraction processing on the two collected current information.
- the processor internally sets the current protection threshold on the PCB path between the power supply and the overcurrent protection component. In order to distinguish different thresholds, the current protection threshold can be called the first threshold.
- the anti-burn board control is triggered.
- the processor determines that an abnormality has occurred, and the processor shuts down the power supply output through the I2C bus to complete the power-off protection function.
- FIG6 is a flow chart of a method for safety detection between an overcurrent protection component and a current monitoring chip provided by an embodiment of the present application, the method comprising:
- S601 Collect the output current of all current monitoring chips.
- the processor can be connected to each current monitoring chip separately through the I2C bus, so that the output current of all current monitoring chips can be collected.
- S602 Determine whether the difference between the output current of the overcurrent protection component and the sum of the output currents of all current monitoring chips is greater than a set second threshold.
- the processor collects the current values of all current monitoring chips through the I2C bus and adds the collected current information.
- the processor simultaneously collects the output current of the overcurrent protection component through the I2C bus and subtracts the collected output current of the overcurrent protection component from the total output current of the current monitoring chip.
- the processor internally sets the current protection threshold on the PCB path between the overcurrent protection component and the precision resistor. In order to facilitate the distinction There are different thresholds, and the current protection threshold can be called the second threshold.
- the processor determines that an abnormality has occurred, and the processor turns off the overcurrent protection component output through the I2C bus to complete the power-off protection action.
- FIG. 7 is a flow chart of a method for voltage inverter safety detection provided in an embodiment of the present application, the method comprising:
- the prompt information is information transmitted to the processor when the complex programmable logic device detects an abnormality in the voltage inverter.
- the problem analyst can input a query instruction for the voltage inverter through the human-computer interaction interface provided by the processor.
- the processor receives the voltage inverter query instruction, it can read the voltage inverter information from the set buffer area.
- the processor when it receives a prompt message indicating an abnormality of the voltage inverter, it can collect and save the internal register information of the voltage inverter through the I2C bus. The purpose of this action is to enable subsequent problem analysts to locate the cause of the problem through the voltage inverter register information saved by the processor. After the register information is saved, the processor turns off the output of the overcurrent protection component through the I2C bus to complete the power-off protection action.
- FIG8 is a flow chart of a method for load safety detection provided by an embodiment of the present application, the method comprising:
- the temperature sensor is configured to detect the temperature of the load.
- S803 Determine whether the current temperature value obtained is greater than the previous temperature value.
- the processor can turn off the output of the overcurrent protection component.
- the processor may turn off the counting function.
- the processor captures the temperature information inside the voltage inverter and temperature sensor through the I2C bus, and sets the over-temperature protection threshold internally.
- the processor compares the collected temperature information with the over-temperature protection threshold set internally.
- the processor starts to count. If the temperature captured by the processor in the subsequent 10 temperature data captures is greater than the previous data, the processor determines that an abnormality has occurred, and the processor turns off the output of the over-current protection component through the I2C bus to complete the power-off protection action. If one of the 10 consecutive captured temperature information is lower than the temperature captured last time, the count is restarted until the temperature is lower than the protection threshold.
- the purpose of this operation is to prevent the captured temperature information from being incorrect, which may cause the system to power off accidentally.
- the change rate between the current temperature value and the previous temperature value can be compared with the preset change threshold.
- the processor can turn off the output of the overcurrent protection component.
- the motherboard protection system includes a power supply, an overcurrent protection component, a voltage inverter, and a load connected to the voltage inverter, and also includes a precision resistor set between the overcurrent protection component and the voltage inverter, and the precision resistor is connected to a current monitoring chip; the current monitoring chip is connected to a complex programmable logic device, and the complex programmable logic device is connected to a processor.
- the current monitoring chip detects that the voltage difference of the precision resistor is greater than the set threshold, it indicates that a short circuit or a weak short circuit has occurred.
- the current monitoring chip can transmit an early warning signal to the complex programmable logic device.
- the complex programmable logic device receives the early warning signal, it sends an interrupt signal to the processor.
- the processor receives the interrupt signal sent by the complex programmable logic device, it turns off the output of the overcurrent protection component. Reduce the occurrence of burning.
- overcurrent protection can be achieved for each branch where the voltage inverter is located.
- the motherboard protection method in the embodiment of the present application is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer non-volatile readable storage medium.
- the technical solution of the present application is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a non-volatile readable storage medium to execute all or part of the steps of the method of the embodiment of the present application.
- the aforementioned non-volatile readable storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), electrically erasable programmable ROM, register, hard disk, removable disk, CD-ROM, magnetic disk or optical disk and other media that can store program code.
- an embodiment of the present application further provides a computer non-volatile readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the above-mentioned motherboard protection method are implemented.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Quality & Reliability (AREA)
- Mathematical Physics (AREA)
- Protection Of Static Devices (AREA)
Abstract
一种主板防护系统和方法,在过流保护部件与电压逆变器之间设置精密电阻、精密电阻连接有电流监控芯片。电流监控芯片与复杂可编程逻辑器件连接,在检测到精密电阻的压差大于设定阈值时,向复杂可编程逻辑器件传输预警信号。复杂可编程逻辑器件与处理器连接,在接收到预警信号的情况下,向处理器发送中断信号。处理器接收到中断信号时,关闭过流保护部件的输出。通过在过流保护部件与电压逆变器之间设置精密电阻和电流监控芯片,可以实现对每个电压逆变器所在支路的过流保护,提升了网络系统的安全程度。利用复杂可编程逻辑器件发送的中断信号,可以让处理器所有资源去处理防烧包保护机制,实现了最快速度的断电。
Description
相关申请的交叉引用
本申请要求于2022年11月16日提交中国专利局,申请号为202211430839.X,申请名称为“一种主板防护系统和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及主板设计技术领域,特别是涉及一种主板防护系统和方法。
客户现网经常会遇到烧板问题,虽然目前已经针对PCB(Printed Circuit Boards,印刷电路板)的生产加工工艺不断做出改善,在设计层面也不断尝试不同的防止烧板的策略,但仍然无法避免烧板问题的发生。客户机房一旦发生烧板现象,对客户带来的风险是无法估量的,轻则导致单服务器烧毁、掉电,影响客户业务运行。重则导致整个数据中心着火,对客户带来严重的损害。
通常造成烧板所需的能量是巨大的,需要将烧损位置的温度加热到足以导致PCB材质起火、冒烟的温度,这种条件也只会在电源网络上具备。因此,烧板问题一直是板级电源工程师重点研究的方向。
在目前的服务器设计中,电源工程师通常在电源网络上放置E-Fuse(一次性可编程存储器)芯片,用以实现在后端发生过流或短路现象时,达到快速断电的目的,进而实现掉电保护,防止后端因过流或短路原因造成温度急剧升高,最终造成烧板的现象。
但实际的防烧板预期效果并没有达到,客户机房仍然不断出现烧板现象。究其根本原因,后端元器件或PCB在发生异常时并不能完全短路,而是会长时间处于低阻抗的状态,此状态不足以引发前端E-Fuse芯片过流或短路保护,但却能够产生大量的热能,最终引发烧板现象的发生。比如,12V(伏)电源路径上的E-Fuse芯片的过流保护点设定电流为50A(安培),后端某一电容发生失效,失效后阻抗为1ohm(欧姆),该失效电容上会有12A的电流通过,但却无法触发E-Fuse芯片的过流保护功能,最终该失效电容上产生大量的热能致使烧板现象发生。
可见,如何降低烧板的情况发生,是本领域技术人员需要解决的问题。
发明内容
本申请实施例的目的是提供一种主板防护系统和方法,可以降低烧板的情况发生。
为解决上述技术问题,根据第一方面,提供一种主板防护系统,包括电源供应器、过流保护部件、电压逆变器以及与电压逆变器连接的负载,还包括在过流保护部件与电压逆变器之间设置的精密电阻、精密电阻连接有电流监控芯片;电流监控芯片与复杂可编程逻辑器件连接,复杂可编程逻辑器件与处理器连接;
电流监控芯片,被设置为在检测到精密电阻的压差大于设定阈值的情况下,向复杂可编程逻辑器件传输预警信号;
复杂可编程逻辑器件,被设置为在接收到预警信号的情况下,向处理器发送中断信号;
处理器,被设置为接收到复杂可编程逻辑器件发送的中断信号的情况下,关闭过流保护部件的输出。
可选地,电流监控芯片的状态引脚与复杂可编程逻辑器件的通用输入输出接口连接,被设置为在检测到精密电阻的压差大于设定阈值的情况下,将状态引脚的信号拉低;
相应的,复杂可编程逻辑器件,被设置为在检测到状态引脚的信号为低电平信号的情况下,向处理器发送中断信号。
可选地,处理器通过I2C总线与电流监控芯片连接,被设置为接收到中断信号的情况下,通过I2C总线获取电流监控芯片的寄存器记录的信号;判断信号是否包括预警信号;在信号包括预警信号的情况下,关闭过流保护部件的输出。
可选地,处理器分别与电源供应器以及过流保护部件连接,被设置为检测电源供应器与过流保护部件的输出电流;在电源供应器的输出电流与过流保护部件的输出电流的差值大于设定的第一阈值的情况下,关闭电源供应器的输出。
可选地,电压逆变器、精密电阻以及电流监控芯片具有一一对应关系;在电压逆变器为多个的情况下,处理器,被设置为收集所有电流监控芯片的输出电流;在过流保护部件的输出电流与所有电流监控芯片的输出电流的总和的差值大于设定的第二阈值的情况下,关闭过流保护部件的输出。
可选地,复杂可编程逻辑器件与电压逆变器连接,被设置为检测到电压逆变器异常的情况下,向处理器传输电压逆变器异常的提示信息;
处理器,被设置为在接收到电压逆变器异常的提示信息的情况下,关闭过流保护部件的输出。
可选地,复杂可编程逻辑器件的通用输入输出接口与电压逆变器的电源良好引脚连接,被设置为检测到电源良好引脚的电源良好信号为低电平信号的情况下,向处理器传输电源良
好信号为低电平信号的提示信息。
可选地,在电压逆变器正常工作的情况下,电源良好信号为高电平;在电压逆变器发生异常时,电压逆变器的输出关闭,电源良好信号变为低电平。
可选地,处理器通过I2C总线与电压逆变器连接,被设置为在接收到电源良好信号为低电平信号的提示信息的情况下,通过I2C总线获取电压逆变器的寄存器记录的电压逆变器信息,在将电压逆变器信息保存至设定缓存区后,关闭过流保护部件的输出。
可选地,处理器,被设置为在接收到电压逆变器查询指令的情况下,从设定缓存区读取电压逆变器信息。
可选地,处理器上提供了人机交互界面,人机交互界面被设置为输入查询指令。
可选地,处理器,被设置为在接收到提示信息后,收集电压逆变器的内部寄存器信息并进行保存,其中,内部寄存器信息用于定位电压逆变器的问题原因。
可选地,还包括用于检测负载温度的温度传感器;
处理器与温度传感器连接,被设置为获取温度传感器采集的温度值;当出现大于温度阈值的温度值时,开启计数功能;在获取的当前温度值大于上一次的温度值时,将计数值加一;直至计数值达到设定的计数上限值,则关闭过流保护部件的输出。
可选地,处理器,被设置为开启计数功能后,在出现获取的当前温度值小于或等于上一次的温度值的情况下,将计数值清零。
可选地,处理器,被设置为在将计数值清零后,在出现获取的当前温度值小于或等于温度阈值的情况下,关闭计数功能。
可选地,处理器,被设置为在开启计数功能后,在当前温度值与上一次温度值的变化率超过预设变化阈值的情况下,关闭过流保护部件的输出。
可选地,电流监控芯片与处理器连接,被设置为在检测到精密电阻的压差大于设定阈值的情况下,向复杂可编程逻辑器件传输预警信号之后,判断预设时间内精密电阻的压差是否仍大于设定阈值;在预设时间内精密电阻的压差仍大于设定阈值的情况下,向处理器传输告警信号;
处理器,被设置为在接收到电流监控芯片传输的告警信号的情况下,关闭过流保护部件的输出。
可选地,处理器为微控制单元,或者,基板管理控制器。
根据第二方面,提供了一种主板防护方法,适用于上述的主板防护系统,方法包括:
判断是否接收到复杂可编程逻辑器件发送的中断信号;
在接收到复杂可编程逻辑器件发送的中断信号的情况下,关闭过流保护部件的输出;其中,中断信号为复杂可编程逻辑器件在接收到电流监控芯片在检测到精密电阻的压差大于设定阈值时,向复杂可编程逻辑器件传输的预警信号的情况下,发送的中断信号。
可选地,在关闭过流保护部件的输出之前还包括:
在接收到中断信号的情况下,通过I2C总线获取电流监控芯片的寄存器记录的信号;
判断信号是否包括预警信号;
在信号包括预警信号的情况下,执行关闭过流保护部件的输出的步骤。
可选地,还包括:
检测电源供应器与过流保护部件的输出电流;
在电源供应器的输出电流与过流保护部件的输出电流的差值大于设定的第一阈值的情况下,关闭电源供应器的输出。
可选地,还包括:
收集所有电流监控芯片的输出电流;
在过流保护部件的输出电流与所有电流监控芯片的输出电流的总和的差值大于设定的第二阈值的情况下,关闭过流保护部件的输出。
可选地,还包括:
在接收到复杂可编程逻辑器件传输的电压逆变器异常的提示信息的情况下,关闭过流保护部件的输出;其中,提示信息为复杂可编程逻辑器件检测到电压逆变器异常的情况下,向处理器传输的信息。
可选地,在接收到复杂可编程逻辑器件传输的电压逆变器异常的提示信息的情况下,关闭过流保护部件的输出之前还包括:
在接收到复杂可编程逻辑器件传输的电压逆变器异常的提示信息的情况下,通过I2C总线获取电压逆变器的寄存器记录的电压逆变器信息,在将电压逆变器信息保存至设定缓存区后,执行关闭过流保护部件的输出的步骤。
可选地,在将电压逆变器信息保存至设定缓存区之后还包括:
在接收到电压逆变器查询指令的情况下,从设定缓存区读取电压逆变器信息。
可选地,还包括:
获取温度传感器采集的温度值;其中,温度传感器被设置为检测负载的温度;
当出现大于温度阈值的温度值时,开启计数功能;
在获取的当前温度值大于上一次的温度值时,将计数值加一;
直至计数值达到设定的计数上限值,则关闭过流保护部件的输出。
可选地,在开启计数功能之后还包括:
在出现获取的当前温度值小于或等于上一次的温度值的情况下,将计数值清零。
可选地,在将计数值清零之后还包括:
在出现获取的当前温度值小于或等于温度阈值的情况下,关闭计数功能。
可选地,在开启计数功能之后还包括:
在当前温度值与上一次温度值的变化率超过预设变化阈值的情况下,关闭过流保护部件的输出。
可选地,还包括:
在接收到电流监控芯片传输的告警信号的情况下,关闭过流保护部件的输出。
根据第三方面,提供了一种计算机非易失性可读存储介质,其特征在于,计算机非易失性可读存储介质中存储有计算机程序,其中,计算机程序被处理器执行时实现上述主板防护方法的步骤。
由上述技术方案可以看出,主板防护系统包括电源供应器、过流保护部件、电压逆变器以及与电压逆变器连接的负载,还包括在过流保护部件与电压逆变器之间设置的精密电阻、精密电阻连接有电流监控芯片;电流监控芯片与复杂可编程逻辑器件连接,复杂可编程逻辑器件与处理器连接。电流监控芯片在检测到精密电阻的压差大于设定阈值的情况下,说明出现了短路或弱短路的情况,为了避免这种情况产生大量热量引发烧板现象的发生,电流监控芯片可以向复杂可编程逻辑器件传输预警信号。复杂可编程逻辑器件在接收到预警信号的情况下,向处理器发送中断信号。处理器接收到复杂可编程逻辑器件发送的中断信号的情况下,关闭过流保护部件的输出。降低烧板的情况发生。在该技术方案中,通过在过流保护部件与电压逆变器之间设置精密电阻和电流监控芯片,可以实现对每个电压逆变器所在支路的过流保护,即便是电压逆变器的后端发生弱短路现象,也能够更快速的进行保护,提升了网络系统的安全程度。利用精密电阻和电流监控芯片监测电流,与传统技术中直接使用过流保护部件对每个电压逆变器所在支路进行过流保护的方式相比,既能实现电流监测功能,同时有效降低了设计成本。并且利用复杂可编程逻辑器件发送的中断信号关闭处理器所有在运行业务,可以让处理器所有资源去处理防烧包保护机制,提高了保护速度,实现了最快速度的断电。
为了更清楚地说明本申请实施例,下面将对实施例中所需要使用的附图做简单的介绍,
显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种主板防护系统的结构示意图;
图2为本申请实施例提供的一种主板防护系统的电路连接关系的示意图;
图3为本申请实施例提供的一种主板防护方法的流程图;
图4为本申请实施例提供的一种中断信号的校验方法的流程图;
图5为本申请实施例提供的一种电源供应器与过流保护部件之间安全检测的方法的流程图;
图6为本申请实施例提供的一种过流保护部件与电流监控芯片之间安全检测的方法的流程图;
图7为本申请实施例提供的一种电压逆变器安全检测的方法的流程图;
图8为本申请实施例提供的一种负载安全检测的方法的流程图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下,所获得的所有其他实施例,都属于本申请保护范围。
本申请的说明书和权利要求书及上述附图中的术语“包括”和“具有”,以及与“包括”和“具有”相关的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可包括没有列出的步骤或单元。
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和可选实施方式对本申请作可选的详细说明。
接下来,详细介绍本申请实施例所提供的一种主板防护系统。图1为本申请实施例提供的一种主板防护系统的结构示意图,该系统包括电源供应器11、过流保护部件12、电压逆变器13以及与电压逆变器13连接的负载,还包括在过流保护部件12与电压逆变器13之间设置的精密电阻14、精密电阻14连接有电流监控芯片15;电流监控芯片15与复杂可编程逻辑器件16连接,复杂可编程逻辑器件16与处理器17连接。
主板防护系统包含的负载往往有多个,每个负载连接有对应一个电压逆变器13,电压逆变器13被设置为向负载提供其所需的电压。在本申请实施例中,可以在过流保护部件12与每个电压逆变器13之间分别设置一个精密电阻14,并且针对该精密电阻14设置其对应
的电流监控芯片15。
图1中是以3个负载为例,相应的,可以设置3个精密电阻14和3个电流监控芯片15。需要说明的是,图1包含3个负载仅为举例说明,在实际应用中,主板防护系统包含的负载可以有更多或更少个,在此不做限定。
电流监控芯片15,被设置为在检测到精密电阻14的压差大于设定阈值的情况下,向复杂可编程逻辑器件16传输预警信号。
每个电流监控芯片15负责检测其对应的精密电阻14,每个电流监控芯片15的检测方式相同,在本申请实施例中,是以一个电流监控芯片15为例展开的介绍。
在主板防护系统不存在短路或者弱短路的情况下,精密电阻14的压差应该等于或近似等于设定阈值。一旦出现短路或弱短路的情况,精度电阻14的压差会变大,因此电流监控芯片15在检测到精密电阻14的压差大于设定阈值的情况下,说明出现了短路或弱短路的情况,为了避免这种情况产生大量热量引发烧板现象的发生,电流监控芯片15可以向复杂可编程逻辑器件16传输预警信号。
复杂可编程逻辑器件16,被设置为在接收到预警信号的情况下,向处理器17发送中断信号;处理器17,被设置为接收到复杂可编程逻辑器件16发送的中断信号的情况下,关闭过流保护部件12的输出。
在实际应用中,可以将电流监控芯片15的状态引脚与复杂可编程逻辑器件16的通用输入输出接口连接,电流监控芯片15在检测到精密电阻14的压差大于设定阈值的情况下,可以将状态引脚的信号拉低;相应的,复杂可编程逻辑器件16在检测到状态引脚的信号为低电平的情况下,向处理器17发送中断信号。
状态引脚可以输出Alert信号(报警信号)。Alert信号以高低电平的形式呈现。电流监控芯片15的Alert信号为高电平的情况下,说明与该电流监控芯片15连接的精密电阻14所在支路不存在异常。当电流监控芯片15检测到精密电阻14的压差大于设定阈值的情况下,可以将Alert信号调低,此时Alert信号为低电平,复杂可编程逻辑器件16在检测到Alert信号为低电平的情况下,会向处理器17发送中断信号。
在本申请实施例中,处理器17可以采用MCU(Microcontroller Unit,微控制单元),也可以采用BMC(Baseboard Management Controller,基板管理控制器)。为了方便介绍,均以MCU为例展开说明。
图2为本申请实施例提供的一种主板防护系统的电路连接关系的示意图,电源供应器(Power Supply Unit,PSU)输出电源P12V_PSU(12V Power Supply Unit,12V电源供应
装置),作为过流保护部件(E-Fuse芯片)的输入,PSU和E-Fuse芯片的I2C(Inter-Integrated Circuit,集成电路总线)接在同一总线上,并共同接至MCU的I2C0上。E-Fuse芯片的输出电源P12V分为三个支路,在每一条支路上放置精密电阻,用来监测该支路上的电流。图2以精密电阻R1、精密电阻R2和精密电阻R3这三个精密电阻为例。每个精密电阻两端接至其对应的电流监控芯片。各精密电阻对应的电流监控芯片分别为电流监控芯片U1、电流监控芯片U2和电流监控芯片U3。电流监控芯片的I2C共同接至I2C总线后一块接至MCU的I2C2,电流监控芯片的Alert信号接至CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)的GPIO(General-Purpose Input/Output,通用输入输出接口)。图2中以3个VR(Voltage Regulator,电压逆变器)为例,在每个VR后面添加不同的数字用于区别不同的VR,如电压逆变器1(VR1)、电压逆变器2(VR2)、电压逆变器3(VR3)。
P12V经过精密电阻R1转换为电源P12V_1作为VR1的输入,VR1、VR2、VR3为电压逆变器,也可以将VR1、VR2、VR3称作电源转换芯片,可将输入的12V电压转换为负载能够正常工作的电压等级,例如,P12V_1经VR1转换为VOUT1为负载1提供正常工作所需电压。VR1、VR2、VR3的I2C并联后共同接入MCU的I2C2;VR1、VR2、VR3的PGOOD(Power Good,电源正常)信号分别接入CPLD的GPIO管脚;温度传感器1、温度传感器2、温度传感器3分别放置在负载1、负载2、负载3的附近,被设置为监控负载温度,并通过I2C总线一并连接到MCU的I2C1;CPLD的GPIO6连接至MCU的GPIO管脚,提供中断信号;CPLD的I2C同样接至MCU的I2C2。
图2中CPLD包含有GPIO0~GPIO6管脚和I2C管脚,GPIO0~GPIO5管脚为输入管脚,CPLD只会接收这些管脚的电平状态,不会进行控制;GPIO6管脚为输出管脚,CPLD在接收到来自电流监控芯片的告警即GPIO管脚检测到Alert信号变低后,会主动控制GPIO6管脚为低电平,触发MCU中断。CPLD的I2C管脚连接到MCU的I2C2,CPLD在接收到来自电流监控芯片的告警后,会通过I2C总线将精密电阻的压差异常信息传递至MCU。
在实际应用中,MCU可编辑一个阈值,通过I2C总线将此阈值写入电流监控芯片15中,电流监控芯片15实时采集精密电阻14两端的压差并同该阈值进行比较,当电流监控芯片15采集到的精密电阻14两端的压差大于该阈值时,电流监控芯片15会将Alert信号拉低,CPLD的GPIO管脚接收到Alert信号变低后,触发告警机制,CPLD的GPIO6管脚发送中断信号给MCU,中断信号为低电平有效,CPLD触发告警机制后会将GPIO6管脚的电平拉低。
由上述技术方案可以看出,主板防护系统包括电源供应器、过流保护部件、电压逆变器
以及与电压逆变器连接的负载,还包括在过流保护部件与电压逆变器之间设置的精密电阻、精密电阻连接有电流监控芯片;电流监控芯片与复杂可编程逻辑器件连接,复杂可编程逻辑器件与处理器连接。电流监控芯片在检测到精密电阻的压差大于设定阈值的情况下,说明出现了短路或弱短路的情况,为了避免这种情况产生大量热量引发烧板现象的发生,电流监控芯片可以向复杂可编程逻辑器件传输预警信号。复杂可编程逻辑器件在接收到预警信号的情况下,向处理器发送中断信号。处理器接收到复杂可编程逻辑器件发送的中断信号的情况下,关闭过流保护部件的输出。降低烧板的情况发生。在该技术方案中,通过在过流保护部件与电压逆变器之间设置精密电阻和电流监控芯片,可以实现对每个电压逆变器所在支路的过流保护,即便是电压逆变器的后端发生弱短路现象,也能够更快速的进行保护,提升了网络系统的安全程度。利用精密电阻和电流监控芯片监测电流,与传统技术中直接使用过流保护部件对每个电压逆变器所在支路进行过流保护的方式相比,既能实现电流监测功能,同时有效降低了设计成本。并且利用复杂可编程逻辑器件发送的中断信号关闭处理器所有在运行业务,可以让处理器所有资源去处理防烧包保护机制,提高了保护速度,实现了最快速度的断电。
在本申请实施例中,为了降低误判,提升主板防烧包保护操作的准确性,处理器17在接收到复杂可编程逻辑器件16发送的中断信号时,可以获取相应电流监控芯片15中寄存器记录的信号,从而确保电流监控芯片15确实检测到了精密电阻14压差异常的情况,并非是复杂可编程逻辑器件16误发送中断信号。
在可选实现中,处理器17可以通过I2C总线与电流监控芯片15连接,处理器17在接收到中断信号的情况下,可以通过I2C总线获取电流监控芯片15的寄存器记录的信号,判断信号是否包括预警信号;在信号包括预警信号的情况下,说明精密电阻14确定出现了压差异常,处理器17此时可以关闭过流保护部件12的输出。
预警信号用于指示Alert信号为低电平。在Alert信号为高电平的情况下,不会存在预警信号。
在本申请实施例中,处理器17可以分别与电源供应器11以及过流保护部件12连接,被设置为实现对电源供应器11与过流保护部件12之间电路的安全检测。
在可选实现中,处理器可以检测电源供应器11与过流保护部件12的输出电流;在电源供应器11的输出电流与过流保护部件12的输出电流的差值大于设定的第一阈值的情况下,关闭电源供应器11的输出。
第一阈值可以为取值较小的一个数值,可以由管理人员预先设定好,在此不做限定。
在电路不存在短路或者弱短路的情况下,电源供应器11的输出电流与过流保护部件12的输出电流应该相等或者近乎相等。因此,在电源供应器11的输出电流与过流保护部件12的输出电流的差值大于设定的第一阈值的情况下,说明电源供应器11和过流保护部件12之间的电路出现了异常,此时处理器17可以关闭电源供应器11的输出,从而避免电路异常引发烧板的情况发生。
在本申请实施例中,处理器17可以对过流保护部件12与电流监控芯片之间的电路进行安全检测。
电压逆变器13、精密电阻14以及电流监控芯片15具有一一对应关系;在实际应用中,电压逆变器13往往有多个,因此相应的,电流控制芯片15也有多个。在电压逆变器13为多个的情况下,处理器17可以收集所有电流监控芯片15的输出电流。在过流保护部件12的输出电流与所有电流监控芯片15的输出电流的总和的差值大于设定的第二阈值的情况下,关闭过流保护部件12的输出。
第二阈值可以为取值较小的一个数值,可以由管理人员预先设定好。第二阈值的取值与第一阈值的取值可以相同,也可以不同,在此不做限定。
在过流保护部件12与各电流监控芯片15之间的电路不存在异常的情况下,过流保护部件12的输出电流与所有电流监控芯片15的输出电流的总和应该相等或者近乎相等。因此在过流保护部件12的输出电流与所有电流监控芯片15的输出电流的总和的差值大于设定的第二阈值的情况下,说明过流保护部件12与电流监控芯片15之间的电路出现了异常,此时处理器17可以关闭过流保护部件12的输出。
在本申请实施例中,复杂可编程逻辑器件16可以分别与各电压逆变器13连接,从而实现对电压逆变器13的安全检测。复杂可编程逻辑器件16可以在检测到电压逆变器13异常的情况下,向处理器17传输电压逆变器13异常的提示信息;处理器17在接收到电压逆变器13异常的提示信息的情况下,关闭过流保护部件12的输出。
在可选实现中,可以将复杂可编程逻辑器件16的通用输入输出接口与电压逆变器13的电源良好引脚连接,复杂可编程逻辑器件16检测到电源良好引脚的电源良好信号为低电平信号的情况下,向处理器17传输电源良好信号为低电平信号的提示信息。
其中,电源良好引脚可以输出PGOOD信号。在电压逆变器13正常工作的情况下,PGOOD信号为高电平。在电压逆变器13发生异常时,电压逆变器13的输出关闭,此时PGOOD信号会变为低电平。
每个电压逆变器13有其对应的寄存器,在寄存器中记录了电压逆变器13运行过程中产
生的信息。这些信息可以为故障分析提供依据,为了方便问题分析人员对电压逆变器13进行故障分析,在本申请实施例中,处理器17可以通过I2C总线与电压逆变器13连接,处理器17在接收到电源良好信号为低电平信号的提示信息的情况下,可以通过I2C总线获取电压逆变器13的寄存器记录的电压逆变器13信息,在将电压逆变器13信息保存至设定缓存区后,关闭过流保护部件12的输出。
在实际应用中,当VR发生异常时,VR的输出关闭,VR的PGOOD信号会变为低电平,CPLD通过GPIO检测到VR的PGOOD信号为低电平时,CPLD将此信息通过I2C总线传递至MCU,MCU在接收到该信息后,会通过I2C总线收集VR内部寄存器信息并进行保存,收集寄存器信息目的在于后续问题分析人员可通过MCU保存的VR寄存器信息定位问题原因,寄存器信息保存完毕后,MCU可以通过I2C总线关闭过流保护部件的输出,完成掉电保护动作。
问题分析人员可以通过处理器17提供的人机交互界面,输入电压逆变器13的查询指令,处理器17在接收到电压逆变器13查询指令的情况下,可以从设定缓存区中读取电压逆变器13信息。
在本申请实施例中,为了实现对负载的安全检测,可以针对于每个负载设置对应的温度传感器18。温度传感器18可以设置在负载的附近,被设置为检测负载的温度。
处理器17与温度传感器18连接,被设置为获取温度传感器18采集的温度值;当出现大于温度阈值的温度值时,开启计数功能;在获取的当前温度值大于上一次的温度值时,将计数值加一;在出现获取的当前温度值小于或等于上一次的温度值的情况下,将计数值清零;直至计数值达到设定的计数上限值,则关闭过流保护部件12的输出。
计数上限值的取值可以基于实际需求设置,例如,可以设置为10。
通过设置计数上限值,可以实现对温度值变化的连续检测,避免单次温度过高造成误判。
处理器17在将计数值清零后,在出现获取的当前温度值小于或等于温度阈值的情况下,说明负载不存在温度过高的问题,此时可以关闭计数功能。
在本申请实施例中,除了设置计数上限值对负载的温度值进行监测之外,也可以在开启计数功能后,将当前温度值与上一次温度值的变化率与预设变化阈值进行比较。当负载在短时间内温度出现剧烈的变化时,极有可能是负载所在的电路出现了问题,即使该问题可以短时间内恢复,也可能会造成负载的损坏,因此在当前温度值与上一次温度值的变化率超过预设变化阈值的情况下,处理器17可以关闭过流保护部件12的输出。此时,处理器17也可以进行负载检测的报警提示,以便于管理人员及时检测负载是否损坏,以保证主板防护系统
后续的安全运行。
考虑到实际应用中,可能会出现复杂可编程逻辑器件16损坏或者是复杂可编程逻辑器件16与电流监控芯片15之间链路传输出现问题的情况,导致复杂可编程逻辑器件16无法及时发现电流监控芯片15的Alert信号为低电平的情况,从而无法向处理器17传输中断信号。
因此为了提升安全性,可以将电流监控芯片15与处理器17连接。电流监控芯片15在检测到精密电阻14的压差大于设定阈值的情况下,向复杂可编程逻辑器件16传输预警信号之后,判断预设时间内精密电阻14的压差是否仍大于设定阈值。
预设时间的取值可以基于实际需求设置,在此不做限定。
在预设时间内精密电阻14的压差仍大于设定阈值的情况下,说明处理器17并未关闭过流保护部件12的输出,导致精密电阻14仍有电流通过,此时电流监控芯片15可以向处理器17传输告警信号,以便于处理器17在接收到电流监控芯片15传输的告警信号的情况下,关闭过流保护部件12的输出。
图3为本申请实施例提供的一种主板防护方法的流程图,适用于上述的主板防护系统,该方法包括:
S301:判断是否接收到复杂可编程逻辑器件发送的中断信号。
处理器所需处理的工作任务较多,为了提升断电处理的速度,可以由复杂可编程逻辑器件实现对电流监控芯片的检测。当电流监控芯片采集到的精密电阻两端的压差大于该阈值时,电流监控芯片会将Alert信号拉低,复杂可编程逻辑器件的GPIO管脚接收到Alert信号变低后,触发告警机制,复杂可编程逻辑器件的GPIO6管脚发送中断信号给处理器,中断信号为低电平有效,复杂可编程逻辑器件触发告警机制后会将GPIO6管脚的电平拉低。
在接收到复杂可编程逻辑器件发送的中断信号的情况下,执行S302。
S302:关闭过流保护部件的输出。
处理器接收到中断信号时,说明主板中存在短路或者弱短路的情况,为了避免长时间低阻抗状态产生大量热能,最终引发烧板现象的发生,处理器在接收到复杂可编程逻辑器件发送的中断信号时,可以先关闭过流保护部件的输出,通过切断主板上电流的传输,实现对主板的有效保护。
在本申请实施例中,为了避免误动作现象发生,提升主板防护的可靠性,可以获取电流监控芯片的寄存器信息,确保中断信号的可靠性。
图4为本申请实施例提供的一种中断信号的校验方法的流程图,该方法包括:
S401:判断是否接收到复杂可编程逻辑器件发送的中断信号。
在接收到中断信号的情况下,执行S402。
S402:通过I2C总线获取电流监控芯片的寄存器记录的信号。
在实际应用中,电流监控芯片在检测到其采集的精密电阻两端的压差大于该阈值时,会将Alert信号拉低,此时寄存器中会记录Alert信号为低电平。针对于各类操作,寄存器中会记录相应的信号。为了便于区分,在申请实施例中,可以将低电平的Alert信号称作预警信号。
S403:判断信号是否包括预警信号。
在信号包括预警信号的情况下,说明此时中断信号与寄存器记录的信号一致,不存在复杂可编程逻辑器件误触发中断信号的情况,此时可以执行S404。
S404:关闭过流保护部件的输出。
在实际应用中,系统上电后,处理器通过I2C总线对电流监控芯片设定保护阈值,电流监控芯片会根据后端实际工作电流设定不同的保护阈值,设定的保护阈值通常为该支路最大工作电流的1.5倍。
电流监控芯片采集精密电阻两端的压差,并同该保护阈值进行比较。当精密电阻两端的压差大于处理器设定保护阈值时,电流监控芯片主动将Alert信号拉低;复杂可编程逻辑器件的GPIO管脚在检测到该低电平信号后,会通过GPIO6管脚向处理器发送中断信号,处理器在接收到中断信号后,为确保该中断信号的准确性,防止信号被干扰或者复杂可编程逻辑器件误报的现象,处理器通过I2C总线访问电源监控芯片内部对应的Alert信号标识寄存器,若该寄存器指示Alert信号确实为低,处理器确认触发防烧板保护机制,处理器通过I2C总线关闭过流保护部件输出,完成掉电保护动作。
在本申请实施例中,处理器在获取到中断信号的情况下,通过查询电流监控芯片的寄存器记录的信号,可以确保中断信号的可靠性,从而避免复杂可编程逻辑器件误触发中断信号,造成主板误断电的情况发生。
图5为本申请实施例提供的一种电源供应器与过流保护部件之间安全检测的方法的流程图,该方法包括:
S501:检测电源供应器与过流保护部件的输出电流。
S502:判断电源供应器的输出电流与过流保护部件的输出电流的差值是否大于设定的第一阈值。
在电源供应器的输出电流与过流保护部件的输出电流的差值大于设定的第一阈值的情况
下,说明目前电源供应器与过流保护部件之间的电路出现了异常,此时可以执行S503。
在电源供应器的输出电流与过流保护部件的输出电流的差值不大于设定的第一阈值的情况下,说明目前电源供应器与过流保护部件之间的电路不存在异常,此时可以返回S501继续检测电源供应器与过流保护部件的输出电流。
S503:关闭电源供应器的输出。
在实际应用中,系统上电后,处理器可以通过I2C总线收集电源供应器和过流保护部件的输出电流值,并将收集到的两个电流信息做减法处理。处理器在内部设定电源供应器和过流保护部件之间PCB路径上的电流保护阈值。为了便于区分不同的阈值,可以将该电流保护阈值称作第一阈值。
当电源供应器的输出电流值减去过流保护部件的输出电流值大于处理器内部所设定的第一阈值时,触发防烧板控制,此时处理器判定发生异常,处理器通过I2C总线关闭电源供应器输出,完成掉电保护功能。
图6为本申请实施例提供的一种过流保护部件与电流监控芯片之间安全检测的方法的流程图,该方法包括:
S601:收集所有电流监控芯片的输出电流。
电流监控芯片往往有多个,处理器可以通过I2C总线分别与每个电流监控芯片连接,从而可以收集所有电流监控芯片的输出电流。
S602:判断过流保护部件的输出电流与所有电流监控芯片的输出电流的总和的差值是否大于设定的第二阈值。
在过流保护部件的输出电流与所有电流监控芯片的输出电流的总和的差值大于设定的第二阈值的情况下,说明过流保护部件与电流监控芯片之间的电路出现了异常,此时可以执行S603。
在过流保护部件的输出电流与所有电流监控芯片的输出电流的总和的差值不大于设定的第二阈值的情况下,说明目前过流保护部件与电流监控芯片之间的电路不存在异常,此时可以返回S601继续收集所有电流监控芯片的输出电流。
S603:关闭过流保护部件的输出。
在实际应用中,在系统上电后,处理器通过I2C总线收集所有电流监控芯片的电流值,并将收集到电流信息做加法处理,处理器同步通过I2C总线收集过流保护部件的输出电流,并将收集到的过流保护部件的输出电流同收集到的电流监控芯片输出电流总和做减法处理;处理器在内部是设定过流保护部件和精密电阻之间PCB路径上的电流保护阈值,为了便于区
分不同的阈值,可以将该电流保护阈值称作第二阈值。
当过流保护部件的输出电流减去电流监控芯片的电流值总和大于该设定的第二阈值时,处理器判定发生异常,处理器通过I2C总线关闭过流保护部件输出,完成掉电保护动作。
图7为本申请实施例提供的一种电压逆变器安全检测的方法的流程图,该方法包括:
S701:在接收到复杂可编程逻辑器件传输的电压逆变器异常的提示信息的情况下,通过I2C总线获取电压逆变器的寄存器记录的电压逆变器信息。
S702:在将电压逆变器信息保存至设定缓存区后,关闭过流保护部件的输出。
其中,提示信息为复杂可编程逻辑器件检测到电压逆变器异常的情况下,向处理器传输的信息。
在本申请实施例中,问题分析人员可以通过处理器提供的人机交互界面,输入电压逆变器的查询指令,处理器在接收到电压逆变器查询指令的情况下,可以从设定缓存区中读取电压逆变器信息。
在实际应用中,处理器在接收到电压逆变器异常的提示信息的情况下,可以通过I2C总线收集电压逆变器内部寄存器信息并进行保存,此动作的目的在于后续问题分析人员可通过处理器保存的电压逆变器寄存器信息定位问题原因,寄存器信息保存完毕后,处理器通过I2C总线关闭过流保护部件输出,完成掉电保护动作。
图8为本申请实施例提供的一种负载安全检测的方法的流程图,该方法包括:
S801:获取温度传感器采集的温度值。
其中,温度传感器被设置为检测负载的温度。
S802:当出现大于温度阈值的温度值时,开启计数功能。
S803:判断获取的当前温度值是否大于上一次的温度值。
在获取的当前温度值大于上一次的温度值时,说明温度在持续升高,此时可以执行S805。
在出现获取的当前温度值小于或等于上一次的温度值的情况下,说明温度有下降的趋势,此时可以执行S804。
S804:将计数值清零。
S805:将计数值加一,直至计数值达到设定的计数上限值,则关闭过流保护部件的输出。
当计数值达到设定的计数上限值时,说明负载的温度已经持续升高一段时间,此时为了避免烧板的情况发生,处理器可以关闭过流保护部件的输出。
在出现获取的当前温度值小于或等于温度阈值的情况下,说明负载的温度已经下降到安全范围,此时处理器可以关闭计数功能。
在实际应用中,系统上电后,处理器通过I2C总线抓取电压逆变器和温度传感器内部的温度信息,并在内部设定过温保护阈值,处理器将收集到的温度信息同内部设定的过温保护阈值进行比较,当电压逆变器和温度传感器的温度大于处理器内部设定的过温保护阈值时,处理器开始打点计数,若处理器在后续的10次温度数据抓取中,每次抓取的温度都大于上一次的数据,处理器判定发生异常,处理器通过I2C总线关闭过流保护部件的输出,完成掉电保护动作。若连续抓取的10次温度信息,有一次比上一次抓取的温度低,则重新打点计数,直至温度低于保护阈值,此操作的目的在于防止抓取的温度信息有误,导致系统误掉电现象发生。
在本申请实施例中,除了设置计数上限值对负载的温度值进行监测之外,也可以在开启计数功能后,将当前温度值与上一次温度值的变化率与预设变化阈值进行比较。当负载在短时间内温度出现剧烈的变化时,极有可能是负载所在的电路出现了问题,即使该问题可以短时间内恢复,也可能会造成负载的损坏,因此在当前温度值与上一次温度值的变化率超过预设变化阈值的情况下,处理器可以关闭过流保护部件的输出。
图3至图8的流程实现了对主板系统的多级保护机制,有效保护了从电源供应器输出到终端负载的全部链路,任何异常只要触发其中一种保护机制,即可触发系统掉电动作,实现全面保护,提升系统的安全性。同时为确保保护动作真实有效,提供了防触发机制,避免误动作现象发生,提升断电保护的可靠性。
由上述技术方案可以看出,主板防护系统包括电源供应器、过流保护部件、电压逆变器以及与电压逆变器连接的负载,还包括在过流保护部件与电压逆变器之间设置的精密电阻、精密电阻连接有电流监控芯片;电流监控芯片与复杂可编程逻辑器件连接,复杂可编程逻辑器件与处理器连接。电流监控芯片在检测到精密电阻的压差大于设定阈值的情况下,说明出现了短路或弱短路的情况,为了避免这种情况产生大量热量引发烧板现象的发生,电流监控芯片可以向复杂可编程逻辑器件传输预警信号。复杂可编程逻辑器件在接收到预警信号的情况下,向处理器发送中断信号。处理器接收到复杂可编程逻辑器件发送的中断信号的情况下,关闭过流保护部件的输出。降低烧板的情况发生。在该技术方案中,通过在过流保护部件与电压逆变器之间设置精密电阻和电流监控芯片,可以实现对每个电压逆变器所在支路的过流保护,即便是电压逆变器的后端发生弱短路现象,也能够更快速的进行保护,提升了网络系统的安全程度。利用精密电阻和电流监控芯片监测电流,与传统技术中直接使用过流保
护部件对每个电压逆变器所在支路进行过流保护的方式相比,既能实现电流监测功能,同时有效降低了设计成本。并且利用复杂可编程逻辑器件发送的中断信号关闭处理器所有在运行业务,可以让处理器所有资源去处理防烧包保护机制,提高了保护速度,实现了最快速度的断电。
可以理解的是,如果本申请实施例中的主板防护方法以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机非易失性可读存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个非易失性可读存储介质中,执行本申请实施例方法的全部或部分步骤。而前述的非易失性可读存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、磁碟或者光盘等各种可以存储程序代码的介质。
基于此,本申请实施例还提供了一种计算机非易失性可读存储介质,计算机非易失性可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述主板防护方法的步骤。
以上对本申请实施例所提供的一种主板防护系统和方法进行了详细介绍。说明书中本申请实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,本申请实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以上对本申请所提供的一种主板防护系统和方法进行了详细介绍。本文中应用了可选个例对本申请的原理及实施方式进行了阐述,本申请实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。
Claims (20)
- 一种主板防护系统,包括电源供应器、过流保护部件、电压逆变器以及与所述电压逆变器连接的负载,其特征在于,还包括在所述过流保护部件与所述电压逆变器之间设置的精密电阻、所述精密电阻连接有电流监控芯片;所述电流监控芯片与复杂可编程逻辑器件连接,所述复杂可编程逻辑器件与处理器连接;所述电流监控芯片,被设置为在检测到所述精密电阻的压差大于设定阈值的情况下,向所述复杂可编程逻辑器件传输预警信号;所述复杂可编程逻辑器件,被设置为在接收到所述预警信号的情况下,向所述处理器发送中断信号;所述处理器,被设置为接收到所述复杂可编程逻辑器件发送的中断信号的情况下,关闭所述过流保护部件的输出。
- 根据权利要求1所述的主板防护系统,其特征在于,所述电流监控芯片的状态引脚与所述复杂可编程逻辑器件的通用输入输出接口连接,被设置为在检测到所述精密电阻的压差大于设定阈值的情况下,将所述状态引脚的信号拉低;相应的,所述复杂可编程逻辑器件,被设置为在检测到所述状态引脚的信号为低电平信号的情况下,向所述处理器发送中断信号。
- 根据权利要求1所述的主板防护系统,其特征在于,所述处理器通过12C总线与所述电流监控芯片连接,被设置为接收到所述中断信号的情况下,通过12C总线获取所述电流监控芯片的寄存器记录的信号;判断所述信号是否包括预警信号;在所述信号包括预警信号的情况下,关闭所述过流保护部件的输出。
- 根据权利要求1所述的主板防护系统,其特征在于,所述处理器分别与所述电源供应器以及所述过流保护部件连接,被设置为检测所述电源供应器与所述过流保护部件的输出电流;在所述电源供应器的输出电流与所述过流保护部件的输出电流的差值大于设定的第一阈值的情况下,关闭所述电源供应器的输出。
- 根据权利要求1所述的主板防护系统,其特征在于,所述电压逆变器、所述精密电阻以及所述电流监控芯片具有一一对应关系;在所述电压逆变器为多个的情况下,所述处理器,被设置为收集所有所述电流监控芯片的输出电流;在所述过流保护部件的输出电流与所有所述电流监控芯片的输出电流的总和的差值大于设定的第二阈值的情况下,关闭所述过流保护部件的输出。
- 根据权利要求1所述的主板防护系统,其特征在于,所述复杂可编程逻辑器件与所述电压逆变器连接,被设置为检测到所述电压逆变器异常的情况下,向所述处理器传 输所述电压逆变器异常的提示信息;所述处理器,被设置为在接收到所述电压逆变器异常的提示信息的情况下,关闭所述过流保护部件的输出。
- 根据权利要求6所述的主板防护系统,其特征在于,所述复杂可编程逻辑器件的通用输入输出接口与所述电压逆变器的电源良好引脚连接,被设置为检测到所述电源良好引脚的电源良好信号为低电平信号的情况下,向所述处理器传输所述电源良好信号为低电平信号的提示信息。
- 根据权利要求7所述的主板防护系统,其特征在于,在所述电压逆变器正常工作的情况下,所述电源良好信号为高电平;在所述电压逆变器发生异常时,所述电压逆变器的输出关闭,所述电源良好信号变为低电平。
- 根据权利要求7所述的主板防护系统,其特征在于,所述处理器通过12C总线与所述电压逆变器连接,被设置为在接收到所述电源良好信号为低电平信号的提示信息的情况下,通过12C总线获取所述电压逆变器的寄存器记录的电压逆变器信息,在将所述电压逆变器信息保存至设定缓存区后,关闭所述过流保护部件的输出。
- 根据权利要求9所述的主板防护系统,其特征在于,所述处理器,被设置为在接收到电压逆变器查询指令的情况下,从所述设定缓存区读取所述电压逆变器信息。
- 根据权利要求10所述的主板防护系统,其特征在于,所述处理器上提供了人机交互界面,所述人机交互界面被设置为输入所述查询指令。
- 根据权利要求10所述的主板防护系统,其特征在于,所述处理器,被设置为在接收到所述提示信息后,收集所述电压逆变器的内部寄存器信息并进行保存,其中,所述内部寄存器信息用于定位所述电压逆变器的问题原因。
- 根据权利要求1所述的主板防护系统,其特征在于,还包括用于检测负载温度的温度传感器;所述处理器与所述温度传感器连接,被设置为获取所述温度传感器采集的温度值;当出现大于温度阈值的温度值时,开启计数功能;在获取的当前温度值大于上一次的温度值时,将计数值加一;直至所述计数值达到设定的计数上限值,则关闭所述过流保护部件的输出。
- 根据权利要求13所述的主板防护系统,其特征在于,所述处理器,被设置为开启计数功能后,在出现获取的当前温度值小于或等于上一次的温度值的情况下,将所述计数值清零。
- 根据权利要求13所述的主板防护系统,其特征在于,所述处理器,被设置为在 将所述计数值清零后,在出现获取的当前温度值小于或等于温度阈值的情况下,关闭所述计数功能。
- 根据权利要求13所述的主板防护系统,其特征在于,所述处理器,被设置为在开启计数功能后,在所述当前温度值与上一次温度值的变化率超过预设变化阈值的情况下,关闭所述过流保护部件的输出。
- 根据权利要求1至16任意一项所述的主板防护系统,其特征在于,所述电流监控芯片与所述处理器连接,被设置为在检测到所述精密电阻的压差大于设定阈值的情况下,向所述复杂可编程逻辑器件传输预警信号之后,判断预设时间内所述精密电阻的压差是否仍大于设定阈值;在所述预设时间内所述精密电阻的压差仍大于设定阈值的情况下,向所述处理器传输告警信号;所述处理器,被设置为在接收到所述电流监控芯片传输的告警信号的情况下,关闭所述过流保护部件的输出。
- 根据权利要求1至16中任一项所述的主板防护系统,其特征在于,所述处理器为微控制单元,或者,基板管理控制器。
- 一种主板防护方法,其特征在于,适用于权利要求1至18任意一项所述的主板防护系统,所述方法包括:判断是否接收到复杂可编程逻辑器件发送的中断信号;在接收到复杂可编程逻辑器件发送的中断信号的情况下,关闭过流保护部件的输出;其中,所述中断信号为复杂可编程逻辑器件在接收到电流监控芯片在检测到精密电阻的压差大于设定阈值时,向所述复杂可编程逻辑器件传输的预警信号的情况下,发送的中断信号。
- 一种计算机非易失性可读存储介质,其特征在于,所述计算机可读非易失性可读存储介质中存储有计算机程序,其中,所述计算机程序被处理器执行时实现所述权利要求19所述的方法的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211430839.XA CN115599193B (zh) | 2022-11-16 | 2022-11-16 | 一种主板防护系统和方法 |
CN202211430839.X | 2022-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024103745A1 true WO2024103745A1 (zh) | 2024-05-23 |
Family
ID=84852216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/103409 WO2024103745A1 (zh) | 2022-11-16 | 2023-06-28 | 一种主板防护系统和方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115599193B (zh) |
WO (1) | WO2024103745A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115599193B (zh) * | 2022-11-16 | 2023-02-28 | 苏州浪潮智能科技有限公司 | 一种主板防护系统和方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102882187A (zh) * | 2012-10-29 | 2013-01-16 | 金海新源电气江苏有限公司 | 基于cpld的光伏逆变器保护装置及方法 |
CN110502087A (zh) * | 2019-07-19 | 2019-11-26 | 苏州浪潮智能科技有限公司 | 一种服务器防烧板系统及工作方法 |
CN110618743A (zh) * | 2019-09-12 | 2019-12-27 | 苏州浪潮智能科技有限公司 | 一种基于psu的供电系统 |
CN110888784A (zh) * | 2019-11-24 | 2020-03-17 | 苏州浪潮智能科技有限公司 | 电压逆变器芯片的运行状态信息获取方法、装置及设备 |
CN114816539A (zh) * | 2021-01-27 | 2022-07-29 | 腾讯科技(深圳)有限公司 | 设备板卡、电子设备及设备板卡的控制方法 |
CN115599193A (zh) * | 2022-11-16 | 2023-01-13 | 苏州浪潮智能科技有限公司(Cn) | 一种主板防护系统和方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN208257396U (zh) * | 2018-05-07 | 2018-12-18 | 苏州市万松电气有限公司 | 逆变器的接地保护电路及逆变器电路 |
CN109149521A (zh) * | 2018-08-09 | 2019-01-04 | 珠海格力电器股份有限公司 | 一种过压保护装置、电机及其过压保护方法 |
CN112736839B (zh) * | 2020-12-11 | 2023-01-10 | 苏州浪潮智能科技有限公司 | 一种过流检测及保护方法、系统及介质 |
-
2022
- 2022-11-16 CN CN202211430839.XA patent/CN115599193B/zh active Active
-
2023
- 2023-06-28 WO PCT/CN2023/103409 patent/WO2024103745A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102882187A (zh) * | 2012-10-29 | 2013-01-16 | 金海新源电气江苏有限公司 | 基于cpld的光伏逆变器保护装置及方法 |
CN110502087A (zh) * | 2019-07-19 | 2019-11-26 | 苏州浪潮智能科技有限公司 | 一种服务器防烧板系统及工作方法 |
CN110618743A (zh) * | 2019-09-12 | 2019-12-27 | 苏州浪潮智能科技有限公司 | 一种基于psu的供电系统 |
CN110888784A (zh) * | 2019-11-24 | 2020-03-17 | 苏州浪潮智能科技有限公司 | 电压逆变器芯片的运行状态信息获取方法、装置及设备 |
CN114816539A (zh) * | 2021-01-27 | 2022-07-29 | 腾讯科技(深圳)有限公司 | 设备板卡、电子设备及设备板卡的控制方法 |
CN115599193A (zh) * | 2022-11-16 | 2023-01-13 | 苏州浪潮智能科技有限公司(Cn) | 一种主板防护系统和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115599193A (zh) | 2023-01-13 |
CN115599193B (zh) | 2023-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11360842B2 (en) | Fault processing method, related apparatus, and computer | |
CN104536855B (zh) | 故障检测方法及装置 | |
CN107145410A (zh) | 一种系统异常掉电后自动上电开机的方法、系统及设备 | |
WO2024103745A1 (zh) | 一种主板防护系统和方法 | |
CN106598790A (zh) | 一种服务器硬件故障检测方法及其装置和服务器 | |
CN112596568B (zh) | 一种读取电压调节器报错信息的方法、系统、设备及介质 | |
CN105117301A (zh) | 一种内存预警的方法及装置 | |
TW201901514A (zh) | 程式異動監控與應變系統及方法 | |
CN111488050B (zh) | 一种电源监控方法、系统及服务器 | |
WO2022237549A1 (zh) | 一种服务器板卡装置及其检测方法、检测设备、存储介质 | |
CN111625386A (zh) | 一种针对系统设备上电超时的监控方法和装置 | |
CN113849336B (zh) | 一种bmc时间管理方法、系统、装置及计算机介质 | |
CN208174236U (zh) | 一种激光电源的保护电路 | |
CN115080132A (zh) | 信息处理方法、装置、服务器及存储介质 | |
CN114496036A (zh) | 一种过载检测保护方法、装置、电路及电子设备 | |
CN118642881B (zh) | 服务器异常的处理方法、程序产品、设备及存储介质 | |
CN111539044A (zh) | 服务器电源固件写保护控制方法、装置、设备及存储介质 | |
CN113162015A (zh) | 一种主板电源异常定位保护方法及装置 | |
CN114884021B (zh) | 一种供电电路的供电控制方法及相关组件 | |
CN114326990B (zh) | 风扇异常处理方法、装置、电子设备及存储介质 | |
CN117743025A (zh) | 主动保护并自动记录cpu异常重启原因的方法与系统 | |
CN115766415B (zh) | 一种智能网卡vr状态监控装置、方法、终端及存储介质 | |
CN222028611U (zh) | 一种计算设备 | |
CN113721747B (zh) | 一种服务器及其防烧板电路和方法 | |
CN115277485B (zh) | 一种网络数据的控制方法、装置及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23890187 Country of ref document: EP Kind code of ref document: A1 |