[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024100964A1 - Organometallic compound, sulfonium salt-type compound, nonion oxime-type compound, photosensitive material, acid generator, and photoresist - Google Patents

Organometallic compound, sulfonium salt-type compound, nonion oxime-type compound, photosensitive material, acid generator, and photoresist Download PDF

Info

Publication number
WO2024100964A1
WO2024100964A1 PCT/JP2023/030946 JP2023030946W WO2024100964A1 WO 2024100964 A1 WO2024100964 A1 WO 2024100964A1 JP 2023030946 W JP2023030946 W JP 2023030946W WO 2024100964 A1 WO2024100964 A1 WO 2024100964A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
acid
formula
photoresist
Prior art date
Application number
PCT/JP2023/030946
Other languages
French (fr)
Japanese (ja)
Inventor
智幸 柴垣
智仁 木津
Original Assignee
サンアプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022179789A external-priority patent/JP2024069029A/en
Priority claimed from JP2022179229A external-priority patent/JP2024068697A/en
Priority claimed from JP2022179228A external-priority patent/JP2024068696A/en
Priority claimed from JP2022179788A external-priority patent/JP2024069028A/en
Application filed by サンアプロ株式会社 filed Critical サンアプロ株式会社
Publication of WO2024100964A1 publication Critical patent/WO2024100964A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/32Oximes
    • C07C251/62Oximes having oxygen atoms of oxyimino groups esterified
    • C07C251/64Oximes having oxygen atoms of oxyimino groups esterified by carboxylic acids
    • C07C251/66Oximes having oxygen atoms of oxyimino groups esterified by carboxylic acids with the esterifying carboxyl groups bound to hydrogen atoms, to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • C07C303/04Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof by substitution of hydrogen atoms by sulfo or halosulfonyl groups
    • C07C303/06Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof by substitution of hydrogen atoms by sulfo or halosulfonyl groups by reaction with sulfuric acid or sulfur trioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/06Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing halogen atoms, or nitro or nitroso groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/64Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms
    • C07C309/65Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms of a saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/72Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/73Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/01Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
    • C07C311/02Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/01Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
    • C07C311/02Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C311/03Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the sulfonamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/12Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms
    • C07C321/20Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/24Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • C07C321/28Sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • C07C381/12Sulfonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/06Ring systems of three rings
    • C07D221/14Aza-phenalenes, e.g. 1,8-naphthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/22Tin compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/59Hydrogenated pyridine rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a novel organometallic compound, a photosensitive material containing the organometallic compound, a novel sulfonium salt type compound, an acid generator containing the sulfonium salt type compound, a novel nonionic oxime type compound, and a photoresist containing the photosensitive material or acid generator.
  • a photoresist chemically amplified photoresist
  • a photosensitive resin whose solubility in an alkaline developer changes upon exposure to light and a photoacid generator is exposed to light and developed to form a patterned resist film, which is then used as a photomask to etch a substrate (for example, dry etching using reactive gas or plasma).
  • a photomask for example, dry etching using reactive gas or plasma.
  • Patent Document 1 describes that when a positive resist resin containing triphenylsulfonium trifluoromethanesulfonate, a photoacid generator, and a photosensitive resin is irradiated with KrF excimer laser light (wavelength 248 nm), fine patterns can be formed with high precision.
  • Patent Document 2 also discloses that a photoacid generator containing an oxime sulfonate compound represented by the following formula has low absorption of light having a wavelength of 365 nm and high deep curing properties, and therefore, if this photoacid generator is used, sufficient acid generation ability can be exerted all the way to the bottom of the film even if the resist film is thick.
  • triphenylsulfonium trifluoromethanesulfonate and the oxime sulfonate compounds represented by the above formula have a problem in that they have low sensitivity to ultrashort wavelength light.
  • ultrashort wavelength light is easily absorbed by photoresist, and if the resist film is thick, it is difficult for the light to reach the bottom of the film, making it difficult to form patterns with good precision.
  • the resist film is thinned to improve pattern precision, the etching resistance decreases, which is a problem.
  • an object of the present invention is to provide a novel organometallic compound that has the property of changing its solvent solubility upon irradiation with ultrashort wavelength light and forms insoluble, etching-resistant aggregates upon exposure to ultrashort wavelength light.
  • Another object of the present invention is to provide a photosensitive material for photoresist which, when exposed to light with an ultrashort wavelength, forms a resist film having a high-resolution pattern and excellent etching resistance.
  • Another object of the present invention is to provide a photoresist which, when exposed to light with an ultrashort wavelength, forms a resist film having a high-resolution pattern and excellent etching resistance.
  • Another object of the present invention is to provide a novel sulfonium salt type compound and a novel nonionic oxime type compound which rapidly decompose to generate an acid when irradiated with light of an ultrashort wavelength.
  • Another object of the present invention is to provide an acid generator having good sensitivity to light with an ultrashort wavelength.
  • Another object of the present invention is to provide a photoresist capable of transferring fine patterns with high accuracy using light having an ultrashort wavelength.
  • the present inventors have found that the compounds represented by the following formulas (2-1) to (2-5) are extremely sensitive to ultrashort wavelength light and rapidly decompose to generate acid when irradiated with ultrashort wavelength light.
  • the compounds represented by the following formulas (2-1) to (2-5) have a group, such as a carboxyl group, that exhibits coordination with a metal or metal oxide (1), and therefore when mixed with a metal or metal oxide (1), form an organometallic compound that is an organic-inorganic composite having a metal or metal oxide (1) as a core, and that the organometallic compound has excellent photoresponsiveness and rapidly aggregates to form aggregates (or lumps) when irradiated with light of an ultrashort wavelength.
  • the present invention was completed based on these findings.
  • the present invention provides an organometallic compound having a structure in which a coordinating compound (2) shown below is coordinately bonded to a metal or metal oxide (1).
  • Coordinating compound (2) at least one compound selected from the following formulae (2-1) to (2-5):
  • R 11 and R 12 each independently represent a halogen atom or a C 1-5 haloalkyl group.
  • R 13 represents a halogen atom, a C 1-5 alkyl group, a C 1-5 alkoxy group, a C 1-5 haloalkyl group, or a C 1-5 haloalkoxy group.
  • n11 and n12 each independently represent an integer from 1 to 5, and n13 represents an integer from 0 to 4.
  • L represents a single bond or a linking group
  • X ⁇ represents a monovalent counter anion.
  • R 1 represents a hydrocarbon group which may have a substituent.
  • R 2 represents a coordinating group that coordinates to a metal or metal oxide (1), and n represents an integer of 1 or more.
  • Ar 1 and Ar 2 are the same or different and represent an aromatic ring structure, or a structure in which two or more aromatic rings are bonded via a single bond or a linking group.
  • R 3 represents a halogen atom or a halogenated hydrocarbon group.
  • R R 4 represents a hydrocarbon group which may have a substituent, a group in which two or more hydrocarbon groups which may have a substituent are bonded via a single bond or a linking group, or a cyano group.
  • n1 represents an integer of 1 to 5
  • n2 represents an integer of 1 to 4.
  • the aromatic ring shown in the formula may have a substituent other than the above groups.
  • the present invention also provides the above organometallic compound, wherein R 2 in the above formula is a hydroxy group, a carboxy group, a phosphoric acid group, a phosphoric acid monoester group, a sulfonic acid group, a sulfino group, a triazole group, or a tetrazole group.
  • the present invention also provides the organometallic compound, in which the monovalent counter anion is a sulfonate anion or a sulfonylimide anion.
  • the present invention also provides the organometallic compound, in which the metal or metal oxide (1) is at least one selected from hafnium, zirconium, tin, cobalt, palladium, antimony, and oxides thereof.
  • the present invention also provides a photosensitive material for photoresist containing the organometallic compound.
  • the present invention also provides the photoresist photosensitive material, which is a photosensitive material for extreme ultraviolet rays or a photosensitive material for electron beams.
  • the present invention also provides a photoresist containing the organometallic compound and a solvent.
  • the present invention also provides a compound represented by the following formula (2-4) or (2-5):
  • Ar 1 and Ar 2 are the same or different and each represents an aromatic ring structure or a structure in which two or more aromatic rings are bonded via a single bond or a linking group.
  • R 3 represents a halogen atom or a halogenated hydrocarbon group.
  • R 4 represents a hydrocarbon group which may have a substituent, a group in which two or more hydrocarbon groups which may have a substituent are bonded via a single bond or a linking group, or a cyano group.
  • n1 represents an integer from 1 to 5
  • n2 represents an integer from 1 to 4.
  • the aromatic rings represented in the formula may have a substituent other than the above groups.
  • the present invention also provides a compound represented by the following formula (2-1):
  • R 11 and R 12 each independently represent a halogen atom or a C 1-5 haloalkyl group.
  • R 13 represents a halogen atom, a C 1-5 alkyl group, a C 1-5 alkoxy group, a C 1-5 haloalkyl group, or a C 1-5 haloalkoxy group.
  • n11 and n12 each independently represent an integer of 1 to 5, and n13 represents an integer of 0 to 4.
  • L represents a single bond or a linking group
  • X ⁇ represents a monovalent counter anion.
  • the benzene ring represented in the formula may have a substituent other than the above groups.
  • the present invention also provides an acid generator containing the compound.
  • the present invention also provides the acid generator, which is an acid generator for extreme ultraviolet rays or an acid generator for electron beams.
  • the present invention also provides a photoresist containing the acid generator and a photosensitive resin.
  • the sulfonium salt compound represented by the formula (2-1) (hereinafter, sometimes referred to as "compound (2-1)”) has good sensitivity to ultrashort wavelength light because it contains a carboxyl group, and when irradiated with ultrashort wavelength light, it quickly decomposes to generate acid (H + X - ; X - corresponds to X - in formula (2-1)). Furthermore, compound (2-1) has excellent solvent solubility, so that when added to a photoresist, it is uniformly dispersed. Furthermore, compound (2-1) has excellent developability and has the effect of reducing development residues.
  • compound (2-1) contains a carboxyl group that exhibits coordination with metal or metal oxide (1). Therefore, when mixed with metal or metal oxide (1), it forms an organometallic compound, which is an organic-inorganic complex with metal or metal oxide (1) as the core.
  • the imidosulfonate type compound represented by the formula (2-2) (hereinafter, may be referred to as “compound (2-2)") and the imidosulfonate type compound represented by the formula (2-3) (hereinafter, may be referred to as “compound (2-3)”) have good sensitivity to ultrashort wavelength light, and when irradiated with ultrashort wavelength light, they quickly decompose to generate an acid (R 1 SO 3 H; R 1 corresponds to R 1 in formula (2-2) or (2-3)).
  • compound (2-2) and compound (2-3) have a group that exhibits coordination with metal or metal oxide (1). Therefore, when mixed with metal or metal oxide (1), they form an organometallic compound that is an organic-inorganic composite having metal or metal oxide (1) as a core.
  • the nonionic oxime type compound represented by the formula (2-4) (hereinafter, may be referred to as “compound (2-4)") and the nonionic oxime type compound represented by the formula (2-5) (hereinafter, may be referred to as “compound (2-5)”) contain a halogen atom or a halogenated hydrocarbon group, and therefore have good sensitivity to ultrashort wavelength light rays, and when irradiated with ultrashort wavelength light rays, they are rapidly decomposed to generate an acid (HR 5 ; R 5 corresponds to R 5 in formula (2-4) or (2-5)). Furthermore, the compounds (2-4) and (2-5) have excellent solvent solubility, and therefore are uniformly dispersed in the resist.
  • the compounds (2-4) and (2-5) contain a carboxyl group, and therefore have excellent developability and have the effect of reducing development residues. Therefore, by irradiating a chemically amplified photoresist containing the compound (2-4) or the compound (2-5) and a photosensitive resin with light having an ultrashort wavelength, a fine pattern can be transferred with high accuracy, and a resist film having a high-resolution fine pattern can be produced.
  • compound (2-4) and compound (2-5) contain a carboxyl group that exhibits coordination with metal or metal oxide (1). Therefore, when mixed with metal or metal oxide (1), they form an organometallic compound that is an organic-inorganic complex with metal or metal oxide (1) as the core.
  • the organometallic compound exhibits good solubility in solvents.
  • the organometallic compound has excellent photoresponsiveness, and when irradiated with light, it efficiently senses the irradiated light even if it is an ultra-short wavelength light, and forms aggregates.
  • the aggregates thus formed are no longer soluble in the solvent.
  • the aggregates since the aggregates have a structure in which the metal or metal oxide (1) is aggregated, they have a toughness that can withstand etching. Therefore, the composition obtained by dispersing the organometallic compound in a solvent can be suitably used as a photoresist (or a metal resist).
  • the layer obtained by coating and drying the composition i.e., a layer containing the organometallic compound in a highly dispersed state
  • the composition i.e., a layer containing the organometallic compound in a highly dispersed state
  • the layer obtained by coating and drying the composition which has been thinned to a thickness that allows ultrashort wavelength light to reach the bottom, is exposed to ultrashort wavelength light in a pattern shape, and then washed with a solvent, whereby the organometallic compound in the unexposed areas is washed away, but the organometallic compound in the exposed areas remains as aggregates without being washed away, making it possible to accurately produce a resist film having a high-resolution fine pattern.
  • the resist film obtained in this manner has etching resistance even though it is thin.
  • the resist film produced by the above method is used to etch a substrate (e.g., dry etching using reactive gas or plasma), semiconductor devices with high-resolution patterns (e.g., wiring patterns, circuit patterns, etc.) can be manufactured with good yield.
  • a substrate e.g., dry etching using reactive gas or plasma
  • semiconductor devices with high-resolution patterns e.g., wiring patterns, circuit patterns, etc.
  • the sulfonium salt compound of the present invention is a compound represented by the following formula (2-1a) (hereinafter, sometimes referred to as "compound (2-1a)").
  • compound (2-1a) is a compound represented by the following formula (2-1a) (hereinafter, sometimes referred to as "compound (2-1a)").
  • Ar 11 , Ar 12 , and Ar 13 are the same or different and each is an aromatic ring structure, or a structure in which two or more aromatic rings are bonded via a single bond or a linking group.
  • R 11 and R 12 each independently represent a halogen atom or a C 1-5 haloalkyl group.
  • R 13 represents a halogen atom, a C 1-5 alkyl group, a C 1-5 alkoxy group, a C 1-5 haloalkyl group, or a C 1-5 haloalkoxy group.
  • n11 and n12 each independently represent an integer of 1 to 5, and n13 represents an integer of 0 to 4.
  • L represents a single bond or a linking group, and X ⁇ represents a monovalent counter anion.
  • the aromatic rings represented in the formula may have a substituent other than the above groups.
  • Examples of the aromatic ring structure in Ar 11 to Ar 13 include aromatic hydrocarbon ring structures having 6 to 15 carbon atoms, such as a benzene ring, a naphthalene ring, and an anthracene ring.
  • Examples of the structure in which two or more aromatic rings in Ar 11 to Ar 13 are bonded via a single bond or a linking group include a structure in which two or more aromatic hydrocarbon rings are bonded via a single bond, an ether bond (—O—), or a thioether bond (—S—).
  • Ar 11 to Ar 13 are preferably a benzene ring structure or a structure in which two or more benzene rings are bonded via a single bond or a linking group (preferably an ether bond or a thioether bond), and are particularly preferably at least one structure selected from the group consisting of a benzene ring structure and structures represented by the following formulae (ar-1) to (ar-3):
  • the compounds represented by the following formulas (2-1), (2-1') and (2-1") are preferred, and the compound represented by the following formula (2-1) is particularly preferred.
  • R 11 , R 12 , R 13 , n11, n12, n13, L and X ⁇ are the same as defined above.
  • the L represents a single bond or a linking group.
  • the linking group is a divalent group having one or more atoms, such as a divalent hydrocarbon group, a carbonyl group (-CO-), an ether bond (-O-), a thioether bond (-S-), an ester bond (-COO-), an amide bond (-CONH-), a carbonate bond (-OCOO-), and groups in which multiple of these are linked together.
  • divalent hydrocarbon group examples include linear or branched alkylene groups having 1 to 5 carbon atoms, such as methylene, methylmethylene, dimethylmethylene, ethylene, propylene, and trimethylene; cycloalkylene groups having 3 to 18 carbon atoms, such as 1,2-cyclopentylene, 1,3-cyclopentylene, cyclopentylidene, 1,2-cyclohexylene, 1,3-cyclohexylene, 1,4-cyclohexylene, and cyclohexylidene; and arylene groups having 6 to 14 carbon atoms, such as o-phenylene, m-phenylene, p-phenylene, and naphthylene.
  • alkylene groups having 1 to 5 carbon atoms such as methylene, methylmethylene, dimethylmethylene, ethylene, propylene, and trimethylene
  • cycloalkylene groups having 3 to 18 carbon atoms such as 1,2-cyclopentylene, 1,3-cyclopenty
  • the L is particularly preferably a divalent group represented by the formula [-L 1 -C t H 2t -].
  • L 1 represents an oxygen atom or a sulfur atom
  • t represents an integer of 1 to 5.
  • the bond on the left side of L 1 bonds to an aromatic ring such as a benzene ring in the formula.
  • the bond on the right side of the group represented by C t H 2t bonds to a carboxy carbon in the formula.
  • the sulfonium salt compound is preferably a compound represented by the following formula (2-1b), and particularly preferably a compound represented by the following formula (2-1-1), from the viewpoint of excellent sensitivity to light of ultrashort wavelengths:
  • R 11 , R 12 , R 13 , n11, n12, n13, L 1 , t and X ⁇ are the same as above.
  • R11 and R12 each independently represent a halogen atom or a C1-5 haloalkyl group.
  • R13 represents a halogen atom, a C1-5 alkyl group, a C1-5 alkoxy group, a C1-5 haloalkyl group, or a C1-5 haloalkoxy group.
  • n11 and n12 each independently represent an integer of 1 to 5, and n13 represents an integer of 0 to 4.
  • Examples of the C1-5 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, a pentyl group, etc.
  • the number of carbon atoms in the alkyl group is preferably 1 to 3, and particularly preferably 1 or 2.
  • the C1-5 haloalkyl group is a C1-5 alkyl group in which at least one hydrogen atom is substituted with a halogen atom, and is preferably a group in which all hydrogen atoms in the alkyl group are substituted with halogen atoms (i.e., a perhalogenated hydrocarbon group).
  • the haloalkyl group preferably has 1 to 3 carbon atoms, and more preferably has 1 or 2 carbon atoms.
  • the C 1-5 haloalkyl group is preferably a C 1-3 haloalkyl group, particularly preferably a C 1-2 haloalkyl group.
  • the C 1-5 haloalkyl group is preferably a C 1-3 perhaloalkyl group, particularly preferably a C 1-2 perhaloalkyl group.
  • Examples of the C 1-5 alkoxy group include a methoxy group, an ethoxy group, a butoxy group, and a t-butoxy group.
  • the number of carbon atoms in the alkyl group is preferably 1 to 3, and more preferably 1 or 2.
  • the number of carbon atoms in the C 1-5 alkoxy group is preferably 1 to 3, and more preferably 1 or 2.
  • the C1-5 haloalkoxy group is a C1-5 alkoxy group in which at least one hydrogen atom is substituted with a halogen atom, and preferably a group in which all hydrogen atoms of the alkoxy group are substituted with halogen atoms.
  • the number of carbon atoms in the haloalkoxy group is preferably 1 to 3, and particularly preferably 1 or 2.
  • the C 1-5 haloalkoxy group is preferably a C 1-3 haloalkoxy group, particularly preferably a C 1-2 haloalkoxy group.
  • the C 1-5 haloalkyl group is preferably a C 1-3 perhaloalkoxy group, particularly preferably a C 1-2 perhaloalkoxy group.
  • the halogen atom may be a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or an astatine atom. Among these, a fluorine atom or an iodine atom is preferred, and a fluorine atom is particularly preferred.
  • halogen atom of the C 1-5 haloalkyl group and the C 1-5 haloalkoxy group a fluorine atom or an iodine atom is preferable, and a fluorine atom is particularly preferable.
  • n11 R 11 and the n12 R 12 from the viewpoint of excellent sensitivity to ultrashort wavelength light, a group selected from a fluorine atom, an iodine atom, a C 1-5 fluoroalkyl group, and a C 1-5 iodinated alkyl group is preferable, and from the viewpoint of excellent sensitivity to ultrashort wavelength light and solvent solubility, a group selected from a C 1-5 fluoroalkyl group and a C 1-5 iodinated alkyl group is preferable.
  • n13 R 13 from the viewpoint of excellent sensitivity to light of ultrashort wavelengths, a C 1-5 alkyl group is preferable, a C 1-3 alkyl group is particularly preferable, and a C 1-2 alkyl group is most preferable.
  • n11 and n12 each independently represent an integer from 1 to 5, preferably an integer from 1 to 3, particularly preferably 1 or 2, and most preferably 2.
  • n13 represents an integer of 0 to 4, preferably an integer of 1 to 4, particularly preferably 1 or 2, and most preferably 2.
  • the bonding position of the group represented by R 13 in the above formula to an aromatic ring such as a benzene ring is not particularly limited, but the meta position to the bonding position of the sulfur atom shown in the formula is preferred.
  • the bonding position of the group represented by [-L-COOH] in the above formula (or the group represented by [-L 1 -C t H 2t COOH]) to an aromatic ring such as a benzene ring is preferably the para position relative to the bonding position of the sulfur atom in the formula.
  • X ⁇ represents a monovalent counter anion, examples of which include a halogen ion, a halogen oxo acid anion, a boron anion, a phosphate anion, a sulfate anion, a sulfonate anion, a sulfonylimide anion, a carboxylate anion, a methide anion, an antimony anion, OH ⁇ , SCN ⁇ , NO 2 ⁇ , NO 3 ⁇ , and the like.
  • halogen ion examples include Cl ⁇ , Br ⁇ , and I ⁇ .
  • halogen oxo acid anion examples include ClO 4 ⁇ , IO 3 ⁇ , and BrO 3 ⁇ .
  • boron anion examples include inorganic boron anions such as BF4- , and organic boron anions such as ( C6F5 ) 4B- , (( CF3 ) 2C6H3 ) 4B- , tetraphenylborate, tetrakis ( monofluorophenyl)borate, tetrakis( difluorophenyl )borate, and tetrakis(trifluorophenyl)borate.
  • inorganic boron anions such as BF4-
  • organic boron anions such as ( C6F5 ) 4B- , (( CF3 ) 2C6H3 ) 4B- , tetraphenylborate, tetrakis ( monofluorophenyl)borate, tetrakis( difluorophenyl )borate, and tetrakis(trifluorophenyl)borate.
  • phosphate anion examples include inorganic phosphate anions such as PF6- , PF( C2F5 ) 5- , PF2 ( C2F5 ) 4- , PF3 ( C2F5 ) 3- , PF4( C2F5 ) 2- , PF5 ( C2F5 ) - , and PO43- .
  • the sulfonate anion is represented, for example, by the following formula (s1).
  • R s1 -SO 3 - (s1) (In the formula, R represents an organic group.)
  • Examples of the organic group in R s1 include a C 1-30 hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, and a group in which two or more of the above groups are bonded via a single bond or a linking group selected from -O-, -CO 2 -, -S-, -SO 3 -, and -SO 2 N(R s2 )-.
  • R s2 represents a hydrogen atom or an alkyl group (for example, a C 1-30 alkyl group).
  • Examples of the substituent include a halogen atom such as a fluorine atom.
  • the C 1-30 hydrocarbon group includes a C 1-30 aliphatic hydrocarbon group, a C 3-30 alicyclic hydrocarbon group, a C 6-30 aromatic hydrocarbon group, and a group in which two or more of these are combined.
  • the C 1-30 hydrocarbon group is preferably a C 1-30 alkyl group, a C 6-15 aryl group, a C 6-15 cycloalkyl group, a C 6-15 bridged cyclic hydrocarbon group, or a group in which two or more of these are bonded together.
  • the heterocyclic group is a group in which one hydrogen atom has been removed from the structural formula of a heterocycle.
  • the heterocycle includes aromatic heterocycles and non-aromatic heterocycles. Examples of such heterocycles include 3- to 10-membered rings (preferably 4- to 6-membered rings) whose ring-constituting atoms include carbon atoms and at least one heteroatom (e.g., oxygen atom, sulfur atom, nitrogen atom, etc.), and condensed rings thereof.
  • sulfonate anion examples include CH 3 SO 3 ⁇ , C 4 H 9 SO 3 ⁇ , CF 3 SO 3 ⁇ , C 2 F 5 C 4 H 4 SO 3 ⁇ , C 4 F 9 SO 3 ⁇ , benzenesulfonate anion, p-toluenesulfonate anion, and camphorsulfonate anion.
  • the sulfonylimide anion is represented, for example, by the following formula (n1). (R n1 SO 2 ) 2 N - (n1) (In the formula, two R n1 are the same or different and each represents an organic group.)
  • Examples of the organic group in R n1 include the same organic groups as those in R s1 .
  • sulfonylimide anion examples include (FSO 2 ) 2 N - , (CF 3 SO 2 ) 2 N - , (C 4 F 9 SO 2 ) 2 N - , (C 2 F 5 SO 2 ) 2 N - , and the like.
  • the carboxylate anion is represented, for example, by the following formula (c1).
  • R c1 -COO - (c1) (In the formula, R represents an organic group.)
  • Examples of the organic group in R c1 include the same organic groups as those in R s1 .
  • carboxylate anion examples include CF 3 CO 2 - , CH 3 CO 2 - , C 2 H 5 CO 2 - , and C 6 H 5 CO 2 - .
  • Examples of the methide anion include a sulfonylmethide anion represented by the following formula (m1). ( Rm1SO2 ) 3C- ( m1 ) (In the formula, three R m1 are the same or different and each represents an organic group.)
  • Examples of the organic group in R m1 include the same organic groups as those in R s1 .
  • methide anion examples include (CF 3 SO 2 ) 3 C — .
  • the antimony anion may, for example, be SbF 6 ⁇ .
  • the monovalent counter anion includes, in addition to the above, the anions described in JP-A-2013-47211, JP-A-2021-81708, JP-A-2013-80245, JP-A-2013-80240, and JP-A-2013-33161.
  • a sulfonate anion or a sulfonylimide anion is preferred because of their excellent solvent solubility and fine pattern formability.
  • the sulfonium salt type compound such as compound (2-1) has excellent solubility in a solvent (e.g., PGMEA).
  • a solvent e.g., PGMEA
  • the amount of the sulfonium salt type compound that dissolves in 100 parts by weight of PGMEA is, for example, more than 2 parts by weight, preferably 3 parts by weight or more, more preferably 4 parts by weight or more, particularly preferably 5 parts by weight or more, most preferably 8 parts by weight or more, and particularly preferably 15 parts by weight or more.
  • the upper limit is, for example, 30 parts by weight. Therefore, if the sulfonium salt type compound is added to a photoresist together with a solvent, the sulfonium salt type compound can be uniformly dispersed in the photoresist.
  • the sulfonium salt compound has excellent sensitivity to light rays with ultrashort wavelengths, and when irradiated with the light rays, it rapidly generates an acid (H + X - ; X - represents a counter anion).
  • the wavelength of the light rays is, for example, 100 nm or less (e.g., 1 to 100 nm), preferably 80 nm or less, particularly preferably 50 nm or less, most preferably 30 nm or less, and particularly preferably 20 nm or less.
  • Examples of the light rays include X-rays, electron beams, EUV, etc.
  • the sulfonium salt type compound has thermal stability and can suppress decomposition even when subjected to heat treatment (for example, heating at a temperature of 50°C or higher and lower than 130°C for 1 to 5 minutes).
  • the sulfonium salt type compound has excellent sensitivity to ultrashort wavelength light as described above, and therefore can be used in photoresists (e.g., chemically amplified photoresists) that use ultrashort wavelength light such as extreme ultraviolet light, electron beams, and X-rays.
  • the sulfonium salt type compound can also be added as a cationic polymerization initiator to cationic curable resins (e.g., resins having one or more cationic curable groups selected from epoxy groups, oxetanyl groups, vinyl ether groups, and the like).
  • cationic curable resins e.g., resins having one or more cationic curable groups selected from epoxy groups, oxetanyl groups, vinyl ether groups, and the like.
  • the sulfonium salt compound has thermal stability, a coating film containing the sulfonium salt compound can be dried by heating while retaining its acid generating ability, and therefore the workability is excellent.
  • the sulfonium salt type compound also has a carboxyl group that exhibits coordination with the metal or metal oxide (1). Therefore, when mixed with the metal or metal oxide (1), an organometallic compound can be formed, which is an organic-inorganic complex with the metal or metal oxide (1) as the core.
  • the organometallic compound thus formed can be suitably used as a material for forming a photoresist (e.g., a metal resist).
  • Compound (2-1-1) can be produced via the following steps [I], [II] and [III]:
  • R 11 , R 12 , R 13 , n11, n12, n13, L 1 , t and X ⁇ are the same as defined above.
  • Step I is a step of reacting a compound represented by formula (11) (hereinafter, may be referred to as “compound (11)”) with a compound represented by formula (12) (hereinafter, may be referred to as “compound (12)”) to obtain a compound represented by formula (13) (hereinafter, may be referred to as “compound (13)”).
  • the molar ratio of compound (11) to compound (12) (compound (11)/compound (12)) to be reacted is, for example, 1/50 to 3/1, preferably 1/10 to 2/1.
  • the reaction is preferably carried out in the presence of a dehydrating agent (HX').
  • a dehydrating agent HX'
  • examples of the dehydrating agent (HX') include concentrated sulfuric acid, phosphoric anhydride, methanesulfonic acid, trifluoromethanesulfonic acid, and anhydrides thereof. These can be used alone or in combination of two or more.
  • Step II is a step of reacting compound (13) obtained through step I with M 1 X (X represents a monovalent counter anion, and M 1 represents an alkali metal) to obtain a compound represented by formula (14) (hereinafter, sometimes referred to as "compound (14)").
  • the molar ratio of compound (13) to M 1 X (compound (13)/M 1 X) to be reacted is, for example, 1/3 to 3/1, preferably 1/2 to 2/1.
  • Step III is a step of reacting compound (14) obtained via step II with a compound represented by formula (15) (hereinafter, may be referred to as “compound (15)”) to obtain compound (2-1-1).
  • X 1 represents a halogen atom
  • X 2 represents a hydrogen atom or a protecting group (for example, a t-butyl group, etc.)
  • Compound (15) acts as an alkylating agent.
  • the molar ratio of compound (14) to compound (15) (compound (14)/compound (15)) to be reacted is, for example, 1/3 to 3/1, preferably 1/2 to 2/1.
  • the reaction can be carried out in the presence of a solvent.
  • a solvent examples include acetone, acetonitrile, and dimethyl sulfoxide. These can be used alone or in combination of two or more.
  • the reaction atmosphere in each step is not particularly limited as long as it does not inhibit the reaction, and may be, for example, an air atmosphere, a nitrogen atmosphere, an argon atmosphere, etc. Furthermore, the reaction may be carried out in any method, such as a batch method, a semi-batch method, or a continuous method.
  • the obtained reaction product may be subjected to general separation and purification treatment (e.g., precipitation, washing, filtration, etc.).
  • general separation and purification treatment e.g., precipitation, washing, filtration, etc.
  • the imide sulfonate type compound of the present invention includes a compound represented by the following formula (2-2) and a compound represented by the following formula (2-3).
  • R1 represents a hydrocarbon group which may have a substituent.
  • the group represented by -L-( R2 ) n is a substituent possessed by the aromatic ring shown in the formula, the L represents a single bond or a linking group, the R2 represents a coordinating group which coordinates with the metal or metal oxide (1), and n represents an integer of 1 or more.
  • the aromatic ring shown in the formula may have a substituent other than the above groups.
  • the hydrocarbon group includes an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded via a single bond.
  • the aliphatic hydrocarbon group is preferably a C1-5 aliphatic hydrocarbon group (i.e., an aliphatic hydrocarbon group having 1 to 5 carbon atoms), and examples thereof include alkyl groups such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, and a pentyl group; and alkenyl groups such as a vinyl group, an allyl group, and a 1-butenyl group.
  • alkyl groups such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, and a pentyl group
  • alkenyl groups such as a vinyl group, an
  • the alicyclic hydrocarbon group is preferably a C3-10 alicyclic hydrocarbon group, and examples thereof include cycloalkyl groups such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group; cycloalkenyl groups such as a cyclopentenyl group and a cyclohexenyl group; and bridged cyclic hydrocarbon groups such as a perhydronaphthalene-1-yl group, a norbornyl group, an adamantyl group, a tricyclo[ 5.2.1.02,6 ]decan-8-yl group, and a tetracyclo [ 4.4.0.12,5.17,10 ]dodecan-3-yl group.
  • cycloalkyl groups such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclo
  • the aromatic hydrocarbon group is preferably a C 6-14 (particularly, a C 6-10 ) aromatic hydrocarbon group, and examples thereof include aryl groups such as a phenyl group and a naphthyl group.
  • Examples of the substituent that the hydrocarbon group may have include a halogen atom, an oxo group, a carboxyl group, and a group represented by the following formula (r).
  • -X1 -R(r) In formula (r), X1 represents -O-, -S-, or -CO-, and R represents a hydrocarbon group or a halogenated hydrocarbon group.
  • the halogen atom is preferably a fluorine atom or an iodine atom, and more preferably a fluorine atom.
  • the hydrocarbon group represented by R can be the same as those mentioned above.
  • the halogenated hydrocarbon group in R includes a group in which at least one of the hydrogen atoms in the hydrocarbon group is replaced with a halogen atom (e.g., a fluorine atom and/or an iodine atom).
  • a halogen atom e.g., a fluorine atom and/or an iodine atom
  • the L may be the same as the L in the sulfonium salt compound.
  • a carbonyl group (-CO-), an ether bond (-O-), a thioether bond (-S-), an ester bond (-COO-, -OCO-), a divalent group formed by linking any of these groups to a divalent hydrocarbon group (preferably a chain hydrocarbon group, particularly preferably an alkylene group, most preferably a C1-5 alkylene group), or a single bond is preferable.
  • a divalent hydrocarbon group preferably a chain hydrocarbon group, particularly preferably an alkylene group, most preferably a C1-5 alkylene group
  • n represents the number of R2s bonded to the L, and is an integer of 1 or more (for example, an integer of 1 to 3, preferably 1 or 2).
  • n is an integer of 2 or more, two or more R2s may be the same or different.
  • a hydroxy group, a carboxy group, a phosphoric acid group, a phosphoric acid monoester group, or a sulfonic acid group is preferable from the viewpoint of improving the photosensitivity to light of an ultrashort wavelength.
  • the aromatic rings shown in the above formulae (2-2) and (2-3) may have one or more (for example, 1 to 3) substituents other than the group represented by -L-(R 2 ) n .
  • substituents include halogen atoms, hydrocarbon groups, halogenated hydrocarbon groups, and groups represented by the above formula (r).
  • hydrocarbon groups and halogenated hydrocarbon groups include the same as those mentioned above.
  • the compound (2-2) is preferable in terms of improving the photosensitivity to ultrashort wavelength light, and in particular, it is a compound represented by the above formula (2-2) in which L in the formula is a carbonyl group (-CO-), an ether bond (-O-), a thioether bond (-S-), an ester bond (-COO-), or any of these groups and an alkylene group (for example, A compound in which the alkyl group is a divalent group formed by linking two linear or branched C 1-5 alkylene groups, or a single bond is preferred.
  • the imide sulfonate compound has excellent sensitivity to light rays of ultrashort wavelengths, and when irradiated with the light rays, it rapidly generates an acid (R 1 SO 3 H; R 1 corresponds to R 1 in formula (2-2) or (2-3)).
  • the wavelength of the light rays is, for example, 100 nm or less (e.g., 1 to 100 nm), preferably 80 nm or less, particularly preferably 50 nm or less, most preferably 30 nm or less, and particularly preferably 20 nm or less.
  • the light rays include, for example, X-rays, electron beams, EUV, etc.
  • the imidosulfonate compound has a group (R 2 ) that exhibits coordination with a metal or metal oxide (1). Therefore, when mixed with a metal or metal oxide (1), an organometallic compound that is an organic-inorganic composite having the metal or metal oxide (1) as a core can be formed.
  • the organometallic compound thus formed can be suitably used as a material for forming a photoresist (e.g., a metal resist).
  • the nonionic oxime compound of the present invention includes a compound represented by the following formula (2-4) and a compound represented by the following formula (2-5).
  • Ar 1 and Ar 2 are the same or different and each represents an aromatic ring structure, or a structure in which two or more aromatic rings are bonded via a single bond or a linking group.
  • R 3 represents a halogen atom or a halogenated hydrocarbon group.
  • R 4 represents a hydrocarbon group which may have a substituent, a group in which two or more hydrocarbon groups which may have a substituent are bonded via a single bond or a linking group, or a cyano group.
  • L represents a single bond or a linking group.
  • n1 represents an integer of 1 to 5
  • n2 represents an integer of 1 to 4.
  • the aromatic rings represented in the formula may have a substituent other than the above groups.
  • Ar 1 and Ar 2 include the same as those of Ar 11 to Ar 13 in the sulfonium salt type compound.
  • Ar 1 and Ar 2 are preferably a benzene ring structure or a structure in which two or more benzene rings are bonded via a single bond or a linking group (preferably an ether bond or a thioether bond), and are particularly preferably at least one structure selected from the benzene ring structure and the structures represented by the formulae (ar-1) to (ar-3).
  • R 3 is a substituent bonded to Ar 1 or Ar 2 and represents a halogen atom or a halogenated hydrocarbon group.
  • halogen atom from the viewpoint of increasing the sensitivity to ultrashort wavelength light, a fluorine atom or an iodine atom is preferred, and a fluorine atom is particularly preferred.
  • the halogenated hydrocarbon group is a hydrocarbon group in which at least one of the hydrogen atoms has been replaced with a halogen atom.
  • hydrocarbon group examples include the same hydrocarbon groups as those in R 1 .
  • the halogenated hydrocarbon group is preferably a monovalent hydrocarbon group in which all of the hydrogen atoms have been replaced with halogen atoms (i.e., a perhalogenated hydrocarbon group).
  • the number of carbon atoms in the halogenated hydrocarbon group is, for example, 1 to 5, preferably 1 to 3, and particularly preferably 1 or 2.
  • the halogenated hydrocarbon group is preferably a haloalkyl group, particularly preferably a C 1-5 haloalkyl group.
  • the halogenated hydrocarbon group is preferably a perhaloalkyl group, particularly preferably a C 1-5 perhaloalkyl group.
  • n1 represents the number of R3 bonded to Ar1 and is an integer of 1 to 5. Among them, an integer of 1 to 3 is preferable, and 1 or 2 is particularly preferable.
  • n2 represents the number of R 3 bonded to Ar 2 and is an integer of 1 to 4.
  • the Ar 1 may have a substituent other than R 3.
  • the Ar 2 may have a substituent other than R 3 or the group represented by L-COOH in formula (2-5).
  • Examples of the other substituent include a monovalent aliphatic hydrocarbon group, a monovalent alicyclic hydrocarbon group, an oxo group, a carboxyl group, and a group represented by the following formula (r).
  • -X1 -R(r) In formula (r), X1 represents -O-, -S-, or -CO-, and R represents a hydrocarbon group or a halogenated hydrocarbon group.
  • R in the formula (r) is preferably a monovalent aliphatic hydrocarbon group or a monovalent halogenated aliphatic hydrocarbon group, more preferably an alkyl group or a haloalkyl group, and particularly preferably a C1-5 alkyl group or a haloC1-5 alkyl group.
  • R 4 represents a hydrocarbon group which may have a substituent, a group in which two or more hydrocarbon groups which may have a substituent are bonded via a single bond or a linking group, or a cyano group.
  • hydrocarbon group and linking group in R 4 examples include the same as those mentioned above.
  • the hydrocarbon group in R 4 is preferably a monovalent aliphatic hydrocarbon group or a monovalent aromatic hydrocarbon group, more preferably an alkyl group or an aryl group, and particularly preferably a C 1-5 alkyl group or a C 6-10 aryl group.
  • hydrocarbon group for R 4 from the viewpoint of enhancing solubility in a solvent, a monovalent aliphatic hydrocarbon group is preferred, an alkyl group is particularly preferred, and a C 1-5 alkyl group is particularly preferred.
  • the group in which two or more hydrocarbon groups in R 4 are bonded via a linking group is preferably a monovalent group in which two or more of the hydrocarbon groups are bonded via an ether bond or a thioether bond.
  • the substituent that the hydrocarbon group in R 4 may have is, for example, a halogen atom.
  • the hydrocarbon group and the halogenated hydrocarbon group include the same as those mentioned above.
  • halogenated hydrocarbon groups those in which all of the hydrogen atoms of the monovalent hydrocarbon group have been replaced with halogen atoms (i.e., perhalogenated hydrocarbon groups) are preferred.
  • the number of carbon atoms in the halogenated hydrocarbon group is, for example, 1 to 10, and preferably 1 to 6.
  • the halogenated hydrocarbon group is preferably a haloalkyl group or a haloaryl group, particularly preferably a haloC 1-5 alkyl group or a haloC 6-10 aryl group.
  • the halogenated hydrocarbon group is preferably a perhaloalkyl group or a perhaloaryl group, and particularly preferably a perhaloC 1-5 alkyl group or a perhaloC 6-10 aryl group.
  • R in the R5 is preferably a monovalent aliphatic hydrocarbon group, a monovalent aromatic hydrocarbon group, a monovalent halogenated aliphatic hydrocarbon group, or a monovalent halogenated aromatic hydrocarbon group, and is particularly preferably an alkyl group, an aryl group, a halogenated alkyl group (so-called a haloalkyl group), or a halogenated aryl group (so-called a haloaryl group).
  • a fluorine atom or an iodine atom is preferred, and a fluorine atom is particularly preferred.
  • the L may be the same as the L in the sulfonium salt compound.
  • L is preferably a divalent hydrocarbon group, a divalent halogenated hydrocarbon group, or a divalent group in which two or more of these groups are bonded via an ether bond or a thioether bond.
  • L in the formula (2-4) is preferably an alkylene group, a halogenated alkylene group, or a divalent group in which two or more of these groups are bonded via an ether bond or a thioether bond.
  • L in the formula (2-5) is preferably a divalent hydrocarbon group, a divalent halogenated hydrocarbon group, or a divalent group formed by bonding these groups to an ether bond or a thioether bond, or a single bond.
  • L is preferably an alkylene group, a halogenated alkylene group, a divalent group formed by bonding these groups to an ether bond or a thioether bond, or a single bond.
  • the compound represented by the following formula (2-4-1) is preferable. Also, of the compounds (2-5), the compound represented by the following formula (2-5-1) is preferable.
  • R 3 , R 4 , R 5 , n1, n2, and L are the same as above.
  • the benzene ring shown in formula (2-4-1) may have other substituents in addition to R3 .
  • n2 is an integer of 3 or less
  • the benzene ring shown in formula (2-5-1) may have other substituents in addition to R3 and the group represented by L-COOH. Examples of other substituents include hydrocarbon groups, oxyhydrocarbon groups, and thiohydrocarbon groups.
  • hydrocarbon group examples include the same monovalent hydrocarbon groups as those in R in R 1.
  • the number of carbon atoms in the hydrocarbon group is, for example, 1 to 5, preferably 1 to 3, and particularly preferably 1 or 2.
  • the oxyhydrocarbon group is a group represented by the formula [-O-R] (wherein R represents a hydrocarbon group, and the bond coming from the left end of the formula is bonded to a carbon atom constituting a benzene ring).
  • R represents a hydrocarbon group, and the bond coming from the left end of the formula is bonded to a carbon atom constituting a benzene ring.
  • Examples of the hydrocarbon group in R include the same monovalent hydrocarbon groups as those in R in R1 above.
  • the number of carbon atoms in the oxyhydrocarbon group is, for example, 1 to 5, preferably 1 to 3, and particularly preferably 1 or 2.
  • Examples of the oxyhydrocarbon group include a methoxy group, an ethoxy group, a butoxy group, and a t-butoxy group.
  • the thiohydrocarbon group is a group represented by the formula [-S-R] (wherein R represents a hydrocarbon group, and the bond from the left end of the formula is bonded to a carbon atom constituting a benzene ring).
  • R represents a hydrocarbon group, and the bond from the left end of the formula is bonded to a carbon atom constituting a benzene ring.
  • Examples of the hydrocarbon group in R include the same monovalent hydrocarbon groups as those in R in R1 above.
  • the thiohydrocarbon group has, for example, 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and particularly preferably 1 or 2 carbon atoms.
  • Examples of the thiohydrocarbon group include a methylthio group, an ethylthio group, and a butylthio group.
  • the nonionic oxime compound has excellent solubility in a solvent (e.g., PGMEA).
  • a solvent e.g., PGMEA
  • the amount of the compound that dissolves in 100 parts by weight of PGMEA is, for example, more than 2 parts by weight, preferably 3 parts by weight or more, more preferably 4 parts by weight or more, particularly preferably 5 parts by weight or more, most preferably 8 parts by weight or more, and particularly preferably 15 parts by weight or more.
  • the upper limit is, for example, 30 parts by weight.
  • the nonionic oxime compound has excellent sensitivity to light rays with ultrashort wavelengths, and when irradiated with the light rays, it rapidly generates an acid (HR 5 ; R 5 corresponds to R 5 in formula (2-4) or (2-5)).
  • the wavelength of the light rays is, for example, 100 nm or less (e.g., 1 to 100 nm), preferably 80 nm or less, particularly preferably 50 nm or less, most preferably 30 nm or less, and particularly preferably 20 nm or less.
  • the light rays include, for example, X-rays, electron beams, EUV, etc.
  • the nonionic oxime compound has thermal stability and can suppress decomposition even when subjected to heat treatment (for example, heating at a temperature of 50°C or higher and lower than 100°C for 1 to 5 minutes).
  • the nonionic oxime compound has the above-mentioned properties, and therefore can be suitably used as an acid generator (particularly an acid generator for photoresists (e.g., chemically amplified resists) that use ultrashort wavelength light such as extreme ultraviolet rays or electron beams).
  • an acid generator for photoresists e.g., chemically amplified resists
  • ultrashort wavelength light such as extreme ultraviolet rays or electron beams.
  • the nonionic oxime compound has thermal stability, a coating film containing the nonionic oxime compound can be heated and dried while retaining its acid generating ability, and thus has excellent workability.
  • the nonionic oxime compound also has a carboxyl group that exhibits coordination with the metal or metal oxide (1). Therefore, when mixed with the metal or metal oxide (1), an organometallic compound can be formed, which is an organic-inorganic complex with the metal or metal oxide (1) as the core.
  • the organometallic compound thus formed can be suitably used as a material for forming a photoresist (e.g., a metal resist).
  • the acid generator of the present invention contains the sulfonium salt type compound, the imidosulfonate type compound, or the nonionic oxime type compound.
  • the acid generator may contain one of the sulfonium salt compounds alone or a combination of two or more of them.
  • the acid generator includes, for example, compound (2-1a), preferably compound (2-1b), more preferably at least one compound selected from compound (2-1), compound (2-1'), and compound (2-1"), and particularly preferably compound (2-1-1).
  • the acid generator may contain one of the imide sulfonate compounds alone or a combination of two or more of them.
  • the acid generator includes compound (2-2) and/or compound (2-3), and preferably includes compound (2-2).
  • the acid generator may contain one of the nonionic oxime compounds alone or a combination of two or more of them.
  • the acid generator includes compound (2-4) and/or compound (2-5), and preferably includes compound (2-4-1) and/or compound (2-5-1).
  • the acid generator may contain other components in addition to the above-mentioned compound, but the proportion of the above-mentioned compound in the total amount of compounds contained in the acid generator that decompose when irradiated with light to generate acid (the proportion of the total amount when two or more types are contained) is, for example, 70% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more, particularly preferably 95% by weight or more, most preferably 99% by weight or more, and especially preferably 99.9% by weight or more.
  • the upper limit is 100% by weight.
  • the acid generator has excellent solubility in a solvent (e.g., PGMEA), and the amount of the acid generator that dissolves in 100 parts by weight of PGMEA at room temperature and normal pressure is, for example, more than 2 parts by weight, preferably 3 parts by weight or more, more preferably 4 parts by weight or more, particularly preferably 5 parts by weight or more, most preferably 8 parts by weight or more, and particularly preferably 15 parts by weight or more.
  • the upper limit is, for example, 30 parts by weight. Therefore, if the acid generator is added to a photoresist together with a solvent, the acid generator can be uniformly dispersed in the photoresist.
  • the acid generator has excellent sensitivity to light rays with ultrashort wavelengths, and when irradiated with the light rays, it rapidly generates acid.
  • the wavelength of the light rays is, for example, 100 nm or less (e.g., 1 to 100 nm), preferably 80 nm or less, particularly preferably 50 nm or less, most preferably 30 nm or less, and particularly preferably 20 nm or less.
  • Examples of the light rays include X-rays, electron beams, EUV, etc.
  • the acid generator has thermal stability, and decomposition can be suppressed even when subjected to heat treatment (for example, heating at a temperature of 50°C or higher and lower than 130°C for 1 to 5 minutes). Therefore, a coating film containing the acid generator can be heated and dried while retaining its acid generating ability, and is easy to work with.
  • the acid generator can be added, for example, as a cationic polymerization initiator to a cationic curable resin (e.g., a resin having one or more cationic curable groups selected from epoxy groups, oxetanyl groups, vinyl ether groups, etc.), but since it has excellent sensitivity to ultrashort wavelength light as described above, it is preferably used in photoresists (e.g., chemically amplified photoresists) that use ultrashort wavelength light such as extreme ultraviolet rays, electron beams, and X-rays.
  • a cationic curable resin e.g., a resin having one or more cationic curable groups selected from epoxy groups, oxetanyl groups, vinyl ether groups, etc.
  • photoresists e.g., chemically amplified photoresists
  • ultrashort wavelength light such as extreme ultraviolet rays, electron beams, and X-rays.
  • the photoresist (1) of the present invention is a chemically amplified photoresist containing the acid generator (or the sulfonium salt type compound, the imide sulfonate type compound, or the nonionic oxime type compound) and a photosensitive resin.
  • the acid generator and the photosensitive resin may each be used alone or in combination of two or more types.
  • the content of the acid generator is, for example, 0.001 to 20% by weight, preferably 0.01 to 15% by weight, and particularly preferably 0.05 to 7% by weight, based on the total amount of the photosensitive resin.
  • the content of the acid generator is 0.001% by weight or more, it is possible to exhibit excellent photosensitivity to ultra-short wavelength light such as X-rays, electron beams, and EUV. Furthermore, if the content is 20% by weight or less, the effect of improving the resolution of the photoresist can be obtained.
  • the photosensitive resins include negative photosensitive resins (QN) whose solubility decreases when irradiated with light (or the unexposed areas are removed), and positive photosensitive resins (QP) whose solubility increases when irradiated with light (or the exposed areas are selectively removed). These can be selected and used depending on the application.
  • QN negative photosensitive resins
  • QP positive photosensitive resins
  • a negative photosensitive resin (or negative chemically amplified resin; QN) is, for example, a composition containing a phenolic hydroxyl group-containing resin (QN1) and a crosslinker (QN2), either alone or in combination of two or more of them.
  • the phenolic hydroxyl group-containing resin (QN1) is not particularly limited as long as it is a resin that contains a phenolic hydroxyl group, and examples thereof include novolac resin, polyhydroxystyrene, copolymers of hydroxystyrene, copolymers of hydroxystyrene and styrene, copolymers of hydroxystyrene, styrene and (meth)acrylic acid derivatives, phenol-xylylene glycol condensation resins, cresol-xylylene glycol condensation resins, polyimides containing phenolic hydroxyl groups, polyamic acids containing phenolic hydroxyl groups, phenol-dicyclopentadiene condensation resins, etc.
  • the phenolic hydroxyl group-containing resin (QN1) may contain a phenolic low molecular weight compound as part of its components.
  • the polystyrene equivalent weight average molecular weight (Mw) of the phenolic hydroxyl group-containing resin (QN1) measured by GPC is, for example, 2,000 to 20,000.
  • the crosslinking agent (QN2) may be any compound capable of crosslinking the phenolic hydroxyl group-containing resin (QN1) with the acid generated from the acid generator, and examples thereof include bisphenol A-based epoxy compounds, bisphenol F-based epoxy compounds, bisphenol S-based epoxy compounds, novolac resin-based epoxy compounds, resol resin-based epoxy compounds, poly(hydroxystyrene)-based epoxy compounds, oxetane compounds, methylol group-containing melamine compounds, methylol group-containing benzoguanamine compounds, methylol group-containing urea compounds, methylol group-containing phenolic compounds, alkoxyalkyl group-containing melamine compounds, alkoxyalkyl group-containing benzoguanamine compounds, alkoxyalkyl group-containing urea compounds, alkoxyalkyl group-containing phenolic compounds, carboxymethyl group-containing melamine resins, carboxymethyl group-containing benzoguanamine resins, carboxymethyl group-containing urea
  • the content of the crosslinking agent (QN2) is, for example, 10 to 40 mol % relative to the total acidic functional groups in the phenolic hydroxyl group-containing resin (QN1) from the viewpoint of forming a pattern with high accuracy.
  • Positive-type photosensitive resins include alkali-soluble resins in which an acid-dissociable group has been introduced as a protecting group (protected group-introduced resins; QP1).
  • Protective group-introduced resin is a resin in which some or all of the hydrogen atoms of acidic functional groups (e.g., phenolic hydroxyl groups, carboxyl groups, sulfonyl groups, etc.) in an alkali-soluble resin have been substituted with acid-dissociable groups.
  • acidic functional groups e.g., phenolic hydroxyl groups, carboxyl groups, sulfonyl groups, etc.
  • the protecting group-introduced resin (QP1) itself is an alkali-insoluble or poorly alkali-soluble resin, and when the acid-dissociable group is dissociated by the acid generated from the acid generator, an alkali-soluble resin that is easily soluble in an alkaline developer is produced.
  • the alkali-soluble resin is, for example, a resin with an HLB value of 4 to 19 (preferably 5 to 18, and particularly preferably 6 to 17).
  • Alkali-soluble resins include phenolic hydroxyl group-containing resins, carboxyl group-containing resins, and sulfonic acid group-containing resins.
  • phenolic hydroxyl group-containing resins examples include resins similar to the phenolic hydroxyl group-containing resin (QN1) described above.
  • carboxyl group-containing resin there are no particular limitations on the carboxyl group-containing resin as long as it is a polymer that has a carboxyl group, and examples of the resin include a homopolymer of a carboxyl group-containing vinyl monomer (Ba) and a homopolymer of a carboxyl group-containing vinyl monomer (Ba) and a hydrophobic group-containing vinyl monomer (Bb).
  • carboxyl group-containing vinyl monomer (Ba) is (meth)acrylic acid.
  • hydrophobic group-containing vinyl monomer (Bb) examples include (meth)acrylic acid esters (Bb1) such as C1-20 alkyl (meth)acrylates and alicyclic group-containing (meth)acrylates, and aromatic hydrocarbon monomers (Bb2) such as hydrocarbon monomers having a styrene skeleton and vinyl naphthalene.
  • the sulfonic acid group-containing resin is a polymer having a sulfonic acid group, and it can be obtained, for example, by vinyl polymerization of a sulfonic acid group-containing vinyl monomer (Bc) such as vinyl sulfonic acid or styrene sulfonic acid, and, if necessary, a hydrophobic group-containing vinyl monomer (Bb).
  • Bc sulfonic acid group-containing vinyl monomer
  • Bb hydrophobic group-containing vinyl monomer
  • Examples of the acid-dissociable groups possessed by the protecting group-introduced resin (QP1) include 1-substituted methyl groups such as methoxymethyl, benzyl, and tert-butoxycarbonylmethyl; 1-substituted ethyl groups such as 1-methoxyethyl and 1-ethoxyethyl; 1-branched alkyl groups such as tert-butyl; silyl groups such as trimethylsilyl; germyl groups such as trimethylgermyl; alkoxycarbonyl groups such as tert-butoxycarbonyl; acyl groups; and cyclic acid-dissociable groups such as tetrahydropyranyl, tetrahydrofuranyl, tetrahydrothiopyranyl, and tetrahydrothiofuranyl. These may be contained alone or in combination of two or more.
  • the introduction rate of the acid-dissociable group in the protecting group-introduced resin (QP1) (the ratio of the number of acid-dissociable groups to the total number of unprotected acidic functional groups and acid-dissociable groups in the protecting group-introduced resin (QP1)) cannot be generally determined depending on the type of acid-dissociable group and the alkali-soluble resin into which the group is introduced, but is preferably 10 to 100%, and more preferably 15 to 100%.
  • the weight average molecular weight (Mw) of the protecting group-introduced resin (QP1) measured by GPC in terms of polystyrene is, for example, 1,000 to 150,000, and preferably 3,000 to 100,000.
  • the photoresist (1) can be prepared, for example, by dissolving the acid generator in a solvent and mixing it with a photosensitive resin.
  • the photoresist (1) may contain one or more other components, as necessary, in addition to the acid generator and photosensitive resin.
  • other components include solvents, pigments, dyes, photosensitizers, dispersants, surfactants, fillers, leveling agents, defoamers, antistatic agents, UV absorbers, pH adjusters, surface modifiers, plasticizers, drying accelerators, etc.
  • the solvent may be any solvent capable of dissolving the photosensitive resin and imparting good coating properties to the photoresist (1), but it is preferable to use a solvent having a boiling point of 200°C or less, since it allows the photoresist to be easily dried after coating.
  • Preferred examples of such solvents include aromatic hydrocarbons such as toluene; alcohols such as ethanol and methanol; ketones such as cyclohexanone, methyl ethyl ketone and acetone; esters such as ethyl acetate, butyl acetate and ethyl lactate; and glycol monoether monoesters such as propylene glycol monomethyl ether acetate (PGMEA). These can be used alone or in combination of two or more.
  • aromatic hydrocarbons such as toluene
  • alcohols such as ethanol and methanol
  • ketones such as cyclohexanone, methyl ethyl ketone and acetone
  • esters such as
  • the photoresist (1) contains the acid generator, which has high photosensitivity to ultrashort wavelength light such as X-rays, electron beams, and EUV. Therefore, by using the photoresist of the present invention, a resist film having a high-resolution fine pattern can be produced by photolithography using ultrashort wavelength light.
  • An example of a method for forming a pattern by photolithography using photoresist (1) is a method including the following steps 1 to 3.
  • Step 1 A step of forming a coating film of photoresist (1) on a substrate.
  • Step 2 A step of transferring a pattern by irradiating the coating film with light.
  • Step 3 A step of performing alkaline development.
  • Step 1 This step is a step of forming a coating film of photoresist (1) on a substrate to be etched.
  • the coating film of photoresist (1) can be formed by applying photoresist (1) to a substrate by a known method such as spin coating, curtain coating, roll coating, spray coating, screen printing, etc., and drying the applied photoresist (1).
  • the photoresist (1) may be dried naturally, but since the acid generator contained in the photoresist (1) is thermally stable and does not lose its acid generating ability even when heated, it can be dried by heating (for example, by heating at a temperature of 50°C or higher and lower than 130°C for 1 to 5 minutes), which provides excellent workability.
  • the thickness of the coating is, for example, 1 to 1000 nm.
  • Step 2 This step is a step of transferring a pattern to the coating film obtained through step 1 by irradiating the coating film with light through a photomask having a pattern, for example.
  • the light used for the light irradiation is not particularly limited as long as it can decompose the acid generator contained in the coating film to generate acid, but from the viewpoint of making the pattern finer, it is preferable to use light with an ultra-short wavelength, and the wavelength of the light is, for example, preferably 100 nm or less (e.g., 1 to 100 nm), more preferably 80 nm or less, particularly preferably 50 nm or less, most preferably 30 nm or less, and especially preferably 20 nm or less.
  • the light include X-rays, electron beams, EUV, etc.
  • the film After light irradiation, it is preferable to heat the film at a temperature of 60 to 200°C for about 0.1 to 120 minutes, as this will increase the difference in solubility in an alkaline developer between the exposed and unexposed areas.
  • Step 3 the photoresist coating film that has been subjected to step 2 is subjected to an alkali development treatment.
  • alkaline developers used in alkaline development include aqueous sodium hydroxide solutions, aqueous potassium hydroxide solutions, sodium bicarbonate solutions, and aqueous tetramethylammonium salt solutions.
  • the alkaline developer may contain methanol, ethanol, isopropyl alcohol, tetrahydrofuran, N-methylpyrrolidone, etc.
  • the alkaline development process is carried out by applying the alkaline developer to the coating film by a method such as dipping, showering, or spraying.
  • the temperature of the alkaline developer is, for example, 25 to 40°C.
  • the alkaline development time is adjusted appropriately depending on the thickness of the coating film, but is, for example, 1 to 5 minutes.
  • the difference in solubility between exposed and unexposed areas of the photoresist coating is preferable for the difference in solubility between exposed and unexposed areas of the photoresist coating to be large in order to form a highly accurate fine pattern. This is because the presence of a large amount of development residue is likely to lead to problems such as wiring shape abnormalities. Furthermore, if the photoresist contains an acid generator having a carboxyl group, the developability of the resist is improved during alkaline development, and development residues are reduced, allowing defect-free products to be manufactured with a high yield.
  • step 3 a resist film having a highly accurate fine pattern can be formed on the substrate. By etching the substrate using the resist film thus obtained, highly accurate electronic devices can be manufactured.
  • the electronic devices include, for example, display devices such as organic electroluminescence displays and liquid crystal displays; input devices such as touch panels; light-emitting devices; sensor devices; and MEMS (Micro Electro Mechanical Systems) devices such as optical scanners, optical switches, acceleration sensors, pressure sensors, gyroscopes, microchannels, and inkjet heads.
  • display devices such as organic electroluminescence displays and liquid crystal displays
  • input devices such as touch panels
  • light-emitting devices such as light-emitting devices
  • sensor devices such as MEMS (Micro Electro Mechanical Systems) devices
  • MEMS Micro Electro Mechanical Systems
  • the organometallic compound of the present invention is an organic-inorganic composite having a structure in which a coordinating compound (2) is coordinately bonded to a metal or metal oxide (1).
  • the coordinating compound (2) contains at least one compound selected from the sulfonium salt type compound, the imidosulfonate type compound, and the nonionic oxime type compound.
  • the organometallic compound is therefore an aggregate of a metal or metal oxide (1) and a ligand derived from the coordinating compound (2).
  • the ligand derived from the coordinating compound (2) is contained in a state bonded to the metal or metal oxide (1).
  • the organometallic compound may contain components other than the metal or metal oxide (1) and the ligand derived from the coordinating compound (2), but the proportion of the total weight of the metal or metal oxide (1) and the ligand derived from the coordinating compound (2) in the total amount of the organometallic compound (100% by weight) is, for example, 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, particularly preferably 90% by weight or more, most preferably 95% by weight or more, and particularly preferably 99% by weight or more.
  • the upper limit is 100% by weight.
  • the organometallic compound has excellent solubility (or dispersibility) in a solvent, and the average particle size in the solvent (e.g., PGMEA) (the average particle size is determined by dynamic light scattering) is, for example, 200 nm or less, preferably 100 nm or less, and particularly preferably 50 nm or less.
  • the lower limit is, for example, 1 nm.
  • the organometallic compound has excellent sensitivity to light rays, and when irradiated with light rays, it generates an acid and rapidly aggregates.
  • the wavelength of the light rays is, for example, 100 nm or less (e.g., 0 to 100 nm), preferably 80 nm or less, particularly preferably 50 nm or less, most preferably 30 nm or less, and particularly preferably 20 nm or less.
  • Examples of the light rays include X-rays, electron beams (EB), EUV, etc.
  • the metal or metal oxide (1) is a component that forms the core of the organometallic compound, and includes at least one selected from metals and metal oxides.
  • metals examples include hafnium, zirconium, tin, cobalt, palladium, antimony, titanium, and aluminum.
  • the metal oxides include not only oxides of the metals, but also partial hydroxides of metal oxides and hydrates of metal oxides.
  • metal oxide examples include hafnium oxide ( HfO2 ), zirconium oxide ( ZrO2 , Zr6O4 (OH) 4 ), tin oxide ( SnO2 , Sn2O3, Sn3O4, Sn6O12, Sn12O25H16, (C4H9Sn)12O14(OH)6 ) , cobalt oxide ( CoO , Co2O3 , Co3O4 ) , palladium oxide ( PdO ) , antimony oxide ( Sb2O3 ), titanium oxide ( TiO2 ) , and aluminum oxide (Al2O3 ) .
  • the metal oxide can be produced, for example, by the sol-gel method.
  • a metal alkoxide is used as the starting material, and the metal oxide is finally obtained through hydrolysis and polycondensation reactions via a sol/gel state.
  • the shape of the metal or metal oxide (1) is not particularly limited, and examples thereof include spherical (perfect sphere, nearly perfect sphere, elliptical sphere, etc.), polyhedral, rod-like (cylindrical, rectangular columnar, etc.), plate-like, flaky, and irregular shapes.
  • the metal or metal oxide (1) may be hollow, porous, or solid.
  • the average particle size of the metal or metal oxide (1) (the average particle size is determined by dynamic light scattering) is, for example, 1 to 200 nm, preferably 2 to 100 nm, and particularly preferably 2 to 50 nm.
  • the proportion of the metal or metal oxide (1) in the total amount of the organometallic compound is, for example, 10 to 90% by weight, and preferably 30 to 70% by weight.
  • the coordinating compound (2) is a compound that forms a ligand by coordinate bonding with the above metal or metal oxide (1), and includes the above sulfonium salt type compounds, the above imidosulfonate type compounds, and the above nonionic oxime type compounds.
  • the coordinating compound (2) may contain other compounds (hereinafter sometimes referred to as "other coordinating compounds") that are different from the sulfonium salt type compound, the imidosulfonate type compound, and the nonionic oxime type compound.
  • coordinating compounds include, for example, carboxylic acids, phosphoric acids, phosphonic acids, sulfonic acids, etc.
  • carboxylic acid examples include C 1-10 alkyl carboxylic acids such as citric acid, oxalic acid, malic acid, maleic acid, tartaric acid, glutaric acid, adipic acid, pimelic acid, succinic acid, malonic acid, fumaric acid, phthalic acid, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, glycolic acid, glyceric acid, and lactic acid; C 2-10 alkenyl carboxylic acids such as acrylic acid, methacrylic acid, tiglic acid, 2-methylisocrotonic acid, and 3-methylcrotonic acid; and C 6
  • Examples of the phosphoric acid include C1-10 alkyl phosphates such as methyl phosphate, ethyl phosphate, propyl phosphate, butyl phosphate, hexyl phosphate, phenyl phosphate, dimethyl phosphate, diethyl phosphate, dipropyl phosphate, dibutyl phosphate, and dihexyl phosphate; and C6-10 aryl phosphates such as diphenyl phosphate.
  • C1-10 alkyl phosphates such as methyl phosphate, ethyl phosphate, propyl phosphate, butyl phosphate, hexyl phosphate, phenyl phosphate, dimethyl phosphate, diethyl phosphate, dipropyl phosphate, dibutyl phosphate, and dihexyl phosphate
  • C6-10 aryl phosphates such as diphenyl phosphate.
  • Examples of the phosphonic acid include C 1-10 alkylphosphonic acids such as methylphosphonic acid, ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, and hexylphosphonic acid; C 2-10 alkenylphosphonic acids such as vinylphosphonic acid; and C 6-10 arylphosphonic acids such as phenylphosphonic acid.
  • sulfonic acid examples include C 1-10 alkylsulfonic acids such as methylsulfonic acid, ethylsulfonic acid, propylsulfonic acid, butylsulfonic acid, and hexylsulfonic acid; C 6-10 arylsulfonic acids such as phenylsulfonic acid; and C 2-10 alkenylsulfonic acids such as vinylsulfonic acid.
  • coordinating compounds having a C 6-10 aryl group are preferred from the viewpoint of imparting good dispersibility to the organometallic compound, and C 6-10 aryl carboxylic acid is particularly preferred.
  • the ratio of the sulfonium salt type compound, the imide sulfonate type compound, or the nonionic oxime type compound to the total amount of the coordinating compound (2) is, for example, 0.1% by weight or more, preferably 0.5% by weight or more, and particularly preferably 1.0% by weight or more.
  • the upper limit is, for example, 50% by weight, preferably 30% by weight.
  • the proportion of the ligand derived from the sulfonium salt type compound, the ligand derived from the imidosulfonate type compound, or the ligand derived from the nonionic oxime type compound in the total amount of the organometallic compound (or the total weight of the metal or metal oxide (1) and the ligand) (when two or more types are contained, the proportion of the total amount) is, for example, 0.1 to 50% by weight, preferably 0.5 to 30% by weight.
  • the content of the ligand derived from the sulfonium salt type compound, the ligand derived from the imidosulfonate type compound, or the ligand derived from the nonionic oxime type compound is, for example, 0.1 to 50 parts by weight, preferably 0.5 to 30 parts by weight, and particularly preferably 1 to 20 parts by weight, per 100 parts by weight of the metal or metal oxide (1).
  • the organometallic compound aggregates when irradiated with light.
  • the following reaction is considered to be the mechanism of this aggregation. That is, the metal or metal oxide (1) is a fine particle and has a tendency to aggregate, but the organometallic compound has ligands derived from the coordinating compound (2) bonded to the surface of the metal or metal oxide (1), thereby suppressing aggregation between the metal or metal oxide (1) and acquiring dispersibility.
  • the number of bonded ligands decreases through the following reactions 1, 2, and 3, causing the dispersibility to be lost and forming aggregates.
  • Reaction 1 A part of the ligands constituting the organometallic compound is decomposed by irradiation with light to generate an acid.
  • Reaction 2 The generated acid acts on an adjacent organometallic compound to detach a ligand from the organometallic compound.
  • Reaction 3 When the ligands are peeled off from the organometallic compound, the metal or metal oxide (1) contained in the organometallic compound loses or loses its dispersibility because the number of ligands bonded to its surface is reduced.
  • M represents a metal or metal oxide (1)
  • R a represents the structure of the portion other than the carboxyl group of the sulfonium salt type compound, the imidosulfonate type compound, or the nonionic oxime type compound.
  • the organometallic compound can be produced, for example, by mixing a metal or metal oxide (1) with a coordinating compound (2) in a solvent.
  • a coordinating compound (2) is coordinately bonded to a metal or metal oxide (1) to form an organometallic compound (3), which is an organic-inorganic composite, is shown below, taking as an example the case in which the coordinating group is a carboxyl group.
  • M represents a metal or metal oxide (1).
  • the coordination compound (2) (specifically, the sulfonium salt type compound, the imide sulfonate type compound, or the nonionic oxime type compound) is represented by general formula (II). R a in the following formula is the same as above.
  • the amount of the coordinating compound (2) used (the total amount when two or more types are used) is, for example, 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight, per part by weight of the metal or metal oxide (1).
  • the amount of the sulfonium salt type compound, the imide sulfonate type compound, or the nonionic oxime type compound used is, for example, 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight, per part by weight of the metal or metal oxide (1).
  • the solvent may be, for example, ethers such as diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, cyclopentyl methyl ether, propylene glycol methyl ether, and propylene glycol monomethyl ether acetate. These may be used alone or in combination of two or more.
  • the amount of the solvent used is, for example, about 50 to 300% by weight based on the total amount of the metal or metal oxide (1) and the coordinating compound (2).
  • reaction product can be separated and purified by standard methods such as precipitation, washing, and filtration.
  • the photosensitive material for photoresist of the present invention is a photosensitive material used in the field of photolithography (for example, a compound whose solubility in a solvent changes upon exposure to light), and contains the organometallic compound.
  • the photoresist photosensitive material may contain other components in addition to the organometallic compounds described above, but the proportion of the organometallic compounds in the total amount of the photoresist photosensitive material is, for example, 70% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more, particularly preferably 95% by weight or more, most preferably 99% by weight or more, and especially preferably 99.9% by weight or more.
  • the upper limit is 100% by weight.
  • the photoresist photosensitive material has excellent solubility (or dispersibility) in a solvent (e.g., PGMEA, etc.) before irradiation with light.
  • a solvent e.g., PGMEA, etc.
  • the average particle size of the photoresist photosensitive material in the solvent is, for example, 200 nm or less, preferably 100 nm or less, and particularly preferably 50 nm or less.
  • the lower limit is, for example, 1 nm.
  • the photoresist photosensitive material has excellent sensitivity to light (especially light of ultrashort wavelength), and when irradiated with the light, it quickly forms aggregates.
  • the wavelength of the light is, for example, 100 nm or less, preferably 80 nm or less, and particularly preferably 50 nm or less.
  • the light includes, for example, X-rays, electron beams (EB), EUV, etc.
  • the photoresist photosensitive material has thermal stability, and aggregation is suppressed even when it is subjected to a heat treatment (for example, a treatment of heating at a temperature of 50°C or higher and lower than 130°C for 1 to 5 minutes). Therefore, a coating film containing the photoresist photosensitive material can be heated and dried while suppressing aggregation, and it has excellent workability.
  • a heat treatment for example, a treatment of heating at a temperature of 50°C or higher and lower than 130°C for 1 to 5 minutes. Therefore, a coating film containing the photoresist photosensitive material can be heated and dried while suppressing aggregation, and it has excellent workability.
  • the photoresist photosensitive material has the above-mentioned characteristics, it can be suitably used as a negative photoresist photosensitive material. It can also be suitably used as a photosensitive material for photoresists that use ultrashort wavelength light such as extreme ultraviolet rays and electron beams.
  • the photoresist (2) of the present invention is a resist (e.g., a metal resist) used in the field of photolithography for forming a resist film having a pattern, and contains the above-mentioned organometallic compound and a solvent, with the organometallic compound being contained in a dissolved (or highly dispersed) state in the solvent.
  • a resist e.g., a metal resist
  • the organometallic compound is contained in a stably dissolved (or highly dispersed) state.
  • the average particle size of the organometallic compound in the photoresist is, for example, 200 nm or less, preferably 100 nm or less, and particularly preferably 50 nm or less.
  • the lower limit is, for example, 1 nm. Therefore, by using the photoresist, a resist film having a low LER and a high-resolution fine pattern can be obtained.
  • the solvent examples include lactones such as ⁇ -butyrolactone; ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl n-pentyl ketone, methyl isopentyl ketone, and 2-heptanone; polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, and dipropylene glycol; (poly)C 1-5 alkylene glycol esters such as ethylene glycol monoacetate, diethylene glycol monoacetate, diethylene glycol diacetate, propylene glycol monoacetate, propylene glycol diacetate, and dipropylene glycol monoacetate; (poly)C alkylene glycol esters such as ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol n-propyl
  • esters include 1-5 alkylene glycol ethers, (poly)C 1-5 alkylene glycol ether esters such as ethylene glycol monomethyl ether acetate, diethylene glycol monobutyl ether acetate, and propylene glycol monomethyl ether acetate (PGMEA), cyclic ethers such as dioxane, esters such as methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, and ethyl ethoxypropionate, aromatic hydrocarbons such as anisole, ethyl benzyl ether, cresyl methyl ether, diphenyl ether, dibenzyl ether, phenetole, butyl phenyl ether, ethylbenzene, diethylbenzene, pentyl
  • the content of the organometallic compound is, for example, 0.5 to 50% by weight, preferably 1.0 to 30% by weight, of the total amount of the photoresist (100% by weight).
  • the content of the solvent is, for example, 50 to 99.5% by weight, preferably 70 to 99% by weight, of the total amount of the photoresist (100% by weight).
  • the photoresist (2) may contain other components in addition to the organometallic compound and the solvent, such as a leveling agent, a quencher, etc.
  • the ratio of the total weight of the organometallic compound and the solvent to the total amount (100% by weight) of the photoresist (2) is, for example, 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, particularly preferably 90% by weight or more, most preferably 95% by weight or more, and particularly preferably 99% by weight or more.
  • the upper limit is 100% by weight.
  • the photoresist (2) contains at least the organometallic compound as a non-volatile content.
  • the content of the organometallic compound is, for example, 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, particularly preferably 90% by weight or more, most preferably 95% by weight or more, and particularly preferably 99% by weight or more.
  • the upper limit is 100% by weight.
  • the non-volatile components of the photoresist are components that contain the organometallic compound, for example, components that remain after the photoresist is heated at 100°C for 1 hour under normal pressure.
  • the organometallic compound contained in the photoresist quickly forms aggregates.
  • the wavelength of the light for example, 100 nm or less (for example, 1 to 100 nm), more preferably 80 nm or less, particularly preferably 50 nm or less, most preferably 30 nm or less, and particularly preferably 20 nm or less.
  • the light includes, for example, X-rays, electron beams (EB), EUV, etc.
  • photoresist (2) Since photoresist (2) has the above characteristics, it can be suitably used as a negative photoresist. It can also be suitably used as a resist for photolithography using ultrashort wavelength light such as extreme ultraviolet rays or electron beams.
  • photoresist (2) for example, through steps 1 to 3 below, it is possible to form a resist film that has a highly accurate fine pattern and has excellent etching resistance.
  • Step 1 A step of applying a photoresist (2) onto a substrate and drying it to form an organometallic compound layer.
  • Step 2 A step of irradiating the organometallic compound layer with light to transfer a pattern.
  • Step 3 A step of performing development.
  • Step 1 In this step, a photoresist (2) is applied onto the substrate to be etched, and then dried to form an organometallic compound layer. Through this step, a [substrate/organometallic compound layer] laminate is obtained.
  • the photoresist (2) can be applied by known methods such as spin coating, curtain coating, roll coating, spray coating, and screen printing.
  • the substrate on which the photoresist (2) is applied may be subjected to a surface treatment as necessary.
  • an adhesive such as hexamethyldisilazane (HMDS) may be applied to the surface of the substrate to improve the adhesion of the resist film.
  • HMDS hexamethyldisilazane
  • the coating of photoresist (2) may be dried naturally, but since the organometallic compound has thermal stability and does not coagulate simply by heating, it can be dried by heating (for example, by heating at a temperature of 50°C or higher but lower than 130°C for 1 to 5 minutes), which provides excellent workability.
  • the thickness of the organometallic compound layer is, for example, 1000 nm or less, and preferably 100 nm or less.
  • the lower limit of the thickness is, for example, 1 nm.
  • the organometallic compound aggregates contain metal or metal oxide and therefore have toughness. Therefore, even if the organometallic compound layer is thinned, a resist film with excellent etching resistance can be formed.
  • Step 2 This step is a step of transferring a pattern by irradiating the organometallic compound layer obtained through step 1 with light, for example, through a photomask having a pattern.
  • the organometallic compounds in the exposed areas aggregate and adhere to the substrate, while the organometallic compounds in the unexposed areas do not aggregate and maintain their solubility.
  • the light used for light irradiation there are no particular limitations on the light used for light irradiation, so long as it can initiate the aggregation of the organometallic compounds contained in the coating film, but it is preferable to use a light source with an ultrashort wavelength, such as EUV or an electron beam, since this allows for the transfer of extremely fine patterns with high precision.
  • a light source with an ultrashort wavelength such as EUV or an electron beam
  • the organometallic compound aggregates are tough, etching resistance can be maintained even when the organometallic compound layer is thinned.
  • the light can reach the bottom of the organometallic compound layer, forming a highly accurate pattern.
  • Step 3 is a step of subjecting the laminate of [substrate/organometallic compound layer] after light irradiation to a development treatment, in which the unexposed areas of the organometallic compound layer are washed away, while the exposed areas remain in close contact with the substrate.
  • the developer used in the development process can be an alkaline aqueous solution or an organic solvent, either alone or in combination of two or more.
  • alkaline aqueous solution examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, aqueous ammonia, triethylamine, methyldiethylamine, ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo-[5.4.0]-7-undecene, and 1,5-diazabicyclo-[4.3.0]-5-nonene.
  • TMAH tetramethylammonium hydroxide
  • the organic solvent may be, for example, the same as the solvent that can be used in photoresists. Among them, it is preferable that the organic solvent contains at least one selected from polyhydric alcohols, esters, ethers, ketones, and aromatic hydrocarbons, it is particularly preferable that the organic solvent contains at least an ester, and it is most preferable that the organic solvent contains at least butyl acetate.
  • Examples of the development process include a method in which the developer is applied to the substrate/organometallic compound layer laminate by a dip method, shower method, spray method, or the like.
  • the temperature of the developer is, for example, 25 to 40°C.
  • the development time is adjusted appropriately depending on the thickness of the organometallic compound layer, but is, for example, about 0.5 to 5 minutes.
  • the photoresist (2) of the present invention contains an organometallic compound that has high dispersibility and thermal stability, so the unexposed areas can be easily and completely removed by washing with a developer, and no development residues are produced. This makes it possible to manufacture defect-free products with a high yield.
  • a resist film can be formed on the substrate, which has a highly accurate fine pattern made of aggregates of organometallic compounds and has excellent etching resistance. By etching the substrate using the resist film thus obtained, high-precision electronic devices can be manufactured.
  • Example 1 Preparation of Sulfonium Salt Compound
  • THF tetrahydrofuran
  • 96.5 g (0.50 mol) of 1-bromo-3,5-difluorobenzene was added dropwise while stirring, while maintaining the temperature in the system within the range of 40 to 50° C., to prepare a THF solution of 3,5-difluorophenylmagnesium bromide.
  • the solution after the reaction was completed was added to 500 g of ion-exchanged water at a rate such that the temperature inside the system did not exceed 15°C, and stirred for 1 hour. Then, 300 g of ethyl acetate was added and stirred for 1 hour. After removing the aqueous layer, the solution was washed three times with 300 g of ion-exchanged water. The organic layer was passed through a silica gel column for decolorization. Next, the organic layer after the decolorization process was desolvated and recrystallized with cyclohexane to obtain 26.0 g of bis(3,5-difluorophenyl)sulfoxide.
  • This insoluble portion was dissolved in 100 g of isopropanol, 1 g of sulfuric acid was added, and the mixture was allowed to react at 70°C for 5 hours, after which the solvent was removed by concentration. Next, 50 g of dichloromethane and 50 g of ion-exchanged water were added, and the mixture was stirred for 1 hour, then allowed to stand and the upper aqueous layer was removed. This water washing operation was repeated two more times. After removing the aqueous phase, the dichloromethane layer was concentrated and recrystallized with butyl acetate.
  • Example 2 (Preparation of Sulfonium Salt Compound) The same procedure as in Example 1 was repeated except that 112.5 g (0.50 mol) of 2-bromobenzotrifluoride was used instead of 96.5 g of 1-bromo-3,5-difluorobenzene, to obtain 20.0 g of bis(2-trifluoromethylphenyl)sulfoxide.
  • Example 3 (Preparation of Sulfonium Salt Compound) The same procedure as in Example 1 was repeated except that 112.5 g (0.50 mol) of 4-bromobenzotrifluoride was used instead of 96.5 g of 1-bromo-3,5-difluorobenzene, to obtain 29.1 g of bis(4-trifluoromethylphenyl)sulfoxide.
  • Example 4 (Preparation of Sulfonium Salt Compound) To a solution of 28.6 g (0.24 mol) of thionyl chloride and 100 g (0.48 mol) of iodobenzene diluted with 500 g of THF, 50 g (0.48 mol) of perchloric acid was added dropwise. After the completion of the dropwise addition, the reaction was continued at room temperature for 5 hours to complete the reaction. Next, the reaction solution was slowly poured into 1500 g of ion-exchanged water, after which 300 g of dichloromethane was added and stirred for 1 hour, and then the mixture was allowed to stand and the upper aqueous layer was removed. The dichloromethane layer after removing the aqueous phase was concentrated and recrystallized with butyl acetate to obtain 54 g of bis(4-iodophenyl)sulfoxide.
  • Example 5 (Preparation of Sulfonium Salt Compounds) 27.4 g (0.10 mol) of bis(3,5-difluorophenyl)sulfoxide was dissolved in 200 g of sulfuric acid, 45.0 g (0.20 mol) of N-iodosuccinimide was added in portions, and the mixture was allowed to react at room temperature for 3 hours. The reaction solution was then slowly added to 1500 g of ion-exchanged water, 200 g of dichloromethane was added, and the mixture was stirred for 1 hour, and then allowed to stand to remove the upper aqueous layer. The dichloromethane layer after removing the aqueous phase was concentrated and recrystallized with butyl acetate to obtain 23.3 g of bis(3,5-difluoro-2-iodophenyl)sulfoxide.
  • Comparative Example 2 (Preparation of Sulfonium Salt Compound) The same procedure as in Example 1 was repeated except that 112.5 g (0.50 mol) of 3-bromobenzotrifluoride was used instead of 96.5 g of 1-bromo-3,5-difluorobenzene, to obtain 28.1 g of bis(3-trifluoromethylphenyl)sulfoxide.
  • a sulfonium intermediate was obtained in the same manner as in Example 1, except that bis(3-trifluoromethylphenyl) sulfoxide was used instead of bis(3,5-difluorophenyl) sulfoxide, 28.0 g (0.375 mol) of benzene was used instead of 15.3 g (0.125 mol) of 2,6-dimethylphenol, and potassium nonafluorobutanesulfonate was used instead of potassium trifluoromethanesulfonate.
  • This intermediate was recrystallized from a mixed solvent of ethyl acetate and butyl acetate to obtain [bis(4-trifluoromethylphenyl)]phenylsulfonium nonafluorobutanesulfonate.
  • the sulfonium salt type compounds obtained in Examples 1 to 5 and Comparative Examples 1 and 2 above, and triphenylsulfonium trifluoromethanesulfonate as the sulfonium salt type compound in Comparative Example 3 were evaluated for solvent solubility using the ⁇ Method for evaluating solvent solubility> below, and for photosensitivity using the ⁇ Method for evaluating photosensitivity 1> below.
  • ⁇ Photosensitivity Evaluation Method 1> The sulfonium salt type compound of each of the examples and comparative examples was mixed with a positive photosensitive resin (copolymer of polyhydroxystyrene and t-butoxyacrylate) in an amount of 20 times by weight, and the mixture was dissolved in PGMEA so that the molar concentration of the sulfonium salt type compound became 2.0 mM, thereby preparing a photoresist.
  • the resulting photoresist was then spread using a spin coater on a substrate that had been treated with hexamethyldisilazane (HMDS), and heated at 130° C. for 60 seconds to remove the solvent, producing a coating film with a thickness of approximately 50 nm.
  • HMDS hexamethyldisilazane
  • the resulting coating film was placed in BL-3 at the NewSUBARU Synchrotron Radiation Facility of the University of Hyogo, and irradiated with 13.5 nm synchrotron radiation.
  • the sample after the light irradiation was heated at 110° C. for 90 seconds, developed with a 2.38% aqueous solution of tetramethylammonium hydroxide for 60 seconds, and rinsed with running water for 30 seconds. After development and rinsing, the sample was observed under a microscope to determine the minimum exposure dose (Eth) at which the resist film was completely removed.
  • the sulfonium salt type compound of the present invention has higher sensitivity to 13.5 nm radiation compared to triphenylsulfonium trifluoromethanesulfonate (Comparative Example 3). It can also be seen that it has good solubility in solvents.
  • the sulfonium salt type compound of the present invention has all the above-mentioned properties and is therefore suitable for use as a photoresist (particularly for use as a photoresist using light with an ultrashort wavelength).
  • the solution after the reaction was completed was added to 500 g of ion-exchanged water at a rate such that the temperature inside the system did not exceed 15°C, and stirred for 1 hour. Then, 300 g of ethyl acetate was added and stirred for 1 hour. After removing the aqueous layer, the solution was washed three times with 300 g of ion-exchanged water. The organic layer was passed through a silica gel column for decolorization. Next, the organic layer after the decolorization process was desolvated and recrystallized with cyclohexane to obtain 26.0 g of bis(3,5-difluorophenyl)sulfoxide.
  • This insoluble portion was dissolved in 100 g of isopropanol, 1 g of sulfuric acid was added, and the mixture was allowed to react at 70°C for 5 hours, after which the solvent was removed by concentration. Next, 50 g of dichloromethane and 50 g of ion-exchanged water were added, and the mixture was stirred for 1 hour, then allowed to stand and the upper aqueous layer was removed. This water washing operation was repeated two more times. After removing the aqueous phase, the dichloromethane layer was concentrated and recrystallized with butyl acetate.
  • Production Example 2 ⁇ Synthesis of bis(2-trifluoromethylphenyl)sulfoxide> The same method as in Production Example 1 was repeated except that 112.5 g (0.50 mol) of 2-bromobenzotrifluoride was used instead of 96.5 g of 1-bromo-3,5-difluorobenzene, to obtain 20.0 g of bis(2-trifluoromethylphenyl)sulfoxide.
  • Production Example 3 ⁇ Synthesis of bis(4-trifluoromethylphenyl)sulfoxide> The same method as in Production Example 1 was repeated except that 112.5 g (0.50 mol) of 4-bromobenzotrifluoride was used instead of 96.5 g of 1-bromo-3,5-difluorobenzene, to obtain 29.1 g of bis(4-trifluoromethylphenyl)sulfoxide.
  • Example 11 3 g of zirconium isopropoxide was dissolved in 20 g of THF. A solution obtained by mixing 4 g of benzoic acid, 1 g of the sulfonium salt type compound obtained in Production Example 1, and 20 g of THF was added thereto at room temperature. The resulting mixture was kept at 65° C., and 2 mL of ion-exchanged water was added thereto, followed by a sol-gel reaction for 24 hours. After the reaction was completed, the precipitate was collected and washed with acetone/water (volume ratio 1:4), and then dried at 40° C. under vacuum for 24 hours. Thus, an organometallic compound was obtained.
  • 0.3 g of the obtained organometallic compound was dissolved in 9.0 g of PGMEA, and then filtered through a filter with a pore size of 0.20 ⁇ m to remove any undissolved aggregates. This resulted in the production of a metal resist.
  • Examples 12 to 17 An organometallic compound and a metal resist were obtained in the same manner as in Example 11, except that the sulfonium salt type compound, metal or metal oxide were changed as shown in Tables 3 and 4 below.
  • Comparative Examples 11 to 12 0.3 g of a metal or metal oxide and 0.15 g of a sulfonium salt compound shown in Table 5 below were dissolved in 9.0 g of PGMEA, and then filtered through a filter having a pore size of 0.20 ⁇ m to remove insoluble aggregates, thereby obtaining a metal resist.
  • the metal resists obtained in the examples and comparative examples were exposed using the ⁇ Exposure method> below, and the photosensitivity of the exposed areas was evaluated using the ⁇ Photosensitivity evaluation method 2> below.
  • a photoresist was applied onto the substrate that had been treated with hexamethyldisilazane using a spin coater, and then the solvent was removed by heating at 80° C. for 60 seconds to obtain a coating film with a thickness of about 50 nm.
  • the obtained coating film was placed in BL-3 at the University of Hyogo's NewSUBARU Synchrotron Radiation Facility and irradiated with 13.5 nm synchrotron radiation for irradiation times varying from 1 to 30 seconds.
  • the coating film was then developed by immersing it in butyl acetate for 30 seconds and dried.
  • the organometallic compounds of the present invention have high sensitivity to light having ultrashort wavelengths, and that the sensitivity is further improved by introducing a halogen atom or a haloalkyl group as a substituent into the benzene ring constituting the cation moiety of the sulfonium salt type compound.
  • the photoacid generator is not coordinated to a metal or metal oxide, and therefore, it is understood that the sensitivity to light of ultrashort wavelengths is low.
  • Example 21 Synthesis of 3-hydroxy-1,8-naphthalimide-p-toluenesulfonate> 5.5 g of 3-hydroxy-1,8-naphthalic anhydride (Tokyo Chemical Industry Co., Ltd.) and 5.9 g of di-tert-butyl dicarbonate (Tokyo Chemical Industry Co., Ltd.) were dispersed in 32 g of acetonitrile, 2.2 g of pyridine was added, and the mixture was stirred at 50° C. for 2 hours.
  • 3-hydroxy-1,8-naphthalic anhydride Tokyo Chemical Industry Co., Ltd.
  • di-tert-butyl dicarbonate Tokyo Chemical Industry Co., Ltd.
  • reaction solution was poured into water, and the precipitate was separated by filtration to obtain 8.0 g of 3-t-butoxycarbonyloxy-N-hydroxy-1,8-naphthalimide as a white solid.
  • 33 mL of dichloromethane was added to 3.3 g of the obtained 3-t-butoxycarbonyloxy-N-hydroxy-1,8-naphthalimide, and the mixture was stirred with a magnetic stirrer.Then, the reaction solution was immersed in an ice-water bath. Then, 2.1 g of p-toluenesulfonic acid chloride was added to the reaction solution, and then 1.2 g of pyridine was slowly added. The temperature was raised to room temperature to complete the reaction.
  • Example 22 Synthesis of 3-hydroxy-1,8-naphthalimide trifluoromethanesulfonate> 3-t-butoxycarbonyloxy-N-hydroxy-1,8-naphthalimide was obtained in the same manner as in Example 21, and 10.8 g of the obtained 3-t-butoxycarbonyloxy-N-hydroxy-1,8-naphthalimide was dispersed in 70 g of dichloromethane, and 5.2 g of pyridine was added thereto. Then, 13.9 g of trifluoromethanesulfonic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise while cooling to 0°C or less, and the mixture was stirred for 2 hours.
  • trifluoromethanesulfonic anhydride manufactured by Tokyo Chemical Industry Co., Ltd.
  • reaction liquid was poured into water while maintaining 0°C and washed with water four times, and then 0.5 g of trifluoromethanesulfonic acid was added dropwise and the mixture was stirred at room temperature for 1 hour.
  • the precipitate was filtered out from the reaction liquid, washed with water, and dried.
  • P-22 3-hydroxy-1,8-naphthalimide trifluoromethanesulfonate
  • a solution was prepared by adding 0.209 g of monobutyltin oxide hydrate (BuSnOOH) powder to 10 mL of 4-methyl-2-pentanol. The resulting solution was placed in a closed vial and stirred for 24 hours. The solution was then centrifuged at 4000 rpm for 15 minutes to obtain a supernatant. The resulting supernatant was filtered through a 0.45 ⁇ m PTFE syringe filter to remove insoluble materials, and then heated at 600° C. to evaporate the solvent and obtain 12-mer butyltin hydroxide oxide.
  • BuSnOOH monobutyltin oxide hydrate
  • the obtained 12-mer butyltin hydroxide oxide was used as the metal oxide raw material, and an organometallic compound was obtained in the same manner as in Example 21, except that (P-22) was used instead of (P-21). An organometallic compound and a metal resist were obtained.
  • Example 23 ⁇ Synthesis of 3-carboxy-1,8-naphthalimide methanesulfonate> 2.42 g of 3-carboxy-1,8-naphthalic anhydride was placed in a recovery flask and substituted with nitrogen. 100 mL of dichloromethane was added thereto and dispersed by stirring, and 2.3 g of EDCI.HCl (Tokyo Chemical Industry Co., Ltd.) and 1.47 g of dimethylaminopyridine were each added in three portions. 0.89 g of tert-butanol was further added and the reaction liquid was stirred at room temperature for two days.
  • EDCI.HCl Tokyo Chemical Industry Co., Ltd.
  • Example 21 50 mL of dilute hydrochloric acid was added to stop the reaction, and the mixture was allowed to stand and the separated aqueous layer was removed. The organic layer was further washed with water twice, and the concentrated residue was dried in a vacuum dryer to obtain a solid.
  • the procedure was repeated in the same manner as in Example 21 except that the obtained solid was used instead of 3-tert-butoxycarbonyloxy-1,8-naphthalic anhydride and methanesulfonic acid chloride was used instead of p-toluenesulfonic acid chloride, to obtain 3-tert-butoxycarbonyl-1,8-naphthalimide methanesulfonate.
  • Example 24 Synthesis of 3-(1'-carboxypropyl)carbonyloxy-1,8-naphthalimide trifluoromethanesulfonate> 8.5 g of acetonitrile was dispersed in 1.0 g of 3-hydroxy-1,8-naphthalimide trifluoromethanesulfonate obtained in the same manner as in Example 2, 0.33 g of pyridine was added, and the mixture was placed in an ice bath. 2.3 g of ethylpropane diacid dichloride was added to this reaction liquid, and the mixture was stirred at 40°C for 6 hours. After cooling to room temperature, the mixture was poured into cold water, and the precipitate was collected by filtration to obtain a solid.
  • An organometallic compound and a metal resist were obtained in the same manner as in Example 21, except that zirconium n-propoxide was used as the metal oxide raw material and (P-24) was used instead of (P-21).
  • Example 28 ⁇ Synthesis of 4-terephthaloyloxy-1,8-naphthalimide trifluoromethanesulfonate> 4-Hydroxy-1,8-naphthalimide camphorsulfonate was obtained in the same manner as in Example 21, except that 4-hydroxy-1,8-naphthalic anhydride produced by the method described in Chem. Eur. J., 2016, 22(25), 8579-8585 was used instead of 3-hydroxy-1,8-naphthalic anhydride, and 10-camphorsulfonic acid chloride was used instead of p-toluenesulfonic acid chloride.
  • 4-terephthaloyloxy-1,8-naphthalimide camphorsulfonate (P-28) was obtained in the same manner as in Example 4, except that the obtained 4-hydroxy-1,8-naphthalimide camphorsulfonate was used instead of 3-hydroxy-1,8-naphthalimide trifluoromethanesulfonate and phthalic acid dichloride was used instead of ethylpropane diacid dichloride.
  • An organometallic compound and a metal resist were obtained in the same manner as in Example 21, except that monobutyltin oxide was used as the metal oxide raw material and (P-28) was used instead of (P-21).
  • Example 31 Synthesis of 4-hydroxy-1,3-dioxoisoindolin-2-yl methanesulfonate> 0.82 g of 4-hydroxybenzofuran-1,3-dione (Tokyo Chemical Industry Co., Ltd.) was dissolved in 25 mL of tetrahydrofuran, and 0.12 g of pyridine was added to the solution in an ice bath. Then, 1.2 g of di-t-butyl dicarbonate was added, and the reaction solution was stirred at 40° C. for 3 hours to complete the reaction. The reaction solution was cooled again on ice, and 0.46 g of a hydroxylamine solution was slowly added dropwise to the reaction solution.
  • 4-hydroxybenzofuran-1,3-dione Tokyo Chemical Industry Co., Ltd.
  • the reaction solution was warmed to room temperature to complete the reaction, and then 75 mL of deionized water was added to stop the reaction.
  • the reaction solution was then filtered, and the resulting solid was thoroughly washed with water and then dried in a vacuum dryer at 40° C.
  • the dried solid was dissolved in 17 mL of dichloromethane, then cooled with ice, and 0.59 g of pyridine was added dropwise to the reaction solution.
  • 0.69 g of methanesulfonic acid chloride was added dropwise to the reaction solution, and the reaction was completed by stirring.
  • 1.54 mL of concentrated hydrochloric acid was slowly added dropwise.
  • An organometallic compound and a metal resist were obtained in the same manner as in Example 21, except that tin chloride was used as the metal oxide raw material and (P-31) was used instead of (P-21).
  • Comparative Examples 21 to 22 0.1 g of a metal or metal oxide shown in the table below and 0.05 g of a compound (P-35) or (P-36) shown in the table below were dissolved in 3.0 g of PGMEA, and then filtered through a filter with a pore size of 0.20 ⁇ m to remove undissolved aggregates, thereby obtaining a metal resist.
  • the metal resists obtained in the Examples and Comparative Examples were exposed by the above-mentioned ⁇ Exposure method>, and the photosensitivity of the exposed areas was evaluated by the above-mentioned ⁇ Photosensitivity evaluation method 2>. Furthermore, for the coating film obtained by developing and drying according to the above-mentioned ⁇ Exposure Method>, the unexposed area was observed under a microscope and the developability was evaluated according to the following criteria. The results are shown in the following table. Evaluation criteria Good: Development residue is less than 1% Passable: Development residue is 1% or more and less than 10% Unacceptable: Development residue is 10% or more
  • Example 41 (Preparation of nonionic oxime compounds) 2.1 g (0.010 mol) of 3-(2,4-difluorobenzoyl)propionic acid was dissolved in 10 g of acetonitrile, and then 2.0 g (0.030 mol) of a 50% aqueous hydroxylamine solution was added dropwise at 30° C. and stirred for 6 hours. The precipitate was collected by filtration, washed with 100 mL of a 1% aqueous hydrochloric acid solution, and then collected by filtration again and dried in vacuum to obtain a solid.
  • Example 42 (Preparation of nonionic oxime compounds) 2.7 g (0.010 mol) of 2-bromo-4'-(trifluoromethyl)acetophenone and 0.3 g (0.030 mol) of triethylamine were dissolved in 10 g of acetonitrile, and then 1.2 g (0.012 mol) of mercaptoacetic acid was added dropwise under temperature control at 60°C, and the mixture was allowed to react for 6 hours. Thereafter, 2.0 g (0.030 mol) of a 50% aqueous hydroxylamine solution was added dropwise at 30° C., and the mixture was stirred for 6 hours.
  • the precipitate was collected by filtration, washed with 100 mL of a 1% aqueous hydrochloric acid solution, and then collected by filtration again and dried in vacuum to obtain a solid.
  • the obtained solid was dissolved in 100 g of dichloromethane and 2.0 g (0.020 mol) of triethylamine, and then 2.0 g (0.015 mol) of benzoyl chloride was added dropwise under ice cooling, followed by stirring for 1 hour. Next, 100 mL of 1% aqueous hydrochloric acid was added and stirred, after which the water layer was removed to obtain a dichloromethane layer.
  • the obtained dichloromethane layer was washed twice with 100 mL of ion-exchanged water. After washing, the dichloromethane layer was concentrated and recrystallized with ethyl acetate/hexane. As a result, 2.2 g of compound (P-42) shown in the table below was obtained.
  • Example 43 (Preparation of nonionic oxime compounds) 4.0 g (0.030 mol) of aluminum chloride was added in portions to a solution of 1.4 g (0.010 mol) of 2,6-difluoroanisole, 1.7 g (0.010 mol) of tetrafluorosuccinic acid, and 100 g of dichloromethane. Then, the mixture was stirred for 2 hours. Next, 200 g of water was slowly added, and the mixture was stirred for 2 hours. Then, the water layer was removed to obtain a dichloromethane layer. The obtained dichloromethane layer was further washed with water twice and then concentrated.
  • this concentrate was dissolved in 10 g of acetonitrile, and 2.0 g (0.030 mol) of a 50% aqueous hydroxylamine solution was added dropwise at 30° C. and stirred for 6 hours.
  • the precipitate was collected by filtration and washed with 100 mL of a 1% aqueous hydrochloric acid solution, then collected by filtration again and dried in vacuum to obtain a solid.
  • the obtained solid was dissolved in 100 g of dichloromethane and 1.6 g (0.020 mol) of pyridine, and then 2.7 g (0.010 mol) of pentafluorobenzenesulfonyl chloride was added dropwise under ice cooling and stirred for 1 hour.
  • Example 44 (Preparation of nonionic oxime compounds) The same procedure as in Example 42 was carried out except that 2-bromo-4'-(trifluoromethyl)acetophenone was changed to 2.2 g (0.010 mol) of 5-acetyl-2-chlorobenzotrifluoride and benzoyl chloride was changed to heptafluoropropionic acid chloride, to obtain 2.2 g of compound (P-44) shown in the table below.
  • organometallic compounds and photoresists An organometallic compound and a photoresist were obtained in the same manner as in Example 41, except that compound (P-44) was used in place of compound (P-41).
  • Example 45 (Preparation of nonionic oxime compounds) The same procedure as in Example 3 was carried out except that 2,6-difluoroanisole was changed to 2.1 g (0.030 mol) of benzene, tetrafluorosuccinic acid was changed to 2.2 g (0.010 mol) of tetrafluorophthalic anhydride, and pentafluorobenzenesulfonyl chloride was changed to butanesulfonyl chloride, to obtain 2.2 g of compound (P-45) shown in the table below.
  • Comparative Example 41 (Preparation of nonionic oxime compounds) The same procedure as in Example 41 was conducted except that acetophenone was used instead of 3-(2,4-difluorobenzoyl)propionic acid, thereby obtaining 1.8 g of the compound (P-46) shown in the following table.
  • Comparative Example 42 (Preparation of nonionic oxime compounds) The same procedure as in Example 41 was carried out except that 3-(2,4-difluorobenzoyl)propionic acid was changed to 4-(trifluoroacetyl)anisole and acetic anhydride was changed to butanesulfonic acid chloride, to obtain 2.0 g of compound (P-47) shown in the table below.
  • Comparative Example 43 (Preparation of nonionic oxime compounds) The same procedure as in Example 41 was carried out except that 3-benzoylpropionic acid was used instead of 3-(2,4-difluorobenzoyl)propionic acid, to obtain 2.3 g of the compound (P-48) shown in the following table.
  • the compounds (P-41) to (P-48) obtained in the Examples and Comparative Examples were evaluated for solvent solubility by the above-mentioned ⁇ Method for evaluating solvent solubility>. Further, the metal resists obtained in the Examples and Comparative Examples were exposed by the above-mentioned ⁇ Exposure method>, and the photosensitivity of the exposed areas was evaluated by the above-mentioned ⁇ Photosensitivity evaluation method 2>. The results are summarized in the table below.
  • Ar 11 , Ar 12 , and Ar 13 are the same or different and each is an aromatic ring structure, or a structure in which two or more aromatic rings are bonded via a single bond or a linking group.
  • R 11 and R 12 each independently represent a halogen atom or a C 1-5 haloalkyl group.
  • R 13 represents a halogen atom, a C 1-5 alkyl group, a C 1-5 alkoxy group, a C 1-5 haloalkyl group, or a C 1-5 haloalkoxy group.
  • n11 and n12 each independently represent an integer of 1 to 5, and n13 represents an integer of 0 to 4.
  • L represents a single bond or a linking group, and X ⁇ represents a monovalent counter anion.
  • the aromatic rings represented in the formula may have a substituent other than the above groups.
  • R 11 and R 12 each independently represent a halogen atom or a C 1-5 haloalkyl group.
  • R 13 represents a halogen atom, a C 1-5 alkyl group, a C 1-5 alkoxy group, a C 1-5 haloalkyl group, or a C 1-5 haloalkoxy group.
  • n11 and n12 each independently represent an integer of 1 to 5, and n13 represents an integer of 0 to 4.
  • L represents a single bond or a linking group
  • X ⁇ represents a monovalent counter anion.
  • the benzene ring represented in the formula may have a substituent other than the above groups.
  • the group represented by -L-( R2 ) n is a substituent possessed by the aromatic ring shown in the formula, said L represents a single bond or a linking group, said R2 represents a coordinating group which coordinates with said metal or metal oxide (1), and n represents an integer of 1 or more.
  • the aromatic ring shown in the formula may have a substituent other than the above groups.
  • Ar 1 and Ar 2 are the same or different and each represents an aromatic ring structure or a structure in which two or more aromatic rings are bonded via a single bond or a linking group.
  • R 3 represents a halogen atom or a halogenated hydrocarbon group.
  • R 4 represents a hydrocarbon group which may have a substituent, a group in which two or more hydrocarbon groups which may have a substituent are bonded via a single bond or a linking group, or a cyano group.
  • R 5 represents an -O(C ⁇ O)R group, an -OS( ⁇ O) 2 R group, or an -OPO(OR) 2 group, where R represents a hydrocarbon group or a halogenated hydrocarbon group.
  • n1 represents an integer of 1 to 5
  • n2 represents an integer of 1 to 4.
  • L represents a single bond or a linking group.
  • the aromatic rings represented in the formula may have a substituent other than the above groups.
  • a photosensitive material for photoresist comprising the organometallic compound according to any one of [1] to [8].
  • a photosensitive material for extreme ultraviolet rays comprising the organometallic compound according to any one of [1] to [8].
  • [12] Use of the organometallic compound according to any one of [1] to [8] as a photosensitive material for extreme ultraviolet rays.
  • An electron beam photosensitive material comprising the organometallic compound according to any one of [1] to [8].
  • [14] Use of the organometallic compound according to any one of [1] to [8] as an electron beam photosensitive material.
  • a photoresist comprising the organometallic compound according to any one of [1] to [8] and a solvent.
  • a method for producing a photoresist comprising mixing the organometallic compound according to any one of [1] to [8] with a solvent to produce a photoresist.
  • Ar 1 and Ar 2 are the same or different and each represents an aromatic ring structure or a structure in which two or more aromatic rings are bonded via a single bond or a linking group.
  • R 3 represents a halogen atom or a halogenated hydrocarbon group.
  • R 4 represents a hydrocarbon group which may have a substituent, a group in which two or more hydrocarbon groups which may have a substituent are bonded via a single bond or a linking group, or a cyano group.
  • n1 represents an integer from 1 to 5
  • n2 represents an integer from 1 to 4.
  • R 11 and R 12 each independently represent a halogen atom or a C 1-5 haloalkyl group.
  • R 13 represents a halogen atom, a C 1-5 alkyl group, a C 1-5 alkoxy group, a C 1-5 haloalkyl group, or a C 1-5 haloalkoxy group.
  • n11 and n12 each independently represent an integer of 1 to 5, and n13 represents an integer of 0 to 4.
  • L represents a single bond or a linking group, and X ⁇ represents a monovalent counter anion.
  • the aromatic rings represented in the formula may have a substituent other than the above groups.
  • [22] Use of the compound according to [18] as an acid generator for extreme ultraviolet radiation.
  • An electron beam acid generator comprising the compound according to [18].
  • [24] Use of the compound according to [18] as an electron beam acid generator.
  • [25] A photoresist comprising the compound according to [18] and a photosensitive resin.
  • a method for producing a photoresist comprising blending the compound according to [18] with a photosensitive resin to produce a photoresist.
  • a photoresist comprising the acid generator according to [19] and a photosensitive resin.
  • a method for producing a photoresist comprising blending the acid generator according to [19] with a photosensitive resin to produce a photoresist.
  • the organometallic compound of the present invention exhibits good solubility in solvents. Furthermore, the organometallic compound has excellent photoresponsiveness, and when irradiated with light, it efficiently senses even light of an ultrashort wavelength and forms tough aggregates. Therefore, the organometallic compound can be suitably used as a material for forming a photoresist.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided are: a new organometallic compound that changes the solubility in solvents through irradiation with light beams having a ultrashort wavelength, and that forms, when being exposed with light beams having a ultrashort wavelength, an aggregate that is insoluble and resistant to etching; a photosensitive material that is for photoresists and that contains the organometallic compound; and a photoresist containing the organometallic compound. An organometallic compound according to the present invention has a structure in which the following coordinative compound (2) is coordinate-bonded to a metal or metal oxide (1). Coordinative compound (2): At least one compound selected from the formulae (2-1)-(2-5).

Description

有機金属化合物、スルホニウム塩型化合物、ノニオンオキシム型化合物、感光材、酸発生剤、及びフォトレジストOrganometallic compounds, sulfonium salt compounds, nonionic oxime compounds, photosensitive materials, acid generators, and photoresists
 本発明は、新規の有機金属化合物、前記有機金属化合物を含む感光材、新規のスルホニウム塩型化合物、前記スルホニウム塩型化合物を含む酸発生剤、新規のノニオンオキシム型化合物、並びに前記感光材又は酸発生剤を含むフォトレジストに関する。 The present invention relates to a novel organometallic compound, a photosensitive material containing the organometallic compound, a novel sulfonium salt type compound, an acid generator containing the sulfonium salt type compound, a novel nonionic oxime type compound, and a photoresist containing the photosensitive material or acid generator.
 半導体素子の製造では、露光によりアルカリ現像液への溶解性が変化する性質を有する感光性樹脂と光酸発生剤を含むフォトレジスト(=化学増幅型フォトレジスト)からなるレジスト膜を、露光・現像処理に付して、パターンを有するレジスト膜を形成し、これをフォトマスクとして使用して基板にエッチング(例えば、反応性ガスやプラズマを用いたドライエッチング)処理を施す方法が用いられている。そして、パターンの微細化に伴い、露光波長が短波長化している。 In the manufacture of semiconductor devices, a resist film made of a photoresist (chemically amplified photoresist) containing a photosensitive resin whose solubility in an alkaline developer changes upon exposure to light and a photoacid generator is exposed to light and developed to form a patterned resist film, which is then used as a photomask to etch a substrate (for example, dry etching using reactive gas or plasma). As patterns become finer, the exposure wavelength is becoming shorter.
 特許文献1には、光酸発生剤であるトリフェニルスルホニウム トリフルオロメタンスルホネートと、感光性樹脂とを含むポジ型レジスト樹脂に、KrFエキシマレーザー光(波長248nm)を照射すると、微細パターンを精度良く形成できることが記載されている。 Patent Document 1 describes that when a positive resist resin containing triphenylsulfonium trifluoromethanesulfonate, a photoacid generator, and a photosensitive resin is irradiated with KrF excimer laser light (wavelength 248 nm), fine patterns can be formed with high precision.
 また、特許文献2には、下記式で表されるオキシムスルホネート化合物を含む光酸発生剤は、波長365nmの光線の吸収が低く、深部硬化性が高いので、前記光酸発生剤を使用すれば、レジスト膜が厚くても膜の底部まで充分な酸発生能を発揮できることが開示されている。 Patent Document 2 also discloses that a photoacid generator containing an oxime sulfonate compound represented by the following formula has low absorption of light having a wavelength of 365 nm and high deep curing properties, and therefore, if this photoacid generator is used, sufficient acid generation ability can be exerted all the way to the bottom of the film even if the resist film is thick.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
特開2003-177541号公報JP 2003-177541 A 特開2016-169173号公報JP 2016-169173 A
 近年、電子デバイスの更なる小型化・高容量化・高性能化に対応するため、パターンの一層の微細化が求められている。そして、露光光線として、極端紫外線(EUV;波長13.5nm)等の超短波長の光線を使用することが検討されている。 In recent years, there has been a demand for finer patterns to accommodate the trend toward smaller, higher capacity, and higher performance electronic devices. As a result, the use of light with ultra-short wavelengths, such as extreme ultraviolet (EUV; wavelength 13.5 nm), as exposure light is being considered.
 しかし、トリフェニルスルホニウム トリフルオロメタンスルホネートや、前記式で表されるオキシムスルホネート化合物は、超短波長の光線に対して感度が低いことが問題であった。 However, triphenylsulfonium trifluoromethanesulfonate and the oxime sulfonate compounds represented by the above formula have a problem in that they have low sensitivity to ultrashort wavelength light.
 また、超短波長の光線はフォトレジストに吸収されやすく、レジスト膜が厚いと、膜の底部にまで光線が到達し難いことから、精度良好にパターンを形成することが困難であるが、パターン精度を向上させるためにレジスト膜の厚みを薄化すると、エッチング耐性が低下することが問題であった。 In addition, ultrashort wavelength light is easily absorbed by photoresist, and if the resist film is thick, it is difficult for the light to reach the bottom of the film, making it difficult to form patterns with good precision. However, if the resist film is thinned to improve pattern precision, the etching resistance decreases, which is a problem.
 従って、本発明の目的は、超短波長の光線照射により溶剤溶解性が変化する性質を有し、超短波長の光線露光により、不溶性でエッチング耐性を有する凝集体を形成する新規の有機金属化合物を提供することにある。
 本発明の他の目的は、超短波長の光線を露光することで、高解像度のパターンを有し、且つエッチング耐性に優れるレジスト膜を形成するフォトレジスト用感光材を提供することにある。
 本発明の他の目的は、超短波長の光線を露光することで、高解像度のパターンを有し、且つエッチング耐性に優れるレジスト膜を形成するフォトレジストを提供することにある。
 本発明の他の目的は、超短波長の光線を照射すると、速やかに分解して酸を発生する、新規のスルホニウム塩型化合物、及び新規のノニオンオキシム型化合物を提供することにある。
 本発明の他の目的は、超短波長の光線に対して感度良好な酸発生剤を提供することにある。
 本発明の他の目的は、超短波長の光線を用いて、微細パターンを精度良く転写できるフォトレジストを提供することにある。
Therefore, an object of the present invention is to provide a novel organometallic compound that has the property of changing its solvent solubility upon irradiation with ultrashort wavelength light and forms insoluble, etching-resistant aggregates upon exposure to ultrashort wavelength light.
Another object of the present invention is to provide a photosensitive material for photoresist which, when exposed to light with an ultrashort wavelength, forms a resist film having a high-resolution pattern and excellent etching resistance.
Another object of the present invention is to provide a photoresist which, when exposed to light with an ultrashort wavelength, forms a resist film having a high-resolution pattern and excellent etching resistance.
Another object of the present invention is to provide a novel sulfonium salt type compound and a novel nonionic oxime type compound which rapidly decompose to generate an acid when irradiated with light of an ultrashort wavelength.
Another object of the present invention is to provide an acid generator having good sensitivity to light with an ultrashort wavelength.
Another object of the present invention is to provide a photoresist capable of transferring fine patterns with high accuracy using light having an ultrashort wavelength.
 本発明者らは上記課題を解決するため鋭意検討した結果、下記式(2-1)~(2-5)で表される化合物は、超短波長の光線に対して極めて高感度であり、超短波長の光線を照射すると速やかに分解して酸を発生することを見出した。
 また、下記式(2-1)~(2-5)で表される化合物は、カルボキシル基等の、金属又は金属酸化物(1)に配位性を示す基を有するため、金属又は金属酸化物(1)と混合すると、金属又は金属酸化物(1)をコアとする有機-無機複合体である有機金属化合物を形成すること、前記有機金属化合物は光応答性に優れ、超短波長の光線を照射すると速やかに凝集して凝集体(或いは、塊状物)を形成することを見出した。
 本発明はこれらの知見に基づいて完成させたものである。
As a result of intensive investigations aimed at solving the above problems, the present inventors have found that the compounds represented by the following formulas (2-1) to (2-5) are extremely sensitive to ultrashort wavelength light and rapidly decompose to generate acid when irradiated with ultrashort wavelength light.
It has also been found that the compounds represented by the following formulas (2-1) to (2-5) have a group, such as a carboxyl group, that exhibits coordination with a metal or metal oxide (1), and therefore when mixed with a metal or metal oxide (1), form an organometallic compound that is an organic-inorganic composite having a metal or metal oxide (1) as a core, and that the organometallic compound has excellent photoresponsiveness and rapidly aggregates to form aggregates (or lumps) when irradiated with light of an ultrashort wavelength.
The present invention was completed based on these findings.
 すなわち、本発明は、金属又は金属酸化物(1)に、下記配位性化合物(2)が配位結合した構成を有する有機金属化合物を提供する。
配位性化合物(2):下記式(2-1)~(2-5)から選択される少なくとも1種の化合物
Figure JPOXMLDOC01-appb-C000005
(式中、R11、R12はそれぞれ独立にハロゲン原子又はC1-5ハロアルキル基を示す。R13はハロゲン原子、C1-5アルキル基、C1-5アルコキシ基、C1-5ハロアルキル基、又はC1-5ハロアルコキシ基を示す。n11、n12はそれぞれ独立に1~5の整数を示し、n13は0~4の整数を示す。Lは単結合又は連結基を示し、X-は1価の対アニオンを示す。R1は置換基を有していても良い炭化水素基を示す。R2は金属又は金属酸化物(1)に配位する配位性基を示し、nは1以上の整数を示す。Ar1、Ar2は同一又は異なって、芳香環構造、又は2個以上の芳香環が単結合又は連結基を介して結合した構造を示す。R3はハロゲン原子又はハロゲン化炭化水素基を示す。R4は置換基を有していても良い炭化水素基、置換基を有していても良い炭化水素基の2個以上が単結合若しくは連結基を介して結合した基、又はシアノ基を示す。R5は-O(C=O)R基、-OS(=O)2R基、又は-OPO(OR)2基を示し、前記Rは炭化水素基又はハロゲン化炭化水素基を示す。n1は1~5の整数を示し、n2は1~4の整数を示す。式中に示される芳香環は、前記基以外に置換基を有していても良い)
That is, the present invention provides an organometallic compound having a structure in which a coordinating compound (2) shown below is coordinately bonded to a metal or metal oxide (1).
Coordinating compound (2): at least one compound selected from the following formulae (2-1) to (2-5):
Figure JPOXMLDOC01-appb-C000005
(In the formula, R 11 and R 12 each independently represent a halogen atom or a C 1-5 haloalkyl group. R 13 represents a halogen atom, a C 1-5 alkyl group, a C 1-5 alkoxy group, a C 1-5 haloalkyl group, or a C 1-5 haloalkoxy group. n11 and n12 each independently represent an integer from 1 to 5, and n13 represents an integer from 0 to 4. L represents a single bond or a linking group, and X represents a monovalent counter anion. R 1 represents a hydrocarbon group which may have a substituent. R 2 represents a coordinating group that coordinates to a metal or metal oxide (1), and n represents an integer of 1 or more. Ar 1 and Ar 2 are the same or different and represent an aromatic ring structure, or a structure in which two or more aromatic rings are bonded via a single bond or a linking group. R 3 represents a halogen atom or a halogenated hydrocarbon group. R R 4 represents a hydrocarbon group which may have a substituent, a group in which two or more hydrocarbon groups which may have a substituent are bonded via a single bond or a linking group, or a cyano group. R 5 represents an -O(C=O)R group, an -OS(=O) 2 R group, or an -OPO(OR) 2 group, where R represents a hydrocarbon group or a halogenated hydrocarbon group. n1 represents an integer of 1 to 5, and n2 represents an integer of 1 to 4. The aromatic ring shown in the formula may have a substituent other than the above groups.
 本発明は、また、前記式中のR2が、ヒドロキシ基、カルボキシ基、リン酸基、リン酸モノエステル基、スルホン酸基、スルフィノ基、トリアゾール基、又はテトラゾール基である前記有機金属化合物を提供する。 The present invention also provides the above organometallic compound, wherein R 2 in the above formula is a hydroxy group, a carboxy group, a phosphoric acid group, a phosphoric acid monoester group, a sulfonic acid group, a sulfino group, a triazole group, or a tetrazole group.
 本発明は、また、1価の対アニオンがスルホン酸アニオン又はスルホニルイミドアニオンである前記有機金属化合物を提供する。 The present invention also provides the organometallic compound, in which the monovalent counter anion is a sulfonate anion or a sulfonylimide anion.
 本発明は、また、前記金属又は金属酸化物(1)が、ハフニウム、ジルコニウム、スズ、コバルト、パラジウム、アンチモン、及びこれらの酸化物から選択される少なくとも1種である前記有機金属化合物を提供する。 The present invention also provides the organometallic compound, in which the metal or metal oxide (1) is at least one selected from hafnium, zirconium, tin, cobalt, palladium, antimony, and oxides thereof.
 本発明は、また、前記有機金属化合物を含むフォトレジスト用感光材を提供する。 The present invention also provides a photosensitive material for photoresist containing the organometallic compound.
 本発明は、また、極端紫外線用感光材又は電子線用感光材である前記フォトレジスト用感光材を提供する。 The present invention also provides the photoresist photosensitive material, which is a photosensitive material for extreme ultraviolet rays or a photosensitive material for electron beams.
 本発明は、また、前記有機金属化合物と、溶剤と、を含むフォトレジストを提供する。 The present invention also provides a photoresist containing the organometallic compound and a solvent.
 本発明は、また、下記式(2-4)又は(2-5)で表される化合物を提供する。
Figure JPOXMLDOC01-appb-C000006
(式中、Ar1、Ar2は同一又は異なって、芳香環構造、又は2個以上の芳香環が単結合又は連結基を介して結合した構造を示す。R3はハロゲン原子又はハロゲン化炭化水素基を示す。R4は置換基を有していても良い炭化水素基、置換基を有していても良い炭化水素基の2個以上が単結合若しくは連結基を介して結合した基、又はシアノ基を示す。R5は-O(C=O)R基、-OS(=O)2R基、又は-OPO(OR)2基を示し、前記Rは炭化水素基又はハロゲン化炭化水素基を示す。n1は1~5の整数を示し、n2は1~4の整数を示す。式中に示される芳香環は、前記基以外に置換基を有していても良い)
The present invention also provides a compound represented by the following formula (2-4) or (2-5):
Figure JPOXMLDOC01-appb-C000006
(In the formula, Ar 1 and Ar 2 are the same or different and each represents an aromatic ring structure or a structure in which two or more aromatic rings are bonded via a single bond or a linking group. R 3 represents a halogen atom or a halogenated hydrocarbon group. R 4 represents a hydrocarbon group which may have a substituent, a group in which two or more hydrocarbon groups which may have a substituent are bonded via a single bond or a linking group, or a cyano group. R 5 represents a -O(C=O)R group, a -OS(=O) 2 R group, or a -OPO(OR) 2 group, where R represents a hydrocarbon group or a halogenated hydrocarbon group. n1 represents an integer from 1 to 5, and n2 represents an integer from 1 to 4. The aromatic rings represented in the formula may have a substituent other than the above groups.)
 本発明は、また、下記式(2-1)で表される化合物を提供する。
Figure JPOXMLDOC01-appb-C000007
(式中、R11、R12はそれぞれ独立にハロゲン原子又はC1-5ハロアルキル基を示す。R13はハロゲン原子、C1-5アルキル基、C1-5アルコキシ基、C1-5ハロアルキル基、又はC1-5ハロアルコキシ基を示す。n11、n12はそれぞれ独立に1~5の整数を示し、n13は0~4の整数を示す。Lは単結合又は連結基を示し、X-は1価の対アニオンを示す。式中に示されるベンゼン環は、前記基以外に置換基を有していても良い)
The present invention also provides a compound represented by the following formula (2-1):
Figure JPOXMLDOC01-appb-C000007
(In the formula, R 11 and R 12 each independently represent a halogen atom or a C 1-5 haloalkyl group. R 13 represents a halogen atom, a C 1-5 alkyl group, a C 1-5 alkoxy group, a C 1-5 haloalkyl group, or a C 1-5 haloalkoxy group. n11 and n12 each independently represent an integer of 1 to 5, and n13 represents an integer of 0 to 4. L represents a single bond or a linking group, and X represents a monovalent counter anion. The benzene ring represented in the formula may have a substituent other than the above groups.)
 本発明は、また、前記化合物を含む酸発生剤を提供する。 The present invention also provides an acid generator containing the compound.
 本発明は、また、極端紫外線用酸発生剤又は電子線用酸発生剤である前記酸発生剤を提供する。 The present invention also provides the acid generator, which is an acid generator for extreme ultraviolet rays or an acid generator for electron beams.
 本発明は、また、前記酸発生剤と、感光性樹脂と、を含むフォトレジストを提供する。 The present invention also provides a photoresist containing the acid generator and a photosensitive resin.
 前記式(2-1)で表されるスルホニウム塩型化合物(以後、「化合物(2-1)」と称する場合がある)は、カルボキシル基を含有しているため超短波長の光線に対して感度良好であり、超短波長の光線を照射すると、速やかに分解して酸(H+-;X-は式(2-1)中のX-に該当する)を発生する。さらに、化合物(2-1)は溶剤溶解性に優れるため、フォトレジストに添加すると、均一に分散する。さらにまた、化合物(2-1)は現像性に優れ、現像残渣を減少させる効果を有する。
 そのため、化合物(2-1)と感光性樹脂を含む化学増幅フォトレジストに、超短波長の光線を照射すれば、微細パターンを精度良く転写することができ、高解像度の微細パターンを有するレジスト膜を製造することができる。
The sulfonium salt compound represented by the formula (2-1) (hereinafter, sometimes referred to as "compound (2-1)") has good sensitivity to ultrashort wavelength light because it contains a carboxyl group, and when irradiated with ultrashort wavelength light, it quickly decomposes to generate acid (H + X - ; X - corresponds to X - in formula (2-1)). Furthermore, compound (2-1) has excellent solvent solubility, so that when added to a photoresist, it is uniformly dispersed. Furthermore, compound (2-1) has excellent developability and has the effect of reducing development residues.
Therefore, by irradiating a chemically amplified photoresist containing the compound (2-1) and a photosensitive resin with light having an ultrashort wavelength, a fine pattern can be transferred with high accuracy, and a resist film having a high-resolution fine pattern can be produced.
 また、化合物(2-1)は、金属又は金属酸化物(1)に配位性を示すカルボキシル基を含有する。そのため、金属又は金属酸化物(1)と混合すると、金属又は金属酸化物(1)をコアとする有機-無機複合体である有機金属化合物を形成する。 In addition, compound (2-1) contains a carboxyl group that exhibits coordination with metal or metal oxide (1). Therefore, when mixed with metal or metal oxide (1), it forms an organometallic compound, which is an organic-inorganic complex with metal or metal oxide (1) as the core.
 前記式(2-2)で表されるイミドスルホネート型化合物(以後、「化合物(2-2)」と称する場合がある)及び前記式(2-3)で表されるイミドスルホネート型化合物(以後、「化合物(2-3)」と称する場合がある)は、超短波長の光線に対して感度良好であり、超短波長の光線を照射すると、速やかに分解して酸(R1SO3H;R1は式(2-2)又は(2-3)中のR1に該当する)を発生する。また、化合物(2-2)及び化合物(2-3)は、金属又は金属酸化物(1)に配位性を示す基を有する。そのため、金属又は金属酸化物(1)と混合すると、金属又は金属酸化物(1)をコアとする有機-無機複合体である有機金属化合物を形成する。 The imidosulfonate type compound represented by the formula (2-2) (hereinafter, may be referred to as "compound (2-2)") and the imidosulfonate type compound represented by the formula (2-3) (hereinafter, may be referred to as "compound (2-3)") have good sensitivity to ultrashort wavelength light, and when irradiated with ultrashort wavelength light, they quickly decompose to generate an acid (R 1 SO 3 H; R 1 corresponds to R 1 in formula (2-2) or (2-3)). In addition, compound (2-2) and compound (2-3) have a group that exhibits coordination with metal or metal oxide (1). Therefore, when mixed with metal or metal oxide (1), they form an organometallic compound that is an organic-inorganic composite having metal or metal oxide (1) as a core.
 前記式(2-4)で表されるノニオンオキシム型化合物(以後、「化合物(2-4)」と称する場合がある)及び前記式(2-5)で表されるノニオンオキシム型化合物(以後、「化合物(2-5)」と称する場合がある)は、ハロゲン原子又はハロゲン化炭化水素基を含有しているため超短波長の光線に対して感度良好であり、超短波長の光線を照射すると、速やかに分解して酸(HR5;R5は式(2-4)又は(2-5)中のR5に該当する)を発生する。さらに、化合物(2-4)及び化合物(2-5)は溶剤溶解性に優れるため、レジスト中において均一に分散する。さらにまた、化合物(2-4)及び化合物(2-5)はカルボキシル基を含有しているため現像性に優れ、現像残渣を減少させる効果を有する。
 そのため、化合物(2-4)又は化合物(2-5)と感光性樹脂を含む化学増幅フォトレジストに、超短波長の光線を照射すれば、微細パターンを精度良く転写することができ、高解像度の微細パターンを有するレジスト膜を製造することができる。
The nonionic oxime type compound represented by the formula (2-4) (hereinafter, may be referred to as "compound (2-4)") and the nonionic oxime type compound represented by the formula (2-5) (hereinafter, may be referred to as "compound (2-5)") contain a halogen atom or a halogenated hydrocarbon group, and therefore have good sensitivity to ultrashort wavelength light rays, and when irradiated with ultrashort wavelength light rays, they are rapidly decomposed to generate an acid (HR 5 ; R 5 corresponds to R 5 in formula (2-4) or (2-5)). Furthermore, the compounds (2-4) and (2-5) have excellent solvent solubility, and therefore are uniformly dispersed in the resist. Furthermore, the compounds (2-4) and (2-5) contain a carboxyl group, and therefore have excellent developability and have the effect of reducing development residues.
Therefore, by irradiating a chemically amplified photoresist containing the compound (2-4) or the compound (2-5) and a photosensitive resin with light having an ultrashort wavelength, a fine pattern can be transferred with high accuracy, and a resist film having a high-resolution fine pattern can be produced.
 また、化合物(2-4)及び化合物(2-5)は、金属又は金属酸化物(1)に配位性を示すカルボキシル基を含有する。そのため、金属又は金属酸化物(1)と混合すると、金属又は金属酸化物(1)をコアとする有機-無機複合体である有機金属化合物を形成する。 In addition, compound (2-4) and compound (2-5) contain a carboxyl group that exhibits coordination with metal or metal oxide (1). Therefore, when mixed with metal or metal oxide (1), they form an organometallic compound that is an organic-inorganic complex with metal or metal oxide (1) as the core.
 前記有機金属化合物は、溶剤に対して良好な溶解性を示す。そして、前記有機金属化合物は優れた光応答性を有し、光線を照射すると、照射する光線が超短波長の光線であっても効率よく感受して、凝集体を形成する。 The organometallic compound exhibits good solubility in solvents. In addition, the organometallic compound has excellent photoresponsiveness, and when irradiated with light, it efficiently senses the irradiated light even if it is an ultra-short wavelength light, and forms aggregates.
 このようにして形成された凝集体は、もはや溶剤に対して溶解性を示さない。また、前記凝集体は金属又は金属酸化物(1)が凝集した構成を有するため、エッチングに耐え得る強靱性を有する。そのため、前記有機金属化合物を溶剤に分散させて得られる組成物は、フォトレジスト(若しくは、メタルレジスト)として好適に使用することができる。
 そして、前記組成物を塗布・乾燥して得られる層(すなわち、前記有機金属化合物を高分散した状態で含む層)であって、超短波長の光線が底部にまで到達できる厚みにまで薄化した層に、超短波長の光線を用いてパターン形状に露光し、その後、溶剤で洗浄すれば、未露光部の有機金属化合物は洗い流されるが、露光部の有機金属化合物は凝集して洗い流されること無く残存するので、高解像度の微細パターンを有するレジスト膜を精度良く製造することができる。また、このようにして得られたレジスト膜は薄くてもエッチング耐性を備える。
The aggregates thus formed are no longer soluble in the solvent. In addition, since the aggregates have a structure in which the metal or metal oxide (1) is aggregated, they have a toughness that can withstand etching. Therefore, the composition obtained by dispersing the organometallic compound in a solvent can be suitably used as a photoresist (or a metal resist).
Then, the layer obtained by coating and drying the composition (i.e., a layer containing the organometallic compound in a highly dispersed state), which has been thinned to a thickness that allows ultrashort wavelength light to reach the bottom, is exposed to ultrashort wavelength light in a pattern shape, and then washed with a solvent, whereby the organometallic compound in the unexposed areas is washed away, but the organometallic compound in the exposed areas remains as aggregates without being washed away, making it possible to accurately produce a resist film having a high-resolution fine pattern. Furthermore, the resist film obtained in this manner has etching resistance even though it is thin.
 上記の方法で製造されたレジスト膜を使用して基板にエッチング(例えば、反応性ガスやプラズマを用いたドライエッチング)処理を施せば、高解像度のパターン(例えば、配線パターン、回路パターン等)を有する半導体素子を歩留まり良く製造することができる。 If the resist film produced by the above method is used to etch a substrate (e.g., dry etching using reactive gas or plasma), semiconductor devices with high-resolution patterns (e.g., wiring patterns, circuit patterns, etc.) can be manufactured with good yield.
 [スルホニウム塩型化合物]
 本発明のスルホニウム塩型化合物は、下記式(2-1a)で表される化合物(以後、「化合物(2-1a)」と称する場合がある)である。
Figure JPOXMLDOC01-appb-C000008
(式中、Ar11、Ar12、Ar13は同一又は異なって、芳香環構造、又は2個以上の芳香環が単結合又は連結基を介して結合した構造である。R11、R12はそれぞれ独立にハロゲン原子又はC1-5ハロアルキル基を示す。R13はハロゲン原子、C1-5アルキル基、C1-5アルコキシ基、C1-5ハロアルキル基、又はC1-5ハロアルコキシ基を示す。n11、n12はそれぞれ独立に1~5の整数を示し、n13は0~4の整数を示す。Lは単結合又は連結基を示し、X-は1価の対アニオンを示す。式中に示される芳香環は、前記基以外に置換基を有していても良い)
[Sulfonium salt type compounds]
The sulfonium salt compound of the present invention is a compound represented by the following formula (2-1a) (hereinafter, sometimes referred to as "compound (2-1a)").
Figure JPOXMLDOC01-appb-C000008
(In the formula, Ar 11 , Ar 12 , and Ar 13 are the same or different and each is an aromatic ring structure, or a structure in which two or more aromatic rings are bonded via a single bond or a linking group. R 11 and R 12 each independently represent a halogen atom or a C 1-5 haloalkyl group. R 13 represents a halogen atom, a C 1-5 alkyl group, a C 1-5 alkoxy group, a C 1-5 haloalkyl group, or a C 1-5 haloalkoxy group. n11 and n12 each independently represent an integer of 1 to 5, and n13 represents an integer of 0 to 4. L represents a single bond or a linking group, and X represents a monovalent counter anion. The aromatic rings represented in the formula may have a substituent other than the above groups.)
 前記Ar11~Ar13における芳香環構造としては、例えばベンゼン環、ナフタレン環、アントラセン環等の炭素数6~15の芳香族炭化水素環の構造が挙げられる。 Examples of the aromatic ring structure in Ar 11 to Ar 13 include aromatic hydrocarbon ring structures having 6 to 15 carbon atoms, such as a benzene ring, a naphthalene ring, and an anthracene ring.
 前記Ar11~Ar13における2個以上の芳香環が単結合又は連結基を介して結合した構造としては、例えば、2個以上の芳香族炭化水素環が単結合、エーテル結合(-O-)、又はチオエーテル結合(-S-)を介して結合した構造が挙げられる。 Examples of the structure in which two or more aromatic rings in Ar 11 to Ar 13 are bonded via a single bond or a linking group include a structure in which two or more aromatic hydrocarbon rings are bonded via a single bond, an ether bond (—O—), or a thioether bond (—S—).
 前記Ar11~Ar13としては、超短波長の光線に対する感度を高める観点から、ベンゼン環構造、又は2個以上のベンゼン環が単結合又は連結基(好ましくは、エーテル結合又はチオエーテル結合)を介して結合した構造であることが好ましく、ベンゼン環構造、及び下記式(ar-1)~(ar-3)で表される構造から選択される少なくとも1種の構造が特に好ましい。
Figure JPOXMLDOC01-appb-C000009
From the viewpoint of increasing the sensitivity to light rays with ultrashort wavelengths, Ar 11 to Ar 13 are preferably a benzene ring structure or a structure in which two or more benzene rings are bonded via a single bond or a linking group (preferably an ether bond or a thioether bond), and are particularly preferably at least one structure selected from the group consisting of a benzene ring structure and structures represented by the following formulae (ar-1) to (ar-3):
Figure JPOXMLDOC01-appb-C000009
 前記スルホニウム塩型化合物としては、超短波長の光線に対する感度に優れる点から、下記式(2-1)、(2-1’)、(2-1”)で表される化合物が好ましく、とりわけ下記式(2-1)で表される化合物が好ましい。下記式中、R11、R12、R13、n11、n12、n13、L、及びX-は前記に同じである。
Figure JPOXMLDOC01-appb-C000010
As the sulfonium salt type compound, from the viewpoint of excellent sensitivity to light rays of ultrashort wavelengths, the compounds represented by the following formulas (2-1), (2-1') and (2-1") are preferred, and the compound represented by the following formula (2-1) is particularly preferred. In the following formulas, R 11 , R 12 , R 13 , n11, n12, n13, L and X are the same as defined above.
Figure JPOXMLDOC01-appb-C000010
 前記Lは、単結合又は連結基を示す。前記連結基は1以上の原子を有する二価の基であり、例えば、二価の炭化水素基、カルボニル基(-CO-)、エーテル結合(-O-)、チオエーテル結合(-S-)、エステル結合(-COO-)、アミド結合(-CONH-)、カーボネート結合(-OCOO-)、及びこれらが複数個連結した基等が挙げられる。 The L represents a single bond or a linking group. The linking group is a divalent group having one or more atoms, such as a divalent hydrocarbon group, a carbonyl group (-CO-), an ether bond (-O-), a thioether bond (-S-), an ester bond (-COO-), an amide bond (-CONH-), a carbonate bond (-OCOO-), and groups in which multiple of these are linked together.
 前記二価の炭化水素基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等の炭素数1~5の直鎖又は分岐鎖状のアルキレン基;1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等の炭素数3~18のシクロアルキレン基;o-フェニレン、m-フェニレン、p-フェニレン、ナフチレン基等の炭素数6~14のアリーレン基等が挙げられる。 Examples of the divalent hydrocarbon group include linear or branched alkylene groups having 1 to 5 carbon atoms, such as methylene, methylmethylene, dimethylmethylene, ethylene, propylene, and trimethylene; cycloalkylene groups having 3 to 18 carbon atoms, such as 1,2-cyclopentylene, 1,3-cyclopentylene, cyclopentylidene, 1,2-cyclohexylene, 1,3-cyclohexylene, 1,4-cyclohexylene, and cyclohexylidene; and arylene groups having 6 to 14 carbon atoms, such as o-phenylene, m-phenylene, p-phenylene, and naphthylene.
 前記Lとしては、なかでも、エーテル結合(-O-)又はチオエーテル結合(-S-)と、二価の炭化水素基とが結合した二価の基が好ましく、特に、エーテル結合(-O-)又はチオエーテル結合(-S-)と、炭素数1~5の直鎖又は分岐鎖状のアルキレン基[Cs2s;s=1~5の整数]とが結合した二価の基が更に好ましい。 As the L, a divalent group in which an ether bond (-O-) or a thioether bond (-S-) is bonded to a divalent hydrocarbon group is preferred, and a divalent group in which an ether bond (-O-) or a thioether bond (-S-) is bonded to a linear or branched alkylene group having 1 to 5 carbon atoms [C s H 2s ; s = an integer of 1 to 5] is particularly preferred.
 前記Lとしては、式[-L1-Ct2t-]で表される二価の基が特に好ましい。前記式中、L1は酸素原子又は硫黄原子を示し、tは1~5の整数を示す。L1から左側に出る結合手は前記式中のベンゼン環等の芳香環に結合する。また、Ct2tで表される基の右側から出る結合手は前記式中のカルボキシ炭素に結合する。 The L is particularly preferably a divalent group represented by the formula [-L 1 -C t H 2t -]. In the formula, L 1 represents an oxygen atom or a sulfur atom, and t represents an integer of 1 to 5. The bond on the left side of L 1 bonds to an aromatic ring such as a benzene ring in the formula. In addition, the bond on the right side of the group represented by C t H 2t bonds to a carboxy carbon in the formula.
 以上より、前記スルホニウム塩型化合物としては、超短波長の光線に対する感度に優れる点から、下記式(2-1b)で表される化合物が好ましく、下記式(2-1-1)で表される化合物が特に好ましい。下記式中、R11、R12、R13、n11、n12、n13、L1、t、X-は前記に同じである。
Figure JPOXMLDOC01-appb-C000011
From the above, the sulfonium salt compound is preferably a compound represented by the following formula (2-1b), and particularly preferably a compound represented by the following formula (2-1-1), from the viewpoint of excellent sensitivity to light of ultrashort wavelengths: In the following formula, R 11 , R 12 , R 13 , n11, n12, n13, L 1 , t and X are the same as above.
Figure JPOXMLDOC01-appb-C000011
 前記式中、R11、R12はそれぞれ独立にハロゲン原子又はC1-5ハロアルキル基を示す。R13はハロゲン原子、C1-5アルキル基、C1-5アルコキシ基、C1-5ハロアルキル基、又はC1-5ハロアルコキシ基を示す。n11、n12はそれぞれ独立に1~5の整数を示し、n13は0~4の整数を示す。 In the above formula, R11 and R12 each independently represent a halogen atom or a C1-5 haloalkyl group. R13 represents a halogen atom, a C1-5 alkyl group, a C1-5 alkoxy group, a C1-5 haloalkyl group, or a C1-5 haloalkoxy group. n11 and n12 each independently represent an integer of 1 to 5, and n13 represents an integer of 0 to 4.
 前記C1-5アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基等が挙げられる。また、前記アルキル基の炭素数は、好ましくは1~3個、特に好ましくは1又は2個である。 Examples of the C1-5 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, a pentyl group, etc. The number of carbon atoms in the alkyl group is preferably 1 to 3, and particularly preferably 1 or 2.
 前記C1-5ハロアルキル基は、C1-5アルキル基が有する水素原子の少なくとも1つがハロゲン原子で置換された基であり、中でも前記アルキル基が有する水素原子の全てがハロゲン原子で置換された基(すなわち、パーハロゲン化炭化水素基)が好ましい。また、前記ハロアルキル基の炭素数は、好ましくは1~3個、特に好ましくは1又は2個である。 The C1-5 haloalkyl group is a C1-5 alkyl group in which at least one hydrogen atom is substituted with a halogen atom, and is preferably a group in which all hydrogen atoms in the alkyl group are substituted with halogen atoms (i.e., a perhalogenated hydrocarbon group). The haloalkyl group preferably has 1 to 3 carbon atoms, and more preferably has 1 or 2 carbon atoms.
 従って、前記C1-5ハロアルキル基は、好ましくはC1-3ハロアルキル基、特に好ましくはC1-2ハロアルキル基である。 Thus, the C 1-5 haloalkyl group is preferably a C 1-3 haloalkyl group, particularly preferably a C 1-2 haloalkyl group.
 前記C1-5ハロアルキル基は、好ましくはC1-3パーハロアルキル基、特に好ましくはC1-2パーハロアルキル基である。 The C 1-5 haloalkyl group is preferably a C 1-3 perhaloalkyl group, particularly preferably a C 1-2 perhaloalkyl group.
 前記C1-5アルコキシ基としては、例えば、メトキシ基、エトキシ基、ブトキシ基、t-ブトキシ基等が挙げられる。また、前記アルキル基の炭素数は、好ましくは1~3個、特に好ましくは1又は2個である。前記C1-5アルコキシ基の炭素数は、好ましくは1~3個、特に好ましくは1又は2個である。 Examples of the C 1-5 alkoxy group include a methoxy group, an ethoxy group, a butoxy group, and a t-butoxy group. The number of carbon atoms in the alkyl group is preferably 1 to 3, and more preferably 1 or 2. The number of carbon atoms in the C 1-5 alkoxy group is preferably 1 to 3, and more preferably 1 or 2.
 前記C1-5ハロアルコキシ基は、C1-5アルコキシ基が有する水素原子の少なくとも1つがハロゲン原子で置換された基であり、中でも前記アルコキシ基が有する水素原子の全てがハロゲン原子で置換された基が好ましい。また、前記ハロアルコキシ基の炭素数は、好ましくは1~3個、特に好ましくは1又は2個である。 The C1-5 haloalkoxy group is a C1-5 alkoxy group in which at least one hydrogen atom is substituted with a halogen atom, and preferably a group in which all hydrogen atoms of the alkoxy group are substituted with halogen atoms. The number of carbon atoms in the haloalkoxy group is preferably 1 to 3, and particularly preferably 1 or 2.
 従って、前記C1-5ハロアルコキシ基は、好ましくはC1-3ハロアルコキシ基、特に好ましくはC1-2ハロアルコキシ基である。 Thus, the C 1-5 haloalkoxy group is preferably a C 1-3 haloalkoxy group, particularly preferably a C 1-2 haloalkoxy group.
 前記C1-5ハロアルキル基は、好ましくはC1-3パーハロアルコキシ基、特に好ましくはC1-2パーハロアルコキシ基である。 The C 1-5 haloalkyl group is preferably a C 1-3 perhaloalkoxy group, particularly preferably a C 1-2 perhaloalkoxy group.
 前記ハロゲン原子しては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、アスタチン原子が挙げられる。中でも、フッ素原子又はヨウ素原子が好ましく、特にフッ素原子が好ましい。 The halogen atom may be a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or an astatine atom. Among these, a fluorine atom or an iodine atom is preferred, and a fluorine atom is particularly preferred.
 前記C1-5ハロアルキル基及び前記C1-5ハロアルコキシ基のハロゲン原子としては、フッ素原子又はヨウ素原子が好ましく、特にフッ素原子が好ましい。 As the halogen atom of the C 1-5 haloalkyl group and the C 1-5 haloalkoxy group, a fluorine atom or an iodine atom is preferable, and a fluorine atom is particularly preferable.
 n11個のR11、及びn12個のR12としては、超短波長の光線に対する感度に優れる点から、フッ素原子、ヨウ素原子、C1-5フッ化アルキル基、及びC1-5ヨウ化アルキル基から選択される基が好ましく、超短波長の光線に対する感度及び溶剤溶解性に優れる点から、C1-5フッ化アルキル基及びC1-5ヨウ化アルキル基から選択される基が好ましい。 As the n11 R 11 and the n12 R 12 , from the viewpoint of excellent sensitivity to ultrashort wavelength light, a group selected from a fluorine atom, an iodine atom, a C 1-5 fluoroalkyl group, and a C 1-5 iodinated alkyl group is preferable, and from the viewpoint of excellent sensitivity to ultrashort wavelength light and solvent solubility, a group selected from a C 1-5 fluoroalkyl group and a C 1-5 iodinated alkyl group is preferable.
 n13個のR13としては、超短波長の光線に対する感度に優れる点から、C1-5アルキル基が好ましく、C1-3アルキル基が特に好ましく、C1-2アルキル基が最も好ましい。 As n13 R 13 , from the viewpoint of excellent sensitivity to light of ultrashort wavelengths, a C 1-5 alkyl group is preferable, a C 1-3 alkyl group is particularly preferable, and a C 1-2 alkyl group is most preferable.
 n11、n12はそれぞれ独立に1~5の整数を示し、好ましくは1~3の整数、特に好ましくは1又は2、最も好ましくは2である。 n11 and n12 each independently represent an integer from 1 to 5, preferably an integer from 1 to 3, particularly preferably 1 or 2, and most preferably 2.
 n13は0~4の整数を示し、好ましくは1~4の整数、特に好ましくは1又は2、最も好ましくは2である。 n13 represents an integer of 0 to 4, preferably an integer of 1 to 4, particularly preferably 1 or 2, and most preferably 2.
 前記式中のR11、R12で表される基の、ベンゼン環等の芳香環への結合位置には特に制限が無い。 There are no particular limitations on the bonding positions of the groups represented by R 11 and R 12 in the above formula to an aromatic ring such as a benzene ring.
 前記式中のR13で表される基の、ベンゼン環等の芳香環への結合位置には特に制限が無いが、式中に示される硫黄原子が結合する位置に対してメタ位が好ましい。 The bonding position of the group represented by R 13 in the above formula to an aromatic ring such as a benzene ring is not particularly limited, but the meta position to the bonding position of the sulfur atom shown in the formula is preferred.
 前記式中の[-L-COOH]で示される基(若しくは、[-L1-Ct2tCOOH]で示される基)の、ベンゼン環等の芳香環への結合位置としては、式中に示される硫黄原子が結合する位置に対してパラ位が好ましい。 The bonding position of the group represented by [-L-COOH] in the above formula (or the group represented by [-L 1 -C t H 2t COOH]) to an aromatic ring such as a benzene ring is preferably the para position relative to the bonding position of the sulfur atom in the formula.
 上記式中、X-は1価の対アニオンを示し、例えば、ハロゲンイオン、ハロゲンオキソ酸アニオン、ホウ素アニオン、リン酸アニオン、硫酸アニオン、スルホン酸アニオン、スルホニルイミドアニオン、カルボン酸アニオン、メチドアニオン、アンチモンアニオン、OH-、SCN-、NO2 -、NO3 -等が挙げられる。 In the above formula, X represents a monovalent counter anion, examples of which include a halogen ion, a halogen oxo acid anion, a boron anion, a phosphate anion, a sulfate anion, a sulfonate anion, a sulfonylimide anion, a carboxylate anion, a methide anion, an antimony anion, OH , SCN , NO 2 , NO 3 , and the like.
 前記ハロゲンイオンとしては、例えば、Cl-、Br-、I-等が挙げられる。 Examples of the halogen ion include Cl , Br , and I .
 前記ハロゲンオキソ酸アニオンとしては、例えば、ClO4 -、IO3 -、BrO3 -等が挙げられる。 Examples of the halogen oxo acid anion include ClO 4 , IO 3 , and BrO 3 .
 前記ホウ素アニオンとしては、例えば、BF4 -などの無機ホウ素アニオンや、(C654-、((CF32634-、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート等の有機ホウ素アニオンが挙げられる。 Examples of the boron anion include inorganic boron anions such as BF4- , and organic boron anions such as ( C6F5 ) 4B- , (( CF3 ) 2C6H3 ) 4B- , tetraphenylborate, tetrakis ( monofluorophenyl)borate, tetrakis( difluorophenyl )borate, and tetrakis(trifluorophenyl)borate.
 前記リン酸アニオンとしては、例えば、PF6 -、PF(C255 -、PF2(C254 -、PF3(C253 -、PF4(C252 -、PF5(C25-、PO4 3-等の無機リン酸アニオン等が挙げられる。 Examples of the phosphate anion include inorganic phosphate anions such as PF6- , PF( C2F5 ) 5- , PF2 ( C2F5 ) 4- , PF3 ( C2F5 ) 3- , PF4( C2F5 ) 2- , PF5 ( C2F5 ) - , and PO43- .
 前記スルホン酸アニオンは、例えば、下記式(s1)で表される。
   Rs1-SO3 -   (s1)
(式中、Rs1は有機基を示す)
The sulfonate anion is represented, for example, by the following formula (s1).
R s1 -SO 3 - (s1)
(In the formula, R represents an organic group.)
 Rs1における有機基としては、例えば、置換基を有していても良いC1-30炭化水素基、置換基を有していても良い複素環式基、及び前記基の2個以上が、単結合又は、-O-、-CO2-、-S-、-SO3-、及び-SO2N(Rs2)-から選択される連結基を介して結合された基が挙げられる。前記Rs2は水素原子又はアルキル基(例えば、C1-30アルキル基)を示す。前記置換基としては、例えば、フッ素原子等のハロゲン原子が挙げられる。 Examples of the organic group in R s1 include a C 1-30 hydrocarbon group which may have a substituent, a heterocyclic group which may have a substituent, and a group in which two or more of the above groups are bonded via a single bond or a linking group selected from -O-, -CO 2 -, -S-, -SO 3 -, and -SO 2 N(R s2 )-. R s2 represents a hydrogen atom or an alkyl group (for example, a C 1-30 alkyl group). Examples of the substituent include a halogen atom such as a fluorine atom.
 前記C1-30炭化水素基には、C1-30脂肪族炭化水素基、C3-30脂環式炭化水素基、C6-30芳香族炭化水素基、及びこれらの2個以上が結合した基が含まれる。 The C 1-30 hydrocarbon group includes a C 1-30 aliphatic hydrocarbon group, a C 3-30 alicyclic hydrocarbon group, a C 6-30 aromatic hydrocarbon group, and a group in which two or more of these are combined.
 前記C1-30炭化水素基としては、C1-30アルキル基、C6-15アリール基、C6-15シクロアルキル基、C6-15橋かけ環式炭化水素基、及びこれらの2個以上が結合した基が好ましい。 The C 1-30 hydrocarbon group is preferably a C 1-30 alkyl group, a C 6-15 aryl group, a C 6-15 cycloalkyl group, a C 6-15 bridged cyclic hydrocarbon group, or a group in which two or more of these are bonded together.
 前記複素環式基は複素環の構造式から1個の水素原子を除いた基である。前記複素環には、芳香族性複素環及び非芳香族性複素環が含まれる。このような複素環としては、環を構成する原子に炭素原子と少なくとも1種のヘテロ原子(例えば、酸素原子、イオウ原子、窒素原子等)を有する3~10員環(好ましくは4~6員環)、及びこれらの縮合環を挙げることができる。 The heterocyclic group is a group in which one hydrogen atom has been removed from the structural formula of a heterocycle. The heterocycle includes aromatic heterocycles and non-aromatic heterocycles. Examples of such heterocycles include 3- to 10-membered rings (preferably 4- to 6-membered rings) whose ring-constituting atoms include carbon atoms and at least one heteroatom (e.g., oxygen atom, sulfur atom, nitrogen atom, etc.), and condensed rings thereof.
 前記スルホン酸アニオンの具体例としては、CH3SO3 -、C49SO3 -、CF3SO3 -、C2544SO3 -、C49SO3 -、ベンゼンスルホン酸アニオン、p-トルエンスルホン酸アニオン、カンファースルホン酸アニオンが挙げられる。 Specific examples of the sulfonate anion include CH 3 SO 3 , C 4 H 9 SO 3 , CF 3 SO 3 , C 2 F 5 C 4 H 4 SO 3 , C 4 F 9 SO 3 , benzenesulfonate anion, p-toluenesulfonate anion, and camphorsulfonate anion.
 前記スルホニルイミドアニオンは、例えば、下記式(n1)で表される。
   (Rn1SO22-   (n1)
(式中、2個のRn1は同一又は異なって、有機基を示す)
The sulfonylimide anion is represented, for example, by the following formula (n1).
(R n1 SO 2 ) 2 N - (n1)
(In the formula, two R n1 are the same or different and each represents an organic group.)
 Rn1における有機基としては、Rs1における有機基と同様の例が挙げられる。 Examples of the organic group in R n1 include the same organic groups as those in R s1 .
 前記スルホニルイミドアニオンの具体例としては、(FSO22-、(CF3SO22-、(C49SO22-、(C25SO22-等が挙げられる。 Specific examples of the sulfonylimide anion include (FSO 2 ) 2 N - , (CF 3 SO 2 ) 2 N - , (C 4 F 9 SO 2 ) 2 N - , (C 2 F 5 SO 2 ) 2 N - , and the like.
 前記カルボン酸アニオンは、例えば、下記式(c1)で表される。
   Rc1-COO-   (c1)
(式中、Rc1は有機基を示す)
The carboxylate anion is represented, for example, by the following formula (c1).
R c1 -COO - (c1)
(In the formula, R represents an organic group.)
 Rc1における有機基としては、Rs1における有機基と同様の例が挙げられる。 Examples of the organic group in R c1 include the same organic groups as those in R s1 .
 前記カルボン酸アニオンの具体例としては、例えば、CF3CO2 -、CH3CO2 -、C25CO2 -、C65CO2 -等が挙げられる。 Specific examples of the carboxylate anion include CF 3 CO 2 - , CH 3 CO 2 - , C 2 H 5 CO 2 - , and C 6 H 5 CO 2 - .
 前記メチドアニオンとしては、例えば、下記式(m1)で表されるスルホニルメチドアニオンが挙げられる。
   (Rm1SO23-   (m1)
(式中、3個のRm1は同一又は異なって、有機基を示す)
Examples of the methide anion include a sulfonylmethide anion represented by the following formula (m1).
( Rm1SO2 ) 3C- ( m1 )
(In the formula, three R m1 are the same or different and each represents an organic group.)
 Rm1における有機基としては、Rs1における有機基と同様の例が挙げられる。 Examples of the organic group in R m1 include the same organic groups as those in R s1 .
 前記メチドアニオンの具体例としては、例えば、(CF3SO23-等が挙げられる。 Specific examples of the methide anion include (CF 3 SO 2 ) 3 C .
 前記アンチモンアニオンとしては、例えば、SbF6 -等が挙げられる。 The antimony anion may, for example, be SbF 6 .
 前記1価の対アニオンには、上記以外にも、特開2013-47211、特開2021-81708、特開2013-80245、特開2013-80240、及び特開2013-33161に記載のアニオンが含まれる。 The monovalent counter anion includes, in addition to the above, the anions described in JP-A-2013-47211, JP-A-2021-81708, JP-A-2013-80245, JP-A-2013-80240, and JP-A-2013-33161.
 前記1価の対アニオンとしては、溶剤溶解性及び微細パターン形成性に優れる点において、スルホン酸アニオン又はスルホニルイミドアニオンが好ましい。 As the monovalent counter anion, a sulfonate anion or a sulfonylimide anion is preferred because of their excellent solvent solubility and fine pattern formability.
 化合物(2-1)等の前記スルホニウム塩型化合物は、溶剤(例えば、PGMEA)への溶解性に優れる。常温常圧下において、PGMEA100重量部に溶解する前記スルホニウム塩型化合物の量は、例えば2重量部超、好ましくは3重量部以上、更に好ましくは4重量部以上、特に好ましくは5重量部以上、最も好ましくは8重量部以上、とりわけ好ましくは15重量部以上である。尚、上限値は例えば30重量部である。そのため、前記スルホニウム塩型化合物を溶剤と共にフォトレジストに添加すれば、フォトレジスト中に前記スルホニウム塩型化合物を均一に分散させることができる。 The sulfonium salt type compound such as compound (2-1) has excellent solubility in a solvent (e.g., PGMEA). At room temperature and normal pressure, the amount of the sulfonium salt type compound that dissolves in 100 parts by weight of PGMEA is, for example, more than 2 parts by weight, preferably 3 parts by weight or more, more preferably 4 parts by weight or more, particularly preferably 5 parts by weight or more, most preferably 8 parts by weight or more, and particularly preferably 15 parts by weight or more. The upper limit is, for example, 30 parts by weight. Therefore, if the sulfonium salt type compound is added to a photoresist together with a solvent, the sulfonium salt type compound can be uniformly dispersed in the photoresist.
 また、前記スルホニウム塩型化合物は超短波長の光線に対する感応性に優れ、前記光線を照射すれば、速やかに酸(H+-;X-は対アニオンを示す)を発生する。尚、前記光線の波長は、例えば100nm以下(例えば1~100nm)、好ましくは80nm以下、特に好ましくは50nm以下、最も好ましくは30nm以下、とりわけ好ましくは20nm以下である。前記光線には、例えば、X線、電子線、EUV等が含まれる。 The sulfonium salt compound has excellent sensitivity to light rays with ultrashort wavelengths, and when irradiated with the light rays, it rapidly generates an acid (H + X - ; X - represents a counter anion). The wavelength of the light rays is, for example, 100 nm or less (e.g., 1 to 100 nm), preferably 80 nm or less, particularly preferably 50 nm or less, most preferably 30 nm or less, and particularly preferably 20 nm or less. Examples of the light rays include X-rays, electron beams, EUV, etc.
 さらに、前記スルホニウム塩型化合物は熱安定性を備え、加熱処理(例えば、50℃以上130℃未満の温度で1~5分加熱する処理)を施しても、分解を抑制することができる。 Furthermore, the sulfonium salt type compound has thermal stability and can suppress decomposition even when subjected to heat treatment (for example, heating at a temperature of 50°C or higher and lower than 130°C for 1 to 5 minutes).
 前記スルホニウム塩型化合物は、上記の通り超短波長の光線に対する感応性に優れるため、極端紫外線、電子線、X線などの超短波長の光線を使用するフォトレジスト(例えば、化学増幅型フォトレジスト)に使用することができる、その他、カチオン重合開始剤として、カチオン硬化性樹脂(例えば、エポキシ基、オキセタニル基、ビニルエーテル基等から選択される1種又は2種以上のカチオン硬化性基を有する樹脂)に添加することもできる。
 また、前記スルホニウム塩型化合物は熱安定性を備えるため、前記スルホニウム塩型化合物を含む塗膜を、酸発生能を保持しつつ加熱乾燥することができ、作業性に優れる。
The sulfonium salt type compound has excellent sensitivity to ultrashort wavelength light as described above, and therefore can be used in photoresists (e.g., chemically amplified photoresists) that use ultrashort wavelength light such as extreme ultraviolet light, electron beams, and X-rays. In addition, the sulfonium salt type compound can also be added as a cationic polymerization initiator to cationic curable resins (e.g., resins having one or more cationic curable groups selected from epoxy groups, oxetanyl groups, vinyl ether groups, and the like).
Furthermore, since the sulfonium salt compound has thermal stability, a coating film containing the sulfonium salt compound can be dried by heating while retaining its acid generating ability, and therefore the workability is excellent.
 また、前記スルホニウム塩型化合物は、金属又は金属酸化物(1)に配位性を示すカルボキシル基を有する。そのため、金属又は金属酸化物(1)と混合すると、金属又は金属酸化物(1)をコアとする有機-無機複合体である有機金属化合物を形成することができる。このようにして形成される有機金属化合物は、フォトレジスト(例えば、メタルレジスト)の形成材料として好適に使用することができる。 The sulfonium salt type compound also has a carboxyl group that exhibits coordination with the metal or metal oxide (1). Therefore, when mixed with the metal or metal oxide (1), an organometallic compound can be formed, which is an organic-inorganic complex with the metal or metal oxide (1) as the core. The organometallic compound thus formed can be suitably used as a material for forming a photoresist (e.g., a metal resist).
 [スルホニウム塩型化合物の製造方法]
 前記スルホニウム塩型化合物の製造方法を、上記式(2-1-1)で表される化合物(以後、「化合物(2-1-1)」と称する場合がある)の製造方法を例に説明する。
[Method of producing sulfonium salt type compound]
The method for producing the sulfonium salt compound will be described below by taking as an example the method for producing the compound represented by the above formula (2-1-1) (hereinafter, sometimes referred to as "compound (2-1-1)").
 化合物(2-1-1)は、下記工程[I][II][III]を経て製造することができる。下記式中、R11、R12、R13、n11、n12、n13、L1、t、X-は前記に同じである。
Figure JPOXMLDOC01-appb-C000012
Compound (2-1-1) can be produced via the following steps [I], [II] and [III]: In the following formula, R 11 , R 12 , R 13 , n11, n12, n13, L 1 , t and X are the same as defined above.
Figure JPOXMLDOC01-appb-C000012
 (工程I)
 工程Iは、式(11)で表される化合物(以後、「化合物(11)」と称する場合がある)と式(12)で表される化合物(以後、「化合物(12)」と称する場合がある)とを反応させて、式(13)で表される化合物(以後、「化合物(13)」と称する場合がある)を得る工程である。
(Step I)
Step I is a step of reacting a compound represented by formula (11) (hereinafter, may be referred to as "compound (11)") with a compound represented by formula (12) (hereinafter, may be referred to as "compound (12)") to obtain a compound represented by formula (13) (hereinafter, may be referred to as "compound (13)").
 前記反応に付する化合物(11)と化合物(12)のモル比(化合物(11)/化合物(12))は、例えば1/50~3/1、好ましくは1/10~2/1である。 The molar ratio of compound (11) to compound (12) (compound (11)/compound (12)) to be reacted is, for example, 1/50 to 3/1, preferably 1/10 to 2/1.
 前記反応は脱水剤(HX’)の存在下で行うことが好ましい。脱水剤(HX’)としては、例えば、濃硫酸、無水リン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、或いはその無水物等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 The reaction is preferably carried out in the presence of a dehydrating agent (HX'). Examples of the dehydrating agent (HX') include concentrated sulfuric acid, phosphoric anhydride, methanesulfonic acid, trifluoromethanesulfonic acid, and anhydrides thereof. These can be used alone or in combination of two or more.
 (工程II)
 工程IIは、工程Iを経て得られた化合物(13)にM1X(Xは1価の対アニオンを示し、M1はアルカリ金属を示す)を反応させて、式(14)で表される化合物(以後、「化合物(14)」と称する場合がある)を得る工程である。
(Step II)
Step II is a step of reacting compound (13) obtained through step I with M 1 X (X represents a monovalent counter anion, and M 1 represents an alkali metal) to obtain a compound represented by formula (14) (hereinafter, sometimes referred to as "compound (14)").
 前記反応に付する化合物(13)とM1Xのモル比(化合物(13)/M1X)は、例えば1/3~3/1、好ましくは1/2~2/1である。 The molar ratio of compound (13) to M 1 X (compound (13)/M 1 X) to be reacted is, for example, 1/3 to 3/1, preferably 1/2 to 2/1.
 (工程III)
 工程IIIは、工程IIを経て得られた化合物(14)に式(15)で表される化合物(以後、「化合物(15)」と称する場合がある)を反応させて、化合物(2-1-1)を得る工程である。
(Step III)
Step III is a step of reacting compound (14) obtained via step II with a compound represented by formula (15) (hereinafter, may be referred to as “compound (15)”) to obtain compound (2-1-1).
 式(15)中のX1はハロゲン原子を示し、X2は水素原子又は保護基(例えば、t-ブチル基等)を示す。化合物(15)はアルキル化剤として作用する。 In the formula (15), X 1 represents a halogen atom, and X 2 represents a hydrogen atom or a protecting group (for example, a t-butyl group, etc.) Compound (15) acts as an alkylating agent.
 前記反応に付する化合物(14)と化合物(15)のモル比(化合物(14)/化合物(15))は、例えば1/3~3/1、好ましくは1/2~2/1である。 The molar ratio of compound (14) to compound (15) (compound (14)/compound (15)) to be reacted is, for example, 1/3 to 3/1, preferably 1/2 to 2/1.
 前記反応は、溶剤の存在下で行うことができる。前記溶剤としては、例えば、アセトン、アセトニトリル、ジメチルスルホキシド等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 The reaction can be carried out in the presence of a solvent. Examples of the solvent include acetone, acetonitrile, and dimethyl sulfoxide. These can be used alone or in combination of two or more.
 各工程の反応の雰囲気としては反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。また、反応はバッチ式、セミバッチ式、連続式等の何れの方法でも行うことができる。 The reaction atmosphere in each step is not particularly limited as long as it does not inhibit the reaction, and may be, for example, an air atmosphere, a nitrogen atmosphere, an argon atmosphere, etc. Furthermore, the reaction may be carried out in any method, such as a batch method, a semi-batch method, or a continuous method.
 また、各工程の反応終了後は、得られた反応生成物を、一般的な分離精製処理(例えば、沈殿、洗浄、濾過等)に付しても良い。 Furthermore, after the reaction in each step is completed, the obtained reaction product may be subjected to general separation and purification treatment (e.g., precipitation, washing, filtration, etc.).
 [イミドスルホネート型化合物]
 本発明のイミドスルホネート型化合物は、下記式(2-2)で表される化合物と、下記式(2-3)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000013
[Imidosulfonate type compound]
The imide sulfonate type compound of the present invention includes a compound represented by the following formula (2-2) and a compound represented by the following formula (2-3).
Figure JPOXMLDOC01-appb-C000013
 前記式中、R1は置換基を有していても良い炭化水素基を示す。-L-(R2nで表される基は、式中に示される芳香環が有する置換基であり、前記Lは単結合又は連結基を示し、前記R2は前記金属又は金属酸化物(1)に配位する配位性基を示し、nは1以上の整数を示す。式中に示される芳香環は、前記基以外に置換基を有していても良い。 In the formula, R1 represents a hydrocarbon group which may have a substituent. The group represented by -L-( R2 ) n is a substituent possessed by the aromatic ring shown in the formula, the L represents a single bond or a linking group, the R2 represents a coordinating group which coordinates with the metal or metal oxide (1), and n represents an integer of 1 or more. The aromatic ring shown in the formula may have a substituent other than the above groups.
 前記炭化水素基には、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、及びこれらの2個以上が単結合を介して結合した基が含まれる。 The hydrocarbon group includes an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded via a single bond.
 前記脂肪族炭化水素基としては、C1-5脂肪族炭化水素基(すなわち、炭素数1~5の脂肪族炭化水素基)が好ましく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基等のアルキル基;ビニル基、アリル基、1-ブテニル基等のアルケニル基が挙げられる。 The aliphatic hydrocarbon group is preferably a C1-5 aliphatic hydrocarbon group (i.e., an aliphatic hydrocarbon group having 1 to 5 carbon atoms), and examples thereof include alkyl groups such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, and a pentyl group; and alkenyl groups such as a vinyl group, an allyl group, and a 1-butenyl group.
 前記脂環式炭化水素基としては、C3-10脂環式炭化水素基が好ましく、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;シクロペンテニル基、シクロへキセニル基等のシクロアルケニル基;パーヒドロナフタレン-1-イル基、ノルボルニル基、アダマンチル基、トリシクロ[5.2.1.02,6]デカン-8-イル基、テトラシクロ[4.4.0.12,5.17,10]ドデカン-3-イル基等の橋かけ環式炭化水素基等が挙げられる。 The alicyclic hydrocarbon group is preferably a C3-10 alicyclic hydrocarbon group, and examples thereof include cycloalkyl groups such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group; cycloalkenyl groups such as a cyclopentenyl group and a cyclohexenyl group; and bridged cyclic hydrocarbon groups such as a perhydronaphthalene-1-yl group, a norbornyl group, an adamantyl group, a tricyclo[ 5.2.1.02,6 ]decan-8-yl group, and a tetracyclo [ 4.4.0.12,5.17,10 ]dodecan-3-yl group.
 前記芳香族炭化水素基としては、C6-14(特に、C6-10)芳香族炭化水素基が好ましく、例えば、フェニル基、ナフチル基等のアリール基が挙げられる。 The aromatic hydrocarbon group is preferably a C 6-14 (particularly, a C 6-10 ) aromatic hydrocarbon group, and examples thereof include aryl groups such as a phenyl group and a naphthyl group.
 前記炭化水素基が有していても良い置換基としては、例えば、ハロゲン原子、オキソ基、カルボキシル基、及び下記式(r)で表される基等が挙げられる。
    -X1-R   (r)
(式(r)中、X1は-O-、-S-、又は-CO-を示し、Rは炭化水素基又はハロゲン化炭化水素基を示す。式(r)の左端から出る結合手が、前記炭化水素基を構成する炭素原子に結合する)
Examples of the substituent that the hydrocarbon group may have include a halogen atom, an oxo group, a carboxyl group, and a group represented by the following formula (r).
-X1 -R(r)
(In formula (r), X1 represents -O-, -S-, or -CO-, and R represents a hydrocarbon group or a halogenated hydrocarbon group. The bond coming out from the left end of formula (r) bonds to a carbon atom constituting the hydrocarbon group.)
 前記ハロゲン原子としては、フッ素原子又はヨウ素原子が好ましく、特にフッ素原子が好ましい。 The halogen atom is preferably a fluorine atom or an iodine atom, and more preferably a fluorine atom.
 前記Rにおける炭化水素基としては、上記と同様の例が挙げられる。 The hydrocarbon group represented by R can be the same as those mentioned above.
 前記Rにおけるハロゲン化炭化水素基としては、前記炭化水素基の水素原子の少なくとも1つがハロゲン原子(例えば、フッ素原子及び/又はヨウ素原子)で置換された基が挙げられる。 The halogenated hydrocarbon group in R includes a group in which at least one of the hydrogen atoms in the hydrocarbon group is replaced with a halogen atom (e.g., a fluorine atom and/or an iodine atom).
 前記Lとしては、前記スルホニウム塩型化合物におけるLと同様の例が挙げられる。 The L may be the same as the L in the sulfonium salt compound.
 前記Lとしては、超短波長の光線に対する感光性が向上する点において、カルボニル基(-CO-)、エーテル結合(-O-)、チオエーテル結合(-S-)、エステル結合(-COO-,-OCO-)、又はこれらの基と二価の炭化水素基(好ましくは鎖状の炭化水素基、特に好ましくはアルキレン基、最も好ましくはC1-5アルキレン基)が連結してなる2価の基、又は単結合が好ましい。 As the above-mentioned L, from the viewpoint of improving the photosensitivity to ultrashort wavelength light, a carbonyl group (-CO-), an ether bond (-O-), a thioether bond (-S-), an ester bond (-COO-, -OCO-), a divalent group formed by linking any of these groups to a divalent hydrocarbon group (preferably a chain hydrocarbon group, particularly preferably an alkylene group, most preferably a C1-5 alkylene group), or a single bond is preferable.
 前記R2は金属又は金属酸化物(1)に配位する性質を有する配位性基であり、例えば、ヒドロキシ基、カルボキシ基、リン酸基(P(=O)(OH)2)、リン酸モノエステル基(P(=O)(OH)(OR’);R’は炭化水素基を示し、上記と同様の例が挙げられる)、スルホン酸基(S(=O)2(OH))、スルフィノ基(S(=O)OH)、トリアゾール基(例えば、下記式(az-1)又は(az-2)で表される基)、テトラゾール基(例えば、下記式(az-3)で表される基)等が挙げられる。下記式中の波線を付した結合手が上記式(2-2)又は(2-3)中のLで表される基に結合する。
Figure JPOXMLDOC01-appb-C000014
The R2 is a coordinating group having the property of coordinating to a metal or metal oxide (1), and examples thereof include a hydroxy group, a carboxy group, a phosphate group (P(=O)(OH) 2 ), a phosphate monoester group (P(=O)(OH)(OR');R' represents a hydrocarbon group, and examples similar to those described above can be mentioned), a sulfonic acid group (S(=O) 2 (OH)), a sulfino group (S(=O)OH), a triazole group (for example, a group represented by the following formula (az-1) or (az-2)), a tetrazole group (for example, a group represented by the following formula (az-3)), etc. The bond marked with a wavy line in the following formula bonds to the group represented by L in the above formula (2-2) or (2-3).
Figure JPOXMLDOC01-appb-C000014
 前記nは、前記Lに結合するR2の数を示し、1以上の整数(例えば1~3の整数、好ましくは1又は2)である。nが2以上の整数である場合、2個以上のR2はそれぞれ同一であっても良いし異なっていても良い。 The n represents the number of R2s bonded to the L, and is an integer of 1 or more (for example, an integer of 1 to 3, preferably 1 or 2). When n is an integer of 2 or more, two or more R2s may be the same or different.
 前記R2としては、超短波長の光線に対する感光性が向上する点において、ヒドロキシ基、カルボキシ基、リン酸基、リン酸モノエステル基、又はスルホン酸基が好ましい。 As R2 , a hydroxy group, a carboxy group, a phosphoric acid group, a phosphoric acid monoester group, or a sulfonic acid group is preferable from the viewpoint of improving the photosensitivity to light of an ultrashort wavelength.
 上記式(2-2)及び(2-3)中に示される芳香環は、前記-L-(R2nで表される基以外に置換基を1個以上(例えば1~3個)有していても良い。前記置換基としては、例えば、ハロゲン原子、炭化水素基、ハロゲン化炭化水素基、及び前記式(r)で表される基等が挙げられる。また、前記炭化水素基及びハロゲン化炭化水素基としては、上記と同様の例が挙げられる。 The aromatic rings shown in the above formulae (2-2) and (2-3) may have one or more (for example, 1 to 3) substituents other than the group represented by -L-(R 2 ) n . Examples of the substituents include halogen atoms, hydrocarbon groups, halogenated hydrocarbon groups, and groups represented by the above formula (r). Examples of the hydrocarbon groups and halogenated hydrocarbon groups include the same as those mentioned above.
 前記イミドスルホネート型化合物としては、超短波長の光線に対する感光性が向上する点において、化合物(2-2)が好ましく、とりわけ、上記式(2-2)で表される化合物であって、式中のLがカルボニル基(-CO-)、エーテル結合(-O-)、チオエーテル結合(-S-)、エステル結合(-COO-)、又はこれらの基とアルキレン基(例えば、
直鎖又は分岐鎖状のC1-5アルキレン基)が連結してなる2価の基、又は単結合である化合物が好ましい。
As the imidosulfonate type compound, the compound (2-2) is preferable in terms of improving the photosensitivity to ultrashort wavelength light, and in particular, it is a compound represented by the above formula (2-2) in which L in the formula is a carbonyl group (-CO-), an ether bond (-O-), a thioether bond (-S-), an ester bond (-COO-), or any of these groups and an alkylene group (for example,
A compound in which the alkyl group is a divalent group formed by linking two linear or branched C 1-5 alkylene groups, or a single bond is preferred.
 前記イミドスルホネート型化合物は超短波長の光線に対する感応性に優れ、前記光線を照射すれば、速やかに酸(R1SO3H;R1は式(2-2)又は(2-3)中のR1に該当する)を発生する。尚、前記光線の波長は、例えば100nm以下(例えば1~100nm)、好ましくは80nm以下、特に好ましくは50nm以下、最も好ましくは30nm以下、とりわけ好ましくは20nm以下である。前記光線には、例えば、X線、電子線、EUV等が含まれる。 The imide sulfonate compound has excellent sensitivity to light rays of ultrashort wavelengths, and when irradiated with the light rays, it rapidly generates an acid (R 1 SO 3 H; R 1 corresponds to R 1 in formula (2-2) or (2-3)). The wavelength of the light rays is, for example, 100 nm or less (e.g., 1 to 100 nm), preferably 80 nm or less, particularly preferably 50 nm or less, most preferably 30 nm or less, and particularly preferably 20 nm or less. The light rays include, for example, X-rays, electron beams, EUV, etc.
 また、前記イミドスルホネート型化合物は、金属又は金属酸化物(1)に配位性を示す基(R2)を有する。そのため、金属又は金属酸化物(1)と混合すると、金属又は金属酸化物(1)をコアとする有機-無機複合体である有機金属化合物を形成することができる。このようにして形成される有機金属化合物は、フォトレジスト(例えば、メタルレジスト)の形成材料として好適に使用することができる。 The imidosulfonate compound has a group (R 2 ) that exhibits coordination with a metal or metal oxide (1). Therefore, when mixed with a metal or metal oxide (1), an organometallic compound that is an organic-inorganic composite having the metal or metal oxide (1) as a core can be formed. The organometallic compound thus formed can be suitably used as a material for forming a photoresist (e.g., a metal resist).
 [ノニオンオキシム型化合物]
 本発明のノニオンオキシム型化合物は、下記式(2-4)で表される化合物と、下記式(2-5)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000015
[Nonionic oxime type compounds]
The nonionic oxime compound of the present invention includes a compound represented by the following formula (2-4) and a compound represented by the following formula (2-5).
Figure JPOXMLDOC01-appb-C000015
 前記式中、Ar1、Ar2は同一又は異なって、芳香環構造、又は2個以上の芳香環が単結合又は連結基を介して結合した構造を示す。R3はハロゲン原子又はハロゲン化炭化水素基を示す。R4は置換基を有していても良い炭化水素基、置換基を有していても良い炭化水素基の2個以上が単結合若しくは連結基を介して結合した基、又はシアノ基を示す。R5は-O(C=O)R基、-OS(=O)2R基、又は-OPO(OR)2基を示し、前記Rは炭化水素基又はハロゲン化炭化水素基を示す。Lは単結合又は連結基を示す。n1は1~5の整数を示し、n2は1~4の整数を示す。式中に示される芳香環は、前記基以外に置換基を有していても良い In the above formula, Ar 1 and Ar 2 are the same or different and each represents an aromatic ring structure, or a structure in which two or more aromatic rings are bonded via a single bond or a linking group. R 3 represents a halogen atom or a halogenated hydrocarbon group. R 4 represents a hydrocarbon group which may have a substituent, a group in which two or more hydrocarbon groups which may have a substituent are bonded via a single bond or a linking group, or a cyano group. R 5 represents an -O(C=O)R group, an -OS(=O) 2 R group, or an -OPO(OR) 2 group, where R represents a hydrocarbon group or a halogenated hydrocarbon group. L represents a single bond or a linking group. n1 represents an integer of 1 to 5, and n2 represents an integer of 1 to 4. The aromatic rings represented in the formula may have a substituent other than the above groups.
 前記Ar1、Ar2としては、前記スルホニウム塩型化合物におけるAr11~Ar13と同様の例が挙げられる。 Examples of Ar 1 and Ar 2 include the same as those of Ar 11 to Ar 13 in the sulfonium salt type compound.
 前記Ar1、Ar2としては、超短波長の光線に対する感度を高める観点から、ベンゼン環構造、又は2個以上のベンゼン環が単結合又は連結基(好ましくは、エーテル結合又はチオエーテル結合)を介して結合した構造であることが好ましく、ベンゼン環構造、及び前記式(ar-1)~(ar-3)で表される構造から選択される少なくとも1種の構造が特に好ましい。 From the viewpoint of increasing the sensitivity to light of an ultrashort wavelength, Ar 1 and Ar 2 are preferably a benzene ring structure or a structure in which two or more benzene rings are bonded via a single bond or a linking group (preferably an ether bond or a thioether bond), and are particularly preferably at least one structure selected from the benzene ring structure and the structures represented by the formulae (ar-1) to (ar-3).
 前記R3はAr1又はAr2に結合する置換基であり、ハロゲン原子又はハロゲン化炭化水素基を示す。 The above R 3 is a substituent bonded to Ar 1 or Ar 2 and represents a halogen atom or a halogenated hydrocarbon group.
 前記ハロゲン原子としては、超短波長の光線に対する感度を高める観点から、フッ素原子又はヨウ素原子が好ましく、特にフッ素原子が好ましい。 As the halogen atom, from the viewpoint of increasing the sensitivity to ultrashort wavelength light, a fluorine atom or an iodine atom is preferred, and a fluorine atom is particularly preferred.
 前記ハロゲン化炭化水素基は、炭化水素基が有する水素原子の少なくとも1つがハロゲン原子で置換された基である。 The halogenated hydrocarbon group is a hydrocarbon group in which at least one of the hydrogen atoms has been replaced with a halogen atom.
 前記炭化水素基としては、前記R1における炭化水素基と同様の例が挙げられる。 Examples of the hydrocarbon group include the same hydrocarbon groups as those in R 1 .
 前記ハロゲン化炭化水素基としては、中でも、上記1価の炭化水素基が有する水素原子の全てがハロゲン原子で置換された基(すなわち、パーハロゲン化炭化水素基)が好ましい。また、前記ハロゲン化炭化水素基の炭素数は、例えば1~5個、好ましくは1~3、特に好ましくは1又は2個である。 The halogenated hydrocarbon group is preferably a monovalent hydrocarbon group in which all of the hydrogen atoms have been replaced with halogen atoms (i.e., a perhalogenated hydrocarbon group). The number of carbon atoms in the halogenated hydrocarbon group is, for example, 1 to 5, preferably 1 to 3, and particularly preferably 1 or 2.
 前記ハロゲン化炭化水素基は、好ましくはハロアルキル基、特に好ましくはC1-5ハロアルキル基である。 The halogenated hydrocarbon group is preferably a haloalkyl group, particularly preferably a C 1-5 haloalkyl group.
 前記ハロゲン化炭化水素基は、好ましくはパーハロアルキル基、特に好ましくはC1-5パーハロアルキル基である。 The halogenated hydrocarbon group is preferably a perhaloalkyl group, particularly preferably a C 1-5 perhaloalkyl group.
 n1は前記Ar1に結合するR3の数を示し、1~5の整数である。中でも、1~3の整数が好ましく、1又は2が特に好ましい。 n1 represents the number of R3 bonded to Ar1 and is an integer of 1 to 5. Among them, an integer of 1 to 3 is preferable, and 1 or 2 is particularly preferable.
 n2は前記Ar2に結合するR3の数を示し、1~4の整数である。 n2 represents the number of R 3 bonded to Ar 2 and is an integer of 1 to 4.
 前記Ar1には、R3以外にも他の置換基を有していても良い。また、前記Ar2には、R3や式(2-5)中に示されるL-COOHで表される基以外にも他の置換基を有していても良い。 The Ar 1 may have a substituent other than R 3. The Ar 2 may have a substituent other than R 3 or the group represented by L-COOH in formula (2-5).
 他の置換基としては、例えば、1価の脂肪族炭化水素基、1価の脂環式炭化水素基、オキソ基、カルボキシル基、及び下記式(r)で表される基等が挙げられる。
    -X1-R   (r)
(式(r)中、X1は-O-、-S-、又は-CO-を示し、Rは炭化水素基又はハロゲン化炭化水素基を示す。式(r)の左端から出る結合手が、前記Ar1、Ar2における芳香環構造を構成する炭素原子に結合する)
Examples of the other substituent include a monovalent aliphatic hydrocarbon group, a monovalent alicyclic hydrocarbon group, an oxo group, a carboxyl group, and a group represented by the following formula (r).
-X1 -R(r)
(In formula (r), X1 represents -O-, -S-, or -CO-, and R represents a hydrocarbon group or a halogenated hydrocarbon group. The bond on the left end of formula (r) bonds to a carbon atom constituting an aromatic ring structure in Ar1 or Ar2 .)
 前記式(r)中のRにおける炭化水素基及びハロゲン化炭化水素基としては、上記と同様の例が挙げられる。前記式(r)中のRとしては、中でも、1価の脂肪族炭化水素基又は1価のハロゲン化脂肪族炭化水素基が好ましく、なかでもアルキル基、又はハロアルキル基が好ましく、とりわけC1-5アルキル基又はハロC1-5アルキル基が好ましい。 Examples of the hydrocarbon group and halogenated hydrocarbon group in R in the formula (r) are the same as those mentioned above. Among them, R in the formula (r) is preferably a monovalent aliphatic hydrocarbon group or a monovalent halogenated aliphatic hydrocarbon group, more preferably an alkyl group or a haloalkyl group, and particularly preferably a C1-5 alkyl group or a haloC1-5 alkyl group.
 前記R4は置換基を有していても良い炭化水素基、置換基を有していても良い炭化水素基の2個以上が単結合若しくは連結基を介して結合した基、又はシアノ基を示す。 The above R 4 represents a hydrocarbon group which may have a substituent, a group in which two or more hydrocarbon groups which may have a substituent are bonded via a single bond or a linking group, or a cyano group.
 前記R4における炭化水素基及び連結基としては、上記と同様の例が挙げられる。 Examples of the hydrocarbon group and linking group in R 4 include the same as those mentioned above.
 前記R4における炭化水素基としては、1価の脂肪族炭化水素基又は1価の芳香族炭化水素基が好ましく、なかでもアルキル基又はアリール基が好ましく、とりわけC1-5アルキル基又はC6-10アリール基が好ましい。 The hydrocarbon group in R 4 is preferably a monovalent aliphatic hydrocarbon group or a monovalent aromatic hydrocarbon group, more preferably an alkyl group or an aryl group, and particularly preferably a C 1-5 alkyl group or a C 6-10 aryl group.
 前記R4における炭化水素基としては、溶剤溶解性を高める観点から、1価の脂肪族炭化水素基が好ましく、特にアルキル基が好ましく、とりわけC1-5アルキル基が好ましい。 As the hydrocarbon group for R 4 , from the viewpoint of enhancing solubility in a solvent, a monovalent aliphatic hydrocarbon group is preferred, an alkyl group is particularly preferred, and a C 1-5 alkyl group is particularly preferred.
 また、前記R4における炭化水素基の2個以上が連結基を介して結合した基としては、前記炭化水素基の2個以上が、エーテル結合はチオエーテル結合を介して結合してなる1価の基が好ましい。 The group in which two or more hydrocarbon groups in R 4 are bonded via a linking group is preferably a monovalent group in which two or more of the hydrocarbon groups are bonded via an ether bond or a thioether bond.
 前記R4における炭化水素基が有していても良い置換基としては、例えば、ハロゲン原子が挙げられる。 The substituent that the hydrocarbon group in R 4 may have is, for example, a halogen atom.
 前記R5は-O(C=O)R基、-OS(=O)2R基、又は-OPO(OR)2基を示し、前記Rは炭化水素基又はハロゲン化炭化水素基を示す。前記炭化水素基及びハロゲン化炭化水素基としては、上記と同様の例が挙げられる。 The R5 represents an -O(C=O)R group, an -OS(=O) 2R group, or an -OPO(OR) 2 group, and the R represents a hydrocarbon group or a halogenated hydrocarbon group. Examples of the hydrocarbon group and the halogenated hydrocarbon group include the same as those mentioned above.
 前記ハロゲン化炭化水素基としては、中でも、上記1価の炭化水素基が有する水素原子の全てがハロゲン原子で置換された基(すなわち、パーハロゲン化炭化水素基)が好ましい。また、前記ハロゲン化炭化水素基の炭素数は、例えば1~10個、好ましくは1~6個である。 Among the halogenated hydrocarbon groups, those in which all of the hydrogen atoms of the monovalent hydrocarbon group have been replaced with halogen atoms (i.e., perhalogenated hydrocarbon groups) are preferred. The number of carbon atoms in the halogenated hydrocarbon group is, for example, 1 to 10, and preferably 1 to 6.
 前記ハロゲン化炭化水素基は、好ましくはハロアルキル基又はハロアリール基であり、特に好ましくはハロC1-5アルキル基又はハロC6-10アリール基である。 The halogenated hydrocarbon group is preferably a haloalkyl group or a haloaryl group, particularly preferably a haloC 1-5 alkyl group or a haloC 6-10 aryl group.
 前記ハロゲン化炭化水素基は、好ましくはパーハロアルキル基又はパーハロアリール基であり、特に好ましくはパーハロC1-5アルキル基又はパーハロC6-10アリール基である。 The halogenated hydrocarbon group is preferably a perhaloalkyl group or a perhaloaryl group, and particularly preferably a perhaloC 1-5 alkyl group or a perhaloC 6-10 aryl group.
 前記R5中のRとしては、1価の脂肪族炭化水素基、1価の芳香族炭化水素基、1価のハロゲン化脂肪族炭化水素基、又は1価のハロゲン化芳香族炭化水素基が好ましく、とりわけ、アルキル基、アリール基、ハロゲン化アルキル基(いわゆる、ハロアルキル基)、又はハロゲン化アリール基(いわゆる、ハロアリール基)が好ましい。また、前記ハロゲン原子としては、超短波長の光線に対する感度を高める観点から、フッ素原子又はヨウ素原子が好ましく、特にフッ素原子が好ましい。 R in the R5 is preferably a monovalent aliphatic hydrocarbon group, a monovalent aromatic hydrocarbon group, a monovalent halogenated aliphatic hydrocarbon group, or a monovalent halogenated aromatic hydrocarbon group, and is particularly preferably an alkyl group, an aryl group, a halogenated alkyl group (so-called a haloalkyl group), or a halogenated aryl group (so-called a haloaryl group).Furthermore, as the halogen atom, from the viewpoint of increasing the sensitivity to ultrashort wavelength light, a fluorine atom or an iodine atom is preferred, and a fluorine atom is particularly preferred.
 前記Lとしては、前記スルホニウム塩型化合物におけるLと同様の例が挙げられる。 The L may be the same as the L in the sulfonium salt compound.
 前記式(2-4)中のLとしては、2価の炭化水素基、2価のハロゲン化炭化水素基、又はこれらの基の2個以上がエーテル結合又はチオエーテル結合を介して結合してなる2価の基が好ましい。 In the formula (2-4), L is preferably a divalent hydrocarbon group, a divalent halogenated hydrocarbon group, or a divalent group in which two or more of these groups are bonded via an ether bond or a thioether bond.
 前記式(2-4)中のLとしては、溶剤溶解性を高める観点から、アルキレン基、ハロゲン化アルキレン基、又はこれらの基の2個以上がエーテル結合若しくはチオエーテル結合を介して結合してなる2価の基が好ましい。 In terms of increasing the solvent solubility, L in the formula (2-4) is preferably an alkylene group, a halogenated alkylene group, or a divalent group in which two or more of these groups are bonded via an ether bond or a thioether bond.
 前記式(2-5)中のLとしては、溶剤溶解性及び熱安定性を高める観点から、2価の炭化水素基、2価のハロゲン化炭化水素基、又はこれらの基とエーテル結合若しくはチオエーテル結合が結合してなる2価の基、又は単結合が好ましい。 In terms of increasing solvent solubility and thermal stability, L in the formula (2-5) is preferably a divalent hydrocarbon group, a divalent halogenated hydrocarbon group, or a divalent group formed by bonding these groups to an ether bond or a thioether bond, or a single bond.
 前記式(2-5)中のLとしては、中でも、アルキレン基、ハロゲン化アルキレン基、又はこれらの基とエーテル結合若しくはチオエーテル結合が結合してなる2価の基、又は単結合が好ましい。 In the formula (2-5), L is preferably an alkylene group, a halogenated alkylene group, a divalent group formed by bonding these groups to an ether bond or a thioether bond, or a single bond.
 化合物(2-4)としては、中でも、下記式(2-4-1)で表される化合物が好ましい。また、化合物(2-5)としては、中でも、下記式(2-5-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000016
Of the compounds (2-4), the compound represented by the following formula (2-4-1) is preferable. Also, of the compounds (2-5), the compound represented by the following formula (2-5-1) is preferable.
Figure JPOXMLDOC01-appb-C000016
 上記式中、R3、R4、R5、n1、n2、及びLは上記に同じである。 In the above formula, R 3 , R 4 , R 5 , n1, n2, and L are the same as above.
 n1が4以下の整数を示す場合、式(2-4-1)中に示されるベンゼン環はR3以外に他の置換基を有していても良い。また、n2が3以下の整数を示す場合、式(2-5-1)中に示されるベンゼン環はR3及びL-COOHで表される基以外に他の置換基を有していても良い。他の置換基としては、例えば、炭化水素基、オキシ炭化水素基、チオ炭化水素基等が挙げられる。 When n1 is an integer of 4 or less, the benzene ring shown in formula (2-4-1) may have other substituents in addition to R3 . When n2 is an integer of 3 or less, the benzene ring shown in formula (2-5-1) may have other substituents in addition to R3 and the group represented by L-COOH. Examples of other substituents include hydrocarbon groups, oxyhydrocarbon groups, and thiohydrocarbon groups.
 前記炭化水素基としては、上記R1中のRにおける1価の炭化水素基と同様の例が挙げられる。前炭化水素基との炭素数は、例えば1~5個、好ましくは1~3個、特に好ましくは1又は2個である。 Examples of the hydrocarbon group include the same monovalent hydrocarbon groups as those in R in R 1. The number of carbon atoms in the hydrocarbon group is, for example, 1 to 5, preferably 1 to 3, and particularly preferably 1 or 2.
 前記オキシ炭化水素基は、式[-O-R]で表される基(式中のRは炭化水素基を示し、式の左端から出る結合手はベンゼン環を構成する炭素原子に結合する)である。前記Rにおける炭化水素基としては、上記R1中のRにおける1価の炭化水素基と同様の例が挙げられる。前記オキシ炭化水素基の炭素数は、例えば1~5個、好ましくは1~3個、特に好ましくは1又は2個である。 The oxyhydrocarbon group is a group represented by the formula [-O-R] (wherein R represents a hydrocarbon group, and the bond coming from the left end of the formula is bonded to a carbon atom constituting a benzene ring). Examples of the hydrocarbon group in R include the same monovalent hydrocarbon groups as those in R in R1 above. The number of carbon atoms in the oxyhydrocarbon group is, for example, 1 to 5, preferably 1 to 3, and particularly preferably 1 or 2.
 前記オキシ炭化水素基としては、例えば、メトキシ基、エトキシ基、ブトキシ基、t-ブトキシ基等が挙げられる。 Examples of the oxyhydrocarbon group include a methoxy group, an ethoxy group, a butoxy group, and a t-butoxy group.
 前記チオ炭化水素基は、式[-S-R]で表される基(式中のRは炭化水素基を示し、式の左端から出る結合手はベンゼン環を構成する炭素原子に結合する)である。前記Rにおける炭化水素基としては、上記R1中のRにおける1価の炭化水素基と同様の例が挙げられる。前記チオ炭化水素基の炭素数は、例えば1~5個、好ましくは1~3個、特に好ましくは1又は2個である。 The thiohydrocarbon group is a group represented by the formula [-S-R] (wherein R represents a hydrocarbon group, and the bond from the left end of the formula is bonded to a carbon atom constituting a benzene ring). Examples of the hydrocarbon group in R include the same monovalent hydrocarbon groups as those in R in R1 above. The thiohydrocarbon group has, for example, 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, and particularly preferably 1 or 2 carbon atoms.
 前記チオ炭化水素基としては、例えば、メチルチオ基、エチルチオ基、ブチルチオ基等が挙げられる。 Examples of the thiohydrocarbon group include a methylthio group, an ethylthio group, and a butylthio group.
 前記ノニオンオキシム型化合物は溶剤(例えば、PGMEA)への溶解性に優れる。常温常圧下において、PGMEA100重量部に溶解する前記化合物量は、例えば2重量部超、好ましくは3重量部以上、更に好ましくは4重量部以上、特に好ましくは5重量部以上、最も好ましくは8重量部以上、とりわけ好ましくは15重量部以上である。尚、上限値は例えば30重量部である。 The nonionic oxime compound has excellent solubility in a solvent (e.g., PGMEA). At room temperature and normal pressure, the amount of the compound that dissolves in 100 parts by weight of PGMEA is, for example, more than 2 parts by weight, preferably 3 parts by weight or more, more preferably 4 parts by weight or more, particularly preferably 5 parts by weight or more, most preferably 8 parts by weight or more, and particularly preferably 15 parts by weight or more. The upper limit is, for example, 30 parts by weight.
 また、前記ノニオンオキシム型化合物は超短波長の光線に対する感応性に優れ、前記光線を照射すれば、速やかに酸(HR5;R5は式(2-4)又は(2-5)中のR5に該当する)を発生する。尚、前記光線の波長は、例えば100nm以下(例えば1~100nm)、好ましくは80nm以下、特に好ましくは50nm以下、最も好ましくは30nm以下、とりわけ好ましくは20nm以下である。前記光線には、例えば、X線、電子線、EUV等が含まれる。 The nonionic oxime compound has excellent sensitivity to light rays with ultrashort wavelengths, and when irradiated with the light rays, it rapidly generates an acid (HR 5 ; R 5 corresponds to R 5 in formula (2-4) or (2-5)). The wavelength of the light rays is, for example, 100 nm or less (e.g., 1 to 100 nm), preferably 80 nm or less, particularly preferably 50 nm or less, most preferably 30 nm or less, and particularly preferably 20 nm or less. The light rays include, for example, X-rays, electron beams, EUV, etc.
 更に、前記ノニオンオキシム型化合物は熱安定性を備え、加熱処理(例えば、50℃以上100℃未満の温度で1~5分加熱する処理)を施しても、分解を抑制することができる。 Furthermore, the nonionic oxime compound has thermal stability and can suppress decomposition even when subjected to heat treatment (for example, heating at a temperature of 50°C or higher and lower than 100°C for 1 to 5 minutes).
 前記ノニオンオキシム型化合物は上記特性を兼ね備えるため、酸発生剤(特に、極端紫外線や電子線などの超短波長の光線を使用するフォトレジスト(例えば、化学増幅型レジスト)用の酸発生剤)として好適に使用することができる。また、前記ノニオンオキシム型化合物は熱安定性を備えるため、前記ノニオンオキシム型化合物を含む塗膜を、酸発生能を保持しつつ加熱乾燥することができ、作業性に優れる。 The nonionic oxime compound has the above-mentioned properties, and therefore can be suitably used as an acid generator (particularly an acid generator for photoresists (e.g., chemically amplified resists) that use ultrashort wavelength light such as extreme ultraviolet rays or electron beams). In addition, since the nonionic oxime compound has thermal stability, a coating film containing the nonionic oxime compound can be heated and dried while retaining its acid generating ability, and thus has excellent workability.
 また、前記ノニオンオキシム型化合物は、金属又は金属酸化物(1)に配位性を示すカルボキシル基を有する。そのため、金属又は金属酸化物(1)と混合すると、金属又は金属酸化物(1)をコアとする有機-無機複合体である有機金属化合物を形成することができる。このようにして形成される有機金属化合物は、フォトレジスト(例えば、メタルレジスト)の形成材料として好適に使用することができる。 The nonionic oxime compound also has a carboxyl group that exhibits coordination with the metal or metal oxide (1). Therefore, when mixed with the metal or metal oxide (1), an organometallic compound can be formed, which is an organic-inorganic complex with the metal or metal oxide (1) as the core. The organometallic compound thus formed can be suitably used as a material for forming a photoresist (e.g., a metal resist).
 [酸発生剤]
 本発明の酸発生剤は、前記スルホニウム塩型化合物、又は前記イミドスルホネート型化合物、又は前記ノニオンオキシム型化合物を含む。
[Acid Generator]
The acid generator of the present invention contains the sulfonium salt type compound, the imidosulfonate type compound, or the nonionic oxime type compound.
 前記酸発生剤は、前記スルホニウム塩型化合物の1種を単独で含んでいても良いし、2種以上を組み合わせて含んでいても良い。 The acid generator may contain one of the sulfonium salt compounds alone or a combination of two or more of them.
 前記酸発生剤は、例えば化合物(2-1a)を含み、好ましくは化合物(2-1b)を含み、より好ましくは化合物(2-1)、化合物(2-1’)、及び化合物(2-1”)から選択される少なくとも1種の化合物を含み、特に好ましくは化合物(2-1-1)を含む。 The acid generator includes, for example, compound (2-1a), preferably compound (2-1b), more preferably at least one compound selected from compound (2-1), compound (2-1'), and compound (2-1"), and particularly preferably compound (2-1-1).
 前記酸発生剤は、前記イミドスルホネート型化合物の1種を単独で含んでいても良いし、2種以上を組み合わせて含んでいても良い。 The acid generator may contain one of the imide sulfonate compounds alone or a combination of two or more of them.
 前記酸発生剤は、化合物(2-2)及び/又は化合物(2-3)を含み、好ましくは化合物(2-2)を含む。 The acid generator includes compound (2-2) and/or compound (2-3), and preferably includes compound (2-2).
 前記酸発生剤は、前記ノニオンオキシム型化合物の1種を単独で含んでいても良いし、2種以上を組み合わせて含んでいても良い。 The acid generator may contain one of the nonionic oxime compounds alone or a combination of two or more of them.
 前記酸発生剤は、化合物(2-4)及び/又は化合物(2-5)を含み、好ましくは化合物(2-4-1)及び/又は化合物(2-5-1)を含む。 The acid generator includes compound (2-4) and/or compound (2-5), and preferably includes compound (2-4-1) and/or compound (2-5-1).
 前記酸発生剤は、前記化合物以外にも他の成分を含有していても良いが、前記酸発生剤に含まれる光線照射により分解して酸を発生する化合物全量において、前記化合物の占める割合(2種以上含有する場合はその総量の占める割合)は、例えば70重量%以上、好ましくは80重量%以上、更に好ましくは90重量%以上、特に好ましくは95重量%以上、最も好ましくは99重量%以上、とりわけ好ましくは99.9重量%以上である。尚、上限値は100重量%である。 The acid generator may contain other components in addition to the above-mentioned compound, but the proportion of the above-mentioned compound in the total amount of compounds contained in the acid generator that decompose when irradiated with light to generate acid (the proportion of the total amount when two or more types are contained) is, for example, 70% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more, particularly preferably 95% by weight or more, most preferably 99% by weight or more, and especially preferably 99.9% by weight or more. The upper limit is 100% by weight.
 前記酸発生剤は溶剤(例えば、PGMEA)への溶解性に優れ、常温常圧下において、PGMEA100重量部に溶解する前記酸発生剤の量は、例えば2重量部超、好ましくは3重量部以上、更に好ましくは4重量部以上、特に好ましくは5重量部以上、最も好ましくは8重量部以上、とりわけ好ましくは15重量部以上である。尚、上限値は例えば30重量部である。そのため、前記酸発生剤を溶剤と共にフォトレジストに添加すれば、フォトレジスト中に前記酸発生剤を均一に分散させることができる。 The acid generator has excellent solubility in a solvent (e.g., PGMEA), and the amount of the acid generator that dissolves in 100 parts by weight of PGMEA at room temperature and normal pressure is, for example, more than 2 parts by weight, preferably 3 parts by weight or more, more preferably 4 parts by weight or more, particularly preferably 5 parts by weight or more, most preferably 8 parts by weight or more, and particularly preferably 15 parts by weight or more. The upper limit is, for example, 30 parts by weight. Therefore, if the acid generator is added to a photoresist together with a solvent, the acid generator can be uniformly dispersed in the photoresist.
 また、前記酸発生剤は超短波長の光線に対する感応性に優れ、前記光線を照射すれば、速やかに酸を発生する。尚、前記光線の波長は、例えば100nm以下(例えば1~100nm)、好ましくは80nm以下、特に好ましくは50nm以下、最も好ましくは30nm以下、とりわけ好ましくは20nm以下である。前記光線には、例えば、X線、電子線、EUV等が含まれる。 The acid generator has excellent sensitivity to light rays with ultrashort wavelengths, and when irradiated with the light rays, it rapidly generates acid. The wavelength of the light rays is, for example, 100 nm or less (e.g., 1 to 100 nm), preferably 80 nm or less, particularly preferably 50 nm or less, most preferably 30 nm or less, and particularly preferably 20 nm or less. Examples of the light rays include X-rays, electron beams, EUV, etc.
 前記酸発生剤は熱安定性を備え、加熱処理(例えば、50℃以上130℃未満の温度で1~5分加熱する処理)を施しても、分解を抑制することができる。そのため、前記酸発生剤を含む塗膜を、酸発生能を保持しつつ加熱乾燥することができ、作業性に優れる。 The acid generator has thermal stability, and decomposition can be suppressed even when subjected to heat treatment (for example, heating at a temperature of 50°C or higher and lower than 130°C for 1 to 5 minutes). Therefore, a coating film containing the acid generator can be heated and dried while retaining its acid generating ability, and is easy to work with.
 前記酸発生剤は、例えば、カチオン重合開始剤として、カチオン硬化性樹脂(例えば、エポキシ基、オキセタニル基、ビニルエーテル基等から選択される1種又は2種以上のカチオン硬化性基を有する樹脂)に添加することもできるが、上記の通り超短波長の光線に対する感応性に優れるため、極端紫外線、電子線、X線などの超短波長の光線を使用するフォトレジスト(例えば、化学増幅型フォトレジスト)に使用することが好ましい。 The acid generator can be added, for example, as a cationic polymerization initiator to a cationic curable resin (e.g., a resin having one or more cationic curable groups selected from epoxy groups, oxetanyl groups, vinyl ether groups, etc.), but since it has excellent sensitivity to ultrashort wavelength light as described above, it is preferably used in photoresists (e.g., chemically amplified photoresists) that use ultrashort wavelength light such as extreme ultraviolet rays, electron beams, and X-rays.
 [フォトレジスト(1)]
 本発明のフォトレジスト(1)は、前記酸発生剤(若しくは、前記スルホニウム塩型化合物、又は前記イミドスルホネート型化合物、又は前記ノニオンオキシム型化合物)と感光性樹脂を含む化学増幅型フォトレジストである。前記酸発生剤と感光性樹脂はそれぞれ1種を単独で含有しても良いし、2種以上を組み合わせて含有しても良い。
[Photoresist (1)]
The photoresist (1) of the present invention is a chemically amplified photoresist containing the acid generator (or the sulfonium salt type compound, the imide sulfonate type compound, or the nonionic oxime type compound) and a photosensitive resin. The acid generator and the photosensitive resin may each be used alone or in combination of two or more types.
 前記酸発生剤の含有量は、感光性樹脂全量に対して、例えば0.001~20重量%、好ましくは0.01~15重量%、特に好ましくは0.05~7重量%である。 The content of the acid generator is, for example, 0.001 to 20% by weight, preferably 0.01 to 15% by weight, and particularly preferably 0.05 to 7% by weight, based on the total amount of the photosensitive resin.
 前記酸発生剤の含有量が0.001重量%以上であれば、X線、電子線、EUV等の超短波長の光線に対して優れた感光性を発揮することができる。また、前記含有量が20重量%以下であれば、フォトレジストの解像度を向上する効果が得られる。 If the content of the acid generator is 0.001% by weight or more, it is possible to exhibit excellent photosensitivity to ultra-short wavelength light such as X-rays, electron beams, and EUV. Furthermore, if the content is 20% by weight or less, the effect of improving the resolution of the photoresist can be obtained.
 前記感光性樹脂には、光照射により溶解性が減少する(或いは、未露光部が除去される)ネガ型感光性樹脂(QN)と、光照射により溶解性が増大する(或いは、露光部が選択的に除去される)ポジ型感光性樹脂(QP)が含まれる。これらは、用途に応じて選択して使用することができる。 The photosensitive resins include negative photosensitive resins (QN) whose solubility decreases when irradiated with light (or the unexposed areas are removed), and positive photosensitive resins (QP) whose solubility increases when irradiated with light (or the exposed areas are selectively removed). These can be selected and used depending on the application.
 ネガ型感光性樹脂(若しくは、ネガ型化学増幅樹脂;QN)は、例えば、フェノール性水酸基含有樹脂(QN1)と架橋剤(QN2)を、それぞれ1種を単独で、又は2種以上を組み合わせて含有する組成物である。 A negative photosensitive resin (or negative chemically amplified resin; QN) is, for example, a composition containing a phenolic hydroxyl group-containing resin (QN1) and a crosslinker (QN2), either alone or in combination of two or more of them.
 フェノール性水酸基含有樹脂(QN1)は、フェノール性水酸基を含有する樹脂であれば特に制限はなく、例えば、ノボラック樹脂、ポリヒドロキシスチレン、ヒドロキシスチレンの共重合体、ヒドロキシスチレンとスチレンの共重合体、ヒドロキシスチレン、スチレン及び(メタ)アクリル酸誘導体の共重合体、フェノール-キシリレングリコール縮合樹脂、クレゾール-キシリレングリコール縮合樹脂、フェノール性水酸基を含有するポリイミド、フェノール性水酸基を含有するポリアミック酸、フェノール-ジシクロペンタジエン縮合樹脂等が挙げられる。 The phenolic hydroxyl group-containing resin (QN1) is not particularly limited as long as it is a resin that contains a phenolic hydroxyl group, and examples thereof include novolac resin, polyhydroxystyrene, copolymers of hydroxystyrene, copolymers of hydroxystyrene and styrene, copolymers of hydroxystyrene, styrene and (meth)acrylic acid derivatives, phenol-xylylene glycol condensation resins, cresol-xylylene glycol condensation resins, polyimides containing phenolic hydroxyl groups, polyamic acids containing phenolic hydroxyl groups, phenol-dicyclopentadiene condensation resins, etc.
 フェノール性水酸基含有樹脂(QN1)は、成分の一部にフェノール性低分子化合物を含有していても良い。 The phenolic hydroxyl group-containing resin (QN1) may contain a phenolic low molecular weight compound as part of its components.
 フェノール性水酸基含有樹脂(QN1)の、GPCで測定したポリスチレン換算重量平均分子量(Mw)は、例えば2000~20000である。 The polystyrene equivalent weight average molecular weight (Mw) of the phenolic hydroxyl group-containing resin (QN1) measured by GPC is, for example, 2,000 to 20,000.
 架橋剤(QN2)は、酸発生剤から発生した酸により、フェノール性水酸基含有樹脂(QN1)を架橋し得る化合物であればよく、例えば、ビスフェノールA系エポキシ化合物、ビスフェノールF系エポキシ化合物、ビスフェノールS系エポキシ化合物、ノボラック樹脂系エポキシ化合物、レゾール樹脂系エポキシ化合物、ポリ(ヒドロキシスチレン)系エポキシ化合物、オキセタン化合物、メチロール基含有メラミン化合物、メチロール基含有ベンゾグアナミン化合物、メチロール基含有尿素化合物、メチロール基含有フェノール化合物、アルコキシアルキル基含有メラミン化合物、アルコキシアルキル基含有ベンゾグアナミン化合物、アルコキシアルキル基含有尿素化合物、アルコキシアルキル基含有フェノール化合物、カルボキシメチル基含有メラミン樹脂、カルボキシメチル基含有ベンゾグアナミン樹脂、カルボキシメチル基含有尿素樹脂、カルボキシメチル基含有フェノール樹脂、カルボキシメチル基含有メラミン化合物、カルボキシメチル基含有ベンゾグアナミン化合物、カルボキシメチル基含有尿素化合物及びカルボキシメチル基含有フェノール化合物等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 The crosslinking agent (QN2) may be any compound capable of crosslinking the phenolic hydroxyl group-containing resin (QN1) with the acid generated from the acid generator, and examples thereof include bisphenol A-based epoxy compounds, bisphenol F-based epoxy compounds, bisphenol S-based epoxy compounds, novolac resin-based epoxy compounds, resol resin-based epoxy compounds, poly(hydroxystyrene)-based epoxy compounds, oxetane compounds, methylol group-containing melamine compounds, methylol group-containing benzoguanamine compounds, methylol group-containing urea compounds, methylol group-containing phenolic compounds, alkoxyalkyl group-containing melamine compounds, alkoxyalkyl group-containing benzoguanamine compounds, alkoxyalkyl group-containing urea compounds, alkoxyalkyl group-containing phenolic compounds, carboxymethyl group-containing melamine resins, carboxymethyl group-containing benzoguanamine resins, carboxymethyl group-containing urea resins, carboxymethyl group-containing phenolic resins, carboxymethyl group-containing melamine compounds, carboxymethyl group-containing benzoguanamine compounds, carboxymethyl group-containing urea compounds, and carboxymethyl group-containing phenolic compounds. These may be used alone or in combination of two or more.
 架橋剤(QN2)の含有量は、精度良くパターンを形成する観点から、フェノール性水酸基含有樹脂(QN1)中の全酸性官能基に対して、例えば10~40モル%である。 The content of the crosslinking agent (QN2) is, for example, 10 to 40 mol % relative to the total acidic functional groups in the phenolic hydroxyl group-containing resin (QN1) from the viewpoint of forming a pattern with high accuracy.
 ポジ型感光性樹脂(若しくは、ポジ型化学増幅樹脂;QP)としては、保護基として酸解離性基が導入されたアルカリ可溶性樹脂(保護基導入樹脂;QP1)が挙げられる。 Positive-type photosensitive resins (or positive-type chemically amplified resins; QP) include alkali-soluble resins in which an acid-dissociable group has been introduced as a protecting group (protected group-introduced resins; QP1).
 保護基導入樹脂(QP1)は、アルカリ可溶性樹脂中の酸性官能基(例えば、フェノール性水酸基、カルボキシル基、スルホニル基等)の水素原子の一部或いは全部が酸解離性基で置換された樹脂である。 Protective group-introduced resin (QP1) is a resin in which some or all of the hydrogen atoms of acidic functional groups (e.g., phenolic hydroxyl groups, carboxyl groups, sulfonyl groups, etc.) in an alkali-soluble resin have been substituted with acid-dissociable groups.
 保護基導入樹脂(QP1)自体はアルカリ不溶性又はアルカリ難溶性の樹脂であり、酸発生剤から発生した酸によって酸解離性基が解離すると、アルカリ現像液に易溶解性を示すアルカリ可溶性樹脂が生成する。 The protecting group-introduced resin (QP1) itself is an alkali-insoluble or poorly alkali-soluble resin, and when the acid-dissociable group is dissociated by the acid generated from the acid generator, an alkali-soluble resin that is easily soluble in an alkaline developer is produced.
 アルカリ可溶性樹脂は、例えばHLB値が4~19(好ましくは5~18、特に好ましくは6~17)の樹脂である。 The alkali-soluble resin is, for example, a resin with an HLB value of 4 to 19 (preferably 5 to 18, and particularly preferably 6 to 17).
 アルカリ可溶性樹脂には、フェノール性水酸基含有樹脂、カルボキシル基含有樹脂、及びスルホン酸基含有樹脂が含まれる。 Alkali-soluble resins include phenolic hydroxyl group-containing resins, carboxyl group-containing resins, and sulfonic acid group-containing resins.
 フェノール性水酸基含有樹脂としては、上記フェノール性水酸基含有樹脂(QN1)と同様の樹脂が例示される。 Examples of phenolic hydroxyl group-containing resins include resins similar to the phenolic hydroxyl group-containing resin (QN1) described above.
 カルボキシル基含有樹脂としては、カルボキシル基を有するポリマーでああれば特に制限はなく、例えば、カルボキシル基含有ビニルモノマー(Ba)のホモポリマーや、カルボキシル基含有ビニルモノマー(Ba)と疎水基含有ビニルモノマー(Bb)とのホモポリマーが挙げられる。 There are no particular limitations on the carboxyl group-containing resin as long as it is a polymer that has a carboxyl group, and examples of the resin include a homopolymer of a carboxyl group-containing vinyl monomer (Ba) and a homopolymer of a carboxyl group-containing vinyl monomer (Ba) and a hydrophobic group-containing vinyl monomer (Bb).
 カルボキシル基含有ビニルモノマー(Ba)としては、例えば、(メタ)アクリル酸である。 An example of the carboxyl group-containing vinyl monomer (Ba) is (meth)acrylic acid.
 疎水基含有ビニルモノマー(Bb)としては、C1-20アルキル(メタ)アクリレート、脂環基含有(メタ)アクリレート等の(メタ)アクリル酸エステル(Bb1)、及びスチレン骨格を有する炭化水素モノマーやビニルナフタレン等の芳香族炭化水素モノマー(Bb2)等が挙げられる。 Examples of the hydrophobic group-containing vinyl monomer (Bb) include (meth)acrylic acid esters (Bb1) such as C1-20 alkyl (meth)acrylates and alicyclic group-containing (meth)acrylates, and aromatic hydrocarbon monomers (Bb2) such as hydrocarbon monomers having a styrene skeleton and vinyl naphthalene.
 スルホン酸基含有樹脂としては、スルホン酸基を有するポリマーであれば特に制限はなく、例えば、ビニルスルホン酸、スチレンスルホン酸等のスルホン酸基含有ビニルモノマー(Bc)と、必要により疎水基含有ビニルモノマー(Bb)とをビニル重合することで得られる。 There are no particular limitations on the sulfonic acid group-containing resin as long as it is a polymer having a sulfonic acid group, and it can be obtained, for example, by vinyl polymerization of a sulfonic acid group-containing vinyl monomer (Bc) such as vinyl sulfonic acid or styrene sulfonic acid, and, if necessary, a hydrophobic group-containing vinyl monomer (Bb).
 保護基導入樹脂(QP1)が有する酸解離性基としては、例えば、メトキシメチル基、ベンジル基、tert-ブトキシカルボニルメチル基等の1-置換メチル基;1-メトキシエチル基、1-エトキシエチル基等の1-置換エチル基;tert-ブチル基等の1-分岐アルキル基;トリメチルシリル基等のシリル基;トリメチルゲルミル基等のゲルミル基;tert-ブトキシカルボニル基等のアルコキシカルボニル基;アシル基;テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、テトラヒドロチオフラニル基等の環式酸解離性基等が挙げられる。これらは1種を単独で含有していても良いし、2種以上を組み合わせて含有していても良い。 Examples of the acid-dissociable groups possessed by the protecting group-introduced resin (QP1) include 1-substituted methyl groups such as methoxymethyl, benzyl, and tert-butoxycarbonylmethyl; 1-substituted ethyl groups such as 1-methoxyethyl and 1-ethoxyethyl; 1-branched alkyl groups such as tert-butyl; silyl groups such as trimethylsilyl; germyl groups such as trimethylgermyl; alkoxycarbonyl groups such as tert-butoxycarbonyl; acyl groups; and cyclic acid-dissociable groups such as tetrahydropyranyl, tetrahydrofuranyl, tetrahydrothiopyranyl, and tetrahydrothiofuranyl. These may be contained alone or in combination of two or more.
 保護基導入樹脂(QP1)における酸解離性基の導入率{保護基導入樹脂(QP1)中の保護されていない酸性官能基と酸解離性基との合計数に対する酸解離性基の数の割合}は、酸解離性基や該基が導入されるアルカリ可溶性樹脂の種類により一概には規定できないが、好ましくは10~100%、さらに好ましくは15~100%である。 The introduction rate of the acid-dissociable group in the protecting group-introduced resin (QP1) (the ratio of the number of acid-dissociable groups to the total number of unprotected acidic functional groups and acid-dissociable groups in the protecting group-introduced resin (QP1)) cannot be generally determined depending on the type of acid-dissociable group and the alkali-soluble resin into which the group is introduced, but is preferably 10 to 100%, and more preferably 15 to 100%.
 保護基導入樹脂(QP1)の、GPCで測定したポリスチレン換算重量平均分子量(Mw)は、例えば1000~150000、好ましくは3000~100000である。 The weight average molecular weight (Mw) of the protecting group-introduced resin (QP1) measured by GPC in terms of polystyrene is, for example, 1,000 to 150,000, and preferably 3,000 to 100,000.
 フォトレジスト(1)は、例えば、前記酸発生剤を溶剤に溶解し、これを感光性樹脂と混合することにより調製することができる。 The photoresist (1) can be prepared, for example, by dissolving the acid generator in a solvent and mixing it with a photosensitive resin.
 フォトレジスト(1)は、前記酸発生剤と感光性樹脂以外にも必要に応じて他の成分を1種又は2種以上含有することができる。他の成分としては、例えば、溶剤、顔料、染料、光増感剤、分散剤、界面活性剤、充填剤、レベリング剤、消泡剤、帯電防止剤、紫外線吸収剤、pH調整剤、表面改質剤、可塑剤、乾燥促進剤等が挙げられる。 The photoresist (1) may contain one or more other components, as necessary, in addition to the acid generator and photosensitive resin. Examples of other components include solvents, pigments, dyes, photosensitizers, dispersants, surfactants, fillers, leveling agents, defoamers, antistatic agents, UV absorbers, pH adjusters, surface modifiers, plasticizers, drying accelerators, etc.
 前記溶剤としては、前記感光性樹脂を溶解させることができ、フォトレジスト(1)に良好な塗布性を付与することができる溶剤であれば良いが、なかでも、沸点が200℃以下のものを使用することが、フォトレジストを塗布後、容易に乾燥させることができる点で好ましい。このような溶剤としては、トルエン等の芳香族炭化水素;エタノール、メタノール等のアルコール;シクロヘキサノン、メチルエチルケトン、アセトン等のケトン;酢酸エチル、酢酸ブチル、乳酸エチル等のエステル;プロピレングリコールモノメチルエーテルアセテート(PGMEA)等のグリコールモノエーテルモノエステルなどが好ましい。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 The solvent may be any solvent capable of dissolving the photosensitive resin and imparting good coating properties to the photoresist (1), but it is preferable to use a solvent having a boiling point of 200°C or less, since it allows the photoresist to be easily dried after coating. Preferred examples of such solvents include aromatic hydrocarbons such as toluene; alcohols such as ethanol and methanol; ketones such as cyclohexanone, methyl ethyl ketone and acetone; esters such as ethyl acetate, butyl acetate and ethyl lactate; and glycol monoether monoesters such as propylene glycol monomethyl ether acetate (PGMEA). These can be used alone or in combination of two or more.
 フォトレジスト(1)は、X線、電子線、EUV等の超短波長の光線に対して高い感光性を有する前記酸発生剤を含有する。そのため、本発明のフォトレジストを利用すれば、超短波長の光線を用いたフォトリソグラフィーにより、高解像度の微細パターンを有するレジスト膜を製造することができる。 The photoresist (1) contains the acid generator, which has high photosensitivity to ultrashort wavelength light such as X-rays, electron beams, and EUV. Therefore, by using the photoresist of the present invention, a resist film having a high-resolution fine pattern can be produced by photolithography using ultrashort wavelength light.
 フォトレジスト(1)を使用したフォトリソグラフィーによりパターン形成を行う方法としては、例えば下記工程1~3を含む方法が挙げられる。 An example of a method for forming a pattern by photolithography using photoresist (1) is a method including the following steps 1 to 3.
工程1:基板上に、フォトレジスト(1)の塗膜を形成する工程
工程2:前記塗膜に光照射を行ってパターンを転写する工程
工程3:アルカリ現像を行う工程
Step 1: A step of forming a coating film of photoresist (1) on a substrate. Step 2: A step of transferring a pattern by irradiating the coating film with light. Step 3: A step of performing alkaline development.
 (工程1)
 本工程は、エッチング対象である基板上に、フォトレジスト(1)の塗膜を形成する工程である。フォトレジスト(1)の塗膜は、フォトレジスト(1)を、スピンコート、カーテンコート、ロールコート、スプレーコート、スクリーン印刷等公知の方法を用いて基板に塗布し、乾燥させて形成することができる。
(Step 1)
This step is a step of forming a coating film of photoresist (1) on a substrate to be etched. The coating film of photoresist (1) can be formed by applying photoresist (1) to a substrate by a known method such as spin coating, curtain coating, roll coating, spray coating, screen printing, etc., and drying the applied photoresist (1).
 フォトレジスト(1)の乾燥方法としては、自然乾燥を行っても良いが、フォトレジスト(1)に含まれる酸発生剤は熱安定性を備え、加熱しても酸発生能が損なわれないので、加熱乾燥することができ(例えば、50℃以上130℃未満の温度で1~5分加熱して乾燥させることができ)、作業性に優れる。 The photoresist (1) may be dried naturally, but since the acid generator contained in the photoresist (1) is thermally stable and does not lose its acid generating ability even when heated, it can be dried by heating (for example, by heating at a temperature of 50°C or higher and lower than 130°C for 1 to 5 minutes), which provides excellent workability.
 前記塗膜の厚みは、例えば1~1000nmである。 The thickness of the coating is, for example, 1 to 1000 nm.
 (工程2)
 本工程は、工程1を経て得られた塗膜に、パターンを有するフォトマスクを介して光照射する等の方法で、光照射を行ってパターンを転写する工程である。
(Step 2)
This step is a step of transferring a pattern to the coating film obtained through step 1 by irradiating the coating film with light through a photomask having a pattern, for example.
 光照射に用いる光線としては、塗膜に含まれる前記酸発生剤を分解して酸を発生させることができれば特に制限はないが、パターンをより微細化する観点から、超短波長の光線を使用することが好ましく、光線の波長は、例えば100nm以下(例えば、1~100nm)が好ましく、80nm以下が更に好ましく、50nm以下が特に好ましく、30nm以下が最も好ましく、20nm以下がとりわけ好ましい。前記光線には、例えば、X線、電子線、EUV等が含まれる。 The light used for the light irradiation is not particularly limited as long as it can decompose the acid generator contained in the coating film to generate acid, but from the viewpoint of making the pattern finer, it is preferable to use light with an ultra-short wavelength, and the wavelength of the light is, for example, preferably 100 nm or less (e.g., 1 to 100 nm), more preferably 80 nm or less, particularly preferably 50 nm or less, most preferably 30 nm or less, and especially preferably 20 nm or less. Examples of the light include X-rays, electron beams, EUV, etc.
 光照射後は、60~200℃の温度で、0.1~120分程度加熱することが、露光部と未露光部のアルカリ現像液への溶解性の差を大きくする効果が得られる点で好ましい。 After light irradiation, it is preferable to heat the film at a temperature of 60 to 200°C for about 0.1 to 120 minutes, as this will increase the difference in solubility in an alkaline developer between the exposed and unexposed areas.
 (工程3)
 本工程は、工程2を経たフォトレジストの塗膜を、アルカリ現像処理に付す工程である。
(Step 3)
In this step, the photoresist coating film that has been subjected to step 2 is subjected to an alkali development treatment.
 アルカリ現像処理に使用するアルカリ現像液としては、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液、炭酸水素ナトリウム、テトラメチルアンモニウム塩水溶液等が挙げられる。 Examples of alkaline developers used in alkaline development include aqueous sodium hydroxide solutions, aqueous potassium hydroxide solutions, sodium bicarbonate solutions, and aqueous tetramethylammonium salt solutions.
 前記アルカリ現像液には、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン、N-メチルピロリドン等を添加しても良い。 The alkaline developer may contain methanol, ethanol, isopropyl alcohol, tetrahydrofuran, N-methylpyrrolidone, etc.
 アルカリ現像処理は、前記塗膜に、前記アルカリ現像液をディップ方式、シャワー方式、スプレー方式等の方法により塗布することで行われる。 The alkaline development process is carried out by applying the alkaline developer to the coating film by a method such as dipping, showering, or spraying.
 アルカリ現像液の温度は、例えば25~40℃である。また、アルカリ現像時間は、塗膜の厚さに応じて適宜調整されるが、例えば1~5分である。 The temperature of the alkaline developer is, for example, 25 to 40°C. The alkaline development time is adjusted appropriately depending on the thickness of the coating film, but is, for example, 1 to 5 minutes.
 アルカリ現像処理に際しては、フォトレジストの塗膜の、露光部と未露光部における溶解性の差が大きいことが精度良好な微細パターンを形成する観点から好ましい。現像残渣が多く存在すれば、配線形状異常などの問題が発生し易いためである。そして、前記フォトレジストが、前記酸発生剤のうちカルボキシル基を有するものを含有する場合は、アルカリ現像時にレジストの現像性が向上し現像残渣を低減する効果が得られ、欠陥の無い製品を歩留まり良く製造することができる。 In alkaline development, it is preferable for the difference in solubility between exposed and unexposed areas of the photoresist coating to be large in order to form a highly accurate fine pattern. This is because the presence of a large amount of development residue is likely to lead to problems such as wiring shape abnormalities. Furthermore, if the photoresist contains an acid generator having a carboxyl group, the developability of the resist is improved during alkaline development, and development residues are reduced, allowing defect-free products to be manufactured with a high yield.
 工程3を経て、基板上に、精度良好な微細パターンを有するレジスト膜を形成することができる。このようにして得られたレジスト膜を利用して基板をエッチングすれば、高精度の電子デバイスを製造することができる。 Through step 3, a resist film having a highly accurate fine pattern can be formed on the substrate. By etching the substrate using the resist film thus obtained, highly accurate electronic devices can be manufactured.
 前記電子デバイスには、例えば、有機ELディスプレイ、液晶ディスプレイ等の表示デバイス;タッチパネル等の入力デバイス;発光デバイス;センサーデバイス;光スキャナー、光スイッチ、加速度センサー、圧力センサー、ジャイロスコープ、マイクロ流路、インクジェットヘッド等のMEMS(Micro Electro Mechanical Systems)デバイス等が含まれる。 The electronic devices include, for example, display devices such as organic electroluminescence displays and liquid crystal displays; input devices such as touch panels; light-emitting devices; sensor devices; and MEMS (Micro Electro Mechanical Systems) devices such as optical scanners, optical switches, acceleration sensors, pressure sensors, gyroscopes, microchannels, and inkjet heads.
 [有機金属化合物]
 本発明の有機金属化合物は、金属又は金属酸化物(1)に、配位性化合物(2)が配位結合した構成を有する有機-無機複合体である。そして、配位性化合物(2)は、前記スルホニウム塩型化合物、前記イミドスルホネート型化合物、及び前記ノニオンオキシム型化合物から選択される少なくとも1種の化合物を含有する。
[Organometallic Compounds]
The organometallic compound of the present invention is an organic-inorganic composite having a structure in which a coordinating compound (2) is coordinately bonded to a metal or metal oxide (1). The coordinating compound (2) contains at least one compound selected from the sulfonium salt type compound, the imidosulfonate type compound, and the nonionic oxime type compound.
 従って、前記有機金属化合物は、金属又は金属酸化物(1)と、配位性化合物(2)由来の配位子との集合体である。前記有機金属化合物中において、配位性化合物(2)由来の配位子は金属又は金属酸化物(1)に結合した状態で含まれる。 The organometallic compound is therefore an aggregate of a metal or metal oxide (1) and a ligand derived from the coordinating compound (2). In the organometallic compound, the ligand derived from the coordinating compound (2) is contained in a state bonded to the metal or metal oxide (1).
 前記有機金属化合物には金属又は金属酸化物(1)と配位性化合物(2)由来の配位子以外の成分を含んでいても良いが、前記有機金属化合物全量(100重量%)において、金属又は金属酸化物(1)と配位性化合物(2)由来の配位子の合計重量の占める割合は、例えば60重量%以上、好ましくは70重量%以上、更に好ましくは80重量%以上、特に好ましくは90重量%以上、最も好ましくは95重量%以上、とりわけ好ましくは99重量%以上である。尚、上限値は100重量%である。 The organometallic compound may contain components other than the metal or metal oxide (1) and the ligand derived from the coordinating compound (2), but the proportion of the total weight of the metal or metal oxide (1) and the ligand derived from the coordinating compound (2) in the total amount of the organometallic compound (100% by weight) is, for example, 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, particularly preferably 90% by weight or more, most preferably 95% by weight or more, and particularly preferably 99% by weight or more. The upper limit is 100% by weight.
 前記有機金属化合物は溶剤への溶解性(或いは、分散性)に優れ、溶剤(例えば、PGMEA)中における平均粒子径(前記平均粒子径は、動的光散乱法により求められる)は、例えば200nm以下、好ましくは100nm以下、特に好ましくは50nm以下である。尚、下限値は、例えば1nmである。 The organometallic compound has excellent solubility (or dispersibility) in a solvent, and the average particle size in the solvent (e.g., PGMEA) (the average particle size is determined by dynamic light scattering) is, for example, 200 nm or less, preferably 100 nm or less, and particularly preferably 50 nm or less. The lower limit is, for example, 1 nm.
 前記有機金属化合物は、光線に対して優れた感受性を有し、光線を照射すると酸を発生して速やかに凝集する。前記光線の波長は、例えば100nm以下(例えば、0~100nm)、好ましくは80nm以下、特に好ましくは50nm以下、最も好ましくは30nm以下、とりわけ好ましくは20nm以下である。前記光線には、例えば、X線、電子線(EB)、EUV等が含まれる。 The organometallic compound has excellent sensitivity to light rays, and when irradiated with light rays, it generates an acid and rapidly aggregates. The wavelength of the light rays is, for example, 100 nm or less (e.g., 0 to 100 nm), preferably 80 nm or less, particularly preferably 50 nm or less, most preferably 30 nm or less, and particularly preferably 20 nm or less. Examples of the light rays include X-rays, electron beams (EB), EUV, etc.
 (金属又は金属酸化物(1))
 金属又は金属酸化物(1)は、前記有機金属化合物のコア部を形成する成分であり、金属及び金属酸化物から選択される少なくとも1種が含まれる。
(Metal or Metal Oxide (1))
The metal or metal oxide (1) is a component that forms the core of the organometallic compound, and includes at least one selected from metals and metal oxides.
 前記金属としては、例えば、ハフニウム、ジルコニウム、スズ、コバルト、パラジウム、アンチモン、チタン、アルミニウム等が挙げられる。 Examples of the metals include hafnium, zirconium, tin, cobalt, palladium, antimony, titanium, and aluminum.
 前記金属酸化物には、前記金属の酸化物だけでなく、金属酸化物の部分水酸化物や金属酸化物の水和物が含まれる。 The metal oxides include not only oxides of the metals, but also partial hydroxides of metal oxides and hydrates of metal oxides.
 前記金属酸化物としては、例えば、酸化ハフニウム(HfO2)、酸化ジルコニウム(ZrO2、Zr64(OH)4)、酸化スズ(SnO2、Sn23、Sn34、Sn612、Sn122516、(C49Sn)1214(OH)6)、酸化コバルト(CoO、Co23、Co34)、酸化パラジウム(PdO)、酸化アンチモン(Sb23)、酸化チタン(TiO2)、酸化アルミニウム(Al23)等が挙げられる。 Examples of the metal oxide include hafnium oxide ( HfO2 ), zirconium oxide ( ZrO2 , Zr6O4 (OH) 4 ), tin oxide ( SnO2 , Sn2O3, Sn3O4, Sn6O12, Sn12O25H16, (C4H9Sn)12O14(OH)6 ) , cobalt oxide ( CoO , Co2O3 , Co3O4 ) , palladium oxide ( PdO ) , antimony oxide ( Sb2O3 ), titanium oxide ( TiO2 ) , and aluminum oxide (Al2O3 ) .
 前記金属酸化物は、例えば、ゾル-ゲル法により製造することができる。詳細には、金属アルコキシドを出発原料とし、加水分解、重縮合反応からゾル/ゲル状態を経由して、最終的に金属酸化物が得られる。 The metal oxide can be produced, for example, by the sol-gel method. In detail, a metal alkoxide is used as the starting material, and the metal oxide is finally obtained through hydrolysis and polycondensation reactions via a sol/gel state.
 金属又は金属酸化物(1)の形状としては特に制限が無く、例えば、球状(真球状、略真球状、楕円球状など)、多面体状、棒状(円柱状、角柱状など)、平板状、りん片状、不定形状等が挙げられる。また、金属又は金属酸化物(1)は、中空状、多孔質、中実状の何れであってもよい。 The shape of the metal or metal oxide (1) is not particularly limited, and examples thereof include spherical (perfect sphere, nearly perfect sphere, elliptical sphere, etc.), polyhedral, rod-like (cylindrical, rectangular columnar, etc.), plate-like, flaky, and irregular shapes. In addition, the metal or metal oxide (1) may be hollow, porous, or solid.
 金属又は金属酸化物(1)の平均粒子径(前記平均粒子径は、動的光散乱法により求められる)は、例えば1~200nm、好ましくは2~100nm、特に好ましくは2~50nmである。 The average particle size of the metal or metal oxide (1) (the average particle size is determined by dynamic light scattering) is, for example, 1 to 200 nm, preferably 2 to 100 nm, and particularly preferably 2 to 50 nm.
 前記有機金属化合物全量(若しくは、金属又は金属酸化物(1)と配位子(2)の合計重量)において、金属又は金属酸化物(1)の占める割合は、例えば10~90重量%、好ましくは30~70重量%である。 The proportion of the metal or metal oxide (1) in the total amount of the organometallic compound (or the combined weight of the metal or metal oxide (1) and the ligand (2)) is, for example, 10 to 90% by weight, and preferably 30 to 70% by weight.
 (配位性化合物(2))
 配位性化合物(2)は、上記金属又は金属酸化物(1)に配位結合して配位子を形成する化合物であり、前記スルホニウム塩型化合物、前記イミドスルホネート型化合物、及び前記ノニオンオキシム型化合物が含まれる。
(Coordination Compound (2))
The coordinating compound (2) is a compound that forms a ligand by coordinate bonding with the above metal or metal oxide (1), and includes the above sulfonium salt type compounds, the above imidosulfonate type compounds, and the above nonionic oxime type compounds.
 配位性化合物(2)は、前記スルホニウム塩型化合物、前記イミドスルホネート型化合物、及び前記ノニオンオキシム型化合物とは異なる他の化合物(以後、「他の配位性化合物」と称する場合がある)を含んでいてもよい。 The coordinating compound (2) may contain other compounds (hereinafter sometimes referred to as "other coordinating compounds") that are different from the sulfonium salt type compound, the imidosulfonate type compound, and the nonionic oxime type compound.
 他の配位性化合物としては、例えば、カルボン酸、リン酸、ホスホン酸、スルホン酸等が挙げられる。 Other coordinating compounds include, for example, carboxylic acids, phosphoric acids, phosphonic acids, sulfonic acids, etc.
 前記カルボン酸としては、例えば、クエン酸、シュウ酸、リンゴ酸、マレイン酸、酒石酸、グルタル酸、アジピン酸、ピメリン酸、コハク酸、マロン酸、フマル酸、フタル酸、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、グリコ-ル酸、グリセリン酸、乳酸等のC1-10アルキルカルボン酸;アクリル酸、メタクリル酸、チグリン酸2-メチルイソクロトン酸、3-メチルクロトン酸等のC2-10アルケニルカルボン酸;安息香酸、サリチル酸クロトン酸等のC6-10アリールカルボン酸などが挙げられる。 Examples of the carboxylic acid include C 1-10 alkyl carboxylic acids such as citric acid, oxalic acid, malic acid, maleic acid, tartaric acid, glutaric acid, adipic acid, pimelic acid, succinic acid, malonic acid, fumaric acid, phthalic acid, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, glycolic acid, glyceric acid, and lactic acid; C 2-10 alkenyl carboxylic acids such as acrylic acid, methacrylic acid, tiglic acid, 2-methylisocrotonic acid, and 3-methylcrotonic acid; and C 6-10 aryl carboxylic acids such as benzoic acid, salicylic acid, and crotonic acid.
 前記リン酸としては、例えば、リン酸メチル、リン酸エチル、リン酸プロピル、リン酸ブチル、リン酸ヘキシル、リン酸フェニル、リン酸ジメチル、リン酸ジエチル、リン酸ジプロピル、リン酸ジブチル、リン酸ジヘキシルのC1-10アルキルリン酸;リン酸ジフェニル等のC6-10アリールリン酸などが挙げられる。 Examples of the phosphoric acid include C1-10 alkyl phosphates such as methyl phosphate, ethyl phosphate, propyl phosphate, butyl phosphate, hexyl phosphate, phenyl phosphate, dimethyl phosphate, diethyl phosphate, dipropyl phosphate, dibutyl phosphate, and dihexyl phosphate; and C6-10 aryl phosphates such as diphenyl phosphate.
 前記ホスホン酸としては、例えば、メチルホスホン酸、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、ヘキシルホスホン酸等のC1-10アルキルホスホン酸;ビニルホスホン酸等のC2-10アルケニルホスホン酸;フェニルホスホン酸等のC6-10アリールホスホン酸が挙げられる。 Examples of the phosphonic acid include C 1-10 alkylphosphonic acids such as methylphosphonic acid, ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, and hexylphosphonic acid; C 2-10 alkenylphosphonic acids such as vinylphosphonic acid; and C 6-10 arylphosphonic acids such as phenylphosphonic acid.
 前記スルホン酸としては、例えば、メチルスルホン酸、エチルスルホン酸、プロピルスルホン酸、ブチルスルホン酸、ヘキシルスルホン酸等のC1-10アルキルスルホン酸;フェニルスルホン酸等のC6-10アリールスルホン酸;ビニルスルホン酸等のC2-10アルケニルスルホン酸が挙げられる。 Examples of the sulfonic acid include C 1-10 alkylsulfonic acids such as methylsulfonic acid, ethylsulfonic acid, propylsulfonic acid, butylsulfonic acid, and hexylsulfonic acid; C 6-10 arylsulfonic acids such as phenylsulfonic acid; and C 2-10 alkenylsulfonic acids such as vinylsulfonic acid.
 他の配位性化合物としては、なかでも、有機金属化合物に良好な分散性を付与する点において、C6-10アリール基を備えた配位性化合物が好ましく、特にC6-10アリールカルボン酸が好ましい。 As the other coordinating compounds, among them, coordinating compounds having a C 6-10 aryl group are preferred from the viewpoint of imparting good dispersibility to the organometallic compound, and C 6-10 aryl carboxylic acid is particularly preferred.
 配位性化合物(2)が、前記スルホニウム塩型化合物、前記イミドスルホネート型化合物、又は前記ノニオンオキシム型化合物と共に、他の配位性化合物を含む場合、配位性化合物(2)全量において、前記スルホニウム塩型化合物、前記イミドスルホネート型化合物、又は前記ノニオンオキシム型化合物の占める割合(2種以上含有する場合はその総量の占める割合)は、例えば0.1重量%以上、好ましくは0.5重量%以上、特に好ましくは1.0重量%以上である。尚、上限値は、例えば50重量%、好ましくは30重量%である。 When the coordinating compound (2) contains other coordinating compounds in addition to the sulfonium salt type compound, the imide sulfonate type compound, or the nonionic oxime type compound, the ratio of the sulfonium salt type compound, the imide sulfonate type compound, or the nonionic oxime type compound to the total amount of the coordinating compound (2) (when two or more types are contained, the ratio of the total amount) is, for example, 0.1% by weight or more, preferably 0.5% by weight or more, and particularly preferably 1.0% by weight or more. The upper limit is, for example, 50% by weight, preferably 30% by weight.
 前記有機金属化合物全量(若しくは、金属又は金属酸化物(1)と配位子の合計重量)において、前記スルホニウム塩型化合物由来の配位子、前記イミドスルホネート型化合物由来の配位子、又は前記ノニオンオキシム型化合物由来の配位子の占める割合(2種以上含有する場合はその総量の占める割合)は、例えば0.1~50重量%、好ましくは0.5~30重量%である。 The proportion of the ligand derived from the sulfonium salt type compound, the ligand derived from the imidosulfonate type compound, or the ligand derived from the nonionic oxime type compound in the total amount of the organometallic compound (or the total weight of the metal or metal oxide (1) and the ligand) (when two or more types are contained, the proportion of the total amount) is, for example, 0.1 to 50% by weight, preferably 0.5 to 30% by weight.
 また、前記スルホニウム塩型化合物由来の配位子、前記イミドスルホネート型化合物由来の配位子、又は前記ノニオンオキシム型化合物由来の配位子の含有量(2種以上含有する場合はその総量)は、金属又は金属酸化物(1)100重量部に対して、例えば0.1~50重量部、好ましくは0.5~30重量部、特に好ましくは1~20重量部である。 The content of the ligand derived from the sulfonium salt type compound, the ligand derived from the imidosulfonate type compound, or the ligand derived from the nonionic oxime type compound (the total amount when two or more types are contained) is, for example, 0.1 to 50 parts by weight, preferably 0.5 to 30 parts by weight, and particularly preferably 1 to 20 parts by weight, per 100 parts by weight of the metal or metal oxide (1).
 前記有機金属化合物は光線を照射すると凝集する。この凝集メカニズムとしては、以下の反応が考えられる。
 すなわち、金属又は金属酸化物(1)は微粒子であり凝集し易い性質を有するが、前記有機金属化合物は金属又は金属酸化物(1)の表面に配位性化合物(2)由来の配位子が結合することで、金属又は金属酸化物(1)同士の凝集が抑制され、分散性を獲得している。そして、光線を照射すると、下記1、2、3の反応を経て、結合している配位子の数が減少して分散性を喪失し、凝集体を形成すると考えられる。
反応1:有機金属化合物を構成する配位子の一部が、光線を照射により分解して酸を発生する。
反応2:発生した酸が、隣接する有機金属化合物に作用して、その有機金属化合物から配位子を剥離させる。
反応3:有機金属化合物から配位子が剥離すると、前記有機金属化合物に含まれる金属又は金属酸化物(1)は、その表面に結合していた配位子が減少するため、分散性が低下或いは消失する。
The organometallic compound aggregates when irradiated with light. The following reaction is considered to be the mechanism of this aggregation.
That is, the metal or metal oxide (1) is a fine particle and has a tendency to aggregate, but the organometallic compound has ligands derived from the coordinating compound (2) bonded to the surface of the metal or metal oxide (1), thereby suppressing aggregation between the metal or metal oxide (1) and acquiring dispersibility. When irradiated with light, it is considered that the number of bonded ligands decreases through the following reactions 1, 2, and 3, causing the dispersibility to be lost and forming aggregates.
Reaction 1: A part of the ligands constituting the organometallic compound is decomposed by irradiation with light to generate an acid.
Reaction 2: The generated acid acts on an adjacent organometallic compound to detach a ligand from the organometallic compound.
Reaction 3: When the ligands are peeled off from the organometallic compound, the metal or metal oxide (1) contained in the organometallic compound loses or loses its dispersibility because the number of ligands bonded to its surface is reduced.
 前記凝集メカニズムを、配位性基がカルボキシル基の場合を例に、以下に説明する。
下記式中、Mは金属又は金属酸化物(1)を示す。Raは前記スルホニウム塩型化合物、前記イミドスルホネート型化合物、又は前記ノニオンオキシム型化合物の、カルボキシル基以外の部分の構造を示す。
Figure JPOXMLDOC01-appb-C000017
The aggregation mechanism will be explained below by taking as an example the case where the coordinating group is a carboxyl group.
In the following formula, M represents a metal or metal oxide (1), and R a represents the structure of the portion other than the carboxyl group of the sulfonium salt type compound, the imidosulfonate type compound, or the nonionic oxime type compound.
Figure JPOXMLDOC01-appb-C000017
 (有機金属化合物の製造方法)
 前記有機金属化合物は、例えば、金属又は金属酸化物(1)と配位性化合物(2)を溶剤中で混合することにより製造することができる。
(Method for producing organometallic compounds)
The organometallic compound can be produced, for example, by mixing a metal or metal oxide (1) with a coordinating compound (2) in a solvent.
 以下に、配位性化合物(2)が、金属又は金属酸化物(1)に配位結合して、有機-無機複合体である有機金属化合物(3)を形成する様子を、配位性基がカルボキシル基の場合を例に、模式的に示す。
 下記式中、Mは金属又は金属酸化物(1)を示す。また、配位性化合物(2)(具体的には、前記スルホニウム塩型化合物、前記イミドスルホネート型化合物、又は前記ノニオンオキシム型化合物)を一般式(II)で示す。下記式中のRaは前記に同じである。
Figure JPOXMLDOC01-appb-C000018
The manner in which a coordinating compound (2) is coordinately bonded to a metal or metal oxide (1) to form an organometallic compound (3), which is an organic-inorganic composite, is shown below, taking as an example the case in which the coordinating group is a carboxyl group.
In the following formula, M represents a metal or metal oxide (1). The coordination compound (2) (specifically, the sulfonium salt type compound, the imide sulfonate type compound, or the nonionic oxime type compound) is represented by general formula (II). R a in the following formula is the same as above.
Figure JPOXMLDOC01-appb-C000018
 配位性化合物(2)の使用量(2種以上を使用する場合はその総量)は、上記金属又は金属酸化物(1)1重量部に対して、例えば0.01~20重量部、好ましくは0.1~10重量部である。 The amount of the coordinating compound (2) used (the total amount when two or more types are used) is, for example, 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight, per part by weight of the metal or metal oxide (1).
 前記スルホニウム塩型化合物、前記イミドスルホネート型化合物、又は前記ノニオンオキシム型化合物の使用量(2種以上を使用する場合はその総量)は、上記金属又は金属酸化物(1)1重量部に対して、例えば0.01~20重量部、好ましくは0.1~10重量部である。 The amount of the sulfonium salt type compound, the imide sulfonate type compound, or the nonionic oxime type compound used (the total amount when two or more types are used) is, for example, 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight, per part by weight of the metal or metal oxide (1).
 前記溶剤としては、例えば、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、シクロペンチルメチルエーテル、プロピレングリコールメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のエーテルが挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 The solvent may be, for example, ethers such as diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, cyclopentyl methyl ether, propylene glycol methyl ether, and propylene glycol monomethyl ether acetate. These may be used alone or in combination of two or more.
 前記溶剤の使用量は、金属又は金属酸化物(1)と配位性化合物(2)の総量に対して、例えば50~300重量%程度である。 The amount of the solvent used is, for example, about 50 to 300% by weight based on the total amount of the metal or metal oxide (1) and the coordinating compound (2).
 この反応終了後、得られた反応生成物は、一般的な、沈殿・洗浄・濾過により分離精製することができる。 After the reaction is complete, the resulting reaction product can be separated and purified by standard methods such as precipitation, washing, and filtration.
 [フォトレジスト用感光材]
 本発明のフォトレジスト用感光材は、フォトリソグラフィー分野において用いられる感光性を有する材料(例えば、光線照射により、溶剤に対する溶解性が変化する化合物)であり、前記有機金属化合物を含む。
[Photoresist photosensitive material]
The photosensitive material for photoresist of the present invention is a photosensitive material used in the field of photolithography (for example, a compound whose solubility in a solvent changes upon exposure to light), and contains the organometallic compound.
 前記フォトレジスト用感光材は、上述の有機金属化合物以外にも他の成分を含有していても良いが、前記フォトレジスト用感光材全量において、前記有機金属化合物の占める割合は、例えば70重量%以上、好ましくは80重量%以上、更に好ましくは90重量%以上、特に好ましくは95重量%以上、最も好ましくは99重量%以上、とりわけ好ましくは99.9重量%以上である。尚、上限値は100重量%である。 The photoresist photosensitive material may contain other components in addition to the organometallic compounds described above, but the proportion of the organometallic compounds in the total amount of the photoresist photosensitive material is, for example, 70% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more, particularly preferably 95% by weight or more, most preferably 99% by weight or more, and especially preferably 99.9% by weight or more. The upper limit is 100% by weight.
 前記フォトレジスト用感光材は、光線照射前には、溶剤(例えば、PGMEA等)への溶解性(或いは、分散性)に優れる。前記フォトレジスト用感光材の、溶剤中における平均粒子径(前記平均粒子径は、動的光散乱法により求められる)は、例えば200nm以下、好ましくは100nm以下、特に好ましくは50nm以下である。尚、下限値は、例えば1nmである。 The photoresist photosensitive material has excellent solubility (or dispersibility) in a solvent (e.g., PGMEA, etc.) before irradiation with light. The average particle size of the photoresist photosensitive material in the solvent (the average particle size is determined by dynamic light scattering) is, for example, 200 nm or less, preferably 100 nm or less, and particularly preferably 50 nm or less. The lower limit is, for example, 1 nm.
 また、前記フォトレジスト用感光材は光線(特に、超短波長の光線)に対する感応性に優れ、前記光線を照射すれば、速やかに凝集体を形成する。尚、前記光線の波長は、例えば100nm以下、好ましくは80nm以下、特に好ましくは50nm以下である。前記光線には、例えば、X線、電子線(EB)、EUV等が含まれる。 The photoresist photosensitive material has excellent sensitivity to light (especially light of ultrashort wavelength), and when irradiated with the light, it quickly forms aggregates. The wavelength of the light is, for example, 100 nm or less, preferably 80 nm or less, and particularly preferably 50 nm or less. The light includes, for example, X-rays, electron beams (EB), EUV, etc.
 前記フォトレジスト用感光材は熱安定性を備え、加熱処理(例えば、50℃以上130℃未満の温度で1~5分加熱する処理)を施しても、凝集は抑制される。そのため、前記フォトレジスト用感光材を含む塗膜を、凝集を抑制しつつ加熱乾燥することができ、作業性に優れる。 The photoresist photosensitive material has thermal stability, and aggregation is suppressed even when it is subjected to a heat treatment (for example, a treatment of heating at a temperature of 50°C or higher and lower than 130°C for 1 to 5 minutes). Therefore, a coating film containing the photoresist photosensitive material can be heated and dried while suppressing aggregation, and it has excellent workability.
 前記フォトレジスト用感光材は上記特性を有するため、ネガ型フォトレジスト用感光材として好適に使用することができる。また、極端紫外線や電子線などの超短波長の光線を使用するフォトレジスト用の感光材として好適に使用することができる。 Since the photoresist photosensitive material has the above-mentioned characteristics, it can be suitably used as a negative photoresist photosensitive material. It can also be suitably used as a photosensitive material for photoresists that use ultrashort wavelength light such as extreme ultraviolet rays and electron beams.
 [フォトレジスト(2)]
 本発明のフォトレジスト(2)は、フォトリソグラフィー分野において用いられる、パターンを有するレジスト膜を形成するためのレジスト(例えば、メタルレジスト)であり、上述の有機金属化合物と溶剤を含み、前記有機金属化合物は前記溶剤に溶解(或いは、高分散)した状態で含まれる。
[Photoresist (2)]
The photoresist (2) of the present invention is a resist (e.g., a metal resist) used in the field of photolithography for forming a resist film having a pattern, and contains the above-mentioned organometallic compound and a solvent, with the organometallic compound being contained in a dissolved (or highly dispersed) state in the solvent.
 前記フォトレジスト(2)中において、前記有機金属化合物は安定的に溶解(或いは、高分散)した状態で含有される。前記フォトレジスト中における前記有機金属化合物の平均粒子径(前記平均粒子径は、動的光散乱法により求められる)は、例えば200nm以下、好ましくは100nm以下、特に好ましくは50nm以下である。尚、下限値は、例えば1nmである。そのため、前記フォトレジストを使用すれば、低LER、高解像度の微細パターンを有するレジスト膜が得られる。 In the photoresist (2), the organometallic compound is contained in a stably dissolved (or highly dispersed) state. The average particle size of the organometallic compound in the photoresist (the average particle size is determined by dynamic light scattering) is, for example, 200 nm or less, preferably 100 nm or less, and particularly preferably 50 nm or less. The lower limit is, for example, 1 nm. Therefore, by using the photoresist, a resist film having a low LER and a high-resolution fine pattern can be obtained.
 前記溶剤としては、例えば、γ-ブチロラクトン等のラクトン;アセトン、メチルエチルケトン、シクロヘキサノン、メチル-n-ペンチルケトン、メチルイソペンチルケトン、2-ヘプタノン等のケトン;エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール等の多価アルコール;エチレングリコールモノアセテート、ジエチレングリコールモノアセテート、ジエチレングリコールジアセテート、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、ジプロピレングリコールモノアセテート等の(ポリ)C1-5アルキレングリコールエステル;エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールn-プロピルエーテル、プロピレングリコールフェニルエーテル、トリプロピレングリコールメチル-n-プロピルエーテル等の(ポリ)C1-5アルキレングリコールエーテル;エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)等の(ポリ)C1-5アルキレングリコールエーテルエステル;ジオキサンのような環式エーテル類;乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル等のエステル;アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル、エチルベンゼン、ジエチルベンゼン、ペンチルベンゼン、イソプロピルベンゼン、トルエン、キシレン、シメン、メシチレン等の芳香族炭化水素;ジメチルスルホキシド等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 Examples of the solvent include lactones such as γ-butyrolactone; ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl n-pentyl ketone, methyl isopentyl ketone, and 2-heptanone; polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, and dipropylene glycol; (poly)C 1-5 alkylene glycol esters such as ethylene glycol monoacetate, diethylene glycol monoacetate, diethylene glycol diacetate, propylene glycol monoacetate, propylene glycol diacetate, and dipropylene glycol monoacetate; (poly)C alkylene glycol esters such as ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol n-propyl ether, propylene glycol phenyl ether, and tripropylene glycol methyl n-propyl ether. Examples of such esters include 1-5 alkylene glycol ethers, (poly)C 1-5 alkylene glycol ether esters such as ethylene glycol monomethyl ether acetate, diethylene glycol monobutyl ether acetate, and propylene glycol monomethyl ether acetate (PGMEA), cyclic ethers such as dioxane, esters such as methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, and ethyl ethoxypropionate, aromatic hydrocarbons such as anisole, ethyl benzyl ether, cresyl methyl ether, diphenyl ether, dibenzyl ether, phenetole, butyl phenyl ether, ethylbenzene, diethylbenzene, pentylbenzene, isopropylbenzene, toluene, xylene, cymene, and mesitylene, and dimethyl sulfoxide. These esters may be used alone or in combination of two or more.
 前記有機金属化合物の含有量は、前記フォトレジスト全量(100重量%)の、例えば0.5~50重量%、好ましくは1.0~30重量%である。 The content of the organometallic compound is, for example, 0.5 to 50% by weight, preferably 1.0 to 30% by weight, of the total amount of the photoresist (100% by weight).
 前記溶剤の含有量は、前記フォトレジスト全量(100重量%)の、例えば50~99.5重量%、好ましくは70~99重量%である。 The content of the solvent is, for example, 50 to 99.5% by weight, preferably 70 to 99% by weight, of the total amount of the photoresist (100% by weight).
 フォトレジスト(2)は、前記有機金属化合物と溶剤以外にも他の成分を含有していても良く、例えば、レベリング剤、クエンチャー等を含有することができる。 The photoresist (2) may contain other components in addition to the organometallic compound and the solvent, such as a leveling agent, a quencher, etc.
 フォトレジスト(2)全量(100重量%)において、前記有機金属化合物と溶剤の合計重量の占める割合は、例えば60重量%以上、好ましくは70重量%以上、更に好ましくは80重量%以上、特に好ましくは90重量%以上、最も好ましくは95重量%以上、とりわけ好ましくは99重量%以上である。尚、上限値は100重量%である。 The ratio of the total weight of the organometallic compound and the solvent to the total amount (100% by weight) of the photoresist (2) is, for example, 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, particularly preferably 90% by weight or more, most preferably 95% by weight or more, and particularly preferably 99% by weight or more. The upper limit is 100% by weight.
 フォトレジスト(2)は、不揮発分として少なくとも前記有機金属化合物を含有する。前記不揮発分全量(100重量%)において、前記有機金属化合物の含有量の占める割合は、例えば60重量%以上、好ましくは70重量%以上、更に好ましくは80重量%以上、特に好ましくは90重量%以上、最も好ましくは95重量%以上、とりわけ好ましくは99重量%以上である。尚、上限値は100重量%である。 The photoresist (2) contains at least the organometallic compound as a non-volatile content. In the total amount of the non-volatile content (100% by weight), the content of the organometallic compound is, for example, 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, particularly preferably 90% by weight or more, most preferably 95% by weight or more, and particularly preferably 99% by weight or more. The upper limit is 100% by weight.
 尚、本明細書において、フォトレジストの不揮発分とは、前記有機金属化合物を含む成分であって、例えば、フォトレジストを常圧下において100℃で1時間加熱した後に残る成分である。 In this specification, the non-volatile components of the photoresist are components that contain the organometallic compound, for example, components that remain after the photoresist is heated at 100°C for 1 hour under normal pressure.
 また、フォトレジスト(2)に光線を照射(積算光量は、例えば5~500mJ/cm2)すれば、フォトレジストに含まれる前記有機金属化合物は速やかに凝集体を形成する。尚、パターンをより微細化する観点から、光線の波長を短波長化することが好ましく、例えば100nm以下(例えば、1~100nm)が好ましく、80nm以下が更に好ましく、50nm以下が特に好ましく、30nm以下が最も好ましく、20nm以下がとりわけ好ましい。前記光線には、例えば、X線、電子線(EB)、EUV等が含まれる。 Furthermore, when the photoresist (2) is irradiated with light (accumulated light amount is, for example, 5 to 500 mJ/ cm2 ), the organometallic compound contained in the photoresist quickly forms aggregates. From the viewpoint of making the pattern finer, it is preferable to shorten the wavelength of the light, for example, 100 nm or less (for example, 1 to 100 nm), more preferably 80 nm or less, particularly preferably 50 nm or less, most preferably 30 nm or less, and particularly preferably 20 nm or less. The light includes, for example, X-rays, electron beams (EB), EUV, etc.
 フォトレジスト(2)は上記特性を有するため、ネガ型フォトレジストとして好適に使用することができる。また、極端紫外線や電子線などの超短波長の光線を使用したフォトリソグラフィー用レジストとして好適に使用することができる。 Since photoresist (2) has the above characteristics, it can be suitably used as a negative photoresist. It can also be suitably used as a resist for photolithography using ultrashort wavelength light such as extreme ultraviolet rays or electron beams.
 フォトレジスト(2)を使用すれば、例えば下記工程1~3を経て、精度良好な微細パターンを有し、且つエッチング耐性に優れるレジスト膜を形成することができる。 By using photoresist (2), for example, through steps 1 to 3 below, it is possible to form a resist film that has a highly accurate fine pattern and has excellent etching resistance.
工程1:基板上に、フォトレジスト(2)を塗布、乾燥して有機金属化合物層を形成する工程
工程2:前記有機金属化合物層に光照射を行ってパターンを転写する工程
工程3:現像を行う工程
Step 1: A step of applying a photoresist (2) onto a substrate and drying it to form an organometallic compound layer. Step 2: A step of irradiating the organometallic compound layer with light to transfer a pattern. Step 3: A step of performing development.
 (工程1)
 本工程は、エッチングする基板上に、フォトレジスト(2)を塗布、乾燥して有機金属化合物層を形成する工程である。本工程を経て、[基板/有機金属化合物層]積層体が得られる。
(Step 1)
In this step, a photoresist (2) is applied onto the substrate to be etched, and then dried to form an organometallic compound layer. Through this step, a [substrate/organometallic compound layer] laminate is obtained.
 フォトレジスト(2)の塗布には、例えば、スピンコート、カーテンコート、ロールコート、スプレーコート、スクリーン印刷等公知の方法を用いることができる。 The photoresist (2) can be applied by known methods such as spin coating, curtain coating, roll coating, spray coating, and screen printing.
 フォトレジスト(2)を塗布する基板には、必要に応じて表面処理を施すことができる。例えば、ヘキサメチルジシラザン(HMDS)等の密着剤を基板の表面に塗布して、レジスト膜の密着性を向上させても良い。 The substrate on which the photoresist (2) is applied may be subjected to a surface treatment as necessary. For example, an adhesive such as hexamethyldisilazane (HMDS) may be applied to the surface of the substrate to improve the adhesion of the resist film.
 フォトレジスト(2)の塗膜の乾燥は、自然乾燥を行っても良いが、前記有機金属化合物は熱安定性を備え、加熱しただけでは凝集しないので、加熱乾燥することができ(例えば、50℃以上130℃未満の温度で1~5分加熱して乾燥させることができ)、作業性に優れる。 The coating of photoresist (2) may be dried naturally, but since the organometallic compound has thermal stability and does not coagulate simply by heating, it can be dried by heating (for example, by heating at a temperature of 50°C or higher but lower than 130°C for 1 to 5 minutes), which provides excellent workability.
 前記有機金属化合物層の厚みは、例えば1000nm以下、好ましくは100nm以下である。厚みの下限値は例えば1nmである。前記有機金属化合物の凝集体は、金属又は金属酸化物を含むため強靱性を備える。そのため、前記有機金属化合物層を薄化しても、エッチング耐性に優れたレジスト膜を形成することができる。 The thickness of the organometallic compound layer is, for example, 1000 nm or less, and preferably 100 nm or less. The lower limit of the thickness is, for example, 1 nm. The organometallic compound aggregates contain metal or metal oxide and therefore have toughness. Therefore, even if the organometallic compound layer is thinned, a resist film with excellent etching resistance can be formed.
 (工程2)
 本工程は、工程1を経て得られた有機金属化合物層に、パターンを有するフォトマスクを介して光照射する等の方法で、光照射を行ってパターンを転写する工程である。
(Step 2)
This step is a step of transferring a pattern by irradiating the organometallic compound layer obtained through step 1 with light, for example, through a photomask having a pattern.
 パターンを有するフォトマスクを介して光照射すると、露光部の有機金属化合物は凝集して基板に密着し、未露光部の有機金属化合物は凝集せず溶解性を維持する。 When irradiated with light through a photomask with a pattern, the organometallic compounds in the exposed areas aggregate and adhere to the substrate, while the organometallic compounds in the unexposed areas do not aggregate and maintain their solubility.
 光照射に用いる光線としては、塗膜に含まれる有機金属化合物の凝集を開始させることができれば特に制限はないが、EUVや電子線等の超短波長の光源を使用することが、極めて微細なパターンを精度良く転写することができる点において好ましい。 There are no particular limitations on the light used for light irradiation, so long as it can initiate the aggregation of the organometallic compounds contained in the coating film, but it is preferable to use a light source with an ultrashort wavelength, such as EUV or an electron beam, since this allows for the transfer of extremely fine patterns with high precision.
 また、前記有機金属化合物の凝集体は強靱性を有するため、有機金属化合物層を薄化してもエッチング耐性を維持することができ、有機金属化合物層を薄化し、ここに超短波長の光線照射を行うことで、有機金属化合物層の底部にまで光線を到達させることができ、精度良好なパターンを形成することができる。 In addition, because the organometallic compound aggregates are tough, etching resistance can be maintained even when the organometallic compound layer is thinned. By thinning the organometallic compound layer and irradiating it with ultrashort wavelength light, the light can reach the bottom of the organometallic compound layer, forming a highly accurate pattern.
 (工程3)
 本工程は、光照射後の[基板/有機金属化合物層]積層体を、現像処理に付す工程である。現像処理に付すと、有機金属化合物層のうち未露光部は洗い流され、露光部は基板に密着して残存する。
(Step 3)
This step is a step of subjecting the laminate of [substrate/organometallic compound layer] after light irradiation to a development treatment, in which the unexposed areas of the organometallic compound layer are washed away, while the exposed areas remain in close contact with the substrate.
 現像処理に使用する現像液としては、アルカリ水溶液や有機溶剤を、1種を単独で、又は2種以上を組み合わせて使用することができる。 The developer used in the development process can be an alkaline aqueous solution or an organic solvent, either alone or in combination of two or more.
 前記アルカリ水溶液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、アンモニア水、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネンなどが挙げられる。 Examples of the alkaline aqueous solution include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, aqueous ammonia, triethylamine, methyldiethylamine, ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo-[5.4.0]-7-undecene, and 1,5-diazabicyclo-[4.3.0]-5-nonene.
 前記有機溶剤としては、例えばフォトレジストに使用できる溶剤と同様の例が挙げられる。なかでも、多価アルコール、エステル、エーテル、ケトン、及び芳香族炭化水素から選択される少なくとも1種を含むことが好ましく、エステルを少なくとも含むことが特に好ましく、酢酸ブチルを少なくとも含むことが最も好ましい。 The organic solvent may be, for example, the same as the solvent that can be used in photoresists. Among them, it is preferable that the organic solvent contains at least one selected from polyhydric alcohols, esters, ethers, ketones, and aromatic hydrocarbons, it is particularly preferable that the organic solvent contains at least an ester, and it is most preferable that the organic solvent contains at least butyl acetate.
 現像処理方法としては、例えば、前記[基板/有機金属化合物層]積層体に、ディップ方式、シャワー方式、スプレー方式等の方法により前記現像液を塗布する方法が挙げられる。 Examples of the development process include a method in which the developer is applied to the substrate/organometallic compound layer laminate by a dip method, shower method, spray method, or the like.
 現像液の温度は、例えば25~40℃である。また、現像時間は、有機金属化合物層の厚さに応じて適宜調整されるが、例えば0.5~5分程度である。 The temperature of the developer is, for example, 25 to 40°C. The development time is adjusted appropriately depending on the thickness of the organometallic compound layer, but is, for example, about 0.5 to 5 minutes.
 現像処理に際し、未露光部は完全に除去されることが理想的である。現像残渣が存在すれば、配線形状異常などの問題が発生し易いためである。そして、本発明のフォトレジスト(2)は、含有する有機金属化合物が高分散性と熱安定性を備えるので、未露光部は現像液で洗浄することで容易に且つ完全に除去することができ、現像残渣を生じない。そのため、欠陥の無い製品を歩留まり良く製造することができる。 Ideally, unexposed areas should be completely removed during development processing. This is because the presence of development residues can easily cause problems such as wiring shape abnormalities. The photoresist (2) of the present invention contains an organometallic compound that has high dispersibility and thermal stability, so the unexposed areas can be easily and completely removed by washing with a developer, and no development residues are produced. This makes it possible to manufacture defect-free products with a high yield.
 工程3を経て、基板上に、有機金属化合物の凝集体からなる、精度良好な微細パターンを有し、且つエッチング耐性に優れるレジスト膜を形成することができる。このようして得られたレジスト膜を利用して基板をエッチングすれば、高精度の電子デバイスを製造することができる。 Through step 3, a resist film can be formed on the substrate, which has a highly accurate fine pattern made of aggregates of organometallic compounds and has excellent etching resistance. By etching the substrate using the resist film thus obtained, high-precision electronic devices can be manufactured.
 以上、本発明の各構成及びそれらの組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において、適宜、構成の付加、省略、置換、及び変更が可能である。また、本発明は、実施形態によって限定されることはなく、特許請求の範囲の記載によってのみ限定される。 The above configurations and combinations of the present invention are merely examples, and additions, omissions, substitutions, and modifications of configurations are possible as appropriate without departing from the spirit of the present invention. Furthermore, the present invention is not limited to the embodiments, but is limited only by the claims.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to these examples.
 実施例1(スルホニウム塩型化合物の調製)
 マグネシウム13.4g(0.55モル)をテトラヒドロフラン(THF)400g中に分散させてなる分散液に、攪拌下、1-ブロモ-3,5-ジフルオロベンゼン96.5g(0.50モル)を、系内温度を40~50℃の範囲に保持しつつ滴下投入して、3,5-ジフルオロフェニルマグネシウムブロマイドのTHF溶液を調製した。
 調製した3,5-ジフルオロフェニルマグネシウムブロマイドのTHF溶液に、塩化チオニル28.6g(0.24モル)をTHF50gで希釈した溶液を、系内温度が-5℃を超えない速度で滴下した。滴下終了後、室温で1時間反応を継続し反応を完結させた。
Example 1 (Preparation of Sulfonium Salt Compound)
To a dispersion obtained by dispersing 13.4 g (0.55 mol) of magnesium in 400 g of tetrahydrofuran (THF), 96.5 g (0.50 mol) of 1-bromo-3,5-difluorobenzene was added dropwise while stirring, while maintaining the temperature in the system within the range of 40 to 50° C., to prepare a THF solution of 3,5-difluorophenylmagnesium bromide.
To the prepared THF solution of 3,5-difluorophenylmagnesium bromide, a solution prepared by diluting 28.6 g (0.24 mol) of thionyl chloride with 50 g of THF was added dropwise at a rate such that the temperature in the system did not exceed −5° C. After completion of the dropwise addition, the reaction was continued at room temperature for 1 hour to complete the reaction.
 イオン交換水500gに、反応終了後の溶液を、系内温度が15℃を超えない速度で加え、1時間攪拌した。その後、酢酸エチル300gを投入し、1時間攪拌した。水層を除去した後、イオン交換水300gで3回洗浄した。有機層をシリカゲルカラムに通し脱色処理を行った。次いで、脱色処理後の有機層を脱溶剤し、シクロヘキサンで再結晶することで、ビス(3,5-ジフルオロフェニル)スルホキシド26.0gを得た。 The solution after the reaction was completed was added to 500 g of ion-exchanged water at a rate such that the temperature inside the system did not exceed 15°C, and stirred for 1 hour. Then, 300 g of ethyl acetate was added and stirred for 1 hour. After removing the aqueous layer, the solution was washed three times with 300 g of ion-exchanged water. The organic layer was passed through a silica gel column for decolorization. Next, the organic layer after the decolorization process was desolvated and recrystallized with cyclohexane to obtain 26.0 g of bis(3,5-difluorophenyl)sulfoxide.
 得られたビス(3,5-ジフルオロフェニル)スルホキシド6.86g(0.025モル)を2,6-ジメチルフェノール15.3g(0.125モル)、メタンスルホン酸24.0g(0.25モル)に溶解させ、無水リン酸7.1g(0.05モル)を系内温度が25℃を超えない速度で滴下した。滴下終了後、室温で24時間反応を継続させて反応を完結させた。次いで、反応液をゆっくりとイオン交換水150gに投入し、しばらく攪拌後、メタノール50gを加えた。この溶液にトルエン50gを加え、30分攪拌後、静置し上層のトルエン層を除去した。このトルエン洗浄をさらに2回行った。 6.86 g (0.025 mol) of the obtained bis(3,5-difluorophenyl)sulfoxide was dissolved in 15.3 g (0.125 mol) of 2,6-dimethylphenol and 24.0 g (0.25 mol) of methanesulfonic acid, and 7.1 g (0.05 mol) of phosphoric anhydride was added dropwise at a rate such that the temperature inside the system did not exceed 25°C. After the dropwise addition was completed, the reaction was continued at room temperature for 24 hours to complete the reaction. Next, the reaction liquid was slowly poured into 150 g of ion-exchanged water, and after stirring for a while, 50 g of methanol was added. 50 g of toluene was added to this solution, and after stirring for 30 minutes, the solution was allowed to stand and the upper toluene layer was removed. This toluene washing was carried out two more times.
 トルエン層除去後の水層にトリフルオロメタンスルホン酸カリウム4.7g(0.025モル)、ジクロロメタン80gを加え、1時間攪拌後、静置し上層の水層を除去した。この水洗操作をさらに2回行った。水層除去後のジクロロメタン層を濃縮して、スルホニウムの中間体3.1g(0.006モル)を得た。 After removing the toluene layer, 4.7 g (0.025 mol) of potassium trifluoromethanesulfonate and 80 g of dichloromethane were added to the aqueous layer, and the mixture was stirred for 1 hour, then allowed to stand and the upper aqueous layer was removed. This water washing procedure was repeated two more times. After removing the aqueous layer, the dichloromethane layer was concentrated to obtain 3.1 g (0.006 mol) of a sulfonium intermediate.
 次いで、この中間体をアセトニトリル10g、ブロモ酢酸t-ブチル1.7g(0.009モル)、炭酸カリウム2.5g(0.018モル)を加え、60℃で36時間反応を行った後に、反応液を濾過し、濾液を回収した。回収した濾液を濃縮し、その後、t-ブチルメチルエーテルで洗浄を行って、不溶部3.5gを回収した。 Next, 10 g of acetonitrile, 1.7 g (0.009 mol) of t-butyl bromoacetate, and 2.5 g (0.018 mol) of potassium carbonate were added to this intermediate, and the reaction was carried out at 60°C for 36 hours. The reaction solution was then filtered, and the filtrate was collected. The collected filtrate was concentrated, and then washed with t-butyl methyl ether, and 3.5 g of insoluble matter was collected.
 この不溶部を、イソプロパノール100gに溶解した後、硫酸を1g加え、70℃で5時間反応させた後、濃縮により溶剤を除去した。次いで、ジクロロメタン50g、イオン交換水50gを加え、1時間攪拌後、静置し上層の水層を除去した。この水洗操作をさらに2回行った。水相除去後のジクロロメタン層を濃縮した後、酢酸ブチルで再結晶を行った。これにより、目的物である[ビス(3,5-ジフルオロフェニル)](4-カルボキシメトキシ-3,5-ジメチルフェニル)スルホニウム トリフルオロメタンスルホネート2.3gを得た。 This insoluble portion was dissolved in 100 g of isopropanol, 1 g of sulfuric acid was added, and the mixture was allowed to react at 70°C for 5 hours, after which the solvent was removed by concentration. Next, 50 g of dichloromethane and 50 g of ion-exchanged water were added, and the mixture was stirred for 1 hour, then allowed to stand and the upper aqueous layer was removed. This water washing operation was repeated two more times. After removing the aqueous phase, the dichloromethane layer was concentrated and recrystallized with butyl acetate. This yielded 2.3 g of the target product, [bis(3,5-difluorophenyl)](4-carboxymethoxy-3,5-dimethylphenyl)sulfonium trifluoromethanesulfonate.
 実施例2(スルホニウム塩型化合物の調製)
 1-ブロモ-3,5-ジフルオロベンゼン96.5gに代えて2-ブロモベンゾトリフルオリド112.5g(0.50モル)を使用した以外は、実施例1と同様の方法で、ビス(2-トリフルオロメチルフェニル)スルホキシド20.0gを得た。
Example 2 (Preparation of Sulfonium Salt Compound)
The same procedure as in Example 1 was repeated except that 112.5 g (0.50 mol) of 2-bromobenzotrifluoride was used instead of 96.5 g of 1-bromo-3,5-difluorobenzene, to obtain 20.0 g of bis(2-trifluoromethylphenyl)sulfoxide.
 ビス(3,5-ジフルオロフェニル)スルホキシドに代えて、ビス(2-トリフルオロメチルフェニル)スルホキシドを使用し、ブロモ酢酸t-ブチルに代えて、2-ブロモ酪酸t-ブチルを使用し、トリフルオロメタンスルホン酸カリウムに代えてノナフルオロブタンスルホン酸カリウムを使用した以外は、実施例1と同様の方法で、[ビス(2-トリフルオロメチルフェニル)](4-(1-カルボキシプロポキシ)-3,5-ジメチルフェニル)スルホニウム ノナフルオロブタンスルホネートを得た。 [Bis(2-trifluoromethylphenyl)](4-(1-carboxypropoxy)-3,5-dimethylphenyl)sulfonium nonafluorobutanesulfonate was obtained in the same manner as in Example 1, except that bis(2-trifluoromethylphenyl)sulfoxide was used instead of bis(3,5-difluorophenyl)sulfoxide, 2-bromobutyrate t-butyl was used instead of bromoacetate t-butyl, and potassium nonafluorobutanesulfonate was used instead of potassium trifluoromethanesulfonate.
 実施例3(スルホニウム塩型化合物の調製)
 1-ブロモ-3,5-ジフルオロベンゼン96.5gに代えて4-ブロモベンゾトリフルオリド112.5g(0.50モル)を使用した以外は、実施例1と同様の方法で、ビス(4-トリフルオロメチルフェニル)スルホキシド29.1gを得た。
Example 3 (Preparation of Sulfonium Salt Compound)
The same procedure as in Example 1 was repeated except that 112.5 g (0.50 mol) of 4-bromobenzotrifluoride was used instead of 96.5 g of 1-bromo-3,5-difluorobenzene, to obtain 29.1 g of bis(4-trifluoromethylphenyl)sulfoxide.
 ビス(3,5-ジフルオロフェニル)スルホキシドに代えて、ビス(4-トリフルオロメチルフェニル)スルホキシドを使用し、2,6-ジメチルフェノールに代えてチオフェノールを使用し、トリフルオロメタンスルホン酸カリウムに代えてビス(トリフルオロメタンスルホニル)イミドカリウムを使用した以外は実施例1と同様の方法で、[ビス(4-トリフルオロメチルフェニル)](4-カルボキシメチルチオフェニル)スルホニウム ビス(トリフルオロメタンスルホニル)イミドを得た。 [Bis(4-trifluoromethylphenyl)](4-carboxymethylthiophenyl)sulfonium bis(trifluoromethanesulfonyl)imide was obtained in the same manner as in Example 1, except that bis(4-trifluoromethylphenyl)sulfoxide was used instead of bis(3,5-difluorophenyl)sulfoxide, thiophenol was used instead of 2,6-dimethylphenol, and potassium bis(trifluoromethanesulfonyl)imide was used instead of potassium trifluoromethanesulfonate.
 実施例4(スルホニウム塩型化合物の調製)
 塩化チオニル28.6g(0.24モル)及びヨードベンゼン100g(0.48モル)をTHF500gで希釈した溶液に、過塩素酸50g(0.48モル)を滴下した。滴下終了後、室温で5時間反応を継続し反応を完結させた。次いで、反応液をイオン交換水1500gにゆっくりと投入した後、ジクロロメタン300gを加え、1時間攪拌し、その後、静置して上層の水層を除去した。水相除去後のジクロロメタン層を濃縮し、酢酸ブチルで再結晶を行って、ビス(4-ヨードフェニル)スルホキシド54gを得た。
Example 4 (Preparation of Sulfonium Salt Compound)
To a solution of 28.6 g (0.24 mol) of thionyl chloride and 100 g (0.48 mol) of iodobenzene diluted with 500 g of THF, 50 g (0.48 mol) of perchloric acid was added dropwise. After the completion of the dropwise addition, the reaction was continued at room temperature for 5 hours to complete the reaction. Next, the reaction solution was slowly poured into 1500 g of ion-exchanged water, after which 300 g of dichloromethane was added and stirred for 1 hour, and then the mixture was allowed to stand and the upper aqueous layer was removed. The dichloromethane layer after removing the aqueous phase was concentrated and recrystallized with butyl acetate to obtain 54 g of bis(4-iodophenyl)sulfoxide.
 ビス(3,5-ジフルオロフェニル)スルホキシドに代えて、ビス(4-ヨードフェニル)スルホキシドを使用し、2,6-ジメチルフェノールに代えて安息香酸t-ブチル使用し、トリフルオロメタンスルホン酸カリウムに代えてノナフルオロブタンスルホン酸カリウムを使用し、ブロモ酢酸t-ブチルを使用しない以外は実施例1と同様の方法で、[ビス(4-ヨードフェニル)](4-カルボキシフェニル)スルホニウム ノナフルオロブタンスルホネートを得た。 [Bis(4-iodophenyl)](4-carboxyphenyl)sulfonium nonafluorobutanesulfonate was obtained in the same manner as in Example 1, except that bis(4-iodophenyl)sulfoxide was used instead of bis(3,5-difluorophenyl)sulfoxide, t-butyl benzoate was used instead of 2,6-dimethylphenol, potassium nonafluorobutanesulfonate was used instead of potassium trifluoromethanesulfonate, and t-butyl bromoacetate was not used.
 実施例5(スルホニウム塩型化合物の調製)
 ビス(3,5-ジフルオロフェニル)スルホキシド27.4g(0.10モル)を硫酸200gに溶解させ、N-ヨードスクシンイミド45.0g(0.20モル)を分割投入し、その後3時間室温で反応させた。次いで、反応液をイオン交換水1500gにゆっくりと投入し、ジクロロメタン200gを加え、1時間攪拌後、静置して上層の水層を除去した。水相除去後のジクロロメタン層を濃縮し、酢酸ブチルで再結晶を行って、ビス(3,5-ジフルオロ-2-ヨードフェニル)スルホキシド23.3gを得た。
Example 5 (Preparation of Sulfonium Salt Compounds)
27.4 g (0.10 mol) of bis(3,5-difluorophenyl)sulfoxide was dissolved in 200 g of sulfuric acid, 45.0 g (0.20 mol) of N-iodosuccinimide was added in portions, and the mixture was allowed to react at room temperature for 3 hours. The reaction solution was then slowly added to 1500 g of ion-exchanged water, 200 g of dichloromethane was added, and the mixture was stirred for 1 hour, and then allowed to stand to remove the upper aqueous layer. The dichloromethane layer after removing the aqueous phase was concentrated and recrystallized with butyl acetate to obtain 23.3 g of bis(3,5-difluoro-2-iodophenyl)sulfoxide.
 ビス(3,5-ジフルオロフェニル)スルホキシドに代えて、ビス(3,5-ジフルオロ-2-ヨードフェニル)スルホキシドを使用し、トリフルオロメタンスルホン酸カリウムに代えてビス(トリフルオロメタンスルホニル)イミドカリウムを使用した以外は、実施例1と同様の方法で、[ビス(3,5-ジフルオロ-2-ヨードフェニル)](4-カルボキシメトキシ-3,5-ジメチルフェニル)スルホニウム ビス(トリフルオロメタンスルホニル)イミドを得た。 [Bis(3,5-difluoro-2-iodophenyl)](4-carboxymethoxy-3,5-dimethylphenyl)sulfonium bis(trifluoromethanesulfonyl)imide was obtained in the same manner as in Example 1, except that bis(3,5-difluoro-2-iodophenyl)sulfoxide was used instead of bis(3,5-difluorophenyl)sulfoxide, and potassium bis(trifluoromethanesulfonyl)imide was used instead of potassium trifluoromethanesulfonate.
 比較例1(スルホニウム塩型化合物の調製)
 ビス(3,5-ジフルオロフェニル)スルホキシドに代えて、ジフェニルスルホキシドを使用した以外は実施例1と同様の方法で、ジフェニル-4-カルボキシメトキシ-3,5-ジメチルフェニル)スルホニウム トリフルオロメタンスルホネートを得た。
Comparative Example 1 (Preparation of Sulfonium Salt Compound)
Diphenyl-4-carboxymethoxy-3,5-dimethylphenyl)sulfonium trifluoromethanesulfonate was obtained in the same manner as in Example 1, except that diphenyl sulfoxide was used instead of bis(3,5-difluorophenyl)sulfoxide.
 比較例2(スルホニウム塩型化合物の調製)
 1-ブロモ-3,5-ジフルオロベンゼン96.5gに代えて3-ブロモベンゾトリフルオリド112.5g(0.50モル)を使用した以外は、実施例1と同様の方法で、ビス(3-トリフルオロメチルフェニル)スルホキシド28.1gを得た。
Comparative Example 2 (Preparation of Sulfonium Salt Compound)
The same procedure as in Example 1 was repeated except that 112.5 g (0.50 mol) of 3-bromobenzotrifluoride was used instead of 96.5 g of 1-bromo-3,5-difluorobenzene, to obtain 28.1 g of bis(3-trifluoromethylphenyl)sulfoxide.
 ビス(3,5-ジフルオロフェニル)スルホキシドに代えて、ビス(3-トリフルオロメチルフェニル)スルホキシドを使用し、2,6-ジメチルフェノール15.3g(0.125モル)に代えて、ベンゼン28.0g(0.375モル)を使用し、トリフルオロメタンスルホン酸カリウムに代えてノナフルオロブタンスルホン酸カリウムを使用した以外は実施例1と同様の方法で、スルホニウムの中間体を得た。この中間体を酢酸エチル、および酢酸ブチルの混合溶媒で再結晶を行い、[ビス(4-トリフルオロメチルフェニル)]フェニルスルホニウム ノナフルオロブタンスルホネートを得た。 A sulfonium intermediate was obtained in the same manner as in Example 1, except that bis(3-trifluoromethylphenyl) sulfoxide was used instead of bis(3,5-difluorophenyl) sulfoxide, 28.0 g (0.375 mol) of benzene was used instead of 15.3 g (0.125 mol) of 2,6-dimethylphenol, and potassium nonafluorobutanesulfonate was used instead of potassium trifluoromethanesulfonate. This intermediate was recrystallized from a mixed solvent of ethyl acetate and butyl acetate to obtain [bis(4-trifluoromethylphenyl)]phenylsulfonium nonafluorobutanesulfonate.
 上記実施例1~5及び比較例1~2で得られたスルホニウム塩型化合物、及び比較例3のスルホニウム塩型化合物としてのトリフェニルスルホニウム トリフルオロメタンスルホネートについて、下記<溶剤溶解性の評価方法>で溶剤溶解性を評価し、下記<感光性の評価方法1>で感光性を評価した。 The sulfonium salt type compounds obtained in Examples 1 to 5 and Comparative Examples 1 and 2 above, and triphenylsulfonium trifluoromethanesulfonate as the sulfonium salt type compound in Comparative Example 3 were evaluated for solvent solubility using the <Method for evaluating solvent solubility> below, and for photosensitivity using the <Method for evaluating photosensitivity 1> below.
 <溶剤溶解性の評価方法>
 実施例及び比較例の化合物をそれぞれ0.2g試験管にとり、25℃温調下でPGMEAを0.2~0.5gずつ加え、前記化合物が完全に溶解するまで加えた。この完全に溶解したときの溶液中の化合物濃度を溶剤溶解性とした。尚、PGMEAを30g加えても完全に溶解しない場合には、溶解しないものとして評価した。結果を下記表に示す。
<Method for evaluating solvent solubility>
0.2 g of each of the compounds of the Examples and Comparative Examples was placed in a test tube, and 0.2 to 0.5 g of PGMEA was added at 25°C until the compound was completely dissolved. The compound concentration in the solution when the compound was completely dissolved was taken as the solvent solubility. If the compound was not completely dissolved even after adding 30 g of PGMEA, it was evaluated as not dissolved. The results are shown in the table below.
 <感光性の評価方法1>
 実施例及び比較例のスルホニウム塩型化合物を重量比で20倍のポジ型感光性樹脂(ポリヒドロキシスチレンとt-ブトキシアクリレートの共重合物)と混合し、前記スルホニウム塩型化合物のモル濃度が2.0mMとなるようにPGMEAに溶解して、フォトレジストを調製した。
 次いで、ヘキサメチルジシラザン(HMDS)処理を行った基板上に、得られたフォトレジストを、スピンコーターを用いて展開し、130℃で60秒間加熱して溶剤を除去して、約50nmの膜厚の塗膜を生成した。
 得られた塗膜を、兵庫県立大学ニュースバル放射光施設のBL-3に投入し、13.5nmの放射光を照射した。
 次いで、光線照射後のサンプルを110℃で90秒間加熱し、テトラメチルアンモニウムヒドロキシド2.38%水溶液を用いて60秒間現像し、流水にて30秒間リンスを行った。
 現像・リンス後のサンプルを顕微鏡で観察し、レジスト膜が完全に除去される最小露光量(Eth)を求めた。
 比較例3のスルホニウム塩型化合物を含むフォトレジストを使用した場合の最小露光量(Eth’)に対する、前記最小露光量(Eth)の比を以下の式から算出して、これを感光性の指標とした。尚、最小露光量比は値が小さい方が感光性は良好である。
   最小露光量比=Eth/Eth’
<Photosensitivity Evaluation Method 1>
The sulfonium salt type compound of each of the examples and comparative examples was mixed with a positive photosensitive resin (copolymer of polyhydroxystyrene and t-butoxyacrylate) in an amount of 20 times by weight, and the mixture was dissolved in PGMEA so that the molar concentration of the sulfonium salt type compound became 2.0 mM, thereby preparing a photoresist.
The resulting photoresist was then spread using a spin coater on a substrate that had been treated with hexamethyldisilazane (HMDS), and heated at 130° C. for 60 seconds to remove the solvent, producing a coating film with a thickness of approximately 50 nm.
The resulting coating film was placed in BL-3 at the NewSUBARU Synchrotron Radiation Facility of the University of Hyogo, and irradiated with 13.5 nm synchrotron radiation.
Next, the sample after the light irradiation was heated at 110° C. for 90 seconds, developed with a 2.38% aqueous solution of tetramethylammonium hydroxide for 60 seconds, and rinsed with running water for 30 seconds.
After development and rinsing, the sample was observed under a microscope to determine the minimum exposure dose (Eth) at which the resist film was completely removed.
The ratio of the minimum exposure dose (Eth) to the minimum exposure dose (Eth') in the case of using the photoresist containing the sulfonium salt compound of Comparative Example 3 was calculated from the following formula and used as an index of photosensitivity. The smaller the minimum exposure dose ratio, the better the photosensitivity.
Minimum exposure ratio=Eth/Eth'
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 上記表から、本発明のスルホニウム塩型化合物は、トリフェニルスルホニウム トリフルオロメタンスルホネート(比較例3)に比べて13.5nmの放射光に対する感度が高いことが分かる。また、溶剤に対する溶解性が良好であることも分かる。
 本発明のスルホニウム塩型化合物は、前記特性を兼ね備えるため、フォトレジスト用途(特に、超短波長の光線を使用するフォトレジスト用途)に好適である。
From the above table, it can be seen that the sulfonium salt type compound of the present invention has higher sensitivity to 13.5 nm radiation compared to triphenylsulfonium trifluoromethanesulfonate (Comparative Example 3). It can also be seen that it has good solubility in solvents.
The sulfonium salt type compound of the present invention has all the above-mentioned properties and is therefore suitable for use as a photoresist (particularly for use as a photoresist using light with an ultrashort wavelength).
 製造例1
 <ビス(3,5-ジフルオロフェニル)スルホキシドの合成>
 マグネシウム13.4g(0.55モル)をテトラヒドロフラン(THF)400g中に分散させてなる分散液に、攪拌下、1-ブロモ-3,5-ジフルオロベンゼン96.5g(0.50モル)を、系内温度を40~50℃の範囲に保持しつつ滴下投入して、3,5-ジフルオロフェニルマグネシウムブロマイドのTHF溶液を調製した。
 調製した3,5-ジフルオロフェニルマグネシウムブロマイドのTHF溶液に、塩化チオニル28.6g(0.24モル)をTHF50gで希釈した溶液を、系内温度が-5℃を超えない速度で滴下した。滴下終了後、室温で1時間反応を継続し反応を完結させた。
Production Example 1
<Synthesis of bis(3,5-difluorophenyl)sulfoxide>
To a dispersion obtained by dispersing 13.4 g (0.55 mol) of magnesium in 400 g of tetrahydrofuran (THF), 96.5 g (0.50 mol) of 1-bromo-3,5-difluorobenzene was added dropwise while stirring, while maintaining the temperature in the system within the range of 40 to 50° C., to prepare a THF solution of 3,5-difluorophenylmagnesium bromide.
To the prepared THF solution of 3,5-difluorophenylmagnesium bromide, a solution prepared by diluting 28.6 g (0.24 mol) of thionyl chloride with 50 g of THF was added dropwise at a rate such that the temperature in the system did not exceed −5° C. After completion of the dropwise addition, the reaction was continued at room temperature for 1 hour to complete the reaction.
 イオン交換水500gに、反応終了後の溶液を、系内温度が15℃を超えない速度で加え、1時間攪拌した。その後、酢酸エチル300gを投入し、1時間攪拌した。水層を除去した後、イオン交換水300gで3回洗浄した。有機層をシリカゲルカラムに通し脱色処理を行った。次いで、脱色処理後の有機層を脱溶剤し、シクロヘキサンで再結晶することで、ビス(3,5-ジフルオロフェニル)スルホキシド26.0gを得た。 The solution after the reaction was completed was added to 500 g of ion-exchanged water at a rate such that the temperature inside the system did not exceed 15°C, and stirred for 1 hour. Then, 300 g of ethyl acetate was added and stirred for 1 hour. After removing the aqueous layer, the solution was washed three times with 300 g of ion-exchanged water. The organic layer was passed through a silica gel column for decolorization. Next, the organic layer after the decolorization process was desolvated and recrystallized with cyclohexane to obtain 26.0 g of bis(3,5-difluorophenyl)sulfoxide.
 <スルホニウム塩型化合物の合成>
 得られたビス(3,5-ジフルオロフェニル)スルホキシド6.86g(0.025モル)を2,6-ジメチルフェノール15.3g(0.125モル)、メタンスルホン酸24.0g(0.25モル)に溶解させ、無水リン酸7.1g(0.05モル)を系内温度が25℃を超えない速度で滴下した。滴下終了後、室温で24時間反応を継続させて反応を完結させた。次いで、反応液をゆっくりとイオン交換水150gに投入し、しばらく攪拌後、メタノール50gを加えた。この溶液にトルエン50gを加え、30分攪拌後、静置し上層のトルエン層を除去した。このトルエン洗浄をさらに2回行った。
<Synthesis of sulfonium salt compounds>
6.86 g (0.025 mol) of the obtained bis(3,5-difluorophenyl)sulfoxide was dissolved in 15.3 g (0.125 mol) of 2,6-dimethylphenol and 24.0 g (0.25 mol) of methanesulfonic acid, and 7.1 g (0.05 mol) of phosphoric anhydride was added dropwise at a rate such that the temperature in the system did not exceed 25°C. After the dropwise addition, the reaction was continued at room temperature for 24 hours to complete the reaction. Next, the reaction solution was slowly poured into 150 g of ion-exchanged water, and after stirring for a while, 50 g of methanol was added. 50 g of toluene was added to this solution, and after stirring for 30 minutes, the solution was left to stand and the upper toluene layer was removed. This toluene washing was carried out two more times.
 トルエン層除去後の水層にトリフルオロメタンスルホン酸カリウム4.7g(0.025モル)、ジクロロメタン80gを加え、1時間攪拌後、静置し上層の水層を除去した。この水洗操作をさらに2回行った。水層除去後のジクロロメタン層を濃縮して、スルホニウムの中間体3.1g(0.006モル)を得た。 After removing the toluene layer, 4.7 g (0.025 mol) of potassium trifluoromethanesulfonate and 80 g of dichloromethane were added to the aqueous layer, and the mixture was stirred for 1 hour, then allowed to stand and the upper aqueous layer was removed. This water washing procedure was repeated two more times. After removing the aqueous layer, the dichloromethane layer was concentrated to obtain 3.1 g (0.006 mol) of a sulfonium intermediate.
 次いで、この中間体をアセトニトリル10g、ブロモ酢酸t-ブチル1.7g(0.009モル)、炭酸カリウム2.5g(0.018モル)を加え、60℃で36時間反応を行った後に、反応液を濾過し、濾液を回収した。回収した濾液を濃縮後、t-ブチルメチルエーテルで洗浄を行い、不溶部3.5gを回収した。 Next, 10 g of acetonitrile, 1.7 g (0.009 mol) of t-butyl bromoacetate, and 2.5 g (0.018 mol) of potassium carbonate were added to this intermediate, and the reaction was carried out at 60°C for 36 hours. After that, the reaction liquid was filtered and the filtrate was collected. The collected filtrate was concentrated and washed with t-butyl methyl ether, and 3.5 g of insoluble matter was collected.
 この不溶部を、イソプロパノール100gに溶解した後、硫酸を1g加え、70℃で5時間反応させた後、濃縮により溶剤を除去した。次いで、ジクロロメタン50g、イオン交換水50gを加え、1時間攪拌後、静置し上層の水層を除去した。この水洗操作をさらに2回行った。水相除去後のジクロロメタン層を濃縮した後、酢酸ブチルで再結晶を行った。これにより、目的物である[ビス(3,5-ジフルオロフェニル)](4-カルボキシメトキシ-3,5-ジメチルフェニル)スルホニウム トリフルオロメタンスルホネート2.3gを得た。 This insoluble portion was dissolved in 100 g of isopropanol, 1 g of sulfuric acid was added, and the mixture was allowed to react at 70°C for 5 hours, after which the solvent was removed by concentration. Next, 50 g of dichloromethane and 50 g of ion-exchanged water were added, and the mixture was stirred for 1 hour, then allowed to stand and the upper aqueous layer was removed. This water washing operation was repeated two more times. After removing the aqueous phase, the dichloromethane layer was concentrated and recrystallized with butyl acetate. This yielded 2.3 g of the target product, [bis(3,5-difluorophenyl)](4-carboxymethoxy-3,5-dimethylphenyl)sulfonium trifluoromethanesulfonate.
 製造例2
 <ビス(2-トリフルオロメチルフェニル)スルホキシドの合成>
 1-ブロモ-3,5-ジフルオロベンゼン96.5gに代えて2-ブロモベンゾトリフルオリド112.5g(0.50モル)を使用した以外は、製造例1と同様の方法で、ビス(2-トリフルオロメチルフェニル)スルホキシド20.0gを得た。
Production Example 2
<Synthesis of bis(2-trifluoromethylphenyl)sulfoxide>
The same method as in Production Example 1 was repeated except that 112.5 g (0.50 mol) of 2-bromobenzotrifluoride was used instead of 96.5 g of 1-bromo-3,5-difluorobenzene, to obtain 20.0 g of bis(2-trifluoromethylphenyl)sulfoxide.
 <スルホニウム塩型化合物の合成>
 ビス(3,5-ジフルオロフェニル)スルホキシドに代えて、ビス(2-トリフルオロメチルフェニル)スルホキシドを使用し、ブロモ酢酸t-ブチルに代えて、2-ブロモ酪酸t-ブチルを使用し、トリフルオロメタンスルホン酸カリウムに代えてノナフルオロブタンスルホン酸カリウムを使用した以外は、製造例1と同様の方法で、[ビス(2-トリフルオロメチルフェニル)](4-(1-カルボキシプロポキシ)-3,5-ジメチルフェニル)スルホニウム ノナフルオロブタンスルホネートを得た。
<Synthesis of sulfonium salt compounds>
[Bis(2-trifluoromethylphenyl)](4-(1-carboxypropoxy)-3,5-dimethylphenyl)sulfonium nonafluorobutanesulfonate was obtained in the same manner as in Production Example 1, except that bis(2-trifluoromethylphenyl)sulfoxide was used instead of bis(3,5-difluorophenyl)sulfoxide, t-butyl 2-bromobutyrate was used instead of t-butyl bromoacetate, and potassium nonafluorobutanesulfonate was used instead of potassium trifluoromethanesulfonate.
 製造例3
 <ビス(4-トリフルオロメチルフェニル)スルホキシドの合成>
 1-ブロモ-3,5-ジフルオロベンゼン96.5gに代えて4-ブロモベンゾトリフルオリド112.5g(0.50モル)を使用した以外は、製造例1と同様の方法で、ビス(4-トリフルオロメチルフェニル)スルホキシド29.1gを得た。
Production Example 3
<Synthesis of bis(4-trifluoromethylphenyl)sulfoxide>
The same method as in Production Example 1 was repeated except that 112.5 g (0.50 mol) of 4-bromobenzotrifluoride was used instead of 96.5 g of 1-bromo-3,5-difluorobenzene, to obtain 29.1 g of bis(4-trifluoromethylphenyl)sulfoxide.
 <スルホニウム塩型化合物の合成>
 ビス(3,5-ジフルオロフェニル)スルホキシドに代えて、ビス(4-トリフルオロメチルフェニル)スルホキシドを使用し、2,6-ジメチルフェノールに代えてチオフェノールを使用し、トリフルオロメタンスルホン酸カリウムに代えてビス(トリフルオロメタンスルホニル)イミドカリウムを使用した以外は製造例1と同様の方法で、[ビス(4-トリフルオロメチルフェニル)](4-カルボキシメチルチオフェニル)スルホニウム ビス(トリフルオロメタンスルホニル)イミドを得た。
<Synthesis of sulfonium salt compounds>
[Bis(4-trifluoromethylphenyl)](4-carboxymethylthiophenyl)sulfonium bis(trifluoromethanesulfonyl)imide was obtained in the same manner as in Production Example 1, except that bis(4-trifluoromethylphenyl)sulfoxide was used instead of bis(3,5-difluorophenyl)sulfoxide, thiophenol was used instead of 2,6-dimethylphenol, and potassium bis(trifluoromethanesulfonyl)imide was used instead of potassium trifluoromethanesulfonate.
 製造例4
 <ビス(4-ヨードフェニル)スルホキシドの合成>
 塩化チオニル28.6g(0.24モル)及びヨードベンゼン100g(0.48モル)をTHF500gで希釈した溶液に、過塩素酸50g(0.48モル)を滴下した。滴下終了後、室温で5時間反応を継続し反応を完結させた。次いで、反応液をイオン交換水1500gにゆっくりと投入した後、ジクロロメタン300gを加え、1時間攪拌し、その後、静置して上層の水層を除去した。水相除去後のジクロロメタン層を濃縮し、酢酸ブチルで再結晶を行って、ビス(4-ヨードフェニル)スルホキシド54gを得た。
Production Example 4
<Synthesis of bis(4-iodophenyl)sulfoxide>
To a solution of 28.6 g (0.24 mol) of thionyl chloride and 100 g (0.48 mol) of iodobenzene diluted with 500 g of THF, 50 g (0.48 mol) of perchloric acid was added dropwise. After the completion of the dropwise addition, the reaction was continued at room temperature for 5 hours to complete the reaction. Next, the reaction solution was slowly poured into 1500 g of ion-exchanged water, after which 300 g of dichloromethane was added and stirred for 1 hour, and then the mixture was allowed to stand and the upper aqueous layer was removed. The dichloromethane layer after removing the aqueous phase was concentrated and recrystallized with butyl acetate to obtain 54 g of bis(4-iodophenyl)sulfoxide.
 <スルホニウム塩型化合物の合成>
 ビス(3,5-ジフルオロフェニル)スルホキシドに代えて、ビス(4-ヨードフェニル)スルホキシドを使用し、2,6-ジメチルフェノールに代えて安息香酸t-ブチルを使用し、トリフルオロメタンスルホン酸カリウムに代えてノナフルオロブタンスルホン酸カリウムを使用し、ブロモ酢酸t-ブチルを使用しない以外は製造例1と同様の方法で、[ビス(4-ヨードフェニル)](4-カルボキシフェニル)スルホニウム ノナフルオロブタンスルホネートを得た。
<Synthesis of sulfonium salt compounds>
[Bis(4-iodophenyl)](4-carboxyphenyl)sulfonium nonafluorobutanesulfonate was obtained in the same manner as in Production Example 1, except that bis(4-iodophenyl)sulfoxide was used instead of bis(3,5-difluorophenyl)sulfoxide, t-butyl benzoate was used instead of 2,6-dimethylphenol, potassium nonafluorobutanesulfonate was used instead of potassium trifluoromethanesulfonate, and t-butyl bromoacetate was not used.
 製造例5
 <ビス(3,5-ジフルオロ-2-ヨードフェニル)スルホキシドの合成>
 ビス(3,5-ジフルオロフェニル)スルホキシド27.4g(0.10モル)を硫酸200gに溶解させ、N-ヨードスクシンイミド45.0g(0.20モル)を分割投入し、その後3時間室温で反応させた。次いで、反応液をイオン交換水1500gにゆっくりと投入し、続いてジクロロメタン200gを加え、1時間攪拌し、その後、静置して上層の水層を除去した。水相除去後のジクロロメタン層を濃縮し、酢酸ブチルで再結晶を行って、ビス(3,5-ジフルオロ-2-ヨードフェニル)スルホキシド23.3gを得た。
Production Example 5
<Synthesis of bis(3,5-difluoro-2-iodophenyl)sulfoxide>
27.4 g (0.10 mol) of bis(3,5-difluorophenyl)sulfoxide was dissolved in 200 g of sulfuric acid, 45.0 g (0.20 mol) of N-iodosuccinimide was added in portions, and the mixture was allowed to react at room temperature for 3 hours. The reaction solution was then slowly added to 1500 g of ion-exchanged water, followed by the addition of 200 g of dichloromethane, and the mixture was stirred for 1 hour, and then allowed to stand to remove the upper aqueous layer. The dichloromethane layer after removing the aqueous phase was concentrated and recrystallized with butyl acetate to obtain 23.3 g of bis(3,5-difluoro-2-iodophenyl)sulfoxide.
 <スルホニウム塩型化合物の合成>
 ビス(3,5-ジフルオロフェニル)スルホキシドに代えて、ビス(3,5-ジフルオロ-2-ヨードフェニル)スルホキシドを使用し、トリフルオロメタンスルホン酸カリウムに代えてビス(トリフルオロメタンスルホニル)イミドカリウムを使用した以外は、製造例1と同様の方法で、[ビス(3,5-ジフルオロ-2-ヨードフェニル)](4-カルボキシメトキシ-3,5-ジメチルフェニル)スルホニウム ビス(トリフルオロメタンスルホニル)イミドを得た。
<Synthesis of sulfonium salt compounds>
[Bis(3,5-difluoro-2-iodophenyl)](4-carboxymethoxy-3,5-dimethylphenyl)sulfonium bis(trifluoromethanesulfonyl)imide was obtained in the same manner as in Production Example 1, except that bis(3,5-difluoro-2-iodophenyl)sulfoxide was used instead of bis(3,5-difluorophenyl)sulfoxide and potassium bis(trifluoromethanesulfonyl)imide was used instead of potassium trifluoromethanesulfonate.
 製造例6
 <スルホニウム塩型化合物の合成>
 ビス(3,5-ジフルオロフェニル)スルホキシドに代えて、ジフェニルスルホキシドを使用した以外は製造例1と同様の方法で、ジフェニル-4-カルボキシメトキシ-3,5-ジメチルフェニル)スルホニウム トリフルオロメタンスルホネートを得た。
Production Example 6
<Synthesis of sulfonium salt compounds>
Diphenyl-4-carboxymethoxy-3,5-dimethylphenyl)sulfonium trifluoromethanesulfonate was obtained in the same manner as in Production Example 1, except that diphenyl sulfoxide was used instead of bis(3,5-difluorophenyl)sulfoxide.
 実施例11
 ジルコニウムイソプロポキシド3gをTHF20gに溶解した。ここに、安息香酸4gと、製造例1で得られたスルホニウム塩型化合物1gとTHF20gを混合して得られた溶液を、室温で投入した。得られた混合液を65℃に温調下、2mLのイオン交換水を加えて、24時間のゾル・ゲル反応を行った。
 反応終了後に沈殿物を回収し、アセトン/水(1:4、体積比)を用いてかけ洗い洗浄を行った。次いで、40℃真空下で24時間の乾燥を行った。これにより、有機金属化合物を得た。
 得られた有機金属化合物の19F-NMR分析(日本電子社製、装置名「JNM-ECX400P」を使用)の結果から、配位性化合物のカチオン由来のピーク(-104ppm)、およびアニオン由来のピーク(-78ppm)が確認でき、配位性化合物が配位していることが確認できた。
Example 11
3 g of zirconium isopropoxide was dissolved in 20 g of THF. A solution obtained by mixing 4 g of benzoic acid, 1 g of the sulfonium salt type compound obtained in Production Example 1, and 20 g of THF was added thereto at room temperature. The resulting mixture was kept at 65° C., and 2 mL of ion-exchanged water was added thereto, followed by a sol-gel reaction for 24 hours.
After the reaction was completed, the precipitate was collected and washed with acetone/water (volume ratio 1:4), and then dried at 40° C. under vacuum for 24 hours. Thus, an organometallic compound was obtained.
From the results of 19F -NMR analysis of the obtained organometallic compound (using an apparatus named "JNM-ECX400P" manufactured by JEOL Ltd.), a peak (-104 ppm) derived from the cation of the coordination compound and a peak (-78 ppm) derived from the anion were confirmed, confirming that the coordination compound was coordinated.
 得られた有機金属化合物0.3gをPGMEA9.0gに溶解させた後、孔径0.20μmのフィルター濾過を行い、不溶解の凝集体を除去した。これにより、メタルレジストを得た。 0.3 g of the obtained organometallic compound was dissolved in 9.0 g of PGMEA, and then filtered through a filter with a pore size of 0.20 μm to remove any undissolved aggregates. This resulted in the production of a metal resist.
 実施例12~17
 スルホニウム塩型化合物、金属又は金属酸化物を下記表3、表4に記載の通り変更した以外は実施例11と同様の方法で、有機金属化合物を得、メタルレジストを得た。
Examples 12 to 17
An organometallic compound and a metal resist were obtained in the same manner as in Example 11, except that the sulfonium salt type compound, metal or metal oxide were changed as shown in Tables 3 and 4 below.
 比較例11~12
 下記表5に記載の金属又は金属酸化物0.3gとスルホニウム塩型化合物0.15gを、PGMEA9.0gに溶解させた後、孔径0.20μmのフィルター濾過を行い、不溶解の凝集体を除去した。これにより、メタルレジストを得た。
Comparative Examples 11 to 12
0.3 g of a metal or metal oxide and 0.15 g of a sulfonium salt compound shown in Table 5 below were dissolved in 9.0 g of PGMEA, and then filtered through a filter having a pore size of 0.20 μm to remove insoluble aggregates, thereby obtaining a metal resist.
 実施例及び比較例で得られたメタルレジストについて、下記<露光方法>で露光を行い、下記<感光性の評価方法2>で、露光部の感光性を評価した。 The metal resists obtained in the examples and comparative examples were exposed using the <Exposure method> below, and the photosensitivity of the exposed areas was evaluated using the <Photosensitivity evaluation method 2> below.
 <露光方法>
 ヘキサメチルジシラザン処理を行った基板上に、フォトレジストを、スピンコーターを用いて塗布し、その後、80℃で60秒間加熱を行って溶剤を除去して、約50nmの膜厚の塗膜を得た。
 得られた塗膜を、兵庫県立大学ニュースバル放射光施設のBL-3に投入し、13.5nmの放射光を、照射時間を1~30秒の範囲で変更して照射した。その後、塗膜を、酢酸ブチルに30秒間浸して現像し、乾燥を行った。
<Exposure Method>
A photoresist was applied onto the substrate that had been treated with hexamethyldisilazane using a spin coater, and then the solvent was removed by heating at 80° C. for 60 seconds to obtain a coating film with a thickness of about 50 nm.
The obtained coating film was placed in BL-3 at the University of Hyogo's NewSUBARU Synchrotron Radiation Facility and irradiated with 13.5 nm synchrotron radiation for irradiation times varying from 1 to 30 seconds. The coating film was then developed by immersing it in butyl acetate for 30 seconds and dried.
 <感光性の評価方法2>
 現像・乾燥後の塗膜について、露光部を顕微鏡で観察し、光照射した部分に残存するレジスト膜厚みが40nm以上となる最小露光量(Eth)を測定した。
 比較例11のフォトレジストを使用した場合の最小露光量(Eth’)に対する、前記最小露光量(Eth)の比を以下の式から算出して、これを感光性の指標とした。尚、最小露光量比は値が小さい方が感光性は良好である。
   最小露光量比=Eth/Eth’
<Photosensitivity Evaluation Method 2>
After development and drying, the exposed areas of the coating film were observed under a microscope to measure the minimum exposure dose (Eth) at which the resist film remaining in the irradiated area had a thickness of 40 nm or more.
The ratio of the minimum exposure dose (Eth) to the minimum exposure dose (Eth') when the photoresist of Comparative Example 11 was used was calculated from the following formula, and this was used as an index of photosensitivity. The smaller the minimum exposure dose ratio, the better the photosensitivity.
Minimum exposure ratio=Eth/Eth'
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 上記表から、本発明の有機金属化合物は、光線超短波長の光線に対する感度が高いこと、スルホニウム塩型化合物のカチオン部を構成するベンゼン環に、置換基としてハロゲン原子又はハロアルキル基を導入すると、さらに感度が向上することがわかる。
 一方、比較例では、光酸発生剤は金属又は金属酸化物に配位しておらず、そのため、光線超短波長の光線に対する感度が低いことが分かる。
From the above table, it can be seen that the organometallic compounds of the present invention have high sensitivity to light having ultrashort wavelengths, and that the sensitivity is further improved by introducing a halogen atom or a haloalkyl group as a substituent into the benzene ring constituting the cation moiety of the sulfonium salt type compound.
On the other hand, in the comparative examples, the photoacid generator is not coordinated to a metal or metal oxide, and therefore, it is understood that the sensitivity to light of ultrashort wavelengths is low.
 実施例21
<3-ヒドロキシ-1,8-ナフタルイミド-p-トルエンスルホネートの合成>
 3-ヒドロキシ-1,8-ナフタル酸無水物(東京化成工業(株)製)5.5g、二炭酸ジ-tert-ブチル(東京化成工業(株)製)5.9gをアセトニトリル32gに分散させ、ピリジン2.2gを加えて50℃で2時間攪拌した。
 室温に冷却後、水に投入し析出物を濾別して白色固体を得た。得られた白色固体を水洗・乾燥して、3-tert-ブトキシカルボニルオキシ-1,8-ナフタル酸無水物8.1gを得た。
 得られた3-tert-ブトキシカルボニルオキシ-1,8-ナフタル酸無水物8.1gをアセトニトリル137gに溶解させ、ヒドロキシルアミン水溶液(東京化成工業(株)製、50%水溶液)2.0gを加えて室温で2時間攪拌した。この後、反応液を水に投入し析出物を濾別して白色固体の3-t-ブトキシカルボニロキシ-N-ヒドロキシ-1,8-ナフタルイミド8.0gを得た。
 得られた3-t-ブトキシカルボニロキシ-N-ヒドロキシ-1,8-ナフタルイミド3.3gにジクロロメタン33mLを加え、マグネティックスターラで攪拌した。その後、反応液を氷水浴に漬けた。
 その後、この反応液にp-トルエンスルホン酸塩化物2.1gを投入し、次いでピリジン1.2gをゆっくりと投入した。室温まで昇温し反応を完了させた。
 その後、再度氷水浴に漬け、濃塩酸3.1gを投入した。この反応液を50℃の温浴に漬け反応を完了させた。
 析出物を濾過し、脱イオン水で十分に洗浄し、60℃の減圧乾燥機で乾燥させた。これにより、黄色固体状の3-ヒドロキシ-1,8-ナフタルイミド-p-トルエンスルホネート(P-21)3.1gを得た。
Example 21
<Synthesis of 3-hydroxy-1,8-naphthalimide-p-toluenesulfonate>
5.5 g of 3-hydroxy-1,8-naphthalic anhydride (Tokyo Chemical Industry Co., Ltd.) and 5.9 g of di-tert-butyl dicarbonate (Tokyo Chemical Industry Co., Ltd.) were dispersed in 32 g of acetonitrile, 2.2 g of pyridine was added, and the mixture was stirred at 50° C. for 2 hours.
After cooling to room temperature, the mixture was poured into water and the precipitate was filtered off to obtain a white solid, which was washed with water and dried to obtain 8.1 g of 3-tert-butoxycarbonyloxy-1,8-naphthalic anhydride.
8.1 g of the obtained 3-tert-butoxycarbonyloxy-1,8-naphthalic anhydride was dissolved in 137 g of acetonitrile, 2.0 g of an aqueous hydroxylamine solution (Tokyo Chemical Industry Co., Ltd., 50% aqueous solution) was added, and the mixture was stirred at room temperature for 2 hours. Thereafter, the reaction solution was poured into water, and the precipitate was separated by filtration to obtain 8.0 g of 3-t-butoxycarbonyloxy-N-hydroxy-1,8-naphthalimide as a white solid.
33 mL of dichloromethane was added to 3.3 g of the obtained 3-t-butoxycarbonyloxy-N-hydroxy-1,8-naphthalimide, and the mixture was stirred with a magnetic stirrer.Then, the reaction solution was immersed in an ice-water bath.
Then, 2.1 g of p-toluenesulfonic acid chloride was added to the reaction solution, and then 1.2 g of pyridine was slowly added. The temperature was raised to room temperature to complete the reaction.
Thereafter, the reaction solution was again placed in the ice water bath, and 3.1 g of concentrated hydrochloric acid was added thereto. The reaction solution was then placed in a warm bath at 50° C. to complete the reaction.
The precipitate was filtered, thoroughly washed with deionized water, and dried in a vacuum dryer at 60° C. As a result, 3.1 g of 3-hydroxy-1,8-naphthalimide-p-toluenesulfonate (P-21) was obtained as a yellow solid.
 <有機金属化合物の合成>
 金属酸化物原料としてのハフニウムイソプロポキシド3gをTHF20gに溶解した。ここに、安息香酸4g及び3-ヒドロキシ-1,8-ナフタルイミド-p-トルエンスルホネート(P-21)1gにTHF20gを加えた溶液を、室温で投入して混合溶液を得た。
 得られた混合溶液に、65℃に温調下で、イオン交換水2mLを加え、24時間のゾル・ゲル反応を行った。
 反応終了後、沈殿物を回収し、アセトン/水(1/4;体積比)を用いてかけ洗い洗浄を行った。次いで、40℃真空下で24時間の乾燥を行った。これにより、有機金属化合物を得た。
<Synthesis of organometallic compounds>
3 g of hafnium isopropoxide as a metal oxide raw material was dissolved in 20 g of THF, and a solution of 4 g of benzoic acid, 1 g of 3-hydroxy-1,8-naphthalimide-p-toluenesulfonate (P-21), and 20 g of THF was added thereto at room temperature to obtain a mixed solution.
To the resulting mixed solution, 2 mL of ion-exchanged water was added under temperature control at 65° C., and a sol-gel reaction was carried out for 24 hours.
After the reaction was completed, the precipitate was collected and washed with acetone/water (volume ratio: 1/4), and then dried at 40° C. under vacuum for 24 hours. Thus, an organometallic compound was obtained.
 <メタルレジストの合成>
 得られた有機金属化合物0.1gをPGMEA3.0gに溶解させた後、孔径0.20μmのフィルター濾過を行い、不溶解の凝集体を除去した。これにより、メタルレジストを得た。
<Synthesis of metal resist>
0.1 g of the obtained organometallic compound was dissolved in 3.0 g of PGMEA, and then filtered through a filter having a pore size of 0.20 μm to remove insoluble aggregates, thereby obtaining a metal resist.
 実施例22<3-ヒドロキシ-1,8-ナフタルイミドトリフルオロメタンスルホネートの合成>
 実施例21と同様の方法で3-t-ブトキシカルボニロキシ-N-ヒドロキシ-1,8-ナフタルイミドを得、得られた3-t-ブトキシカルボニロキシ-N-ヒドロキシ-1,8-ナフタルイミド10.8gをジクロロメタン70gに分散させ、そこへピリジン5.2gを加えた後、0℃以下に冷却しながらトリフルオロメタンスルホン酸無水物(東京化成工業株式会社製)13.9gを滴下し、2時間攪拌した。0℃を保ったまま反応液を水に投入し4回水洗した後、トリフルオロメタンスルホン酸0.5gを滴下して室温で1時間攪拌した。反応液から析出物を濾別した後、水洗し、乾燥させた。これにより、3-ヒドロキシ-1,8-ナフタルイミドトリフルオロメタンスルホネート(P-22)10gを得た。
Example 22 <Synthesis of 3-hydroxy-1,8-naphthalimide trifluoromethanesulfonate>
3-t-butoxycarbonyloxy-N-hydroxy-1,8-naphthalimide was obtained in the same manner as in Example 21, and 10.8 g of the obtained 3-t-butoxycarbonyloxy-N-hydroxy-1,8-naphthalimide was dispersed in 70 g of dichloromethane, and 5.2 g of pyridine was added thereto. Then, 13.9 g of trifluoromethanesulfonic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise while cooling to 0°C or less, and the mixture was stirred for 2 hours. The reaction liquid was poured into water while maintaining 0°C and washed with water four times, and then 0.5 g of trifluoromethanesulfonic acid was added dropwise and the mixture was stirred at room temperature for 1 hour. The precipitate was filtered out from the reaction liquid, washed with water, and dried. As a result, 10 g of 3-hydroxy-1,8-naphthalimide trifluoromethanesulfonate (P-22) was obtained.
 0.209gのモノブチルスズオキシド水和物(BuSnOOH)粉末を10mLの4-メチル-2-ペンタノールに添加して、溶液を調製した。得られた溶液を閉鎖バイアルに入れ、24時間攪拌させた。その後、溶液を4000rpmで15分間の遠心分離処理に付し、上清を得た。得られた上清を0.45μmのPTFEシリンジフィルタにより濾過し、不溶性材料を除去した後、600℃で加熱して溶媒を蒸発させて、12量体ブチルスズヒドロキシドオキシドを得た。 A solution was prepared by adding 0.209 g of monobutyltin oxide hydrate (BuSnOOH) powder to 10 mL of 4-methyl-2-pentanol. The resulting solution was placed in a closed vial and stirred for 24 hours. The solution was then centrifuged at 4000 rpm for 15 minutes to obtain a supernatant. The resulting supernatant was filtered through a 0.45 μm PTFE syringe filter to remove insoluble materials, and then heated at 600° C. to evaporate the solvent and obtain 12-mer butyltin hydroxide oxide.
 金属酸化物原料として、得られた12量体ブチルスズヒドロキシドオキシドを使用し、(P-21)に代えて(P-22)を使用した以外は実施例21と同様にして、有機金属化合物を得、メタルレジストを得た。 The obtained 12-mer butyltin hydroxide oxide was used as the metal oxide raw material, and an organometallic compound was obtained in the same manner as in Example 21, except that (P-22) was used instead of (P-21). An organometallic compound and a metal resist were obtained.
 実施例23<3-カルボキシ-1,8-ナフタルイミドメタンスルホネートの合成>
 3-カルボキシ-1,8-ナフタル酸無水物2.42gをナスフラスコに投入し、窒素置換した。ここにジクロロメタン100mLを加えて攪拌することで分散し、EDCI・HCl(東京化成工業(株)製)2.3gとジメチルアミノピリジン1.47gをそれぞれ3分割投入した。さらに、tert-ブタノール0.89gを加えてこの反応液を室温で2日間攪拌した。希塩酸50mLを投入して反応を停止させたのち、静置して分離した水層を除去した。有機層をさらに2回水洗したのち、濃縮した残渣を減圧乾燥機で乾燥し、固体を得た。
 3-tert-ブトキシカルボニルオキシ-1,8-ナフタル酸無水物に代えて得られた固体を使用し、p-トルエンスルホン酸塩化物に代えてメタンスルホン酸塩化物を使用した以外は実施例21と同様にして、3-tert-ブトキシカルボニル-1,8-ナフタルイミドメタンスルホネートを得た。
 得られた3-tert-ブトキシカルボニル-1,8-ナフタルイミドメタンスルホネートにジクロロメタン28mL、トルフルオロ酢酸9.7gを加え、室温で2時間攪拌した。水60mLを加えて、析出した固体を減圧乾燥機で乾燥させた。これにより、3-カルボキシ-1,8-ナフタルイミドメタンスルホネート(P-23)1.9gを得た。
Example 23 <Synthesis of 3-carboxy-1,8-naphthalimide methanesulfonate>
2.42 g of 3-carboxy-1,8-naphthalic anhydride was placed in a recovery flask and substituted with nitrogen. 100 mL of dichloromethane was added thereto and dispersed by stirring, and 2.3 g of EDCI.HCl (Tokyo Chemical Industry Co., Ltd.) and 1.47 g of dimethylaminopyridine were each added in three portions. 0.89 g of tert-butanol was further added and the reaction liquid was stirred at room temperature for two days. 50 mL of dilute hydrochloric acid was added to stop the reaction, and the mixture was allowed to stand and the separated aqueous layer was removed. The organic layer was further washed with water twice, and the concentrated residue was dried in a vacuum dryer to obtain a solid.
The procedure was repeated in the same manner as in Example 21 except that the obtained solid was used instead of 3-tert-butoxycarbonyloxy-1,8-naphthalic anhydride and methanesulfonic acid chloride was used instead of p-toluenesulfonic acid chloride, to obtain 3-tert-butoxycarbonyl-1,8-naphthalimide methanesulfonate.
28 mL of dichloromethane and 9.7 g of trifluoroacetic acid were added to the obtained 3-tert-butoxycarbonyl-1,8-naphthalimide methanesulfonate, and the mixture was stirred at room temperature for 2 hours. 60 mL of water was added, and the precipitated solid was dried in a vacuum dryer. As a result, 1.9 g of 3-carboxy-1,8-naphthalimide methanesulfonate (P-23) was obtained.
 (P-21)に代えて(P-23)を使用した以外は実施例21と同様にして、有機金属化合物を得、メタルレジストを得た。 An organometallic compound and a metal resist were obtained in the same manner as in Example 21, except that (P-23) was used instead of (P-21).
 実施例24<3-(1’-カルボキシプロピル)カルボニルオキシ-1,8-ナフタルイミドトリフルオロメタンスルホネートの合成>
 実施例2と同様にして得られた3-ヒドロキシ-1,8-ナフタルイミドトリフルオロメタンスルホネート1.0gにアセトニトリル8.5gを分散させ、ピリジン0.33gを加え、氷浴した。この反応液にエチルプロパン二酸ジクロライド2.3gを加え、40℃で6時間攪拌した。室温に冷却後、冷水に投入し、析出物を濾取することで固体を得た。得られた固体をメタノールで再結晶した。これにより、3-1’-カルボキシプロピルカルボニルオキシ-1,8-ナフタルイミドトリフルオロメタンスルホネート(P-24)0.79gを得た。
Example 24 <Synthesis of 3-(1'-carboxypropyl)carbonyloxy-1,8-naphthalimide trifluoromethanesulfonate>
8.5 g of acetonitrile was dispersed in 1.0 g of 3-hydroxy-1,8-naphthalimide trifluoromethanesulfonate obtained in the same manner as in Example 2, 0.33 g of pyridine was added, and the mixture was placed in an ice bath. 2.3 g of ethylpropane diacid dichloride was added to this reaction liquid, and the mixture was stirred at 40°C for 6 hours. After cooling to room temperature, the mixture was poured into cold water, and the precipitate was collected by filtration to obtain a solid. The obtained solid was recrystallized from methanol. As a result, 0.79 g of 3-1'-carboxypropylcarbonyloxy-1,8-naphthalimide trifluoromethanesulfonate (P-24) was obtained.
 金属酸化物原料としてジルコニウムn-プロポキシドを使用し、(P-21)に代えて(P-24)を使用した以外は実施例21と同様にして、有機金属化合物を得、メタルレジストを得た。 An organometallic compound and a metal resist were obtained in the same manner as in Example 21, except that zirconium n-propoxide was used as the metal oxide raw material and (P-24) was used instead of (P-21).
 実施例25~27
 上記実施例と同様にして、下記表に記載の化合物(P-25)~(P-27)を得、有機金属化合物を得、メタルレジストを得た。
Examples 25 to 27
In the same manner as in the above Examples, the compounds (P-25) to (P-27) shown in the table below were obtained, organometallic compounds were obtained, and metal resists were obtained.
 実施例28<4-テレフタロイルオキシ-1,8-ナフタルイミドトリフルオロメタンスルホネートの合成>
 3-ヒドロキシ-1,8-ナフタル酸無水物に代えて、Chem.Eur.J.,2016,22(25),8579-8585.に記載の方法によって製造した4-ヒドロキシ-1,8-ナフタル酸無水物を使用し、p-トルエンスルホン酸塩化物に代えて10-カンファースルホン酸塩化物を使用した以外は実施例21と同様にして、4-ヒドロキシ-1,8-ナフタルイミドカンファースルホネートを得た。
Example 28 <Synthesis of 4-terephthaloyloxy-1,8-naphthalimide trifluoromethanesulfonate>
4-Hydroxy-1,8-naphthalimide camphorsulfonate was obtained in the same manner as in Example 21, except that 4-hydroxy-1,8-naphthalic anhydride produced by the method described in Chem. Eur. J., 2016, 22(25), 8579-8585 was used instead of 3-hydroxy-1,8-naphthalic anhydride, and 10-camphorsulfonic acid chloride was used instead of p-toluenesulfonic acid chloride.
 3-ヒドロキシ-1,8-ナフタルイミドトリフルオロメタンスルホネートに代えて得られた4-ヒドロキシ-1,8-ナフタルイミドカンファースルホネートを使用し、エチルプロパン二酸ジクロライドに代えてフタル酸ジクロライドを使用した以外は実施例4と同様にして、4-テレフタロイルオキシ-1,8-ナフタルイミドカンファースルホネート(P-28)を得た。 4-terephthaloyloxy-1,8-naphthalimide camphorsulfonate (P-28) was obtained in the same manner as in Example 4, except that the obtained 4-hydroxy-1,8-naphthalimide camphorsulfonate was used instead of 3-hydroxy-1,8-naphthalimide trifluoromethanesulfonate and phthalic acid dichloride was used instead of ethylpropane diacid dichloride.
 金属酸化物原料としてモノブチルスズオキシドを使用し、(P-21)に代えて(P-28)を使用した以外は実施例21と同様にして、有機金属化合物を得、メタルレジストを得た。 An organometallic compound and a metal resist were obtained in the same manner as in Example 21, except that monobutyltin oxide was used as the metal oxide raw material and (P-28) was used instead of (P-21).
 実施例29~30
 上記実施例と同様にして、下記表に記載の化合物(P-29)~(P-30)を得、有機金属化合物を得、メタルレジストを得た。
Examples 29 to 30
In the same manner as in the above Examples, the compounds (P-29) to (P-30) shown in the table below were obtained, an organometallic compound was obtained, and a metal resist was obtained.
 実施例31
 <4-ヒドロキシ-1,3-ジオキソイソインドリン-2-イルメタンスルホネートの合成>
 4-ヒドロキシベンゾフラン-1,3-ジオン(東京化成工業(株)製)0.82gをテトラヒドロフラン25mLに溶解し、氷浴した溶液に0.12gのピリジンを加えた。
 次いで、1.2gの二炭酸ジ-t-ブチルを加え、反応液を40℃で3時間攪拌し反応を完結させた。
 この反応液を再び氷冷し、0.46gのヒドロキシルアミン溶液をゆっくりと滴下した。反応液を室温まで昇温して反応を完結させたのち、脱イオン水75mLを投入して反応を停止した。
 次いで、反応液を濾過し、得られた固体をよく水洗したのち40℃の減圧乾燥機で乾燥させた。乾燥した固体をジクロロメタン17mLに溶解し、その後氷冷し、さらにピリジン0.59gを滴下した。その後、反応液に、メタンスルホン酸クロリド0.69gを滴下し、攪拌して反応を完結させた。
 その後、濃塩酸1.54mLをゆっくりと滴下した。反応液を40℃まで昇温し、反応を完結させた後、脱イオン水45mLを投入した。析出した固体を濾過し十分に水洗した。これにより、4-ヒドロキシ-1,3-ジオキソイソインドリン-2-イルメタンスルホネート(P-31)0.7gを得た。
Example 31
<Synthesis of 4-hydroxy-1,3-dioxoisoindolin-2-yl methanesulfonate>
0.82 g of 4-hydroxybenzofuran-1,3-dione (Tokyo Chemical Industry Co., Ltd.) was dissolved in 25 mL of tetrahydrofuran, and 0.12 g of pyridine was added to the solution in an ice bath.
Then, 1.2 g of di-t-butyl dicarbonate was added, and the reaction solution was stirred at 40° C. for 3 hours to complete the reaction.
The reaction solution was cooled again on ice, and 0.46 g of a hydroxylamine solution was slowly added dropwise to the reaction solution. The reaction solution was warmed to room temperature to complete the reaction, and then 75 mL of deionized water was added to stop the reaction.
The reaction solution was then filtered, and the resulting solid was thoroughly washed with water and then dried in a vacuum dryer at 40° C. The dried solid was dissolved in 17 mL of dichloromethane, then cooled with ice, and 0.59 g of pyridine was added dropwise to the reaction solution. Then, 0.69 g of methanesulfonic acid chloride was added dropwise to the reaction solution, and the reaction was completed by stirring.
Then, 1.54 mL of concentrated hydrochloric acid was slowly added dropwise. The reaction solution was heated to 40°C, and after the reaction was completed, 45 mL of deionized water was added. The precipitated solid was filtered and thoroughly washed with water. As a result, 0.7 g of 4-hydroxy-1,3-dioxoisoindolin-2-yl methanesulfonate (P-31) was obtained.
 金属酸化物原料として塩化スズを使用し、(P-21)に代えて(P-31)を使用した以外は実施例21と同様にして、有機金属化合物を得、メタルレジストを得た。 An organometallic compound and a metal resist were obtained in the same manner as in Example 21, except that tin chloride was used as the metal oxide raw material and (P-31) was used instead of (P-21).
 実施例32~34
 上記実施例と同様にして、下記表に記載の化合物(P-32)~(P-34)を得、有機金属化合物を得、メタルレジストを得た。
Examples 32 to 34
In the same manner as in the above Examples, the compounds (P-32) to (P-34) shown in the table below were obtained, an organometallic compound was obtained, and a metal resist was obtained.
 比較例21~22
 下記表に記載の金属又は金属酸化物0.1gと、下記表に記載の化合物(P-35)又は(P-36)0.05gを、PGMEA3.0gに溶解させた後、孔径0.20μmのフィルター濾過を行い、不溶解の凝集体を除去した。これにより、メタルレジストを得た。
Comparative Examples 21 to 22
0.1 g of a metal or metal oxide shown in the table below and 0.05 g of a compound (P-35) or (P-36) shown in the table below were dissolved in 3.0 g of PGMEA, and then filtered through a filter with a pore size of 0.20 μm to remove undissolved aggregates, thereby obtaining a metal resist.
 実施例及び比較例で得られたメタルレジストについて、上記<露光方法>で露光を行い、上記<感光性の評価方法2>で露光部の感光性を評価した。
 また、上記<露光方法>により現像、乾燥して得られた塗膜について、未露光部を顕微鏡で観察し、下記基準で現像性を評価した。結果を下記表にまとめて示す。
評価基準
良:現像残渣は1%未満
可:現像残渣が1%以上、10%未満
不可:現像残渣が10%以上
The metal resists obtained in the Examples and Comparative Examples were exposed by the above-mentioned <Exposure method>, and the photosensitivity of the exposed areas was evaluated by the above-mentioned <Photosensitivity evaluation method 2>.
Furthermore, for the coating film obtained by developing and drying according to the above-mentioned <Exposure Method>, the unexposed area was observed under a microscope and the developability was evaluated according to the following criteria. The results are shown in the following table.
Evaluation criteria Good: Development residue is less than 1% Passable: Development residue is 1% or more and less than 10% Unacceptable: Development residue is 10% or more
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 実施例41
 (ノニオンオキシム型化合物の調製)
 3-(2,4-ジフルオロベンゾイル)プロピオン酸2.1g(0.010モル)をアセトニトリル10gに溶解させ、その後、30℃で50%ヒドロキシルアミン水溶液2.0g(0.030モル)を滴下投入して、6時間攪拌を行った。析出物を濾過回収し、1%塩酸水溶液100mLでスラリー洗浄を行った後、再度濾過回収し真空乾燥して固形物を得た。
 得られた固形物をジクロロメタン100g、トリエチルアミン2.0g(0.020モル)に溶解させた後、氷冷下で無水酢酸1.5g(0.015モル)を滴下し、1時間攪拌を行った。次いで、1%塩酸水溶液100mLを加えて攪拌し、その後、水層を除去して、ジクロロメタン層を得た。得られたジクロロメタン層について、イオン交換水100mLを用いた水洗を2回行った。水洗後、ジクロロメタン層を濃縮し、酢酸エチル/ヘキサンで再結晶を行った。これにより下記表に記載の化合物(P-41)1.7gを得た。
Example 41
(Preparation of nonionic oxime compounds)
2.1 g (0.010 mol) of 3-(2,4-difluorobenzoyl)propionic acid was dissolved in 10 g of acetonitrile, and then 2.0 g (0.030 mol) of a 50% aqueous hydroxylamine solution was added dropwise at 30° C. and stirred for 6 hours. The precipitate was collected by filtration, washed with 100 mL of a 1% aqueous hydrochloric acid solution, and then collected by filtration again and dried in vacuum to obtain a solid.
The obtained solid was dissolved in 100 g of dichloromethane and 2.0 g (0.020 mol) of triethylamine, and then 1.5 g (0.015 mol) of acetic anhydride was added dropwise under ice cooling, followed by stirring for 1 hour. Next, 100 mL of 1% aqueous hydrochloric acid was added and stirred, after which the water layer was removed to obtain a dichloromethane layer. The obtained dichloromethane layer was washed twice with 100 mL of ion-exchanged water. After washing, the dichloromethane layer was concentrated and recrystallized with ethyl acetate/hexane. As a result, 1.7 g of compound (P-41) shown in the table below was obtained.
 (有機金属化合物の調製)
 ハフニウムイソプロポキシド3gをTHF20gに溶解した。これに安息香酸2g、アクリル酸2g、及び化合物(P-41)1gをTHF20gで溶解した溶液を、室温で投入して混合溶液を得た。
 得られた混合溶液を65℃に温調下、イオン交換水2mLを加えて、24時間のゾル・ゲル反応を行った。反応終了後に沈殿物を回収し、アセトン/水(1:4、体積比)でかけ洗い洗浄を行った。次いで、40℃真空下で24時間の乾燥を行った。これにより、有機金属化合物を得た。
(Preparation of organometallic compounds)
3 g of hafnium isopropoxide was dissolved in 20 g of THF, and a solution of 2 g of benzoic acid, 2 g of acrylic acid, and 1 g of compound (P-41) dissolved in 20 g of THF was added thereto at room temperature to obtain a mixed solution.
The resulting mixed solution was adjusted to 65° C., and 2 mL of ion-exchanged water was added to carry out a sol-gel reaction for 24 hours. After the reaction was completed, the precipitate was collected and washed with acetone/water (1:4, volume ratio). Then, the precipitate was dried at 40° C. under vacuum for 24 hours. As a result, an organometallic compound was obtained.
 (メタルレジストの調製)
 得られた有機金属化合物0.1gをPGMEA3.0gに溶解させた後、孔径0.20μmのフィルター濾過を行い、不溶解の凝集体を除去した。これにより、メタルレジストを得た。
(Preparation of Metal Resist)
0.1 g of the obtained organometallic compound was dissolved in 3.0 g of PGMEA, and then filtered through a filter having a pore size of 0.20 μm to remove insoluble aggregates, thereby obtaining a metal resist.
 実施例42
 (ノニオンオキシム型化合物の調製)
 2-ブロモ-4’-(トリフルオロメチル)アセトフェノン2.7g(0.010モル)及びトリエチルアミン0.3g(0.030モル)を、アセトニトリル10gに溶解させ、その後、60℃温調下にて、メルカプト酢酸1.2g(0.012モル)を滴下投入し、6時間反応させた。
 その後、30℃で50%ヒドロキシルアミン水溶液2.0g(0.030モル)を滴下投入し、6時間攪拌を行った。析出物を濾過回収し、1%塩酸水溶液100mLでスラリー洗浄を行った後、再度濾過回収し、真空乾燥して固形物を得た。
 得られた固形物をジクロロメタン100g、トリエチルアミン2.0g(0.020モル)に溶解させた後、氷冷下で塩化ベンゾイル2.0g(0.015モル)を滴下し、1時間攪拌を行った。次いで、1%塩酸水溶液100mLを加えて攪拌し、その後、水層を除去して、ジクロロメタン層を得た。得られたジクロロメタン層について、イオン交換水100mLを用いた水洗を2回行った。水洗後、ジクロロメタン層を濃縮し、酢酸エチル/ヘキサンで再結晶を行った。これにより下記表に記載の化合物(P-42)2.2gを得た。
Example 42
(Preparation of nonionic oxime compounds)
2.7 g (0.010 mol) of 2-bromo-4'-(trifluoromethyl)acetophenone and 0.3 g (0.030 mol) of triethylamine were dissolved in 10 g of acetonitrile, and then 1.2 g (0.012 mol) of mercaptoacetic acid was added dropwise under temperature control at 60°C, and the mixture was allowed to react for 6 hours.
Thereafter, 2.0 g (0.030 mol) of a 50% aqueous hydroxylamine solution was added dropwise at 30° C., and the mixture was stirred for 6 hours. The precipitate was collected by filtration, washed with 100 mL of a 1% aqueous hydrochloric acid solution, and then collected by filtration again and dried in vacuum to obtain a solid.
The obtained solid was dissolved in 100 g of dichloromethane and 2.0 g (0.020 mol) of triethylamine, and then 2.0 g (0.015 mol) of benzoyl chloride was added dropwise under ice cooling, followed by stirring for 1 hour. Next, 100 mL of 1% aqueous hydrochloric acid was added and stirred, after which the water layer was removed to obtain a dichloromethane layer. The obtained dichloromethane layer was washed twice with 100 mL of ion-exchanged water. After washing, the dichloromethane layer was concentrated and recrystallized with ethyl acetate/hexane. As a result, 2.2 g of compound (P-42) shown in the table below was obtained.
 (有機金属化合物、メタルレジストの調製)
 化合物(P-41)に代えて化合物(P-42)を使用した以外は実施例41と同様の方法で有機金属化合物を得、メタルレジストを得た。
(Preparation of organometallic compounds and metal resists)
An organometallic compound was obtained in the same manner as in Example 41, except that compound (P-42) was used instead of compound (P-41), and thus a metal resist was obtained.
 実施例43
 (ノニオンオキシム型化合物の調製)
 2,6-ジフルオロアニソール1.4g(0.010モル)、テトラフルオロコハク酸1.7g(0.010モル)、及びジクロロメタン100gの溶液に、塩化アルミニウム4.0g(0.030モル)を分割投入した。その後、2時間攪拌を行った。次いで、水200gをゆっくり投入し、2時間攪拌して、その後、水層を除去してジクロロメタン層を得た。得られたジクロロメタン層について、さらに水洗を2回行った後、濃縮した。次いで、この濃縮物をアセトニトリル10gに溶解させた後に、30℃で50%ヒドロキシルアミン水溶液2.0g(0.030モル)を滴下投入し、6時間攪拌を行った。析出物を濾過回収し1%塩酸水溶液100mLでスラリー洗浄を行った後、再度濾過回収し、真空乾燥して固形物を得た。
 得られた固形物をジクロロメタン100g、ピリジン1.6g(0.020モル)に溶解させた後、氷冷下でペンタフルオロベンゼンスルホニルクロリド2.7g(0.010モル)を滴下し、1時間攪拌を行った。次いで、1%塩酸水溶液100mLを加えて攪拌し、その後、水層を除去してジクロロメタン層を得た。得られたジクロロメタン層について、イオン交換水100mLを用いた水洗を2回行った。水洗後、ジクロロメタン層を濃縮し、酢酸エチル/ヘキサンで再結晶を行って、下記表に記載の化合物(P-43)2.9gを得た。
Example 43
(Preparation of nonionic oxime compounds)
4.0 g (0.030 mol) of aluminum chloride was added in portions to a solution of 1.4 g (0.010 mol) of 2,6-difluoroanisole, 1.7 g (0.010 mol) of tetrafluorosuccinic acid, and 100 g of dichloromethane. Then, the mixture was stirred for 2 hours. Next, 200 g of water was slowly added, and the mixture was stirred for 2 hours. Then, the water layer was removed to obtain a dichloromethane layer. The obtained dichloromethane layer was further washed with water twice and then concentrated. Next, this concentrate was dissolved in 10 g of acetonitrile, and 2.0 g (0.030 mol) of a 50% aqueous hydroxylamine solution was added dropwise at 30° C. and stirred for 6 hours. The precipitate was collected by filtration and washed with 100 mL of a 1% aqueous hydrochloric acid solution, then collected by filtration again and dried in vacuum to obtain a solid.
The obtained solid was dissolved in 100 g of dichloromethane and 1.6 g (0.020 mol) of pyridine, and then 2.7 g (0.010 mol) of pentafluorobenzenesulfonyl chloride was added dropwise under ice cooling and stirred for 1 hour. Next, 100 mL of 1% aqueous hydrochloric acid was added and stirred, and then the water layer was removed to obtain a dichloromethane layer. The obtained dichloromethane layer was washed twice with 100 mL of ion-exchanged water. After washing, the dichloromethane layer was concentrated and recrystallized with ethyl acetate/hexane to obtain 2.9 g of compound (P-43) shown in the table below.
 (有機金属化合物、メタルレジストの調製)
 化合物(P-41)に代えて化合物(P-43)を使用した以外は実施例41と同様の方法で有機金属化合物を得、メタルレジストを得た。
(Preparation of organometallic compounds and metal resists)
An organometallic compound was obtained in the same manner as in Example 41, except that compound (P-43) was used instead of compound (P-41), and thus a metal resist was obtained.
 実施例44
 (ノニオンオキシム型化合物の調製)
 2-ブロモ-4’-(トリフルオロメチル)アセトフェノンを5-アセチル-2-クロロベンゾトリフルオリド2.2g(0.010モル)に変更し、塩化ベンゾイルをヘプタフルオロプロピオン酸クロリドに変更した以外は実施例42と同様に行って、下記表に記載の化合物(P-44)2.2gを得た。
Example 44
(Preparation of nonionic oxime compounds)
The same procedure as in Example 42 was carried out except that 2-bromo-4'-(trifluoromethyl)acetophenone was changed to 2.2 g (0.010 mol) of 5-acetyl-2-chlorobenzotrifluoride and benzoyl chloride was changed to heptafluoropropionic acid chloride, to obtain 2.2 g of compound (P-44) shown in the table below.
 (有機金属化合物、フォトレジストの調製)
 化合物(P-41)に代えて化合物(P-44)を使用した以外は実施例41と同様の方法で有機金属化合物を得、フォトレジストを得た。
(Preparation of organometallic compounds and photoresists)
An organometallic compound and a photoresist were obtained in the same manner as in Example 41, except that compound (P-44) was used in place of compound (P-41).
 実施例45
 (ノニオンオキシム型化合物の調製)
 2,6-ジフルオロアニソールをベンゼン2.1g(0.030モル)に変更し、テトラフルオロコハク酸をテトラフルオロフタル酸無水物2.2g(0.010モル)に変更し、ペンタフルオロベンゼンスルホニルクロリドをブタンスルホニルクロリドに変更した以外は実施例3と同様に行って、下記表に記載の化合物(P-45)2.2gを得た。
Example 45
(Preparation of nonionic oxime compounds)
The same procedure as in Example 3 was carried out except that 2,6-difluoroanisole was changed to 2.1 g (0.030 mol) of benzene, tetrafluorosuccinic acid was changed to 2.2 g (0.010 mol) of tetrafluorophthalic anhydride, and pentafluorobenzenesulfonyl chloride was changed to butanesulfonyl chloride, to obtain 2.2 g of compound (P-45) shown in the table below.
 (有機金属化合物、メタルレジストの調製)
 化合物(P-41)に代えて化合物(P-45)を使用した以外は実施例41と同様の方法で有機金属化合物を得、メタルレジストを得た。
(Preparation of organometallic compounds and metal resists)
An organometallic compound was obtained in the same manner as in Example 41, except that compound (P-45) was used instead of compound (P-41), and thus a metal resist was obtained.
 比較例41
 (ノニオンオキシム型化合物の調製)
 3-(2,4-ジフルオロベンゾイル)プロピオン酸をアセトフェノンにした以外は実施例41と同様に行って下記表に記載の化合物(P-46)1.8gを得た。
Comparative Example 41
(Preparation of nonionic oxime compounds)
The same procedure as in Example 41 was conducted except that acetophenone was used instead of 3-(2,4-difluorobenzoyl)propionic acid, thereby obtaining 1.8 g of the compound (P-46) shown in the following table.
 (有機金属化合物、メタルレジストの調製)
 化合物(P-41)に代えて化合物(P-46)を使用した以外は実施例41と同様の方法で有機金属化合物を得、メタルレジストを得た。
(Preparation of organometallic compounds and metal resists)
An organometallic compound was obtained in the same manner as in Example 41, except that compound (P-46) was used instead of compound (P-41), and thus a metal resist was obtained.
 比較例42
 (ノニオンオキシム型化合物の調製)
 3-(2,4-ジフルオロベンゾイル)プロピオン酸を4-(トリフルオロアセチル)アニソール変更し、無水酢酸をブタンスルホン酸クロリドに変更した以外は実施例41と同様に行って、下記表に記載の化合物(P-47)2.0gを得た。
Comparative Example 42
(Preparation of nonionic oxime compounds)
The same procedure as in Example 41 was carried out except that 3-(2,4-difluorobenzoyl)propionic acid was changed to 4-(trifluoroacetyl)anisole and acetic anhydride was changed to butanesulfonic acid chloride, to obtain 2.0 g of compound (P-47) shown in the table below.
 (有機金属化合物、メタルレジストの調製)
 化合物(P-41)に代えて化合物(P-47)を使用した以外は実施例41と同様の方法で有機金属化合物を得、メタルレジストを得た。
(Preparation of organometallic compounds and metal resists)
An organometallic compound was obtained in the same manner as in Example 41, except that compound (P-47) was used instead of compound (P-41), and thus a metal resist was obtained.
 比較例43
 (ノニオンオキシム型化合物の調製)
 3-(2,4-ジフルオロベンゾイル)プロピオン酸を3-ベンゾイルプロピオン酸にした以外は実施例41と同様に行って、下記表に記載の化合物(P-48)2.3gを得た。
Comparative Example 43
(Preparation of nonionic oxime compounds)
The same procedure as in Example 41 was carried out except that 3-benzoylpropionic acid was used instead of 3-(2,4-difluorobenzoyl)propionic acid, to obtain 2.3 g of the compound (P-48) shown in the following table.
 (有機金属化合物、メタルレジストの調製)
 化合物(P-41)に代えて化合物(P-48)を使用した以外は実施例41と同様の方法で有機金属化合物を得、メタルレジストを得た。
(Preparation of organometallic compounds and metal resists)
An organometallic compound was obtained in the same manner as in Example 41, except that compound (P-48) was used instead of compound (P-41), and thus a metal resist was obtained.
 実施例及び比較例で得られた化合物(P-41)~(P-48)について、上記<溶剤溶解性の評価方法>で溶剤溶解性を評価した。
 また、実施例及び比較例で得られたメタルレジストについて、上記<露光方法>で露光を行い、上記<感光性の評価方法2>で露光部の感光性を評価した。
 結果を下記表にまとめて示す。
The compounds (P-41) to (P-48) obtained in the Examples and Comparative Examples were evaluated for solvent solubility by the above-mentioned <Method for evaluating solvent solubility>.
Further, the metal resists obtained in the Examples and Comparative Examples were exposed by the above-mentioned <Exposure method>, and the photosensitivity of the exposed areas was evaluated by the above-mentioned <Photosensitivity evaluation method 2>.
The results are summarized in the table below.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記する。
[1] 金属又は金属酸化物(1)に、下記式(2-1a)で表される化合物が配位結合した構成を有する有機金属化合物。
Figure JPOXMLDOC01-appb-C000030
(式中、Ar11、Ar12、Ar13は同一又は異なって、芳香環構造、又は2個以上の芳香環が単結合又は連結基を介して結合した構造である。R11、R12はそれぞれ独立にハロゲン原子又はC1-5ハロアルキル基を示す。R13はハロゲン原子、C1-5アルキル基、C1-5アルコキシ基、C1-5ハロアルキル基、又はC1-5ハロアルコキシ基を示す。n11、n12はそれぞれ独立に1~5の整数を示し、n13は0~4の整数を示す。Lは単結合又は連結基を示し、X-は1価の対アニオンを示す。式中に示される芳香環は、前記基以外に置換基を有していても良い)
[2] 前記式(2-1a)で表される化合物が、下記式(2-1)で表される化合物である、[1]に記載の有機金属化合物。
Figure JPOXMLDOC01-appb-C000031
(式中、R11、R12はそれぞれ独立にハロゲン原子又はC1-5ハロアルキル基を示す。R13はハロゲン原子、C1-5アルキル基、C1-5アルコキシ基、C1-5ハロアルキル基、又はC1-5ハロアルコキシ基を示す。n11、n12はそれぞれ独立に1~5の整数を示し、n13は0~4の整数を示す。Lは単結合又は連結基を示し、X-は1価の対アニオンを示す。式中に示されるベンゼン環は、前記基以外に置換基を有していても良い)
[3] 1価の対アニオンがスルホン酸アニオン又はスルホニルイミドアニオンである、[1]又は[2]に記載の有機金属化合物。
[4] 金属又は金属酸化物(1)に、下記式(2-2)又は(2-3)で表される化合物が配位結合した構成を有する有機金属化合物。
Figure JPOXMLDOC01-appb-C000032
(式中、R1は置換基を有していても良い炭化水素基を示す。-L-(R2nで表される基は、式中に示される芳香環が有する置換基であり、前記Lは単結合又は連結基を示し、前記R2は前記金属又は金属酸化物(1)に配位する配位性基を示し、nは1以上の整数を示す。式中に示される芳香環は、前記基以外に置換基を有していても良い)
[5] 前記式中のR2が、ヒドロキシ基、カルボキシ基、リン酸基、リン酸モノエステル基、スルホン酸基、スルフィノ基、トリアゾール基、又はテトラゾール基である、[4]に記載の有機金属化合物。
[6] 金属又は金属酸化物(1)に、下記式(2-4)又は(2-5)で表される化合物が配位結合した構成を有する有機金属化合物。
Figure JPOXMLDOC01-appb-C000033
(式中、Ar1、Ar2は同一又は異なって、芳香環構造、又は2個以上の芳香環が単結合又は連結基を介して結合した構造を示す。R3はハロゲン原子又はハロゲン化炭化水素基を示す。R4は置換基を有していても良い炭化水素基、置換基を有していても良い炭化水素基の2個以上が単結合若しくは連結基を介して結合した基、又はシアノ基を示す。R5は-O(C=O)R基、-OS(=O)2R基、又は-OPO(OR)2基を示し、前記Rは炭化水素基又はハロゲン化炭化水素基を示す。n1は1~5の整数を示し、n2は1~4の整数を示す。Lは単結合又は連結基を示す。式中に示される芳香環は、前記基以外に置換基を有していても良い)
[7] 前記R3がフッ素原子又はトリフルオロメチル基である、[6]に記載の有機金属化合物。
[8] 前記金属又は金属酸化物(1)が、ハフニウム、ジルコニウム、スズ、コバルト、パラジウム、アンチモン、及びこれらの酸化物から選択される少なくとも1種である、[1]~[7]の何れか1つに記載の有機金属化合物。
[9] [1]~[8]の何れか1つに記載の有機金属化合物を含むフォトレジスト用感光材。
[10] [1]~[8]の何れか1つに記載の有機金属化合物の、フォトレジスト用感光材としての使用。
[11] [1]~[8]の何れか1つに記載の有機金属化合物を含む極端紫外線用感光材。
[12] [1]~[8]の何れか1つに記載の有機金属化合物の、極端紫外線用感光材としての使用。
[13] [1]~[8]の何れか1つに記載の有機金属化合物を含む電子線用感光材。
[14] [1]~[8]の何れか1つに記載の有機金属化合物の、電子線用感光材としての使用。
[15] [1]~[8]の何れか1つに記載の有機金属化合物と、溶剤と、を含むフォトレジスト。
[16] [1]~[8]の何れか1つに記載の有機金属化合物と溶剤を配合して、フォトレジストを製造する、フォトレジストの製造方法。
[17] 下記式(2-4)又は(2-5)で表される化合物。
Figure JPOXMLDOC01-appb-C000034
(式中、Ar1、Ar2は同一又は異なって、芳香環構造、又は2個以上の芳香環が単結合又は連結基を介して結合した構造を示す。R3はハロゲン原子又はハロゲン化炭化水素基を示す。R4は置換基を有していても良い炭化水素基、置換基を有していても良い炭化水素基の2個以上が単結合若しくは連結基を介して結合した基、又はシアノ基を示す。R5は-O(C=O)R基、-OS(=O)2R基、又は-OPO(OR)2基を示し、前記Rは炭化水素基又はハロゲン化炭化水素基を示す。n1は1~5の整数を示し、n2は1~4の整数を示す)
[18] 下記式(2-1a)で表される化合物。
Figure JPOXMLDOC01-appb-C000035
(式中、Ar11、Ar12、Ar13は同一又は異なって、芳香環構造、又は2個以上の芳香環が単結合又は連結基を介して結合した構造である。R11、R12はそれぞれ独立にハロゲン原子又はC1-5ハロアルキル基を示す。R13はハロゲン原子、C1-5アルキル基、C1-5アルコキシ基、C1-5ハロアルキル基、又はC1-5ハロアルコキシ基を示す。n11、n12はそれぞれ独立に1~5の整数を示し、n13は0~4の整数を示す。Lは単結合又は連結基を示し、X-は1価の対アニオンを示す。式中に示される芳香環は、前記基以外に置換基を有していても良い)
[19] [18]に記載の化合物を含む酸発生剤。
[20] [18]に記載の化合物の酸発生剤としての使用。
[21] [18]に記載の化合物を含む極端紫外線用酸発生剤。
[22] [18]に記載の化合物の極端紫外線用酸発生剤としての使用。
[23] [18]に記載の化合物を含む電子線用酸発生剤。
[24] [18]に記載の化合物の電子線用酸発生剤としての使用。
[25] [18]に記載の化合物と、感光性樹脂と、を含むフォトレジスト。
[26] [18]に記載の化合物と感光性樹脂を配合して、フォトレジストを製造する、フォトレジストの製造方法。
[27] [19]に記載の酸発生剤と、感光性樹脂と、を含むフォトレジスト。
[28] [19]に記載の酸発生剤と感光性樹脂配合して、フォトレジストを製造する、フォトレジストの製造方法。
In summary, the configuration of the present invention and its variations are described below.
[1] An organometallic compound having a structure in which a compound represented by the following formula (2-1a) is coordinately bonded to a metal or metal oxide (1):
Figure JPOXMLDOC01-appb-C000030
(In the formula, Ar 11 , Ar 12 , and Ar 13 are the same or different and each is an aromatic ring structure, or a structure in which two or more aromatic rings are bonded via a single bond or a linking group. R 11 and R 12 each independently represent a halogen atom or a C 1-5 haloalkyl group. R 13 represents a halogen atom, a C 1-5 alkyl group, a C 1-5 alkoxy group, a C 1-5 haloalkyl group, or a C 1-5 haloalkoxy group. n11 and n12 each independently represent an integer of 1 to 5, and n13 represents an integer of 0 to 4. L represents a single bond or a linking group, and X represents a monovalent counter anion. The aromatic rings represented in the formula may have a substituent other than the above groups.)
[2] The organometallic compound according to [1], wherein the compound represented by formula (2-1a) is a compound represented by the following formula (2-1):
Figure JPOXMLDOC01-appb-C000031
(In the formula, R 11 and R 12 each independently represent a halogen atom or a C 1-5 haloalkyl group. R 13 represents a halogen atom, a C 1-5 alkyl group, a C 1-5 alkoxy group, a C 1-5 haloalkyl group, or a C 1-5 haloalkoxy group. n11 and n12 each independently represent an integer of 1 to 5, and n13 represents an integer of 0 to 4. L represents a single bond or a linking group, and X represents a monovalent counter anion. The benzene ring represented in the formula may have a substituent other than the above groups.)
[3] The organometallic compound according to [1] or [2], wherein the monovalent counter anion is a sulfonate anion or a sulfonylimide anion.
[4] An organometallic compound having a structure in which a compound represented by the following formula (2-2) or (2-3) is coordinately bonded to a metal or metal oxide (1):
Figure JPOXMLDOC01-appb-C000032
(In the formula, R1 represents a hydrocarbon group which may have a substituent. The group represented by -L-( R2 ) n is a substituent possessed by the aromatic ring shown in the formula, said L represents a single bond or a linking group, said R2 represents a coordinating group which coordinates with said metal or metal oxide (1), and n represents an integer of 1 or more. The aromatic ring shown in the formula may have a substituent other than the above groups.)
[5] The organometallic compound according to [4], wherein R 2 in the formula is a hydroxy group, a carboxy group, a phosphoric acid group, a phosphoric acid monoester group, a sulfonic acid group, a sulfino group, a triazole group, or a tetrazole group.
[6] An organometallic compound having a structure in which a compound represented by the following formula (2-4) or (2-5) is coordinately bonded to a metal or metal oxide (1):
Figure JPOXMLDOC01-appb-C000033
(In the formula, Ar 1 and Ar 2 are the same or different and each represents an aromatic ring structure or a structure in which two or more aromatic rings are bonded via a single bond or a linking group. R 3 represents a halogen atom or a halogenated hydrocarbon group. R 4 represents a hydrocarbon group which may have a substituent, a group in which two or more hydrocarbon groups which may have a substituent are bonded via a single bond or a linking group, or a cyano group. R 5 represents an -O(C═O)R group, an -OS(═O) 2 R group, or an -OPO(OR) 2 group, where R represents a hydrocarbon group or a halogenated hydrocarbon group. n1 represents an integer of 1 to 5, and n2 represents an integer of 1 to 4. L represents a single bond or a linking group. The aromatic rings represented in the formula may have a substituent other than the above groups.)
[7] The organometallic compound according to [6], wherein R 3 is a fluorine atom or a trifluoromethyl group.
[8] The organometallic compound according to any one of [1] to [7], wherein the metal or metal oxide (1) is at least one selected from hafnium, zirconium, tin, cobalt, palladium, antimony, and oxides thereof.
[9] A photosensitive material for photoresist, comprising the organometallic compound according to any one of [1] to [8].
[10] Use of the organometallic compound according to any one of [1] to [8] as a photosensitive material for photoresist.
[11] A photosensitive material for extreme ultraviolet rays, comprising the organometallic compound according to any one of [1] to [8].
[12] Use of the organometallic compound according to any one of [1] to [8] as a photosensitive material for extreme ultraviolet rays.
[13] An electron beam photosensitive material comprising the organometallic compound according to any one of [1] to [8].
[14] Use of the organometallic compound according to any one of [1] to [8] as an electron beam photosensitive material.
[15] A photoresist comprising the organometallic compound according to any one of [1] to [8] and a solvent.
[16] A method for producing a photoresist, comprising mixing the organometallic compound according to any one of [1] to [8] with a solvent to produce a photoresist.
[17] A compound represented by the following formula (2-4) or (2-5):
Figure JPOXMLDOC01-appb-C000034
(In the formula, Ar 1 and Ar 2 are the same or different and each represents an aromatic ring structure or a structure in which two or more aromatic rings are bonded via a single bond or a linking group. R 3 represents a halogen atom or a halogenated hydrocarbon group. R 4 represents a hydrocarbon group which may have a substituent, a group in which two or more hydrocarbon groups which may have a substituent are bonded via a single bond or a linking group, or a cyano group. R 5 represents a -O(C=O)R group, a -OS(=O) 2 R group, or a -OPO(OR) 2 group, where R represents a hydrocarbon group or a halogenated hydrocarbon group. n1 represents an integer from 1 to 5, and n2 represents an integer from 1 to 4.)
[18] A compound represented by the following formula (2-1a):
Figure JPOXMLDOC01-appb-C000035
(In the formula, Ar 11 , Ar 12 , and Ar 13 are the same or different and each is an aromatic ring structure, or a structure in which two or more aromatic rings are bonded via a single bond or a linking group. R 11 and R 12 each independently represent a halogen atom or a C 1-5 haloalkyl group. R 13 represents a halogen atom, a C 1-5 alkyl group, a C 1-5 alkoxy group, a C 1-5 haloalkyl group, or a C 1-5 haloalkoxy group. n11 and n12 each independently represent an integer of 1 to 5, and n13 represents an integer of 0 to 4. L represents a single bond or a linking group, and X represents a monovalent counter anion. The aromatic rings represented in the formula may have a substituent other than the above groups.)
[19] An acid generator comprising the compound according to [18].
[20] Use of the compound according to [18] as an acid generator.
[21] An acid generator for extreme ultraviolet ray containing the compound according to [18].
[22] Use of the compound according to [18] as an acid generator for extreme ultraviolet radiation.
[23] An electron beam acid generator comprising the compound according to [18].
[24] Use of the compound according to [18] as an electron beam acid generator.
[25] A photoresist comprising the compound according to [18] and a photosensitive resin.
[26] A method for producing a photoresist, comprising blending the compound according to [18] with a photosensitive resin to produce a photoresist.
[27] A photoresist comprising the acid generator according to [19] and a photosensitive resin.
[28] A method for producing a photoresist, comprising blending the acid generator according to [19] with a photosensitive resin to produce a photoresist.
 本発明の有機金属化合物は、溶剤に対して良好な溶解性を示す。そして、前記有機金属化合物は優れた光応答性を有し、光線を照射すると、照射する光線が超短波長の光線であっても効率よく感受して、強靱性を有する凝集体を形成する。そのため、前記有機金属化合物は、フォトレジストの形成材料として好適に使用することができる。 The organometallic compound of the present invention exhibits good solubility in solvents. Furthermore, the organometallic compound has excellent photoresponsiveness, and when irradiated with light, it efficiently senses even light of an ultrashort wavelength and forms tough aggregates. Therefore, the organometallic compound can be suitably used as a material for forming a photoresist.

Claims (12)

  1.  金属又は金属酸化物(1)に、下記配位性化合物(2)が配位結合した構成を有する有機金属化合物。
    配位性化合物(2):下記式(2-1)~(2-5)から選択される少なくとも1種の化合物
    Figure JPOXMLDOC01-appb-C000001
    (式中、R11、R12はそれぞれ独立にハロゲン原子又はC1-5ハロアルキル基を示す。R13はハロゲン原子、C1-5アルキル基、C1-5アルコキシ基、C1-5ハロアルキル基、又はC1-5ハロアルコキシ基を示す。n11、n12はそれぞれ独立に1~5の整数を示し、n13は0~4の整数を示す。Lは単結合又は連結基を示し、X-は1価の対アニオンを示す。R1は置換基を有していても良い炭化水素基を示す。R2は金属又は金属酸化物(1)に配位する配位性基を示し、nは1以上の整数を示す。Ar1、Ar2は同一又は異なって、芳香環構造、又は2個以上の芳香環が単結合又は連結基を介して結合した構造を示す。R3はハロゲン原子又はハロゲン化炭化水素基を示す。R4は置換基を有していても良い炭化水素基、置換基を有していても良い炭化水素基の2個以上が単結合若しくは連結基を介して結合した基、又はシアノ基を示す。R5は-O(C=O)R基、-OS(=O)2R基、又は-OPO(OR)2基を示し、前記Rは炭化水素基又はハロゲン化炭化水素基を示す。n1は1~5の整数を示し、n2は1~4の整数を示す。式中に示される芳香環は、前記基以外に置換基を有していても良い)
    An organometallic compound having a structure in which a coordinating compound (2) shown below is coordinately bonded to a metal or metal oxide (1).
    Coordinating compound (2): at least one compound selected from the following formulae (2-1) to (2-5):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 11 and R 12 each independently represent a halogen atom or a C 1-5 haloalkyl group. R 13 represents a halogen atom, a C 1-5 alkyl group, a C 1-5 alkoxy group, a C 1-5 haloalkyl group, or a C 1-5 haloalkoxy group. n11 and n12 each independently represent an integer from 1 to 5, and n13 represents an integer from 0 to 4. L represents a single bond or a linking group, and X represents a monovalent counter anion. R 1 represents a hydrocarbon group which may have a substituent. R 2 represents a coordinating group that coordinates to a metal or metal oxide (1), and n represents an integer of 1 or more. Ar 1 and Ar 2 are the same or different and represent an aromatic ring structure, or a structure in which two or more aromatic rings are bonded via a single bond or a linking group. R 3 represents a halogen atom or a halogenated hydrocarbon group. R R 4 represents a hydrocarbon group which may have a substituent, a group in which two or more hydrocarbon groups which may have a substituent are bonded via a single bond or a linking group, or a cyano group. R 5 represents an -O(C=O)R group, an -OS(=O) 2 R group, or an -OPO(OR) 2 group, where R represents a hydrocarbon group or a halogenated hydrocarbon group. n1 represents an integer of 1 to 5, and n2 represents an integer of 1 to 4. The aromatic ring shown in the formula may have a substituent other than the above groups.
  2.  前記式中のR2が、ヒドロキシ基、カルボキシ基、リン酸基、リン酸モノエステル基、スルホン酸基、スルフィノ基、トリアゾール基、又はテトラゾール基である、請求項1に記載の有機金属化合物。 2. The organometallic compound of claim 1, wherein R2 in the formula is a hydroxy group, a carboxy group, a phosphoric acid group, a phosphoric acid monoester group, a sulfonic acid group, a sulfino group, a triazole group, or a tetrazole group.
  3.  1価の対アニオンがスルホン酸アニオン又はスルホニルイミドアニオンである、請求項1に記載の有機金属化合物。 The organometallic compound according to claim 1, wherein the monovalent counter anion is a sulfonate anion or a sulfonylimide anion.
  4.  前記金属又は金属酸化物(1)が、ハフニウム、ジルコニウム、スズ、コバルト、パラジウム、アンチモン、及びこれらの酸化物から選択される少なくとも1種である、請求項1に記載の有機金属化合物。 The organometallic compound according to claim 1, wherein the metal or metal oxide (1) is at least one selected from hafnium, zirconium, tin, cobalt, palladium, antimony, and oxides thereof.
  5.  請求項1~4の何れか1項に記載の有機金属化合物を含むフォトレジスト用感光材。 A photosensitive material for photoresist containing the organometallic compound according to any one of claims 1 to 4.
  6.  極端紫外線用感光材又は電子線用感光材である、請求項5に記載のフォトレジスト用感光材。 The photoresist photosensitive material according to claim 5, which is an extreme ultraviolet photosensitive material or an electron beam photosensitive material.
  7.  請求項1~4の何れか1項に記載の有機金属化合物と、溶剤と、を含むフォトレジスト。 A photoresist comprising the organometallic compound according to any one of claims 1 to 4 and a solvent.
  8.  下記式(2-4)又は(2-5)で表される化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Ar1、Ar2は同一又は異なって、芳香環構造、又は2個以上の芳香環が単結合又は連結基を介して結合した構造を示す。R3はハロゲン原子又はハロゲン化炭化水素基を示す。R4は置換基を有していても良い炭化水素基、置換基を有していても良い炭化水素基の2個以上が単結合若しくは連結基を介して結合した基、又はシアノ基を示す。R5は-O(C=O)R基、-OS(=O)2R基、又は-OPO(OR)2基を示し、前記Rは炭化水素基又はハロゲン化炭化水素基を示す。n1は1~5の整数を示し、n2は1~4の整数を示す。式中に示される芳香環は、前記基以外に置換基を有していても良い)
    A compound represented by the following formula (2-4) or (2-5).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, Ar 1 and Ar 2 are the same or different and each represents an aromatic ring structure or a structure in which two or more aromatic rings are bonded via a single bond or a linking group. R 3 represents a halogen atom or a halogenated hydrocarbon group. R 4 represents a hydrocarbon group which may have a substituent, a group in which two or more hydrocarbon groups which may have a substituent are bonded via a single bond or a linking group, or a cyano group. R 5 represents a -O(C=O)R group, a -OS(=O) 2 R group, or a -OPO(OR) 2 group, where R represents a hydrocarbon group or a halogenated hydrocarbon group. n1 represents an integer of 1 to 5, and n2 represents an integer of 1 to 4. The aromatic rings represented in the formula may have a substituent other than the above groups.)
  9.  下記式(2-1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R11、R12はそれぞれ独立にハロゲン原子又はC1-5ハロアルキル基を示す。R13はハロゲン原子、C1-5アルキル基、C1-5アルコキシ基、C1-5ハロアルキル基、又はC1-5ハロアルコキシ基を示す。n11、n12はそれぞれ独立に1~5の整数を示し、n13は0~4の整数を示す。Lは単結合又は連結基を示し、X-は1価の対アニオンを示す。式中に示されるベンゼン環は、前記基以外に置換基を有していても良い)
    A compound represented by the following formula (2-1):
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 11 and R 12 each independently represent a halogen atom or a C 1-5 haloalkyl group. R 13 represents a halogen atom, a C 1-5 alkyl group, a C 1-5 alkoxy group, a C 1-5 haloalkyl group, or a C 1-5 haloalkoxy group. n11 and n12 each independently represent an integer of 1 to 5, and n13 represents an integer of 0 to 4. L represents a single bond or a linking group, and X represents a monovalent counter anion. The benzene ring represented in the formula may have a substituent other than the above groups.)
  10.  請求項9に記載の化合物を含む酸発生剤。 An acid generator comprising the compound according to claim 9.
  11.  極端紫外線用酸発生剤又は電子線用酸発生剤である、請求項10に記載の酸発生剤。 The acid generator according to claim 10, which is an acid generator for extreme ultraviolet rays or an acid generator for electron beams.
  12.  請求項10又は11に記載の酸発生剤と、感光性樹脂と、を含むフォトレジスト。 A photoresist comprising the acid generator according to claim 10 or 11 and a photosensitive resin.
PCT/JP2023/030946 2022-11-09 2023-08-28 Organometallic compound, sulfonium salt-type compound, nonion oxime-type compound, photosensitive material, acid generator, and photoresist WO2024100964A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2022-179229 2022-11-09
JP2022-179788 2022-11-09
JP2022179789A JP2024069029A (en) 2022-11-09 2022-11-09 Organometallic compound, photosensitive material for photoresist, and photoresist
JP2022-179228 2022-11-09
JP2022179229A JP2024068697A (en) 2022-11-09 2022-11-09 Organometallic compound, photosensitive material for photoresist, and photoresist
JP2022-179789 2022-11-09
JP2022179228A JP2024068696A (en) 2022-11-09 2022-11-09 Sulfonium salt, acid generator containing the sulfonium salt, and photoresist containing the sulfonium salt
JP2022179788A JP2024069028A (en) 2022-11-09 2022-11-09 Nonionic oxime compound, organometallic compound, acid generator, resist photosensitive material, and resist

Publications (1)

Publication Number Publication Date
WO2024100964A1 true WO2024100964A1 (en) 2024-05-16

Family

ID=91032550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030946 WO2024100964A1 (en) 2022-11-09 2023-08-28 Organometallic compound, sulfonium salt-type compound, nonion oxime-type compound, photosensitive material, acid generator, and photoresist

Country Status (2)

Country Link
TW (1) TW202423895A (en)
WO (1) WO2024100964A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366171A (en) * 1986-08-21 1988-03-24 バスフ アクチェンゲゼルシャフト Quinoline-8-carboxylic acid derivative, manufacture and herbicide
JP2004361577A (en) * 2003-06-03 2004-12-24 Fuji Photo Film Co Ltd Photosensitive composition
JP2014088463A (en) * 2012-10-29 2014-05-15 San Apro Kk Optical acid generator and resin composition for photo-lithography
JP2014234348A (en) * 2013-05-31 2014-12-15 サンアプロ株式会社 Sulfonium salt and optical acid generator
JP2015030681A (en) * 2013-07-31 2015-02-16 学校法人 中央大学 Metal complex, method for producing the same, oxime sulfonate compound used for the same and photoacid generator using the same
JP2015157807A (en) * 2014-02-14 2015-09-03 コーネル ユニバーシティCornell University Metal oxide nanoparticle and photoresist composition
WO2016088655A1 (en) * 2014-12-02 2016-06-09 Jsr株式会社 Photoresist composition, method for manufacturing same, and method for forming resist pattern
WO2018110399A1 (en) * 2016-12-12 2018-06-21 サンアプロ株式会社 Photoacid generator and resin composition for photolithography
JP2018105957A (en) * 2016-12-26 2018-07-05 サンアプロ株式会社 Photoacid generator and resin composition for photolithography
JP2018112670A (en) * 2017-01-12 2018-07-19 サンアプロ株式会社 Photoacid generator and resin composition for photolithography
JP2020086083A (en) * 2018-11-22 2020-06-04 サンアプロ株式会社 Photo-acid generator and resin composition for photolithography
JP2021102604A (en) * 2019-12-24 2021-07-15 国立研究開発法人産業技術総合研究所 Organically modified metal oxide nanoparticle, solution containing organically modified metal oxide nanoparticle, resist composition containing organically modified metal oxide nanoparticle and resist pattern formation method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366171A (en) * 1986-08-21 1988-03-24 バスフ アクチェンゲゼルシャフト Quinoline-8-carboxylic acid derivative, manufacture and herbicide
JP2004361577A (en) * 2003-06-03 2004-12-24 Fuji Photo Film Co Ltd Photosensitive composition
JP2014088463A (en) * 2012-10-29 2014-05-15 San Apro Kk Optical acid generator and resin composition for photo-lithography
JP2014234348A (en) * 2013-05-31 2014-12-15 サンアプロ株式会社 Sulfonium salt and optical acid generator
JP2015030681A (en) * 2013-07-31 2015-02-16 学校法人 中央大学 Metal complex, method for producing the same, oxime sulfonate compound used for the same and photoacid generator using the same
JP2015157807A (en) * 2014-02-14 2015-09-03 コーネル ユニバーシティCornell University Metal oxide nanoparticle and photoresist composition
WO2016088655A1 (en) * 2014-12-02 2016-06-09 Jsr株式会社 Photoresist composition, method for manufacturing same, and method for forming resist pattern
WO2018110399A1 (en) * 2016-12-12 2018-06-21 サンアプロ株式会社 Photoacid generator and resin composition for photolithography
JP2018105957A (en) * 2016-12-26 2018-07-05 サンアプロ株式会社 Photoacid generator and resin composition for photolithography
JP2018112670A (en) * 2017-01-12 2018-07-19 サンアプロ株式会社 Photoacid generator and resin composition for photolithography
JP2020086083A (en) * 2018-11-22 2020-06-04 サンアプロ株式会社 Photo-acid generator and resin composition for photolithography
JP2021102604A (en) * 2019-12-24 2021-07-15 国立研究開発法人産業技術総合研究所 Organically modified metal oxide nanoparticle, solution containing organically modified metal oxide nanoparticle, resist composition containing organically modified metal oxide nanoparticle and resist pattern formation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KODAMA, SHINTARO: "Highly Efficient Transformation of Oxime Esters into alpha-Oxygenated Imines by Metal Complexation", FINAL RESEARCH REPORT OF GRANTS-IN-AID FOR SCIENTIFIC RESEARCH, 2019 *

Also Published As

Publication number Publication date
TW202423895A (en) 2024-06-16

Similar Documents

Publication Publication Date Title
TWI412893B (en) Resist lower-layer composition containing thermal acid generator, resist lower layer film-formed substrate, and patterning process
US20070264596A1 (en) Thermal acid generator, resist undercoat material and patterning process
EP1978408B1 (en) Negative resist composition and pattern forming method using the same
TW200424159A (en) Acid generators, sulfonic acids, sulfonyl halides, and radiation-sensitive resin compositions
CN109180722A (en) Stable metallic compound, their compositions and their application method
TW201327056A (en) Silicon compounds, condensate and composition using the same, and patterning process using the same
KR20180137523A (en) Silsesquioxane resin and oxamine composition
TWI541609B (en) Gap embedding composition, method of embedding gap and method of producing semiconductor device by using the composition
JP6989532B2 (en) Silicon-rich silsesquioxane resin
TWI429665B (en) Photosensitive resin and photosensitive composition
US8153836B2 (en) Silsesquioxane compound mixture, hydrolyzable silane compound, making methods, resist composition, patterning process, and substrate processing
JP2009086357A (en) Photosensitive resin composition, pattern manufacturing method using the composition, and electronic device
TWI726119B (en) Sensitizing radiation-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, and manufacturing method of electronic component
WO2024100964A1 (en) Organometallic compound, sulfonium salt-type compound, nonion oxime-type compound, photosensitive material, acid generator, and photoresist
TWI322333B (en) Compound dissolution inhibiting agent, positive resist composition, and resist pattern formation method
JP6046540B2 (en) Sulfonium salt, photoacid generator, curable composition, and resist composition
JP2012168503A (en) Gap embedding composition, method for embedding gap and method for manufacturing semiconductor device by using the composition
JP2024069028A (en) Nonionic oxime compound, organometallic compound, acid generator, resist photosensitive material, and resist
JP7017909B2 (en) Chemically amplified positive photoresist composition
WO2024128017A1 (en) Sulfonium salt, acid generating agent, and photoresist
JP2024068697A (en) Organometallic compound, photosensitive material for photoresist, and photoresist
JP2024069029A (en) Organometallic compound, photosensitive material for photoresist, and photoresist
KR20150071013A (en) Resist composition
KR20130021323A (en) Resist pattern forming method, resist pattern, crosslinkable negative resist composition, nanoimprint mold and photomask
JP2024068696A (en) Sulfonium salt, acid generator containing the sulfonium salt, and photoresist containing the sulfonium salt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888319

Country of ref document: EP

Kind code of ref document: A1