[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024199417A1 - 一种光收发组件、光模块和通信设备 - Google Patents

一种光收发组件、光模块和通信设备 Download PDF

Info

Publication number
WO2024199417A1
WO2024199417A1 PCT/CN2024/084689 CN2024084689W WO2024199417A1 WO 2024199417 A1 WO2024199417 A1 WO 2024199417A1 CN 2024084689 W CN2024084689 W CN 2024084689W WO 2024199417 A1 WO2024199417 A1 WO 2024199417A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
transceiver assembly
optical transceiver
waveguide
receiver
Prior art date
Application number
PCT/CN2024/084689
Other languages
English (en)
French (fr)
Inventor
彭勃
贾文平
卢阐
李惠萍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024199417A1 publication Critical patent/WO2024199417A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the present application relates to the field of communication technology, and in particular to an optical transceiver component, an optical module and a communication device.
  • the lightweight design of communication equipment has become the main development direction.
  • the paper-like structural design has gradually become the mainstream of the market.
  • the paper-like structural design can significantly reduce the thickness of the router, so that the router can present a thin and light feature similar to paper in appearance and structure, which significantly reduces the space occupied by the router and helps to improve the flexibility of the router during deployment.
  • bidirectional optical transceiver components are usually included.
  • the optical transceiver components can realize the conversion between optical signals and electrical signals, thereby realizing the signal connection between the communication equipment and the optical fiber.
  • the present application provides an optical transceiver assembly, an optical module and a communication device that are conducive to achieving a lightweight design.
  • an optical transceiver assembly which may include a planar structure, an optical transmitter, an optical receiver, a waveguide structure and an optical fiber.
  • the planar structure has a mounting surface, which can provide an effective mounting position for devices such as optical transmitters and optical receivers.
  • the planar structure has a conductive circuit, and the optical transmitter and the optical receiver can be conductively connected to the conductive circuit to achieve the transmission requirements of power supply or electrical signals.
  • the optical transmitter can convert the electrical signal into an optical signal of a first wavelength for external transmission.
  • the optical transmitter is arranged on the mounting surface and electrically connected to the conductive circuit.
  • the optical receiver is used to receive an optical signal of a second wavelength and convert the optical signal into an electrical signal.
  • the waveguide structure is coupled with the optical transmitter, the optical receiver and the optical fiber to realize the transmission of optical signals between the optical transmitter, the optical receiver and the optical fiber.
  • the optical transmitter and the optical receiver are both arranged in the planar structure, which is conducive to packaging the optical transceiver assembly in the form of a planar package, which is conducive to reducing the thickness of the optical transceiver assembly.
  • the optical transceiver assembly may further include a beam splitter, which is disposed on the mounting surface and is located in the optical path of the optical signal of the first wavelength.
  • the waveguide structure includes a first waveguide bridge and a second waveguide bridge, the first waveguide bridge is used to transmit the optical signal of the first wavelength and the optical signal of the second wavelength, and the second waveguide bridge is used to transmit the optical signal of the second wavelength.
  • One end of the first waveguide bridge is coupled to the beam splitter, and the other end is coupled to the first end; one end of the second waveguide bridge is coupled to the beam splitter, and the other end is coupled to the optical receiver.
  • the beam splitter is coupled to the optical fiber through the first waveguide bridge, and the beam splitter is coupled to the optical receiver through the second waveguide bridge, which can improve the flexibility of the position setting of the optical receiver and the optical fiber, and does not require manual calibration of the coupling, which is conducive to reducing the difficulty of preparation and simplifying the process flow.
  • the optical transceiver assembly may further include a lens, which is located in the optical path between the optical transmitter and the beam splitter and is used to focus the optical signal emitted by the optical transmitter.
  • the optical transceiver assembly may further include a light detector, which is disposed on the mounting surface and electrically connected to the conductive circuit.
  • the light detector is used to monitor the power of the optical signal emitted by the optical transmitter.
  • the light detector and the optical transmitter may be connected to a corresponding control circuit, so that the control circuit can effectively adjust the optical output power of the optical transmitter according to the power information detected by the light detector.
  • the optical transceiver assembly may include a packaging shell, the packaging shell is sealed on a first mounting surface, and the optical transmitter, optical receiver, waveguide structure and the first end of the optical fiber are all located in the space surrounded by the packaging shell and the first mounting surface, so that the packaging shell can effectively protect the optical transmitter, optical receiver, waveguide structure and optical fiber, and is also conducive to improving the integrity of the optical transceiver assembly.
  • the packaging shell has a mounting hole, the optical fiber is inserted and fixed in the mounting hole, and the second end of the optical fiber extends out of the outer surface of the packaging shell.
  • the optical transceiver assembly may further include a base.
  • the base includes a first panel and a first side surface perpendicular to the first panel, the optical receiver is disposed on the first panel, and the first side surface is fixedly attached to the mounting surface of the planar structure.
  • the optical transceiver assembly also includes a conductive adhesive.
  • the conductive adhesive extends from the first board surface to the mounting surface, and one end of the conductive adhesive is electrically connected to the optical receiver, and the other end is electrically connected to the conductive circuit.
  • the conductive adhesive can be used to achieve conductive connection between the optical receiver and the planar structure, which can effectively improve the electrical connection effect between the optical receiver and the planar structure, and is conducive to ensuring the transmission performance of the signal.
  • the optical transceiver assembly may further include a planar optical waveguide chip, which may be disposed on the mounting surface.
  • the planar optical waveguide chip has a waveguide structure. The use of the planar optical waveguide chip can effectively improve the integration of the optical transceiver assembly, and also contribute to the efficient transmission of the optical communication link.
  • the planar optical waveguide chip may have a first port, a second port, a third port and a splitter structure.
  • the first port is coupled to an optical transmitter and is used to receive an optical signal of a first wavelength emitted by the optical transmitter.
  • the second port is coupled to an optical detector, and the second port is coupled to the first port through a splitter structure.
  • the splitter structure is used to output part of the optical signal of the first wavelength received by the first port to the optical detector through the second port, and the third port is coupled to the optical receiver to output an optical signal of a second wavelength.
  • the planar optical waveguide chip may have the functions of splitting and waveguide transmission, which can improve the convenience of low-light transceiver components during preparation, help simplify the preparation process, and improve preparation efficiency.
  • the optical transceiver assembly includes a packaging shell, the packaging shell is sealed on a first mounting surface, and the planar optical waveguide chip, the optical transmitter, the optical receiver, and the first end of the optical fiber are all located in a space surrounded by the packaging shell and the first mounting surface.
  • the packaging shell has a mounting hole, the optical fiber is fixed in the mounting hole, and the second end of the optical fiber extends out of the outer surface of the packaging shell.
  • the optical transceiver assembly using the planar optical waveguide chip can be packaged using the packaging shell, which is conducive to improving the flexibility during preparation.
  • the optical transceiver assembly includes a package body, the package body encapsulates the planar optical waveguide chip, the optical transmitter, the optical receiver and the first end of the optical fiber, and the second end of the optical fiber extends out of the package body.
  • the optical transceiver assembly using the planar optical waveguide chip can be packaged in a plastic package, which has good manufacturing flexibility.
  • the planar structure is a redistribution layer
  • the waveguide structure is located in the redistribution layer, that is, the waveguide structure or the planar optical waveguide chip can be integrated in the planar structure, which helps to reduce the thickness of the optical transceiver assembly.
  • the optical fiber may be located in the redistribution layer, the first end of the optical fiber may be coupled to the waveguide structure in the redistribution layer, and the second end of the optical fiber extends out of the side of the redistribution layer to facilitate coupling with an external optical fiber.
  • the packaging body of the optical transceiver assembly can wrap the optical transmitter and the optical receiver, so as to provide good protection for the optical transmitter and the optical receiver.
  • the optical transceiver assembly may further include a transimpedance amplifier, which is disposed on the mounting surface and electrically connected to the conductive line.
  • the transimpedance amplifier may be connected to the optical receiver to amplify the optical signal of the second wavelength received by the optical receiver.
  • the present application also provides an optical module, which may include a circuit board, a laser driving module arranged in the circuit board and the above-mentioned optical transceiver assembly, wherein the laser driving module is electrically connected to the optical transmitter and is used to control the optical output power of the optical transmitter.
  • the optical module using the above-mentioned optical transceiver assembly can effectively realize the conversion between optical signals and electrical signals, and is conducive to realizing the miniaturization and lightweight design of the optical module, which can improve the application range of the optical module and the convenience of preparation.
  • the present application also provides a communication device, which may include a controller and the above-mentioned optical transceiver assembly or optical module.
  • the controller may be electrically connected to the optical transceiver assembly and may be used to effectively process the electrical signal received by the optical transceiver assembly.
  • the controller may also send a control signal to the optical transceiver assembly to effectively control the working state of the optical transceiver assembly.
  • FIG2 is a structural block diagram of an optical transceiver assembly provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of an optical transceiver assembly during preparation provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of a partial structure of an optical transceiver assembly provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of another optical transceiver assembly provided in an embodiment of the present application.
  • FIG11 is a flowchart of a process for preparing another optical transceiver assembly provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of the structure of an optical transceiver assembly during preparation provided in an embodiment of the present application.
  • FIG13 is another schematic diagram of the structure of an optical transceiver assembly during preparation provided by an embodiment of the present application.
  • FIG14 is another schematic diagram of the structure of an optical transceiver assembly during preparation provided by an embodiment of the present application.
  • FIG15 is another structural schematic diagram of an optical transceiver assembly during preparation provided by an embodiment of the present application.
  • FIG16 is another schematic diagram of the structure of an optical transceiver assembly during preparation provided by an embodiment of the present application.
  • FIG17 is another schematic diagram of the structure of an optical transceiver assembly during preparation provided by an embodiment of the present application.
  • FIG18 is another schematic diagram of the structure of an optical transceiver assembly during preparation provided by an embodiment of the present application.
  • FIG19 is a schematic diagram of the structure of an optical transceiver assembly provided in an embodiment of the present application after preparation
  • FIG20 is a schematic diagram of the structure of another optical transceiver assembly provided in an embodiment of the present application.
  • FIG21 is a schematic diagram of the structure of another optical transceiver assembly provided in an embodiment of the present application.
  • FIG22 is a flowchart of a process for preparing another optical transceiver assembly provided in an embodiment of the present application.
  • FIG23 is a schematic diagram of the structure of an optical transceiver assembly during preparation provided in an embodiment of the present application.
  • FIG24 is another schematic diagram of the structure of an optical transceiver assembly during preparation provided by an embodiment of the present application.
  • FIG25 is another structural schematic diagram of an optical transceiver assembly provided in an embodiment of the present application during preparation
  • FIG26 is another schematic diagram of the structure of an optical transceiver assembly during preparation provided by an embodiment of the present application.
  • FIG27 is another schematic diagram of the structure of an optical transceiver assembly during preparation provided by an embodiment of the present application.
  • FIG30 is another structural schematic diagram of an optical transceiver assembly provided in an embodiment of the present application during preparation
  • FIG31 is a schematic diagram of the structure of an optical transceiver assembly provided in an embodiment of the present application after preparation
  • data information is usually transmitted in the form of optical signals in media such as optical fibers or waveguides.
  • the processor since the processor uses electrical signals, in order to facilitate the processing of data information, it is necessary to convert the data information in the form of optical signals into the form of electrical signals.
  • the main function of the optical transceiver component is to realize the mutual conversion between the above optical signals and electrical signals. Therefore, in the optoelectronic communication system, the role of the optical transceiver component is particularly important.
  • the communication device is an optical modem (also called an optical modem).
  • the optical modem may include a housing 01, a circuit board 02, a controller 03, and an optical transceiver assembly 04 and other devices arranged in the housing 01.
  • the optical transceiver assembly 04 and the controller 03 may be arranged on the circuit board 02 and electrically connected to the conductive circuit (not shown in the figure) in the circuit board 02.
  • the optical transceiver assembly 04 may be electrically connected to the controller 03 through the conductive circuit in the circuit board 02, thereby realizing the transmission of electrical signals between the optical transceiver assembly 04 and the controller 03.
  • the optical transceiver assembly 04 may also be connected to the optical fiber 05, thereby realizing the transmission of optical signals between the optical transceiver assembly 04 and the optical fiber 05.
  • the optical transceiver assembly 04 may convert the electrical signal into an optical signal and then transmit it to the optical fiber 05 for transmission, thereby realizing the signal transmission between the optical modem and other remote devices.
  • the optical transceiver assembly 04 may also convert the optical signal transmitted in the optical fiber 05 into an electrical signal and then transmit it to the controller 03.
  • a plug-in coaxial tube shell packaging architecture (transistor-outline, TO) is generally adopted, which makes the thickness dimension H of the optical transceiver assembly 04 relatively large, restricting the lightweight design of the communication device.
  • an embodiment of the present application provides an optical transceiver assembly that is conducive to achieving a lightweight design.
  • references to "one embodiment” and the like described in this specification mean that one or more embodiments of the present application include a particular feature, structure, or characteristic described in conjunction with the embodiment. In some embodiments, “in other embodiments”, etc. do not necessarily refer to the same embodiment, but mean “one or more but not all embodiments", unless otherwise specifically emphasized.
  • the terms “including”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized.
  • the optical transceiver assembly 10 may include a planar structure 11, an optical transmitter 12, an optical receiver 13, a waveguide structure 14, and an optical fiber 15.
  • the planar structure 11 has a mounting surface 110, which can provide an effective mounting position for devices such as the optical transmitter 12 and the optical receiver 13.
  • the planar structure 11 has a conductive circuit (not shown in the figure), and some active devices in the optical transceiver assembly 10 (such as the optical transmitter 12 and the optical receiver 13) can be conductively connected to the conductive circuit, thereby realizing the power supply of the active device or the transmission of electrical signals.
  • the optical transmitter 12 can convert the electrical signal into an optical signal for external transmission.
  • the optical transmitter 12 is arranged on the mounting surface 110 and is electrically connected to the conductive circuit.
  • the optical receiver 13 is used to receive the optical signal and convert the optical signal into an electrical signal.
  • the waveguide structure 14 is coupled with the optical transmitter 12, the optical receiver 13, and the optical fiber 15 to realize the transmission of the optical signal between the optical transmitter 12, the optical receiver 13, and the optical fiber 15.
  • the optical transmitter 12 and the optical receiver 13 are both arranged in the planar structure 11, so that it is convenient to package the optical transceiver assembly 10 in the form of a planar package, which is convenient to reduce the thickness of the optical transceiver assembly 10.
  • the optical transceiver assembly 10 using a coaxial tube shell packaging architecture (transistor-outline, TO), its thickness is usually greater than 8mm.
  • the optical transceiver assembly 10 can be packaged using chip on board (COB) packaging, fan-out packaging (FO) and other processes, which can significantly reduce the thickness of the optical transceiver assembly 10 (e.g., less than 2mm).
  • COB chip on board
  • FO fan-out packaging
  • the specific packaging form of the optical transceiver assembly 10 and the specific type and arrangement of the waveguide structure 14 can be various.
  • the optical transceiver component 10 can be packaged in a chip on board (COB) manner, and the waveguide structure 14 can specifically include a waveguide bridge.
  • COB chip on board
  • the planar structure 11 is a substrate.
  • the substrate may be a printed circuit board or a flexible circuit board.
  • the substrate may be a multilayer board or a single-layer board. In practical applications, the type and structure of the substrate may be reasonably selected, and this application does not limit this.
  • the optical transceiver assembly 10 may include an optical transmitter 12, a lens 16 (lens), a beam splitter 17 (filter), an optical receiver 13, an optical detector 18, a transimpedance amplifier 19 and an optical fiber 15.
  • the optical transmitter 12, the optical receiver 13, the optical detector 18 and the transimpedance amplifier 19 are all active devices, and are electrically connected to the conductive lines in the planar structure 11 to facilitate the transmission of electrical signals.
  • the optical transmitter 12 is used to receive an electrical signal and transmit an optical signal of corresponding power according to the received electrical signal.
  • the optical receiver 13 is used to receive the optical signal and convert the optical signal into an electrical signal.
  • the optical signal emitted by the optical transmitter 12 is defined as an optical signal of a first wavelength ⁇ 1
  • the optical signal received by the optical receiver 13 is defined as an optical signal of a second wavelength ⁇ 2.
  • the specific values of the first wavelength and the second wavelength are different.
  • wavelength division multiplexing (WDM) technology can be used to realize bidirectional information transmission in an optical fiber 15, which can effectively save optical fiber 15 resources.
  • the optical transmitter 12 may be indirectly coupled to the optical fiber 15 via the waveguide structure 14
  • the optical receiver 13 may be indirectly coupled to the optical fiber 15 via the waveguide structure 14 .
  • the structure of the optical fiber 15 includes a first waveguide bridge 141 and a second waveguide bridge 142.
  • One end of the first waveguide bridge 141 is coupled to the beam splitter 17, and the other end is coupled to the first end (the left end in the figure) of the optical fiber 15.
  • the optical transmitter 12 can emit a light signal ⁇ 1 of a first wavelength. When the light signal ⁇ 1 of the first wavelength propagates in space, it can be transmitted to the optical fiber 15 through the lens 16, the beam splitter 17, and the first waveguide bridge 141 in sequence.
  • the optical signal ⁇ 2 of the second wavelength propagating in the optical fiber 15 may be transmitted to the optical receiver 13 via the first waveguide bridge 141 , the beam splitter 17 and the second waveguide bridge 142 .
  • the light emitter 12 may be a laser diode (LD), and the light emitter 12 may be disposed on the planar structure 11 through the base 101a, so as to fix the light emitter 12 at a desired position.
  • the light emitting direction of the light emitter 12 is toward the lens 16, so that the light signal generated by the light emitter 12 can be transmitted to the beam splitter 17 after being processed by the lens 16 such as focusing.
  • the beam splitter 17 can effectively transmit the optical signal ⁇ 1 of the first wavelength and effectively reflect the optical signal ⁇ 2 of the second wavelength.
  • the optical detector 18 can be a monitor laser diode (MPD) and can be disposed on the planar structure 11 through the base 101c.
  • the optical detector 18 is disposed behind the optical transmitter 12 and can be used to receive a portion (such as 3%) of the optical signal generated by the optical transmitter 12, and can be used to effectively monitor the luminous power of the optical transmitter 12.
  • the optical detector 18 and the optical transmitter 12 can be connected through a control circuit, and the control circuit can effectively adjust the power of the optical transmitter 12 according to the optical power information monitored by the optical detector 18, thereby realizing feedback adjustment of the optical transmitter 12, which is conducive to ensuring the power of the optical transmitter 12.
  • the optical receiver 13 can specifically be a photodiode (PD).
  • the optical receiver 13 can be set on the planar structure 11 through the base 101b and electrically connected to the conductive circuit in the planar structure 11.
  • the trans-impedance amplifier 19 can be connected to the optical receiver 13 via the conductive line in the planar structure 11, and is used to amplify the electrical signal of the optical receiver 13 and perform other processing.
  • the light detector 18, the light emitter 12, the lens 16 and the beam splitter 17 can be arranged at a preset position on the mounting surface 110 by using a patch or other process, which has the advantage of being easy to produce.
  • the beam splitter 17 is coupled to the optical fiber 15 through the first waveguide bridge 141, and the beam splitter 17 is coupled to the optical receiver 13 through the second waveguide bridge 142, which can improve the flexibility of the position setting of the optical receiver 13 and the optical fiber 15, and there is no need for manual calibration of the coupling, which is conducive to reducing the difficulty of preparation and simplifying the process flow.
  • the first waveguide bridge 141 and the second waveguide bridge 142 are cancelled, the optical signal between the beam splitter 17 and the optical fiber 15 is propagated in space, and the optical signal between the beam splitter 17 and the optical receiver 13 is also propagated in space.
  • the waveguide structure 14 (such as the first waveguide bridge 141 and the second waveguide bridge 142), effective coupling between different devices can be effectively achieved, and problems such as poor optical signal transmission caused by calibration errors can be avoided.
  • the number of coupling calibrations can be effectively reduced, which is conducive to reducing the difficulty of preparation and simplifying the process.
  • the steps of patching, encapsulation, and waveguide bridge manufacturing can be adopted.
  • the photodetector 18 , the light emitter 12 , the lens 16 , the beam splitter 17 , the light receiver 13 and the transimpedance amplifier 19 may be arranged on the mounting surface 110 of the planar structure 11 by using a patch process.
  • the package shell 102 is packaged on the mounting surface 110, so that the light detector 18, the light emitter 12, the lens 16, the beam splitter 17, the light receiver 13 and the transimpedance amplifier 19 are packaged in the space enclosed by the package shell 102 and the first mounting surface 110.
  • one side of the package shell 102 (the right side in the figure) has a mounting hole 1021, and the optical fiber 15 can be passed through and fixed in the mounting hole 1021, and the first end of the optical fiber 15 is located on the inner side of the package shell 102, and the second end of the optical fiber 15 extends out of the outer surface of the package shell 102.
  • the light-induced self-written (LISW) process can be used to prepare the first waveguide bridge 141 and the second waveguide bridge 142, and the coupling between the first waveguide bridge 141 and the splitter 17 and the optical fiber 15, and the coupling between the second waveguide bridge 142 and the splitter 17 and the optical receiver 13 can be realized.
  • LISW light-induced self-written
  • the optical transmitter 12, the optical receiver 13 and the optical detector 18 are respectively arranged on the planar structure 11 through the base 101.
  • the optical receiver 13 is fixed on the mounting surface 110 of the planar structure 11 through the base 101b.
  • the base 101b has a first board surface 1011b and a first side surface (the lower side surface in the figure) perpendicular to the first board surface 1011b, and the optical receiver 13 is arranged on the first board surface 1011b. Insulating glue can be applied between the first side surface and the mounting surface 110 to achieve a fixed connection between the base 101b and the planar structure 11.
  • the conductive glue 103a extends from the first board surface to the mounting surface 110, and one end of the conductive glue 103a is electrically connected to the optical receiver 13, and the other end is electrically connected to the conductive circuit, so as to realize the electrical connection between the optical receiver 13 and the planar structure 11.
  • the conductive glue 103a includes a first colloid 1031a and a second colloid 1032a, one end of the first colloid 1031a is connected to the ground electrode of the optical receiver 13, and the other end is electrically connected to the conductive circuit in the planar structure 11.
  • One end of the second colloid 1032a is connected to the positive electrode of the optical receiver 13 through the lead 104a, and the other end is electrically connected to the conductive circuit in the planar structure 11.
  • the conductive connection between the optical receiver 13 and the planar structure 11 is realized through the conductive glue 103a, which can effectively improve the electrical connection effect between the optical receiver 13 and the planar structure 11, which is conducive to ensuring the transmission performance of the signal.
  • the photodetector 18 can be fixed on the mounting surface 110 of the planar structure 11 through the base 101c.
  • the base 101c has a first board surface 1011c and a first side surface (the lower side surface in the figure) perpendicular to the first board surface 1011c.
  • the light receiver 13 is arranged on the first board surface 1011c.
  • An insulating glue can be coated between the first side surface and the mounting surface 110 to achieve a fixed connection between the base 101c and the planar structure 11.
  • the conductive glue 103b includes a first colloid 1031b and a second colloid 1032b.
  • One end of the first colloid 1031b is connected to the ground electrode of the photodetector 18, and the other end is electrically connected to the conductive line in the planar structure 11.
  • One end of the second colloid 1032b is connected to the positive electrode of the photodetector 18 through the lead 104b, and the other end is electrically connected to the conductive line in the planar structure 11.
  • the light detector 18 and the light receiver 13 may be arranged in a similar manner, which will not be described in detail herein.
  • the light emitter 12 can be fixed on the mounting surface 110 of the planar structure 11 through the base 101a.
  • the base 101a has a first board surface 1011a and a second board surface (not shown in the figure) that is opposite to the first board surface 1011a.
  • An insulating glue can be applied between the second board surface and the mounting surface 110 to achieve a fixed connection between the base 101 and the planar structure 11.
  • the light emitter 12 can be arranged on the first board surface 1011a, and the first board surface 1011a has a conductive glue 103, and one end of the conductive glue 103c can extend to the ground electrode of the light emitter 12 and achieve electrical connection.
  • the conductive glue 103c can be electrically connected to the pad on the mounting surface 110 through the lead 104c, so as to achieve an electrical connection between the ground electrode of the light emitter 12 and the conductive circuit in the planar structure 11.
  • the positive electrode of the light emitter 12 is electrically connected to the pad on the mounting surface 110 through the lead 104 d , so as to realize the electrical connection between the positive electrode of the light emitter 12 and the conductive circuit in the planar structure 11 .
  • the transimpedance amplifier 19 can be fixed on the mounting surface 110 of the planar structure 11 by insulating glue, and the signal terminal of the transimpedance amplifier 19 can be electrically connected to the pad in the conductive circuit through a plurality of (six shown in the figure) lead wires 104e.
  • the conductive circuits in the planar structure 11 can be reasonably arranged and adjusted according to actual needs, and the present application does not impose any limitation on this.
  • the waveguide structure 14 can also be replaced by a planar lightwave circuits (PLC) chip 105.
  • PLC planar lightwave circuits
  • the planar optical waveguide chip 105 is arranged on the mounting surface 110, and the planar optical waveguide chip 105 has a waveguide structure.
  • the planar optical waveguide chip 105 has a first port 105a, a second port 105b, a third port 105c and a fourth port 105d.
  • the first port 105a is coupled to the optical transmitter 12, and is used to receive the optical signal ⁇ 1 of the first wavelength emitted by the optical transmitter 12.
  • the first port 105a and the second port 105b are connected by a splitter structure 1051, and the splitter structure 1051 is used to output part of the optical signal ⁇ 1 of the first wavelength received by the first port 105a to the optical detector 18 through the second port 105b.
  • the splitter structure 1051 can allocate the optical signal ⁇ 1 of the first wavelength with 5% power to the second port 105b, and allocate the optical signal ⁇ 1 of the first wavelength with 95% power to the fourth port 105d. It is understandable that, in specific implementation, the power allocated by the light splitting structure 1051 to the second port 105b and the fourth port 105d can be reasonably set according to actual needs, and the present application does not impose any limitation on this.
  • the third port 105 c is coupled to the optical receiver 13 to output the optical signal ⁇ 2 of the second wavelength.
  • the fourth port 105 d is coupled to the optical fiber 15 to realize the transmission of the optical signal between the planar optical waveguide chip 105 and the optical fiber 15 .
  • the optical transmitter 12 is disposed on the mounting surface 110 of the planar structure 11 through the base 101
  • the optical detector 18 is disposed on the mounting surface 110 of the planar structure 11 through the base 101
  • the optical receiver 13 is disposed on the mounting surface 110 of the planar structure 11 through the base 101
  • the transimpedance amplifier 19 is directly disposed on the mounting surface 110.
  • the optical transmitter 12, the optical detector 18, the optical receiver 13, and the transimpedance amplifier 19 can be electrically connected to the planar structure 11 through structures such as leads 104 and conductive adhesive 103, which will not be described in detail here.
  • the optical transmitter 12 is coupled to the first port 105a through the first waveguide bridge 141, so that the optical signal ⁇ 1 of the first wavelength generated by the optical transmitter 12 can be transmitted to the planar optical waveguide chip 105 through the first waveguide bridge 141.
  • the optical detector 18 is coupled to the second port 105b through the second waveguide bridge 142, so that the optical signal ⁇ 1 of the first wavelength in the planar optical waveguide chip 105 can be transmitted to the optical detector 18 through the second waveguide bridge 142.
  • the optical receiver 13 is coupled to the third port 105c through the third waveguide bridge 143, so that the optical signal ⁇ 2 of the second wavelength in the planar optical waveguide chip 105 can be transmitted to the optical detector 18 through the third waveguide bridge 143.
  • the planar structure 11 may be a substrate or a re-distribution layer (RDL).
  • RDL re-distribution layer
  • COB chip on board
  • FO fan-out
  • the present application also provides an example of packaging the optical transceiver assembly 10 in a fan-out packaging manner.
  • a temporary bonding adhesive 22a may be applied to the carrier 21a, and then the transimpedance amplifier 19, the optical transmitter 12, the planar waveguide chip 105, the optical detector (not shown in the figure) and the optical receiver (not shown in the figure) may be attached, and the coupling between the optical fiber 15 and the planar waveguide chip 105 may be realized.
  • the optical detector and the optical receiver are arranged in a similar manner to the optical transmitter 12, and therefore, in the example provided in this application, the optical detector and the optical receiver are not shown.
  • photonic wire bonding or self-writing waveguides can be used to manufacture the waveguide bridge 141 between the optical transmitter 12 and the planar optical waveguide chip 105 , thereby realizing signal connection between the optical transmitter 12 and the planar optical waveguide chip 105 .
  • the transimpedance amplifier 19 , the optical transmitter 12 and the planar optical waveguide chip 105 may be plastic packaged with a plastic packaging material (such as resin).
  • a packaging body 23 is formed, and a groove 231 , a groove 232 and a notch 233 are formed in the packaging body.
  • the groove 231 penetrates the upper and lower surfaces of the package body 23
  • the groove 232 extends to the terminal of the optical transmitter 12
  • the notch 233 is located at the second end of the optical fiber 15 (the right end in the figure), so that the second end of the optical fiber 15 can be exposed to the package body 23 .
  • a conductive material 25 (such as copper, etc.) can be prepared in the grooves 231 and 232 to lead the terminals of the light emitter 12 to the lower surface of the package body 23 through the conductive material 25.
  • the first redistribution layer 24a at the wafer level or the panel level can be manufactured according to the type of carrier or manufacturing equipment. In actual manufacturing, the first redistribution layer 24a can be prepared according to actual conditions and process requirements, which will not be described in detail here.
  • the temporary bonding adhesive is removed, and the package body 23 is turned over so that the first redistribution layer 24 a is transferred to another carrier board 21 b through the temporary bonding adhesive 22 b.
  • a second redistribution layer 24 b is prepared, and tin is brushed or balls are planted on the surface of the second redistribution layer 24 b to lead the terminals of the light emitter 12 and the transimpedance amplifier 19 to the surface of the redistribution layer through the conductive structure in the second redistribution layer 24 b.
  • the temporary bonding glue 22 b is finally removed, and a single package body is separated by mechanical cutting or laser cutting to complete the preparation of the optical transceiver assembly 10 .
  • the planar optical waveguide chip 105 can be manufactured by using silicon photonics technology or nano-imprinting technology.
  • the optical transceiver component 10 can also be packaged using a chip on board (COB) process.
  • COB chip on board
  • the photodetector 18, the optical transmitter 12, the optical receiver 13, the transimpedance amplifier 19 and the planar optical waveguide chip 105 can be arranged on the mounting surface 110 of the planar structure 11 by using a patch process. Then the packaging shell 102 is packaged on the mounting surface 110, so that the photodetector 18, the optical transmitter 12, the optical receiver 13, the transimpedance amplifier (not shown in the figure) and the planar optical waveguide chip (not shown in the figure) are packaged in the space surrounded by the packaging shell 102 and the first mounting surface 110.
  • one side of the packaging shell 102 (the right side in the figure) has a mounting hole for the optical fiber 15 to pass through and fix, and the first end of the optical fiber 15 is located on the inner side of the packaging shell 102, and the second end of the optical fiber 15 extends out of the outer surface of the packaging shell 102.
  • the optical transmitter 12, the optical receiver 13 and the optical detector 18 may also be directly coupled to the port of the planar optical waveguide chip 105, and the first waveguide bridge 141, the second waveguide bridge 142 and the third waveguide bridge 143 may be omitted.
  • the optical transmitter 12 may be coupled to the first port 105 a of the planar optical waveguide chip 105
  • the optical detector 18 may be coupled to the second port 105 b of the planar optical waveguide chip 105
  • the optical receiver 13 may be coupled to the third port 105 c of the planar optical waveguide chip 105 .
  • the first waveguide bridge 141, the second waveguide bridge 142 and the third waveguide bridge 143 can be omitted, thereby simplifying the manufacturing process and improving the manufacturing efficiency during mass production.
  • a waveguide structure may also be provided in the planar structure 11 , so that the planar optical waveguide chip may be omitted.
  • the planar optical waveguide chip may be integrated in the planar structure 11 .
  • the planar structure 11 includes a redistribution layer, and the waveguide structure 14 and the light splitting structure (not shown in the figure) may both be located in the redistribution layer.
  • the present application also provides an example of packaging the optical transceiver assembly 10 in a fan-out packaging manner.
  • a temporary bonding adhesive 22a may be applied to the carrier 21a, and then the transimpedance amplifier 19, the optical receiver 13, the optical transmitter 12, and the optical detector (not shown in the figure) may be attached.
  • the optical detector is similar to the optical receiver 13 in terms of the configuration, and therefore, in the example provided in this application, the optical detector is not shown.
  • the transimpedance amplifier 19 , the optical receiver 13 and the optical transmitter 12 may be encapsulated with a plastic encapsulation material (such as resin).
  • a package body 23 is formed, and a groove 231 and a groove 232 are opened in the package body.
  • the groove 231 passes through the upper and lower surfaces of the package body 23 , and the groove 232 extends to the terminal of the light emitter 12 .
  • a conductive material 25 (such as copper, etc.) can be prepared in the grooves 231 and 232 to lead the terminals of the light emitter 12 to the lower surface of the package body 23 through the conductive material 25.
  • the first redistribution layer 24a at the wafer level or the panel level can be manufactured according to the type of carrier or manufacturing equipment. In actual manufacturing, the first redistribution layer 24a can be prepared according to actual conditions and process requirements, which will not be described in detail here.
  • the temporary bonding glue 22a is removed, and the package body 23 is turned over so that the first redistribution layer 24a passes through the temporary bonding glue. 22b is transferred to another carrier board 21b.
  • a second redistribution layer 24 b is prepared to lead the terminals of the optical transmitter 12 , the optical receiver 13 , and the transimpedance amplifier 19 to the surface of the second redistribution layer 24 b through the conductive structure in the second redistribution layer 24 b .
  • a notch 233 is formed in the package body 23 by laser mechanical cutting or laser cutting to expose the light-emitting port of the light emitter 12.
  • a greater pressure may be applied to the light emitter 12 so that the lower surface of the light emitter 12 is embedded in the temporary bonding adhesive 22a.
  • the notch 233 may be omitted.
  • the depth to which the light emitter 12 is embedded in the temporary bonding adhesive 22a may be between 5um and 7um. In actual preparation, a reasonable pressure may be applied to the light emitter 12 according to actual needs so that the light emitter 12 is embedded in the temporary bonding adhesive 22a at a desired depth.
  • a waveguide structure 14 and a spectroscopic structure are prepared, and coupling between the waveguide structure 14 and the optical fiber 15 is achieved.
  • a lens can be arranged between the light outlet of the optical transmitter 12 and the waveguide structure 14, and the lens can focus and amplify the optical signal emitted from the light outlet, and the optical signal is transmitted to the waveguide structure 14 through the lens.
  • the lens can be prepared while preparing the waveguide structure 14 and the spectroscopic structure.
  • a preformed lens can be placed between the light outlet of the optical transmitter 12 and the waveguide structure 14.
  • a suitable process or method can be selected to produce the lens according to actual needs, and this application will not elaborate on this.
  • a reflection surface can be arranged at the position where the waveguide structure 14 is coupled to the optical receiver 13, and the optical signal transmitted in the waveguide structure 14 can be effectively reflected to the light receiving surface of the optical receiver 13 through the reflection surface.
  • tin is brushed or balls are planted on the surface of the second redistribution layer 24b.
  • the temporary bonding glue 22b is removed, and a single package is separated by mechanical cutting or laser cutting to form the preparation of the optical transceiver assembly 10.
  • the waveguide structure 14 can be manufactured by using silicon photonics or nano-imprinting.
  • the light splitting structure can be implemented by using Mach-Zehnder structure, arrayed waveguide or micro-ring structure.
  • the optical transceiver assembly 10 is manufactured by fan-out packaging, so that the thickness of the optical transceiver assembly 10 can be reduced to 1 mm, which can significantly reduce the thickness of the optical transceiver assembly 10.
  • optical transceiver assembly 10 can be used in a variety of different types of communication equipment.
  • the optical transceiver assembly 10 can be applied in an optical module 30.
  • the optical module 30 may include a circuit board and a power module 31, a clock module 32, a laser driving module 33, etc. arranged in the circuit board.
  • the laser driving module 33 can be connected to the optical transmitter in the optical transceiver assembly 10 to control the light emitting power of the optical transmitter.
  • the optical module may include a port 301 for connecting to an external optical fiber cable and a port 302 for connecting to an external network cable, so as to realize signal transmission between the optical fiber cable and the network cable, and realize conversion between optical signals and electrical signals through the optical transceiver component 10.
  • optical transceiver assembly 10 or optical module can also be used in communication devices such as optical modems and routers to facilitate the conversion between optical signals and electrical signals.
  • the optical transceiver assembly 10 provided in the embodiment of the present application has the characteristics of being lightweight and thin. When the optical transceiver assembly 10 is used in a communication device, it can help reduce the thickness of the communication device and facilitate the lightweight design of the communication device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请提供了一种光收发组件、光模块和通信设备,涉及通信技术领域,以及解决通信设备厚度尺寸较大的技术问题。本申请提供的光收发组件包括平面结构、光发射器、光接收器、波导结构和光纤;平面结构中具有导电线路,光发射器和光接收器可以与导电线路导电连接;光发射器可以将电信号转化为第一波长的光信号向外传输;光接收器用于接收第二波长的光信号,并将光信号转化为电信号;波导结构与光发射器、光接收器和光纤耦合,用于实现光发射器、光接收器和光纤之间光信号的传输。在本申请提供的光收发组件中,光发射器和光接收器均设置于平面结构,从而有利于采用平面封装的形式对光收发组件进行封装,有利于降低光收发组件的厚度尺寸。

Description

一种光收发组件、光模块和通信设备
相关申请的交叉引用
本申请要求在2023年03月31日提交中国国家知识产权局、申请号为202310361772.7、申请名称为“一种光收发组件、光模块和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种光收发组件、光模块和通信设备。
背景技术
随着通信技术的不断发展和市场需求的不断提升,通信设备的轻薄化设计成为了主要的发展方向。例如,在路由器中,纸片化的结构设计逐渐成为了市场的主流。纸片化的结构设计可明显降低路由器的厚度尺寸,使得路由器在外观结构上可以呈现出类似于纸张的轻薄特性,明显降低了路由器的空间占用量,有利于提升路由器在进行部署时的灵活性。在路由器等通信设备中,通常包括双向光收发组件,光收发组件可实现光信号和电信号之间的转换,从而可以实现通信设备与光纤之间的信号连接。
但是在目前的光收发组件中,通常采用插件式同轴管壳封装架构(transistor-outline,TO),使得光收发组件的厚度尺寸较大,制约了通信设备的轻薄化设计。因此,如何降低光收发组件的厚度尺寸成为了亟待解决的技术问题。
发明内容
本申请提供了一种有利于实现轻薄化设计的光收发组件、光模块和通信设备。
第一方面,本申请提供了一种光收发组件,可以包括平面结构、光发射器、光接收器、波导结构和光纤。平面结构具有安装面,可以为光发射器和光接收器等器件提供有效的安装位置。另外,平面结构中具有导电线路,光发射器和光接收器可以与导电线路导电连接,从而实现供电或电信号的传输需求。光发射器可以将电信号转化为第一波长的光信号向外传输。光发射器设置于安装面,并与导电线路电连接。光接收器用于接收第二波长的光信号,并将光信号转化为电信号。波导结构与光发射器、光接收器和光纤耦合,用于实现光发射器、光接收器和光纤之间光信号的传输。在本申请提供的光收发组件中,光发射器和光接收器均设置于平面结构,从而有利于采用平面封装的形式对光收发组件进行封装,有利于降低光收发组件的厚度尺寸。
在一种示例中,光收发组件还可以包括分光片,分光片设置于安装面,并位于第一波长的光信号的光路中。波导结构包括第一波导桥和第二波导桥,第一波导桥用于传输第一波长的光信号和第二波长的光信号,第二波导桥用于传输第二波长的光信号。第一波导桥的一端与分光片耦合,另一端与第一端耦合;第二波导桥的一端与分光片耦合,另一端与光接收器耦合。分光片与光纤之间通过第一波导桥耦合,分光片与光接收器之间通过第二波导桥耦合,能提升光接收器和光纤的位置设置的灵活性,且无需人工校准耦合,有利于降低制备难度并简化工艺流程。
在一种示例中,光收发组件还可以包括透镜,透镜位于光发射器和分光片之间的光路中,用于聚焦光发射器发出的光信号。
在一种示例中,光收发组件还可以包括光探测器,光探测器设置于安装面,并与导电线路电连接。其中,光探测器用于监测光发射器发射的光信号的功率。在实际应用时,光探测器和光发射器可以与相应的控制电路连接,使得控制电路能够根据光探测器所探测到的功率信息对光发射器的出光功率进行有效调整。
在一种示例中,光收发组件可以包括封装壳体,封装壳体封盖在第一安装面,且光发射器、光接收器、波导结构和光纤的第一端均位于封装壳体和第一安装面围成的空间内,使得封装壳体能够对光发射器、光接收器、波导结构和光纤进行有效的保护,还有利于提升光收发组件的一体性。其中,封装壳体具有安装孔,光纤穿设固定在安装孔内,并且光纤的第二端伸出于封装壳体的外表面。
在一种示例中,光收发组件还可以包括基座。基座包括第一板面以及与第一板面垂直的第一侧面,光接收器设置于第一板面,第一侧面与平面结构的安装面固定贴合。光收发组件还包括导电胶,导电胶 由第一板面延伸至安装面,且导电胶的一端与光接收器电连接,另一端与导电线路电连接。光接收器与平面结构之间可以通过导电胶实现导电连接,可有效提升光接收器与平面结构之间的电连接效果,有利于保证信号的传输性能。
在一种示例中,光收发组件还可以包括平面光波导芯片,平面光波导芯片可以设置于安装面。其中,平面光波导芯片中具有波导结构。通过使用平面光波导芯片可以有效提升光收发组件的集成度,另外,还有助于光通信链路的高效传输。
在具体实施时,平面光波导芯片可以具有第一端口、第二端口、第三端口和分光结构。第一端口与光发射器耦合,用于接收光发射器发出的第一波长的光信号。第二端口与光探测器耦合,且第二端口通过分光结构与第一端口耦合。分光结构用于将第一端口接收的部分第一波长的光信号通过第二端口输出给光探测器,第三端口与光接收器耦合,用于输出第二波长的光信号。平面光波导芯片可以具有分光和波导传输的功能,能够有提高低光收发组件在进行制备时的便利性,有助于简化制备工艺流程,并提升制备效率。
在一种示例中,光收发组件包括封装壳体,封装壳体封盖在第一安装面,且平面光波导芯片、光发射器、光接收器和光纤的第一端均位于封装壳体和第一安装面围成的空间内。封装壳体具有安装孔,光纤穿设固定在安装孔内,并且光纤的第二端伸出于封装壳体的外表面。概括来说,应用平面光波导芯片的光收发组件可以采用封装壳体进行封装,有利于提升制备时的灵活性。
或者,在一种示例中,光收发组件包括封装体,封装体包裹平面光波导芯片、光发射器、光接收器和光纤的第一端,且光纤的第二端伸出于封装体。概括来说,应用平面光波导芯片的光收发组件可以采用塑封的方式进行封装,具有较好的制备灵活性。
在一种示例中,平面结构为重布线层,波导结构位于重布线层中。即波导结构或平面光波导芯片可以集成设置在平面结构中,这有助于降低光收发组件的厚度尺寸。
在具体设置时,光纤可以位于重布线层中,光纤的第一端可以与重布线层中的波导结构耦合,光纤的第二端伸出于重布线层的侧边,以便于与外部光纤耦合。
在进行封装时,光收发组件的封装体可以包裹光发射器和光接收器,以便于对光发射器和光接收器形成良好的保护作用。
在一种示例中,光收发组件还可以包括跨阻放大器,跨阻放大器设置于安装面,并与导电线路电连接。跨阻放大器可以与光接收器连接,以对光接收器所接收的第二波长的光信号进行放大等处理。
第二方面,本申请还提供了一种光模块,可以包括电路板,设置于电路板中的激光驱动模块和上述的光收发组件,激光驱动模块与光发射器电连接,用于控制光发射器的出光功率。应用上述光收发组件的光模块可以有效的实现光信号和电信号之间的转换,并且,有利于实现光模块的小型化、轻薄化设计,能提升光模块的应用范围和制备时的便利性。
第三方面,本申请还提供了一种通信设备,可以包括控制器和上述的光收发组件或光模块。控制器可以与光收发组件电连接,可用于对光收发组件所接收的电信号进行有效处理。或者,控制器也可以向光收发组件发送控制信号,以便于对光收发组件的工作状态进行有效控制。通过应用上述的光收发组件,有利于实现通信设备的轻薄化设计,有助于提升通信设备在设计上的灵活性,并提升适用范围。
附图说明
图1为本申请实施例提供的一种通信设备的侧面结构示意图;
图2为本申请实施例提供的一种光收发组件的结构框图;
图3为本申请实施例提供的一种光收发组件的结构示意图;
图4为本申请实施例提供的一种光收发组件的制备工艺流程图;
图5为本申请实施例提供的一种光收发组件在制备时的结构示意图;
图6为本申请实施例提供的一种光收发组件在制备时的另一结构示意图;
图7为本申请实施例提供的一种光收发组件在制备时的另一结构示意图;
图8为本申请实施例提供的一种光收发组件的部分结构的示意图;
图9为本申请实施例提供的一种光收发组件的部分结构的示意图;
图10为本申请实施例提供的另一种光收发组件的结构示意图;
图11为本申请实施例提供的另一种光收发组件的制备工艺流程图;
图12为本申请实施例提供的一种光收发组件在制备时的结构示意图;
图13为本申请实施例提供的一种光收发组件在制备时的另一结构示意图;
图14为本申请实施例提供的一种光收发组件在制备时的另一结构示意图;
图15为本申请实施例提供的一种光收发组件在制备时的另一结构示意图;
图16为本申请实施例提供的一种光收发组件在制备时的另一结构示意图;
图17为本申请实施例提供的一种光收发组件在制备时的另一结构示意图;
图18为本申请实施例提供的一种光收发组件在制备时的另一结构示意图;
图19为本申请实施例提供的一种光收发组件制备完成后的结构示意图;
图20为本申请实施例提供的另一种光收发组件的结构示意图;
图21为本申请实施例提供的另一种光收发组件的结构示意图;
图22为本申请实施例提供的另一种光收发组件的制备工艺流程图;
图23为本申请实施例提供的一种光收发组件在制备时的结构示意图;
图24为本申请实施例提供的一种光收发组件在制备时的另一结构示意图;
图25为本申请实施例提供的一种光收发组件在制备时的另一结构示意图;
图26为本申请实施例提供的一种光收发组件在制备时的另一结构示意图;
图27为本申请实施例提供的一种光收发组件在制备时的另一结构示意图;
图28为本申请实施例提供的一种光收发组件在制备时的另一结构示意图;
图29为本申请实施例提供的一种光收发组件在制备时的另一结构示意图;
图30为本申请实施例提供的一种光收发组件在制备时的另一结构示意图;
图31为本申请实施例提供的一种光收发组件制备完成后的结构示意图;
图32为本申请实施例提供的一种光模块的结构框图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
为了方便理解本申请实施例提供的光收发组件,下面首先介绍一下其应用场景。
在光电通信系统中的数据传输阶段,数据信息通常以光信号的形式在光纤或波导等介质中进行传输。而在数据处理阶段,由于处理器等使用的是电信号。因此,为了便于对数据信息进行处理,需要将光信号形式的数据信息转化为电信号的形式。光收发组件的主要功能是实现上述光信号和电信号的相互转换,因此,在光电通信系统中,光收发组件的作用尤为重要。
例如,如图1所示,以通信设备为光猫(也称为光调制解调器)为例。在光猫中可以包括壳体01,设置在壳体01内的电路板02、控制器03和光收发组件04等器件。光收发组件04和控制器03可以设置在电路板02上,并与电路板02中的导电线路(图中未示出)电连接,光收发组件04可以通过电路板02中的导电线路与控制器03导电连接,从而实现光收发组件04与控制器03之间电信号的传输。光收发组件04还可以与光纤05进行连接,从而实现光收发组件04与光纤05之间光信号的传输。光收发组件04可以将电信号转换为光信号后输送至光纤05中进行传输,从而可以实现光猫与其他远端设备之间的信号传输。另外,光收发组件04还可以将在光纤05中传输的光信号转换为电信号后输送给控制器03。
在目前的光收发组件04中,通常采用插件式同轴管壳封装架构(transistor-outline,TO),使得光收发组件04的厚度尺寸H较大,制约了通信设备的轻薄化设计。
为此,本申请实施例提供了一种有利于实现轻薄化设计的光收发组件。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图和具体实施例对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”和“该”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”是指一个、两个或两个以上。
在本说明书中描述的参考“一个实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在 一些实施方式中”、“在另外的实施方式中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
如图2所示,在本申请提供的一种示例中,光收发组件10可以包括平面结构11、光发射器12、光接收器13、波导结构14和光纤15。平面结构11具有安装面110,可以为光发射器12和光接收器13等器件提供有效的安装位置。另外,平面结构11中具有导电线路(图中未示出),光收发组件10中的一些有源器件(如光发射器12和光接收器13)可以与导电线路导电连接,从而实现有源器件的供电或电信号的传输需求。光发射器12可以将电信号转化为光信号向外传输。光发射器12设置于安装面110,并与导电线路电连接。光接收器13用于接收光信号,并将光信号转化为电信号。波导结构14与光发射器12、光接收器13和光纤15耦合,用于实现光发射器12、光接收器13和光纤15之间光信号的传输。
在本申请提供的光收发组件10中,光发射器12和光接收器13均设置于平面结构11,从而有利于采用平面封装的形式对光收发组件10进行封装,有利于降低光收发组件10的厚度尺寸。例如,采用同轴管壳封装架构(transistor-outline,TO)的光收发组件10中,其厚度尺寸通常大于8mm。在本申请提供的示例中,通过采用平面结构11,可以采用板上芯片(chip on board,COB)封装、扇出封装(fanout,FO)等工艺对光收发组件10进行封装,可明显降低光收发组件10的厚度尺寸(如2mm以下)。
在具体实施时,光收发组件10的具体封装形式、波导结构14的具体类型和设置方式可以是多样的。
例如,如图3所示,在本申请提供的一种示例中,光收发组件10可以采用板上芯片(chip on board,COB)的方式进行封装,波导结构14具体可以包括波导桥。
具体来说,平面结构11具体为基板。其中,基板可以是印制电路板也可以是柔性电路板等。另外,基板可以是多层板也可以是单层板。在实际应用时,可以对基板的类型和结构进行合理选择,本申请对此不作限制。
另外,在本申请提供的示例中,光收发组件10中可以包括光发射器12、透镜16(lens)、分光片17(filter)、光接收器13、光探测器18、跨阻放大器19和光纤15。其中,光发射器12、光接收器13、光探测器18和跨阻放大器19均为有源器件,并与平面结构11中的导电线路电连接,以便于实现电信号的传输。
光发射器12用于接收电信号,并根据所接收到的电信号发射对应功率的光信号,光接收器13可用于接收光信号,并将光信号转化为电信号。在以下的示例中,为了便于对光发射器12发出的光信号和光接收器13接收的光信号进行区分,将光发射器12发出的光信号定义为第一波长的光信号λ1,将光接收器13接收的光信号定义为第二波长的光信号λ2。其中,第一波长和第二波长的具体数值不同。
概括来说,在本申请提供的光收发组件10中,可以利用波分复用技术(wavelength division multiplexing,WDM)在一根光纤15中实现双向信息的传输,可有效节省光纤15资源。
其中,光发射器12可通过波导结构14与光纤15间接耦合,光接收器13可通过波导结构14与光纤15间接耦合。
具体的,光纤15结构包括第一波导桥141和第二波导桥142。第一波导桥141的一端与分光片17耦合,另一端与光纤15的第一端(如图中的左端)耦合。光发射器12可发射第一波长的光信号λ1,第一波长的光信号λ1在空间中传播时,可依次通过透镜16、分光片17、第一波导桥141传输至光纤15中。
光纤15中传播的第二波长的光信号λ2可经第一波导桥141、分光片17和第二波导桥142传输至光接收器13中。
在具体应用时,光发射器12具体可是激光二极管(laser diode,LD),光发射器12可以通过基座101a设置于平面结构11上,以便于将光发射器12固定在所需的位置。光发射器12的出光方向朝向透镜16,使得光发射器12产生的光信号能够经透镜16进行聚焦等处理后传播至分光片17。
其中,分光片17可以使第一波长的光信号λ1有效透射,并对第二波长的光信号λ2进行有效反射。
光探测器18具体可以是监控激光二极管(monitor photo diode,MPD),光探测器18可以通过基座101c设置与平面结构11上。光探测器18设置在光发射器12的后方,可用于接收光发射器12产生的部分(如3%)光信号,可用于对光发射器12的发光功率进行有效监测。另外,光探测器18和光发射器12之间可以通过控制电路进行连接,控制电路可以根据光探测器18所监测到的光功率信息对光发射器12的功率进行有效调整,从而实现对光发射器12的反馈调节,有利于保证光发射器12的功率。
光接收器13具体可以是光电二极管(photo diode,PD),光接收器13可以通过基座101b设置在平面结构11上,并与平面结构11中的导电线路电连接。
跨阻放大器19(trans-impedance amplifier,TIA)可通过平面结构11中的导电线路与光接收器13进行连接,用于对光接收器13的电信号进行放大等处理。
其中,在光探测器18、光发射器12、透镜16和分光片17之间,第一波长的光信号λ1是在空间(如空气介质)中传播的,并且,光探测器18、光发射器12、透镜16和分光片17之间的位置精度要求较低,因此,在进行制作时,可以将光探测器18、光发射器12、透镜16和分光片17采用贴片等工艺设置在安装面110的预设位置,具有便于制作的优势。另外,在本申请提供的示例中,分光片17与光纤15之间通过第一波导桥141耦合,分光片17与光接收器13之间通过第二波导桥142耦合,能提升光接收器13和光纤15的位置设置的灵活性,且无需人工校准耦合,有利于降低制备难度并简化工艺流程。或者可以理解的是,若取消第一波导桥141和第二波导桥142,则在分光片17与光纤15之间的光信号是在空间中传播的、在分光片17与光接收器13之间的光信号也是在空间中传播的。若分光片17与光纤15之间的相对位置存在偏差时,则不能保证光信号在分光片17与光纤15之间的有效传输,因此,需要进行复杂的人工对准流程。相应的,若分光片17与光接收器13之间的相对位置存在偏差时,则不能保证光信号在分光片17与光接收器13之间的有效传输,因此,需要进行复杂的人工对准流程。
概括来说,在本申请提供的示例中,通过采用波导结构14(如第一波导桥141和第二波导桥142)可有效实现不同器件之间的有效耦合,可避免因校准误差导致的光信号传输不良等问题。另外,还能有效减低耦合校准的次数,有利于降低制备时的难度并简化工艺流程。
如图4所示,在对光收发组件10进行制备时,可以采用贴片、封壳、制作波导桥的工序进行制作。
具体的,如图5所示,可采用贴片工艺将光探测器18、光发射器12、透镜16、分光片17、光接收器13和跨阻放大器19设置在平面结构11的安装面110。
如图6所示,将封装壳体102封装在安装面110,使光探测器18、光发射器12、透镜16、分光片17、光接收器13和跨阻放大器19封装在封装壳体102和第一安装面110围成的空间内。其中,封装壳体102的一侧(如图中的右侧)具有安装孔1021,光纤15可以穿设固定在安装孔1021内,并且光纤15的第一端位于封装壳体102的内侧,光纤15的第二端伸出于封装壳体102的外表面。
如图7所述,最后可以采用光诱导自写波导(light-induced self-written,LISW)工艺制备第一波导桥141和第二波导桥142,并实现第一波导桥141与分光片17和光纤15之间的耦合,以及第二波导桥142与分光片17和光接收器13之间的耦合。
需要说明的是,在本申请提供的示例中,为了便于对光发射器12、光接收器13和光探测器18的姿态(如朝向)进行合理设置,并满足光信号在空间传播时的耦合要求,光发射器12、光接收器13和光探测器18分别通过基座101设置于平面结构11。
例如,如图8所示,在本申请提供的示例中,光接收器13通过基座101b固定在平面结构11的安装面110上。基座101b具有第一板面1011b以及与第一板面1011b垂直的第一侧面(如图中的下侧面),光接收器13设置在第一板面1011b,在第一侧面与安装面110之间可以涂覆绝缘胶,以实现基座101b与平面结构11之间的固定连接。
另外,导电胶103a由第一板面延伸至安装面110,且导电胶103a的一端与光接收器13电连接,另一端与导电线路电连接,从而实现光接收器13与平面结构11之间的电连接。具体的,导电胶103a包括第一胶体1031a和第二胶体1302a,第一胶体1031a的一端与光接收器13的接地电极连接,另一端与平面结构11中的导电线路电连接。第二胶体1032a的一端通过引线104a与光接收器13的正极连接,另一端与平面结构11中的导电线路电连接。在本申请提供的示例中,光接收器13与平面结构11之间通过导电胶103a实现导电连接,可有效提升光接收器13与平面结构11之间的电连接效果,有利于保证信号的传输性能。
另外,如图8所示,光探测器18可以通过基座101c固定在平面结构11的安装面110上。基座101c具有第一板面1011c以及与第一板面1011c垂直的第一侧面(如图中的下侧面),光接收器13设置在第一板面1011c,在第一侧面与安装面110之间可以涂覆绝缘胶,以实现基座101c与平面结构11之间的固定连接。另外,导电胶103b包括第一胶体1031b和第二胶体1032b。第一胶体1031b的一端与光探测器18的接地电极连接,另一端与平面结构11中的导电线路电连接。第二胶体1032b的一端通过引线104b与光探测器18的正极连接,另一端与平面结构11中的导电线路电连接。
其中,光探测器18与光接收器13的设置方式可以相似,在此不作赘述。
另外,如图9所示,光发射器12可以通过基座101a固定在平面结构11的安装面110上。基座101a具有第一板面1011a以及与第一板面1011a相背离的第二板面(图中未示出)。在第二板面和安装面110之间可以涂覆绝缘胶,以实现基座101与平面结构11之间的固定连接。光发射器12可以设置在第一板面1011a,第一板面1011a具有导电胶103,导电胶103c的一端可以延伸至光发射器12的接地电极并实现电连接。导电胶103c可以通过引线104c与安装面110上的焊盘电连接,以便于实现光发射器12的接地电极与平面结构11中导电线路之间的电连接。光发射器12的正极通过引线104d与安装面110上的焊盘电连接,以便于实现光发射器12的正极与平面结构11中导电线路之间的电连接。
跨阻放大器19可以通过绝缘胶固定在平面结构11的安装面110上,并且,跨阻放大器19的信号端子可以通过若干条(图中示出有6条)引线104e与导电线路中的焊盘电连接。
可以理解的是,在具体实施时,平面结构11中的导电线路可以根据实际需求进行合理设置和调整,本申请对此不作限制。
另外,如图10所示,在本申请提供的另一示例中,波导结构14还可以由平面光波导(planar lightwave circuits,PLC)芯片105来代替。
具体来说,平面光波导芯片105设置于安装面110,平面光波导芯片105中具有波导结构。其中,平面光波导芯片105具有第一端口105a、第二端口105b、第三端口105c和第四端口105d。第一端口105a与光发射器12耦合,用于接收光发射器12发出的第一波长的光信号λ1。第一端口105a和第二端口105b之间通过分光结构1051连接,分光结构1051用于将第一端口105a接收的部分第一波长的光信号λ1通过第二端口105b输出给光探测器18。具体来说,在本申请提供的示例中,分光结构1051可以将5%功率的第一波长的光信号λ1分配给第二端口105b,将95%功率的第一波长的光信号λ1分配给第四端口105d。可以理解的是,在具体实施时,分光结构1051对第二端口105b和第四端口105d所分配的功率可以根据实际需求进行合理设置,本申请对此不作限制。
第三端口105c与光接收器13耦合,用于输出第二波长的光信号λ2。第四端口105d与光纤15耦合,用于实现平面光波导芯片105与光纤15之间光信号的传输。
如图10所示,在本申请提供的示例中,光发射器12通过基座101设置于平面结构11的安装面110,光探测器18通过基座101设置于平面结构11的安装面110,光接收器13通过基座101设置于平面结构11的安装面110,跨阻放大器19直接设置在安装面110。其中,光发射器12、光探测器18、光接收器13以及跨阻放大器19与平面结构11之间可以通过引线104、导电胶103等结构实现电连接的,在此不作赘述。
另外,光发射器12通过第一波导桥141与第一端口105a耦合,使得光发射器12产生的第一波长的光信号λ1能够通过第一波导桥141传输至平面光波导芯片105中。光探测器18通过第二波导桥142与第二端口105b耦合,使得平面光波导芯片105中的第一波长的光信号λ1能够通过第二波导桥142传输至光探测器18中。光接收器13通过第三波导桥143与第三端口105c耦合,使得平面光波导芯片105中的第二波长的光信号λ2能够通过第三波导桥143传输至光探测器18中。
其中,平面结构11具体可以是基板也可以是重布线层(re-distribution layer,RDL)。在对光收发组件10进行制作时,可以采用板上芯片(chip on board,COB)或者扇出封装(fanout,FO)的方式进行封装。
例如,如图11至图19所示,本申请还给出了采用扇出封装的方式对光收发组件10进行封装的示例。
具体来说,如图12所述,在进行贴片时,可以在载板21a上涂覆一层临时键合胶22a,然后粘贴跨阻放大器19、光发射器12、平面波导芯片105、光探测器(图中未示出)和光接收器(图中未示出),并实现光纤15与平面波导芯片105之间的耦合。需要说明的是,光探测器、光接收器与光发射器12的设置方式类似,因此,在本申请提供示例中,未示出光探测器和光接收器。
如图13所示,在制作波导桥141时,可以利用光子引线键合或者自写波导来制作光发射器12与平面光波导芯片105之间的波导桥141,实现光发射器12与平面光波导芯片105之间的信号连接。
如图14所示,在进行塑封时,可以将塑封材料(如树脂)塑封跨阻放大器19、光发射器12和平面光波导芯片105。
如图15所述,待塑封材料固化后形成封装体23,在封装体中开设凹槽231、凹槽232和缺口233。 其中,凹槽231贯穿封装体23的上、下表面。凹槽232延伸至光发射器12的端子,缺口233位于光纤15的第二端(如图中的右端),使得光纤15的第二端能够外露于封装体23。
如图所16示,在制备第一重布线层24a时,可以将导电材料25(如铜等)制备在凹槽231和凹槽232内,以将光发射器12的端子通过导电材料25引至封装体23的下表面。在对第一重布线层24a进行制作时,可根据载板或制备设备的类型做晶圆级或面板级的第一重布线层24a。在实际制作时,可根据实际条件和工艺要求来制备第一重布线层24a,在此不作赘述。
如图17所示,解除临时键合胶,对封装体23进行翻转,使第一重布线层24a通过临时键合胶22b转帖至另一块载板21b上。
如图18所示,制备第二重布线层24b,并在第二重布线层24b的表面刷锡或植球。以将光发射器12和跨阻放大器19的端子通过第二重布线层24b中的导电结构引至重布线层的表面。
如图19所示,最后解除临时键合胶22b,并采用机械切割或激光切割等工艺分割出单颗封装体,形成对光收发组件10的制备。
其中,平面光波导芯片105可以采用硅光工艺或者纳米压印等工艺进行制备。
在对波导结构14和分光结构进行制作时,可以采用目前较为常用的工艺,本申请对此不作限制。
可以理解的是,上述的制备工艺流程只是示例性的,在实际应用时,可以根据实际需求选择合理的制备工艺对光收发组件10进行制作,在此不作赘述。
例如,如图20所示,在本申请提供的一种示例中,光收发组件10也可以采用板上芯片(chip on board,COB)的工艺进行封装。
具体的,在对光收发组件10进行制备时,可采用贴片工艺将光探测器18、光发射器12、光接收器13、跨阻放大器19和平面光波导芯片105设置在平面结构11的安装面110。然后将封装壳体102封装在安装面110,使光探测器18、光发射器12、光接收器13、跨阻放大器(图中未示出)和平面光波导芯片(图中未示出)封装在封装壳体102和第一安装面110围成的空间内。其中,封装壳体102的一侧(如图中的右侧)具有供光纤15穿设固定的安装孔,并且光纤15的第一端位于封装壳体102的内侧,光纤15的第二端伸出于封装壳体102的外表面。
另外,在一些示例中,光发射器12、光接收器13和光探测器18还可以直接与平面光波导芯片105的端口进行耦合,可以省略设置第一波导桥141、第二波导桥142和第三波导桥143。
例如,请结合参阅图10,可以将光发射器12与平面光波导芯片105的第一端口105a进行耦合、将光探测器18与平面光波导芯片105的第二端口105b进行耦合、将光接收器13与平面光波导芯片105的第三端口105c进行耦合。
通过直接耦合的方式可以省略设置第一波导桥141、第二波导桥142和第三波导桥143,能够简化制备工艺流程,提升批量生产时的制作效率。
另外,如图21所示,在本申请提供的另一种示例中,在平面结构11中也可以设置波导结构,从而可以省略平面光波导芯片。或者,可以理解的是,平面光波导芯片可以集成设置在平面结构11中。
具体的,如图21所示,平面结构11包括重布线层,波导结构14和分光结构(图中未示出)可以均位于重布线层中。
如图22至图31所示,本申请还给出了采用扇出封装的方式对光收发组件10进行封装的示例。
具体来说,如图23所示,在进行贴片时,可以在载板21a上涂覆一层临时键合胶22a,然后粘贴跨阻放大器19、光接收器13、光发射器12和光探测器(图中未示出)。需要说明的是,光探测器与光接收器13的设置方式类似,因此,在本申请提供示例中,未示出光探测器。
如图24所示,在进行塑封时,可以将塑封材料(如树脂)塑封跨阻放大器19、光接收器13和光发射器12。
如图25所示,待塑封材料固化后形成封装体23,在封装体中开设凹槽231和凹槽232。其中,凹槽231贯穿封装体23的上、下表面。凹槽232延伸至光发射器12的端子。
如图26所示,在制备第一重布线层24a时,可以将导电材料25(如铜等)制备在凹槽231和凹槽232内,以将光发射器12的端子通过导电材料25引至封装体23的下表面。在对第一重布线层24a进行制作时,可根据载板或制备设备的类型做晶圆级或面板级的第一重布线层24a。在实际制作时,可根据实际条件和工艺要求来制备第一重布线层24a,在此不作赘述。
如图27所示,解除临时键合胶22a,对封装体23进行翻转,使第一重布线层24a通过临时键合胶 22b转帖至另一块载板21b上。
如图28所示,制备第二重布线层24b,以将光发射器12、光接收器13和跨阻放大器19的端子通过第二重布线层24b中的导电结构引至第二重布线层24b的表面。
如图29所示,采用激光机械切割或激光切割等工艺在封装体23开设缺口233,以裸露出光发射器12的发光口。或者,请结合图23,在一些示例中,在贴装光发射器12时,也可以对光发射器12施加较大的压力,使光发射器12的下表面嵌入临时键合胶22a。在制备图29所示的结构时,可以省略设置缺口233。其中,光发射器12嵌入临时键合胶22a的深度可以是5um至7um之间,在实际制备时,可以根据实际需求对光发射器12施加合理的压力,使光发射器12以所需的深度嵌入临时键合胶22a中。
如图30所示,制备波导结构14和分光结构(图中未示出),并实现波导结构14与光纤15之间的耦合。需要说明的是,在进行制作时,可以在光发射器12的出光口与波导结构14之间设置透镜,透镜可以将由出光口射出的光信号进行聚焦放大等处理,光信号透过透镜后边传输至波导结构14中进行传输。其中,在制备波导结构14和分光结构的同时可以制备出透镜。或者,也可以将预先成型的透镜结置在光发射器12的出光口和波导结构14之间。在实际制备时,可以根据实际需求来选择合适的工艺或方式对透镜进行制作,本申请对此不作赘述。另外,在波导结构14与光接收器13耦合的位置可以设置反射面,在波导结构14中传输的光信号可以通过反射面有效的反射至光接收器13的受光面中。
如图31所示,在第二重布线层24b的表面刷锡或植球。最后解除临时键合胶22b,并采用机械切割或激光切割等工艺分割出单颗封装体,形成对光收发组件10的制备。
可以理解的是,上述的制备工艺流程只是示例性的,在实际应用时,可以根据实际需求选择合理的制备工艺对光收发组件10进行制作,在此不作赘述。
其中,波导结构14可以采用硅光工艺或者纳米压印等工艺进行制备。分光结构可以采用马赫曾德结构,阵列波导或微环等结构实现。
在对波导结构14和分光结构进行制作时,可以采用目前较为常用的工艺,在此不作赘述。
在上述的示例中,采用扇出封装的方式对光收发组件10进行制作,使得光收发组件10的厚度尺寸能够降低至1mm,能明显降低光收发组件10的厚度尺寸。另外,还有助于降低光路的对准和人工耦合的次数,有利于提升生产效率。能够有效缩短电连接结构的长度尺寸,有助于降低高速信号的链路损耗。
在实际应用时,光收发组件10可以应用在多种不同类型的通信设备中。
例如,光收发组件10可以应用在光模块30中。如图32所示,在光模块30中可以包括电路板以及设置在电路板中的电源模块31、时钟模块32、激光驱动模块33等。激光驱动模块33可以与光收发组件10中的光发射器连接,用于控制光发射器的发光功率。
另外,在光模块中可以包括用于与外部光纤线缆连接的端口301以及与外部网线连接的端口302,以便于实现光纤线缆与网线之间的信号传输,并通过光收发组件10实现光信号与电信号之间的转换。
其中,光收发组件10或光模块还可以应用在如光猫、路由器等通信设备中,以便于实现光信号和电信号之间的转换。
本申请实施例提供的光收发组件10具有轻薄化的特点,当光收发组件10应用在通信设备中后,可有助于缩减通信设备的厚度尺寸,便于实现通信设备的轻薄化设计。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种光收发组件,其特征在于,包括:
    平面结构,具有安装面,所述平面结构中具有导电线路;
    光发射器,用于发射第一波长的光信号;
    所述光发射器设置于所述安装面,并与所述导电线路电连接;
    光接收器,用于接收第二波长的光信号,并将光信号转化为电信号;
    所述光接收器设置于所述安装面,并与所述导电线路电连接;
    波导结构,与所述光发射器和所述光接收器耦合,用于传输所述第一波长的光信号和所述第二波长的光信号;
    光纤,具有第一端,所述第一端与所述波导结构耦合,用于接收所述第一波长的光信号,或输出所述第二波长的光信号。
  2. 根据权利要求1所述的光收发组件,其特征在于,所述光收发组件包括分光片,所述分光片设置于所述安装面,并位于所述第一波长的光信号的光路中;
    所述波导结构包括第一波导桥和第二波导桥,所述第一波导桥用于传输所述第一波长的光信号和所述第二波长的光信号,所述第二波导桥用于传输所述第二波长的光信号;
    所述第一波导桥的一端与所述分光片耦合,另一端与所述第一端耦合;所述第二波导桥的一端与所述分光片耦合,另一端与所述光接收器耦合。
  3. 根据权利要求2所述的光收发组件,其特征在于,所述光收发组件还包括透镜,所述透镜位于所述光发射器和所述分光片之间的光路中,用于聚焦所述光发射器发出的光信号。
  4. 根据权利要求1至3中任一项所述的光收发组件,其特征在于,所述光收发组件还包括光探测器;
    所述光探测器设置于所述安装面,并与所述导电线路电连接;
    其中,所述光探测器用于监测所述光发射器发射的光信号的功率。
  5. 根据权利要求1至4中任一项所述的光收发组件,其特征在于,所述光收发组件包括封装壳体,所述封装壳体封盖在所述第一安装面,且所述光发射器、所述光接收器、所述波导结构和所述光纤的第一端均位于所述封装壳体和所述第一安装面围成的空间内;
    所述封装壳体具有安装孔,所述光纤穿设固定在所述安装孔内,并且所述光纤的第二端伸出于所述封装壳体的外表面。
  6. 根据权利要求1至5中任一项所述的光收发组件,其特征在于,所述光收发组件还包括基座;
    所述基座包括第一板面以及与所述第一板面垂直的第一侧面;
    所述光接收器设置于所述第一板面,所述第一侧面与所述平面结构的安装面固定贴合;
    所述光收发组件还包括导电胶,所述导电胶由所述第一板面延伸至所述安装面,且所述导电胶的一端与所述光接收器电连接,另一端与所述导电线路电连接。
  7. 根据权利要求1所述的光收发组件,其特征在于,所述光收发组件包括平面光波导芯片,所述平面光波导芯片设置于所述安装面;
    其中,所述平面光波导芯片中具有所述波导结构。
  8. 根据权利要求7所述的光收发组件,其特征在于,所述光收发组件还包括光探测器;
    所述光探测器设置于所述安装面,并与所述导电线路电连接;
    所述平面光波导芯片具有第一端口、第二端口、第三端口和分光结构;
    所述第一端口与所述光发射器耦合,用于接收所述光发射器发出的第一波长的光信号;
    所述第二端口与所述光探测器耦合,且所述第二端口通过所述分光结构与所述第一端口耦合;
    所述分光结构用于将所述第一端口接收的部分所述第一波长的光信号通过所述第二端口输出给所述光探测器;
    所述第三端口与所述光接收器耦合,用于输出所述第二波长的光信号。
  9. 根据权利要求7或8所述的光收发组件,其特征在于,所述光收发组件包括封装壳体,所述封装壳体封盖在所述第一安装面,且所述平面光波导芯片、所述光发射器、所述光接收器和所述光纤的第一端均位于所述封装壳体和所述第一安装面围成的空间内;
    所述封装壳体具有安装孔,所述光纤穿设固定在所述安装孔内,并且所述光纤的第二端伸出于所述 封装壳体的外表面。
  10. 根据权利要求7或8所述的光收发组件,其特征在于,所述光收发组件包括封装体,所述封装体包裹所述平面光波导芯片、所述光发射器、所述光接收器和所述光纤的第一端,且所述光纤的第二端伸出于所述封装体。
  11. 根据权利要求1所述的光收发组件,其特征在于,所述平面结构为重布线层,所述波导结构位于所述重布线层中。
  12. 根据权利要求11所述的光收发组件,其特征在于,所述光纤位于所述重布线层中,且所述光纤的第二端伸出于所述重布线层的侧边。
  13. 根据权利要求11或12所述的光收发组件,其特征在于,所述光收发组件包括封装体,所述封装体包裹所述光发射器和所述光接收器。
  14. 根据权利要求1至13中任一项所述的光收发组件,其特征在于,所述光收发组件还包括跨阻放大器,所述跨阻放大器设置于所述安装面,并与所述导电线路电连接。
  15. 一种光模块,其特征在于,包括电路板,设置于所述电路板中的激光驱动模块和如权利要求1至14中任一项所述的光收发组件,所述激光驱动模块与所述光发射器电连接,用于控制所述光发射器的出光功率。
  16. 一种通信设备,其特征在于,包括控制器和如权利要求1至14中任一项所述的光收发组件或如权利要求15所述的光模块,所述控制器与所述光收发组件电连接。
PCT/CN2024/084689 2023-03-31 2024-03-29 一种光收发组件、光模块和通信设备 WO2024199417A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310361772.7A CN117170040A (zh) 2023-03-31 2023-03-31 一种光收发组件、光模块和通信设备
CN202310361772.7 2023-03-31

Publications (1)

Publication Number Publication Date
WO2024199417A1 true WO2024199417A1 (zh) 2024-10-03

Family

ID=88936274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/084689 WO2024199417A1 (zh) 2023-03-31 2024-03-29 一种光收发组件、光模块和通信设备

Country Status (2)

Country Link
CN (1) CN117170040A (zh)
WO (1) WO2024199417A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117170040A (zh) * 2023-03-31 2023-12-05 华为技术有限公司 一种光收发组件、光模块和通信设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088818A (ja) * 1994-06-17 1996-01-12 Hitachi Cable Ltd 電子回路一体型光送受信モジュール
CN202904073U (zh) * 2012-11-01 2013-04-24 国网电力科学研究院 一种光收发模块
CN103969758A (zh) * 2013-01-25 2014-08-06 鸿富锦精密工业(深圳)有限公司 光连接器
CN106405755A (zh) * 2016-11-30 2017-02-15 武汉光迅科技股份有限公司 一种高速多通道的收发器件
CN115508954A (zh) * 2021-06-23 2022-12-23 华为技术有限公司 一种光收发组件
CN117170040A (zh) * 2023-03-31 2023-12-05 华为技术有限公司 一种光收发组件、光模块和通信设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088818A (ja) * 1994-06-17 1996-01-12 Hitachi Cable Ltd 電子回路一体型光送受信モジュール
CN202904073U (zh) * 2012-11-01 2013-04-24 国网电力科学研究院 一种光收发模块
CN103969758A (zh) * 2013-01-25 2014-08-06 鸿富锦精密工业(深圳)有限公司 光连接器
CN106405755A (zh) * 2016-11-30 2017-02-15 武汉光迅科技股份有限公司 一种高速多通道的收发器件
CN115508954A (zh) * 2021-06-23 2022-12-23 华为技术有限公司 一种光收发组件
CN117170040A (zh) * 2023-03-31 2023-12-05 华为技术有限公司 一种光收发组件、光模块和通信设备

Also Published As

Publication number Publication date
CN117170040A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
US10454586B2 (en) Integrated transceiver with lightpipe coupler
JP3750649B2 (ja) 光通信装置
JP5777355B2 (ja) システム及び方法
CN213122371U (zh) 一种光模块
CN214795314U (zh) 一种光模块
JP2010122312A (ja) 送受信レンズブロック及びそれを用いた光モジュール
JP2019515492A (ja) トランジスタアウトラインcan(TO−can)型光送受信器
KR20130052819A (ko) 송신용 광 모듈
CN110989099A (zh) 一种光模块
KR20070085080A (ko) 전자-광 모듈 제조 시스템 및 방법
US6952514B2 (en) Coupling structure for optical waveguide and optical device and optical alignment method by using the same
WO2024199417A1 (zh) 一种光收发组件、光模块和通信设备
CN111684739A (zh) 一种光收发模块的光学结构和封装结构以及操作方法
US8049159B2 (en) Optical transmitter-receiver subassembly and optical transmitter-receiver module
WO2023077903A1 (zh) 一种光模块
JP3890999B2 (ja) 光送信モジュール
CN114167554B (zh) 一种光模块
CN113296199A (zh) 一种单纤双向光组件和光模块
WO2022052527A1 (zh) 一种光模块
TW201608293A (zh) 雙向光傳輸次組件
CN114167553B (zh) 一种光模块
CN213903873U (zh) 一种光模块
CN213903874U (zh) 一种光模块
CN114647038A (zh) 一种光模块
CN215340443U (zh) 一种光模块