[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024199003A1 - 定子组件和扁线电机 - Google Patents

定子组件和扁线电机 Download PDF

Info

Publication number
WO2024199003A1
WO2024199003A1 PCT/CN2024/082395 CN2024082395W WO2024199003A1 WO 2024199003 A1 WO2024199003 A1 WO 2024199003A1 CN 2024082395 W CN2024082395 W CN 2024082395W WO 2024199003 A1 WO2024199003 A1 WO 2024199003A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamination
outlet
inlet
oil
stator assembly
Prior art date
Application number
PCT/CN2024/082395
Other languages
English (en)
French (fr)
Inventor
郑广会
刘怀远
张铃
赵培振
郑金泽
郑金宇
Original Assignee
天蔚蓝电驱动科技(江苏)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202310332537.7A external-priority patent/CN116032039B/zh
Priority claimed from CN202321412882.3U external-priority patent/CN219477694U/zh
Application filed by 天蔚蓝电驱动科技(江苏)有限公司 filed Critical 天蔚蓝电驱动科技(江苏)有限公司
Publication of WO2024199003A1 publication Critical patent/WO2024199003A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present application relates to the technical field of motors, and in particular to a stator assembly and a flat wire motor.
  • Such motors include, for example, a housing, a stator, an end cover, an oil separator and a rotor, wherein the stator includes a stator and a coil winding.
  • the oil separator is assembled between the stator and the end cover, and the oil separator is used to spray the coolant onto the coil winding to dissipate the heat of the coil winding.
  • the oil separator needs to be sealed with the stator, housing and end cover respectively.
  • a stator, motor, powertrain and mechanical equipment discloses a stator, which, through the special design of the end silicon steel sheets and the middle silicon steel sheets, allows the coolant to flow through the inside of the stator, and the coolant can be ejected to the coils at the end of the stator to dissipate heat for the stator and the coils.
  • the coolant inlet provided by the patent disclosure is located in the area where the stator is located, and is open in the radial direction of the stator.
  • This setting has the following defects: First, in order for the coolant flowing into the stator to form a uniform and stable pressure in the annular space, the coolant flowing into the inlet needs to have a very high pressure; second, in order for the inlet to directly enter the interior of the stator, the outer periphery of the silicon steel sheet corresponding to the axial area where the inlet is located will be processed to form a special structure with a notch, which destroys the original stator structure, and the performance of this part of the silicon steel sheet is weakened.
  • stator assembly and a flat wire motor with low cost, high power density and simple structure are provided.
  • a stator assembly comprising a shell body, a stator disposed in the shell body, and an oil separator ring, wherein the stator comprises an iron core and a coil protruding from two ends of the iron core, and the oil separator ring is provided with an oil separator hole facing the coil, wherein:
  • the shell body is cylindrical, with an open end and a semi-closed end formed at both axial ends, an oil inlet passage extending from the semi-closed end to the open end is formed on the circumferential wall of the shell body, and an oil inlet is formed at the end of the oil inlet passage facing the semi-closed end.
  • An inner flow passage that allows coolant to flow in the axial direction is formed in the iron core, and the oil distribution ring sleeve is arranged at the end facing the semi-closed end.
  • the outer periphery of the coil at the open end is abutted against the end of the iron core facing the open end, and a first liquid storage area is formed between the oil dividing ring and the shell body.
  • the first liquid storage area is connected to the oil inlet channel and the inner flow channel, and the first liquid storage area is open to the coil located at the open end through the oil dividing hole.
  • the iron core includes an inlet first lamination, an inlet second lamination, a main body lamination, an outlet first lamination and an outlet second lamination arranged in sequence, wherein there are a plurality of main body laminations, the main body laminations are provided with a plurality of main body slots distributed in the circumferential direction of the iron core, the main body slots at least partially extend between adjacent winding slots of the iron core, the outer peripheral area of the inlet first lamination is formed with a plurality of inlets distributed in the circumferential direction, the inlet second lamination is formed with a plurality of inlet slots distributed in the circumferential direction, each inlet slot conducts at least one inlet and at least one main body slot.
  • the inlet and the inlet slot are both in the form of holes.
  • the inlet is open to the outer peripheral side of the inlet first laminate to form a notch, and the inlet groove is open to the outer peripheral side of the inlet second laminate.
  • an oil separator ring is not provided at the end of the core facing the semi-closed end, the second outlet lamination is formed with a plurality of injection holes distributed in the circumferential direction, the first outlet lamination is formed with a plurality of long hole-shaped outlet grooves distributed in the circumferential direction, each of the outlet grooves is connected to at least one of the main body grooves and one of the injection holes, and the main body grooves, the injection holes and the outlet grooves participate in forming the inner flow channel.
  • the injection holes include a plurality of first injection holes and a plurality of second injection holes, the distance between the first injection holes and the axis of the iron core is greater than the distance between the second injection holes and the axis of the iron core, and when the stator assembly is installed, the horizontal height of the first injection holes is higher than that of the second injection holes.
  • the injection holes include a plurality of first injection holes and a plurality of second injection holes.
  • the first injection holes are located at the outer periphery of the winding slots of the core, and the second injection holes do not exceed the outer peripheral edge of the winding slots.
  • the first injection holes are located in the upper half of the core.
  • the second injection hole is located in the lower half of the iron core.
  • the stator assembly further includes a second oil separator ring sleeved on the outer periphery of the coil facing the semi-closed end, and a second liquid storage area is formed between the outer peripheral wall of the second oil separator ring and the inner peripheral wall of the outer shell, and the second liquid storage area is connected to the inner flow channel.
  • the first outlet lamination is formed with a plurality of outlet grooves distributed in the circumferential direction and open to the outer peripheral side
  • the peripheral edge of the second outlet lamination is formed with a plurality of second notches distributed in the circumferential direction
  • the second notches connect the second liquid storage area and the outlet grooves
  • each of the outlet grooves is connected to at least one of the second notches and at least one of the main grooves.
  • the peripheral wall of the shell is further formed with an oil return passage extending in the axial direction, the end of the oil return passage facing the semi-closed end forms a first oil outlet, and the end of the oil return passage facing the open end is open to the interior of the shell.
  • the spaces at both ends of the shell form a first cavity and a second cavity respectively, the first cavity and the second cavity are used to accommodate the coils located at both ends of the stator, the first cavity is connected to the oil return passage, the semi-closed end of the shell body is provided with a second oil outlet connected to the outside, and the second cavity is connected to the second oil outlet.
  • the first inlet lamination and the second inlet lamination are made of non-magnetic material, the first inlet lamination and the second inlet lamination are integrally formed, and/or the first outlet lamination and the second outlet lamination are integrally formed.
  • the second outlet lamination is made of non-magnetic material, and the first outlet lamination and the second outlet lamination are integrally formed.
  • a flat wire motor comprising the stator assembly according to the first aspect of the present application.
  • the stator assembly according to the present application has a simple structure, low manufacturing cost, high power density, and good heat dissipation effect.
  • the flat wire motor according to the present application has the same advantages.
  • FIG. 1 and 2 are overall structural schematic diagrams of a stator assembly according to a first embodiment of the present application.
  • FIG. 3 is an exploded schematic diagram of a stator assembly according to a first embodiment of the present application.
  • FIG. 4 and 5 are schematic diagrams of the stator assembly according to the first embodiment of the present application cut away along the axial direction, wherein FIG. 5 does not show the second oil outlet.
  • FIG. 6 is a schematic diagram of a stator according to a first embodiment of the present application.
  • FIG. 7 and 8 are schematic diagrams of a part of FIG. 6 which are cut away.
  • FIGS. 9 to 13 are schematic diagrams showing a partial structure of a stator according to the first embodiment of the present application.
  • FIG. 14 is a schematic diagram of a main body lamination of a stator according to the first embodiment of the present application.
  • FIG. 15 is a schematic diagram of an outlet first lamination of a stator according to the first embodiment of the present application.
  • FIG. 16 is a schematic diagram of an outlet second lamination of a stator according to the first embodiment of the present application.
  • FIG. 17 is a schematic diagram of a stator assembly according to a second embodiment of the present application, cut away along an axial direction.
  • FIG. 18 is an exploded schematic diagram of a stator assembly according to a second embodiment of the present application.
  • FIG. 19 is a schematic diagram of a partial structure of a stator according to the first embodiment of the present application.
  • FIG. 20 is a schematic diagram of an outlet first lamination of a stator according to a second embodiment of the present application.
  • FIG. 21 is a schematic diagram of a partial structure of a stator core according to a second embodiment of the present application.
  • FIG. 22 is a schematic diagram of an outlet second lamination of a stator according to a second embodiment of the present application.
  • FIG. 23 is a schematic diagram of a partial structure of a stator assembly according to a third embodiment of the present application.
  • 24 to 26 are schematic diagrams of part of the structure in FIG. 23 .
  • 10 housing 11 housing body; 111 oil inlet passage; 1110 oil inlet port; 112 oil delivery port; 113 oil return passage; 1130 oil return port; 1131 first oil outlet port; 1132 second oil outlet port; 11s positioning step; 12 cover; 121 oil return chamber; 122 flange;
  • stator 31 iron core; 310 inner flow channel; 311 first inlet lamination; 312 second inlet lamination; 313 main body lamination; 314 first outlet lamination; 315 second outlet lamination; 3110 notch; 3111 inlet hole; 3120 inlet slot; 3130 main body slot; 3140 outlet slot; 3150 second notch; 3151 first injection hole; 3152 second injection hole; 32 coil;
  • P1 first liquid storage area P2 second liquid storage area
  • A1 is open end; A2 is semi-closed end.
  • stator assembly according to a first embodiment of the present application is introduced.
  • the radial direction, axial direction, and circumferential direction referred to below are all based on the stator 30 .
  • the stator assembly includes a housing 10 , a stator 30 accommodated in the housing, and an oil separator 20 .
  • the housing 10 includes a housing body 11 and a cover 12.
  • the housing body 11 is cylindrical, one end of which is open to form an open end A1 and the other end is partially closed to form a semi-closed end A2.
  • the cover 12 is provided at the open end A1 of the housing body 11.
  • the peripheral wall of the housing body 11 is formed with an oil inlet passage 111 and an oil return passage 113 extending in the axial direction.
  • the oil inlet passage 111 forms an oil inlet port 1110 at the semi-closed end A2, is closed at the open end A1, and forms an oil delivery port 112 on the wall between the oil inlet passage 111 and the inner cavity of the shell body 11 to deliver coolant (such as engine oil from the transmission) to the interior of the shell body 11.
  • coolant such as engine oil from the transmission
  • the oil return passage 113 is open at both the open end A1 and the semi-closed end A2 to form a first oil outlet 1131 and an oil return port 1130 , respectively.
  • the cover 12 has an oil return chamber 121 formed therein.
  • the oil return chamber 121 is aligned with the oil return port 1130 in the circumferential direction, so that the coolant can flow into the oil return port 1130 through the oil return chamber 121 .
  • the inner cavity of the shell body 11 is formed with an annular positioning step 11s near the semi-closed end A2, and the stator 30 can be axially positioned by abutting against the positioning step 11s.
  • the end of the stator 30 close to the open end A1 is sleeved with an oil separator ring 20.
  • the oil separator ring 20 is formed with a plurality of oil separator holes 201 penetrating the inner circumference and the outer circumference.
  • the plurality of oil separator holes 201 are evenly distributed in the circumferential direction.
  • the end of the oil separator 20 facing the semi-closed end A2 abuts against the end face of the iron core 31 of the stator 30, and a first sealing ring R1 is provided between the end of the oil separator 20 and the end face of the iron core 31.
  • a flange protruding toward the outer circumference is formed on the outer periphery of the oil separator 20 near the open end A1, and a second sealing ring R2 is sleeved on the outer periphery of the flange. This forms an annular first liquid storage area P1 between the outer periphery of the oil separator 20 and the inner periphery of the shell body 11, and between the end of the iron core 31 and the flange.
  • a portion of the coolant is sprayed through the oil separation hole 201 onto the winding package 32 at the end of the stator 30 located on the inner periphery of the oil separation ring 20 to cool the winding package 32; this portion of the coolant will then flow through the oil return chamber 121 and the oil return channel 113, and finally flow out of the housing 10 to wait for the next cycle.
  • Another portion of the coolant flows into the interior of the iron core 31 .
  • An inner flow channel 310 is formed inside the iron core 31 , and the inner flow channel 310 allows the coolant to enter the iron core 31 and flow from one end of the iron core to the other end, and finally spray out at the other end in the form of a jet and spray to the coil 32 located at the other end.
  • the core 31 is formed by stacking a plurality of annular laminations.
  • the laminations include five different structures, which are: inlet first lamination 311, inlet second lamination 312, main body lamination 313, outlet first lamination 314, and outlet second lamination 315 in order from the open end A1 to the semi-closed end A2.
  • the inner flow channel 310 corresponds to a structure on the inlet first lamination 311 for allowing the coolant to flow into the core 31 , and the structure is represented by a plurality of notches 3110 formed on the outer peripheral portion of the inlet first lamination 311 .
  • the first sealing ring R1 in order to ensure that the coolant in the first liquid storage area P1 flows into the interior of the iron core from the notch 3110, the first sealing ring R1 needs to avoid the notch 3110 when being set.
  • the diameter of the first sealing ring R1 is smaller than the diameter of the equivalent circle where the notch 3110 is located to avoid blocking the notch 3110.
  • the structure of the inner flow channel 310 corresponding to the inlet second lamination 312 is used to allow the coolant flowing into the notch 3110 to flow radially to the inside of the core 31, especially to the position close to the winding slot, and the structure is represented by the spoke-shaped inlet groove 3120 formed on the outer periphery of the inlet second lamination 312.
  • the inlet groove 3120 is open toward the outer periphery.
  • the inner flow channel 310 corresponds to the structure on the main body lamination 313 for allowing the coolant to flow through the iron core 31 in the axial direction, and the structure is manifested as a plurality of long hole-shaped main body slots 3130 formed in the middle of the main body lamination 313. In the radial direction, the main body slots 3130 extend between adjacent winding slots so that the heat from the wire can be transferred to the coolant in the main body slots 3130 more quickly, thereby improving the cooling efficiency.
  • the multiple main body laminations 313, and the multiple main body laminations 313 are coaxially stacked together to form the main body part of the core 31.
  • the multiple main body laminations 313 are simplified as a whole.
  • the main body grooves 3130 on the plurality of main body laminates 313 may be arranged to be completely aligned in the circumferential direction, or may be arranged to be incompletely aligned, as long as the main body grooves 3130 belonging to different main body laminates 313 within a certain range in the circumferential direction are connected in the axial direction.
  • the structure of the inner flow channel 310 corresponding to the first outlet lamination 314 is used to guide the coolant in the main slot 3130 to the downstream injection hole at the end of the core 31, and the structure is represented by an outlet slot 3140 similar in shape to the main slot 3130. Since the positions of the injection holes (first injection holes 3151 and second injection holes 3152) to be described below may exceed the positions covered by the main slot 3130 in the radial and circumferential directions, the opening size of the outlet slot 3140 is larger than the opening size of the main slot 3130.
  • the outer contour of the outlet slot 3140 is slightly larger than the contours of the main slot 3130 and the injection hole located on both sides of the outlet slot 3140, for example, the outer contour of the outlet slot 3140 exceeds the contours of the main slot 3130 and the injection hole located on both sides of the outlet slot 3140 by no more than 1 mm on the radial inner side and the radial outer side, so as to minimize the damage to the structure of the first outlet lamination 314 on the premise of conducting the injection hole.
  • the inner flow channel 310 corresponds to the structure on the second lamination 315 at the outlet, which is used to form a spray hole, so that the coolant is sprayed out at the end of the iron core 31 facing the semi-closed end A2, and sprayed onto the coil 32 located at the end, thereby cooling the coil 32 at the end.
  • the injection holes include a first injection hole 3151 and a second injection hole 3152.
  • a horizontal dividing line is drawn through the diameter of the outlet second laminate 315 to divide the outlet second laminate 315 into two upper and lower parts.
  • the first injection hole 3151 is located in the upper half of the outlet second laminate 315, and the second injection hole 3152 is located in the lower half of the outlet second laminate 315.
  • the first injection hole 3151 is located on the outer peripheral side of the winding groove W, and the second injection hole 3152 is located between adjacent winding grooves W, or in other words, it does not exceed the outer peripheral edge of the winding groove W.
  • the above-mentioned spray hole positions are set in consideration of the fact that the stator is usually set with its axis horizontally (i.e., the stator is usually set horizontally), and in order to allow the coolant sprayed from each spray hole to spray to the nearby coil 32 when the stator is working, the spray hole should not be lower than the nearby coil. It can be understood that when the spray hole is not lower than the nearby coil, the coolant can fall to the surface of the coil near and below it due to its own gravity during the spraying process.
  • the radial positions of the injection holes at different circumferential positions may have more different sizes.
  • outlet first lamination 314 and the inlet second lamination 312 play a substantially similar role, both for radially transmitting the coolant in the core so that the coolant can flow into or out of the core.
  • the outlet slot 3140 does not extend to the outer peripheral portion of the lamination like the inlet slot 3120, so the damage to the lamination is less.
  • the main lamination 313 generally needs to be pressed with silicon steel material to achieve electromagnetic conversion.
  • the inlet first lamination 311, the inlet second lamination 312, the outlet first lamination 314 and the outlet second lamination 315 can be made of materials different from the main lamination 313.
  • the inlet first lamination 311, the inlet second lamination 312, the outlet first lamination 314 and the outlet second lamination 315 can be made of plastic material; in this case, the inlet first lamination 311 and the inlet second lamination 312 can be integrally formed, and the outlet first lamination 314 and the outlet second lamination 315 can be integrally formed.
  • the inlet first lamination 311, the outlet first lamination 314 and the outlet second lamination 315 also use silicon steel material to increase the magnetic conductivity of the iron core.
  • the end wall of the shell body 11 at the semi-closed end A2 is formed with a second oil outlet 1132 at the lowest point of the inner cavity of the shell body 11. Therefore, the coolant sprayed from the spray hole can flow out of the shell 10 from the second oil outlet 1132 after flowing through the wire package 32, waiting for the next cycle.
  • the second oil outlet 1132 may not be provided on the end wall of the shell body 11, but an opening leading to the oil return passage 113 may be opened at the lowest point of the inner cavity of the shell body 11 near the semi-closed end A2 to guide the coolant sprayed from the injection hole and flowing through the coil 32 into the oil return passage 113 and finally flow out from the first oil outlet 1131.
  • the present application is particularly suitable for flat wire stators because the wire embedding slots of the flat wire stator have a smaller size in the circumferential direction, which makes the teeth between adjacent wire embedding slots have a larger circumferential size, which is sufficient to set the main slot 3130 .
  • stator assembly according to a second embodiment of the present application is introduced.
  • the second embodiment is a modification of the first embodiment, and components having the same or similar structures or functions as those in the first embodiment are marked with the same reference numerals, and detailed descriptions of these components are omitted.
  • both ends of the iron core 31 are provided with oil separators 20, or in other words, the shell body 11 is provided with oil separators 20 at the open end A1 and the semi-closed end A2.
  • the coolant passing through the iron core 31 is not directly sprayed onto the coil as in the first embodiment, but first converges in the second liquid reservoir P2, and then sprayed onto the coil 32 through the oil separator holes 201 located at the oil separator 20.
  • the second liquid storage area P2 has the function of redistributing the oil to spray the coolant, the structures of the outlet first laminate 314 and the outlet second laminate 315 in this embodiment are different from those in the first embodiment.
  • the structure of the outlet first lamination 314 is substantially similar to that of the inlet second lamination 312, and the structure of the outlet second lamination 315 is substantially similar to that of the inlet first lamination 311. It can be considered that the axial ends of the stator are symmetrical structures.
  • the outlet groove 3140 located at the outlet first laminate 314 is connected to the main body groove 3130 in the axial direction and is open to the outer peripheral side in the radial direction.
  • the outer peripheral portion of the outlet second laminate 315 forms a second notch 3150.
  • the notch 3150 is connected to the outlet groove 3140 in the axial direction. Therefore, the coolant flowing out of the main body groove 3130 can enter the second liquid storage area P2 through the outlet groove 3140 and the second notch 3150 in sequence.
  • the second liquid storage area P2 allows the coolant flowing through the iron core to form a relatively high pressure stable oil again, and is sprayed toward the coil 32 at the other end of the iron core 31 through the multiple oil distribution holes 201 of the second oil distribution ring 20.
  • the liquid gathers under the action of gravity, and then flows back to the gear box through the second oil outlet 1132.
  • This embodiment also provides another arrangement scheme for the oil inlet passage 111.
  • the oil inlet passage 111 is axially through the shell body 11, that is, the oil inlet passage 111 forms an opening at the open end A1 of the shell body 11.
  • the oil inlet passage 111 with both ends open is easier to form.
  • the outer peripheral portion of the cover 12 partially protrudes radially outward to form a flange 122, and the flange 122 can form a closed barrier at the above-mentioned opening of the oil inlet passage 111.
  • a sealing plug R3 is also provided between the flange 122 and the above-mentioned opening, so as to better form a blockage at the open end A1 of the oil inlet passage 111.
  • stator assembly according to a third embodiment of the present application is introduced.
  • the third embodiment is a modification of the first embodiment, and components with the same or similar structures or functions as those in the first embodiment are marked with the same reference numerals, and detailed descriptions of these components are omitted.
  • the peripheral portion of the inlet first stack does not form a notch, but forms a hole-shaped inlet hole 3111; correspondingly, the inlet groove 3120 does not extend to the peripheral edge of the inlet second stack 312, and the inlet groove 3120 is also formed in a hole shape.
  • This arrangement is particularly suitable for the case where the inlet first lamination 311 and the inlet second lamination 312 are made of magnetic conductive materials, such as silicon steel.
  • the inlet hole 3111 and the inlet slot 3120 do not extend to the peripheral area of the corresponding lamination, ensuring that the corresponding lamination still retains a magnetic conductive area around the inlet hole 3111 and the inlet slot 3120, thereby enhancing the magnetic density of the motor.
  • the present application also provides a flat wire motor, which includes the stator assembly according to the present application.
  • the oil inlet passage and the liquid storage area of the present application both provide a pressurized area for the coolant; and the first liquid storage area allows the liquid pressure to be evenly distributed in the circumferential direction, which means that there is no need to set a very high pressure for the coolant before it flows into the shell.
  • the oil inlet channel can effectively dissipate heat from the heat-generating concentrated area of the stator core, while the oil separator ring can effectively dissipate heat from the wire wrap at both ends of the stator core.
  • the combination of the two improves the heat dissipation efficiency and improves the safety performance of the stator assembly and the flat wire motor.
  • An oil inlet and an oil return passage are arranged on the housing for conveying coolant.
  • the oil inlet, the first oil outlet and the second oil outlet are all open in the axial direction of the housing, rather than in the radial direction of the housing. This arrangement does not occupy the axial area of the stator, nor does it need to extend inward to the corresponding area of the stator to damage the structure of the stator core. A higher power density of the stator core can be achieved in a limited space, and the performance of the stator core can be guaranteed.
  • this arrangement allows for a larger space on the periphery of the coil at the semi-closed end.
  • the coil sizes at the two ends of the flat wire stator may be different, for example, one end has a larger radial dimension due to the folding of the hairpin winding or the use of a busbar or other structure, this end can be arranged toward the semi-closed end of the shell body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请提供一种定子组件和扁线电机。定子组件包括壳主体(11)和分油环(20),分油环(20)上设置有朝向线包(32)的分油孔(201),壳主体(11)轴向两端分别形成开放端(A1)和半闭端(A2),壳主体(11)的周壁形成有从半闭端(A2)延伸到开放端(A1)的进油道(111),铁芯(31)内形成有能使冷却液在轴向上流过的内流道(310),分油环(20)套设在朝向开放端(A1)的线包(32)的外周,分油环(20)和壳主体(11)之间形成第一蓄液区(P1),第一蓄液区(P1)和进油道(111)以及内流道(310)导通。根据本申请的定子组件结构简单,制作成本低、功率密度高、散热效果好,根据本申请的扁线电机具有同样的优点。

Description

定子组件和扁线电机
相关申请的引用
本申请要求2023年3月31日在中国专利局提交的专利名称为“定子组件和扁线电机”、申请号为202310332537.7的中国专利申请的优先权,以及2023年6月6日在中国专利局提交的专利名称为“定子组件和扁线电机”、申请号为202321412882.3的中国专利申请的优先权,以上在先申请的全部内容通过引用并入本文。
技术领域
本申请涉及电机的技术领域,具体涉及一种定子组件和扁线电机。
背景技术
为了解决高速旋转电机的散热问题,现有技术提供了使用冷却油给电机的线包冷却的方案。此类电机例如包括:外壳、定子、端盖、分油环和转子,其中,定子包括定子和线包绕组。分油环装配于定子与端盖之间,利用分油环将冷却液喷淋至线包绕组,对线包绕组进行散热。为了保证密封性,分油环需要与定子、外壳和端盖几个部分分别实现密封。
具体地,例如中国专利:一种定子、电机、动力总成及机械设备(公开号:CN115333265A)公开了一种定子,其通过对端部硅钢片和中间硅钢片的特殊设计,使得冷却液能够从定子的内部流过,且冷却液能射流到定子端部的线包,给定子和线包散热。然而,该专利公开所提供的冷却液的进液口位于定子所在的区域,且沿定子的径向开放,这种设置方式存在如下的缺陷:第一,为了让流入定子的冷却液在环形空间内形成均匀的、稳定的压力,流入进液口的冷却液需要具有很高的压力;第二,为了使进液口直接进入定子的内部,进液口所在的轴向区域所对应的硅钢片的外周将被加工形成具有缺口的特殊结构,破坏了原本的定子结构,这部分的硅钢片性能有所减弱。
另外,还有中国专利CN114977555A将冷却液入口移到了超出定子所在的区域,其能够解决上述CN115333265A专利存在的问题,然而,该方案所提供的第一外壳和第二外壳与定子之间的密封采用密封胶,密封效果差且制作成本高。
发明内容
为了克服或至少减轻上述现有技术存在的不足,提供一种成本低、功率密度高且结构简单的定子组件和扁线电机。
根据本申请的一个方面,提供一种定子组件,包括壳主体和设置在所述壳主体内的定子以及分油环,所述定子包括铁芯和凸出于所述铁芯两端的线包,所述分油环上设置有朝向所述线包的分油孔,其中,
所述壳主体呈筒状,轴向两端分别形成开放端和半闭端,所述壳主体的周壁形成有从所述半闭端延伸到所述开放端的进油道,所述进油道的朝向所述半闭端的端部形成进油口,所述铁芯内形成有能使冷却液在轴向上流过的内流道,所述分油环套设在朝向所 述开放端的线包的外周、并抵靠到所述铁芯的朝向所述开放端的端部,所述分油环和所述壳主体之间形成第一蓄液区,所述第一蓄液区和所述进油道以及所述内流道导通,并且所述第一蓄液区通过所述分油孔向朝向位于所述开放端的线包开放。
在至少一个实施方式中,沿轴向从开放端指向半闭端的方向,铁芯包括依次设置的入口第一叠片、入口第二叠片、主体叠片、出口第一叠片和出口第二叠片,其中主体叠片有多个,主体叠片开设有多个在铁芯的周向上分布的主体槽,主体槽至少部分地伸入铁芯的相邻的绕线槽之间,入口第一叠片的外周区域形成有多个在周向上分布的入口,入口第二叠片形成有多个在周向上分布的多个入口槽,每个入口槽导通至少一个入口和至少一个主体槽。
在至少一个实施方式中,入口和入口槽均呈孔状。
在至少一个实施方式中,入口向入口第一叠片的外周侧开放而形成豁口,入口槽向入口第二叠片的外周侧开放。
在至少一个实施方式中,所述铁芯的朝向所述半闭端的端部不设置分油环,所述出口第二叠片形成有多个在所述周向上分布的喷射孔,所述出口第一叠片形成有多个在所述周向上分布的长孔状的出口槽,每个所述出口槽至少连通一个所述主体槽和一个所述喷射孔,所述主体槽、所述喷射孔和所述出口槽参与形成所述内流道。
在至少一个实施方式中,所述喷射孔包括多个第一喷射孔和多个第二喷射孔,所述第一喷射孔距所述铁芯的轴线的距离大于所述第二喷射孔距所述铁芯的轴线的距离,在所述定子组件完成安装的情况下,所述第一喷射孔的水平高度高于所述第二喷射孔。
在至少一个实施方式中,所述喷射孔包括多个第一喷射孔和多个第二喷射孔,在所述铁芯的周向上,所述第一喷射孔位于所述铁芯的绕线槽的外周,所述第二喷射孔不超出所述绕线槽的外周边缘,在所述定子组件完成安装的情况下,所述第一喷射孔位于所述铁芯的上半圈。
在至少一个实施方式中,在所述定子组件完成安装的情况下,所述第二喷射孔位于所述铁芯的下半圈。
在至少一个实施方式中,所述定子组件还包括套设在朝向所述半闭端的线包的外周的第二个分油环,所述第二个分油环的外周壁与所述外壳的内周壁之间还形成第二蓄液区,所述第二蓄液区与所述内流道导通。
在至少一个实施方式中,所述出口第一叠片形成有多个在所述周向上分布的、向外周侧开放的多个出口槽,所述出口第二叠片的外周边缘形成有多个在所述周向上分布的第二豁口,所述第二豁口连通所述第二蓄液区和所述出口槽,每个所述出口槽导通至少一个所述第二豁口和至少一个所述主体槽。
在至少一个实施方式中,所述外壳的周壁还形成有在所述轴向上贯通的回油道,所述回油道的朝向所述半闭端的端部形成第一出油口,所述回油道的朝向所述开放端的端部向所述壳体内部开放。
在至少一个实施方式中,所述壳体内两端的空间分别形成第一腔和第二腔,所述第一腔和所述第二腔用于容纳位于所述定子的两端的所述线包,所述第一腔与所述回油道连通,所述壳主体的半闭端开设有导通外部的第二出油口,所述第二腔连通第二出油口。
在至少一个实施方式中,所述入口第一叠片和所述入口第二叠片采用不导磁材料制成,所述入口第一叠片和所述入口第二叠片一体成型设置,和/或所述出口第一叠片和所 述出口第二叠片采用不导磁材料制成,所述出口第一叠片和所述出口第二叠片一体成型设置。
根据本申请的第二方面,提供一种扁线电机,所述扁线电机包括根据本申请的第一方面的定子组件。
根据本申请的定子组件结构简单,制作成本低、功率密度高、散热效果好,根据本申请的扁线电机具有同样的优点。
附图说明
图1和图2是根据本申请的第一实施方式的定子组件的整体结构示意图。
图3是根据本申请的第一实施方式的定子组件的分解示意图。
图4和图5是根据本申请的第一实施方式的定子组件沿轴向剖开的示意图,其中图5未示出第二出油口。
图6根据本申请的第一实施方式的定子的示意图。
图7和图8是图6的部分剖开的示意图。
图9至图13是本申请的第一实施方式的定子的部分结构的示意图。
图14是根据本申请的第一实施方式的定子的主体叠片的示意图。
图15是根据本申请的第一实施方式的定子的出口第一叠片的示意图。
图16是根据本申请的第一实施方式的定子的出口第二叠片的示意图。
图17是根据本申请的第二实施方式的定子组件沿轴向剖开的示意图。
图18是根据本申请的第二实施方式的定子组件的分解示意图。
图19是本申请的第一实施方式的定子的部分结构的示意图。
图20是根据本申请的第二实施方式的定子的出口第一叠片的示意图。
图21是根据本申请的第二实施方式的定子铁芯的部分结构的示意图。
图22是根据本申请的第二实施方式的定子的出口第二叠片的示意图。
图23是根据本申请的第三实施方式的定子组件的部分结构的示意图。
图24至图26是图23中部分结构的示意图。
附图标记说明:
10外壳;11壳主体;111进油道;1110进油口;112送油口;113回油道;1130回油口;1131第一出油口;1132第二出油口;11s定位台阶;12盖;121回油腔;122凸缘;
20分油环;201分油孔;
30定子;31铁芯;310内流道;311入口第一叠片;312入口第二叠片;313主体叠片;314出口第一叠片;315出口第二叠片;3110豁口;3111入口孔;3120入口槽;3130主体槽;3140出口槽;3150第二豁口;3151第一喷射孔;3152第二喷射孔;32线包;
P1第一蓄液区;P2第二蓄液区;
R1第一密封圈;R2第二密封圈;R3密封塞;
A1开放端;A2半闭端。
具体实施方式
下面参照附图描述本申请的示例性实施方式。应当理解,这些具体的说明仅用于示 教本领域技术人员如何实施本申请,而不用于穷举本申请的所有可行的方式,也不用于限制本申请的范围。
第一实施方式
参照图1至图16,介绍根据本申请的第一实施方式的定子组件。
除非特别说明,以下所称的径向、轴向和周向均以定子30作为参照。
定子组件包括外壳10、容纳在外壳内的定子30以及分油环20。
外壳10包括壳主体11和盖12。壳主体11呈筒状,其一端开放形成为开放端A1、另一端部分地封闭形成半闭端A2。盖12设置在壳主体11的开放端A1。
壳主体11的周壁形成有沿轴向延伸的进油道111和回油道113。
进油道111在半闭端A2形成进油口1110,在开放端A1闭合、并在进油道111和壳主体11的内腔之间的壁上形成送油口112,以将冷却液(例如为来自变速器的机油)送至壳主体11内部。
回油道113在开放端A1和半闭端A2均开放,分别形成第一出油口1131和回油口1130。
盖12的内部形成回油腔121。在盖12与壳主体11装配时,回油腔121与回油口1130在周向上对齐,使得冷却液能经由回油腔121流入回油口1130。
壳主体11的内腔在靠近半闭端A2处形成有环形的定位台阶11s,定子30能抵靠在定位台阶11s上得到轴向定位。
定子30的靠近开放端A1的端部套设有分油环20。分油环20形成有贯通内周侧和外周侧的多个分油孔201,可选地,多个分油孔201在周向上均匀地分布。
分油环20的朝向半闭端A2的一端抵靠到定子30的铁芯31的端面,且在分油环20的端部和铁芯31的端面之间设有第一密封圈R1。分油环20外周在靠近开放端A1处形成有向外周方向凸出的法兰边,法兰边的外周套设有第二密封圈R2。这使得在分油环20的外周和壳主体11的内周之间,以及在铁芯31的端部和法兰边之间,形成环形的第一蓄液区P1。
流入外壳10的冷却液在轴向流过进油道111得到加速后,会经送油口112流入第一蓄液区P1,在第一蓄液区P1内周向流动使得液压均匀地在周向上分布。之后,冷却液分两部分进行流动。图4、图5和图8中的虚线箭头示出了冷却液在定子组件内部的流动方向。
一部分冷却液经由分油孔201喷射至位于分油环20内周的定子30端部的线包32上,给线包32进行降温;这一部分冷却液之后会流经回油腔121和回油道113,并最终流出外壳10等待下一次循环。
另一部分冷却液则流入铁芯31的内部。
铁芯31内部形成有内流道310,内流道310允许冷却液进入铁芯31内且从铁芯的一端流至另一端,并最终以射流的方式在另一端喷出,喷射至位于另一端的线包32。
接下来,具体介绍内流道310的结构。
铁芯31由多个环形叠片叠置而成。为了形成允许冷却液径向流入铁芯、之后轴向流过铁芯、最后径向流出铁芯的内流道310,叠片包括五种不同结构,按从开放端A1向半闭端A2的次序,这五种叠片依次为:入口第一叠片311、入口第二叠片312、主体叠片313、出口第一叠片314和出口第二叠片315。
参照图7和图9,内流道310对应在入口第一叠片311上的结构用于使冷却液流入铁芯31,该结构表现为在入口第一叠片311的外周部分形成的多个豁口3110。
值得注意的是,参考图7,为了确保第一蓄液区P1中的冷却液从豁口3110流入铁芯内部,第一密封圈R1设置时需要避让豁口3110,比如,第一密封圈R1的直径小于豁口3110所在的等效圆的直径,避免封堵豁口3110。
参照图7和图10,内流道310对应在入口第二叠片312上的结构用于使流入豁口3110内的冷却液沿径向流至铁芯31的内部、尤其是流至靠近绕线槽所在的位置,该结构表现为在入口第二叠片312的外周部形成的辐条状的入口槽3120。入口槽3120朝向外周方向开放。
参照图7、图10、图11和图14,内流道310对应在主体叠片313上的结构用于使冷却液能沿轴向流过铁芯31,该结构表现为在主体叠片313的中部形成的多个长孔状的主体槽3130。在径向上,主体槽3130伸入到相邻的绕线槽之间,以使得来自导线的热量能更快地传递给主体槽3130内的冷却液,提高冷却效率。
可以理解,主体叠片313有多个,多个主体叠片313同轴地叠置在一起,形成铁芯31的主体部分。图中为了方便显示,将这多个主体叠片313简化为一个整体示出。
多个主体叠片313上的主体槽3130可以在周向上完全对齐地设置,也可以不完全对齐地设置,只需要保证在周向上一定范围内的属于不同主体叠片313的主体槽3130在轴向上相通即可。
参照图7、图12和图15,内流道310对应在出口第一叠片314上的结构用于在铁芯31的端部将主体槽3130内的冷却液引至下游的喷射孔,该结构表现为与主体槽3130形状相仿的出口槽3140。由于下文将介绍的喷射孔(第一喷射孔3151和第二喷射孔3152)在径向和周向上的位置可能超出主体槽3130所覆盖的位置,因此出口槽3140的开口大小大于主体槽3130的开口大小。优选地,沿轴向观察,出口槽3140的外轮廓稍大于位于出口槽3140两侧的主体槽3130和喷射孔的轮廓,例如,出口槽3140的外轮廓在径向内侧和径向外侧超出位于出口槽3140两侧的主体槽3130和喷射孔的轮廓的尺寸不大于1mm,以在导通喷射孔的前提下,尽量少的破坏出口第一叠片314的结构。
参照图7、图13和图16,内流道310对应在出口第二叠片315上的结构用于形成喷射孔,使冷却液在铁芯31的朝向半闭端A2的端部喷出,喷射至位于该端部的线包32上,给该端部的线包32降温。
在本实施方式中,喷射孔包括第一喷射孔3151和第二喷射孔3152。经过出口第二叠片315的直径作一条水平的分界线,将出口第二叠片315分成上下两个部分,第一喷射孔3151位于出口第二叠片315的上半圈,第二喷射孔3152位于出口第二叠片315的下半圈。第一喷射孔3151位于绕线槽W的外周侧,第二喷射孔3152位于相邻的绕线槽W之间,或者说是不超过绕线槽W的外周边缘。
上述喷射孔位置的设置是考虑到定子通常是轴线水平设置的(即通常所说的定子水平设置),为了使得定子在工作时,从各个喷射孔喷出的冷却液能喷射到附近的线包32,喷射孔不低于其附近的线包。可以理解,在喷射孔不低于其附近的线包的情况下,冷却液在喷射过程中由于自身重力能落至其附近的、下方的线包表面。
应当理解,在其它可能的实施方式中,处在不同周向位置的喷射孔所在的径向位置可以有更多不同尺寸的设置。
可以理解,出口第一叠片314和入口第二叠片312起到了大致相同的作用,都用于将冷却液在铁芯内径向地传输,使得冷却液能流入或流出铁芯。但是出口槽3140不像入口槽3120那样延伸到叠片的外周部分,因此对叠片所产生的破坏更小。
这些叠片中,主体叠片313一般需要采用硅钢材料压制而成,以实现电磁转换。入口第一叠片311、入口第二叠片312、出口第一叠片314和出口第二叠片315可以选用与主体叠片313不同的材质。比如,入口第一叠片311、入口第二叠片312、出口第一叠片314和出口第二叠片315可以采用塑料材质;这种情况下,入口第一叠片311和入口第二叠片312可以一体成型地设置,出口第一叠片314和出口第二叠片315可以一体成型地设置。
当然,考虑到入口第一叠片311、出口第一叠片314和出口第二叠片315上用于形成内流道310的结构对叠片的破坏非常小,因此也推荐入口第一叠片311、出口第一叠片314和出口第二叠片315同样采用硅钢材料,以增大铁芯的导磁作用。
回到图1和图4,壳主体11在半闭端A2的端壁在位于壳主体11的内腔最低处形成有第二出油口1132。于是,从喷射孔喷出的冷却液在流过线包32后,可以从第二出油口1132流出外壳10,等待下一次循环。
在其它可能的实施方式中,也可以不在壳主体11的端壁设置第二出油口1132,而是在靠近半闭端A2的壳主体11的内腔最低处开设导通至回油道113的开口,将从喷射孔喷出的、流过线包32的冷却液导流至回油道113内,并最终从第一出油口1131流出。
优选地,本申请尤其适用于扁线定子。这是因为扁线定子的嵌线槽在周向上的尺寸较小,这使得相邻嵌线槽之间的齿部具有较大的周向尺寸,足够设置主体槽3130。
第二实施方式
参照图17至图22,介绍根据本申请的第二实施方式的定子组件。第二实施方式是第一实施方式的变型,对于与第一实施方式中的部件结构或功能相同或相似的部件标注相同的附图标记,并省略对这些部件的具体说明。
本实施方式与第一实施方式相比,主要的区别在于,铁芯31的两个端部均设有分油环20,或者说壳主体11内在开放端A1和半闭端A2均设有分油环20。这使得壳主体11内在开放端A1和半闭端A2分别形成位于分油环20外周的第一蓄液P1和第二蓄液区P2。穿过铁芯31的冷却液不像第一实施方式中那样直接喷射到线包,而是先汇聚在第二蓄液区P2,再经由位于分油环20的分油孔201喷射到线包32。
由于上述第二蓄液区P2具有再次分配油液使冷却液喷射的功能也导致本实施方式中的出口第一叠片314和出口第二叠片315的结构与第一实施方式不同。
在本实施方式中,出口第一叠片314与入口第二叠片312的结构大致相仿,出口第二叠片315与入口第一叠片311的结构大致相仿。可以认为,定子的轴向两端是对称的结构。
位于出口第一叠片314的出口槽3140在轴向上与主体槽3130连通,在径向上朝向外周侧开放。出口第二叠片315的外周部分形成第二豁口3150。豁口3150在轴向上与出口槽3140连通。从而自主体槽3130流出的冷却液可以依次经由出口槽3140和第二豁口3150进入第二蓄液区P2。
第二蓄液区P2使得流经铁芯的冷却液能再次形成较高的压力稳定的油液,并经由第二个分油环20的多个分油孔201向铁芯31的另一端的线包32喷射。之后,这部分冷却 液在重力作用下汇聚,然后再经过第二出油口1132流回齿轮箱。
本实施方式还提供了进油道111的另一种设置方案。本实施方式中进油道111在壳主体11上是轴向贯通的,即进油道111在外壳主体11的开放端A1形成开口。两端开放的进油道111更易成型。盖12的外周部部分地向径向外侧凸出而形成凸缘122,凸缘122能在进油道111的上述开口处形成封闭状的阻挡。在凸缘122和上述开口之间还设置有密封塞R3,从而更好地使进油道111在开放端A1处形成封堵。
第三实施方式
参照图23至图26,介绍根据本申请的第三实施方式的定子组件。第三实施方式是第一实施方式的变型,对于与第一实施方式中的部件结构或功能相同或相似的部件标注相同的附图标记,并省略对这些部件的具体说明。
本实施方式与第一实施方式相比,主要的区别在于:入口第一叠片的外周部不形成豁口,而是形成孔状的入口孔3111;与之相应的,入口槽3120不延伸到入口第二叠片312的外周边缘,入口槽3120也是形成孔状。
这种设置尤其适用于入口第一叠片311和入口第二叠片312由导磁材料,例如硅钢,制作的情况。入口孔3111和入口槽3120不延伸到相应叠片的外周区域,保证了相应叠片在入口孔3111和入口槽3120的外周还保留导磁区域,从而使得电机的磁密度增强。
应当理解,上述实施方式及其部分方面或特征可以适当地组合。
本申请还提供了一种扁线电机,扁线电机包括根据本申请的定子组件。
本申请至少具有以下优点中的一个优点:
(i)本申请的进油道和蓄液区均为冷却液提供了加压区;且第一蓄液区使得液体压力能在周向上均布,这使得在冷却液流入外壳之前,不需要为其设置很大的压力。
(ii)进油道可以对定子铁芯的产热集中区域进行有效散热,而分油环可以对定子铁芯两端的线包进行有效散热,二者结合提高了散热效率,改善了定子组件和扁线电机的安全性能。
(iii)在外壳上设置进油道和回油道,用于输送冷却液,进油口、第一出油口和第二出油口都朝向外壳的轴向开放、而不是朝向外壳的径向开放,这种设置不占用定子轴向上的区域,也不需要对内延伸至定子的对应区域而破坏定子铁芯的结构。在有限的空间内实现定子铁芯更高的功率密度,可以保证定子铁芯的性能。
(iii)对于壳主体的半闭端不设分油环的方案:
第一方面,这种设置节约了成本。
第二方面,该设置使得位于半闭端的线包外周具有更大的空间,考虑到扁线定子两个端部的线包尺寸可能是不同的,例如有一个端部由于发卡绕组的折叠、或是使用busbar等结构,而具有更大的径向尺寸,可以将该端朝向壳主体的半闭端设置。
第三方面,不需要在出口处将冷却液引流至铁芯的最外周区域,因此位于出口第一叠片的出口槽的径向尺寸小,对叠片的破坏小,使得包括出口第一叠片所形成的铁芯的功率密度更高。
当然,本申请不限于上述实施方式,本领域技术人员在本申请的教导下可以对本申请的上述实施方式做出各种变型,而不脱离本申请的范围。

Claims (14)

  1. 一种定子组件,包括壳主体(11)和设置在所述壳主体(11)内的定子(30)以及分油环(20),所述定子(30)包括铁芯(31)和凸出于所述铁芯(31)两端的线包(32),所述分油环(20)上设置有朝向所述线包(32)的分油孔(201),其中,
    所述壳主体(11)呈筒状,轴向两端分别形成开放端(A1)和半闭端(A2),所述壳主体(11)的周壁形成有从所述半闭端(A2)延伸到所述开放端(A1)的进油道(111),所述进油道(111)的朝向所述半闭端(A2)的端部形成进油口(1110),
    所述铁芯(31)内形成有能使冷却液在轴向上流过的内流道(310),
    所述分油环(20)套设在朝向所述开放端(A1)的线包(32)的外周、并抵靠到所述铁芯(31)的朝向所述开放端(A1)的端部,所述分油环(20)和所述壳主体(11)之间形成第一蓄液区(P1),所述第一蓄液区(P1)和所述进油道(111)以及所述内流道(310)导通,并且所述第一蓄液区(P1)通过所述分油孔(201)向朝向位于所述开放端(A1)的线包(32)开放。
  2. 根据权利要求1所述的定子组件,其中,沿所述轴向从所述开放端(A1)指向所述半闭端(A2)的方向,所述铁芯包括依次设置的入口第一叠片(311)、入口第二叠片(312)、主体叠片(313)、出口第一叠片(314)和出口第二叠片(315),其中主体叠片(313)有多个,
    所述主体叠片(313)开设有多个在所述铁芯(31)的周向上分布的主体槽(3130),所述主体槽(3130)至少部分地伸入所述铁芯(31)的相邻的绕线槽之间,
    所述入口第一叠片(311)的外周区域形成有多个在所述周向上分布的入口,
    所述入口第二叠片(312)形成有多个在所述周向上分布的多个入口槽(3120),
    每个所述入口槽(3120)导通至少一个所述入口和至少一个所述主体槽(3130)。
  3. 根据权利要求2所述的定子组件,其中,所述入口和所述入口槽(3120)均呈孔状。
  4. 根据权利要求2所述的定子组件,其中,所述入口向所述入口第一叠片(311)的外周侧开放而形成豁口(3110),所述入口槽(3120)向所述入口第二叠片(312)的外周侧开放。
  5. 根据权利要求2所述的定子组件,其中,所述铁芯(31)的朝向所述半闭端(A2)的端部不设置分油环(20),
    所述出口第二叠片(315)形成有多个在所述周向上分布的喷射孔,
    所述出口第一叠片(314)形成有多个在所述周向上分布的长孔状的出口槽(3140),每个所述出口槽(3140)至少连通一个所述主体槽(3130)和一个所述喷射孔,
    所述主体槽(3130)、所述喷射孔和所述出口槽(3140)参与形成所述内流道(310)。
  6. 根据权利要求5所述的定子组件,其中,所述喷射孔包括多个第一喷射孔(3151)和多个第二喷射孔(3152),所述第一喷射孔(3151)距所述铁芯(31)的轴线的距离大于所述第二喷射孔(3152)距所述铁芯(31)的轴线的距离,
    在所述定子组件完成安装的情况下,所述第一喷射孔(3151)的水平高度高于所述第二喷射孔(3152)。
  7. 根据权利要求5所述的定子组件,其中,所述喷射孔包括多个第一喷射孔(3151) 和多个第二喷射孔(3152),
    在所述铁芯(31)的周向上,所述第一喷射孔(3151)位于所述铁芯(31)的绕线槽的外周,所述第二喷射孔(3152)不超出所述绕线槽的外周边缘,
    在所述定子组件完成安装的情况下,所述第一喷射孔(3151)位于所述铁芯(31)的上半圈。
  8. 根据权利要求7所述的定子组件,其中,在所述定子组件完成安装的情况下,所述第二喷射孔(3152)位于所述铁芯(31)的下半圈。
  9. 根据权利要求2所述的定子组件,其中,所述定子组件还包括套设在朝向所述半闭端(A2)的线包(32)的外周的第二个分油环(20),所述第二个分油环(20)的外周壁与所述外壳(10)的内周壁之间还形成第二蓄液区(P2),所述第二蓄液区(P2)与所述内流道(310)导通。
  10. 根据权利要求9所述的定子组件,其中,所述出口第一叠片(314)形成有多个在所述周向上分布的、向外周侧开放的多个出口槽(3140),
    所述出口第二叠片(315)的外周边缘形成有多个在所述周向上分布的第二豁口(3150),所述第二豁口(3150)连通所述第二蓄液区(P2)和所述出口槽(3140),
    每个所述出口槽(3140)导通至少一个所述第二豁口(3150)和至少一个所述主体槽(3130)。
  11. 根据权利要求1至10中任一项所述的定子组件,其中,所述外壳(10)的周壁还形成有在所述轴向上贯通的回油道(113),
    所述回油道(113)的朝向所述半闭端(A2)的端部形成第一出油口(1131),所述回油道(113)的朝向所述开放端(A1)的端部向所述壳体(10)内部开放。
  12. 根据权利要求11所述的定子组件,其中,所述壳体(10)内两端的空间分别形成第一腔和第二腔,所述第一腔和所述第二腔用于容纳位于所述定子(30)的两端的所述线包(32),所述第一腔与所述回油道(113)连通,
    所述壳主体(11)的半闭端(A2)开设有导通外部的第二出油口(1132),所述第二腔连通第二出油口(1132)。
  13. 根据权利要求1至10中任一项所述的定子组件,其中,所述入口第一叠片(311)和所述入口第二叠片(312)采用不导磁材料制成,所述入口第一叠片(311)和所述入口第二叠片(312)一体成型设置,和/或
    所述出口第一叠片(314)和所述出口第二叠片(315)采用不导磁材料制成,所述出口第一叠片(314)和所述出口第二叠片(315)一体成型设置。
  14. 一种扁线电机,其中,所述扁线电机包括如所述权利要求1至13中任一项所述的定子组件。
PCT/CN2024/082395 2023-03-31 2024-03-19 定子组件和扁线电机 WO2024199003A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202310332537.7 2023-03-31
CN202310332537.7A CN116032039B (zh) 2023-03-31 2023-03-31 定子组件和扁线电机
CN202321412882.3 2023-06-06
CN202321412882.3U CN219477694U (zh) 2023-06-06 2023-06-06 定子组件和扁线电机

Publications (1)

Publication Number Publication Date
WO2024199003A1 true WO2024199003A1 (zh) 2024-10-03

Family

ID=92903296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/082395 WO2024199003A1 (zh) 2023-03-31 2024-03-19 定子组件和扁线电机

Country Status (1)

Country Link
WO (1) WO2024199003A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212649253U (zh) * 2020-06-29 2021-03-02 威睿电动汽车技术(宁波)有限公司 电机油冷装置、电机总成及车辆
CN114157081A (zh) * 2021-12-16 2022-03-08 南京邦奇自动变速箱有限公司 一种油冷电机定子总成
CN216699699U (zh) * 2021-12-10 2022-06-07 中克骆瑞新能源科技有限公司 一种油冷电机的三相线冷却回路结构
CN217904114U (zh) * 2022-08-30 2022-11-25 无锡中车浩夫尔动力总成有限公司 一种电机油路结构
CN116032039A (zh) * 2023-03-31 2023-04-28 天蔚蓝电驱动科技(江苏)有限公司 定子组件和扁线电机
CN219477694U (zh) * 2023-06-06 2023-08-04 天蔚蓝电驱动科技(江苏)有限公司 定子组件和扁线电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212649253U (zh) * 2020-06-29 2021-03-02 威睿电动汽车技术(宁波)有限公司 电机油冷装置、电机总成及车辆
CN216699699U (zh) * 2021-12-10 2022-06-07 中克骆瑞新能源科技有限公司 一种油冷电机的三相线冷却回路结构
CN114157081A (zh) * 2021-12-16 2022-03-08 南京邦奇自动变速箱有限公司 一种油冷电机定子总成
CN217904114U (zh) * 2022-08-30 2022-11-25 无锡中车浩夫尔动力总成有限公司 一种电机油路结构
CN116032039A (zh) * 2023-03-31 2023-04-28 天蔚蓝电驱动科技(江苏)有限公司 定子组件和扁线电机
CN219477694U (zh) * 2023-06-06 2023-08-04 天蔚蓝电驱动科技(江苏)有限公司 定子组件和扁线电机

Similar Documents

Publication Publication Date Title
CN110784038B (zh) 用于电机的转子组件、用于车辆的电机和车辆
KR101858441B1 (ko) 하이브리드 전기 장치를 냉각하는 모드
EP2058926B1 (en) Enhanced motor cooling system
CN216356140U (zh) 电机定子冷却系统
US11387725B2 (en) Integrated heat dissipative structure for electric machine
US20120025642A1 (en) Rotating electric machine
WO2020244284A1 (zh) 电机、电机冷却系统和电动车
CN109450128B (zh) 一种电机定子和具有该电机定子的油冷电机
CN116032039B (zh) 定子组件和扁线电机
EP3913772B1 (en) Rotor, electric motor and electric vehicle
CN109639054A (zh) 具有油冷系统的电机定子
US20230307968A1 (en) Oil-cooled motor
CN114598051A (zh) 用于车辆的电机及车辆
US11056952B2 (en) Electric machine with internal cooling passageways
WO2024199003A1 (zh) 定子组件和扁线电机
CN219477694U (zh) 定子组件和扁线电机
US20230283148A1 (en) Electric motor for vehicle, and vehicle
CN217010457U (zh) 冷却油环及油冷电机
CN117833507A (zh) 一种定子周向交错油路冷却电机
CN209488386U (zh) 具有油冷系统的电机定子
CN217010458U (zh) 定子铁芯及油冷电机
CN221995200U (zh) 定子组件、电机和车辆
WO2023178927A1 (zh) 一种电机油冷系统及电机油冷方法
CN118137714B (zh) 定子槽用绝缘骨架、定子组件和电机
US20240291336A1 (en) Rotor assembly for an electric machine