[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024195914A1 - Method for preparing bis(methylcyclopentadienyl)nickel, and nickel oxide thin film using same - Google Patents

Method for preparing bis(methylcyclopentadienyl)nickel, and nickel oxide thin film using same Download PDF

Info

Publication number
WO2024195914A1
WO2024195914A1 PCT/KR2023/003996 KR2023003996W WO2024195914A1 WO 2024195914 A1 WO2024195914 A1 WO 2024195914A1 KR 2023003996 W KR2023003996 W KR 2023003996W WO 2024195914 A1 WO2024195914 A1 WO 2024195914A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
thin film
methylcyclopentadienyl
oxide thin
bis
Prior art date
Application number
PCT/KR2023/003996
Other languages
French (fr)
Korean (ko)
Inventor
허국
우병원
김봉석
임영진
김은호
김기태
Original Assignee
(주)후성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)후성 filed Critical (주)후성
Publication of WO2024195914A1 publication Critical patent/WO2024195914A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/85Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3

Definitions

  • the present invention relates to bis(methylcyclopentadienyl)nickel, and more particularly, to a method for producing bis(methylcyclopentadienyl)nickel.
  • a widely used method for manufacturing nickel oxide films used as hole transport layers (HTLs) of solar cells is to use nickel hydroxide (Ni(OH) 2 ) as a precursor and spin coat the film onto a transparent electrode.
  • Ni(OH) 2 nickel hydroxide
  • ALD Atomic layer deposition
  • the precursor compound for applying the above-described atomic layer deposition (ALD) method is required to have properties such as high thermal stability, high volatility, low toxicity, and high chemical stability, and also should not spontaneously decompose or side react with other substances during the process of vaporizing the compound and being transferred to the gas phase.
  • the precursor compound for applying the atomic layer deposition (ALD) method must have a condition that it easily chemically reacts with a specific reaction gas. Therefore, there is an increasing need for a precursor material that satisfies the conditions appropriately and also satisfies properties such as high transparency of a nickel oxide thin film and uniformity of the thin film.
  • the technical problem of the present invention is to provide a method for producing a bis(methylcyclopentadienyl) nickel compound.
  • Another technical object of the present invention is to provide a nickel oxide thin film using a bis(methylcyclopentadienyl) nickel compound as a precursor and a method for producing the same.
  • Another technical task of the present invention is to provide a solar cell using a nickel oxide thin film manufactured by the manufacturing method of the present invention as a hole transport layer.
  • the present invention may include a method for producing bis(methylcyclopentadienyl)nickel, including the steps of: introducing a methylcyclopentadiene dimer compound, an alkali metal hydroxide, and an organic solvent into a reactor; heating the reactor to a first reaction temperature and reacting to produce alkali metal methylcyclopentadienide as an intermediate product; and adding a nickel source to the reactor containing the intermediate product and the organic solvent and reacting at a second reaction temperature to produce bis(methylcyclopentadienyl)nickel as a product; wherein the first reaction temperature is higher than the second reaction temperature.
  • the step of purifying the product by reduced pressure fractional distillation may be additionally included.
  • the above first reaction temperature may be greater than 120°C and less than 300°C.
  • the second reaction temperature may be 35°C to 120°C.
  • the above nickel source may comprise a nickel amine complex having multiple ammonia ligands.
  • the above nickel amine complex can be represented by the following chemical formula 2.
  • n is an integer from 2 to 6, and A may be any one selected from F - , Cl - , Br - , I - , BF 4 - , PF 6 - , NO 3 - and NO 2 - .
  • the above nickel source may be any one selected from diamminenickel chloride ([Ni(NH 3 ) 2 ]Cl 2 , Diamminenickel chloride), tetraamminenickel chloride ([Ni(NH 3 ) 4 ]Cl 2 , Tetraamminenickel chloride), and hexaamminenickel chloride ([Ni(NH 3 ) 6 ]Cl 2 , Hexaamminenickel chloride).
  • the above organic solvent may be a compound having a boiling point of 120 to 300°C and existing in a liquid state at room temperature.
  • the above organic solvent is a compound represented by the chemical formula R 1 O (R 2 O) n R 3 , wherein n is 0 to 5, R 1 may be an alkyl group having C1 to C6, R 2 may be an alkyl group having C1 to C3, and R 3 may be an alkyl group having C1 to C6.
  • the organic solvent may be at least one selected from diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, ethylene glycol dibutyl ethertetraethylene glycol dimethyl ether, and combinations thereof.
  • the above manufacturing method may be performed in one reactor.
  • the present invention comprises a step of mounting a washed and surface-treated substrate in a chamber, and heating the substrate; a source injection step of injecting a transport gas and a nickel precursor into a reaction space on the substrate mounted inside the chamber; a first purge step of injecting a transport gas after the source injection step; a reaction step of injecting a reaction gas after the purge step; and a second purge step of injecting a transport gas after the reaction step; and the source injection step to the second purge step are repeatedly performed several to several tens of times, wherein the nickel precursor is formed by at least one of the manufacturing methods selected from claims 1 to 11.
  • the above nickel precursor may be bis(methylcyclopentadienyl)nickel.
  • the above manufacturing method may use plasma enhanced atomic layer deposition (PEALD) or thermal atomic layer deposition (Thermal ALD).
  • PEALD plasma enhanced atomic layer deposition
  • Thermal ALD thermal atomic layer deposition
  • the deposition thickness per deposition cycle may be 0.1 to 0.2 ⁇ /cycle.
  • the above substrate may be a substrate including silicon on insulator (SOI), silicon carbide (SiC), indium tin oxide (ITO), indium zinc oxide (IZO), or perovskite material.
  • SOI silicon on insulator
  • SiC silicon carbide
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • perovskite material silicon on insulator
  • the present invention may include a nickel oxide thin film formed by the method for manufacturing a nickel oxide thin film described above.
  • the resistance of the above nickel oxide thin film can be 5 to 9 E-3 ⁇ cm.
  • the thickness deviation of the above nickel oxide thin film can be -3.0 ⁇ to +3.0 ⁇ .
  • the above nickel oxide thin film can be applied as a hole transport layer of a tandem solar cell.
  • the present invention may include a solar cell including: a substrate; a first electrode layer formed on the substrate; an electron transport layer formed on the first electrode layer; a photoactive layer formed on the electron transport layer and including a perovskite material; a hole transport layer formed on the photoactive layer; and a second electrode layer formed on the hole transport layer; wherein the hole transport layer includes the nickel oxide thin film described above.
  • the above solar cell may be of tandem type.
  • the method for producing bis(methylcyclopentadienyl)bonkel according to one embodiment of the present invention does not require the preparation of an anhydrous solvent, and has excellent process stability by using an inexpensive and safe alkali metal hydroxide. Furthermore, bis(methylcyclopentadienyl)nickel produced thereby has excellent yield and purity.
  • the method for producing a nickel oxide thin film according to one embodiment of the present invention has an economical effect of shortening the process time by an improved deposition rate, and the nickel oxide thin film produced thereby has excellent physical properties, such as resistance and transparency, and is therefore suitable for application as a hole transport layer of a perovskite solar cell.
  • FIG. 1 is a flow chart (PFD; Process flow diagram) illustrating a process for manufacturing bis(methylcyclopentadienyl) nickel according to one embodiment of the present invention.
  • FIG. 2 is a graph showing steps for manufacturing a nickel oxide thin film using an atomic layer deposition (ALD) method according to one embodiment of the present invention.
  • ALD atomic layer deposition
  • FIG. 3 is an ellipsometry result of a nickel oxide thin film manufactured using a nickel precursor Ni(MeCp) 2 according to one embodiment of the present invention.
  • FIG. 4 is a graph showing the thickness-dependent transmittance of a nickel oxide thin film manufactured using a nickel precursor Ni(MeCp) 2 according to one embodiment of the present invention.
  • the present invention may include a method for producing bis(methylcyclopentadienyl)nickel(II).
  • FIG. 1 is a flow chart (PFD; Process flow diagram) illustrating a process for manufacturing bis(methylcyclopentadienyl) nickel according to one embodiment of the present invention.
  • a methylcyclopentadiene dimer compound as a precursor, an alkali hydroxide as a reactant, and an organic solvent can be introduced into a reactor.
  • methylcyclopentadiene dimer (MCPD or MeCp dimer; Methylcyclopentadiene dimer) compound is an unsaturated hydrocarbon compound having a double ring, and specifically, may include at least one methyl group in each of two cyclopentadiene rings.
  • the methylcyclopentadiene dimer is used as a precursor in the present invention and may be represented by the following chemical formula 1.
  • the above alkali hydroxide can be represented by the chemical formula MOH, wherein M is an alkali metal, and specifically, can be LiOH, NaOH or KOH.
  • M is an alkali metal
  • the above alkali hydroxide is used as a reactant in the method for producing bis(methylcyclopentadienyl)nickel of the present invention, and can generate water (H 2 O) as a reaction by-product described below. Accordingly, there is an advantage of superior process stability compared to cases where conventional alkali metals that generate hydrogen gas as a by-product are used.
  • the above organic solvent may be an ether compound having a boiling point of 120 to 300°C and existing in a liquid state at room temperature, specifically, a linear ether compound, and more specifically, a glycol ether, which is not chemically decomposed and has thermal stability even in the first reaction temperature range described below.
  • general-purpose organic solvents such as benzene, tetrahydrofuran (THF), pyridine, xylene, dimethyl sulfoxide (DMSO), etc.
  • THF tetrahydrofuran
  • pyridine tetrahydrofuran
  • xylene xylene
  • DMSO dimethyl sulfoxide
  • the organic solvent may be a compound having a boiling point of 120 to 300°C and existing as a liquid at room temperature, and represented by the chemical formula R 1 O (R 2 O) n R 3 , wherein n is 0 to 5, R 1 may be a C1 to C6 alkyl group, R 2 may be a C1 to C3 alkyl group, and R 3 may be a C1 to C6 alkyl group.
  • the organic solvent may be at least one selected from diethylene glycol dimethyl ether (Diglyme), diethylene glycol diethyl ether, diethylene glycol dibutyl ether, ethylene glycol dibutyl ether, tetraethylene glycol dimethyl ether, and combinations thereof, and in one specific example, diethylene glycol dimethyl ether (Diglyme) may be used, but is not limited thereto.
  • diethylene glycol dimethyl ether Diglyme
  • diethylene glycol diethyl ether diethylene glycol dibutyl ether
  • ethylene glycol dibutyl ether ethylene glycol dibutyl ether
  • tetraethylene glycol dimethyl ether tetraethylene glycol dimethyl ether
  • the present invention uses a safe alkali metal hydroxide (MOH) that produces water (H 2 O) as a reaction by-product, which will be described later, the risk of explosion due to the alkali metal reacting with moisture can be prevented, as is the case with conventional reactants that use alkali metals, alkali hydrides, etc.
  • MOH safe alkali metal hydroxide
  • H 2 O water
  • the preparation process can be shortened and manufacturing costs, time, and effort can be reduced.
  • a step of heating to a first reaction temperature and reacting in a reactor containing the methylcyclopentadiene dimer compound (MeCp dimer), alkali hydroxide (MOH), and an organic solvent to produce an intermediate product can be performed.
  • the step of manufacturing the above intermediate product can be represented by the following reaction scheme 1.
  • M is an alkali metal
  • the reaction represented by the above reaction formula 1 is carried out at a first reaction temperature, and specifically, the first reaction temperature may be more than 120°C and less than 300°C, more specifically, 130 to 250°C, 140 to 200°C, or, for example, 150 to 190°C.
  • the reaction represented by the above reaction scheme 1 may refer to a reaction in which methylcyclopentadiene (MeCp) is produced from the methylcyclopentadiene dimer (MeCp dimer) by a retro Diels-Alder reaction, followed by a reaction in which the methylcyclopentadiene (MeCp) is continuously combined with the alkali metal ion of the alkali metal hydroxide (MOH) described above.
  • the reaction represented by the above reaction scheme 1 may be performed as a continuous reaction (one-pot reaction) in a single reactor.
  • the retro Diels-Alder reaction is a reversible reaction and the equilibrium is biased toward the reverse reaction, so it is difficult to suppress the Diels-Alder reaction in which methylcyclopentadiene dimer (MeCp dimer) is produced from the produced methylcyclopentadiene (MeCp), and thus methylcyclopentadiene dimer (MeCp dimer) may exist with a high probability.
  • methylcyclopentadiene dimer MeCp dimer
  • MeCp dimer methylcyclopentadiene dimer dimer
  • the present invention by effectively removing water, a by-product of the above reaction scheme 1, through a high temperature reaction of 100° C. or higher, the reverse reaction is blocked, and methylcyclopentadiene (MeCp) can be obtained in a high yield.
  • the above alkali metal methylcyclopentadienide (MMeCp) is an intermediate product, and specifically may be lithium methylcyclopentadienide (LiMeCp), sodium methylcyclopentadienide (NaMeCp), or potassium methylcyclopentadienide (KMeCp).
  • the alkali metal methylcyclopentadienide (MMeCp) may be, but is not limited to, potassium methylcyclopentadienide (KMeCp).
  • the reaction represented by the above reaction scheme 1 may be a liquid phase reaction.
  • a step of adding a nickel source to the reactor containing the intermediate product and the organic solvent and reacting at a second reaction temperature to produce bis(methylcyclopentadienyl) nickel as a product can be performed.
  • This step can be represented by the following reaction scheme 2.
  • M is an alkali metal
  • n and A are as shown in the chemical formula 2 described below.
  • the reaction of the above reaction scheme 2 is an irreversible reaction, and since the intermediate product, alkali metal methylcyclopentadienide (MMeCp), has low solubility in the organic solvent, it is preferable to proceed at a temperature higher than room temperature, for example, 35°C or higher, in order to increase its solubility. In addition, it is preferable to proceed at a temperature at which the product, bis(methylcyclopentadienyl)nickel, does not decompose, for example, 120°C or lower. Accordingly, the reaction of the above reaction scheme 2 is performed at the second reaction temperature, and specifically, it may be performed under conditions of 35 to 120°C, more specifically, 40 to 80°C, for example, 45 to 60°C.
  • MeCp alkali metal methylcyclopentadienide
  • the above nickel source is an ionic compound having a form in which multiple ammonia ligands are coordinately attached to a nickel (II) cation, and may specifically include a nickel amine complex.
  • the nickel amine complex may be represented by the following chemical formula 2.
  • n is an integer from 2 to 6, and A is F - , Any one selected from Cl - , Br - , I - , BF 4 - , PF 6 - , NO 3 - and NO 2 - .
  • n is an even number of 2 to 6, and A is any one selected from F - , Cl - , Br - and I - .
  • the nickel source may be any one selected from diamminenickel chloride ([Ni(NH 3 ) 2 ]Cl 2 ), tetraamminenickel chloride ([Ni(NH 3 ) 4 ]Cl 2 ), and hexaamminenickel chloride ([Ni(NH 3 ) 6 ]Cl 2 ).
  • the nickel source may be, but is not limited to, hexaamminenickel chloride ([Ni(NH 3 ) 6 ]Cl 2 ).
  • the nickel source containing an ammonia ligand for supplying nickel (II) cations may be more effective in supplying anhydrous nickel. If a compound not containing an ammonia ligand, such as nickel chloride (NiCl 2 ), is used as the nickel source, an additional moisture removal process may be required, which may reduce process efficiency. In addition, if the nickel source containing an ammonia ligand is used, the thermal stability of the precursor compound may be improved and thermal decomposition may be prevented during the deposition process described below.
  • the reaction of the above reaction scheme 2 can be performed until the generation of ammonia (NH 3 ) gas stops, and after the generation of ammonia gas stops, a mixture containing the product bis(methylcyclopentadienyl) nickel, i.e., crude bis(methylcyclopentadienyl) nickel, can be obtained.
  • NH 3 ammonia
  • the reaction represented by the above reaction formula 2 may be a liquid phase reaction.
  • the product formed from the above reaction formula 2 may be a compound specifically represented by the following chemical formula 3.
  • the compound of the above chemical formula 3 may be the above bis(methylcyclopentadienyl) nickel.
  • the above bis(methylcyclopentadienyl) nickel can exist in a liquid state at room temperature after the manufacturing reaction is completed.
  • bis(methylcyclopentadienyl) nickel existing in a liquid state is utilized as a nickel precursor in the manufacturing of a nickel oxide thin film described below, compared to the case of using other solid precursors, it enables more complete vaporization during the process of vaporizing the precursor solution in an evaporator, minimizes thermal decomposition, and improves deposition efficiency such as deposition thickness per cycle (GPC).
  • GPC deposition thickness per cycle
  • the cooling temperature may be -10 to 50°C, specifically -5 to 30°C, and more specifically 0 to 10°C.
  • the alkali metal salt (represented as MA in the above reaction formula 2) included in the product in the above cooling step is in a solid phase and can be removed during the filtration process.
  • the organic solvent included in the product in the cooling step may exist in a liquid state.
  • the organic solvent for example, diethylene glycol dimethyl ether (Diglyme)
  • the organic solvent can maintain a liquid state even in the cooling step, so that it can be obtained and reused in the product purification step, i.e., the fractional distillation step, or can be easily evaporated and removed.
  • organic solvents used in conventional manufacturing methods for example, dimethyl sulfoxide (DMSO) having a melting point of 19°C, exist in a solid state at the temperature of the cooling step, so that it may be difficult to apply the fractional distillation method.
  • DMSO dimethyl sulfoxide
  • the above purified bis(methylcyclopentadienyl)nickel can have a yield of 60% or more, specifically 70% or more, and a purity of 96% or more, specifically 98% or more. This means that high-quality bis(methylcyclopentadienyl)nickel can be obtained in a high yield, compared to a conventional manufacturing method using an alkali metal or alkali hydride as a reactant and using tetrahydrofuran (THF) as an organic solvent, which has a yield of not exceeding 50% and a purity of 95% or less.
  • THF tetrahydrofuran
  • the method for producing bis(methylcyclopentadienyl)nickel according to one embodiment of the present invention has an economical effect of excellent process stability and shortening the process time by using an inexpensive and safe alkali metal hydroxide without requiring preparation of an anhydrous solvent, and further, bis(methylcyclopentadienyl)nickel produced thereby can have excellent yield and purity.
  • Bis(methylcyclopentadienyl)nickel manufactured through the manufacturing method of the present invention can be used in the manufacture of a nickel oxide thin film described below.
  • the method for manufacturing a nickel oxide thin film of the present invention may include: first, a step of mounting a washed and surface-treated substrate in a chamber and heating the substrate; a source injection step of injecting bis(methylcyclopentadienyl) nickel as a transport gas and a nickel precursor into a reaction space on the substrate mounted inside the chamber; a first purge step of injecting a transport gas after the source injection step; a reaction step of injecting a reaction gas after the purge step; and a second purge step of injecting a transport gas after the reaction step.
  • the above source injection step or the second purge step may be repeatedly performed several to several tens of times.
  • bis(methylcyclopentadienyl) nickel as the nickel precursor may be formed by the above-described manufacturing method.
  • the above substrate is a substrate having an unrestricted form such as a flat plate or a roll, and specifically, silicon, gold (Au), silver (Ag), copper (Cu), tin (Sn), aluminum (Al), nickel (Ni), tungsten (W), chromium (Cr), zinc (Zn), platinum (Pt), molybdenum (Mo), tantalum (Ta), titanium (Ti), hafnium (Hf), zirconium (Zr), manganese (Mn), iridium (Ir), rhenium (Re), and ruthenium (Ru), ruthenium oxide (RuO 2 ), titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), hafnium nitride (HfN), zirconium nitride (ZrN), tantalum silicon nitride (TaSiN), titanium silicon nitride (TiS
  • the substrate may be a substrate including silicon on insulator (SOI), silicon carbide (SiC), indium tin oxide (ITO), indium zinc oxide (IZO), or a perovskite material.
  • SOI silicon on insulator
  • SiC silicon carbide
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • perovskite material a substrate including silicon on insulator (SOI), silicon carbide (SiC), indium tin oxide (ITO), indium zinc oxide (IZO), or a perovskite material.
  • the substrate may be, but is not limited to, a substrate including a perovskite material used as a photoactive layer in a solar cell described below.
  • the temperature of the substrate may be heated to 50 to 450°C, specifically 100 to 350°C, more specifically 150 to 250°C, and in one specific example 190 to 210°C.
  • the above transport gas is an inert gas, and specifically, any one selected from nitrogen (N 2 ), argon (Ar), helium (He), and mixtures thereof may be used, and in one specific example, argon (Ar) may be used.
  • the above reaction gas is a gas containing oxygen, and any one selected from water (H 2 O), oxygen (O 2 ), ozone (O 3 ), and mixtures thereof may be used, and in one specific example, oxygen (O 2 ) may be used.
  • the deposition time can be performed for, but not limited to, 0.1 seconds to 1 minute.
  • a method for manufacturing a nickel oxide thin film according to one embodiment of the present invention may use an atomic layer deposition method, specifically, plasma enhanced atomic layer deposition (PEALD) or thermal atomic layer deposition (Thermal ALD).
  • PEALD plasma enhanced atomic layer deposition
  • Thermal ALD thermal atomic layer deposition
  • a method for manufacturing a nickel oxide thin film according to one embodiment of the present invention uses bis(methylcyclopentadienyl)nickel as a precursor containing at least one methyl group in a cyclopentadienyl ring, and can exhibit a more improved deposition rate compared to a process using a bis(cyclopentanienyl)nickel compound as a precursor containing an alkyl group having C2 to C3 carbon atoms, such as an ethyl group, an isopropyl group, or the like, instead of the methyl group, or not containing an alkyl group.
  • the mobility of the precursor may be fast in the process of injecting the vaporized precursor during the deposition process, the time it takes for the precursor to reach the substrate may be shortened, and the deposition thickness per cycle may be increased.
  • the deposition thickness per cycle i.e., the deposition rate may be 0.1 to 0.2 ⁇ /cycle, specifically, 0.13 to 0.18 ⁇ /cycle, and in one specific example, 0.15 to 0.17 ⁇ /cycle.
  • the deposition thickness per cycle can be 0.05 to 0.1 ⁇ /cycle, and specifically 0.07 to 0.099 ⁇ /cycle. Therefore, faster deposition is possible in the process using bis(methylcyclopentadienyl) nickel (Ni(MeCp) 2 ) as a precursor.
  • a cyclopentanienyl nickel compound containing an alkyl group having C2 to C3 carbon atoms, such as an ethyl group or an isopropyl group, or having no alkyl group is used as a precursor
  • the film quality may deteriorate because the high molecular weight and the presence of side branches may cause thermal decomposition during the deposition process, causing organic impurities or organic residues to be introduced into the film or formed on the film.
  • bis(methylcyclopentadienyl) nickel (Ni(MeCp) 2 ) as a precursor has a higher degree of ligand separation during the deposition process when the vaporized precursor is injected, reaches the substrate surface, and is deposited compared to bis(cyclopentadienyl) nickel (NiCp 2 ), specifically, methylcyclopentadienyl (MeCp) ligands are better separated from the precursor compound than cyclopentadienyl (Cp) ligands. Therefore, the deposition rate can be increased when bis(methylcyclopentadienyl) nickel (Ni(MeCp) 2 ) is used as a precursor.
  • the formed thin film has good uniformity and excellent properties, such as resistance and transparency, so that high efficiency can be expected when applied as a hole transport layer of a solar cell described later.
  • the method for manufacturing a nickel oxide thin film according to one embodiment of the present invention can form nickel oxide having excellent thickness uniformity even when applied to a large deposition area, specifically 1 to 350 mm 2 , more specifically 10 to 250 mm 2 .
  • a high-quality nickel oxide thin film can be manufactured.
  • the thickness of the nickel oxide thin film according to one embodiment of the present invention may be, for non-limiting examples, 30 to 200 ⁇ , and the above deposition may be repeated to implement a nickel oxide thin film of a desired thickness depending on the characteristics of the desired thin film.
  • the deposition thickness deviation measured at a deposition area of 210 mm 2 (M12 size) of the nickel oxide thin film may be -3.0 ⁇ to +3.0 ⁇ , specifically, -2.0 ⁇ to +2.0 ⁇ .
  • the deposition thickness deviation may be -9.0 ⁇ to +9.0 ⁇ , in one example, -8.0 ⁇ to +8.0 ⁇ , which may exhibit a rather large deviation. Therefore, a nickel oxide thin film formed using Ni(MeCp) 2 than a nickel precursor using Ni(EtCp) 2 may have a lower thickness deviation and excellent uniformity.
  • the resistance of the above nickel oxide thin film may be, but is not limited to, 5 to 9 E-3 ⁇ cm, for example, 6 to 8 E-3 ⁇ cm.
  • a nickel oxide thin film according to one embodiment of the present invention can be preferably applied as a hole transport layer (HTL) of a tandem solar cell, but is not limited thereto.
  • HTL hole transport layer
  • FIG. 5 is a schematic diagram showing the structure of a solar cell using a nickel oxide thin film as a hole transport layer according to one embodiment of the present invention.
  • the solar cell (100) of the present invention may include a substrate (10), a first electrode layer (20) formed on the substrate (10), an electron transport layer (30) formed on the first electrode layer (20), a photoactive layer (40) formed on the electron transport layer (30) and including a perovskite material, a hole transport layer (50) formed on the photoactive layer (40), and a second electrode layer (60) formed on the hole transport layer (50).
  • the above hole transport layer may include a nickel oxide thin film formed through the above-described method for manufacturing a nickel oxide thin film.
  • the above substrate (10) may be any one selected from silicon oxide, aluminum oxide, glass, quartz, polyimide (PI), polyethylenenaphthalate (PEN), polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), and combinations thereof.
  • PI polyimide
  • PEN polyethylenenaphthalate
  • PET polyethylene terephthalate
  • PMMA polymethylmethacrylate
  • PDMS polydimethylsiloxane
  • the first electrode layer (20) and the second electrode layer (60) are an anode and a cathode, and one or both of them may be a transparent electrode layer that is transparent or translucent to allow light to enter.
  • the first electrode layer (20) and the second electrode layer (60), regardless of each other, may be any one selected from ITO (Indium Tin Oxide), ICO (Indium Cerium Oxide), IWO (Indium Tungsten Oxide), ZITO (Zinc Indium Tin Oxide), ZIO (Zinc Indium Oxide), ZTO (Zinc Tin Oxide), GITO (Gallium Indium Tin Oxide), GIO (Gallium Indium Oxide), GZO (Gallium Zinc Oxide), AZO (Aluminum doped Zinc Oxide), FTO (Fluorine Tin Oxide), and combinations thereof.
  • the electron transport layer (30) may include a metal oxide semiconductor as an electron transport material, and specifically, may include at least one selected from TiO 2 , SnO 2 , ZnO, Nb 2 O 5 , Ta 2 O 5 , WO 3 , W 2 O 5 , In 2 O 3 , Ga 2 O 3 , Nd 2 O 3 , PbO, CdO, and combinations thereof.
  • the electron transport layer (30) may be ZnO, but is not limited thereto.
  • the above photoactive layer (40) includes a perovskite material, and the perovskite material is an organic metal halide perovskite, for example, CH 3 NH 3 PbI 3 (MAPbI 3 ), CH 3 NH 3 PbI 3-x Cl x (MAPbI 3-x Cl x ), CH 3 NH 3 PbCl 3 (MAPbCl 3 ), CH 3 NH 3 PbI 3-x Br x (MAPbI 3-x Br x ), CH 3 NH 3 PbBr 3 (MAPbBr 3 ) (wherein x is 0 to 3), and any one selected from combinations thereof.
  • the perovskite photoactive layer (40) may be CH 3 NH 3 PbI 3 (MAPbI 3 ), but is not limited thereto.
  • the above hole transport layer (HTL; Hole transport layer) (50) may include a metal oxide semiconductor as a hole transport material, and specifically may include at least one selected from NiO, MoO 3 , WO 3 , V 2 O 5 , VO 2 , Cu 2 O, CuO, CrO 2 , CoO, CuAlO 2 , CuCrO 2 , CuGaO 2 , ZnRh 2 O 4 , GaSnO, and combinations thereof.
  • the hole transport layer (50) may be NiO, but is not limited thereto.
  • the above hole transport layer (HTL) (50) can use a nickel oxide thin film formed by the above-described nickel oxide thin film manufacturing method.
  • NiCl 2 (NH 3 ) 6 hexaamine nickel chloride
  • KCl KCl is removed by filtration, and the diglyme solvent contained in the filtrate is dried to obtain crude Ni(MeCp) 2 .
  • the obtained crude Ni(MeCp) 2 is fractionally distilled under reduced pressure to obtain 115.26 g (0.5313 mol) of high-purity Ni(MeCp) 2 .
  • the yield at this time is 74.83%.
  • Ni(MeCp) 2 was obtained using the same method as in Example 1, except that the synthesis temperature was 80°C. At this time, the obtained amount of Ni(MeCp) 2 was 81.20 g (0.3743 mol), and the yield was 52.72%.
  • Ni(MeCp) 2 was obtained using the same method as in Example 1, except that 92.01 g (0.710 mol, 99%) of nickel chloride (NiCl 2 ) was used instead of hexaaminenickel chloride (NiCl 2 (NH 3 ) 6 ) . In this case, the obtained amount of Ni(MeCp) 2 was 79.23 g (0.3652 mol), and the yield was 51.44%.
  • Ni(MeCp) 2 After the reaction, the temperature of the reactor is slowly raised to room temperature, NaCl is removed through filtration, and the THF solvent contained in the filtrate is dried to obtain crude Ni(MeCp) 2 . The collected Ni(MeCp) 2 is distilled under reduced pressure to obtain high-purity Ni(MeCp) 2 . At this time, the yield is 34.40%.
  • Thin film manufacturing example 1 Manufacturing nickel oxide thin film using Ni(MeCp) 2
  • a perovskite substrate is placed inside an atomic layer deposition (ALD) chamber and its temperature is heated to 200°C.
  • Ni(MeCp) 2 of Example 1 is used as a nickel precursor, and its temperature is heated to 40°C.
  • argon gas is used as a transport gas and the nickel precursor is injected into the chamber for 0.2 seconds to adsorb the precursor onto the substrate (Ni source injection).
  • oxygen gas is injected for 1 second to react with the precursor and form a nickel oxide thin film.
  • a reaction reaction proceeds (reaction gas injection).
  • argon gas is purged for 0.4 seconds to remove residues decomposed by the reaction (Ar purge).
  • Thin film comparison example 1 Manufacturing nickel oxide thin film using Ni(EtCp) 2
  • a nickel oxide thin film was manufactured using the same method as in Thin Film Manufacturing Example 1, except that Ni(EtCp) 2 was used instead of Ni(MeCp) 2 of Example 1 as a nickel precursor.
  • FIG. 2 is a graph showing steps for manufacturing a nickel oxide thin film using an atomic layer deposition (ALD) method according to one embodiment of the present invention.
  • ALD atomic layer deposition
  • the Ni source injection-Ar purge-reaction gas injection-Ar purge steps of the above-described thin film manufacturing example are considered as one cycle, and the deposition process is performed by repeating the cycle several to several dozen times.
  • Ni(EtCp) 2 Deposition thickness variation (Variation) 100 ⁇ standard, M12 size ⁇ 1.93 ⁇ ⁇ 7.79 ⁇ Growth Per Cycle (GPC) ( ⁇ /cycle) 0.168 0.096 Deposition Rate (D/R) ( ⁇ /min) 7.21 3.19 Average refractive index (Avg. R.I; average refractive index) 2.28 2.298 Refractive index uniformity (R.I) (%) 0.14 0.38 Resistivity ( ⁇ cm) 7.95 E-3 9.27 E-3
  • Table 1 is a table showing the deposition results of a nickel oxide thin film according to one embodiment of the present invention.
  • the nickel oxide thin film manufactured through Thin Film Manufacturing Example 1 has a deposition thickness per cycle (GPC) of 0.168 ⁇ /cycle, which is higher than 0.096 ⁇ /cycle in Thin Film Comparative Example 1. Since the precursor Ni(MeCp) 2 used in Thin Film Manufacturing Example 1 contains a smaller number of carbons than Ni(EtCp) 2 in Thin Film Comparative Example 1, it can be inferred that the mobility of the vaporized precursor increases, thereby increasing the deposition thickness per cycle. In addition, it can be confirmed that the deviation of the deposition thickness of Thin Film Manufacturing Example 1 is ⁇ 1.93 ⁇ , which is a smaller value than ⁇ 7.79 ⁇ in Thin Film Comparative Example 1.
  • a nickel oxide thin film can be formed with a high deposition thickness per unit cycle, thus achieving an excellent deposition rate, and a low film thickness deviation, thereby forming a high-quality nickel oxide thin film.
  • FIG. 3 is an ellipsometry result of a nickel oxide thin film manufactured using a nickel precursor Ni(MeCp) 2 according to one embodiment of the present invention.
  • a nickel oxide thin film manufactured using Ni(MeCp) 2 as a nickel precursor is uniformly deposited over the entire wafer measuring 210 x 210 mm (M12 size) and has good uniformity.
  • FIG. 4 is a graph showing the thickness-dependent transmittance of a nickel oxide thin film manufactured using a nickel precursor Ni(MeCp) 2 according to one embodiment of the present invention.
  • the nickel oxide thin film of the present invention is uniformly deposited on the entire wafer having a size of 210 x 210 mm (M12 size).
  • the nickel oxide thin film thicknesses are 50 ⁇ , 100 ⁇ , 150 ⁇ , and 200 ⁇ , it can be seen that the transmittance of the thin film is 94.1%, 88.3%, 84.7%, and 80.5%, respectively, based on a wavelength of 600 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method for preparing bis(methylcyclopentadienyl)nickel, according to one embodiment of the present invention, does not require preparation of an anhydrous solvent, and uses a cheap and safe alkali metal hydroxide, and thus has excellent process stability. Furthermore, bis(methylcyclopentadienyl)nickel prepared by the method has excellent yield and purity. In addition, a method for manufacturing a nickel oxide thin film, according one embodiment of the present invention, exhibits an economic effect of reducing process time through an improved deposition rate, and a nickel oxide thin film manufactured thereby has excellent physical properties, for example, excellent resistance and transparency, and thus is suitable for application to a hole transport layer of a perovskite solar cell.

Description

비스(메틸시클로펜타디에닐) 니켈의 제조방법 및 이를 이용한 니켈옥사이드 박막Method for producing bis(methylcyclopentadienyl) nickel and nickel oxide thin film using the same
본 발명은 비스(메틸시클로펜타디에닐) 니켈에 관한 것으로, 상세하게는 비스(메틸시클로펜타디에닐) 니켈의 제조방법에 관한 것이다.The present invention relates to bis(methylcyclopentadienyl)nickel, and more particularly, to a method for producing bis(methylcyclopentadienyl)nickel.
태양전지의 정공수송층(HTL; Hole transport layer)으로 사용되는 니켈 옥사이드 박막을 제조하기 위한 방법으로 전구체로 니켈수산화물(Ni(OH)2)을 사용하여 투명전극 상에 스핀 코팅하는 방법이 널리 사용되고 있으나, 태양전지의 효율을 증가시키기 위하여 더 높은 투과율을 갖는 박막의 필요성이 대두되고 있다. 투과율을 높이기 위해서는 니켈 옥사이드 박막의 두께가 얇도록 제조하는 것이 중요한데, 원자층 증착법(ALD; Atomic layer deposition)은 박막의 두께 및 균일성(uniformity) 조절이 용이하므로 고효율 태양전지 소자의 제조에서 널리 사용되고 있다.A widely used method for manufacturing nickel oxide films used as hole transport layers (HTLs) of solar cells is to use nickel hydroxide (Ni(OH) 2 ) as a precursor and spin coat the film onto a transparent electrode. However, there is an increasing need for films with higher transmittance to increase the efficiency of solar cells. In order to increase the transmittance, it is important to manufacture nickel oxide films with a thin thickness. Atomic layer deposition (ALD) is widely used in the manufacture of high-efficiency solar cell devices because it is easy to control the thickness and uniformity of the film.
상술한 원자층 증착법(ALD)을 적용하기 위한 전구체 화합물은 높은 열적 안정성, 높은 휘발성, 낮은 독성, 높은 화학적 안정성 등의 물성이 요구되며, 또한 상기 화합물이 기화하는 과정과 기체상으로 이송되는 과정에서 자발적으로 분해되거나 다른 물질과의 부반응이 없어야 한다. 특히, 원자층 증착법(ALD)을 적용하기 위한 전구체 화합물은 특정한 반응가스와의 화학반응이 용이해야 한다는 조건이 필요하다. 따라서, 이의 조건들을 적절히 만족시키면서 니켈옥사이드 박막의 높은 투명도 및 박막의 균일성 등의 물성을 만족시키는 전구체 물질이 필요성이 증가하고 있다. The precursor compound for applying the above-described atomic layer deposition (ALD) method is required to have properties such as high thermal stability, high volatility, low toxicity, and high chemical stability, and also should not spontaneously decompose or side react with other substances during the process of vaporizing the compound and being transferred to the gas phase. In particular, the precursor compound for applying the atomic layer deposition (ALD) method must have a condition that it easily chemically reacts with a specific reaction gas. Therefore, there is an increasing need for a precursor material that satisfies the conditions appropriately and also satisfies properties such as high transparency of a nickel oxide thin film and uniformity of the thin film.
본 발명의 기술적 과제는 비스(메틸시클로펜타디에닐) 니켈 화합물의 제조방법을 제공하는 것이다.The technical problem of the present invention is to provide a method for producing a bis(methylcyclopentadienyl) nickel compound.
본 발명의 다른 기술적 과제는 비스(메틸시클로펜타디에닐) 니켈 화합물을 전구체로 사용하는 니켈옥사이드 박막 및 이의 제조방법을 제공하는 것이다. Another technical object of the present invention is to provide a nickel oxide thin film using a bis(methylcyclopentadienyl) nickel compound as a precursor and a method for producing the same.
본 발명의 또 다른 기술적 과제는 본 발명의 제조방법으로 제조된 니켈옥사이드 박막을 정공수송층으로 적용한 태양전지를 제공하는 것이다.Another technical task of the present invention is to provide a solar cell using a nickel oxide thin film manufactured by the manufacturing method of the present invention as a hole transport layer.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the description below.
본 발명은 메틸시클로펜타디엔 이합체 화합물, 알칼리금속 수산화물 및 유기용매를 반응기에 투입하는 단계; 상기 반응기를 제1 반응온도로 가열하고 반응하여 중간 생성물로서 알칼리금속 메틸시클로펜타디엔나이드를 제조하는 단계; 및 상기 중간 생성물 및 상기 유기용매가 포함된 상기 반응기에 니켈공급원을 첨가하고, 제2 반응온도에서 반응하여 생성물로서 비스(메틸시클로펜타디에닐) 니켈을 제조하는 단계;를 포함하되, 상기 제1 반응온도는 상기 제2 반응온도보다 더 높은 온도인, 비스(메틸시클로펜타디에닐) 니켈의 제조방법을 포함할 수 있다.The present invention may include a method for producing bis(methylcyclopentadienyl)nickel, including the steps of: introducing a methylcyclopentadiene dimer compound, an alkali metal hydroxide, and an organic solvent into a reactor; heating the reactor to a first reaction temperature and reacting to produce alkali metal methylcyclopentadienide as an intermediate product; and adding a nickel source to the reactor containing the intermediate product and the organic solvent and reacting at a second reaction temperature to produce bis(methylcyclopentadienyl)nickel as a product; wherein the first reaction temperature is higher than the second reaction temperature.
상기 생성물을 제조하는 단계 이후, 상기 생성물을 감압 분별 증류하여 정제하는 단계;를 추가로 포함할 수 있다.After the step of manufacturing the above product, the step of purifying the product by reduced pressure fractional distillation may be additionally included.
상기 제1 반응온도는 120 ℃ 초과 300 ℃ 미만일 수 있다.The above first reaction temperature may be greater than 120°C and less than 300°C.
상기 제2 반응온도는 35 ℃ 내지 120 ℃일 수 있다.The second reaction temperature may be 35°C to 120°C.
상기 니켈공급원은 복수개의 암모니아 리간드를 갖는 니켈 아민 착물을 포함할 수 있다.The above nickel source may comprise a nickel amine complex having multiple ammonia ligands.
상기 니켈 아민 착물은 하기 화학식 2로 표시될 수 있다.The above nickel amine complex can be represented by the following chemical formula 2.
[화학식 2][Chemical formula 2]
[Ni(NH3)n]A2 [Ni(NH 3 ) n ]A 2
상기 화학식 2에서, n은 2 내지 6의 정수이고, 상기 A는 F-, Cl-, Br-, I-, BF4 -, PF6 -, NO3 - 및 NO2 - 중에서 선택되는 어느 하나일 수 있다.In the chemical formula 2, n is an integer from 2 to 6, and A may be any one selected from F - , Cl - , Br - , I - , BF 4 - , PF 6 - , NO 3 - and NO 2 - .
상기 니켈공급원은 디아민니켈 클로라이드 ([Ni(NH3)2]Cl2, Diamminenickel chloride), 테트라아민니켈 클로라이드 ([Ni(NH3)4]Cl2, Tetraamminenickel chloride), 및 헥사아민니켈 클로라이드 ([Ni(NH3)6]Cl2, Hexaamminenickel chloride) 중 선택되는 어느 하나일 수 있다.The above nickel source may be any one selected from diamminenickel chloride ([Ni(NH 3 ) 2 ]Cl 2 , Diamminenickel chloride), tetraamminenickel chloride ([Ni(NH 3 ) 4 ]Cl 2 , Tetraamminenickel chloride), and hexaamminenickel chloride ([Ni(NH 3 ) 6 ]Cl 2 , Hexaamminenickel chloride).
상기 유기용매는 끓는점이 120 내지 300 ℃이고 상온에서 액체로 존재하는 화합물일 수 있다.The above organic solvent may be a compound having a boiling point of 120 to 300°C and existing in a liquid state at room temperature.
상기 유기용매는 화학식 R1O(R2O)nR3으로 표시되는 화합물이고, 이때 n은 0 내지 5이고, R1는 C1 내지 C6의 알킬기, R2는 C1 내지 C3의 알킬기 및 R3는 C1 내지 C6의 알킬기일 수 있다.The above organic solvent is a compound represented by the chemical formula R 1 O (R 2 O) n R 3 , wherein n is 0 to 5, R 1 may be an alkyl group having C1 to C6, R 2 may be an alkyl group having C1 to C3, and R 3 may be an alkyl group having C1 to C6.
구체적으로, 상기 유기용매는 디에틸렌 글리콜 디메틸 에테르, 디에틸렌 글리콜 디에틸 에테르, 디에틸렌 글리콜 디부틸에테르, 에틸렌 글리콜 디부틸에테르테트라에틸렌 글리콜 디메틸 에테르 및 이들의 조합 중 선택되는 어느 하나 이상일 수 있다.Specifically, the organic solvent may be at least one selected from diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, ethylene glycol dibutyl ethertetraethylene glycol dimethyl ether, and combinations thereof.
상기 제조방법은 1개의 반응기에서 수행되는 것일 수 있다.The above manufacturing method may be performed in one reactor.
본 발명은 세척 및 표면 처리된 기판을 챔버 내에 장착하고, 상기 기판을 가열하는 단계; 상기 챔버 내부에 장착된 상기 기판 위 반응 공간에 수송가스 및 니켈전구체를 주입하는 소스 주입 단계; 상기 소스 주입 단계 이후, 수송가스를 주입하는 제1 퍼지 단계; 상기 퍼지 단계 이후, 반응가스를 주입하는 반응 단계; 및 상기 반응 단계 이후, 수송가스를 주입하는 제2 퍼지 단계;를 포함하고, 상기 소스 주입 단계 내지 상기 제2 퍼지 단계가 반복적으로 수 회 내지 수십 회 수행되되, 상기 니켈 전구체는 제1항 내지 제11항 중 선택되는 적어도 어느 하나의 제조방법으로 형성되는, 니켈옥사이드 박막의 제조방법을 포함할 수 있다.The present invention comprises a step of mounting a washed and surface-treated substrate in a chamber, and heating the substrate; a source injection step of injecting a transport gas and a nickel precursor into a reaction space on the substrate mounted inside the chamber; a first purge step of injecting a transport gas after the source injection step; a reaction step of injecting a reaction gas after the purge step; and a second purge step of injecting a transport gas after the reaction step; and the source injection step to the second purge step are repeatedly performed several to several tens of times, wherein the nickel precursor is formed by at least one of the manufacturing methods selected from claims 1 to 11.
상기 니켈 전구체는 비스(메틸시클로펜타디에닐) 니켈일 수 있다.The above nickel precursor may be bis(methylcyclopentadienyl)nickel.
상기 제조방법은 플라즈마 원자층 증착법 (PEALD) 또는 열 원자층 증착법(Thermal ALD)을 사용하는 것일 수 있다.The above manufacturing method may use plasma enhanced atomic layer deposition (PEALD) or thermal atomic layer deposition (Thermal ALD).
상기 제조방법에서 증착 사이클 당 증착 두께(GPC; Growth Per Cycle)는 0.1 내지 0.2 Å/cycle일 수 있다.In the above manufacturing method, the deposition thickness per deposition cycle (GPC; Growth Per Cycle) may be 0.1 to 0.2 Å/cycle.
상기 기판은 SOI(Silicon on Insulator), 탄화규소(SiC), 인듐주석산화물(ITO), 인듐아연산화물(IZO) 또는 페로브스카이트 물질을 포함하는 기판일 수 있다.The above substrate may be a substrate including silicon on insulator (SOI), silicon carbide (SiC), indium tin oxide (ITO), indium zinc oxide (IZO), or perovskite material.
본 발명은 상술한 니켈옥사이드 박막의 제조방법으로 형성되는 니켈옥사이드 박막을 포함할 수 있다.The present invention may include a nickel oxide thin film formed by the method for manufacturing a nickel oxide thin film described above.
상기 니켈옥사이드 박막의 저항은 5 내지 9 E-3 Ω·cm일 수 있다.The resistance of the above nickel oxide thin film can be 5 to 9 E-3 Ω·cm.
상기 니켈옥사이드 박막의 두께 편차는 -3.0 Å 내지 +3.0 Å일 수 있다.The thickness deviation of the above nickel oxide thin film can be -3.0 Å to +3.0 Å.
상기 니켈옥사이드 박막은 탠덤형 태양전지(Tandem solar cell)의 정공수송층으로 적용될 수 있다.The above nickel oxide thin film can be applied as a hole transport layer of a tandem solar cell.
본 발명은 기판; 상기 기판 상에 형성된 제1 전극층; 상기 제1 전극층 상에 형성된 전자수송층; 상기 전자수송층 상에 형성되고 페로브스카이트 물질을 포함하는 광활성층; 상기 광활성층 상에 형성된 정공수송층; 및 상기 정공수송층 상에 형성된 제2 전극층;을 포함하되, 상기 정공수송층은 상술한 니켈옥사이드 박막을 포함하는, 태양전지를 포함할 수 있다.The present invention may include a solar cell including: a substrate; a first electrode layer formed on the substrate; an electron transport layer formed on the first electrode layer; a photoactive layer formed on the electron transport layer and including a perovskite material; a hole transport layer formed on the photoactive layer; and a second electrode layer formed on the hole transport layer; wherein the hole transport layer includes the nickel oxide thin film described above.
상기 태양전지는 탠덤(Tandem)형일 수 있다. The above solar cell may be of tandem type.
본 발명의 일 실시예에 따른 비스(메틸시클로펜타디에닐) 본켈의 제조방법은 무수 용매의 준비가 필요하지 않고, 저렴하고 안전한 알칼리금속 수산화물을 이용함으로써 공정 안정성이 우수하다. 나아가, 이로부터 제조된 비스(메틸시클로펜타디에닐) 니켈은 수율 및 순도가 우수하다. 또한, 본 발명의 일 실시예에 따른 니켈옥사이드 박막의 제조방법은 향상된 증착 속도로 공정시간을 단축하는 경제적인 효과가 있으며, 이를 통해 제조되는 니켈옥사이드 박막은 이의 물성, 예컨대 저항 및 투명도가 우수하여 페로브스카이트 태양전지의 정공수송층으로 적용되기에 적합하다. The method for producing bis(methylcyclopentadienyl)bonkel according to one embodiment of the present invention does not require the preparation of an anhydrous solvent, and has excellent process stability by using an inexpensive and safe alkali metal hydroxide. Furthermore, bis(methylcyclopentadienyl)nickel produced thereby has excellent yield and purity. In addition, the method for producing a nickel oxide thin film according to one embodiment of the present invention has an economical effect of shortening the process time by an improved deposition rate, and the nickel oxide thin film produced thereby has excellent physical properties, such as resistance and transparency, and is therefore suitable for application as a hole transport layer of a perovskite solar cell.
도 1은 본 발명의 일 실시예에 따른 비스(메틸시클로펜타디에닐) 니켈의 제조 공정을 도시한 흐름도(PFD; Process flow diagram)이다.FIG. 1 is a flow chart (PFD; Process flow diagram) illustrating a process for manufacturing bis(methylcyclopentadienyl) nickel according to one embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 원자층 증착(ALD) 방법을 이용하여 니켈 옥사이드 박막을 제조하는 단계를 나타낸 그래프이다.FIG. 2 is a graph showing steps for manufacturing a nickel oxide thin film using an atomic layer deposition (ALD) method according to one embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 니켈 전구체 Ni(MeCp)2를 사용하여 제조한 니켈 옥사이드 박막의 타원계측법(Ellipsometer) 결과이다. FIG. 3 is an ellipsometry result of a nickel oxide thin film manufactured using a nickel precursor Ni(MeCp) 2 according to one embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 니켈 전구체 Ni(MeCp)2를 사용하여 제조한 니켈 옥사이드 박막의 두께 별 투과율을 나타낸 그래프이다.FIG. 4 is a graph showing the thickness-dependent transmittance of a nickel oxide thin film manufactured using a nickel precursor Ni(MeCp) 2 according to one embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.The present invention can be modified in various ways and can take various forms, and specific embodiments are illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, but should be understood to include all modifications, equivalents, or substitutes included in the spirit and technical scope of the present invention. In describing each drawing, similar reference numerals are used for similar components.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms defined in commonly used dictionaries, such as those defined in common dictionaries, should be interpreted as having a meaning consistent with the meaning they have in the context of the relevant art, and shall not be interpreted in an idealized or overly formal sense, unless expressly defined in this application.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout this specification, whenever a part is said to "include" a component, this does not exclude other components, but rather includes other components, unless otherwise specifically stated.
본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로"등은 언급된 의미에 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에서 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. The terms “about,” “substantially,” etc., used throughout this specification are used in the sense that they are at or near the numerical value when a material tolerance is presented in the sense stated, and are used to prevent unscrupulous infringers from unfairly exploiting the disclosure in which exact or absolute values are stated to aid understanding of this specification.
비스(메틸시클로펜타디에닐) 니켈의 제조방법Method for producing bis(methylcyclopentadienyl) nickel
본 발명은 비스(메틸시클로펜타디에닐) 니켈 (Bis(methylcyclopentadienyl)nickel(II))의 제조방법을 포함할 수 있다. The present invention may include a method for producing bis(methylcyclopentadienyl)nickel(II).
도 1은 본 발명의 일 실시예에 따른 비스(메틸시클로펜타디에닐) 니켈의 제조 공정을 도시한 흐름도(PFD; Process flow diagram)이다.FIG. 1 is a flow chart (PFD; Process flow diagram) illustrating a process for manufacturing bis(methylcyclopentadienyl) nickel according to one embodiment of the present invention.
도 1을 참조하면, 전구체로 메틸시클로펜타디엔 이합체 화합물, 반응물로 알칼리수산화물 및 유기용매를 반응기에 투입할 수 있다. Referring to Figure 1, a methylcyclopentadiene dimer compound as a precursor, an alkali hydroxide as a reactant, and an organic solvent can be introduced into a reactor.
상기 메틸시클로펜타디엔 이합체(MCPD 또는 MeCp dimer; Methylcyclopentadiene dimer) 화합물은 이중고리를 가지는 불포화 탄화수소 화합물로서, 구체적으로 두개의 시클로펜타디엔 고리 각각에 적어도 하나 이상의 메틸기를 포함하는 것일 수 있다. 상기 메틸시클로펜타디엔 이합체는 본 발명에서 전구체로 사용되며 하기 화학식 1로 표시되는 것일 수 있다.The above methylcyclopentadiene dimer (MCPD or MeCp dimer; Methylcyclopentadiene dimer) compound is an unsaturated hydrocarbon compound having a double ring, and specifically, may include at least one methyl group in each of two cyclopentadiene rings. The methylcyclopentadiene dimer is used as a precursor in the present invention and may be represented by the following chemical formula 1.
[화학식 1][Chemical Formula 1]
Figure PCTKR2023003996-appb-img-000001
Figure PCTKR2023003996-appb-img-000001
상기 알칼리수산화물은 화학식 MOH로 표시될 수 있고, 이때 상기 M은 알칼리금속이고, 구체적으로 LiOH, NaOH 또는 KOH일 수 있다. 상기 알칼리수산화물은 본 발명의 비스(메틸시클로펜타디에닐) 니켈의 제조방법에서 반응물로서 사용되며, 후술하는 반응 부산물로서 물(H2O)을 생성할 수 있다. 이로써, 부산물로 수소 가스를 발생시키는 종래의 알칼리 금속을 사용하는 경우보다 공정 안정성이 우수한 장점이 있다. The above alkali hydroxide can be represented by the chemical formula MOH, wherein M is an alkali metal, and specifically, can be LiOH, NaOH or KOH. The above alkali hydroxide is used as a reactant in the method for producing bis(methylcyclopentadienyl)nickel of the present invention, and can generate water (H 2 O) as a reaction by-product described below. Accordingly, there is an advantage of superior process stability compared to cases where conventional alkali metals that generate hydrogen gas as a by-product are used.
상기 유기용매는 끓는점이 120 내지 300 ℃이고 상온에서 액체로 존재하는 에테르계 화합물일 수 있고, 구체적으로는 선형의 에테르계 화합물일 수 있고, 보다 구체적으로는 글리콜 에테르류로서, 후술하는 제1 반응온도 범위에서도 화학적으로 분해되지 않고 열적 안정성을 갖는 것일 수 있다. 한편, 일반적으로 널리 사용되는 범용 유기용매, 예컨대 벤젠, 테트라히드로퓨란(THF), 피리딘, 자일렌, 디메틸설폭사이드(DMSO) 등은 끓는점이 상대적으로 낮으므로, 즉 상기 제1 반응온도 에서 끓어 공정 중에 액상으로 존재하지 않거나, 열분해될 수 있으므로 본 발명의 비스(메틸시클로펜타디에닐) 니켈의 제조에 적합하지 않을 수 있다. 구체적으로, 상기 유기용매는 끓는점이 120 내지 300 ℃이고 상온에서 액체로 존재하며, 화학식 R1O(R2O)nR3으로 나타나는 화합물일 수 있고, 이때 n은 0 내지 5이고, R1는 C1 내지 C6의 알킬기, R2는 C1 내지 C3의 알킬기 및 R3는 C1 내지 C6의 알킬기일 수 있다. 더욱 구체적으로, 상기 유기용매는 디에틸렌 글리콜 디메틸 에테르(Diethylene glycol dimethyl ether, Diglyme), 디에틸렌 글리콜 디에틸 에테르(Diethylene glycol diethyl ether), 디에틸렌 글리콜 디부틸에테르(Diethylene glycol dibutyl ether), 에틸렌 글리콜 디부틸에테르(Ethylene glycol dibutyl ether), 테트라에틸렌 글리콜 디메틸 에테르(Tetraethylene glycol dimethyl ether) 및 이들의 조합 중 선택되는 어느 하나 이상일 수 있고, 일 구체예에서 디에틸렌 글리콜 디메틸 에테르(Diethylene glycol dimethyl ether, Diglyme)를 사용할 수 있으나, 이에 제한되는 것은 아니다. The above organic solvent may be an ether compound having a boiling point of 120 to 300°C and existing in a liquid state at room temperature, specifically, a linear ether compound, and more specifically, a glycol ether, which is not chemically decomposed and has thermal stability even in the first reaction temperature range described below. Meanwhile, generally and widely used general-purpose organic solvents, such as benzene, tetrahydrofuran (THF), pyridine, xylene, dimethyl sulfoxide (DMSO), etc., have relatively low boiling points, that is, they boil at the first reaction temperature and do not exist in a liquid state during the process, or they may be thermally decomposed, and thus may not be suitable for producing the bis(methylcyclopentadienyl) nickel of the present invention. Specifically, the organic solvent may be a compound having a boiling point of 120 to 300°C and existing as a liquid at room temperature, and represented by the chemical formula R 1 O (R 2 O) n R 3 , wherein n is 0 to 5, R 1 may be a C1 to C6 alkyl group, R 2 may be a C1 to C3 alkyl group, and R 3 may be a C1 to C6 alkyl group. More specifically, the organic solvent may be at least one selected from diethylene glycol dimethyl ether (Diglyme), diethylene glycol diethyl ether, diethylene glycol dibutyl ether, ethylene glycol dibutyl ether, tetraethylene glycol dimethyl ether, and combinations thereof, and in one specific example, diethylene glycol dimethyl ether (Diglyme) may be used, but is not limited thereto.
본 발명에서는 후술하는 반응 부산물로서 물(H2O)을 생성하는 안전한 알칼리금속 수산화물(MOH)를 사용하므로 종래의 반응물로서 알칼리금속, 알칼리 수소화물 등을 사용하기 때문에 알칼리금속이 수분과 반응하는 폭발 위험성을 방지할 수 있다. 또한, 종래의 반응물을 사용하는 공정에서 용매의 수분 제거 과정이 필수적으로 요구되는 것과 달리 별도의 무수 용매를 구비하지 않아도 되므로 준비 과정이 단축되고 제조비용, 시간 및 노력을 감소시킬 수 있다. Since the present invention uses a safe alkali metal hydroxide (MOH) that produces water (H 2 O) as a reaction by-product, which will be described later, the risk of explosion due to the alkali metal reacting with moisture can be prevented, as is the case with conventional reactants that use alkali metals, alkali hydrides, etc. In addition, unlike conventional processes that require a moisture removal process for solvents, there is no need to prepare a separate anhydrous solvent, so the preparation process can be shortened and manufacturing costs, time, and effort can be reduced.
이후, 상기 메틸시클로펜타디엔 이합체 화합물(MeCp dimer), 알칼리수산화물(MOH) 및 유기용매가 포함된 반응기에서 제1 반응온도로 가열하고 반응하여 중간 생성물을 제조하는 단계가 수행될 수 있다. Thereafter, a step of heating to a first reaction temperature and reacting in a reactor containing the methylcyclopentadiene dimer compound (MeCp dimer), alkali hydroxide (MOH), and an organic solvent to produce an intermediate product can be performed.
상기 중간 생성물을 제조하는 단계는 하기 반응식 1로 나타낼 수 있다.The step of manufacturing the above intermediate product can be represented by the following reaction scheme 1.
[반응식 1][Reaction Formula 1]
Figure PCTKR2023003996-appb-img-000002
Figure PCTKR2023003996-appb-img-000002
상기 반응식 1에서, M은 알칼리금속이다.In the above reaction scheme 1, M is an alkali metal.
상기 반응식 1로 나타나는 반응은 제1 반응온도에서 진행되는 것으로, 구체적으로 상기 제1 반응온도는 120 ℃ 초과 300 ℃ 미만, 보다 구체적으로 130 내지 250 ℃, 140 내지 200 ℃, 일 예로 150 내지 190 ℃일 수 있다.The reaction represented by the above reaction formula 1 is carried out at a first reaction temperature, and specifically, the first reaction temperature may be more than 120°C and less than 300°C, more specifically, 130 to 250°C, 140 to 200°C, or, for example, 150 to 190°C.
상기 반응식 1로 나타나는 반응은 상기 메틸시클로펜타디엔 이합체(MeCp dimer)로부터 레트로 딜스-알더 반응(retro Diels-Alder reaction)에 의해 메틸시클로펜타디엔(MeCp)을 제조하고 뒤이어 연속적으로 수행되는 상기 메틸시클로펜타디엔(MeCp)과 상술한 알칼리금속 수산화물(MOH)의 알칼리금속 이온과 결합하는 반응을 의미할 수 있다. 상기 반응식 1로 나타나는 반응은 단일 반응기 내에서 연속 반응(one-pot reaction)으로 진행되는 것일 수 있다. The reaction represented by the above reaction scheme 1 may refer to a reaction in which methylcyclopentadiene (MeCp) is produced from the methylcyclopentadiene dimer (MeCp dimer) by a retro Diels-Alder reaction, followed by a reaction in which the methylcyclopentadiene (MeCp) is continuously combined with the alkali metal ion of the alkali metal hydroxide (MOH) described above. The reaction represented by the above reaction scheme 1 may be performed as a continuous reaction (one-pot reaction) in a single reactor.
일반적으로, 상기 레트로 딜스-알더 반응(Retro Diels-Alder reaction)은 가역반응이며 평형이 역반응에 치우쳐 있어 생성된 메틸시클로펜타디엔(MeCp)으로부터 메틸시클로펜타디엔 이합체(MeCp dimer)가 제조되는 딜스-알더 반응(Diels-Alder reaction)을 억제하기가 어렵기 때문에 메틸시클로펜타디엔 이합체(MeCp dimer)가 높은 확률로 존재할 수 있다. 그러나, 본 발명에서는 100 ℃ 이상의 고온 반응으로 상기 반응식 1의 부산물인 물을 효과적으로 제거함으로써 역반응을 차단하여 높은 수율로 메틸시클로펜타디엔(MeCp)을 수득할 수 있다. In general, the retro Diels-Alder reaction is a reversible reaction and the equilibrium is biased toward the reverse reaction, so it is difficult to suppress the Diels-Alder reaction in which methylcyclopentadiene dimer (MeCp dimer) is produced from the produced methylcyclopentadiene (MeCp), and thus methylcyclopentadiene dimer (MeCp dimer) may exist with a high probability. However, in the present invention, by effectively removing water, a by-product of the above reaction scheme 1, through a high temperature reaction of 100° C. or higher, the reverse reaction is blocked, and methylcyclopentadiene (MeCp) can be obtained in a high yield.
상기 알칼리금속 메틸시클로펜타디엔나이드(MMeCp)는 중간 생성물로서, 구체적으로 리튬 메틸시클로펜타디엔나이드(LiMeCp), 나트륨 메틸시클로펜타디엔나이드(NaMeCp) 또는 칼륨 메틸시클로펜타디엔나이드(KMeCp)일 수 있다. 일 구체예에서, 상기 알칼리금속 메틸시클로펜타디엔나이드(MMeCp)는 칼륨 메틸시클로펜타디엔나이드(KMeCp)일 수 있으나, 이에 제한되는 것은 아니다.The above alkali metal methylcyclopentadienide (MMeCp) is an intermediate product, and specifically may be lithium methylcyclopentadienide (LiMeCp), sodium methylcyclopentadienide (NaMeCp), or potassium methylcyclopentadienide (KMeCp). In one specific example, the alkali metal methylcyclopentadienide (MMeCp) may be, but is not limited to, potassium methylcyclopentadienide (KMeCp).
상기 반응식 1로 나타나는 반응은 액상 반응일 수 있다. The reaction represented by the above reaction scheme 1 may be a liquid phase reaction.
그 다음, 상기 중간 생성물 및 상기 유기용매가 포함된 상기 반응기에 니켈공급원을 첨가하고, 제2 반응온도에서 반응하여 생성물로서 비스(메틸시클로펜타디에닐) 니켈을 제조하는 단계가 수행될 수 있다. 이의 단계는 하기 반응식 2로 나타낼 수 있다.Next, a step of adding a nickel source to the reactor containing the intermediate product and the organic solvent and reacting at a second reaction temperature to produce bis(methylcyclopentadienyl) nickel as a product can be performed. This step can be represented by the following reaction scheme 2.
[반응식 2][Reaction Formula 2]
Figure PCTKR2023003996-appb-img-000003
Figure PCTKR2023003996-appb-img-000003
상기 반응식 2에서, M은 알칼리금속이고, n 및 A는 후술하는 화학식 2와 같다. In the above reaction formula 2, M is an alkali metal, and n and A are as shown in the chemical formula 2 described below.
상기 반응식 2의 반응은 비가역 반응이며, 중간생성물인 알칼리금속 메틸시클로펜타디엔나이드(MMeCp)가 상기 유기용매에 대한 용해도가 낮으므로 이의 용해도를 증가시키기 위해 실온보다 높은 온도, 예컨대 35 ℃ 이상에서 진행되는 것이 바람직하며, 또한 생성물인 비스(메틸시클로펜타디에닐) 니켈이 분해되지 않는 온도, 예컨대 120 ℃ 이하에서 진행되는 것이 바람직하다. 따라서, 상기 반응식 2의 반응은 제2 반응온도에서 진행되는 것으로, 구체적으로 35 내지 120 ℃, 보다 구체적으로 40 내지 80 ℃, 일 예로 45 내지 60 ℃ 조건에서 수행되는 것일 수 있다. The reaction of the above reaction scheme 2 is an irreversible reaction, and since the intermediate product, alkali metal methylcyclopentadienide (MMeCp), has low solubility in the organic solvent, it is preferable to proceed at a temperature higher than room temperature, for example, 35°C or higher, in order to increase its solubility. In addition, it is preferable to proceed at a temperature at which the product, bis(methylcyclopentadienyl)nickel, does not decompose, for example, 120°C or lower. Accordingly, the reaction of the above reaction scheme 2 is performed at the second reaction temperature, and specifically, it may be performed under conditions of 35 to 120°C, more specifically, 40 to 80°C, for example, 45 to 60°C.
상기 니켈공급원은 니켈(II) 양이온에 복수개의 암모니아 리간드가 배위결합으로 부착된 형태를 갖는 이온성 화합물로서, 구체적으로 니켈 아민 착물을 포함할 수 있다. 상기 니켈 아민 착물은 하기 화학식 2로 표시될 수 있다.The above nickel source is an ionic compound having a form in which multiple ammonia ligands are coordinately attached to a nickel (II) cation, and may specifically include a nickel amine complex. The nickel amine complex may be represented by the following chemical formula 2.
[화학식 2][Chemical formula 2]
[Ni(NH3)n]A2 [Ni(NH 3 ) n ]A 2
상기 화학식 2에서, n은 2 내지 6의 정수이고, A는 F-, Cl-, Br-, I-, BF4 -, PF6 -, NO3 - 및 NO2 - 중에서 선택되는 어느 하나이다. 구체적으로, 상기 화학식 2에서, n은 2 내지 6의 짝수이고, A는 F-, Cl-, Br- 및 I- 중에서 선택되는 어느 하나이다. In the above chemical formula 2, n is an integer from 2 to 6, and A is F - , Any one selected from Cl - , Br - , I - , BF 4 - , PF 6 - , NO 3 - and NO 2 - . Specifically, in the chemical formula 2, n is an even number of 2 to 6, and A is any one selected from F - , Cl - , Br - and I - .
보다 구체적으로, 상기 니켈공급원은 디아민니켈 클로라이드 ([Ni(NH3)2]Cl2, Diamminenickel chloride), 테트라아민니켈 클로라이드 ([Ni(NH3)4]Cl2, Tetraamminenickel chloride), 및 헥사아민니켈 클로라이드 ([Ni(NH3)6]Cl2, Hexaamminenickel chloride) 중 선택되는 어느 하나일 수 있다. 일 구체예에서, 상기 니켈공급원은 헥사아민니켈 클로라이드 ([Ni(NH3)6]Cl2)일 수 있으나, 이에 제한되는 것은 아니다. More specifically, the nickel source may be any one selected from diamminenickel chloride ([Ni(NH 3 ) 2 ]Cl 2 ), tetraamminenickel chloride ([Ni(NH 3 ) 4 ]Cl 2 ), and hexaamminenickel chloride ([Ni(NH 3 ) 6 ]Cl 2 ). In one specific example, the nickel source may be, but is not limited to, hexaamminenickel chloride ([Ni(NH 3 ) 6 ]Cl 2 ).
상기 니켈공급원이 니켈(II) 양이온의 공급을 위해 암모니아 리간드를 포함하는 것이 무수 니켈의 공급에 보다 효과적일 수 있다. 만일, 니켈 공급원으로 암모니아 리간드를 포함하지 않는 화합물, 일 예로 염화니켈(NiCl2)을 사용할 경우 추가적인 수분 제거 공정이 필요하기 때문에 공정 효율성이 감소할 수 있다. 또한, 상기 니켈공급원으로 암모니아 리간드를 포함할 경우 후술하는 증착 공정 시 전구체 화합물의 열적 안정성을 향상시키고 열분해를 방지할 수 있다. The nickel source containing an ammonia ligand for supplying nickel (II) cations may be more effective in supplying anhydrous nickel. If a compound not containing an ammonia ligand, such as nickel chloride (NiCl 2 ), is used as the nickel source, an additional moisture removal process may be required, which may reduce process efficiency. In addition, if the nickel source containing an ammonia ligand is used, the thermal stability of the precursor compound may be improved and thermal decomposition may be prevented during the deposition process described below.
상기 반응식 2의 반응은 암모니아(NH3) 가스의 발생이 멈출 때까지 수행될 수 있으며, 암모니아 가스의 발생이 중단된 이후 생성물인 비스(메틸시클로펜타디에닐) 니켈을 포함하는 혼합물, 즉 정제되지 않은 비스(메틸시클로펜타디에닐) 니켈을 수득할 수 있다. The reaction of the above reaction scheme 2 can be performed until the generation of ammonia (NH 3 ) gas stops, and after the generation of ammonia gas stops, a mixture containing the product bis(methylcyclopentadienyl) nickel, i.e., crude bis(methylcyclopentadienyl) nickel, can be obtained.
상기 반응식 2로 나타나는 반응은 액상 반응일 수 있다. The reaction represented by the above reaction formula 2 may be a liquid phase reaction.
상기 반응식 2로부터 형성된 생성물은 구체적으로 하기 화학식 3으로 표시되는 화합물일 수 있다.The product formed from the above reaction formula 2 may be a compound specifically represented by the following chemical formula 3.
[화학식 3][Chemical Formula 3]
Figure PCTKR2023003996-appb-img-000004
Figure PCTKR2023003996-appb-img-000004
구체적으로, 상기 화학식 3의 화합물은 상기 비스(메틸시클로펜타디에닐) 니켈일 수 있다. Specifically, the compound of the above chemical formula 3 may be the above bis(methylcyclopentadienyl) nickel.
상기 비스(메틸시클로펜타디에닐) 니켈은 제조 반응이 완료된 이후 상온에서 액상으로 존재할 수 있다. 액상으로 존재하는 비스(메틸시클로펜타디에닐) 니켈은 후술하는 니켈옥사이드 박막의 제조에서 니켈전구체로 활용될 시 고상의 다른 전구체를 사용하는 경우와 비교하여 증발기에서 전구체 용액을 증기화 하는 과정에서 보다 완전한 증기화를 가능케하고, 열분해가 최소화되며, 사이클 당 증착 두께(GPC) 등의 증착 효율을 향상시킬 수 있다. The above bis(methylcyclopentadienyl) nickel can exist in a liquid state at room temperature after the manufacturing reaction is completed. When bis(methylcyclopentadienyl) nickel existing in a liquid state is utilized as a nickel precursor in the manufacturing of a nickel oxide thin film described below, compared to the case of using other solid precursors, it enables more complete vaporization during the process of vaporizing the precursor solution in an evaporator, minimizes thermal decomposition, and improves deposition efficiency such as deposition thickness per cycle (GPC).
다음으로, 상기 생성물을 냉각한 후 여과 및 농축하고 감압 분별 증류하여 정제된 비스(메틸시클로펜타디에닐) 니켈을 제조하는 단계를 수행할 수 있다. Next, a step of cooling the above product, filtering and concentrating it, and subjecting it to reduced pressure fractional distillation to produce purified bis(methylcyclopentadienyl)nickel can be performed.
상기 냉각 단계에서 냉각 온도는 -10 내지 50 ℃, 구체적으로 -5 내지 30 ℃, 보다 구체적으로 0 내지 10 ℃일 수 있다. In the above cooling step, the cooling temperature may be -10 to 50°C, specifically -5 to 30°C, and more specifically 0 to 10°C.
상기 냉각 단계에서 생성물에 포함되는 알칼리금속염(상기 반응식 2에서 MA로 표기)은 고상으로, 여과 과정에서 제거될 수 있다.The alkali metal salt (represented as MA in the above reaction formula 2) included in the product in the above cooling step is in a solid phase and can be removed during the filtration process.
상기 냉각 단계에서 생성물에 포함되는 유기용매는 액상으로 존재할 수 있다. 상기 유기용매, 일 구체예로 디에틸렌 글리콜 디메틸 에테르(Diglyme)를 사용할 시 상기 냉각 단계에서도 액상을 유지할 수 있으므로 생성물의 정제 단계, 즉 분별증류 단계에서 수득하여 재사용하거나, 쉽게 증발하여 제거가 가능하다. 반면, 종래의 제조방법에서 사용되는 유기용매들, 예를 들어 녹는점이 19 ℃인 디메틸설폭사이드(DMSO)는 상기 냉각 단계의 온도에서 고체로 존재하므로 분별증류 방법의 적용이 어려운 문제가 발생할 수도 있다.The organic solvent included in the product in the cooling step may exist in a liquid state. When the organic solvent, for example, diethylene glycol dimethyl ether (Diglyme), is used, the organic solvent can maintain a liquid state even in the cooling step, so that it can be obtained and reused in the product purification step, i.e., the fractional distillation step, or can be easily evaporated and removed. On the other hand, organic solvents used in conventional manufacturing methods, for example, dimethyl sulfoxide (DMSO) having a melting point of 19°C, exist in a solid state at the temperature of the cooling step, so that it may be difficult to apply the fractional distillation method.
상기 정제된 비스(메틸시클로펜타디에닐) 니켈은 수율이 60 % 이상, 구체적으로 70 % 이상일 수 있으며, 순도는 96 % 이상, 구체적으로 98 % 이상일 수 있다. 이는 종래의 제조방법에서 반응물인 알칼리금속 또는 알칼리 수소화물을 사용하고 유기용매로 테트라히드로퓨란(THF)을 사용하여 제조하는 방법에서 50 %를 넘지 않는 수율 및 95 % 이하의 순도를 갖는 것과 비교하여 고품질의 비스(메틸시클로펜타디에닐) 니켈을 높은 수율로 수득할 수 있음을 의미한다. The above purified bis(methylcyclopentadienyl)nickel can have a yield of 60% or more, specifically 70% or more, and a purity of 96% or more, specifically 98% or more. This means that high-quality bis(methylcyclopentadienyl)nickel can be obtained in a high yield, compared to a conventional manufacturing method using an alkali metal or alkali hydride as a reactant and using tetrahydrofuran (THF) as an organic solvent, which has a yield of not exceeding 50% and a purity of 95% or less.
따라서, 본 발명의 일 실시예에 따른 비스(메틸시클로펜타디에닐) 니켈의 제조방법은 무수 용매의 준비가 필요하지 않고, 저렴하고 안전한 알칼리금속 수산화물을 이용함으로써 공정 안정성이 우수하고 공정시간을 단축하는 경제적인 효과가 있다, 또한 이로부터 제조된 비스(메틸시클로펜타디에닐) 니켈은 수율 및 순도가 우수할 수 있다. Therefore, the method for producing bis(methylcyclopentadienyl)nickel according to one embodiment of the present invention has an economical effect of excellent process stability and shortening the process time by using an inexpensive and safe alkali metal hydroxide without requiring preparation of an anhydrous solvent, and further, bis(methylcyclopentadienyl)nickel produced thereby can have excellent yield and purity.
본 발명의 제조방법을 통해 제조된 비스(메틸시클로펜타디에닐) 니켈은 후술하는 니켈옥사이드 박막의 제조에 사용될 수 있다.Bis(methylcyclopentadienyl)nickel manufactured through the manufacturing method of the present invention can be used in the manufacture of a nickel oxide thin film described below.
니켈옥사이드 박막의 제조방법Method for manufacturing nickel oxide thin film
본 발명의 니켈옥사이드 박막의 제조방법은 먼저, 세척 및 표면 처리된 기판을 챔버 내에 장착하고, 상기 기판을 가열하는 단계; 상기 챔버 내부에 장착된 상기 기판 위 반응 공간에 수송가스 및 니켈전구체로서 비스(메틸시클로펜타디에닐) 니켈을 주입하는 소스 주입 단계; 상기 소스 주입 단계 이후, 수송가스를 주입하는 제1 퍼지 단계; 상기 퍼지 단계 이후, 반응가스를 주입하는 반응 단계; 및 상기 반응 단계 이후, 수송가스를 주입하는 제2 퍼지 단계;를 포함할 수 있다.The method for manufacturing a nickel oxide thin film of the present invention may include: first, a step of mounting a washed and surface-treated substrate in a chamber and heating the substrate; a source injection step of injecting bis(methylcyclopentadienyl) nickel as a transport gas and a nickel precursor into a reaction space on the substrate mounted inside the chamber; a first purge step of injecting a transport gas after the source injection step; a reaction step of injecting a reaction gas after the purge step; and a second purge step of injecting a transport gas after the reaction step.
상기 소스 주입 단계 내지 상기 제2 퍼지 단계가 반복적으로 수 회 내지 수십 회 수행될 수 있다. The above source injection step or the second purge step may be repeatedly performed several to several tens of times.
구체적으로, 상기 니켈전구체로서 비스(메틸시클로펜타디에닐) 니켈은 상술한 제조방법으로 형성된 것일 수 있다. Specifically, bis(methylcyclopentadienyl) nickel as the nickel precursor may be formed by the above-described manufacturing method.
상기 기판은 평판 형태 또는 롤 형태의 비제한적인 형태를 갖는 기판으로서, 구체적으로 실리콘, 금(Au), 은(Ag),구리(Cu), 주석(Sn), 알루미늄(Al), 니켈(Ni), 텅스텐(W), 크롬(Cr), 아연(Zn), 백금(Pt), 몰리브텐(Mo), 탄탈럼(Ta), 티탄(Ti), 하프늄(Hf), 지르코늄(Zr), 망간(Mn), 이리듐(Ir), 레늄(Re) 및 루테늄(Ru), 산화루테늄(RuO2), 질화티타늄(TiN), 질화탄탈럼(TaN), 질화텅스텐(WN), 질화하프늄(HfN), 질화지르코늄(ZrN), 질화탄탈실리콘(TaSiN), 질화티탄실리콘(TiSiN), 코발트실리사이드(CoSi2), 니켈실리사이드(NiSi), 티타늄실리사이드(TiSi2), 실리콘산화물(SiO2), 티타늄산화물(TiO2), 지르코늄산화물(ZrO2), 하프늄산화물(HfO2), 알루미늄산화물(Al2O3), 나이오븀산화물(Nb2O5), 탄탈럼산화물(Ta2O5), SOI(Silicon on Insulator), 유리, 사파이어, 탄화규소(SiC), 질화알루미늄(AlN), 인듐주석산화물(ITO), 산화아연(ZnO), 인듐아연산화물(IZO), 페로브스카이트 물질 및 이들의 조합 중 선택되는 적어도 어느 하나 이상을 포함하는 기판일 수 있다. The above substrate is a substrate having an unrestricted form such as a flat plate or a roll, and specifically, silicon, gold (Au), silver (Ag), copper (Cu), tin (Sn), aluminum (Al), nickel (Ni), tungsten (W), chromium (Cr), zinc (Zn), platinum (Pt), molybdenum (Mo), tantalum (Ta), titanium (Ti), hafnium (Hf), zirconium (Zr), manganese (Mn), iridium (Ir), rhenium (Re), and ruthenium (Ru), ruthenium oxide (RuO 2 ), titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), hafnium nitride (HfN), zirconium nitride (ZrN), tantalum silicon nitride (TaSiN), titanium silicon nitride (TiSiN), cobalt silicide (CoSi 2 ), nickel silicide (NiSi), titanium silicide (TiSi 2 ) . ), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ) , silicon on insulator (SOI), glass, sapphire, silicon carbide (SiC), aluminum nitride (AlN), indium tin oxide (ITO), zinc oxide (ZnO), indium zinc oxide (IZO), perovskite materials, and combinations thereof.
보다 구체적으로, 상기 기판은 SOI(Silicon on Insulator), 탄화규소(SiC), 인듐주석산화물(ITO), 인듐아연산화물(IZO) 또는 페로브스카이트 물질을 포함하는 기판일 수 있다. More specifically, the substrate may be a substrate including silicon on insulator (SOI), silicon carbide (SiC), indium tin oxide (ITO), indium zinc oxide (IZO), or a perovskite material.
일 구체예에서, 상기 기판은 후술하는 태양전지에서 광활성층으로 사용되는 페로브스카이트 물질이 포함된 기판일 수 있으나, 이에 제한되는 것은 아니다. In one specific example, the substrate may be, but is not limited to, a substrate including a perovskite material used as a photoactive layer in a solar cell described below.
상기 기판을 가열하는 단계에서, 기판의 온도를 50 내지 450 ℃, 구체적으로 100 내지 350 ℃, 보다 구체적으로 150 내지 250 ℃, 일 구체예에서 190 내지 210 ℃로 가열할 수 있다. In the step of heating the substrate, the temperature of the substrate may be heated to 50 to 450°C, specifically 100 to 350°C, more specifically 150 to 250°C, and in one specific example 190 to 210°C.
상기 수송가스는 비활성 기체로서 구체적으로 질소(N2), 아르곤(Ar), 헬륨(He) 및 이들의 혼합물 중에서 선택되는 어느 하나를 사용할 수 있고, 일 구체예에서 아르곤(Ar)을 사용할 수 있다.The above transport gas is an inert gas, and specifically, any one selected from nitrogen (N 2 ), argon (Ar), helium (He), and mixtures thereof may be used, and in one specific example, argon (Ar) may be used.
상기 반응가스는 산소를 포함하는 기체로서 물(H2O), 산소(O2), 오존(O3) 및 이들의 혼합물 중에서 선택되는 어느 하나를 사용할 수 있고, 일 구체예에서 산소(O2)를 사용할 수 있다. The above reaction gas is a gas containing oxygen, and any one selected from water (H 2 O), oxygen (O 2 ), ozone (O 3 ), and mixtures thereof may be used, and in one specific example, oxygen (O 2 ) may be used.
상기 박막을 증착하는 단계에서, 증착 시간은 비제한적인 예로 0.1 초 내지 1 분 동안 수행될 수 있다. In the step of depositing the above thin film, the deposition time can be performed for, but not limited to, 0.1 seconds to 1 minute.
본 발명의 일 실시예에 따른 니켈옥사이드 박막의 제조방법은 원자층 증착법(Atomic layer deposition), 구체적으로 플라즈마 원자층증착법 (PEALD) 또는 열 원자층증착법(Thermal ALD)을 사용할 수 있다. A method for manufacturing a nickel oxide thin film according to one embodiment of the present invention may use an atomic layer deposition method, specifically, plasma enhanced atomic layer deposition (PEALD) or thermal atomic layer deposition (Thermal ALD).
본 발명의 일 실시예에 따른 니켈옥사이드 박막의 제조방법은 전구체로 시클로펜타디에닐 고리에 메틸기가 적어도 하나 이상 포함하는 비스(메틸시클로펜타디에닐) 니켈을 사용하는데, 상기 메틸기 대신에 탄소 수 C2 내지 C3의 알킬기, 일 예로 에틸기, 이소프로필기 등을 함유하거나, 알킬기를 포함하지 않는 비스(시클로펜타니에닐) 니켈 화합물을 전구체로 사용하는 공정과 대비하여 더 향상된 증착 속도를 나타낼 수 있다. A method for manufacturing a nickel oxide thin film according to one embodiment of the present invention uses bis(methylcyclopentadienyl)nickel as a precursor containing at least one methyl group in a cyclopentadienyl ring, and can exhibit a more improved deposition rate compared to a process using a bis(cyclopentanienyl)nickel compound as a precursor containing an alkyl group having C2 to C3 carbon atoms, such as an ethyl group, an isopropyl group, or the like, instead of the methyl group, or not containing an alkyl group.
구체적으로, 전구체로 비스(메틸시클로펜타디에닐) 니켈(Ni(MeCp)2)은 비스(에틸시클로펜타디에닐) 니켈(Ni(EtCp)2)과 비교하여 함유하는 탄소 개수가 더 적으므로, 구체적으로 시클로펜타디에닐 고리에 포함되는 알킬기의 길이가 더 짧으므로, 증착 공정 시 증기화된 전구체를 주입하는 과정에서 전구체의 이동성(mobility)이 빠르며 전구체가 기판에 도달하는 시간이 단축되고 사이클 당 증착 두께가 높아질 수 있다. 예를 들어, 전구체로 비스(메틸시클로펜타디에닐) 니켈(Ni(MeCp)2)을 사용하는 공정에서 사이클 당 증착 두께(GPC; Growth Per Cycle), 즉 증착 속도는 0.1 내지 0.2 Å/cycle일 수 있고, 구체적으로 0.13 내지 0.18 Å/cycle일 수 있고, 일 구체예에서 0.15 내지 0.17 Å/cycle일 수 있다. 반면, 전구체로 비스(에틸시클로펜타디에닐) 니켈(Ni(EtCp)2)을 사용하는 공정에서 사이클 당 증착 두께는(GPC)는 0.05 내지 0.1 Å/cycle일 수 있고, 구체적으로 0.07 내지 0.099 Å/cycle일 수 있다. 따라서, 전구체로 비스(메틸시클로펜타디에닐) 니켈(Ni(MeCp)2)을 사용하는 공정에서 더 빠른 증착이 가능하다.Specifically, since bis(methylcyclopentadienyl) nickel (Ni(MeCp) 2 ) as a precursor contains a smaller number of carbon atoms than bis(ethylcyclopentadienyl) nickel (Ni(EtCp) 2 ), and specifically, since the length of an alkyl group included in a cyclopentadienyl ring is shorter, the mobility of the precursor may be fast in the process of injecting the vaporized precursor during the deposition process, the time it takes for the precursor to reach the substrate may be shortened, and the deposition thickness per cycle may be increased. For example, in a process using bis(methylcyclopentadienyl) nickel (Ni(MeCp) 2 ) as a precursor, the deposition thickness per cycle (GPC; Growth Per Cycle), i.e., the deposition rate may be 0.1 to 0.2 Å/cycle, specifically, 0.13 to 0.18 Å/cycle, and in one specific example, 0.15 to 0.17 Å/cycle. In contrast, in the process using bis(ethylcyclopentadienyl) nickel (Ni(EtCp) 2 ) as a precursor, the deposition thickness per cycle (GPC) can be 0.05 to 0.1 Å/cycle, and specifically 0.07 to 0.099 Å/cycle. Therefore, faster deposition is possible in the process using bis(methylcyclopentadienyl) nickel (Ni(MeCp) 2 ) as a precursor.
또한, 탄소 수 C2 내지 C3의 알킬기, 일 예로 에틸기, 이소프로필기 등을 함유하거나 알킬기가 없는 시클로펜타니에닐 니켈 화합물을 전구체로 사용할 경우, 높은 분자량 및 곁가지들의 존재로 인해 증착 공정 시 열분해되어 박막 내로 유기 불순물 또는 유기 잔류물이 박막 내로 투입 또는 박막 상에 형성될 수 있으므로 막질의 저하가 우려된다. In addition, when a cyclopentanienyl nickel compound containing an alkyl group having C2 to C3 carbon atoms, such as an ethyl group or an isopropyl group, or having no alkyl group is used as a precursor, there is concern that the film quality may deteriorate because the high molecular weight and the presence of side branches may cause thermal decomposition during the deposition process, causing organic impurities or organic residues to be introduced into the film or formed on the film.
한편, 전구체로 비스(메틸시클로펜타디에닐) 니켈(Ni(MeCp)2)은 비스(시클로펜타니에닐) 니켈(NiCp2)과 비교하여 증착 공정 시 증기화된 전구체가 주입되고 기판 표면에 도달하여 증착되는 과정에서 리간드의 분리 정도, 구체적으로 메틸시클로펜타디에닐(MeCp) 리간드가 시클로펜타디에닐(Cp) 리간드 보다 전구체 화합물로부터 더 잘 분리되므로, 전구체로 비스(메틸시클로펜타디에닐) 니켈(Ni(MeCp)2)을 사용하는 경우 증착 속도가 높아질 수 있다. Meanwhile, bis(methylcyclopentadienyl) nickel (Ni(MeCp) 2 ) as a precursor has a higher degree of ligand separation during the deposition process when the vaporized precursor is injected, reaches the substrate surface, and is deposited compared to bis(cyclopentadienyl) nickel (NiCp 2 ), specifically, methylcyclopentadienyl (MeCp) ligands are better separated from the precursor compound than cyclopentadienyl (Cp) ligands. Therefore, the deposition rate can be increased when bis(methylcyclopentadienyl) nickel (Ni(MeCp) 2 ) is used as a precursor.
또한, 시클로펜타디에닐 고리에 알킬기를 포함하지 않는 비스(시클로펜타디에닐) 니켈을 전구체로 사용할 경우, 비스(시클로펜타디에닐) 니켈 화합물은 상온에서 고체로 존재하므로 원자층 증착법의 전구체로 적용하기 위해 기화 단계에 부가되는 에너지 낭비가 많다. 그러나, 본 발명에 따른 비스(메틸시클로펜타디에닐) 니켈을 전구체로 사용할 경우 액상 전구체의 사용 및 박막 증착 속도가 빨라 증착 공정의 경제적 이점이 있다. In addition, when bis(cyclopentadienyl)nickel that does not contain an alkyl group in the cyclopentadienyl ring is used as a precursor, since the bis(cyclopentadienyl)nickel compound exists as a solid at room temperature, there is a lot of energy waste added in the vaporization step for application as a precursor of the atomic layer deposition method. However, when bis(methylcyclopentadienyl)nickel according to the present invention is used as a precursor, there is an economic advantage in the deposition process because a liquid precursor is used and the thin film deposition speed is fast.
나아가, 비스(메틸시클로펜타디에닐) 니켈을 전구체로 사용할 경우 형성된 박막의 균일도가 좋고 우수한 특성, 예컨대 저항 및 투명도를 가짐로서 후술하는 태양전지의 정공수송층으로 적용될 시 높은 효율을 기대할 수 있다. Furthermore, when bis(methylcyclopentadienyl) nickel is used as a precursor, the formed thin film has good uniformity and excellent properties, such as resistance and transparency, so that high efficiency can be expected when applied as a hole transport layer of a solar cell described later.
본 발명의 일 실시예에에 따른 니켈옥사이드 박막의 제조방법은 대면적의 증착 면적, 구체적으로 1 내지 350 mm2, 보다 구체적으로 10 내지 250 mm2으로 적용하여도 두께 균일도가 우수한 니켈옥사이드를 형성할 수 있다. 또한, 증착 후 잔류물을 최소화할 수 있어 양질의 니켈옥사이드 박막을 제조할 수 있다. The method for manufacturing a nickel oxide thin film according to one embodiment of the present invention can form nickel oxide having excellent thickness uniformity even when applied to a large deposition area, specifically 1 to 350 mm 2 , more specifically 10 to 250 mm 2 . In addition, since residue after deposition can be minimized, a high-quality nickel oxide thin film can be manufactured.
본 발명의 일 실시예에에 따른 니켈옥사이드 박막의 두께는 비제한적인 예로 30 내지 200 Å일 수 있고, 목적하는 박막의 특성에 따라 상기 증착을 반복 수행하여 목적하는 두께의 니켈옥사이드 박막을 구현할 수도 있다.The thickness of the nickel oxide thin film according to one embodiment of the present invention may be, for non-limiting examples, 30 to 200 Å, and the above deposition may be repeated to implement a nickel oxide thin film of a desired thickness depending on the characteristics of the desired thin film.
본 발명의 일 실시예에에 따른 니켈옥사이드 박막의 증착 면적 210 mm2 (M12 size) 크기에서 측정된 증착 두께 편차는 -3.0 Å내지 +3.0 Å, 구체적으로 -2.0 Å 내지 +2.0 Å일 수 있다. 한편, 비교예에 따라 전구체로 Ni(EtCp)2를 사용하는 경우 증착 두께 편차는 -9.0 Å내지 +9.0 Å, 일 예에서 -8.0 Å 내지 +8.0 Å으로, 다소 큰 편차를 나타낼 수 있다. 따라서, 니켈전구체로 Ni(EtCp)2를 사용하는 경우보다 Ni(MeCp)2를 사용하여 형성된 니켈옥사이드 박막은 더 낮은 두께 편차를 가질 수 있으며 우수한 균일도를 가질 수 있다. According to one embodiment of the present invention, the deposition thickness deviation measured at a deposition area of 210 mm 2 (M12 size) of the nickel oxide thin film may be -3.0 Å to +3.0 Å, specifically, -2.0 Å to +2.0 Å. Meanwhile, in the case of using Ni(EtCp) 2 as a precursor according to a comparative example, the deposition thickness deviation may be -9.0 Å to +9.0 Å, in one example, -8.0 Å to +8.0 Å, which may exhibit a rather large deviation. Therefore, a nickel oxide thin film formed using Ni(MeCp) 2 than a nickel precursor using Ni(EtCp) 2 may have a lower thickness deviation and excellent uniformity.
상기 니켈옥사이드 박막의 저항은 5 내지 9 E-3 Ω·cm, 일 예로 6 내지 8 E-3 Ω·cm일 수 있으나, 이에 제한되는 것은 아니다. The resistance of the above nickel oxide thin film may be, but is not limited to, 5 to 9 E-3 Ω·cm, for example, 6 to 8 E-3 Ω·cm.
본 발명의 일 실시예에 따른 니켈옥사이드 박막은 탠덤형 태양전지(Tandem solar cell)의 정공수송층(HTL; Hole transport layer)으로 바람직하게 적용될 수 있으나, 이에 제한되는 것은 아니다.A nickel oxide thin film according to one embodiment of the present invention can be preferably applied as a hole transport layer (HTL) of a tandem solar cell, but is not limited thereto.
니켈 옥사이드 박막을 정공수송층으로 적용한 태양전지Solar cell using nickel oxide thin film as hole transport layer
도 5는 본 발명의 일 실시예에 따른 니켈 옥사이드 박막을 정공수송층으로 적용한 태양전지의 구조를 나타낸 모식도이다.FIG. 5 is a schematic diagram showing the structure of a solar cell using a nickel oxide thin film as a hole transport layer according to one embodiment of the present invention.
도 5를 참조하면, 본 발명의 태양전지(100)는 기판(10), 상기 기판(10) 상에 형성된 제1 전극층(20), 상기 제1 전극층(20) 상에 형성된 전자수송층(30), 상기 전자수송층(30) 상에 형성되고 페로브스카이트 물질을 포함하는 광활성층(40), 상기 광활성층(40) 상에 형성된 정공수송층(50) 및 상기 정공수송층(50) 상에 형성된 제2 전극층(60)을 포함할 수 있다.Referring to FIG. 5, the solar cell (100) of the present invention may include a substrate (10), a first electrode layer (20) formed on the substrate (10), an electron transport layer (30) formed on the first electrode layer (20), a photoactive layer (40) formed on the electron transport layer (30) and including a perovskite material, a hole transport layer (50) formed on the photoactive layer (40), and a second electrode layer (60) formed on the hole transport layer (50).
상기 정공수송층은 상술한 니켈옥사이드 박막의 제조방법을 통해 형성되는 니켈옥사이드 박막을 포함할 수 있다. The above hole transport layer may include a nickel oxide thin film formed through the above-described method for manufacturing a nickel oxide thin film.
상기 기판(10)은 실리콘 옥사이드, 알루미늄 옥사이드, 유리, 석영, 폴리이미드(Polyimide, PI), 폴리에틸렌 나프탈레이트(Polyethylenenaphthalate, PEN), 폴리에틸렌 테레프탈레이트(Polyethyleneterephthalate, PET), 폴리메틸메타크릴레이트(PMMA, Polymethylmethacrylate), 폴리디메틸실록산(PDMS, Polydimethylsiloxane) 및 이들의 조합 중 선택되는 어느 하나일 수 있다. The above substrate (10) may be any one selected from silicon oxide, aluminum oxide, glass, quartz, polyimide (PI), polyethylenenaphthalate (PEN), polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), and combinations thereof.
상기 제1 전극층(20) 및 상기 제2 전극층(60)은 애노드 및 캐소드이고, 이들 중 하나 또는 둘 다는 투명 또는 반투명하여 광의 유입을 가능하게 하는 투명전극층일 수 있다. 구체적으로, 상기 제1 전극층(20) 및 상기 제2 전극층(60)은 서로에 관계없이 ITO(Indium Tin Oxide), ICO(Indium Cerium Oxide), IWO(Indium Tungsten Oxide), ZITO(Zinc Indium Tin Oxide), ZIO(Zinc Indium Oxide), ZTO(Zinc Tin Oxide), GITO(Gallium Indium Tin Oxide), GIO(Gallium Indium Oxide), GZO(Gallium Zinc Oxide), AZO(Aluminum doped Zinc Oxide), FTO(Fluorine Tin Oxide) 및 이들의 조합 중 선택되는 어느 하나일 수 있다.The first electrode layer (20) and the second electrode layer (60) are an anode and a cathode, and one or both of them may be a transparent electrode layer that is transparent or translucent to allow light to enter. Specifically, the first electrode layer (20) and the second electrode layer (60), regardless of each other, may be any one selected from ITO (Indium Tin Oxide), ICO (Indium Cerium Oxide), IWO (Indium Tungsten Oxide), ZITO (Zinc Indium Tin Oxide), ZIO (Zinc Indium Oxide), ZTO (Zinc Tin Oxide), GITO (Gallium Indium Tin Oxide), GIO (Gallium Indium Oxide), GZO (Gallium Zinc Oxide), AZO (Aluminum doped Zinc Oxide), FTO (Fluorine Tin Oxide), and combinations thereof.
상기 전자수송층(30)은 전자 수송 물질로서 금속산화물 반도체를 포함할 수 있고, 구체적으로 TiO2, SnO2, ZnO, Nb2O5, Ta2O5, WO3, W2O5, In2O3, Ga2O3, Nd2O3, PbO, CdO 및 이들의 조합 중 선택되는 어느 하나 이상을 포함할 수 있다. 일 구체예에서, 상기 전자수송층(30)은 ZnO일 수 있으나, 이에 제한되는 것은 아니다. The electron transport layer (30) may include a metal oxide semiconductor as an electron transport material, and specifically, may include at least one selected from TiO 2 , SnO 2 , ZnO, Nb 2 O 5 , Ta 2 O 5 , WO 3 , W 2 O 5 , In 2 O 3 , Ga 2 O 3 , Nd 2 O 3 , PbO, CdO, and combinations thereof. In one specific example, the electron transport layer (30) may be ZnO, but is not limited thereto.
상기 광활성층(40)은 페로브스카이트 물질을 포함하고, 상기 페로브스카이트 물질은 유기 금속 할라이드 페로브스카이트로서 예를 들어 CH3NH3PbI3(MAPbI3), CH3NH3PbI3-xClx (MAPbI3-xClx), CH3NH3PbCl3(MAPbCl3), CH3NH3PbI3-xBrx(MAPbI3-xBrx), CH3NH3PbBr3(MAPbBr3) (이때, 상기 x는 0 내지 3) 및 이들의 조합 중 선택되는 어느 하나일 수 있다. 일 구체예에서, 상기 페로브스카이트 광활성층(40)은 CH3NH3PbI3(MAPbI3)일 수 있으나, 이에 제한되는 것은 아니다. The above photoactive layer (40) includes a perovskite material, and the perovskite material is an organic metal halide perovskite, for example, CH 3 NH 3 PbI 3 (MAPbI 3 ), CH 3 NH 3 PbI 3-x Cl x (MAPbI 3-x Cl x ), CH 3 NH 3 PbCl 3 (MAPbCl 3 ), CH 3 NH 3 PbI 3-x Br x (MAPbI 3-x Br x ), CH 3 NH 3 PbBr 3 (MAPbBr 3 ) (wherein x is 0 to 3), and any one selected from combinations thereof. In one specific example, the perovskite photoactive layer (40) may be CH 3 NH 3 PbI 3 (MAPbI 3 ), but is not limited thereto.
상기 정공수송층(HTL; Hole transport layer)(50)은 정공 수송 물질로서 금속산화물 반도체를 포함할 수 있고, 구체적으로 NiO, MoO3, WO3, V2O5, VO2, Cu2O, CuO, CrO2, CoO, CuAlO2, CuCrO2, CuGaO2, ZnRh2O4, GaSnO 및 이들의 조합 중 선택되는 어느 하나 이상을 포함할 수 있다. 일 구체예에서, 상기 정공수송층(50)은 NiO일 수 있으나, 이에 제한되는 것은 아니다. The above hole transport layer (HTL; Hole transport layer) (50) may include a metal oxide semiconductor as a hole transport material, and specifically may include at least one selected from NiO, MoO 3 , WO 3 , V 2 O 5 , VO 2 , Cu 2 O, CuO, CrO 2 , CoO, CuAlO 2 , CuCrO 2 , CuGaO 2 , ZnRh 2 O 4 , GaSnO, and combinations thereof. In one specific example, the hole transport layer (50) may be NiO, but is not limited thereto.
상기 정공수송층(HTL)(50)은 상술한 니켈옥사이드 박막의 제조방법으로 형성된 니켈옥사이드 박막을 사용할 수 있다. The above hole transport layer (HTL) (50) can use a nickel oxide thin film formed by the above-described nickel oxide thin film manufacturing method.
이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실험예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다.Hereinafter, in order to explain the present invention more specifically, a preferred experimental example according to the present invention will be described in more detail with reference to the attached drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms.
실시예 1: 비스(메틸시클로펜타디에닐)니켈(Ni(MeCp)2)의 제조Example 1: Preparation of bis(methylcyclopentadienyl)nickel (Ni(MeCp) 2 )
질소분위기의 반응기에 KOH 83.9 g(1.42 mol, 95%), Diglyme(Diethylene glycol dimethyl ether) 1200 ml, 및 메틸시클로펜타디엔 이합체 (MeCp; Methylcyclopentadiene dimer) 125.0 g(0.749 mol, 96%)을 각각 공급하고, 이들이 포함된 반응기를 메틸시클로펜타디엔 이합체를 크래킹할 수 있는 제1 반응온도(162 ℃)로 가열 및 교반하여 중간 생성물로서 칼륨 메틸시클로펜타디엔나이드(KMeCp)을 생성한다. 그 다음, 상기 중간 생성물을 포함하는 생성물을 냉각하여 흡착탑으로 이송하여 물을 흡착하고, 용매(Diglyme)는 다시 반응기로 이송하여 24시간 환류한다. 이후, 상기 중간 생성물, 및 Diglyme이 포함된 반응기에 헥사아민니켈클로라이드 (NiCl2(NH3)6) 164.5 g(0.710 mol, 99%)를 첨가하고, 합성온도 50 ℃에서 20시간 동안 교반한다. 이후, NH3 가스의 발생이 멈추면 여과하여 KCl을 제거하고, 여액에 포함된 diglyme 용매를 건조하여 미정제 Ni(MeCp)2를 수득한다. 수취한 미정제 Ni(MeCp)2를 감압 분별 증류하여 고순도의 Ni(MeCp)2 115.26 g(0.5313 mol)을 수득한다. 이때 수율은 74.83 %이다.In a nitrogen atmosphere reactor, 83.9 g (1.42 mol, 95%) of KOH, 1200 ml of Diglyme (diethylene glycol dimethyl ether), and 125.0 g (0.749 mol, 96%) of methylcyclopentadiene dimer (MeCp) are respectively supplied, and the reactor containing them is heated and stirred at a first reaction temperature (162°C) capable of cracking methylcyclopentadiene dimer to generate potassium methylcyclopentadienide (KMeCp) as an intermediate product. Next, the product including the intermediate product is cooled and transferred to an adsorption tower to adsorb water, and the solvent (Diglyme) is transferred back to the reactor and refluxed for 24 hours. Thereafter, 164.5 g (0.710 mol, 99%) of hexaamine nickel chloride (NiCl 2 (NH 3 ) 6 ) is added to the reactor containing the intermediate product and Diglyme, and stirred at a synthesis temperature of 50 °C for 20 hours. Thereafter, when the generation of NH 3 gas stops, KCl is removed by filtration, and the diglyme solvent contained in the filtrate is dried to obtain crude Ni(MeCp) 2 . The obtained crude Ni(MeCp) 2 is fractionally distilled under reduced pressure to obtain 115.26 g (0.5313 mol) of high-purity Ni(MeCp) 2 . The yield at this time is 74.83%.
(1) H_NMR (400 MHz, solvent: Benzene-d6) chemical shift (다중도, H수) δ 206.15 (s. 6H), -253.30 (d, 8H)(1) H_NMR (400 MHz, solvent: Benzene-d6) chemical shift (multiplicity, H number) δ 206.15 (s. 6H), -253.30 (d, 8H)
(2) TGA (N2 20 ml/min, 10 ℃/min 승온) 50 wt% 감소 온도 156.2 ℃(2) TGA (N 2 20 ml/min, 10 ℃/min heating) 50 wt% reduction temperature 156.2 ℃
(3) GC-FID (DB-1 column) 순도 99.32 area%(3) GC-FID (DB-1 column) purity 99.32 area%
실시예 2: 비스(메틸시클로펜타디에닐)니켈(Ni(MeCp)2)의 제조Example 2: Preparation of bis(methylcyclopentadienyl)nickel (Ni(MeCp) 2 )
합성온도를 80 ℃로 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 Ni(MeCp)2를 수득하였다. 이때, Ni(MeCp)2 수득량은 81.20 g(0.3743 mol)이고, 수율은 52.72 %이다.Ni(MeCp) 2 was obtained using the same method as in Example 1, except that the synthesis temperature was 80°C. At this time, the obtained amount of Ni(MeCp) 2 was 81.20 g (0.3743 mol), and the yield was 52.72%.
(1) H_NMR (400 MHz, solvent: Benzene-d6) chemical shift (다중도, H수) δ 206.15 (s. 6H), -253.30(d, 8H)(1) H_NMR (400 MHz, solvent: Benzene-d6) chemical shift (multiplicity, H number) δ 206.15 (s. 6H), -253.30(d, 8H)
(2) TGA (N2 20 ml/min, 10 ℃/min 승온) 50 wt% 감소 온도 156.2 ℃(2) TGA (N 2 20 ml/min, 10 ℃/min heating) 50 wt% reduction temperature 156.2 ℃
(3) GC-FID (DB-1 column) 순도 96.14 area%(3) GC-FID (DB-1 column) purity 96.14 area%
실시예 3: 비스(메틸시클로펜타디에닐)니켈(Ni(MeCp)2)의 제조Example 3: Preparation of bis(methylcyclopentadienyl)nickel (Ni(MeCp) 2 )
헥사아민니켈클로라이드(NiCl2(NH3)6) 대신에 니켈클로라이드(NiCl2) 92.01 g(0.710 mol, 99%)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 Ni(MeCp)2를 수득하였다. 이때, Ni(MeCp)2의 수득량은 79.23 g(0.3652 mol)이고, 수율은 51.44%이다. Ni(MeCp) 2 was obtained using the same method as in Example 1, except that 92.01 g (0.710 mol, 99%) of nickel chloride (NiCl 2 ) was used instead of hexaaminenickel chloride (NiCl 2 (NH 3 ) 6 ) . In this case, the obtained amount of Ni(MeCp) 2 was 79.23 g (0.3652 mol), and the yield was 51.44%.
(1) H_NMR (400 MHz, solvent: Benzene-d6) chemical shift (다중도, H수) δ 206.15 (s. 6H), -253.30(d, 8H)(1) H_NMR (400 MHz, solvent: Benzene-d6) chemical shift (multiplicity, H number) δ 206.15 (s. 6H), -253.30(d, 8H)
(2) TGA (N2 20 ml/min, 10 ℃/min 승온) 50 wt% 감소 온도 156.2 ℃(2) TGA (N 2 20 ml/min, 10 ℃/min heating) 50 wt% reduction temperature 156.2 ℃
(3) GC-FID (DB-1 column) 순도 98.02 area%(3) GC-FID (DB-1 column) purity 98.02 area%
비교예 1: 알칼리수소화물을 사용한 비스(메틸시클로펜타디에닐)니켈 (Ni(MeCp)2)의 제조Comparative Example 1: Preparation of bis(methylcyclopentadienyl)nickel (Ni(MeCp) 2 ) using alkali hydride
질소분위기의 반응기에 NaH 43.90 g(1.811 mol, 99%), THF(Tetrahydrofuran) 1400 ml, 및 메틸시클로펜타디엔 이합체 (MeCp; Methylcyclopentadiene dimer) 155 g(1.867 mol, 96%)을 10시간 동안 공급하여 반응한다. 반응 후, 여과를 통해 고체 불순물을 제거한다. 여액에 포함된 NaMeCp 용액을 THF 200 ml 용매에 분산된 NiCl2 118.50 g(0.905 mol, 99%) 용액에 0 ℃ 온도에서 4시간 동안 첨가하고 10시간 동안 반응한다. 반응 후, 반응기의 온도를 천천히 상온으로 올리고 여과하여 NaCl을 제거하고 여액에 포함된 THF 용매를 건조하여 미정제 Ni(MeCp)2를 수득한다. 수취한 Ni(MeCp)2를 감압 증류하여 고순도의 Ni(MeCp)2를 수득한다. 이때, 수율은 34.40 %이다.In a nitrogen atmosphere, 43.90 g (1.811 mol, 99%) of NaH, 1400 ml of THF (Tetrahydrofuran), and 155 g (1.867 mol, 96%) of methylcyclopentadiene dimer (MeCp) are supplied to a reactor and reacted for 10 hours. After the reaction, solid impurities are removed through filtration. The NaMeCp solution contained in the filtrate is added to 118.50 g (0.905 mol, 99%) of NiCl 2 dispersed in 200 ml of THF solvent at 0 ℃ for 4 hours and reacted for 10 hours. After the reaction, the temperature of the reactor is slowly raised to room temperature, NaCl is removed through filtration, and the THF solvent contained in the filtrate is dried to obtain crude Ni(MeCp) 2 . The collected Ni(MeCp) 2 is distilled under reduced pressure to obtain high-purity Ni(MeCp) 2 . At this time, the yield is 34.40%.
(1) H_NMR (400 MHz, solvent: Benzene-d6) chemical shift (다중도, H수) δ 206.15 (s. 6H), -253.30(d, 8H)(1) H_NMR (400 MHz, solvent: Benzene-d6) chemical shift (multiplicity, H number) δ 206.15 (s. 6H), -253.30(d, 8H)
(2) TGA (N2 20 ml/min, 10 ℃/min 승온) 50 wt% 감소 온도 156.2 ℃(2) TGA (N 2 20 ml/min, 10 ℃/min heating) 50 wt% reduction temperature 156.2 ℃
(3) GC-FID (DB-1 column) 순도 92.90 area%(3) GC-FID (DB-1 column) purity 92.90 area%
박막 제조예 1: Ni(MeCp)2를 사용하여 니켈 옥사이드 박막 제조Thin film manufacturing example 1: Manufacturing nickel oxide thin film using Ni(MeCp) 2
원자층 증착(ALD; Atomic layer deposition) 챔버 내부에 페로브스카이트 기판을 위치하고 이의 온도를 200 ℃로 가열한다. 니켈 전구체로 실시예 1의 Ni(MeCp)2를 사용하고, 이의 온도를 40 ℃로 가열한다. 이후, 아르곤 가스를 이송가스로 하고 상기 니켈 전구체를 챔버 내부로 0.2초간 주입하여 상기 기판 상에 전구체를 흡착시킨다(Ni 소스 주입). 그 다음, 아르곤 가스로 0.2초간 퍼징한 후(Ar 퍼지), 산소가스를 1초간 주입하여 전구체와 반응하여 니켈 옥사이드 박막을 형성 반응을 진행한다(반응가스 주입). 반응 이후, 아르곤 가스로 0.4초간 퍼징하여 상기 반응으로 분해된 잔류물을 제거한다(Ar 퍼지). A perovskite substrate is placed inside an atomic layer deposition (ALD) chamber and its temperature is heated to 200°C. Ni(MeCp) 2 of Example 1 is used as a nickel precursor, and its temperature is heated to 40°C. Thereafter, argon gas is used as a transport gas and the nickel precursor is injected into the chamber for 0.2 seconds to adsorb the precursor onto the substrate (Ni source injection). Next, after purging with argon gas for 0.2 seconds (Ar purge), oxygen gas is injected for 1 second to react with the precursor and form a nickel oxide thin film. A reaction reaction proceeds (reaction gas injection). After the reaction, argon gas is purged for 0.4 seconds to remove residues decomposed by the reaction (Ar purge).
박막 비교예 1: Ni(EtCp)2를 사용하여 니켈 옥사이드 박막 제조Thin film comparison example 1: Manufacturing nickel oxide thin film using Ni(EtCp) 2
니켈 전구체로 실시예 1의 Ni(MeCp)2를 사용한 것 대신에 Ni(EtCp)2를 사용한 것을 제외하고는 박막 제조예 1과 동일한 방법을 사용하여 니켈 옥사이드 박막을 제조하였다. A nickel oxide thin film was manufactured using the same method as in Thin Film Manufacturing Example 1, except that Ni(EtCp) 2 was used instead of Ni(MeCp) 2 of Example 1 as a nickel precursor.
도 2는 본 발명의 일 실시예에 따른 원자층 증착(ALD) 방법을 이용하여 니켈 옥사이드 박막을 제조하는 단계를 나타낸 그래프이다.FIG. 2 is a graph showing steps for manufacturing a nickel oxide thin film using an atomic layer deposition (ALD) method according to one embodiment of the present invention.
도 2를 참조하면, 상술한 박막 제조예의 Ni 소스 주입-Ar 퍼지-반응가스 주입-Ar 퍼지 단계를 1 사이클로 하고 사이클을 수 회 내지 수십 회 반복하여 증착 공정을 진행한다. Referring to Fig. 2, the Ni source injection-Ar purge-reaction gas injection-Ar purge steps of the above-described thin film manufacturing example are considered as one cycle, and the deposition process is performed by repeating the cycle several to several dozen times.
박막 제조예 1
전구체: Ni(MeCp)2
Thin film manufacturing example 1
Precursor: Ni(MeCp) 2
박막 비교예 1
전구체: Ni(EtCp)2
Thin film comparison example 1
Precursor: Ni(EtCp) 2
증착 두께 편차 (Variation) 100Å기준, M12 sizeDeposition thickness variation (Variation) 100Å standard, M12 size ±1.93 ű1.93 Å ±7.79 ű7.79 Å
한 사이클 당 증착 두께 (GPC; Growth Per Cycle) (Å/cycle)Growth Per Cycle (GPC) (Å/cycle) 0.1680.168 0.0960.096
증착 속도 (D/R; Deposition Rate) (Å/min)Deposition Rate (D/R) (Å/min) 7.217.21 3.193.19
평균 굴절률(Avg. R.I; average Refractive index)Average refractive index (Avg. R.I; average refractive index) 2.282.28 2.2982.298
굴절률 균일도(R.I; Refractive index Uniformity) (%)Refractive index uniformity (R.I) (%) 0.140.14 0.380.38
저항(Resistivity) (Ω·cm)Resistivity (Ω cm) 7.95 E-37.95 E-3 9.27 E-39.27 E-3
표 1은 본 발명의 일 실시예에 따른 니켈 옥사이드 박막의 증착 결과를 나타낸 표이다.Table 1 is a table showing the deposition results of a nickel oxide thin film according to one embodiment of the present invention.
표 1을 참조하면, 박막 제조예 1을 통해 제조한 니켈 옥사이드 박막은 사이클 당 증착두께(GPC)가 0.168 Å/cycle로서, 박막 비교예 1에서 0.096 Å/cycle과 비교하여 사이클 당 증착 두께가 높은 것을 알 수 있다. 박막 제조예 1에서 사용한 전구체 Ni(MeCp)2는 박막 비교예 1의 Ni(EtCp)2보다 함유하는 탄소 개수가 더 적으므로 증기화된 전구체의 이동성(mobility)가 증가하게 되고, 이로써 사이클 당 증착 두께가 높아진 것으로 유추할 수 있다. 또한, 박막 제조예 1의 증착 두께의 편차는 ±1.93 Å으로서, 박막 비교예 1의 ±7.79 Å와 비교하여 작은 값을 가지는 것을 확인할 수 있다. 종합하면, 전구체로 Ni(MeCp)2를 사용한 박막 제조예 1을 통해 니켈 옥사이드 박막이 단위 사이클 당 증착 두께가 높아 증착 속도가 우수하면서, 박막 두께 편차가 낮아 우수한 품질의 니켈 옥사이드 박막을 형성할 수 있다. Referring to Table 1, the nickel oxide thin film manufactured through Thin Film Manufacturing Example 1 has a deposition thickness per cycle (GPC) of 0.168 Å/cycle, which is higher than 0.096 Å/cycle in Thin Film Comparative Example 1. Since the precursor Ni(MeCp) 2 used in Thin Film Manufacturing Example 1 contains a smaller number of carbons than Ni(EtCp) 2 in Thin Film Comparative Example 1, it can be inferred that the mobility of the vaporized precursor increases, thereby increasing the deposition thickness per cycle. In addition, it can be confirmed that the deviation of the deposition thickness of Thin Film Manufacturing Example 1 is ±1.93 Å, which is a smaller value than ±7.79 Å in Thin Film Comparative Example 1. In summary, through thin film manufacturing example 1 using Ni(MeCp) 2 as a precursor, a nickel oxide thin film can be formed with a high deposition thickness per unit cycle, thus achieving an excellent deposition rate, and a low film thickness deviation, thereby forming a high-quality nickel oxide thin film.
도 3은 본 발명의 일 실시예에 따른 니켈 전구체 Ni(MeCp)2를 사용하여 제조한 니켈 옥사이드 박막의 타원계측법(Ellipsometer) 결과이다. FIG. 3 is an ellipsometry result of a nickel oxide thin film manufactured using a nickel precursor Ni(MeCp) 2 according to one embodiment of the present invention.
도 3을 참조하면, 니켈 전구체로 Ni(MeCp)2를 사용하여 제조한 니켈 옥사이드 박막은 타원계측법(Ellipsometer) 결과를 통해 210 x 210 mm (M12 size) 크기의 wafer 전체에 균일하게 증착되며, 좋은 균일도를 갖는 것을 확인할 수 있다. Referring to Fig. 3, it can be confirmed through the ellipsometer results that a nickel oxide thin film manufactured using Ni(MeCp) 2 as a nickel precursor is uniformly deposited over the entire wafer measuring 210 x 210 mm (M12 size) and has good uniformity.
도 4는 본 발명의 일 실시예에 따른 니켈 전구체 Ni(MeCp)2를 사용하여 제조한 니켈 옥사이드 박막의 두께 별 투과율을 나타낸 그래프이다.FIG. 4 is a graph showing the thickness-dependent transmittance of a nickel oxide thin film manufactured using a nickel precursor Ni(MeCp) 2 according to one embodiment of the present invention.
도 4를 참조하면, 본 발명의 니켈 옥사이드 박막은 210 x 210 mm (M12 size) 크기의 wafer 전체에 균일하게 증착된다. 니켈 옥사이드 박막 두께가 50 Å, 100 Å, 150 Å 및 200 Å일 때, 박막의 투과도는 600 nm 파장을 기준으로 각각 94.1 %, 88.3 %, 84.7 % 및 80.5 %를 나타내는 것을 알 수 있다. Referring to FIG. 4, the nickel oxide thin film of the present invention is uniformly deposited on the entire wafer having a size of 210 x 210 mm (M12 size). When the nickel oxide thin film thicknesses are 50 Å, 100 Å, 150 Å, and 200 Å, it can be seen that the transmittance of the thin film is 94.1%, 88.3%, 84.7%, and 80.5%, respectively, based on a wavelength of 600 nm.
한편, 본 명세서와 도면에 개시된 본 발명의 실시 예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.Meanwhile, the embodiments of the present invention disclosed in this specification and drawings are merely specific examples presented to help understanding, and are not intended to limit the scope of the present invention. It will be apparent to those skilled in the art to which the present invention pertains that other modified examples based on the technical idea of the present invention can be implemented in addition to the embodiments disclosed herein.

Claims (22)

  1. 메틸시클로펜타디엔 이합체 화합물, 알칼리금속 수산화물 및 유기용매를 반응기에 투입하는 단계;A step of introducing a methylcyclopentadiene dimer compound, an alkali metal hydroxide and an organic solvent into a reactor;
    상기 반응기를 제1 반응온도로 가열하고 반응하여 중간 생성물로서 알칼리금속 메틸시클로펜타디엔나이드를 제조하는 단계; 및A step of heating the reactor to a first reaction temperature and reacting to produce alkali metal methylcyclopentadienide as an intermediate product; and
    상기 중간 생성물 및 상기 유기용매가 포함된 상기 반응기에 니켈공급원을 첨가하고, 제2 반응온도에서 반응하여 생성물로서 비스(메틸시클로펜타디에닐) 니켈을 제조하는 단계;를 포함하되,A step of adding a nickel source to the reactor containing the intermediate product and the organic solvent, and reacting at a second reaction temperature to produce bis(methylcyclopentadienyl) nickel as a product; including,
    상기 제1 반응온도는 상기 제2 반응온도보다 더 높은 온도인, 비스(메틸시클로펜타디에닐) 니켈의 제조방법.A method for producing bis(methylcyclopentadienyl)nickel, wherein the first reaction temperature is higher than the second reaction temperature.
  2. 제1항에 있어서,In the first paragraph,
    상기 생성물을 제조하는 단계 이후, 상기 생성물을 감압 분별 증류하여 정제하는 단계;를 추가로 포함하는 비스(메틸시클로펜타디에닐) 니켈의 제조방법.A method for producing bis(methylcyclopentadienyl) nickel, further comprising, after the step of producing the above product, a step of purifying the above product by reduced pressure fractional distillation.
  3. 제1항에 있어서,In the first paragraph,
    상기 제1 반응온도는 120 ℃ 초과 300 ℃ 미만인, 비스(메틸시클로펜타디에닐) 니켈의 제조방법.A method for producing bis(methylcyclopentadienyl)nickel, wherein the first reaction temperature is greater than 120°C and less than 300°C.
  4. 제1항에 있어서,In the first paragraph,
    상기 제2 반응온도는 35 ℃ 내지 120 ℃인, 비스(메틸시클로펜타디에닐) 니켈의 제조방법.A method for producing bis(methylcyclopentadienyl)nickel, wherein the second reaction temperature is 35°C to 120°C.
  5. 제1항에 있어서,In the first paragraph,
    상기 니켈공급원은 복수개의 암모니아 리간드를 갖는 니켈 아민 착물을 포함하는, 비스(메틸시클로펜타디에닐) 니켈의 제조방법.A method for producing bis(methylcyclopentadienyl) nickel, wherein the nickel source comprises a nickel amine complex having multiple ammonia ligands.
  6. 제5항에 있어서,In paragraph 5,
    상기 니켈 아민 착물은 하기 화학식 2로 표시되는, 비스(메틸시클로펜타디에닐) 니켈의 제조방법:The above nickel amine complex is represented by the following chemical formula 2, and is a method for producing bis(methylcyclopentadienyl) nickel:
    [화학식 2][Chemical formula 2]
    [Ni(NH3)n]A2 [Ni(NH 3 ) n ]A 2
    상기 화학식 2에서, n은 2 내지 6의 정수이고, 상기 A는 F-, Cl-, Br-, I-, BF4 -, PF6 -, NO3 - 및 NO2 - 중에서 선택되는 어느 하나이다.In the chemical formula 2, n is an integer from 2 to 6, and A is any one selected from F - , Cl - , Br - , I - , BF 4 - , PF 6 - , NO 3 - and NO 2 - .
  7. 제5항에 있어서,In paragraph 5,
    상기 니켈공급원은 디아민니켈 클로라이드 ([Ni(NH3)2]Cl2, Diamminenickel chloride), 테트라아민니켈 클로라이드 ([Ni(NH3)4]Cl2, Tetraamminenickel chloride), 및 헥사아민니켈 클로라이드 ([Ni(NH3)6]Cl2, Hexaamminenickel chloride) 중 선택되는 어느 하나인, 비스(메틸시클로펜타디에닐) 니켈의 제조방법.A method for producing bis(methylcyclopentadienyl)nickel, wherein the nickel source is any one selected from diaminenickel chloride ([Ni(NH 3 ) 2 ]Cl 2 , Diamminenickel chloride), tetraamminenickel chloride ([Ni(NH 3 ) 4 ]Cl 2 , Tetraamminenickel chloride), and hexaamminenickel chloride ([Ni(NH 3 ) 6 ]Cl 2 , Hexaamminenickel chloride).
  8. 제1항에 있어서,In the first paragraph,
    상기 유기용매는 끓는점이 120 내지 300 ℃이고 상온에서 액체로 존재하는 화합물인, 비스(메틸시클로펜타디에닐) 니켈의 제조방법. A method for producing bis(methylcyclopentadienyl) nickel, wherein the organic solvent is a compound having a boiling point of 120 to 300°C and existing in a liquid state at room temperature.
  9. 제8항에 있어서,In Article 8,
    상기 유기용매는 화학식 R1O(R2O)nR3으로 표시되는 화합물이고, The above organic solvent is a compound represented by the chemical formula R 1 O (R 2 O) n R 3 ,
    이때, n은 0 내지 5이고, R1는 C1 내지 C6의 알킬기, R2는 C1 내지 C3의 알킬기 및 R3는 C1 내지 C6의 알킬기인, 비스(메틸시클로펜타디에닐) 니켈의 제조방법.A method for producing bis(methylcyclopentadienyl)nickel, wherein n is 0 to 5, R 1 is an alkyl group having C1 to C6, R 2 is an alkyl group having C1 to C3, and R 3 is an alkyl group having C1 to C6.
  10. 제8항에 있어서,In Article 8,
    상기 유기용매는 디에틸렌 글리콜 디메틸 에테르, 디에틸렌 글리콜 디에틸 에테르, 디에틸렌 글리콜 디부틸에테르, 에틸렌 글리콜 디부틸에테르테트라에틸렌 글리콜 디메틸 에테르 및 이들의 조합 중 선택되는 어느 하나 이상인, 비스(메틸시클로펜타디에닐) 니켈의 제조방법.A method for producing bis(methylcyclopentadienyl)nickel, wherein the organic solvent is at least one selected from diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, ethylene glycol dibutyl ethertetraethylene glycol dimethyl ether, and combinations thereof.
  11. 제1항에 있어서,In the first paragraph,
    상기 제조방법은 1개의 반응기에서 수행되는 것인, 비스(메틸시클로펜타디에닐) 니켈의 제조방법.A method for producing bis(methylcyclopentadienyl)nickel, wherein the above manufacturing method is performed in one reactor.
  12. 세척 및 표면 처리된 기판을 챔버 내에 장착하고, 상기 기판을 가열하는 단계; A step of mounting a washed and surface-treated substrate in a chamber and heating the substrate;
    상기 챔버 내부에 장착된 상기 기판 위 반응 공간에 수송가스 및 니켈전구체를 주입하는 소스 주입 단계;A source injection step for injecting a transport gas and a nickel precursor into a reaction space on the substrate mounted inside the chamber;
    상기 소스 주입 단계 이후, 수송가스를 주입하는 제1 퍼지 단계;After the above source injection step, a first purge step for injecting transport gas;
    상기 퍼지 단계 이후, 반응가스를 주입하는 반응 단계; 및 After the above purge step, a reaction step of injecting a reaction gas; and
    상기 반응 단계 이후, 수송가스를 주입하는 제2 퍼지 단계;를 포함하고,After the above reaction step, a second purge step for injecting transport gas is included;
    상기 소스 주입 단계 내지 상기 제2 퍼지 단계가 반복적으로 수 회 내지 수십 회 수행되되,The above source injection step and the second purge step are repeatedly performed several to several tens of times,
    상기 니켈 전구체는 제1항 내지 제11항 중 선택되는 적어도 어느 하나의 제조방법으로 형성되는, 니켈옥사이드 박막의 제조방법.A method for manufacturing a nickel oxide thin film, wherein the nickel precursor is formed by at least one manufacturing method selected from claims 1 to 11.
  13. 제12항에 있어서,In Article 12,
    상기 니켈 전구체는 비스(메틸시클로펜타디에닐) 니켈인, 니켈옥사이드 박막의 제조방법.A method for producing a nickel oxide thin film, wherein the nickel precursor is bis(methylcyclopentadienyl) nickel.
  14. 제12항에 있어서,In Article 12,
    상기 제조방법은 플라즈마 원자층 증착법 (PEALD) 또는 열 원자층 증착법(Thermal ALD)을 사용하는 것인, 니켈옥사이드 박막의 제조방법.The above manufacturing method is a method for manufacturing a nickel oxide thin film using plasma atomic layer deposition (PEALD) or thermal atomic layer deposition (Thermal ALD).
  15. 제12항에 있어서,In Article 12,
    상기 제조방법에서 증착 사이클 당 증착 두께(GPC; Growth Per Cycle)는 0.1 내지 0.2 Å/cycle인, 니켈옥사이드 박막의 제조방법.A method for manufacturing a nickel oxide thin film, wherein the deposition thickness per deposition cycle (GPC; Growth Per Cycle) in the above manufacturing method is 0.1 to 0.2 Å/cycle.
  16. 제12항에 있어서,In Article 12,
    상기 기판은 SOI(Silicon on Insulator), 탄화규소(SiC), 인듐주석산화물(ITO), 인듐아연산화물(IZO) 또는 페로브스카이트 물질을 포함하는 기판인, 니켈옥사이드 박막의 제조방법.A method for manufacturing a nickel oxide thin film, wherein the substrate is a substrate including a silicon on insulator (SOI), silicon carbide (SiC), indium tin oxide (ITO), indium zinc oxide (IZO), or perovskite material.
  17. 제12항 내지 제16항 중 선택되는 적어도 어느 하나의 방법으로 형성되는 니켈옥사이드 박막.A nickel oxide thin film formed by at least one method selected from claims 12 to 16.
  18. 제17항에 있어서,In Article 17,
    상기 니켈옥사이드 박막의 저항은 5 내지 9 E-3 Ω·cm인, 니켈옥사이드 박막.A nickel oxide thin film having a resistance of 5 to 9 E-3 Ω·cm.
  19. 제17항에 있어서,In Article 17,
    상기 니켈옥사이드 박막의 두께 편차는 -3.0 Å 내지 +3.0 Å인, 니켈옥사이드 박막.A nickel oxide thin film having a thickness deviation of -3.0 Å to +3.0 Å.
  20. 제17항에 있어서,In Article 17,
    상기 니켈옥사이드 박막은 탠덤형 태양전지(Tandem solar cell)의 정공수송층으로 적용되는, 니켈옥사이드 박막.The above nickel oxide thin film is a nickel oxide thin film applied as a hole transport layer of a tandem solar cell.
  21. 기판;substrate;
    상기 기판 상에 형성된 제1 전극층;A first electrode layer formed on the above substrate;
    상기 제1 전극층 상에 형성된 전자수송층;An electron transport layer formed on the first electrode layer;
    상기 전자수송층 상에 형성되고 페로브스카이트 물질을 포함하는 광활성층;A photoactive layer formed on the electron transport layer and including a perovskite material;
    상기 광활성층 상에 형성된 정공수송층; 및A hole transport layer formed on the photoactive layer; and
    상기 정공수송층 상에 형성된 제2 전극층;을 포함하되,A second electrode layer formed on the above hole transport layer; including,
    상기 정공수송층은 제17항 내지 제20항 중 선택되는 적어도 어느 하나의 니켈옥사이드 박막을 포함하는, 태양전지.A solar cell, wherein the hole transport layer comprises at least one nickel oxide thin film selected from claims 17 to 20.
  22. 제21항에 있어서,In Article 21,
    상기 태양전지는 탠덤(Tandem)형인, 태양전지.The above solar cell is a tandem type solar cell.
PCT/KR2023/003996 2023-03-17 2023-03-27 Method for preparing bis(methylcyclopentadienyl)nickel, and nickel oxide thin film using same WO2024195914A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020230034946A KR20240140487A (en) 2023-03-17 2023-03-17 Manufacturing method of bis(methylcyclopentadienyl) nickel, and nickel oxide thin film using the same
KR10-2023-0034946 2023-03-17

Publications (1)

Publication Number Publication Date
WO2024195914A1 true WO2024195914A1 (en) 2024-09-26

Family

ID=92842238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003996 WO2024195914A1 (en) 2023-03-17 2023-03-27 Method for preparing bis(methylcyclopentadienyl)nickel, and nickel oxide thin film using same

Country Status (2)

Country Link
KR (1) KR20240140487A (en)
WO (1) WO2024195914A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124743A (en) * 2004-10-27 2006-05-18 Mitsubishi Materials Corp Organic nickel compound for organo-metallic chemical vapor deposition, and method for producing nickel-containing film by using the compound
KR20130078171A (en) * 2011-12-30 2013-07-10 한국화학연구원 Method for synthesizing metal cyclopentadienide
WO2014018372A1 (en) * 2012-07-23 2014-01-30 Applied Materials, Inc. Method for producing nickel-containing films
US20200216482A1 (en) * 2017-10-19 2020-07-09 Murata Manufacturing Co., Ltd. Cyclopentadienyl nickel complex compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124743A (en) * 2004-10-27 2006-05-18 Mitsubishi Materials Corp Organic nickel compound for organo-metallic chemical vapor deposition, and method for producing nickel-containing film by using the compound
KR20130078171A (en) * 2011-12-30 2013-07-10 한국화학연구원 Method for synthesizing metal cyclopentadienide
WO2014018372A1 (en) * 2012-07-23 2014-01-30 Applied Materials, Inc. Method for producing nickel-containing films
US20200216482A1 (en) * 2017-10-19 2020-07-09 Murata Manufacturing Co., Ltd. Cyclopentadienyl nickel complex compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CLEAVES PETER A., AYRES ALEXANDER J., VONDUNG LISA, STEWART JOHN C., COBB PHILIP J., WOOLES ASHLEY J., LIDDLE STEPHEN T.: "Bridged and Unbridged Nickel–Nickel Bonds Supported by Cyclopentadienyl and Phosphine Ligand Sets", ORGANOMETALLICS, AMERICAN CHEMICAL SOCIETY, vol. 39, no. 24, 28 December 2020 (2020-12-28), pages 4735 - 4746, XP093212942, ISSN: 0276-7333, DOI: 10.1021/acs.organomet.0c00708 *

Also Published As

Publication number Publication date
KR20240140487A (en) 2024-09-24

Similar Documents

Publication Publication Date Title
WO2014104693A1 (en) Graphene, composition for preparing graphene, and method for preparing graphene using same
WO2012176989A1 (en) A diamine compound or its salt, preparing method of the same, and uses of the same
WO2015030298A1 (en) Substrate structure and method of manufacturing same
WO2016167583A1 (en) Method for doping graphene, method for manufacturing graphene composite electrode, and graphene structure comprising same
WO2018048124A1 (en) Group 5 metal compound, preparation method therefor, film deposition precursor composition comprising same, and film deposition method using same
WO2019088722A1 (en) Method for producing ruthenium-containing thin film, and ruthenium-containing thin film produced thereby
WO2024195914A1 (en) Method for preparing bis(methylcyclopentadienyl)nickel, and nickel oxide thin film using same
WO2020116770A1 (en) Group 4 transition metal compound, method for preparing same and method for forming thin film using same
WO2021215578A1 (en) Apparatus for roll-to-roll synthesis of large-area graphene, method for manufacturing large-area graphene, and method for reducing graphene oxide fabric
WO2023068629A1 (en) Group 3 metal precursor, preparation method therefor, and method for manufacturing thin film by using same
WO2015102157A1 (en) Composition for preparing graphene and method for preparing graphene using same
WO2023158183A1 (en) Novel organoplatinum compound, method for manufacturing same, method for manufacturing thin film using same, and method for manufacturing high-performance optical sensor for detecting mid-infrared rays using same
WO2021085810A2 (en) Group 4 transition metal compound, preparation method therefor, and composition, comprising same, for depositing thin film
WO2010126274A2 (en) Cigt thin film and method for fabricating same
WO2021261890A1 (en) Precursor for formation of thin film, preparation method therefor, and method for forming thin film comprising same
WO2024232563A1 (en) Group 14 organometallic compound, preparation method therefor, and method for forming thin film by using same
WO2022169232A1 (en) Group 4 transition metal compound, method for manufacturing same, and method for forming thin film using same
WO2023113308A1 (en) Molybdenum compound, method for preparing same, and composition comprising same for thin film deposition
WO2024049150A1 (en) Composition for depositing thin film containing metal compound, method for manufacturing metal-containing thin film using same, and metal-containing thin film manufactured by using same
WO2023090910A1 (en) Method for forming thin film by using organic metal compound, and thin film manufactured thereby
WO2023171911A1 (en) Novel organotin compound, preparation method therefor, solution process composition comprising same, and thin film manufacturing method using same
WO2022255837A1 (en) Method for manufacturing organometallic compound and method for forming thin film using same
WO2023219428A1 (en) Precursor compound for forming metal film and metal film using same
WO2024096493A1 (en) Molybdenum precursor compound, method for producing same, and method for depositing molybdenum-containing thin film using same
WO2024058431A1 (en) Precursor for forming yttrium- or scandium-containing thin film, method for forming yttrium- or scandium-containing thin film using same, and semiconductor element including yttrium- or scandium-containing thin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23928838

Country of ref document: EP

Kind code of ref document: A1