[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024195851A1 - Control system for electric vehicle - Google Patents

Control system for electric vehicle Download PDF

Info

Publication number
WO2024195851A1
WO2024195851A1 PCT/JP2024/011207 JP2024011207W WO2024195851A1 WO 2024195851 A1 WO2024195851 A1 WO 2024195851A1 JP 2024011207 W JP2024011207 W JP 2024011207W WO 2024195851 A1 WO2024195851 A1 WO 2024195851A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
output
control device
engine
charging rate
Prior art date
Application number
PCT/JP2024/011207
Other languages
French (fr)
Japanese (ja)
Inventor
遼 森岡
晴信 大田
健敏 平田
拓吾 納谷
裕也 内田
望 中村
正行 山下
誠人 鳥居
渉 田ノ岡
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Publication of WO2024195851A1 publication Critical patent/WO2024195851A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions

Definitions

  • This disclosure relates to a control system for an electric vehicle.
  • Patent Document 1 avoids a decline in the power performance of the electric vehicle by assisting the engine output with a motor.
  • assisting the engine output with a motor increases power consumption.
  • the amount of power generated also decreases due to the decline in engine output. Therefore, depending on the charge level of the battery, there may be cases where assistance by the motor is not possible.
  • the objective of this disclosure is to provide a control system for electric vehicles that prioritizes suppressing emissions deterioration.
  • the control system for an electric vehicle includes a motor that drives the wheels of the electric vehicle, an engine having a catalyst that purifies exhaust, a drive battery that supplies power to the first rotating electric machine, and a control device that controls the electric vehicle, and when it is necessary to increase the temperature of the catalyst, the control device executes engine output limiting control that increases the temperature of the catalyst while limiting the engine to a predetermined output, and motor output limiting control that controls the motor while limiting the output of the motor.
  • the control system for this electric vehicle prioritizes preventing emissions deterioration over reducing power performance by implementing engine output limit control and motor output limit control.
  • FIG. 1 is a system diagram of an electric vehicle according to one embodiment of the present disclosure.
  • FIG. 1 is a system diagram of an engine according to one embodiment of the present disclosure.
  • 4 is a flowchart showing a control procedure executed by a control device according to an embodiment of the present disclosure.
  • 5 is a sub-flowchart showing a control procedure executed by a control device according to an embodiment of the present disclosure.
  • 4 is a timing chart illustrating an example of a control procedure executed by a control device according to an embodiment of the present disclosure.
  • the control system 3 of the electric vehicle C includes an engine 1, a motor (FrM) 2, a generator (GEN) 4, a drive battery (BT) 6, and a vehicle control device (an example of a control device) 12.
  • the control system 3 of the electric vehicle C in this embodiment is a hybrid vehicle or a plug-in hybrid vehicle (PHEV) that uses the engine 1 and the motor 2 as power sources to drive the wheels C1.
  • the control system 3 of the electric vehicle C of this embodiment further includes a transaxle 8.
  • the transaxle 8 has a plurality of gears and a clutch 8a.
  • the engine 1 is connected to the generator 4 and the axle 10 via the transaxle 8.
  • the transaxle 8 cuts off the power transmission between the engine 1 and the axle 10.
  • the transaxle 8 transmits the power of the engine 1 to the axle 10.
  • the motor 2 is connected to the axle 10 via the transaxle 8.
  • the electric vehicle C may also include a vehicle control device 12, an engine control device 14 that controls the engine 1, an accelerator pedal 16 operated by a user of the electric vehicle C, an inverter 18 that controls the motor 2 and the generator 4, a charging button (not shown), and a power supply button (not shown).
  • the electric vehicle C is a plug-in hybrid vehicle that has a charger 20 that can be connected to an external power source and a power supply device 22 that can supply power from the drive battery 6 to external devices such as home appliances.
  • the electric vehicle C may be a hybrid vehicle that does not have such devices.
  • the electric vehicle C of this embodiment has various modes, such as EV mode, series mode, parallel mode, charging mode, and power supply mode.
  • EV mode the electric vehicle C drives the motor 2 with power from the drive battery 6.
  • series mode the electric vehicle C drives the generator 4 with the engine 1 and drives the motor 2 with the power generated by the generator 4.
  • parallel mode the electric vehicle C connects the clutch 8a and drives the axle 10 with the power of the engine 1.
  • charging mode the electric vehicle C drives the generator 4 with the engine 1 and stores the power generated by the generator 4 in the drive battery 6.
  • the vehicle control device 12 switches between each mode depending on the depression state of the accelerator pedal 16 or the operation state of the charge button or power supply button, controls the motor 2 and generator 4 via the inverter 18, and has the engine control device 14 control the engine 1.
  • the engine 1 includes a fuel injection valve 30, a spark plug 32, and a catalyst 34.
  • the engine 1 is a gasoline engine in which the spark plug 32 ignites a mixture of fuel injected from the fuel injection valve 30 and intake air.
  • the catalyst 34 is a three-way catalyst that purifies the exhaust gas of the gasoline engine.
  • the engine 1 may further include a temperature sensor 36.
  • the temperature sensor 36 may detect the temperature of the catalyst 34 (hereinafter referred to as catalyst temperature Tc in the specification).
  • the purification performance of the catalyst 34 differs depending on the catalyst temperature Tc. As shown by the catalyst temperature Tc in the timing chart of FIG. 5, the catalyst 34 is in a state where the purification performance of the catalyst 34 reaches about 50% at a first catalyst temperature (one example of a predetermined temperature) T1 (hereinafter referred to as a semi-active state in the specification). The catalyst 34 is in a state where the purification performance of the catalyst 34 reaches about 80% at a second catalyst temperature T2 higher than the first catalyst temperature T1 (hereinafter referred to as an active state in the specification). In this embodiment, the first catalyst temperature T1 is about 150°C to 180°C. The second catalyst temperature is about 300°C to 360°C. In this embodiment, the purification performance of the catalyst 34 is close to 100% when the catalyst temperature Tc is about 700°C. The catalyst 34 is in an inactive state where the purification performance is less than 50% below the first catalyst temperature T1.
  • a first catalyst temperature one example of a predetermined temperature
  • T1 one example of
  • the generator 4 is connected to the engine 1 and is capable of driving the engine 1.
  • the generator 4 performs motoring to drive the engine 1 while the engine 1 is being powered by electric power from the drive battery 6.
  • the generator 4 is driven by the engine 1 to generate electricity while the engine 1 is in operation. Therefore, the generator 4 is a motor-generator capable of powering and generating electricity.
  • the drive battery 6 has a battery module that includes multiple battery cells that are made up of secondary batteries such as lithium-ion batteries.
  • the drive battery 6 also has a battery monitoring unit (BMU) 6a.
  • the battery monitoring unit 6a calculates the state of charge (State of Charge, hereafter referred to as SOC) of the battery module as an example of the charge state of the drive battery 6.
  • SOC state of charge
  • the battery monitoring unit 6a may detect the deterioration state (State of Health, hereafter referred to as SOH) of the battery module and the battery temperature Tb.
  • SOH deterioration state
  • the battery monitoring unit 6a acquires the charge rate SOC, the deterioration state SOH, and the battery temperature Tb, and transmits them to the vehicle control device 12.
  • the vehicle control device 12 is electrically connected to the motor 2 and the generator 4 via the inverter 18, and controls the motor 2 and the generator 4.
  • the vehicle control device 12 also executes at least the following controls: normal operation, motor output limit control, and engine output limit control. Furthermore, the vehicle control device 12 of this embodiment transmits an instruction for engine output limit control to the engine control device 14, and causes the engine control device 14 to control the engine 1.
  • the vehicle control device 12 is an ECU (Electronic Control Unit) that is composed of a microcomputer including a calculation device, a memory, an input/output buffer, and the like. The vehicle control device 12 executes various controls of the electric vehicle C based on the maps and programs stored in the memory.
  • the vehicle control device 12 is also electrically connected to the battery monitoring unit 6a of the drive battery 6, and can acquire information such as the charging rate SOC and battery temperature Tb of the drive battery 6.
  • the vehicle control device 12 controls the motor 2 and the engine 1 during normal operation to achieve the required output PW, which will be described later. Specifically, the vehicle control device 12 determines the motor required output PWm of the motor 2 and the engine required output PWe of the engine 1 based on the required output PW. The vehicle control device 12 controls the motor 2 so that the output of the motor 2 becomes the motor required output PWm. The vehicle control device 12 causes the engine control device 14 to control the engine 1 so that the output of the engine 1 becomes the engine required output PWe. During normal operation, the vehicle control device 12 selects one of the EV mode, series mode, and parallel mode according to the charging rate SOC, the required output PW, and the vehicle speed V to control the electric vehicle C. On the other hand, when either the motor output limit control or the engine output limit control is executed, the vehicle control device 12 releases the clutch 8a and controls the electric vehicle C in the series mode.
  • the vehicle control device 12 controls the motor 2 while limiting the output of the motor 2 in the motor output limit control. Specifically, the vehicle control device 12 limits the output of the motor 2 to a value lower than the motor required output PWm. In this embodiment, the vehicle control device 12 executes the output limit of the motor 2 in at least four stages from the first level to the fourth level. In the first level, the vehicle control device 12 limits the output of the motor 2 to the first output limit value PR1, which is the lowest of the four stages (an example of the first motor output limit control). In the third level, the vehicle control device 12 limits the output of the motor 2 to the third output limit value PR3, which is higher than the first output limit value PR1 and lower than the second output limit value PR2 (an example of the third motor output limit control).
  • the vehicle control device 12 limits the output of the motor 2 to the second output limit value PR2, which is higher than the third output limit value PR3 and lower than the fourth output limit value PR4 (an example of the second motor output limit control).
  • the vehicle control device 12 limits the output of the motor 2 to the fourth output limit value PR4, which is the highest of the four levels (an example of fourth motor output limit control).
  • the engine control device 14 is electrically connected to at least the fuel injection valve 30 and the spark plug 32, and is a control device that controls the engine 1.
  • the engine control device 14 is actually an ECU (Electronic Control Unit) that is composed of a microcomputer including an arithmetic unit, memory, input/output buffers, etc.
  • the engine control device 14 executes various controls of the engine 1 based on maps and programs stored in the memory. Note that the control of the engine 1 may be executed by the vehicle control device 12 in addition to the engine control device 14.
  • the engine control device 14 When the engine control device 14 receives an instruction for engine output limit control, it executes a catalyst warm-up operation to warm up the catalyst 34 while raising the temperature of the catalyst 34. During this operation, the engine control device 14 estimates the catalyst temperature Tc from the operating state of the engine 1. Note that, if the engine 1 is equipped with a temperature sensor 36, the engine control device 14 may obtain the catalyst temperature Tc from the temperature sensor 36. When the engine control device 14 obtains the catalyst temperature Tc, it transmits the catalyst temperature Tc to the vehicle control device 12.
  • the engine control device 14 limits the output of the engine 1 to a predetermined output so that the engine is in an operating state in which the temperature of the catalyst 34 is easily increased. Specifically, in engine output limiting control, the engine control device 14 retards the ignition timing of the spark plug 32. This increases the exhaust temperature, making it easier to increase the catalyst temperature Tc of the catalyst 34. However, if the engine required output PWe increases when the ignition timing is retarded, the amount of fuel injected by the fuel injection valve 30 increases, and the combustion state of the engine 1 may become unstable. To prevent such an unstable combustion state, the engine control device 14 limits the output of the engine 1 to a predetermined output at which combustion can be stabilized when the ignition timing is retarded. In this way, the engine control device 14 prioritizes the increase in temperature of the catalyst 34 by limiting the output of the engine 1 to a predetermined output.
  • the vehicle control device 12 starts the control procedure when an ignition switch (not shown) is turned on.
  • step S1 the vehicle control device 12 acquires the accelerator opening Th, which is the opening of the accelerator pedal 16.
  • the vehicle control device 12 also acquires the vehicle speed V, which is the speed of the electric vehicle C, by calculation from the rotation of the wheel C1.
  • the vehicle control device 12 proceeds to step S2.
  • step S2 the vehicle control device 12 calculates the required output PW, which is the output required of the electric vehicle C, from the accelerator opening Th and the vehicle speed V. After calculating the required output PW, the vehicle control device 12 proceeds to step S3.
  • step S3 the vehicle control device 12 obtains the catalyst temperature Tc of the catalyst 34 and proceeds to step S4.
  • step S4 the vehicle control device 12 determines whether the catalyst temperature Tc is less than the second catalyst temperature T2. That is, the vehicle control device 12 determines whether the catalyst 34 has not reached an active state and whether it is necessary to increase the temperature of the catalyst 34. If the vehicle control device 12 determines that the catalyst temperature Tc is less than the second catalyst temperature T2 (step S4 YES), it determines that it is necessary to increase the temperature of the catalyst 34 and proceeds to step S5.
  • step S5 the vehicle control device 12 determines whether the catalyst temperature Tc is less than the first catalyst temperature T1. That is, the vehicle control device 12 determines whether the catalyst 34 has reached a semi-active state. If the vehicle control device 12 determines that the catalyst temperature Tc is less than the first catalyst temperature T1 (step S5 YES), it determines that the catalyst 34 has not reached a semi-active state and proceeds to step S6.
  • step S6 the vehicle control device 12 determines whether the charging rate SOC is less than the first charging rate SOC1.
  • the first charging rate SOC1 is the charging rate SOC at which the motor 2 can be operated at the motor required output PWm. More specifically, the first charging rate SOC1 is the charging rate SOC at which the drive battery 6 can supply power corresponding to the motor required output PWm to the motor 2.
  • the first charging rate SOC1 is, for example, a charging rate SOC between 50 percent and 60 percent. If the vehicle control device 12 determines that the charging rate SOC is less than the first charging rate SOC1 (step S6 YES), the process proceeds to step S7.
  • step S7 the vehicle control device 12 determines whether the charging rate SOC is less than a second charging rate (an example of a predetermined charging rate) SOC2.
  • the second charging rate SOC2 is the charging rate SOC at which the motor 2 can be operated at the second output limit value PR2. More specifically, the second charging rate SOC2 is the charging rate SOC at which the drive battery 6 can supply power corresponding to the second output limit value PR2 to the motor 2.
  • the second charging rate SOC2 is, for example, a charging rate SOC between 30 percent and 40 percent. If the vehicle control device 12 determines that the charging rate SOC is less than the second charging rate SOC2 (step S7 YES), the process proceeds to step S8.
  • step S8 the vehicle control device 12 executes engine output limit control and proceeds to step S9.
  • step S9 the vehicle control device 12 executes a first level of motor output limit control. That is, when the motor required output PWm exceeds the first output limit value PR1, the vehicle control device 12 controls the motor 2 while limiting the output of the motor 2 to the first output limit value PR1 as motor output limit control. After executing the process of step S9, the vehicle control device 12 proceeds to step S1.
  • step S4 NO If the vehicle control device 12 determines in step S4 that the catalyst temperature Tc is equal to or higher than the second catalyst temperature T2 (step S4 NO), the vehicle control device 12 proceeds to step S14 and executes control under normal operation. In other words, the vehicle control device 12 does not execute engine output limit control or motor output limit control.
  • step S5 NO If the vehicle control device 12 determines in step S5 that the catalyst temperature Tc is equal to or higher than the first catalyst temperature T1 (step S5 NO), the vehicle control device 12 advances the process to A in FIG. 3, and then to the sub-flowchart in FIG. 4. The sub-flowchart in FIG. 4 will be described later.
  • step S6 determines in step S6 that the charging rate SOC is equal to or higher than the first charging rate SOC1 (step S6 NO)
  • step S10 determines in step S6 that the charging rate SOC is equal to or higher than the first charging rate SOC1
  • step S10 the vehicle control device 12 executes engine output limiting control and proceeds to step S11.
  • step S11 the vehicle control device 12 operates the motor 2 at normal output. In other words, the vehicle control device 12 controls the output of the motor 2 to be the motor required output PWm. After executing the process of step S22, the vehicle control device 12 proceeds to step S1.
  • step S7 determines in step S7 that the charging rate SOC is equal to or higher than the second charging rate SOC2 (step S7 NO)
  • step S7 NO the vehicle control device 12 proceeds to step S12.
  • step S12 the vehicle control device 12 executes engine output limit control and proceeds to step S13.
  • step S13 the vehicle control device 12 executes a second level of motor output limit control. That is, when the motor required output PWm exceeds the second output limit value PR2, the vehicle control device 12 controls the motor 2 while limiting the output of the motor 2 to the second output limit value PR2. After executing the process of step S13, the vehicle control device 12 proceeds to step S1.
  • the sub-flowchart shows the control procedure after the catalyst 34 reaches a semi-active state.
  • step S21 the vehicle control device 12 determines whether the charging rate SOC is less than the first charging rate SOC1.
  • the first charging rate SOC1 is the same value as in step S6. If the vehicle control device 12 determines that the charging rate SOC is less than the first charging rate SOC1 (step S21 YES), the process proceeds to step S22.
  • step S22 the vehicle control device 12 determines whether the charging rate SOC is less than the third charging rate SOC3.
  • the third charging rate SOC3 is the charging rate SOC at which the motor 2 can be operated at the fourth output limit value PR4. More specifically, the third charging rate SOC3 is the charging rate SOC at which the drive battery 6 can supply power corresponding to the fourth output limit value PR4 to the motor 2.
  • the third charging rate SOC3 is, for example, a charging rate SOC between 60 percent and 70 percent. If the vehicle control device 12 determines that the charging rate SOC is less than the third charging rate SOC3 (YES in step S22), the process proceeds to step S23.
  • step S23 the vehicle control device 12 executes engine output limit control and proceeds to step S24.
  • step S24 the vehicle control device 12 executes a third level of motor output limit control. That is, when the motor required output PWm exceeds the third output limit value PR3, the vehicle control device 12 controls the motor 2 while limiting the output of the motor 2 to the third output limit value PR3. After executing the processing of step S24, the vehicle control device 12 proceeds to step S1 (see FIG. 3).
  • step S21 determines in step S21 that the charging rate SOC is equal to or higher than the first charging rate SOC1 (step S21 NO)
  • step S21 NO the vehicle control device 12 proceeds to step S25.
  • step S25 the vehicle control device 12 executes engine output limiting control and proceeds to step S26.
  • step S26 the vehicle control device 12 operates the motor 2 at normal output, similar to step S11. After executing the process of step S26, the vehicle control device 12 proceeds to step S1 (see FIG. 3).
  • step S22 determines in step S22 that the charging rate SOC is equal to or higher than the third charging rate SOC3 (step S22 NO)
  • step S27 the vehicle control device 12 proceeds to step S27.
  • step S27 the vehicle control device 12 executes engine output limit control and proceeds to step S28.
  • step S28 the vehicle control device 12 executes a fourth level of motor output limit control. That is, when the motor required output PWm exceeds the fourth output limit value PR4, the vehicle control device 12 controls the motor 2 while limiting the output of the motor 2 to the fourth output limit value PR4. After executing the processing of step S28, the vehicle control device 12 proceeds to step S1 (see FIG. 3).
  • the vehicle control device 12 calculates the motor required output PWm and the engine required output PWe based on the calculated required output PW (see steps S1 and S2 in Figure 3).
  • the vehicle control device 12 controls the motor 2 so that the output of the motor 2 becomes the motor required output PWm without limiting the output of the motor 2. Therefore, as shown by the vehicle speed V, the vehicle speed V during this period follows the accelerator opening Th. At this time, the amount of power generation by the engine 1 is limited by the engine output limit control, so the charging rate SOC is more likely to decrease than when the engine output limit control is not being executed.
  • the vehicle control device 12 limits the output of the motor 2 to the second output limit value PR2. At this time, if the motor required output PWm is higher than the second output limit value PR2, the vehicle control device 12 limits the output of the motor 2 to the second output limit value PR2.
  • the vehicle control device 12 limits the output of the motor 2 to the first output limit value PR1.
  • the vehicle control device 12 sets the first output limit value PR1 so that the charging rate SOC is constant at a fourth charging rate SOC4 that has a predetermined margin with respect to the allowable lower limit charging rate SOCmin, which is the allowable lower limit charging rate SOC of the drive battery 6.
  • the motor 2 is driven by the power generated by the generator 4 driven by the engine 1.
  • the engine 1 is operated at a predetermined output. Therefore, in this embodiment, the first output limit value PR1 is a value determined by the amount of power generated when the engine 1 drives the generator 4 at a predetermined output.
  • the vehicle control device 12 increases the output of the motor 2 to the third output limit value PR3.
  • the period from the semi-active state to the active state is shorter than the period from the inactive state to the semi-active state. Therefore, even if the vehicle control device 12 increases the output of the motor 2 to the third output limit value PR3, there is little risk that the charging rate SOC will reach the allowable lower limit charging rate SOCmin of the drive battery 6.
  • the vehicle control device 12 brings it closer to the motor required output PWm based on the accelerator opening Th. This increases the vehicle speed V. As a result, the power performance of the electric vehicle C is improved when engine output limit control and motor output limit control are being executed.
  • the vehicle control device 12 starts normal operation when the catalyst temperature Tc becomes equal to or higher than the second catalyst temperature T2.
  • the control system 3 of the electric vehicle C disclosed herein prioritizes catalyst warm-up operation, which operates the engine 1 at a constant predetermined output by engine output limit control, rather than causing the output of the motor 2 to follow the motor required output PWm based on the accelerator opening Th by generating electricity from the engine 1. This allows the control system 3 of the electric vehicle C disclosed herein to more reliably suppress the deterioration of emissions.
  • the control system 3 of the electric vehicle C disclosed herein also limits the output of the motor 2 to suppress a decrease in the charging rate SOC. This allows the control system 3 of the electric vehicle C to avoid running out of power and to prevent the charging rate SOC from falling below the allowable lower limit charging rate SOCmin. This allows the control system 3 of the electric vehicle C to protect the drive battery 6.
  • control system 3 for the electric vehicle C disclosed herein can provide a control system 3 for the electric vehicle C that prioritizes suppressing emission deterioration.
  • the engine 1 has been described using a gasoline engine that uses a fuel injection valve 30 as an example, but the present disclosure is not limited to this.
  • the engine 1 may be a direct injection engine 1 that injects fuel into the cylinders.
  • Engine 2 Motor 3: Control system 4: Generator 6: Driving battery 12: Vehicle control device 14: Engine control device 34: Catalyst C: Electric vehicle C1: Wheel SOC: Charging rate Tc: Catalyst temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

The present invention is provided with: a motor that drives wheels of an electric vehicle; an engine that has a catalyst for purifying exhaust gas; a drive battery that supplies power to a first rotary electric machine; and a control device that controls the electric vehicle, wherein the control device executes engine output restriction control for executing temperature increase of the catalyst while restricting the engine to a predetermined output when the temperature increase of the catalyst is required, and motor output restriction control for controlling the motor while restricting the output of the motor.

Description

電動車両の制御システムElectric vehicle control system

 本開示は、電動車両の制御システムに関する。 This disclosure relates to a control system for an electric vehicle.

 従来から、エミッション悪化を抑制するために、触媒昇温時は、エンジンの出力を低下させ、エンジンの出力をモータによってアシストする電動車両の制御システムが知られている(例えば特許文献1参照)。  Conventionally, there has been known a control system for electric vehicles that reduces engine output and assists engine output with a motor when the catalyst temperature rises in order to suppress the deterioration of emissions (see, for example, Patent Document 1).

特開2022-89692号公報JP 2022-89692 A

 特許文献1の電動車両の制御システムは、エンジンの出力をモータによってアシストすることによって、電動車両の動力性能の低下を回避している。しかし、エンジンの出力をモータによってアシストすると、電力消費量が増大する。また、シリーズ走行を行うハイブリッド車両の場合、エンジン出力の低下により発電量も減少する。したがって、バッテリの充電量次第では、モータによるアシストができない場合も考えられる。特に近年は、動力性能の低下よりも、エミッション悪化の抑制を優先することが求められている。 The electric vehicle control system of Patent Document 1 avoids a decline in the power performance of the electric vehicle by assisting the engine output with a motor. However, assisting the engine output with a motor increases power consumption. Furthermore, in the case of a hybrid vehicle that runs in series, the amount of power generated also decreases due to the decline in engine output. Therefore, depending on the charge level of the battery, there may be cases where assistance by the motor is not possible. Particularly in recent years, there has been a demand to prioritize preventing the deterioration of emissions over a decline in power performance.

 本開示の課題は、エミッション悪化の抑制を優先する電動車両の制御システムを提供することにある。 The objective of this disclosure is to provide a control system for electric vehicles that prioritizes suppressing emissions deterioration.

 本開示に係る電動車両の制御システムは、電動車両の車輪を駆動するモータと、排気を浄化する触媒を有するエンジンと、前記第1回転電機に電力を供給する駆動用電池と、前記電動車両を制御する制御装置と、を備え、前記制御装置は、前記触媒の昇温が必要な場合、前記エンジンを所定の出力に制限しながら前記触媒の昇温を実行するエンジン出力制限制御と、前記モータの出力を制限しながら前記モータを制御するモータ出力制限制御と、を実行する。 The control system for an electric vehicle according to the present disclosure includes a motor that drives the wheels of the electric vehicle, an engine having a catalyst that purifies exhaust, a drive battery that supplies power to the first rotating electric machine, and a control device that controls the electric vehicle, and when it is necessary to increase the temperature of the catalyst, the control device executes engine output limiting control that increases the temperature of the catalyst while limiting the engine to a predetermined output, and motor output limiting control that controls the motor while limiting the output of the motor.

 この電動車両の制御システムは、エンジン出力制限制御とモータ出力制限制御を実行することによって、動力性能の低下よりもエミッション悪化の抑制を優先する。 The control system for this electric vehicle prioritizes preventing emissions deterioration over reducing power performance by implementing engine output limit control and motor output limit control.

本開示の一実施形態による電動車両のシステム図。1 is a system diagram of an electric vehicle according to one embodiment of the present disclosure. 本開示の一実施形態によるエンジンのシステム図。FIG. 1 is a system diagram of an engine according to one embodiment of the present disclosure. 本開示の一実施形態による制御装置が実行する制御手順を示すフローチャート。4 is a flowchart showing a control procedure executed by a control device according to an embodiment of the present disclosure. 本開示の一実施形態による制御装置が実行する制御手順を示すサブフローチャート。5 is a sub-flowchart showing a control procedure executed by a control device according to an embodiment of the present disclosure. 本開示の一実施形態による制御装置が実行する制御手順の一例を示すタイミングチャート。4 is a timing chart illustrating an example of a control procedure executed by a control device according to an embodiment of the present disclosure.

 以下、本開示の一実施形態について、図面を参照しながら説明する。 Below, one embodiment of the present disclosure will be described with reference to the drawings.

 図1に示すように、電動車両Cの制御システム3は、エンジン1と、モータ(FrM)2と、発電機(GEN)4と、駆動用電池(BT)6と、車両制御装置(制御装置の一例)12と、を備える。本実施形態の電動車両Cの制御システム3は、エンジン1と、モータ2と、を動力源として車輪C1を駆動するハイブリッド車、または、プラグインハイブリッド車(PHEV)である。 As shown in FIG. 1, the control system 3 of the electric vehicle C includes an engine 1, a motor (FrM) 2, a generator (GEN) 4, a drive battery (BT) 6, and a vehicle control device (an example of a control device) 12. The control system 3 of the electric vehicle C in this embodiment is a hybrid vehicle or a plug-in hybrid vehicle (PHEV) that uses the engine 1 and the motor 2 as power sources to drive the wheels C1.

 本実施形態の電動車両Cの制御システム3は、トランスアクスル8をさらに備える。トランスアクスル8は、複数のギヤとクラッチ8aを有する。エンジン1は、トランスアクスル8を介して発電機4と、車軸10と、に連結される。トランスアクスル8は、クラッチ8aが開放状態の場合、エンジン1と車軸10との動力伝達が遮断される。トランスアクスル8は、クラッチ8aが接続状態の場合、エンジン1の動力が車軸10に伝達される。モータ2は、トランスアクスル8を介して車軸10と連結される。電動車両Cはこのほか、車両制御装置12と、エンジン1を制御するエンジン制御装置14と、電動車両Cのユーザが操作するアクセルペダル16と、モータ2および発電機4を制御するインバータ18と、充電ボタン(図示なし)と、給電ボタン(図示なし)と、を有してもよい。また、本実施形態では電動車両Cは、外部電源に接続可能な充電器20と、駆動用電池6からの電力を、例えば家電などの外部機器に供給可能な給電装置22と、を有するプラグインハイブリッド車である。しかし、電動車両Cはこのような装置を有さないハイブリッド車であってもよい。 The control system 3 of the electric vehicle C of this embodiment further includes a transaxle 8. The transaxle 8 has a plurality of gears and a clutch 8a. The engine 1 is connected to the generator 4 and the axle 10 via the transaxle 8. When the clutch 8a is in the disengaged state, the transaxle 8 cuts off the power transmission between the engine 1 and the axle 10. When the clutch 8a is in the engaged state, the transaxle 8 transmits the power of the engine 1 to the axle 10. The motor 2 is connected to the axle 10 via the transaxle 8. The electric vehicle C may also include a vehicle control device 12, an engine control device 14 that controls the engine 1, an accelerator pedal 16 operated by a user of the electric vehicle C, an inverter 18 that controls the motor 2 and the generator 4, a charging button (not shown), and a power supply button (not shown). In this embodiment, the electric vehicle C is a plug-in hybrid vehicle that has a charger 20 that can be connected to an external power source and a power supply device 22 that can supply power from the drive battery 6 to external devices such as home appliances. However, the electric vehicle C may be a hybrid vehicle that does not have such devices.

 本実施形態の電動車両Cは、EVモード、シリーズモード、パラレルモード、充電モード、給電モードなどの各モードを有する。電動車両Cは、EVモードの場合、駆動用電池6からの電力によってモータ2を駆動する。電動車両Cは、シリーズモードの場合、エンジン1によって発電機4を駆動し、発電機4によって発電した電力を用いてモータ2を駆動する。電動車両Cは、パラレルモードの場合、クラッチ8aを接続し、エンジン1の動力を用いて車軸10を駆動する。電動車両Cは、充電モードでは、エンジン1によって発電機4を駆動し、発電機4によって発電した電力を駆動用電池6に蓄電する。電動車両Cは、アクセルペダル16の踏み込み状態、または、充電ボタンもしくは給電ボタンの操作状態に応じて、車両制御装置12が各モードを切り替え、インバータ18を介してモータ2および発電機4を制御するとともに、エンジン制御装置14にエンジン1を制御させる。 The electric vehicle C of this embodiment has various modes, such as EV mode, series mode, parallel mode, charging mode, and power supply mode. In the EV mode, the electric vehicle C drives the motor 2 with power from the drive battery 6. In the series mode, the electric vehicle C drives the generator 4 with the engine 1 and drives the motor 2 with the power generated by the generator 4. In the parallel mode, the electric vehicle C connects the clutch 8a and drives the axle 10 with the power of the engine 1. In the charging mode, the electric vehicle C drives the generator 4 with the engine 1 and stores the power generated by the generator 4 in the drive battery 6. In the electric vehicle C, the vehicle control device 12 switches between each mode depending on the depression state of the accelerator pedal 16 or the operation state of the charge button or power supply button, controls the motor 2 and generator 4 via the inverter 18, and has the engine control device 14 control the engine 1.

 図2に示すように、エンジン1は、燃料噴射弁30と、点火プラグ32と、触媒34と、を備える。本実施形態ではエンジン1は、燃料噴射弁30から噴射される燃料と吸気との混合気に、点火プラグ32によって火花を点火するガソリンエンジンである。触媒34は、ガソリンエンジンの排気を浄化する三元触媒である。エンジン1は、さらに温度センサ36を備えてもよい。温度センサ36は、触媒34の温度(以下明細書において触媒温度Tcと記す)を検知してもよい。 As shown in FIG. 2, the engine 1 includes a fuel injection valve 30, a spark plug 32, and a catalyst 34. In this embodiment, the engine 1 is a gasoline engine in which the spark plug 32 ignites a mixture of fuel injected from the fuel injection valve 30 and intake air. The catalyst 34 is a three-way catalyst that purifies the exhaust gas of the gasoline engine. The engine 1 may further include a temperature sensor 36. The temperature sensor 36 may detect the temperature of the catalyst 34 (hereinafter referred to as catalyst temperature Tc in the specification).

 触媒34は、触媒温度Tcに応じて浄化性能が異なる。図5のタイミングチャートの触媒温度Tcに示すように、触媒34は、第1触媒温度(所定温度の一例)T1において触媒34の浄化性能が約50パーセントに到達する状態(以下明細書において半活性状態と記す)となる。触媒34は、第1触媒温度T1よりも高い第2触媒温度T2において触媒34の浄化性能が約80パーセントに到達する状態(以下明細書において活性状態と記す)となる。本実施形態では、第1触媒温度T1は、150℃から180℃程度である。第2触媒温度は、300℃から360℃程度である。なお、本実施形態の触媒34は、触媒温度Tcが700℃程度となると浄化性能が100パーセント付近となる。触媒34は、第1触媒温度T1未満では、浄化性能が50パーセント未満の未活性状態である。 The purification performance of the catalyst 34 differs depending on the catalyst temperature Tc. As shown by the catalyst temperature Tc in the timing chart of FIG. 5, the catalyst 34 is in a state where the purification performance of the catalyst 34 reaches about 50% at a first catalyst temperature (one example of a predetermined temperature) T1 (hereinafter referred to as a semi-active state in the specification). The catalyst 34 is in a state where the purification performance of the catalyst 34 reaches about 80% at a second catalyst temperature T2 higher than the first catalyst temperature T1 (hereinafter referred to as an active state in the specification). In this embodiment, the first catalyst temperature T1 is about 150°C to 180°C. The second catalyst temperature is about 300°C to 360°C. In this embodiment, the purification performance of the catalyst 34 is close to 100% when the catalyst temperature Tc is about 700°C. The catalyst 34 is in an inactive state where the purification performance is less than 50% below the first catalyst temperature T1.

 発電機4は、エンジン1に接続され、エンジン1を駆動可能である。発電機4は、駆動用電池6からの電力によって力行する間は、エンジン1を駆動するモータリングを行う。一方、発電機4は、エンジン1の運転中においてエンジン1に駆動されて発電する。したがって、発電機4は、力行と発電が可能なモータ・ジェネレータである。 The generator 4 is connected to the engine 1 and is capable of driving the engine 1. The generator 4 performs motoring to drive the engine 1 while the engine 1 is being powered by electric power from the drive battery 6. On the other hand, the generator 4 is driven by the engine 1 to generate electricity while the engine 1 is in operation. Therefore, the generator 4 is a motor-generator capable of powering and generating electricity.

 駆動用電池6は、リチウムイオン電池などの二次電池によって構成される電池セルを複数纏めた電池モジュールを有する。また、駆動用電池6は、電池モニタリングユニット(BMU)6aを有する。電池モニタリングユニット6aは、駆動用電池6の充電状態の一例として電池モジュールの充電率(State Of Charge、以下、SOCと記す)を演算する。そのほか電池モニタリングユニット6aは、電池モジュールの劣化状態(State Of Health 以下 SOH)、および電池温度Tbの検出を行ってもよい。電池モニタリングユニット6aは、充電率SOC、劣化状態SOH、および電池温度Tbを取得し、車両制御装置12に送信する。 The drive battery 6 has a battery module that includes multiple battery cells that are made up of secondary batteries such as lithium-ion batteries. The drive battery 6 also has a battery monitoring unit (BMU) 6a. The battery monitoring unit 6a calculates the state of charge (State of Charge, hereafter referred to as SOC) of the battery module as an example of the charge state of the drive battery 6. In addition, the battery monitoring unit 6a may detect the deterioration state (State of Health, hereafter referred to as SOH) of the battery module and the battery temperature Tb. The battery monitoring unit 6a acquires the charge rate SOC, the deterioration state SOH, and the battery temperature Tb, and transmits them to the vehicle control device 12.

 車両制御装置12は、インバータ18を介して、モータ2と、発電機4と、に電気的に接続され、モータ2および発電機4を制御する。また、車両制御装置12は、少なくとも、通常運転、モータ出力制限制御、およびエンジン出力制限制御の各制御を実行する。さらに、本実施形態の車両制御装置12は、エンジン出力制限制御の指示をエンジン制御装置14に発信し、エンジン制御装置14にエンジン1を制御させる。車両制御装置12は、演算装置と、メモリと、入出力バッファ等とを含むマイクロコンピュータによって構成されるECU(Electrоnic Control Unit)である。車両制御装置12は、メモリに格納されたマップおよびプログラムに基づいて、電動車両Cの様々な制御を実行する。 The vehicle control device 12 is electrically connected to the motor 2 and the generator 4 via the inverter 18, and controls the motor 2 and the generator 4. The vehicle control device 12 also executes at least the following controls: normal operation, motor output limit control, and engine output limit control. Furthermore, the vehicle control device 12 of this embodiment transmits an instruction for engine output limit control to the engine control device 14, and causes the engine control device 14 to control the engine 1. The vehicle control device 12 is an ECU (Electronic Control Unit) that is composed of a microcomputer including a calculation device, a memory, an input/output buffer, and the like. The vehicle control device 12 executes various controls of the electric vehicle C based on the maps and programs stored in the memory.

 また、車両制御装置12は、駆動用電池6の電池モニタリングユニット6aと電気的に接続され、駆動用電池6の充電率SOC、電池温度Tbなどの情報を取得可能である。 The vehicle control device 12 is also electrically connected to the battery monitoring unit 6a of the drive battery 6, and can acquire information such as the charging rate SOC and battery temperature Tb of the drive battery 6.

 車両制御装置12は、通常運転において、後述する要求出力PWを達成するようにモータ2およびエンジン1を制御する。具体的には、車両制御装置12は、要求出力PWに基づいて、モータ2のモータ要求出力PWmと、エンジン1のエンジン要求出力PWeを決定する。車両制御装置12は、モータ2の出力がモータ要求出力PWmとなるようにモータ2を制御する。車両制御装置12は、エンジン1の出力がエンジン要求出力PWeとなるように、エンジン制御装置14にエンジン1を制御させる。車両制御装置12は、通常運転においては、充電率SOC、要求出力PW、および車速Vに応じて、EVモード、シリーズモード、およびパラレルモードのうちいずれか一つを選択して電動車両Cを制御する。一方、車両制御装置12は、モータ出力制限制御およびエンジン出力制限制御のうちいずれか一方の制御が実行される場合は、クラッチ8aを開放状態にし、シリーズモードで電動車両Cを制御する。 The vehicle control device 12 controls the motor 2 and the engine 1 during normal operation to achieve the required output PW, which will be described later. Specifically, the vehicle control device 12 determines the motor required output PWm of the motor 2 and the engine required output PWe of the engine 1 based on the required output PW. The vehicle control device 12 controls the motor 2 so that the output of the motor 2 becomes the motor required output PWm. The vehicle control device 12 causes the engine control device 14 to control the engine 1 so that the output of the engine 1 becomes the engine required output PWe. During normal operation, the vehicle control device 12 selects one of the EV mode, series mode, and parallel mode according to the charging rate SOC, the required output PW, and the vehicle speed V to control the electric vehicle C. On the other hand, when either the motor output limit control or the engine output limit control is executed, the vehicle control device 12 releases the clutch 8a and controls the electric vehicle C in the series mode.

 また、車両制御装置12は、モータ出力制限制御において、モータ2の出力を制限しながらモータ2を制御する。具体的には、車両制御装置12は、モータ要求出力PWmよりも低い値にモータ2の出力を制限する。本実施形態では車両制御装置12は、少なくとも第1レベルから第4レベルの4段階でモータ2の出力制限を実行する。第1レベルでは車両制御装置12は、4段階のうち最も低い第1出力制限値PR1に、モータ2の出力を制限する(第1モータ出力制限制御の一例)。第3レベルでは車両制御装置12は、第1出力制限値PR1より高く第2出力制限値PR2よりは低い第3出力制限値PR3に、モータ2の出力を制限する(第3モータ出力制限制御の一例)。第2レベルでは車両制御装置12は、第3出力制限値PR3より高く第4出力制限値PR4よりは低い第2出力制限値PR2に、モータ2の出力を制限する(第2モータ出力制限制御の一例)。第4レベルでは車両制御装置12は、4段階のうち最も高い第4出力制限値PR4に、モータ2の出力を制限する(第4モータ出力制限制御の一例)。 In addition, the vehicle control device 12 controls the motor 2 while limiting the output of the motor 2 in the motor output limit control. Specifically, the vehicle control device 12 limits the output of the motor 2 to a value lower than the motor required output PWm. In this embodiment, the vehicle control device 12 executes the output limit of the motor 2 in at least four stages from the first level to the fourth level. In the first level, the vehicle control device 12 limits the output of the motor 2 to the first output limit value PR1, which is the lowest of the four stages (an example of the first motor output limit control). In the third level, the vehicle control device 12 limits the output of the motor 2 to the third output limit value PR3, which is higher than the first output limit value PR1 and lower than the second output limit value PR2 (an example of the third motor output limit control). In the second level, the vehicle control device 12 limits the output of the motor 2 to the second output limit value PR2, which is higher than the third output limit value PR3 and lower than the fourth output limit value PR4 (an example of the second motor output limit control). At the fourth level, the vehicle control device 12 limits the output of the motor 2 to the fourth output limit value PR4, which is the highest of the four levels (an example of fourth motor output limit control).

 エンジン制御装置14は、少なくとも、燃料噴射弁30と、点火プラグ32と、に電気的に接続され、エンジン1を制御する制御装置である。エンジン制御装置14は、実際には、演算装置と、メモリと、入出力バッファ等とを含むマイクロコンピュータによって構成されるECU(Electrоnic Control Unit)である。エンジン制御装置14は、メモリに格納されたマップおよびプログラムに基づいて、エンジン1の様々な制御を実行する。なお、エンジン1の制御はエンジン制御装置14のほか、車両制御装置12によって実行してもよい。 The engine control device 14 is electrically connected to at least the fuel injection valve 30 and the spark plug 32, and is a control device that controls the engine 1. The engine control device 14 is actually an ECU (Electronic Control Unit) that is composed of a microcomputer including an arithmetic unit, memory, input/output buffers, etc. The engine control device 14 executes various controls of the engine 1 based on maps and programs stored in the memory. Note that the control of the engine 1 may be executed by the vehicle control device 12 in addition to the engine control device 14.

 エンジン制御装置14は、エンジン出力制限制御の指示を取得すると、触媒34を昇温しながら触媒34を暖機する触媒暖機運転を実行する。この間、エンジン制御装置14は、エンジン1の運転状態から触媒温度Tcを推定する。なお、エンジン制御装置14は、エンジン1が温度センサ36を備える場合、温度センサ36から触媒温度Tcを取得してもよい。エンジン制御装置14は、触媒温度Tcを取得すると車両制御装置12に触媒温度Tcを送信する。 When the engine control device 14 receives an instruction for engine output limit control, it executes a catalyst warm-up operation to warm up the catalyst 34 while raising the temperature of the catalyst 34. During this operation, the engine control device 14 estimates the catalyst temperature Tc from the operating state of the engine 1. Note that, if the engine 1 is equipped with a temperature sensor 36, the engine control device 14 may obtain the catalyst temperature Tc from the temperature sensor 36. When the engine control device 14 obtains the catalyst temperature Tc, it transmits the catalyst temperature Tc to the vehicle control device 12.

 エンジン制御装置14は、エンジン出力制限制御において、触媒34を昇温しやすい運転状態となるように、エンジン1の出力を所定の出力に制限する。具体的には、エンジン制御装置14は、エンジン出力制限制御において、点火プラグ32による点火時期を遅角させる。これによって、排気温度が上昇し、触媒34の触媒温度Tcを上昇させやすい。しかし、点火時期を遅角させた状態において、エンジン要求出力PWeが増加した場合、燃料噴射弁30による燃料噴射量が増加し、エンジン1の燃焼状態が不安定となる場合もある。エンジン制御装置14は、このような燃焼が不安定な状態とならないように、点火時期を遅角させた状態において燃焼が安定可能な所定の出力に、エンジン1の出力を制限する。このように、エンジン制御装置14は、所定の出力にエンジン1の出力を制限することによって、触媒34の昇温を優先する。 In engine output limiting control, the engine control device 14 limits the output of the engine 1 to a predetermined output so that the engine is in an operating state in which the temperature of the catalyst 34 is easily increased. Specifically, in engine output limiting control, the engine control device 14 retards the ignition timing of the spark plug 32. This increases the exhaust temperature, making it easier to increase the catalyst temperature Tc of the catalyst 34. However, if the engine required output PWe increases when the ignition timing is retarded, the amount of fuel injected by the fuel injection valve 30 increases, and the combustion state of the engine 1 may become unstable. To prevent such an unstable combustion state, the engine control device 14 limits the output of the engine 1 to a predetermined output at which combustion can be stabilized when the ignition timing is retarded. In this way, the engine control device 14 prioritizes the increase in temperature of the catalyst 34 by limiting the output of the engine 1 to a predetermined output.

 次に車両制御装置12が実行する制御手順について、図3および図4のフローチャートを用いて説明する。車両制御装置12は、図示しないイグニッションスイッチがオンされると、制御手順を開始する。 Next, the control procedure executed by the vehicle control device 12 will be explained using the flowcharts in Figures 3 and 4. The vehicle control device 12 starts the control procedure when an ignition switch (not shown) is turned on.

 ステップS1では車両制御装置12は、アクセルペダル16の開度であるアクセル開度Thを取得する。また、車両制御装置12は、車輪C1の回転から演算し、電動車両Cの速度である車速Vを取得する。車両制御装置12は、アクセル開度Thと、車速Vと、を取得するとステップS2に処理を進める。 In step S1, the vehicle control device 12 acquires the accelerator opening Th, which is the opening of the accelerator pedal 16. The vehicle control device 12 also acquires the vehicle speed V, which is the speed of the electric vehicle C, by calculation from the rotation of the wheel C1. After acquiring the accelerator opening Th and the vehicle speed V, the vehicle control device 12 proceeds to step S2.

 ステップS2では車両制御装置12は、アクセル開度Thおよび車速Vから、電動車両Cに要求されている出力である要求出力PWを演算する。車両制御装置12は、要求出力PWを演算するとステップS3に処理を進める。 In step S2, the vehicle control device 12 calculates the required output PW, which is the output required of the electric vehicle C, from the accelerator opening Th and the vehicle speed V. After calculating the required output PW, the vehicle control device 12 proceeds to step S3.

 ステップS3では車両制御装置12は、触媒34の触媒温度Tcを取得し、ステップS4に処理を進める。 In step S3, the vehicle control device 12 obtains the catalyst temperature Tc of the catalyst 34 and proceeds to step S4.

 ステップS4では車両制御装置12は、触媒温度Tcが第2触媒温度T2未満か否か判断する。すなわち、車両制御装置12は、触媒34が活性状態に到達しておらず、触媒34の昇温が必要か否か判断する。車両制御装置12は、触媒温度Tcが第2触媒温度T2未満であると判断した場合(ステップS4 YES)、触媒34の昇温が必要であると判断してステップS5に処理を進める。 In step S4, the vehicle control device 12 determines whether the catalyst temperature Tc is less than the second catalyst temperature T2. That is, the vehicle control device 12 determines whether the catalyst 34 has not reached an active state and whether it is necessary to increase the temperature of the catalyst 34. If the vehicle control device 12 determines that the catalyst temperature Tc is less than the second catalyst temperature T2 (step S4 YES), it determines that it is necessary to increase the temperature of the catalyst 34 and proceeds to step S5.

 ステップS5では車両制御装置12は、触媒温度Tcが第1触媒温度T1未満か否か判断する。すなわち、車両制御装置12は、触媒34が半活性状態に到達したか否か判断する。車両制御装置12は、触媒温度Tcが第1触媒温度T1未満であると判断した場合(ステップS5 YES)、触媒34が半活性状態に到達していないと判断してステップS6に処理を進める。 In step S5, the vehicle control device 12 determines whether the catalyst temperature Tc is less than the first catalyst temperature T1. That is, the vehicle control device 12 determines whether the catalyst 34 has reached a semi-active state. If the vehicle control device 12 determines that the catalyst temperature Tc is less than the first catalyst temperature T1 (step S5 YES), it determines that the catalyst 34 has not reached a semi-active state and proceeds to step S6.

 ステップS6では車両制御装置12は、充電率SOCが第1充電率SOC1未満か否か判断する。第1充電率SOC1は、モータ2がモータ要求出力PWmで運転可能な充電率SOCである。より具体的には、第1充電率SOC1は、駆動用電池6がモータ要求出力PWmに対応した電力をモータ2に供給可能な充電率SOCである。第1充電率SOC1は、例えば50パーセント以上60パーセント以下の充電率SOCである。車両制御装置12は、充電率SOCが第1充電率SOC1未満であると判断した場合(ステップS6 YES)、ステップS7に処理を進める。 In step S6, the vehicle control device 12 determines whether the charging rate SOC is less than the first charging rate SOC1. The first charging rate SOC1 is the charging rate SOC at which the motor 2 can be operated at the motor required output PWm. More specifically, the first charging rate SOC1 is the charging rate SOC at which the drive battery 6 can supply power corresponding to the motor required output PWm to the motor 2. The first charging rate SOC1 is, for example, a charging rate SOC between 50 percent and 60 percent. If the vehicle control device 12 determines that the charging rate SOC is less than the first charging rate SOC1 (step S6 YES), the process proceeds to step S7.

 ステップS7では車両制御装置12は、充電率SOCが第2充電率(所定充電率の一例)SOC2未満か否か判断する。第2充電率SOC2は、モータ2が第2出力制限値PR2で運転可能な充電率SOCである。より具体的には、第2充電率SOC2は、駆動用電池6が第2出力制限値PR2に対応した電力をモータ2に供給可能な充電率SOCである。第2充電率SOC2は、例えば30パーセント以上40パーセント以下の充電率SOCである。車両制御装置12は、充電率SOCが第2充電率SOC2未満であると判断した場合(ステップS7 YES)、ステップS8に処理を進める。 In step S7, the vehicle control device 12 determines whether the charging rate SOC is less than a second charging rate (an example of a predetermined charging rate) SOC2. The second charging rate SOC2 is the charging rate SOC at which the motor 2 can be operated at the second output limit value PR2. More specifically, the second charging rate SOC2 is the charging rate SOC at which the drive battery 6 can supply power corresponding to the second output limit value PR2 to the motor 2. The second charging rate SOC2 is, for example, a charging rate SOC between 30 percent and 40 percent. If the vehicle control device 12 determines that the charging rate SOC is less than the second charging rate SOC2 (step S7 YES), the process proceeds to step S8.

 ステップS8では車両制御装置12は、エンジン出力制限制御を実行し、ステップS9に処理を進める。ステップS9では車両制御装置12は、第1レベルのモータ出力制限制御を実行する。すなわち、車両制御装置12は、モータ要求出力PWmが第1出力制限値PR1を超える場合は、モータ出力制限制御としてモータ2の出力を第1出力制限値PR1に制限しながらモータ2を制御する。車両制御装置12は、ステップS9の処理を実行するとステップS1に処理を進める。 In step S8, the vehicle control device 12 executes engine output limit control and proceeds to step S9. In step S9, the vehicle control device 12 executes a first level of motor output limit control. That is, when the motor required output PWm exceeds the first output limit value PR1, the vehicle control device 12 controls the motor 2 while limiting the output of the motor 2 to the first output limit value PR1 as motor output limit control. After executing the process of step S9, the vehicle control device 12 proceeds to step S1.

 ステップS4において、触媒温度Tcが第2触媒温度T2以上であると車両制御装置12が判断した場合(ステップS4 NO)、車両制御装置12は、ステップS14に処理を進め通常運転による制御を実行する。すなわち、車両制御装置12は、エンジン出力制限制御及びモータ出力制限制御を行わない。 If the vehicle control device 12 determines in step S4 that the catalyst temperature Tc is equal to or higher than the second catalyst temperature T2 (step S4 NO), the vehicle control device 12 proceeds to step S14 and executes control under normal operation. In other words, the vehicle control device 12 does not execute engine output limit control or motor output limit control.

 ステップS5において、触媒温度Tcが第1触媒温度T1以上であると車両制御装置12が判断した場合(ステップS5 NO)、車両制御装置12は、図3のAに処理を進め、図4のサブフローチャートに処理を進める。図4のサブフローチャートについては、後述する。 If the vehicle control device 12 determines in step S5 that the catalyst temperature Tc is equal to or higher than the first catalyst temperature T1 (step S5 NO), the vehicle control device 12 advances the process to A in FIG. 3, and then to the sub-flowchart in FIG. 4. The sub-flowchart in FIG. 4 will be described later.

 ステップS6において、充電率SOCが第1充電率SOC1以上であると車両制御装置12が判断した場合(ステップS6 NO)、車両制御装置12は、ステップS10に処理を進める。 If the vehicle control device 12 determines in step S6 that the charging rate SOC is equal to or higher than the first charging rate SOC1 (step S6 NO), the vehicle control device 12 proceeds to step S10.

 ステップS10では車両制御装置12は、エンジン出力制限制御を実行し、ステップS11に処理を進める。ステップS11では車両制御装置12は、モータ2を通常出力で運転する。すなわち、車両制御装置12は、モータ2の出力がモータ要求出力PWmとなるように制御する。車両制御装置12は、ステップS22の処理を実行するとステップS1に処理を進める。 In step S10, the vehicle control device 12 executes engine output limiting control and proceeds to step S11. In step S11, the vehicle control device 12 operates the motor 2 at normal output. In other words, the vehicle control device 12 controls the output of the motor 2 to be the motor required output PWm. After executing the process of step S22, the vehicle control device 12 proceeds to step S1.

 ステップS7において、充電率SOCが第2充電率SOC2以上であると車両制御装置12が判断した場合(ステップS7 NO)、車両制御装置12は、ステップS12に処理を進める。 If the vehicle control device 12 determines in step S7 that the charging rate SOC is equal to or higher than the second charging rate SOC2 (step S7 NO), the vehicle control device 12 proceeds to step S12.

 ステップS12では車両制御装置12は、エンジン出力制限制御を実行し、ステップS13に処理を進める。ステップS13では車両制御装置12は、第2レベルのモータ出力制限制御を実行する。すなわち、車両制御装置12は、モータ要求出力PWmが第2出力制限値PR2を超える場合は、モータ2の出力を第2出力制限値PR2に制限しながらモータ2を制御する。車両制御装置12は、ステップS13の処理を実行するとステップS1に処理を進める。 In step S12, the vehicle control device 12 executes engine output limit control and proceeds to step S13. In step S13, the vehicle control device 12 executes a second level of motor output limit control. That is, when the motor required output PWm exceeds the second output limit value PR2, the vehicle control device 12 controls the motor 2 while limiting the output of the motor 2 to the second output limit value PR2. After executing the process of step S13, the vehicle control device 12 proceeds to step S1.

 図4のフローチャートに示すように、サブフローチャートでは、触媒34が半活性状態に到達した以降の制御手順を示している。 As shown in the flowchart of FIG. 4, the sub-flowchart shows the control procedure after the catalyst 34 reaches a semi-active state.

 ステップ21では車両制御装置12は、充電率SOCが第1充電率SOC1未満か否か判断する。第1充電率SOC1は、ステップS6と同様の値である。車両制御装置12は、充電率SOCが第1充電率SOC1未満であると判断した場合(ステップS21 YES)、ステップS22に処理を進める。 In step S21, the vehicle control device 12 determines whether the charging rate SOC is less than the first charging rate SOC1. The first charging rate SOC1 is the same value as in step S6. If the vehicle control device 12 determines that the charging rate SOC is less than the first charging rate SOC1 (step S21 YES), the process proceeds to step S22.

 ステップS22では車両制御装置12は、充電率SOCが第3充電率SOC3未満か否か判断する。第3充電率SOC3は、モータ2が第4出力制限値PR4で運転可能な充電率SOCである。より具体的には、第3充電率SOC3は、駆動用電池6が第4出力制限値PR4に対応した電力をモータ2に供給可能な充電率SOCである。第3充電率SOC3は、例えば60パーセント以上70パーセント以下の充電率SOCである。車両制御装置12は、充電率SOCが第3充電率SOC3未満であると判断した場合(ステップS22 YES)、ステップS23に処理を進める。 In step S22, the vehicle control device 12 determines whether the charging rate SOC is less than the third charging rate SOC3. The third charging rate SOC3 is the charging rate SOC at which the motor 2 can be operated at the fourth output limit value PR4. More specifically, the third charging rate SOC3 is the charging rate SOC at which the drive battery 6 can supply power corresponding to the fourth output limit value PR4 to the motor 2. The third charging rate SOC3 is, for example, a charging rate SOC between 60 percent and 70 percent. If the vehicle control device 12 determines that the charging rate SOC is less than the third charging rate SOC3 (YES in step S22), the process proceeds to step S23.

 ステップS23では車両制御装置12は、エンジン出力制限制御を実行し、ステップS24に処理を進める。ステップS24では車両制御装置12は、第3レベルのモータ出力制限制御を実行する。すなわち、車両制御装置12は、モータ要求出力PWmが第3出力制限値PR3を超える場合は、モータ2の出力を第3出力制限値PR3に制限しながらモータ2を制御する。車両制御装置12は、ステップS24の処理を実行するとステップS1に処理を進める(図3参照)。 In step S23, the vehicle control device 12 executes engine output limit control and proceeds to step S24. In step S24, the vehicle control device 12 executes a third level of motor output limit control. That is, when the motor required output PWm exceeds the third output limit value PR3, the vehicle control device 12 controls the motor 2 while limiting the output of the motor 2 to the third output limit value PR3. After executing the processing of step S24, the vehicle control device 12 proceeds to step S1 (see FIG. 3).

 ステップS21において、充電率SOCが第1充電率SOC1以上であると車両制御装置12が判断した場合(ステップS21 NO)、車両制御装置12は、ステップS25に処理を進める。 If the vehicle control device 12 determines in step S21 that the charging rate SOC is equal to or higher than the first charging rate SOC1 (step S21 NO), the vehicle control device 12 proceeds to step S25.

 ステップS25では車両制御装置12は、エンジン出力制限制御を実行し、ステップS26に処理を進める。ステップS26では車両制御装置12は、モータ2をステップS11と同様に通常出力で運転する。車両制御装置12は、ステップS26の処理を実行するとステップS1に処理を進める(図3参照)。 In step S25, the vehicle control device 12 executes engine output limiting control and proceeds to step S26. In step S26, the vehicle control device 12 operates the motor 2 at normal output, similar to step S11. After executing the process of step S26, the vehicle control device 12 proceeds to step S1 (see FIG. 3).

 ステップS22において、充電率SOCが第3充電率SOC3以上であると車両制御装置12が判断した場合(ステップS22 NO)、車両制御装置12は、ステップS27に処理を進める。 If the vehicle control device 12 determines in step S22 that the charging rate SOC is equal to or higher than the third charging rate SOC3 (step S22 NO), the vehicle control device 12 proceeds to step S27.

 ステップS27では車両制御装置12は、エンジン出力制限制御を実行し、ステップS28に処理を進める。ステップS28では車両制御装置12は、第4レベルのモータ出力制限制御を実行する。すなわち、車両制御装置12は、モータ要求出力PWmが第4出力制限値PR4を超える場合は、モータ2の出力を第4出力制限値PR4に制限しながらモータ2を制御する。車両制御装置12は、ステップS28の処理を実行するとステップS1に処理を進める(図3参照)。 In step S27, the vehicle control device 12 executes engine output limit control and proceeds to step S28. In step S28, the vehicle control device 12 executes a fourth level of motor output limit control. That is, when the motor required output PWm exceeds the fourth output limit value PR4, the vehicle control device 12 controls the motor 2 while limiting the output of the motor 2 to the fourth output limit value PR4. After executing the processing of step S28, the vehicle control device 12 proceeds to step S1 (see FIG. 3).

 次に図5のタイミングチャートを用いて、車両制御装置12が実行する制御の一例について説明する。なお、図5の破線は、従来の制御による車速V、モータ2の出力、および充電率SOCを示している。 Next, an example of control executed by the vehicle control device 12 will be described using the timing chart in FIG. 5. Note that the dashed lines in FIG. 5 indicate the vehicle speed V, the output of the motor 2, and the charging rate SOC under conventional control.

 時刻t1に示すように、アクセル開度Thが上昇すると、車両制御装置12は、演算した要求出力PWに基づいて、モータ要求出力PWmおよびエンジン要求出力PWeを演算する(図3のステップS1およびステップS2参照)。 As shown at time t1, when the accelerator opening Th increases, the vehicle control device 12 calculates the motor required output PWm and the engine required output PWe based on the calculated required output PW (see steps S1 and S2 in Figure 3).

 時刻t1から時刻t2に示すように、車両制御装置12はエンジン1を始動する。しかし、時刻t1から時刻t2の間の触媒温度Tcに示すように、触媒34が冷態状態である。すなわち、触媒温度Tcが第1触媒温度T1未満となっており、触媒34が未活性の状態である(ステップS5 YESの状態)。そこで、車両制御装置12は、エンジン出力制限制御を実行し、触媒34の昇温をする触媒暖機運転を実行する。本実施形態では、車両制御装置12は、触媒34の暖機が完了するまで(ステップS4 NOの状態、時刻t5参照)、エンジン1が所定の出力で一定となるようにエンジン制御装置14にエンジン1を制御させる。なお、車両制御装置12は、所定の出力となるようにエンジン1に発電機4を回転させ、発電機4に発電させている。 As shown from time t1 to time t2, the vehicle control device 12 starts the engine 1. However, as shown by the catalyst temperature Tc between time t1 and time t2, the catalyst 34 is in a cold state. That is, the catalyst temperature Tc is lower than the first catalyst temperature T1, and the catalyst 34 is in an inactive state (YES in step S5). Therefore, the vehicle control device 12 executes engine output limiting control and executes a catalyst warm-up operation to raise the temperature of the catalyst 34. In this embodiment, the vehicle control device 12 causes the engine control device 14 to control the engine 1 so that the engine 1 is constant at a predetermined output until the warm-up of the catalyst 34 is completed (NO in step S4, see time t5). The vehicle control device 12 causes the engine 1 to rotate the generator 4 so that the predetermined output is achieved, and causes the generator 4 to generate electricity.

 時刻t1から時刻t2では、充電率SOCが第1充電率SOC1以上であるため(ステップS6 NOの状態)、車両制御装置12は、モータ2の出力を制限することなく、モータ2の出力がモータ要求出力PWmとなるように、モータ2を制御する。このため、車速Vに示すように、この間は、アクセル開度Thに追従した車速Vとなる。このとき、エンジン出力制限制御によってエンジン1による発電量が制限されているため、エンジン出力制限制御が実行されていない場合に比べ充電率SOCが低下しやすい。 Because the charging rate SOC is equal to or higher than the first charging rate SOC1 from time t1 to time t2 (NO in step S6), the vehicle control device 12 controls the motor 2 so that the output of the motor 2 becomes the motor required output PWm without limiting the output of the motor 2. Therefore, as shown by the vehicle speed V, the vehicle speed V during this period follows the accelerator opening Th. At this time, the amount of power generation by the engine 1 is limited by the engine output limit control, so the charging rate SOC is more likely to decrease than when the engine output limit control is not being executed.

 時刻t2から時刻t3に示すように、充電率SOCが第1充電率SOC1未満かつ第2充電率SOC2以上の状態となると(ステップS6 YES、ステップS7 NOの状態)、車両制御装置12は、モータ2の出力を第2出力制限値PR2に制限する。このとき、車両制御装置12は、モータ要求出力PWmが第2出力制限値PR2よりも高い場合は、モータ2の出力を第2出力制限値PR2に制限する。 As shown from time t2 to time t3, when the charging rate SOC becomes less than the first charging rate SOC1 and greater than or equal to the second charging rate SOC2 (YES in step S6, NO in step S7), the vehicle control device 12 limits the output of the motor 2 to the second output limit value PR2. At this time, if the motor required output PWm is higher than the second output limit value PR2, the vehicle control device 12 limits the output of the motor 2 to the second output limit value PR2.

 時刻t3に示すように、充電率SOCが第2充電率SOC2未満となると(ステップS7 YESの状態)、車両制御装置12は、モータ2の出力を第1出力制限値PR1に制限する。この状態では、充電率SOCの低下によって電欠のおそれが生じる。このため、車両制御装置12は、充電率SOCが駆動用電池6の許容可能な下限の充電率SOCである許容下限充電率SOCminに対して所定の余裕を持った第4充電率SOC4で一定となるように第1出力制限値PR1を設定する。このとき、モータ2は、エンジン1に駆動される発電機4が発電する電力によって駆動される。上記のとおりエンジン1は、所定の出力で運転されている。したがって、本実施形態では、第1出力制限値PR1は、エンジン1が所定の出力で発電機4を駆動する際の発電量によって決まる値である。 As shown at time t3, when the charging rate SOC falls below the second charging rate SOC2 (YES in step S7), the vehicle control device 12 limits the output of the motor 2 to the first output limit value PR1. In this state, there is a risk of running out of power due to a drop in the charging rate SOC. For this reason, the vehicle control device 12 sets the first output limit value PR1 so that the charging rate SOC is constant at a fourth charging rate SOC4 that has a predetermined margin with respect to the allowable lower limit charging rate SOCmin, which is the allowable lower limit charging rate SOC of the drive battery 6. At this time, the motor 2 is driven by the power generated by the generator 4 driven by the engine 1. As described above, the engine 1 is operated at a predetermined output. Therefore, in this embodiment, the first output limit value PR1 is a value determined by the amount of power generated when the engine 1 drives the generator 4 at a predetermined output.

 時刻t4に示すように、触媒34の昇温が進み、触媒34が半活性状態になると(ステップS5 NOの状態)、車両制御装置12はモータ2の出力を第3出力制限値PR3まで上昇させる。半活性状態から活性状態までの期間は、未活性状態から半活性状態までの期間よりも短い。このため、車両制御装置12がモータ2の出力を第3出力制限値PR3まで上昇させても、充電率SOCが駆動用電池6の許容下限充電率SOCminに到達する虞が少ない。車両制御装置12は、第3出力制限値PR3までモータ2の出力を上昇させることによって、アクセル開度Thに基づいたモータ要求出力PWmに近づける。これによって、車速Vが上昇する。この結果、エンジン出力制限制御およびモータ出力制限制御を実行している際の電動車両Cの動力性能が改善する。 As shown at time t4, when the temperature of the catalyst 34 increases and the catalyst 34 enters a semi-active state (NO in step S5), the vehicle control device 12 increases the output of the motor 2 to the third output limit value PR3. The period from the semi-active state to the active state is shorter than the period from the inactive state to the semi-active state. Therefore, even if the vehicle control device 12 increases the output of the motor 2 to the third output limit value PR3, there is little risk that the charging rate SOC will reach the allowable lower limit charging rate SOCmin of the drive battery 6. By increasing the output of the motor 2 to the third output limit value PR3, the vehicle control device 12 brings it closer to the motor required output PWm based on the accelerator opening Th. This increases the vehicle speed V. As a result, the power performance of the electric vehicle C is improved when engine output limit control and motor output limit control are being executed.

 時刻t5に示すように、車両制御装置12は、触媒温度Tcが第2触媒温度T2以上となった場合、通常運転を開始する。 As shown at time t5, the vehicle control device 12 starts normal operation when the catalyst temperature Tc becomes equal to or higher than the second catalyst temperature T2.

 図5の破線で示すように、従来のシリーズモードにおける制御では、充電率SOCの低下によってモータ2に供給する電力が不足した場合、エンジン1の出力を上昇させて発電量を増やし、発電した電力をモータ2に供給する。これによって、モータ要求出力PWmにモータ2の出力を追従させる。しかし、触媒34が未活性の状態でエンジン1の出力を上昇させると、エミッションが悪化する。 As shown by the dashed line in Figure 5, in conventional series mode control, when the power supplied to motor 2 is insufficient due to a drop in the charging rate SOC, the output of engine 1 is increased to increase the amount of power generated, and the generated power is supplied to motor 2. This causes the output of motor 2 to follow the motor required output PWm. However, if the output of engine 1 is increased while catalyst 34 is inactive, emissions will deteriorate.

 本開示の電動車両Cの制御システム3は、エンジン1による発電よってアクセル開度Thに基づいてモータ要求出力PWmにモータ2の出力を追従させるよりも、エンジン出力制限制御によってエンジン1を所定の出力で一定に運転する触媒暖機運転を優先する。これによって、本開示の電動車両Cの制御システム3は、より確実にエミッションの悪化を抑制できる。 The control system 3 of the electric vehicle C disclosed herein prioritizes catalyst warm-up operation, which operates the engine 1 at a constant predetermined output by engine output limit control, rather than causing the output of the motor 2 to follow the motor required output PWm based on the accelerator opening Th by generating electricity from the engine 1. This allows the control system 3 of the electric vehicle C disclosed herein to more reliably suppress the deterioration of emissions.

 また、本開示の電動車両Cの制御システム3は、モータ2の出力を制限することによって、充電率SOCの低下を抑制する。これによって、この電動車両Cの制御システム3は、電欠を回避するとともに、充電率SOCが許容下限充電率SOCmin未満となることを回避する。これによって、電動車両Cの制御システム3は、駆動用電池6を保護することができる。 The control system 3 of the electric vehicle C disclosed herein also limits the output of the motor 2 to suppress a decrease in the charging rate SOC. This allows the control system 3 of the electric vehicle C to avoid running out of power and to prevent the charging rate SOC from falling below the allowable lower limit charging rate SOCmin. This allows the control system 3 of the electric vehicle C to protect the drive battery 6.

 以上説明した通り、本開示の電動車両Cの制御システム3によれば、エミッション悪化の抑制を優先する電動車両Cの制御システム3を提供できる。 As described above, the control system 3 for the electric vehicle C disclosed herein can provide a control system 3 for the electric vehicle C that prioritizes suppressing emission deterioration.

 <他の実施形態>
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の変形例は必要に応じて任意に組合せ可能である。
<Other embodiments>
Although the embodiment of the present disclosure has been described above, the present disclosure is not limited to the above embodiment, and various modifications are possible without departing from the gist of the invention. In particular, the multiple modifications described in this specification can be arbitrarily combined as necessary.

 (a)上記実施形態では、燃料噴射弁30を用いるガソリンエンジンを例にエンジン1について説明したが本開示はこれに限定されない。エンジン1は、気筒内に燃料を噴射する直噴のエンジン1であってもよい。 (a) In the above embodiment, the engine 1 has been described using a gasoline engine that uses a fuel injection valve 30 as an example, but the present disclosure is not limited to this. The engine 1 may be a direct injection engine 1 that injects fuel into the cylinders.

 (b)上記実施形態では、モータ2の出力を4段階に制限する例を用いて説明したが、本開示はこれに限定されない。モータ2の出力は、4段階より多い段階で制限してもよい。 (b) In the above embodiment, an example in which the output of the motor 2 is limited to four stages has been described, but the present disclosure is not limited to this. The output of the motor 2 may be limited to more than four stages.

1    :エンジン
2    :モータ
3    :制御システム
4    :発電機
6    :駆動用電池
12   :車両制御装置
14   :エンジン制御装置
34   :触媒
C    :電動車両
C1   :車輪
SOC  :充電率
Tc   :触媒温度
1: Engine 2: Motor 3: Control system 4: Generator 6: Driving battery 12: Vehicle control device 14: Engine control device 34: Catalyst C: Electric vehicle C1: Wheel SOC: Charging rate
Tc: Catalyst temperature

Claims (5)

 電動車両の車輪を駆動するモータと、
 排気を浄化する触媒を有するエンジンと、
 前記モータに電力を供給する駆動用電池と、
 前記電動車両を制御する制御装置と、
を備え、
 前記制御装置は、前記触媒の昇温が必要な場合、
 前記エンジンを所定の出力に制限しながら前記触媒の昇温を実行するエンジン出力制限制御と、
 前記モータの出力を制限しながら前記モータを制御するモータ出力制限制御と、
を実行する、
電動車両の制御システム。
A motor that drives wheels of an electric vehicle;
An engine having a catalyst for purifying exhaust gas;
a driving battery that supplies power to the motor;
A control device for controlling the electric vehicle;
Equipped with
When it is necessary to increase the temperature of the catalyst,
an engine output limiting control for increasing the temperature of the catalyst while limiting the engine output to a predetermined value;
a motor output limiting control for controlling the motor while limiting the output of the motor;
Execute
Electric vehicle control system.
 前記制御装置は、
 前記駆動用電池の充電率を取得し、
 前記充電率が所定充電率未満の場合、前記モータの出力を第1出力制限値に制限する第1モータ出力制限制御を実行し、
 前記充電率が前記所定充電率以上の場合、前記モータの出力を前記第1出力制限値よりも高い第2出力制限値に制限する第2モータ出力制限制御を実行する、
請求項1に記載の電動車両の制御システム。
The control device includes:
acquiring a charging rate of the drive battery;
When the charging rate is less than a predetermined charging rate, a first motor output limiting control is executed to limit an output of the motor to a first output limiting value;
When the charging rate is equal to or higher than the predetermined charging rate, a second motor output limiting control is executed to limit the output of the motor to a second output limiting value higher than the first output limiting value.
The control system for an electric vehicle according to claim 1 .
 前記第1モータ出力制限制御において、前記駆動用電池の充電率が一定となるように前記モータを制御する、
請求項2に記載の電動車両の制御システム。
In the first motor output limiting control, the motor is controlled so that the charging rate of the driving battery is kept constant.
The control system for an electric vehicle according to claim 2 .
 前記制御装置は、
 前記触媒の温度を取得し、
 前記温度が所定温度より高い場合、前記モータの出力を前記第1出力制限値よりも高い第3出力制限値に制限する第3モータ出力制限制御を実行する、
請求項2に記載の電動車両の制御システム。
The control device includes:
Obtaining the temperature of the catalyst;
When the temperature is higher than a predetermined temperature, a third motor output limiting control is executed to limit the output of the motor to a third output limiting value that is higher than the first output limiting value.
The control system for an electric vehicle according to claim 2 .
 前記駆動用電池の充電状態に応じて、前記モータ出力制限制御における前記モータの出力制限値を変更する、
請求項1から4のいずれか1項に記載の電動車両の制御システム。
changing an output limit value of the motor in the motor output limit control according to a state of charge of the driving battery;
The control system for an electric vehicle according to any one of claims 1 to 4.
PCT/JP2024/011207 2023-03-23 2024-03-22 Control system for electric vehicle WO2024195851A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023046180 2023-03-23
JP2023-046180 2023-03-23

Publications (1)

Publication Number Publication Date
WO2024195851A1 true WO2024195851A1 (en) 2024-09-26

Family

ID=92841748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/011207 WO2024195851A1 (en) 2023-03-23 2024-03-22 Control system for electric vehicle

Country Status (1)

Country Link
WO (1) WO2024195851A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284909A (en) * 2007-05-15 2008-11-27 Toyota Motor Corp Vehicle and control method thereof
JP2012071739A (en) * 2010-09-29 2012-04-12 Toyota Motor Corp Hybrid car
JP2017171192A (en) * 2016-03-25 2017-09-28 トヨタ自動車株式会社 Control device of hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284909A (en) * 2007-05-15 2008-11-27 Toyota Motor Corp Vehicle and control method thereof
JP2012071739A (en) * 2010-09-29 2012-04-12 Toyota Motor Corp Hybrid car
JP2017171192A (en) * 2016-03-25 2017-09-28 トヨタ自動車株式会社 Control device of hybrid vehicle

Similar Documents

Publication Publication Date Title
JP3904192B2 (en) Vehicle drive device
WO2012131941A1 (en) Vehicle, engine control method, and engine control device
JP5187005B2 (en) Hybrid vehicle and control method thereof
JP4519085B2 (en) Control device for internal combustion engine
US8843262B2 (en) Vehicle, method for controlling vehicle, and device for controlling vehicle
JP5590157B2 (en) Vehicle, vehicle control method, and vehicle control apparatus
US20190283730A1 (en) Control system for hybrid vehicle
JP2003219564A (en) Control device for power storage device in vehicle
US9522670B2 (en) Control system of hybrid vehicle
JP6424566B2 (en) Control device for hybrid vehicle
JP2010042700A (en) Hybrid vehicle and its control method
JP2020032918A (en) Hybrid vehicle
JP5842899B2 (en) HYBRID VEHICLE, HYBRID VEHICLE CONTROL METHOD, AND ENGINE CONTROL DEVICE
US20100180578A1 (en) Engine control system, engine control method
JP4967898B2 (en) Control device for hybrid vehicle
JP6390100B2 (en) Control device for plug-in hybrid vehicle
JP5331065B2 (en) In-vehicle internal combustion engine controller
JP5700362B2 (en) Hybrid vehicle
KR20140071593A (en) Charge control method for hybrid electric vehicle
WO2024195851A1 (en) Control system for electric vehicle
WO2024195852A1 (en) Control system for electric vehicle
JP2009292259A (en) Hybrid vehicle and its control method
JP7625965B2 (en) Electric vehicle control device
JP2021138153A (en) Control device of hybrid system
JP5728447B2 (en) Vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24774985

Country of ref document: EP

Kind code of ref document: A1