WO2024195419A1 - Drive circuit for semiconductor element - Google Patents
Drive circuit for semiconductor element Download PDFInfo
- Publication number
- WO2024195419A1 WO2024195419A1 PCT/JP2024/006290 JP2024006290W WO2024195419A1 WO 2024195419 A1 WO2024195419 A1 WO 2024195419A1 JP 2024006290 W JP2024006290 W JP 2024006290W WO 2024195419 A1 WO2024195419 A1 WO 2024195419A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gate
- voltage
- semiconductor element
- switch
- side switch
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims description 39
- 238000001514 detection method Methods 0.000 claims abstract description 53
- 230000002265 prevention Effects 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 8
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 7
- 229910010271 silicon carbide Inorganic materials 0.000 description 7
- 238000007599 discharging Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
Definitions
- This disclosure relates to a circuit that drives a voltage-driven semiconductor element.
- the path for detecting the leakage current includes a MOSFET connected in series with the gate resistor, and the on-resistance of the MOSFET is also detected. This causes a problem in that the accuracy of detecting the leakage current decreases accordingly.
- This disclosure has been made in consideration of the above circumstances, and its purpose is to provide a drive circuit for a semiconductor element that can detect leakage current without including a transistor in the path for detecting leakage current.
- multiple series circuits of high-side switches and charging gate resistors are connected between the drive power supply and the gate of a voltage-driven semiconductor element.
- the multiple charging gate resistors those constituting the series circuit including the one with the highest resistance value are designated as the detection switch and detection gate resistor, respectively.
- the detection switch When the detection switch is turned on, the voltage detection unit detects the voltage generated in the current path including the detection gate resistor.
- the control unit controls the on/off of the multiple high-side switches, and determines the presence or absence of leakage current flowing from the gate to the low potential side conductive terminal of the semiconductor element based on the voltage detected by the voltage detection unit.
- the current path through which the voltage detection unit detects the voltage does not include a switch such as a MOSFET.
- the gate resistor for detection has the highest resistance among the gate resistors for charging, so that the occurrence of leakage current can be detected at a higher voltage. Overall, leakage current can be detected with higher accuracy.
- a series circuit of a reverse current prevention element, a first high-side switch, and a first charging gate resistor is connected between a first drive power supply and the gate of a voltage-driven semiconductor element. Furthermore, a series circuit of a second high-side switch and a second charging gate resistor having a higher resistance value is connected between a second drive power supply having a higher voltage and a common connection point of the first high-side switch and the first charging gate resistor.
- the voltage detection unit detects the voltage generated in the current path including the first and second gate resistors.
- the control unit controls the on/off of the first and second high-side switches, and determines the presence or absence of leakage current flowing from the gate to the low potential side conductive terminal of the semiconductor element based on the voltage detected by the voltage detection unit.
- the voltage detection unit does not include a switch and detects the voltage generated in the current path that includes the first and second gate resistors, it is possible to detect the occurrence of leakage current at a higher voltage with high accuracy.
- multiple series circuits of discharge gate resistors and low-side switches are connected between the gate of a voltage-driven semiconductor element and a low potential reference point.
- the multiple discharge gate resistors those constituting the series circuit including the one with the highest resistance value are respectively designated as a detection switch and a detection gate resistor, and a voltage detection unit detects a voltage generated in a current path including the detection gate resistor when the detection switch is turned on.
- a control unit controls the on/off of the multiple low-side switches, and determines the presence or absence of a leakage current flowing from the high potential side conductive terminal of the semiconductor element to the gate based on the voltage detected by the voltage detection unit. Therefore, in a manner similar to the above disclosure, it is possible to detect with high accuracy the leakage current flowing from the high potential side conductive terminal of the semiconductor element to the gate.
- FIG. 1 is a diagram showing a configuration of a drive circuit for a semiconductor element in a first embodiment
- FIG. 2 is a diagram showing a change in the gate voltage when the high-side switch M1 is turned on.
- FIG. 3 is a diagram showing a change in the gate voltage when the high-side switch M3 is turned on.
- FIG. 4 is a diagram showing a configuration of a drive circuit for a semiconductor element in a second embodiment
- FIG. 5 is a diagram showing a configuration of a drive circuit for a semiconductor element in a third embodiment;
- FIG. 6 is a diagram showing a change in gate voltage when the high-side switches M1 and M7 are sequentially turned on (when no leakage current occurs).
- FIG. 7 is a diagram showing a change in gate voltage when the high-side switches M1 and M7 are sequentially turned on (when a leakage current is generated).
- FIG. 8 is a diagram showing the configuration of a drive circuit for a semiconductor element in the fourth embodiment.
- the drive circuit of this embodiment drives an N-channel MOSFET 1, which is a voltage-driven semiconductor element.
- FET 1 constitutes, for example, the lower arm side of a bridge circuit, with its source connected to the ground, which is the low-potential side reference point, and its drain connected to, for example, an upper arm FET (not shown).
- the drain of FET 1 is a high-potential side conduction terminal, and the source is a low-potential side conduction terminal.
- High-side switches M1 to M3 and charging gate resistors R1 to R3 are connected in series between the drive power supply and the gate of FET1.
- the high-side switches M1 to M3 are, for example, P-channel MOSFETs.
- a series circuit of a discharging gate resistor R4 and a low-side switch M4 is connected between the gate of FET1 and ground.
- the low-side switch M4 is, for example, an N-channel MOSFET.
- the relationship between the resistance values of the charging gate resistors R1 to R3 is set to (R3>R2>R1), and the relationship between the on-resistance values of the high-side switches M1 to M3 is set to (M3>M2>M1).
- the high-side switch M3 corresponds to the detection switch, and the charging gate resistor R3 corresponds to the detection resistor.
- the source of the high-side switch M3 and the drain of the low-side switch M4 are each connected to the input terminals of a differential amplifier circuit 3 that constitutes the leakage current detection unit 2.
- the leakage current detection unit 2 corresponds to a voltage detection unit.
- the output terminal of the differential amplifier circuit 3 is connected to the input terminal of the control unit 5 via an A/D converter 4.
- the control unit 5 is composed of, for example, a microcomputer, and controls the on/off of each of the switches M1 to M4.
- the above, excluding FET1 and gate resistors R1 to R4, constitutes the drive IC 6.
- the drive IC 6 and gate resistors R1 to R4 constitute the drive circuit 7.
- the high-side switches M1 to M3 can be used to change the speed of the on operation depending on the magnitude relationship of the resistance values set in the charging gate resistors R1 to R3. If the low-side switch M4 is turned off and FET1 is turned on by the high-side switch M1 and charging gate resistor R1, which have the smallest resistance value, the on operation speed will be high, and if it is turned on by the high-side switch M3 and charging gate resistor R3, which have the largest resistance value, the on operation speed will be low.
- the gate of FET1 is charged by the driving power supply through high-side switch M3 and charging gate resistor R3. At this time, if no leakage current flows from the gate of FET1 to the source side, as shown in FIG. 3, no current flows through charging gate resistor R3 after the gate of FET1 is charged. On the other hand, if leakage current flows from the gate to the source side, current continues to flow through charging gate resistor R3 even after the gate is charged.
- the control unit 5 determines whether or not leakage current is flowing based on the magnitude of the voltage detected by leakage current detection unit 2 during the period after the gate of FET1 is charged and the gate voltage stabilizes.
- a series circuit of high-side switches M1 to M3 and charging gate resistors R1 to R3 is connected between the drive power supply and the gate of FET1.
- the leakage current detection unit 2 detects the voltage generated in the current path including the charging gate resistor R3.
- the control unit 5 controls the on/off of the high-side switches M1 to M3 and the low-side switch M4, and determines the presence or absence of leakage current flowing from the gate to the source of FET1 based on the voltage detected by the leakage current detection unit 2.
- the current path used by the leakage current detection unit 2 to detect voltage does not include a switch such as a MOSFET.
- the gate resistor with the highest resistance among the charging gate resistors R1 to R3 is used as the detection gate resistor, the occurrence of leakage current can be detected at a higher voltage. Overall, leakage current can be detected with higher accuracy.
- the magnitude relationship of the on-resistance of the high-side switches M1 to M3 to (M3>M2>M1) the drive capacity between these switches can be changed.
- a drive circuit 11 of the second embodiment shown in Fig. 4 includes a drive IC 12 instead of the drive IC 6.
- the drive IC 12 also includes three switches M4 to M6 as low-side switches, and the drains of these switches M4 to M6 are connected to the gate of FET1 via discharge gate resistors R4 to R6, respectively.
- the magnitude relationship of the on-resistance of the low-side switches M4 to M6 is set to (M6>M5>M4).
- the magnitude relationship of the discharge gate resistors R4 to R6 is set to (R6>R5>R4).
- the control unit 13 controls the on-off of the low-side switches M4 to M6 in addition to the high-side switches M1 to M3.
- One of the input terminals of the leakage current detection unit 2 is connected to the drain of the low-side switch M6 instead of the low-side switch M4.
- the control unit 13 can change the operating speed when turning off FET1 by selectively turning on low-side switches M4 to M6. In addition, by turning on one of the high-side switches M1 to M3 to charge the gate of FET1, and then turning on low-side switch M6, it determines whether or not there is a leak current flowing from the drain to the gate of FET1.
- the control unit 13 determines whether or not leakage current is flowing based on the magnitude of the voltage detected by the leakage current detection unit 2.
- the leakage current flowing from the drain to the gate of FET1 can also be detected with high accuracy.
- the driving circuit 14 of the third embodiment shown in Fig. 5 includes a driving IC 15 that replaces the driving IC 6 of the first embodiment.
- the driving IC 15 is supplied with a first driving power source V1 and a second driving power source V2, and the magnitude relationship between the two voltages is set to (V2>V1).
- the source of the backflow prevention switch M8 is connected to the source of the high-side switch M1, and the drain is connected to the first driving power source V1.
- a series circuit of a high-side switch M7 and a second charging gate resistor R7 is connected between the second driving power source V2 and the drain of the high-side switch M1.
- the magnitude relationship between the resistance values of the gate resistors R1 and R7 is set to (R7>R1).
- the magnitude relationship between the on-resistances of the high-side switches M1 and M7 is set to (M7>M1).
- One of the input terminals of the leakage current detection unit 2 is connected to the drain of the high-side switch M7 instead of the high-side switch M3.
- the control unit 16 controls the on-off of each of the switches M1, M4, M7, and M8.
- the control unit 16 determines whether or not there is a leakage current flowing from the gate to the source, in the same manner as in the first embodiment. Note that, inside the control unit 16, the high-side switch M1 may be switch-driven, and the high-side switch M7 may be constant-voltage driven.
- the voltage-driven semiconductor element instead of FET1 is an element such as SiC (silicon carbide) that requires a higher gate voltage to be fully on
- the SiC is turned on at high speed by the low voltage first power supply voltage V1, and after the gate is sufficiently charged, it is turned on at a slower speed by the high voltage second power supply voltage V2.
- a series circuit of a reverse current prevention switch M8, a first high-side switch M1, and a first charging gate resistor R1 is connected between the first driving power source V1 and the gate of FET1.
- a series circuit of a second high-side switch M7 and a second charging gate resistor R7 is connected between the second driving power source V2, which has a higher voltage, and the drain of the first high-side switch M1.
- the leak current detection unit 2 detects the voltage generated in the current path including the first and second gate resistors R7 and R1.
- the control unit 16 controls the on/off of the first and second high-side switches M1 and M7, and determines the presence or absence of a leak current flowing from the gate to the source of FET1 based on the voltage detected by the leak current detection unit 2.
- the leakage current detection unit 2 when driving a semiconductor element such as SiC that requires a high voltage to be turned on, it can be driven in two stages, first by turning it on at high speed using only the first charging gate resistor R1, and then by turning it on at a slower speed using the first and second charging gate resistors R1 and R7. Furthermore, since the leakage current detection unit 2 does not include a switch and detects the voltage generated in the current path including the first and second gate resistors R1 and R7, it can detect the occurrence of leakage current with high accuracy at a higher voltage.
- the low potential reference point of the driving IC 12 in the second embodiment is set to a negative potential instead of the ground, which is 0V.
- the low potential reference point of FET1 is the ground as in the second embodiment.
- the low potential reference point of FET1 and the low potential reference point of the driving IC 12 may be at different potentials.
- the semiconductor element is SiC instead of FET1
- the threshold voltage Vt of SiC is lower, so that the gate voltage in the off state can be made lower than the source voltage and the driving IC 12 can be reliably turned off.
- the number of pairs of high-side switches and charging gate resistors, and the number of pairs of discharging gate resistors and low-side switches may be "2" or "4" or more. It is not necessary to set a magnitude relationship between the on-resistance of the high-side switch and the on-resistance of the low-side switch, and the on-resistance may be the same.
- the voltage detection section does not necessarily need to differentially detect the voltage occurring in the current path.
- the reverse current prevention element may be a diode having a cathode connected to the source of the high-side switch M1.
- the voltage-driven semiconductor element is not limited to an N-channel MOSFET, but may be a P-channel MOSFET, an IGBT, or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Power Conversion In General (AREA)
- Electronic Switches (AREA)
Abstract
In a drive circuit 7 according to one embodiment of the present disclosure, a series circuit of high-side switches M1 to M3 and charging gate resistors R1 to R3 is connected between a drive power supply and a gate of a FET 1. A leakage current detection unit 2 detects a voltage generated in an energization path including the charging gate resistor R3 when the high-side switch M3 is turned on. A control unit 5 controls whether the high-side switches M1 to M3 and a low-side switch M4 are on or off and assesses whether a leakage current flowing from the gate to the source of the FET 1 is present on the basis of the voltage detected by the leakage current detection unit 2.
Description
本出願は、2023年3月17日に出願された日本出願番号2023-43057号に基づくもので、ここにその記載内容を援用する。
This application is based on Japanese Application No. 2023-43057, filed on March 17, 2023, the contents of which are incorporated herein by reference.
本開示は、電圧駆動型の半導体素子を駆動する回路に関する。
This disclosure relates to a circuit that drives a voltage-driven semiconductor element.
例えばNチャネルMOSFET等の電圧駆動型の半導体素子について、ゲートからソースへ、又はドレインからゲートへリークする電流を検出する回路は、様々なものが提案されている。例えば、特許文献1では、半導体素子を駆動する回路内で駆動能力を切り替えることで、抵抗値が高いゲート抵抗を用いてリーク電流を検出している。
For example, various circuits have been proposed for detecting current leaking from the gate to the source or from the drain to the gate of a voltage-driven semiconductor element such as an N-channel MOSFET. For example, in Patent Document 1, the driving capability is switched within the circuit that drives the semiconductor element, and leakage current is detected using a gate resistor with a high resistance value.
しかしながら、特許文献1の構成では、リーク電流を検出する経路に上記のゲート抵抗に直列に接続されているMOSFETがあるため、そのMOSFETのオン抵抗も含めて検出を行っている。したがって、リーク電流の検出精度がその分だけ低下するという問題がある。
However, in the configuration of Patent Document 1, the path for detecting the leakage current includes a MOSFET connected in series with the gate resistor, and the on-resistance of the MOSFET is also detected. This causes a problem in that the accuracy of detecting the leakage current decreases accordingly.
本開示は上記事情に鑑みてなされたものであり、その目的は、リーク電流を検出する経路にトランジスタを含むことなく検出できる半導体素子の駆動回路を提供することにある。
This disclosure has been made in consideration of the above circumstances, and its purpose is to provide a drive circuit for a semiconductor element that can detect leakage current without including a transistor in the path for detecting leakage current.
本開示の半導体素子の駆動回路によれば、駆動用電源と電圧駆動型の半導体素子のゲートとの間に、ハイサイドスイッチ及び充電用ゲート抵抗の直列回路を複数接続する。複数の充電用ゲート抵抗のうち、抵抗値が最も高いものを含む直列回路を構成するものを、それぞれ検出用スイッチ、検出用ゲート抵抗とする。電圧検出部は、検出用スイッチがオンされた際に、検出用ゲート抵抗を含む通電経路に発生する電圧を検出する。制御部は、複数のハイサイドスイッチのオンオフを制御すると共に、電圧検出部により検出された電圧に基いて、ゲートより半導体素子の低電位側導通端子に流れるリーク電流の有無を判定する。
According to the semiconductor element drive circuit disclosed herein, multiple series circuits of high-side switches and charging gate resistors are connected between the drive power supply and the gate of a voltage-driven semiconductor element. Among the multiple charging gate resistors, those constituting the series circuit including the one with the highest resistance value are designated as the detection switch and detection gate resistor, respectively. When the detection switch is turned on, the voltage detection unit detects the voltage generated in the current path including the detection gate resistor. The control unit controls the on/off of the multiple high-side switches, and determines the presence or absence of leakage current flowing from the gate to the low potential side conductive terminal of the semiconductor element based on the voltage detected by the voltage detection unit.
このように構成すれば、電圧検出部が電圧を検出するための通電経路に例えばMOSFET等のスイッチは含まない。そして、充電用ゲート抵抗のうち抵抗値が最も高いものを検出用ゲート抵抗とするので、リーク電流の発生をより高い電圧で検出できる。総じて、リーク電流をより高い精度で検出できる。
In this configuration, the current path through which the voltage detection unit detects the voltage does not include a switch such as a MOSFET. Furthermore, the gate resistor for detection has the highest resistance among the gate resistors for charging, so that the occurrence of leakage current can be detected at a higher voltage. Overall, leakage current can be detected with higher accuracy.
また、本開示の半導体素子の駆動回路によれば、第1駆動用電源と電圧駆動型の半導体素子のゲートとの間に逆流防止素子、第1ハイサイドスイッチ及び第1充電用ゲート抵抗の直列回路を接続する。また、電圧がより高い第2駆動用電源と、第1ハイサイドスイッチ及び第1充電用ゲート抵抗の共通接続点との間に、第2ハイサイドスイッチ及び抵抗値がより高い第2充電用ゲート抵抗の直列回路を接続する。電圧検出部は、第2ハイサイドスイッチがオンされた際に、第1及び第2ゲート抵抗を含む通電経路に発生する電圧を検出する。制御部は、第1及び第2のハイサイドスイッチのオンオフを制御すると共に、電圧検出部により検出された電圧に基いて、ゲートより半導体素子の低電位側導通端子に流れるリーク電流の有無を判定する。
Furthermore, according to the semiconductor element drive circuit of the present disclosure, a series circuit of a reverse current prevention element, a first high-side switch, and a first charging gate resistor is connected between a first drive power supply and the gate of a voltage-driven semiconductor element. Furthermore, a series circuit of a second high-side switch and a second charging gate resistor having a higher resistance value is connected between a second drive power supply having a higher voltage and a common connection point of the first high-side switch and the first charging gate resistor. When the second high-side switch is turned on, the voltage detection unit detects the voltage generated in the current path including the first and second gate resistors. The control unit controls the on/off of the first and second high-side switches, and determines the presence or absence of leakage current flowing from the gate to the low potential side conductive terminal of the semiconductor element based on the voltage detected by the voltage detection unit.
このように構成すれば、オンさせる際に高い電圧を必要とする半導体素子を駆動する際に、最初は第1充電用ゲート抵抗のみで高速でオン動作させ、次は第1及び第2充電用ゲート抵抗により低速でオン動作させるように2段階で駆動できる。そして、電圧検出部は、スイッチを含まず、第1及び第2ゲート抵抗を含む通電経路に発生する電圧を検出するので、リーク電流の発生をより高い電圧で高精度に検出できる。
With this configuration, when driving a semiconductor element that requires a high voltage to turn on, it can be driven in two stages, first by turning it on at high speed using only the first charging gate resistor, and then by turning it on at a slower speed using the first and second charging gate resistors. Furthermore, since the voltage detection unit does not include a switch and detects the voltage generated in the current path that includes the first and second gate resistors, it is possible to detect the occurrence of leakage current at a higher voltage with high accuracy.
また、本開示の半導体素子の駆動回路によれば、電圧駆動型の半導体素子のゲートと低電位基準点との間に、放電用ゲート抵抗及びローサイドスイッチの直列回路を複数接続する。複数の放電用ゲート抵抗のうち、抵抗値が最も高いものを含む直列回路を構成するものを、それぞれ検出用スイッチ、検出用ゲート抵抗とし、電圧検出部は、検出用スイッチがオンされた際に、検出用ゲート抵抗を含む通電経路に発生する電圧を検出する。制御部は、複数のローサイドスイッチのオンオフを制御すると共に、電圧検出部により検出された電圧に基いて、半導体素子の高電位側導通端子よりゲートに流れるリーク電流の有無を判定する。したがって、上記の開示と同様にして、半導体素子の高電位側導通端子よりゲートに流れるリーク電流を高精度に検出できる。
Furthermore, according to the semiconductor element drive circuit of the present disclosure, multiple series circuits of discharge gate resistors and low-side switches are connected between the gate of a voltage-driven semiconductor element and a low potential reference point. Among the multiple discharge gate resistors, those constituting the series circuit including the one with the highest resistance value are respectively designated as a detection switch and a detection gate resistor, and a voltage detection unit detects a voltage generated in a current path including the detection gate resistor when the detection switch is turned on. A control unit controls the on/off of the multiple low-side switches, and determines the presence or absence of a leakage current flowing from the high potential side conductive terminal of the semiconductor element to the gate based on the voltage detected by the voltage detection unit. Therefore, in a manner similar to the above disclosure, it is possible to detect with high accuracy the leakage current flowing from the high potential side conductive terminal of the semiconductor element to the gate.
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態において、半導体素子の駆動回路の構成を示す図であり、
図2は、ハイサイドスイッチM1をオンにした場合のゲート電圧の変化を示す図であり、
図3は、ハイサイドスイッチM3をオンにした場合のゲート電圧の変化を示す図であり、
図4は、第2実施形態において、半導体素子の駆動回路の構成を示す図であり、
図5は、第3実施形態において、半導体素子の駆動回路の構成を示す図であり、
図6は、ハイサイドスイッチM1、M7を順次オンにした場合のゲート電圧の変化を示す図であり(リーク電流発生無しの場合)、
図7は、ハイサイドスイッチM1、M7を順次オンにした場合のゲート電圧の変化を示す図であり(リーク電流発生有りの場合)、
図8は、第4実施形態において、半導体素子の駆動回路の構成を示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a diagram showing a configuration of a drive circuit for a semiconductor element in a first embodiment; FIG. 2 is a diagram showing a change in the gate voltage when the high-side switch M1 is turned on. FIG. 3 is a diagram showing a change in the gate voltage when the high-side switch M3 is turned on. FIG. 4 is a diagram showing a configuration of a drive circuit for a semiconductor element in a second embodiment; FIG. 5 is a diagram showing a configuration of a drive circuit for a semiconductor element in a third embodiment; FIG. 6 is a diagram showing a change in gate voltage when the high-side switches M1 and M7 are sequentially turned on (when no leakage current occurs). FIG. 7 is a diagram showing a change in gate voltage when the high-side switches M1 and M7 are sequentially turned on (when a leakage current is generated). FIG. 8 is a diagram showing the configuration of a drive circuit for a semiconductor element in the fourth embodiment.
(第1実施形態)
図1に示すように、本実施形態の駆動回路は、電圧駆動型の半導体素子であるNチャネルMOSFET1を駆動対象としている。FET1は、例えばブリッジ回路の下アーム側を構成するもので、ソースは低電位側基準点であるグランドに接続され、ドレインは、図示しない例えば上アーム側のFET等に接続されている。FET1のドレインは高電位側導通端子であり、ソースは低電位側導通端子である。 First Embodiment
As shown in Fig. 1, the drive circuit of this embodiment drives an N-channel MOSFET 1, which is a voltage-driven semiconductor element. FET 1 constitutes, for example, the lower arm side of a bridge circuit, with its source connected to the ground, which is the low-potential side reference point, and its drain connected to, for example, an upper arm FET (not shown). The drain of FET 1 is a high-potential side conduction terminal, and the source is a low-potential side conduction terminal.
図1に示すように、本実施形態の駆動回路は、電圧駆動型の半導体素子であるNチャネルMOSFET1を駆動対象としている。FET1は、例えばブリッジ回路の下アーム側を構成するもので、ソースは低電位側基準点であるグランドに接続され、ドレインは、図示しない例えば上アーム側のFET等に接続されている。FET1のドレインは高電位側導通端子であり、ソースは低電位側導通端子である。 First Embodiment
As shown in Fig. 1, the drive circuit of this embodiment drives an N-
駆動用電源とFET1のゲートとの間には、ハイサイドスイッチM1~M3と、充電用ゲート抵抗R1~R3とがそれぞれ直列に接続されている。ハイサイドスイッチM1~M3は、例えばPチャネルMOSFETである。また、FET1のゲートとグランドとの間には、放電用ゲート抵抗R4とローサイドスイッチM4との直列回路が接続されている。ローサイドスイッチM4は、例えばNチャネルMOSFETである。
High-side switches M1 to M3 and charging gate resistors R1 to R3 are connected in series between the drive power supply and the gate of FET1. The high-side switches M1 to M3 are, for example, P-channel MOSFETs. A series circuit of a discharging gate resistor R4 and a low-side switch M4 is connected between the gate of FET1 and ground. The low-side switch M4 is, for example, an N-channel MOSFET.
尚、充電用ゲート抵抗R1~R3の抵抗値の大小関係は(R3>R2>R1)に設定されており、ハイサイドスイッチM1~M3のオン抵抗の大小関係は(M3>M2>M1)に設定されている。ハイサイドスイッチM3は検出用スイッチに相当し、充電用ゲート抵抗R3は検出用抵抗に相当する。
The relationship between the resistance values of the charging gate resistors R1 to R3 is set to (R3>R2>R1), and the relationship between the on-resistance values of the high-side switches M1 to M3 is set to (M3>M2>M1). The high-side switch M3 corresponds to the detection switch, and the charging gate resistor R3 corresponds to the detection resistor.
ハイサイドスイッチM3のソースとローサイドスイッチM4のドレインとは、リーク電流検出部2を構成する差動増幅回路3の入力端子にそれぞれ接続されている。リーク電流検出部2は電圧検出部に相当する。差動増幅回路3の出力端子は、A/D変換器4を介して制御部5の入力端子に接続されている。制御部5は、例えばマイクロコンピュータで構成され、各スイッチM1~M4のオンオフを制御する。以上において、FET1及びゲート抵抗R1~R4を除いたものが駆動IC6を構成している。駆動IC6及びゲート抵抗R1~R4が駆動回路7を構成する。
The source of the high-side switch M3 and the drain of the low-side switch M4 are each connected to the input terminals of a differential amplifier circuit 3 that constitutes the leakage current detection unit 2. The leakage current detection unit 2 corresponds to a voltage detection unit. The output terminal of the differential amplifier circuit 3 is connected to the input terminal of the control unit 5 via an A/D converter 4. The control unit 5 is composed of, for example, a microcomputer, and controls the on/off of each of the switches M1 to M4. The above, excluding FET1 and gate resistors R1 to R4, constitutes the drive IC 6. The drive IC 6 and gate resistors R1 to R4 constitute the drive circuit 7.
次に、本実施形態の作用について説明する。ハイサイドスイッチM1~M3は、FET1をオンさせる際に、充電用ゲート抵抗R1~R3に設定されている抵抗値の大小関係によって、オン動作の速度を変化させる目的で使い分けることができる。ローサイドスイッチM4をオフにして、FET1を、抵抗値が最小であるハイサイドスイッチM1及び充電用ゲート抵抗R1によってオンさせればオン動作の速度は高速となり、抵抗値が最大であるハイサイドスイッチM3及び充電用ゲート抵抗R3によってさせればオン動作の速度は低速となる。
Next, the operation of this embodiment will be described. When FET1 is turned on, the high-side switches M1 to M3 can be used to change the speed of the on operation depending on the magnitude relationship of the resistance values set in the charging gate resistors R1 to R3. If the low-side switch M4 is turned off and FET1 is turned on by the high-side switch M1 and charging gate resistor R1, which have the smallest resistance value, the on operation speed will be high, and if it is turned on by the high-side switch M3 and charging gate resistor R3, which have the largest resistance value, the on operation speed will be low.
また、図1に示しているように、ハイサイドスイッチM3をオンにして、ローサイドスイッチM4をオフにすれば、FET1のゲートは、駆動用電源により、ハイサイドスイッチM3及び充電用ゲート抵抗R3によって充電される。この時、FET1のゲートからソース側にリーク電流が流れなければ、図3に示すように、FET1のゲートが充電された以降は充電用ゲート抵抗R3に電流が流れなくなる。一方、ゲートからソース側にリーク電流が流れていれば、ゲートが充電された以降も充電用ゲート抵抗R3に電流が流れる。制御部5は、FET1のゲートが充電されてゲート電圧が安定した以降の期間に、リーク電流検出部2により検出される電圧の大きさによってリーク電流が流れているか否かを判定する。
Also, as shown in FIG. 1, when high-side switch M3 is turned on and low-side switch M4 is turned off, the gate of FET1 is charged by the driving power supply through high-side switch M3 and charging gate resistor R3. At this time, if no leakage current flows from the gate of FET1 to the source side, as shown in FIG. 3, no current flows through charging gate resistor R3 after the gate of FET1 is charged. On the other hand, if leakage current flows from the gate to the source side, current continues to flow through charging gate resistor R3 even after the gate is charged. The control unit 5 determines whether or not leakage current is flowing based on the magnitude of the voltage detected by leakage current detection unit 2 during the period after the gate of FET1 is charged and the gate voltage stabilizes.
図2に示すハイサイドスイッチM1をオンした場合よりも、図3に示すハイサイドスイッチM3をオンした場合の方が充電経路の抵抗値が高いので、リーク電流が流れている場合の電圧がより高くなる。したがって、リーク電流をより高精度に検出できる。
When the high-side switch M3 shown in FIG. 3 is turned on, the resistance of the charging path is higher than when the high-side switch M1 shown in FIG. 2 is turned on, so the voltage when leakage current flows is higher. Therefore, leakage current can be detected with higher accuracy.
以上のように本実施形態によれば、駆動回路7において、駆動用電源とFET1のゲートとの間に、ハイサイドスイッチM1~M3及び充電用ゲート抵抗R1~R3の直列回路を接続する。リーク電流検出部2は、ハイサイドスイッチM3がオンされた際に、充電用ゲート抵抗R3を含む通電経路に発生する電圧を検出する。制御部5は、ハイサイドスイッチM1~M3、及びローサイドスイッチM4のオンオフを制御すると共に、リーク電流検出部2により検出された電圧に基いて、ゲートよりFET1のソースに流れるリーク電流の有無を判定する。
As described above, according to this embodiment, in the drive circuit 7, a series circuit of high-side switches M1 to M3 and charging gate resistors R1 to R3 is connected between the drive power supply and the gate of FET1. When the high-side switch M3 is turned on, the leakage current detection unit 2 detects the voltage generated in the current path including the charging gate resistor R3. The control unit 5 controls the on/off of the high-side switches M1 to M3 and the low-side switch M4, and determines the presence or absence of leakage current flowing from the gate to the source of FET1 based on the voltage detected by the leakage current detection unit 2.
このように構成すれば、リーク電流検出部2が電圧を検出するための通電経路に例えばMOSFET等のスイッチは含まない。そして、充電用ゲート抵抗R1~R3のうち抵抗値が最も高いものを検出用ゲート抵抗とするので、リーク電流の発生をより高い電圧で検出できる。総じて、リーク電流をより高い精度で検出できる。また、ハイサイドスイッチM1~M3のオン抵抗の大小関係を(M3>M2>M1)に設定することで、これらのスイッチ間の駆動能力を変化させることができる。
With this configuration, the current path used by the leakage current detection unit 2 to detect voltage does not include a switch such as a MOSFET. And, because the gate resistor with the highest resistance among the charging gate resistors R1 to R3 is used as the detection gate resistor, the occurrence of leakage current can be detected at a higher voltage. Overall, leakage current can be detected with higher accuracy. Also, by setting the magnitude relationship of the on-resistance of the high-side switches M1 to M3 to (M3>M2>M1), the drive capacity between these switches can be changed.
(第2実施形態)
以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。図4に示す第2実施形態の駆動回路11は、駆動IC6に替わる駆動IC12を備えている。駆動IC12は、ローサイドスイッチについても3つのスイッチM4~M6を備えており、これらのスイッチM4~M6の各ドレインは、それぞれ放電用ゲート抵抗R4~R6を介してFET1のゲートに接続されている。 Second Embodiment
Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals and their explanations are omitted, and only the different parts are explained. Adrive circuit 11 of the second embodiment shown in Fig. 4 includes a drive IC 12 instead of the drive IC 6. The drive IC 12 also includes three switches M4 to M6 as low-side switches, and the drains of these switches M4 to M6 are connected to the gate of FET1 via discharge gate resistors R4 to R6, respectively.
以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。図4に示す第2実施形態の駆動回路11は、駆動IC6に替わる駆動IC12を備えている。駆動IC12は、ローサイドスイッチについても3つのスイッチM4~M6を備えており、これらのスイッチM4~M6の各ドレインは、それぞれ放電用ゲート抵抗R4~R6を介してFET1のゲートに接続されている。 Second Embodiment
Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals and their explanations are omitted, and only the different parts are explained. A
ローサイドサイドスイッチM4~M6のオン抵抗の大小関係は(M6>M5>M4)に設定されている。放電用ゲート抵抗R4~R6の大小関係は(R6>R5>R4)に設定されている。制御部13は、ハイサイドスイッチM1~M3に加えて、ローサイドスイッチM4~M6のオンオフを制御する。リーク電流検出部2の入力端子の一方は、ローサイドスイッチM4に替わって、ローサイドスイッチM6のドレインに接続されている。
The magnitude relationship of the on-resistance of the low-side switches M4 to M6 is set to (M6>M5>M4). The magnitude relationship of the discharge gate resistors R4 to R6 is set to (R6>R5>R4). The control unit 13 controls the on-off of the low-side switches M4 to M6 in addition to the high-side switches M1 to M3. One of the input terminals of the leakage current detection unit 2 is connected to the drain of the low-side switch M6 instead of the low-side switch M4.
次に、第2実施形態の作用について説明する。制御部13は、ローサイドスイッチM4~M6を選択的にオンすることで、FET1をオフさせる際の動作速度を変化させることができる。また、ハイサイドスイッチM1~M3の何れか1つをオンにして、FET1のゲートを充電した後に、ローサイドスイッチM6をオンすることで、FET1のドレインからゲートに流れるリーク電流の有無を判定する。
Next, the operation of the second embodiment will be described. The control unit 13 can change the operating speed when turning off FET1 by selectively turning on low-side switches M4 to M6. In addition, by turning on one of the high-side switches M1 to M3 to charge the gate of FET1, and then turning on low-side switch M6, it determines whether or not there is a leak current flowing from the drain to the gate of FET1.
FET1のドレインからゲート側にリーク電流が流れなければ、FET1のゲートを放電させた以降は放電用ゲート抵抗R6に電流が流れなくなる。一方、ドレインからゲート側にリーク電流が流れていれば、ゲートを放電させた以降も放電用ゲート抵抗R6に電流が流れる。制御部13は、FET1のゲートを放電させた以降に、リーク電流検出部2により検出される電圧の大きさによってリーク電流が流れているか否かを判定する。
If no leakage current flows from the drain to the gate of FET1, no current will flow through the discharge gate resistor R6 after the gate of FET1 is discharged. On the other hand, if leakage current flows from the drain to the gate, current will continue to flow through the discharge gate resistor R6 even after the gate is discharged. After the gate of FET1 is discharged, the control unit 13 determines whether or not leakage current is flowing based on the magnitude of the voltage detected by the leakage current detection unit 2.
以上のように第2実施形態によれば、FET1のドレインからゲート側に流れるリーク電流についても、高精度に検出できる。
As described above, according to the second embodiment, the leakage current flowing from the drain to the gate of FET1 can also be detected with high accuracy.
(第3実施形態)
図5に示す第3実施形態の駆動回路14は、第1実施形態の駆動IC6に替わる駆動IC15を備えている。駆動IC15には、第1駆動用電源V1と、第2駆動用電源V2とが供給され、両電圧の大小関係は(V2>V1)に設定されている。第1ハイサイドスイッチM1と第2ハイサイドスイッチM7とがあり、第1駆動用電源V1とFET1のゲートとの間には、PチャネルMOSFETである逆流防止スイッチM8、ハイサイドスイッチM1及び第1充電用ゲート抵抗R1の直列回路が接続されている。逆流防止スイッチM8のソースはハイサイドスイッチM1のソースに接続され、ドレインは第1駆動用電源V1に接続されている。 Third Embodiment
The drivingcircuit 14 of the third embodiment shown in Fig. 5 includes a driving IC 15 that replaces the driving IC 6 of the first embodiment. The driving IC 15 is supplied with a first driving power source V1 and a second driving power source V2, and the magnitude relationship between the two voltages is set to (V2>V1). There are a first high-side switch M1 and a second high-side switch M7, and a series circuit of a backflow prevention switch M8, which is a P-channel MOSFET, the high-side switch M1, and a first charging gate resistor R1 is connected between the first driving power source V1 and the gate of FET1. The source of the backflow prevention switch M8 is connected to the source of the high-side switch M1, and the drain is connected to the first driving power source V1.
図5に示す第3実施形態の駆動回路14は、第1実施形態の駆動IC6に替わる駆動IC15を備えている。駆動IC15には、第1駆動用電源V1と、第2駆動用電源V2とが供給され、両電圧の大小関係は(V2>V1)に設定されている。第1ハイサイドスイッチM1と第2ハイサイドスイッチM7とがあり、第1駆動用電源V1とFET1のゲートとの間には、PチャネルMOSFETである逆流防止スイッチM8、ハイサイドスイッチM1及び第1充電用ゲート抵抗R1の直列回路が接続されている。逆流防止スイッチM8のソースはハイサイドスイッチM1のソースに接続され、ドレインは第1駆動用電源V1に接続されている。 Third Embodiment
The driving
第2駆動用電源V2とハイサイドスイッチM1のドレインとの間には、ハイサイドスイッチM7及び第2充電用ゲート抵抗R7の直列回路が接続されている。ゲート抵抗R1、R7の抵抗値の大小関係は、(R7>R1)に設定されている。ハイサイドスイッチM1、M7のオン抵抗の大小関係は、(M7>M1)設定されている。リーク電流検出部2の入力端子の一方は、ハイサイドスイッチM3に替わって、ハイサイドスイッチM7のドレインに接続されている。制御部16は、各スイッチM1,M4,M7及びM8のオンオフを制御する。
A series circuit of a high-side switch M7 and a second charging gate resistor R7 is connected between the second driving power source V2 and the drain of the high-side switch M1. The magnitude relationship between the resistance values of the gate resistors R1 and R7 is set to (R7>R1). The magnitude relationship between the on-resistances of the high-side switches M1 and M7 is set to (M7>M1). One of the input terminals of the leakage current detection unit 2 is connected to the drain of the high-side switch M7 instead of the high-side switch M3. The control unit 16 controls the on-off of each of the switches M1, M4, M7, and M8.
次に、第3実施形態の作用について説明する。図6及び図7に示すように、FET1をオンさせる場合には、最初はハイサイドスイッチM1をオンにして、FET1のゲート電圧を高速にV1まで持ち上げる。続いて、ハイサイドスイッチM7をオンにしてゲート電圧を低速でV2にする。この時、ハイサイドスイッチM1のボディダイオードを介した第1駆動用電源V1への逆流を防止するため、逆流防止スイッチM8をオフにする。
Next, the operation of the third embodiment will be described. As shown in Figures 6 and 7, when FET1 is turned on, first the high-side switch M1 is turned on to quickly raise the gate voltage of FET1 to V1. Next, the high-side switch M7 is turned on to slowly raise the gate voltage to V2. At this time, the backflow prevention switch M8 is turned off to prevent backflow to the first drive power supply V1 via the body diode of the high-side switch M1.
図7に示すように、制御部16は、FET1のゲート電圧がV2で安定している期間に、第1実施形態と同様にして、ゲートからソースに流れるリーク電流の有無を判定する。尚、制御部16の内部において、ハイサイドスイッチM1をスイッチ駆動とし、ハイサイドスイッチM7を定電圧駆動としても良い。
As shown in FIG. 7, during the period when the gate voltage of FET1 is stable at V2, the control unit 16 determines whether or not there is a leakage current flowing from the gate to the source, in the same manner as in the first embodiment. Note that, inside the control unit 16, the high-side switch M1 may be switch-driven, and the high-side switch M7 may be constant-voltage driven.
例えば、FET1に替えて、電圧駆動型の半導体素子がSiC(シリコンカーバイド)のように、フルオン状態とするのにより高いゲート電圧を必要とする素子の場合には、SiCによるスイッチング損失を低減するため、電圧が低い第1電源用電圧V1によりSiCを高速でオン動作させ、ゲートが十分充電された後に電圧が高い第2電源用電圧V2により低速でオン動作させる。
For example, if the voltage-driven semiconductor element instead of FET1 is an element such as SiC (silicon carbide) that requires a higher gate voltage to be fully on, in order to reduce the switching loss due to the SiC, the SiC is turned on at high speed by the low voltage first power supply voltage V1, and after the gate is sufficiently charged, it is turned on at a slower speed by the high voltage second power supply voltage V2.
以上のように第3実施形態によれば、第1駆動用電源V1とFET1のゲートとの間に逆流防止スイッチM8、第1ハイサイドスイッチM1及び第1充電用ゲート抵抗R1の直列回路を接続する。また、電圧がより高い第2駆動用電源V2と、第1ハイサイドスイッチM1のドレインとの間に、第2ハイサイドスイッチM7及び第2充電用ゲート抵抗R7の直列回路を接続する。リーク電流検出部2は、第2ハイサイドスイッチM7がオンされた際に、第1及び第2ゲート抵抗R7及びR1を含む通電経路に発生する電圧を検出する。制御部16は、第1及び第2のハイサイドスイッチM1及びM7のオンオフを制御すると共に、リーク電流検出部2により検出された電圧に基いて、ゲートよりFET1のソースに流れるリーク電流の有無を判定する。
As described above, according to the third embodiment, a series circuit of a reverse current prevention switch M8, a first high-side switch M1, and a first charging gate resistor R1 is connected between the first driving power source V1 and the gate of FET1. In addition, a series circuit of a second high-side switch M7 and a second charging gate resistor R7 is connected between the second driving power source V2, which has a higher voltage, and the drain of the first high-side switch M1. When the second high-side switch M7 is turned on, the leak current detection unit 2 detects the voltage generated in the current path including the first and second gate resistors R7 and R1. The control unit 16 controls the on/off of the first and second high-side switches M1 and M7, and determines the presence or absence of a leak current flowing from the gate to the source of FET1 based on the voltage detected by the leak current detection unit 2.
このように構成すれば、SiCのようにオンさせる際に高い電圧を必要とする半導体素子を駆動する際に、最初は第1充電用ゲート抵抗R1のみで高速でオン動作させ、次は第1及び第2充電用ゲート抵抗R1及びR7により低速でオン動作させるように2段階で駆動できる。そして、リーク電流検出部2は、スイッチを含まず、第1及び第2ゲート抵抗R1及びR7を含む通電経路に発生する電圧を検出するので、リーク電流の発生をより高い電圧で高精度に検出できる。
With this configuration, when driving a semiconductor element such as SiC that requires a high voltage to be turned on, it can be driven in two stages, first by turning it on at high speed using only the first charging gate resistor R1, and then by turning it on at a slower speed using the first and second charging gate resistors R1 and R7. Furthermore, since the leakage current detection unit 2 does not include a switch and detects the voltage generated in the current path including the first and second gate resistors R1 and R7, it can detect the occurrence of leakage current with high accuracy at a higher voltage.
(第4実施形態)
図8に示す第4実施形態は、第2実施形態の駆動IC12の低電位基準点を、0Vであるグランドに替えて負電位としたものである。FET1の低電位基準点は、第2実施形態と同様にグランドである。このように、FET1の低電位基準点と駆動IC12の低電位基準点とが異なる電位であっても良い。上述のように、半導体素子がFET1に替えてSiCである場合、SiCの閾値電圧Vtはより低いので、駆動IC12の低電位基準点を負電位にすることで、オフ時のゲート電圧をソースよりも低い電圧にして確実にオフ状態にできる。 Fourth Embodiment
In the fourth embodiment shown in Fig. 8, the low potential reference point of the drivingIC 12 in the second embodiment is set to a negative potential instead of the ground, which is 0V. The low potential reference point of FET1 is the ground as in the second embodiment. In this way, the low potential reference point of FET1 and the low potential reference point of the driving IC 12 may be at different potentials. As described above, when the semiconductor element is SiC instead of FET1, the threshold voltage Vt of SiC is lower, so that the gate voltage in the off state can be made lower than the source voltage and the driving IC 12 can be reliably turned off.
図8に示す第4実施形態は、第2実施形態の駆動IC12の低電位基準点を、0Vであるグランドに替えて負電位としたものである。FET1の低電位基準点は、第2実施形態と同様にグランドである。このように、FET1の低電位基準点と駆動IC12の低電位基準点とが異なる電位であっても良い。上述のように、半導体素子がFET1に替えてSiCである場合、SiCの閾値電圧Vtはより低いので、駆動IC12の低電位基準点を負電位にすることで、オフ時のゲート電圧をソースよりも低い電圧にして確実にオフ状態にできる。 Fourth Embodiment
In the fourth embodiment shown in Fig. 8, the low potential reference point of the driving
(その他の実施形態)
ハイサイドスイッチ及び充電用ゲート抵抗の組数や、放電用ゲート抵抗及びローサイドスイッチの組数は、「2」又は「4」以上でも良い。
ハイサイドスイッチ、ローサイドスイッチのオン抵抗に必ずしも大小関係を設定する必要はなく、オン抵抗は同一でも良い。 Other Embodiments
The number of pairs of high-side switches and charging gate resistors, and the number of pairs of discharging gate resistors and low-side switches may be "2" or "4" or more.
It is not necessary to set a magnitude relationship between the on-resistance of the high-side switch and the on-resistance of the low-side switch, and the on-resistance may be the same.
ハイサイドスイッチ及び充電用ゲート抵抗の組数や、放電用ゲート抵抗及びローサイドスイッチの組数は、「2」又は「4」以上でも良い。
ハイサイドスイッチ、ローサイドスイッチのオン抵抗に必ずしも大小関係を設定する必要はなく、オン抵抗は同一でも良い。 Other Embodiments
The number of pairs of high-side switches and charging gate resistors, and the number of pairs of discharging gate resistors and low-side switches may be "2" or "4" or more.
It is not necessary to set a magnitude relationship between the on-resistance of the high-side switch and the on-resistance of the low-side switch, and the on-resistance may be the same.
電圧検出部は、通電経路に発生する電圧を必ずしも差動により検出する必要はない。
逆流防止素子は、ハイサイドスイッチM1のソースにカソードが接続されるダイオードでも良い。
電圧駆動型の半導体素子はNチャネルMOSFETに限らず、PチャネルMOSFETやIGBT等でも良い。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 The voltage detection section does not necessarily need to differentially detect the voltage occurring in the current path.
The reverse current prevention element may be a diode having a cathode connected to the source of the high-side switch M1.
The voltage-driven semiconductor element is not limited to an N-channel MOSFET, but may be a P-channel MOSFET, an IGBT, or the like.
Although the present disclosure has been described based on the embodiment, it is understood that the present disclosure is not limited to the embodiment or structure. The present disclosure also encompasses various modifications and modifications within the equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more than one element, or less than one element, are also within the scope and concept of the present disclosure.
逆流防止素子は、ハイサイドスイッチM1のソースにカソードが接続されるダイオードでも良い。
電圧駆動型の半導体素子はNチャネルMOSFETに限らず、PチャネルMOSFETやIGBT等でも良い。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 The voltage detection section does not necessarily need to differentially detect the voltage occurring in the current path.
The reverse current prevention element may be a diode having a cathode connected to the source of the high-side switch M1.
The voltage-driven semiconductor element is not limited to an N-channel MOSFET, but may be a P-channel MOSFET, an IGBT, or the like.
Although the present disclosure has been described based on the embodiment, it is understood that the present disclosure is not limited to the embodiment or structure. The present disclosure also encompasses various modifications and modifications within the equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more than one element, or less than one element, are also within the scope and concept of the present disclosure.
Claims (7)
- 駆動用電源と電圧駆動型の半導体素子(1)のゲートとの間に接続される、ハイサイドスイッチ(M1、M2、M3)及び充電用ゲート抵抗(R1,R2,R3)の直列回路を複数備え、
前記複数の充電用ゲート抵抗の抵抗値は互いに異なる値に設定され、それらのうち、抵抗値が最も高いものを含む直列回路を構成するものを、それぞれ検出用スイッチ(M3)、検出用ゲート抵抗(R3)とし、
前記検出用スイッチがオンされた際に、前記検出用ゲート抵抗を含む通電経路に発生する電圧を検出する電圧検出部(2)と、
前記複数のハイサイドスイッチのオンオフを制御すると共に、前記電圧検出部により検出された電圧に基いて、前記ゲートより前記半導体素子の低電位側導通端子に流れるリーク電流の有無を判定する制御部(5)と、を備える半導体素子の駆動回路。 The semiconductor device (1) includes a plurality of series circuits each including a high-side switch (M1, M2, M3) and a gate resistor (R1, R2, R3) for charging, the series circuits being connected between a driving power supply and a gate of the voltage-driven semiconductor element (1);
The resistance values of the plurality of charging gate resistors are set to different values, and among them, those constituting a series circuit including the one with the highest resistance value are respectively designated as a detection switch (M3) and a detection gate resistor (R3),
a voltage detection unit (2) that detects a voltage generated in a current path including the detection gate resistor when the detection switch is turned on;
a control unit (5) that controls the on/off of the plurality of high-side switches and determines, based on the voltage detected by the voltage detection unit, whether or not there is a leakage current flowing from the gate to a low potential side conduction terminal of the semiconductor element. - 前記ハイサイドスイッチは、半導体素子で構成され、
前記検出用スイッチのオン抵抗は、その他のハイサイドスイッチのオン抵抗よりも高く設定されている請求項1記載の半導体素子の駆動回路。 the high-side switch is composed of a semiconductor element,
2. The semiconductor device drive circuit according to claim 1, wherein the on-resistance of the detection switch is set higher than the on-resistance of the other high-side switches. - 第1駆動用電源(V1)と、
この第1駆動用電源よりも電圧が高い第2駆動用電源(V2)と、
前記1駆動用電源と電圧駆動型の半導体素子のゲートとの間に接続される、逆流防止素子(M8)、第1ハイサイドスイッチ(M1)及び第1充電用ゲート抵抗(R1)の直列回路と、
前記2駆動用電源と、第1ハイサイドスイッチ及び第1充電用ゲート抵抗の共通接続点との間に接続される、第2ハイサイドスイッチ(M7)及び前記第1充電用ゲート抵抗よりも抵抗値が高く設定された第2充電用ゲート抵抗(R7)の直列回路と、
前記第2ハイサイドスイッチがオンされた際に、前記第1及び第2ゲート抵抗を含む通電経路に発生する電圧を検出する電圧検出部(2)と、
前記第1及び第2のハイサイドスイッチのオンオフを制御すると共に、前記電圧検出部により検出された電圧に基いて、前記ゲートより前記半導体素子の低電位側導通端子に流れるリーク電流の有無を判定する制御部(16)と、を備える半導体素子の駆動回路。 A first driving power source (V1);
a second driving power source (V2) having a voltage higher than that of the first driving power source;
a series circuit including a reverse current prevention element (M8), a first high-side switch (M1), and a first charging gate resistor (R1) connected between the first driving power supply and a gate of a voltage-driven semiconductor element;
a series circuit of a second high-side switch (M7) and a second charging gate resistor (R7) having a resistance value set higher than that of the first charging gate resistor, the series circuit being connected between the second driving power supply and a common connection point of the first high-side switch and the first charging gate resistor;
a voltage detection unit (2) that detects a voltage generated in a current path including the first and second gate resistors when the second high-side switch is turned on;
a control unit (16) that controls on/off of the first and second high-side switches and determines, based on the voltage detected by the voltage detection unit, whether or not there is a leakage current flowing from the gate to a low potential side conduction terminal of the semiconductor element. - 前記第1及び第2ハイサイドスイッチは、半導体素子で構成され、
前記第2ハイサイドスイッチのオン抵抗は、前記第1ハイサイドスイッチのオン抵抗よりも高く設定されている請求項3記載の半導体素子の駆動回路。 the first and second high-side switches are formed of semiconductor elements,
4. The semiconductor device drive circuit according to claim 3, wherein an on-resistance of the second high-side switch is set higher than an on-resistance of the first high-side switch. - 電圧駆動型の半導体素子(1)のゲートと低電位基準点との間に接続される、放電用ゲート抵抗(R4,R5,R6)及びローサイドスイッチ(M4,M5,M6)の直列回路を複数備え、
前記複数の放電用ゲート抵抗の抵抗値は互いに異なる値に設定され、それらのうち、抵抗値が最も高いものを含む直列回路を構成するものを、それぞれ検出用スイッチ(M6)、検出用ゲート抵抗(R6)とし、
前記検出用スイッチがオンされた際に、前記検出用ゲート抵抗を含む通電経路に発生する電圧を検出する電圧検出部(2)と、
前記複数のローサイドスイッチのオンオフを制御すると共に、前記電圧検出部により検出された電圧に基いて、前記半導体素子の高電位側導通端子より前記ゲートに流れるリーク電流の有無を判定する制御部(13)と、を備える半導体素子の駆動回路。 A plurality of series circuits each including a discharge gate resistor (R4, R5, R6) and a low-side switch (M4, M5, M6) are connected between a gate of a voltage-driven semiconductor element (1) and a low potential reference point,
The resistance values of the plurality of discharge gate resistors are set to different values, and among them, those constituting a series circuit including the one with the highest resistance value are respectively designated as a detection switch (M6) and a detection gate resistor (R6),
a voltage detection unit (2) that detects a voltage generated in a current path including the detection gate resistor when the detection switch is turned on;
a control unit (13) that controls the on/off of the plurality of low-side switches and determines whether or not there is a leakage current flowing from the high potential side conduction terminal of the semiconductor element to the gate based on the voltage detected by the voltage detection unit. - 前記ローサイドスイッチは、半導体素子で構成され、
前記検出用スイッチのオン抵抗は、その他のローサイドスイッチのオン抵抗よりも高く設定されている請求項4記載の半導体素子の駆動回路。 the low-side switch is composed of a semiconductor element,
5. The semiconductor device drive circuit according to claim 4, wherein the on-resistance of the detection switch is set higher than the on-resistance of the other low-side switches. - 前記電圧検出部は、前記通電経路に発生する電圧を差動により検出する請求項1から6の何れか一項に記載の半導体素子の駆動回路。 The semiconductor element drive circuit according to any one of claims 1 to 6, wherein the voltage detection unit differentially detects the voltage generated in the current path.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-043057 | 2023-03-17 | ||
JP2023043057A JP2024132314A (en) | 2023-03-17 | 2023-03-17 | Semiconductor device driver circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024195419A1 true WO2024195419A1 (en) | 2024-09-26 |
Family
ID=92841732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/006290 WO2024195419A1 (en) | 2023-03-17 | 2024-02-21 | Drive circuit for semiconductor element |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024132314A (en) |
WO (1) | WO2024195419A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013005067A (en) * | 2011-06-14 | 2013-01-07 | Hitachi Automotive Systems Ltd | Power conversion apparatus |
EP3035532A1 (en) * | 2014-12-18 | 2016-06-22 | General Electric Company | Gate drive circuit and method of operating same |
JP2017118360A (en) * | 2015-12-24 | 2017-06-29 | トヨタ自動車株式会社 | Gate voltage control circuit having function of detecting leakage abnormalities |
JP2022173051A (en) * | 2021-05-06 | 2022-11-17 | 株式会社デンソー | Semiconductor element leakage current detection circuit |
-
2023
- 2023-03-17 JP JP2023043057A patent/JP2024132314A/en active Pending
-
2024
- 2024-02-21 WO PCT/JP2024/006290 patent/WO2024195419A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013005067A (en) * | 2011-06-14 | 2013-01-07 | Hitachi Automotive Systems Ltd | Power conversion apparatus |
EP3035532A1 (en) * | 2014-12-18 | 2016-06-22 | General Electric Company | Gate drive circuit and method of operating same |
JP2017118360A (en) * | 2015-12-24 | 2017-06-29 | トヨタ自動車株式会社 | Gate voltage control circuit having function of detecting leakage abnormalities |
JP2022173051A (en) * | 2021-05-06 | 2022-11-17 | 株式会社デンソー | Semiconductor element leakage current detection circuit |
Also Published As
Publication number | Publication date |
---|---|
JP2024132314A (en) | 2024-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8040162B2 (en) | Switch matrix drive circuit for a power element | |
JP5537270B2 (en) | Output circuit | |
US7759985B2 (en) | Driver circuit and semiconductor device using the same | |
US8860472B2 (en) | Power switch driving circuits and switching mode power supply circuits thereof | |
JP7134632B2 (en) | Power transistor gate driver circuit, motor driver circuit | |
KR20010075401A (en) | Methods and apparatus for reducing mosfet body diode conduction in a half-bridge configuration | |
US8283808B2 (en) | Switch arrangement and method for electrical switching | |
JP2000312143A (en) | Switching device | |
US6844769B2 (en) | Drive circuit | |
US6377428B1 (en) | Switching device having the capability of detecting an abnormality | |
JPH11205123A (en) | High withstand voltage power integrated circuit | |
JP2024014878A (en) | Semiconductor device | |
JP2018182953A (en) | Parallel drive circuit of voltage driven type semiconductor device | |
US6531895B1 (en) | Isolated gate drive circuit having a switched input capacitor | |
WO2024195419A1 (en) | Drive circuit for semiconductor element | |
US11128295B1 (en) | Semiconductor device | |
JP2023063081A (en) | Switching circuit, dc/dc converter, and control circuit for the same | |
JP4198634B2 (en) | MOSFET gate driver with negative gate bias voltage | |
US11196421B2 (en) | Logic circuit and circuit chip | |
JP3681731B2 (en) | Drive circuit | |
JP2021005950A (en) | Transistor drive circuit and gate voltage control method of transistor | |
JP5505167B2 (en) | Semiconductor switching element drive circuit | |
JP2003338740A (en) | High breakdown voltage switching circuit | |
JP2000253564A (en) | Power supply control device | |
JPH06120794A (en) | Switching device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24774564 Country of ref document: EP Kind code of ref document: A1 |