WO2024195442A1 - Fuel cell stack - Google Patents
Fuel cell stack Download PDFInfo
- Publication number
- WO2024195442A1 WO2024195442A1 PCT/JP2024/006898 JP2024006898W WO2024195442A1 WO 2024195442 A1 WO2024195442 A1 WO 2024195442A1 JP 2024006898 W JP2024006898 W JP 2024006898W WO 2024195442 A1 WO2024195442 A1 WO 2024195442A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell stack
- region
- case
- pair
- fuel cell
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 33
- 230000000670 limiting effect Effects 0.000 claims abstract description 20
- 230000001133 acceleration Effects 0.000 claims abstract description 11
- 239000012528 membrane Substances 0.000 claims description 23
- 239000003792 electrolyte Substances 0.000 claims description 13
- 238000010248 power generation Methods 0.000 abstract description 20
- 230000006835 compression Effects 0.000 abstract 1
- 238000007906 compression Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 12
- 239000002826 coolant Substances 0.000 description 6
- 239000002737 fuel gas Substances 0.000 description 6
- 239000007800 oxidant agent Substances 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 230000000452 restraining effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/247—Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
- H01M8/2475—Enclosures, casings or containers of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/247—Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
- H01M8/248—Means for compression of the fuel cell stacks
Definitions
- the present invention relates to a fuel cell stack.
- fuel cell technology has been developed to contribute to energy efficiency, ensuring that more people have access to affordable, reliable, sustainable and advanced energy.
- One such fuel cell technology is a fuel cell stack made of multiple cells stacked together, and a technology has been known that prevents cells from shifting position when inertial forces act in a direction perpendicular to the stacking direction (see, for example, Patent Document 1).
- a first restraining member for restraining the position of the stack is arranged on one side of the center in the stacking direction between the outer surface of the stack and the case, and a second restraining member is arranged on the other side.
- the restraining members are positioned without taking into account the mass of the cells, making it difficult to position the restraining members in the optimal position according to the inertial force.
- a fuel cell stack which is one aspect of the present invention, comprises a cell stack constructed by stacking in a predetermined direction power generating cells each having a membrane electrode structure including an electrolyte membrane and electrodes and a separator, a pair of end units arranged adjacent to one end face and the other end face of the cell stack in the predetermined direction, a case surrounding the cell stack and having one end and the other end fixed to the pair of end units respectively so that the cell stack is held in a state in which a predetermined compressive load is applied in the predetermined direction, and a limiting member arranged in the gap between the opposing inner wall surfaces of the case and the outer surface of the cell stack to limit movement of the cell stack in a direction perpendicular to the predetermined direction.
- the region where the restricting member is provided in a specified direction is defined as the first region, and the region where the restricting member is not provided is defined as the second region. Furthermore, the number of consecutive stacked power generation cells in the second region is defined as N, the specified compressive load is defined as P, the friction coefficient on the stacked surface of the power generation cells is defined as ⁇ , the mass of a single power generation cell is defined as m, and the acceleration acting on the cell stack in a direction perpendicular to the specified direction is defined as a.
- the restricting members are positioned to satisfy the relationship N ⁇ 2 ⁇ P ⁇ /(m ⁇ a).
- the limiting member can be positioned in an optimal position according to the inertial force.
- FIG. 1 is a perspective view showing a schematic overall configuration of a fuel cell stack according to an embodiment of the present invention
- FIG. 2 is a cross-sectional view taken along line II-II in FIG. 2 is a diagram for explaining the components of a force generated when an inertial force acts perpendicularly to the stacking direction of a cell stack included in the fuel cell stack of FIG. 1
- FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 2
- FIG. 5 is a diagram showing a modification of FIG. 4 .
- a fuel cell stack according to an embodiment of the present invention constitutes the main element of a fuel cell.
- the fuel cell can be mounted, for example, in a vehicle and generate electricity to drive the vehicle.
- Fuel cells can also be mounted in moving objects other than vehicles, such as aircraft and ships, robots, and various industrial machines.
- FIG. 1 is a perspective view that shows a schematic overall configuration of a fuel cell stack 100 according to an embodiment of the present invention.
- the three mutually orthogonal axial directions shown in the figure are defined below as the front-rear direction, the left-right direction, and the up-down direction, and the configuration of each part will be described according to these definitions. These directions are not necessarily the same as the front-rear direction, the left-right direction, and the up-down direction of the vehicle.
- the front-rear direction in FIG. 1 may be the front-rear direction, the left-right direction, or the up-down direction of the vehicle.
- the fuel cell stack 100 has a cell stack 10, end units 20 arranged adjacent to both front and rear end faces of the cell stack 10, and a case 30 that surrounds the cell stack 10, and has an overall roughly rectangular parallelepiped shape.
- the case 30 has four roughly rectangular side walls 31 that face the top, right, bottom, and left sides of the cell stack 10, respectively. These four side walls 31 form a roughly box-shaped storage space SP0 with open front and rear sides.
- the case 30 is made of a metal such as aluminum or iron.
- the end unit 20 includes insulators and terminal plates between the end plates 21 and the front and rear end faces of the cell stack 10, and the front and rear of the case 30 are covered by the end units 20 (end plates 21).
- the cell stack 10 is formed by stacking a plurality of power generation cells 1 (for convenience, only a single power generation cell is shown) in the front-to-rear direction.
- the power generation cell 1 has a unitized electrode assembly 2 (UEA; unitized electrode assembly) having a membrane electrode assembly including an electrolyte membrane and an electrode, and separators 3 arranged on both the front and rear sides of the unitized electrode assembly 2 and sandwiching the unitized electrode assembly 2.
- the unitized electrode assemblies 2 and the separators 3 are arranged alternately in the front-to-rear direction.
- the number of stacked power generation cells 1 included in the cell stack 10 is the same as the number of integrated electrode assemblies 2.
- Separator 3 has a pair of front and rear metal thin plates with a corrugated cross section, and is constructed as a single unit by joining the outer peripheries of the pair of thin plates.
- Separator 3 is made of a conductive material with excellent corrosion resistance, such as titanium, titanium alloy, or stainless steel.
- the pair of thin plates are formed into an uneven shape by press molding or the like so as to form a cooling flow path inside separator 3 through which a cooling medium (e.g. water) flows, and the power generation surface of power generation cell 1 is cooled by the flow of the cooling medium.
- a cooling medium e.g. water
- the separator 3 on the front side of the integrated electrode assembly 2 is, for example, an anode side separator (anode separator), and an anode flow path through which fuel gas containing hydrogen flows is formed between the anode separator 3 and the integrated electrode assembly 2.
- the separator 3 on the rear side of the integrated electrode assembly 2 is, for example, a cathode side separator (cathode separator), and a cathode flow path through which oxidant gas containing oxygen flows is formed between the cathode separator 3 and the integrated electrode assembly 2.
- the integrated electrode assembly 2 has a membrane electrode assembly (MEA) and a resin frame that supports the periphery of the membrane electrode assembly.
- the integrated electrode assembly 2 is sometimes called a membrane electrode structure or membrane electrode member.
- the membrane electrode assembly has an electrolyte membrane, an anode electrode provided on the front surface of the electrolyte membrane, and a cathode electrode provided on the rear surface of the electrolyte membrane.
- the electrolyte membrane is, for example, a solid polymer electrolyte membrane.
- the anode electrode is an electrode catalyst layer formed on the front surface of the electrolyte membrane and serves as a reaction field for the electrode reaction, and a gas diffusion layer is provided on the front surface of the electrode catalyst layer to diffuse and supply the reactant gas.
- the cathode electrode is an electrode catalyst layer formed on the rear surface of the electrolyte membrane and serves as a reaction field for the electrode reaction, and a gas diffusion layer is provided on the rear surface of the electrode catalyst layer to diffuse and supply the reactant gas
- the fuel gas (hydrogen) supplied through the anode flow path and gas diffusion layer is ionized by the action of a catalyst and passes through the electrolyte membrane to move to the cathode electrode side.
- the electrons generated at this time pass through an external circuit and are extracted as electrical energy.
- the oxidant gas (oxygen) supplied through the cathode flow path and gas diffusion layer reacts with the hydrogen ions guided from the anode electrode and the electrons that have moved from the anode electrode to generate water.
- the generated water provides an appropriate humidity to the electrolyte membrane, and excess water is discharged outside the integrated electrode assembly 2.
- Through holes 211 to 216 are opened in the front end unit 20.
- Through hole 211 is a through hole for supplying fuel gas to the inside of the cell stack 10.
- Through hole 212 is a through hole for discharging cooling medium from the cell stack 10 to the outside.
- Through hole 213 is a through hole for discharging oxidant gas from the cell stack 10 to the outside.
- Through hole 214 is a through hole for supplying oxidant gas to the inside of the cell stack 10.
- Through hole 215 is a through hole for supplying cooling medium to the inside of the cell stack 10.
- Through hole 216 is a through hole for discharging fuel gas from the cell stack 10 to the outside.
- a number of flow paths are formed at both left and right ends of the cell stack 10, extending in the front-rear direction so as to communicate with the through holes 211-216.
- Fuel gas supplied through the through hole 211 is guided to the anode flow path inside the cell stack 10, and oxidant gas supplied through the through hole 214 is guided to the cathode flow path. This allows power generation in the power generation cell 1.
- the fuel gas and oxidant gas are discharged from the cell stack 10 through the through holes 216 and 213, respectively.
- a cooling medium supplied through the through hole 212 is guided to the cell stack 10, thereby cooling the power generation surface.
- the cooling medium that has passed through the cell stack 10 is discharged through the through hole 215.
- the fuel cell stack 100 is assembled, for example, in the following manner. First, one of the end units 20 is placed on the top surface of an assembly table. Next, the case 30 is placed on the top surface of this end unit 20, and the end unit 20 is fastened to one end (lower end) of the case 30 using bolts. Furthermore, multiple power generation cells 1 are stacked and accommodated in the storage space SP0 inside the case through an opening in the top surface of the case 30. At this time, the power generation cells 1 are stacked while being positioned relative to the case 30 by guide members (not shown) that extend in the front-to-rear direction and are provided on the inner wall surface of the case 30.
- the other end unit 20 is mounted and a pressurizing machine is used to apply pressure from above to the entire stack.
- a pressurizing machine is used to apply pressure from above to the entire stack.
- the end unit 20 and the other end of the case 30 are fastened together using bolts. This completes the assembly of the fuel cell stack 100.
- the fuel cell stack 100 is assembled, it is held in a state in which a predetermined compressive load is applied to the cell stack 10 via the end unit 20.
- an inertial force acts on the cell stack 10 in accordance with the acceleration acting on the vehicle. For example, when the stacking direction is in the left-right direction of the vehicle, if longitudinal acceleration acts on the vehicle when the vehicle accelerates and decelerates, an inertial force acts on the cell stack 10 in a direction perpendicular to the stacking direction. Also, when the stacking direction is in the front-rear direction of the vehicle, if lateral acceleration acts on the vehicle when the vehicle turns, an inertial force acts on the cell stack 10 in a direction perpendicular to the stacking direction.
- an inertial force acts on the cell stack 10 during normal operation of the vehicle, but this is not limited to this, and an inertial force also acts on the cell stack 10 when an impact force acts on the vehicle from the outside.
- an inertial force acts on the cell stack 10 in a direction perpendicular to the stacking direction.
- the stacking direction is the front-rear direction of the vehicle
- an external object e.g., another vehicle
- an impact acts from the right or left by the external object
- an inertial force acts on the cell stack 10 in a direction perpendicular to the stacking direction.
- the inertial force acting during normal operation is called a normal inertial force
- the inertial force acting when an impact force acts from an object outside the vehicle is sometimes called an abnormal inertial force.
- the abnormal inertial force may be larger than the normal inertial force.
- a limiting member 50 is provided that limits the movement of the cell stack 10 to prevent deformation and misalignment of the cell stack 10 in the direction perpendicular to the stacking direction.
- FIG. 1 a restricting member 50 is provided in the center of the case 30 in the front-to-rear direction.
- FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1. For convenience, FIG. 2 shows only the outline of the cell stack 10.
- a gap SP1 is provided around the entire circumference of the cell stack 10 between the inner surface 30a of the case 30 and the outer surface 10a of the cell stack 10.
- the restricting members 50 are provided at the four corners of the case 30, i.e., the corners where the upper and lower side walls 31 intersect with the left and right side walls 31, so as to close the gap SP1.
- the restricting member 50 has a cover 51 configured with a substantially L-shaped cross section corresponding to the corner of the case 30, and a buffer 52 attached to the inner surface of the cover 51.
- the cover 51 is made of a metal that is one size larger than the opening 32.
- the buffer 52 is an elastic body such as a resin material or rubber, and is made of an insulator.
- the buffer 52 is, for example, bonded to the inner surface of the cover 51 and is provided integrally with the cover 51.
- the buffer 52 can be inserted into the gap SP1 through the opening 32, and is configured with a substantially L-shaped cross section corresponding to the shape of the corner of the outer surface 10a of the cell stack 10.
- the cover 51 has through holes 53 at both ends, sandwiching the corners.
- the cover 51 also has through holes 53 at both ends in the front-rear direction (see FIG. 1).
- the case 30 has screw holes 33 near the opening 32, corresponding to the through holes 53.
- the cover 51 is attached to the case 30 from the outside so as to cover the entire opening 32. More specifically, the cover 51 is fixed to the outer surface 31b of the side wall 31 by screwing bolts 55 inserted through the through holes 53 into the screw holes 33.
- a sealant is interposed at the contact surface between the cover 51 and the outer surface 31b of the side wall 31, and the cover 51 is attached to the side wall 31 in a sealed state via the sealant.
- the buffer 52 When the cover 51 is attached to the case 30, the buffer 52 is positioned inside the opening 32 without interfering with the case 30. At this time, the buffer 52 is pressed against the corner of the cell stack 10 by the fastening force of the bolt 55, and the gap SP1 between the corner of the case 30 and the corner of the cell stack 10 is blocked by the buffer 52. As a result, the compressed buffer 52 is interposed in the gap SP1 between the corner of the highly rigid case 30 and the corner of the cell stack 10. Therefore, the restricting member 50 restricts the cell stack 10 in the vertical and horizontal directions, making it possible to limit the movement of the cell stack 10 when an inertial force acts on the cell stack 10.
- the restricting member 50 is disposed in the gap SP1 in this manner, it is possible to suppress displacement of the cell stack 10 in the shear direction (up-down direction, left-right direction) when an inertial force acts on the cell stack 10.
- the fuel cell stack 100 is configured as follows so that the restricting member 50 can efficiently suppress displacement of the cell stack 10 when an inertial force acts on the cell stack 10, particularly displacement due to slippage of the cell stack 10 on the stacking surface.
- Figure 3 is a diagram explaining the force components that are generated when an inertial force acts perpendicular to the stacking direction of the cell stack 10 when there is no restricting member 50.
- an impact force G acts to the left on the vehicle body, i.e., the case 30, an inertial force F acts to the right on the cell stack 10, causing the cell stack 10 to deform into a bow shape as shown by the two-dot chain line in Figure 3.
- a frictional force Fs against the maximum shear force F/2 acts on both front and rear end surfaces of the cell stack 10.
- the compressive load in the front and rear direction applied when stacking the cell stack 10 is P and the friction coefficient (e.g., static friction coefficient) at the boundary surface between the cell stack 10 and the end unit 20 is ⁇
- the frictional force Fs is P ⁇ .
- the friction coefficient ⁇ is the same or approximately the same as the friction coefficient of the stacking surface of the cell stack 10.
- the mass of each set of power generation cells 1 is m
- the number of stacks of the cell stack 10 is N
- the acceleration of the cell stack 10 is a
- the inertial force F is m ⁇ N ⁇ a.
- the acceleration a is the acceleration when an abnormal inertial force larger than the normal inertial force acts on the vehicle.
- the acceleration a is 50 m/s2.
- the limiting member 50 is positioned so that the number of stacks N of the cell stack 10 that is not limited by the limiting member 50 is less than the limit number of stacks N0.
- FIG. 4 is a diagram showing an example of the arrangement of the restricting member 50 included in the fuel cell stack 100 according to this embodiment, and corresponds to a cross-sectional view taken along line IV-IV in FIG. 2.
- the restricting member 50 is arranged in the center of the cell stack 10 in the front-rear direction.
- the area AR1 in which the restricting member 50 is arranged will be referred to as the restricting area
- the area AR2 in which the restricting member 50 is not arranged will be referred to as the non-restricting area.
- non-restricting areas AR2 are provided on both the front and rear sides of the restricting area AR1.
- the number N of stacked power generating cells 1 in both the front and rear non-restricting areas AR2 is set to be less than the limit stacking number N0.
- the number N of stacked power generating cells 1 in the front and rear non-restricted areas AR2 is set to 156.
- the number N of stacked cells in the restricted area AR1 is 88. This makes it possible to suppress slippage of the cell stack 10 at both front and rear end surfaces of the non-restricted area AR2, i.e., misalignment of the stacked surface of the cell stack 10 due to inertial force F.
- the length of the restricted area AR1 can be minimized.
- the size (front-rear length) of the limiting member 50 can be minimized, and costs can be reduced.
- FIG. 5 shows a modified example of FIG. 4.
- restricting members 50 are arranged at both ends of the cell stack 10 in the front-rear direction.
- restricted areas AR1 are provided at both ends of the cell stack 10 in the front-rear direction, and a non-restricted area AR2 is provided in the center in the front-rear direction.
- the number N of stacked power generating cells 1 in the non-restricted area AR2 is set to be less than the limit number N0.
- the number N of stacked power generating cells 1 in the central unrestricted area AR2 is set to 156.
- the number N of stacked cells in the front and rear restricted areas AR1 are both set to 122. This makes it possible to suppress slippage of the cell stack 10 at both front and rear end surfaces of the unrestricted area AR2.
- the restricting member 50 is provided in connection with the front and rear end units 20, so that the opening 32 ( Figure 2) of the case 30 can be easily processed.
- the restricting member 50 is provided facing both ends of the case 30 in the front-rear direction, so that the restricting member 50 can be easily positioned. For example, it is possible to insert the restricting member 50 into the gap SP1 through the opening faces at both ends of the case 30 in the front-rear direction.
- the fuel cell stack 100 comprises a cell stack 10 constructed by stacking in the fore-and-aft direction power-generating cells 1, each having an integrated electrode assembly 2 including an electrolyte membrane and an electrode, and a separator 3; a pair of end units 20 arranged adjacent to the front and rear end faces, respectively, of the cell stack 10; a case 30 surrounding the cell stack 10 and having its front and rear ends fixed to the pair of end units 20, respectively, so that the cell stack 10 is held in a state in which a predetermined compressive load is applied in the fore-and-aft direction; and a limiting member 50 arranged in a gap SP1 between the opposing inner wall surface 31a of the case 30 and the outer surface 10a of the cell stack 10, for limiting movement of the cell stack 10 in a direction perpendicular to the fore-and-aft direction ( FIGS.
- the limiting member 50 is arranged so as to satisfy the relationship N ⁇ 2 ⁇ P ⁇ /(m ⁇ a) (formula (II) above) ( Figures 4 and 5), where the region in the front-rear direction where the limiting member 50 is provided is defined as a restriction region AR1 (first region), and the region in which the limiting member 50 is not provided is defined as a non-restriction region AR2 (second region).
- N restriction region
- AR2 non-restriction region AR2
- a predetermined compressive load is defined as P
- the friction coefficient at the stacking surface of the power generating cells 1 is defined as ⁇
- the mass of a single power generating cell 1 is defined as m
- the acceleration acting on the cell stack 10 in a direction perpendicular to the front-rear direction is defined as a.
- This configuration allows the restricting member 50 to be appropriately positioned, and prevents the cell stack 10 from slipping due to inertial forces. In other words, it is possible to determine the maximum number of stacked power generating cells 1 that will not cause slippage in the cell stack 10 (the maximum number of stacked cells less than the limit number of stacked cells N0), so the restriction area AR1 can be set efficiently and without waste, and unnecessary placement of the restricting member 50 can be prevented.
- the non-restricted area AR2 is a pair of non-restricted areas AR2 that respectively include the front and rear ends of the gap SP1, and the restricted area AR1 is an area sandwiched between the pair of non-restricted areas AR2 (FIG. 4). This allows the range of the restricted area AR1 to be minimized, thereby reducing costs.
- the restricted area AR1 may be a pair of restricted areas AR1 each including a front end and a rear end of the gap SP1, and the non-restricted area AR2 may be an area sandwiched between the pair of restricted areas AR1 (FIG. 5). This allows the restricting member 50 to be positioned at both ends of the case 30 where the gap SP1 is easily accessible from the outside, making it easy to position the restricting member 50.
- the restricting member 50 is attached to the case 30 from the outside of the case 30, but the configuration of the restricting member is not limited to this.
- a cover 51 that covers the opening 32 can be placed inside the case 30, and the restricting member can be configured not to protrude from the outer surface 31b of the side wall 31 of the case 30.
- the restricting members 50 are placed at the four corners of the case 40, but they may be placed at two opposing corners.
- the restricting member may be placed at a location other than the corners.
- the restricting member may be fixed to the gap SP1 between the inner wall surface 31a of the case 30 and the outer surface 10a of the cell stack 10 using fixing means other than bolts.
- one of the restricted area AR1 and the non-restricted area AR2 is a single area, but the restricted area AR1 (first area) and the non-restricted area AR2 (second area) may be provided alternately in multiples.
- the number of stacked power generation cells 1 in the non-restricted area AR2 may be set so as to satisfy the above formula (II).
- the stack (cell stack 10) is formed by stacking the integrated electrode assemblies 2 and separators 3 as membrane electrode structures including an electrolyte membrane and electrodes alternately in the front-rear direction (predetermined direction), but the stacking direction is not limited to the front-rear direction and may be the up-down direction.
- the fuel cell stack 100 is mounted on a vehicle, but the fuel cell stack can also be mounted on other moving objects.
- the limiting member should be positioned to satisfy the relationship in formula (II) above, taking into account the inertial force acting on the moving object.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
This fuel cell stack comprises a limiting member that is disposed in a gap between an inner wall surface of a case and an outer side surface of a cell stack, the surfaces facing each other, and that limits the movement of the cell stack in a direction that is orthogonal to a predetermined direction. If, in the predetermined direction, a region where the limiting member is provided is defined as a first region and a region where the limiting member is not provided is defined as a second region, the limiting member is disposed so as to satisfy the relationship N < 2 × P × µ/(m × a), where N is the number of continuously stacked power generation cells in the second region, P is the compression load in the stacking direction, µ is the friction coefficient at the contact surface between the cell stack and a pair of end units, m is the mass of a single power generation cell, and a is the acceleration acting on the cell stack in a direction that is orthogonal to the predetermined direction.
Description
本発明は、燃料電池スタックに関する。
The present invention relates to a fuel cell stack.
近年、より多くの人が手ごろで信頼でき、持続可能かつ先進的なエネルギへのアクセスを確保できるようにするため、エネルギの効率化に貢献する燃料電池に関する技術開発が行われている。このような燃料電池に関する技術として、複数のセルを積層してなる燃料電池スタックにおいて、従来、積層方向に直交する方向に慣性力が作用した場合のセルの位置ずれを防止するようにした技術が知られている(例えば特許文献1参照)。特許文献1記載の燃料電池スタックでは、積層体の外側面とケースとの間に、積層方向の中心よりも一方側に積層体の位置を拘束するための第1拘束部材が配置され、他方側に第2拘束部材が配置される。
In recent years, fuel cell technology has been developed to contribute to energy efficiency, ensuring that more people have access to affordable, reliable, sustainable and advanced energy. One such fuel cell technology is a fuel cell stack made of multiple cells stacked together, and a technology has been known that prevents cells from shifting position when inertial forces act in a direction perpendicular to the stacking direction (see, for example, Patent Document 1). In the fuel cell stack described in Patent Document 1, a first restraining member for restraining the position of the stack is arranged on one side of the center in the stacking direction between the outer surface of the stack and the case, and a second restraining member is arranged on the other side.
しかしながら、上記特許文献1記載の燃料電池スタックでは、セルの質量等を考慮せずに拘束部材を配置するため、慣性力に応じた最適な位置に拘束部材を配置することが難しい。
However, in the fuel cell stack described in Patent Document 1, the restraining members are positioned without taking into account the mass of the cells, making it difficult to position the restraining members in the optimal position according to the inertial force.
本発明の一態様である燃料電池スタックは、電解質膜と電極とを含む膜電極構造体と、セパレータと、を有する発電セルを、所定方向に積層して構成されたセル積層体と、セル積層体の所定方向における一端面および他端面に隣接してそれぞれ配置された一対のエンドユニットと、所定方向に所定の圧縮荷重が付加された状態でセル積層体が保持されるように一端部および他端部がそれぞれ一対のエンドユニットに固定され、セル積層体を包囲するケースと、互いに対向するケースの内壁面とセル積層体の外側面との間の空隙に配置され、セル積層体の所定方向に直交する方向の移動を制限する制限部材と、を備える。所定方向における制限部材が設けられる領域を第1領域、制限部材が設けられない領域を第2領域と定義し、さらに、第2領域における発電セルの連続した積層数をN、所定の圧縮荷重をP,発電セルの積層面における摩擦係数をμ、単一の発電セルの質量をm、セル積層体に対し所定方向と直交する方向に作用する加速度をaと定義するとき、N<2×P×μ/(m×a)の関係を満たすように制限部材が配置される。
A fuel cell stack, which is one aspect of the present invention, comprises a cell stack constructed by stacking in a predetermined direction power generating cells each having a membrane electrode structure including an electrolyte membrane and electrodes and a separator, a pair of end units arranged adjacent to one end face and the other end face of the cell stack in the predetermined direction, a case surrounding the cell stack and having one end and the other end fixed to the pair of end units respectively so that the cell stack is held in a state in which a predetermined compressive load is applied in the predetermined direction, and a limiting member arranged in the gap between the opposing inner wall surfaces of the case and the outer surface of the cell stack to limit movement of the cell stack in a direction perpendicular to the predetermined direction. The region where the restricting member is provided in a specified direction is defined as the first region, and the region where the restricting member is not provided is defined as the second region. Furthermore, the number of consecutive stacked power generation cells in the second region is defined as N, the specified compressive load is defined as P, the friction coefficient on the stacked surface of the power generation cells is defined as μ, the mass of a single power generation cell is defined as m, and the acceleration acting on the cell stack in a direction perpendicular to the specified direction is defined as a. The restricting members are positioned to satisfy the relationship N<2×P×μ/(m×a).
本発明によれば、慣性力に応じた最適な位置に制限部材を配置することができる。
According to the present invention, the limiting member can be positioned in an optimal position according to the inertial force.
以下、図1~図5を参照して本発明の実施形態について説明する。本発明の実施形態に係る燃料電池スタックは、燃料電池の主たる要素を構成する。燃料電池は、例えば車両に搭載され、車両駆動用の電力を発生することができる。燃料電池は、航空機や船舶等の車両以外の移動体、ロボットの他、各種産業機械に搭載することもできる。
Below, an embodiment of the present invention will be described with reference to Figures 1 to 5. A fuel cell stack according to an embodiment of the present invention constitutes the main element of a fuel cell. The fuel cell can be mounted, for example, in a vehicle and generate electricity to drive the vehicle. Fuel cells can also be mounted in moving objects other than vehicles, such as aircraft and ships, robots, and various industrial machines.
まず、燃料電池スタックの全体構成を説明する。図1は、本発明の実施形態に係る燃料電池スタック100の全体構成を概略的に示す斜視図である。以下では、便宜上、図示のように互いに直交する三軸方向を、前後方向、左右方向および上下方向と定義し、この定義に従い各部の構成を説明する。これらの方向は、車両の前後方向、左右方向および上下方向と同一であるとは限らない。例えば図1の前後方向は、車両の前後方向であってもよく、左右方向であってもよく、上下方向であってもよい。
First, the overall configuration of the fuel cell stack will be described. FIG. 1 is a perspective view that shows a schematic overall configuration of a fuel cell stack 100 according to an embodiment of the present invention. For convenience, the three mutually orthogonal axial directions shown in the figure are defined below as the front-rear direction, the left-right direction, and the up-down direction, and the configuration of each part will be described according to these definitions. These directions are not necessarily the same as the front-rear direction, the left-right direction, and the up-down direction of the vehicle. For example, the front-rear direction in FIG. 1 may be the front-rear direction, the left-right direction, or the up-down direction of the vehicle.
図1に示すように、燃料電池スタック100は、セル積層体10と、セル積層体10の前後両端面に隣接して配置されたエンドユニット20と、セル積層体10を包囲するケース30と、を有し、全体が略直方体形状を呈する。
As shown in FIG. 1, the fuel cell stack 100 has a cell stack 10, end units 20 arranged adjacent to both front and rear end faces of the cell stack 10, and a case 30 that surrounds the cell stack 10, and has an overall roughly rectangular parallelepiped shape.
ケース30は、セル積層体10の上面、右面、下面および左面にそれぞれ対向した略矩形状の4つの側壁31を有する。これら4つの側壁31により、前面および後面が開放された略ボックス状の収容空間SP0が形成される。ケース30は、アルミニウムや鉄などの金属によって構成される。エンドユニット20は、金属製のエンドプレート21の他、エンドプレート21とセル積層体10の前後両端面との間にインシュレータおよびターミナルプレートを含み、ケース30の前面および後面は、エンドユニット20(エンドプレート21)で覆われる。
The case 30 has four roughly rectangular side walls 31 that face the top, right, bottom, and left sides of the cell stack 10, respectively. These four side walls 31 form a roughly box-shaped storage space SP0 with open front and rear sides. The case 30 is made of a metal such as aluminum or iron. In addition to the metal end plates 21, the end unit 20 includes insulators and terminal plates between the end plates 21 and the front and rear end faces of the cell stack 10, and the front and rear of the case 30 are covered by the end units 20 (end plates 21).
図1のA部には、ケース30の側壁31の一部を破断して示す。図1のA部に示すように、セル積層体10は、複数の発電セル1(便宜上、単一の発電セルのみ示す)を前後方向に積層して構成される。発電セル1は、電解質膜と電極とを含む膜電極接合体を有する一体化電極アッセンブリ2(UEA;Unitized Electrode Assembly)と、一体化電極アッセンブリ2の前後両側に配置され、一体化電極アッセンブリ2を挟持するセパレータ3と、を有する。一体化電極アッセンブリ2とセパレータ3とは、前後方向に交互に配置される。セル積層体10に含まれる発電セル1の積層数は、一体化電極アッセンブリ2の個数と同じである。
In part A of FIG. 1, a portion of the side wall 31 of the case 30 is shown in a cutaway state. As shown in part A of FIG. 1, the cell stack 10 is formed by stacking a plurality of power generation cells 1 (for convenience, only a single power generation cell is shown) in the front-to-rear direction. The power generation cell 1 has a unitized electrode assembly 2 (UEA; unitized electrode assembly) having a membrane electrode assembly including an electrolyte membrane and an electrode, and separators 3 arranged on both the front and rear sides of the unitized electrode assembly 2 and sandwiching the unitized electrode assembly 2. The unitized electrode assemblies 2 and the separators 3 are arranged alternately in the front-to-rear direction. The number of stacked power generation cells 1 included in the cell stack 10 is the same as the number of integrated electrode assemblies 2.
セパレータ3は、断面が波板状の前後一対の金属製の薄板を有し、これら一対の薄板の外周部同士を接合して一体に構成される。セパレータ3には耐腐食性に優れた導電性の材料が用いられ、例えばチタン、チタン合金、ステンレス等を用いることができる。一対の薄板は、セパレータ3の内部に冷却媒体(例えば水)が流れる冷却流路を形成するようにプレス成形などによって凹凸状に形成され、冷却媒体の流れにより発電セル1の発電面が冷却される。
Separator 3 has a pair of front and rear metal thin plates with a corrugated cross section, and is constructed as a single unit by joining the outer peripheries of the pair of thin plates. Separator 3 is made of a conductive material with excellent corrosion resistance, such as titanium, titanium alloy, or stainless steel. The pair of thin plates are formed into an uneven shape by press molding or the like so as to form a cooling flow path inside separator 3 through which a cooling medium (e.g. water) flows, and the power generation surface of power generation cell 1 is cooled by the flow of the cooling medium.
一体化電極アッセンブリ2の前側のセパレータ3は、例えばアノード側のセパレータ(アノードセパレータ)であり、アノードセパレータ3と一体化電極アッセンブリ2との間に、水素を含む燃料ガスが流れるアノード流路が形成される。一体化電極アッセンブリ2の後側のセパレータ3は、例えばカソード側のセパレータ(カソードセパレータ)であり、カソードセパレータ3と一体化電極アッセンブリ2との間に、酸素を含む酸化剤ガスが流れるカソード流路が形成される。
The separator 3 on the front side of the integrated electrode assembly 2 is, for example, an anode side separator (anode separator), and an anode flow path through which fuel gas containing hydrogen flows is formed between the anode separator 3 and the integrated electrode assembly 2. The separator 3 on the rear side of the integrated electrode assembly 2 is, for example, a cathode side separator (cathode separator), and a cathode flow path through which oxidant gas containing oxygen flows is formed between the cathode separator 3 and the integrated electrode assembly 2.
一体化電極アッセンブリ2は、膜電極接合体(MEA;Membrane Electrode Assembly)と、膜電極接合体の周囲を支持する樹脂製のフレームと、を有する。一体化電極アッセンブリ2を、膜電極構造体または膜電極部材と呼ぶことがある。膜電極接合体は、電解質膜と、電解質膜の前面に設けられたアノード電極と、電解質膜の後面に設けられたカソード電極とを有する。電解質膜は、例えば固体高分子電解質膜である。アノード電極は、電解質膜の前面に形成され、電極反応の反応場となる電極触媒層であり、該電極触媒層の前面には反応ガスを拡散して供給するガス拡散層が設けられる。カソード電極は、電解質膜の後面に形成され、電極反応の反応場となる電極触媒層であり、該電極触媒層の後面には反応ガスを拡散して供給するガス拡散層が設けられる。
The integrated electrode assembly 2 has a membrane electrode assembly (MEA) and a resin frame that supports the periphery of the membrane electrode assembly. The integrated electrode assembly 2 is sometimes called a membrane electrode structure or membrane electrode member. The membrane electrode assembly has an electrolyte membrane, an anode electrode provided on the front surface of the electrolyte membrane, and a cathode electrode provided on the rear surface of the electrolyte membrane. The electrolyte membrane is, for example, a solid polymer electrolyte membrane. The anode electrode is an electrode catalyst layer formed on the front surface of the electrolyte membrane and serves as a reaction field for the electrode reaction, and a gas diffusion layer is provided on the front surface of the electrode catalyst layer to diffuse and supply the reactant gas. The cathode electrode is an electrode catalyst layer formed on the rear surface of the electrolyte membrane and serves as a reaction field for the electrode reaction, and a gas diffusion layer is provided on the rear surface of the electrode catalyst layer to diffuse and supply the reactant gas.
アノード電極では、アノード流路およびガス拡散層を介して供給された燃料ガス(水素)が、触媒の作用によってイオン化され、電解質膜を通過してカソード電極側へ移動する。このとき生じた電子は、外部回路を通過し、電気エネルギとして取り出される。カソード電極では、カソード流路およびガス拡散層を介して供給された酸化剤ガス(酸素)と、アノード電極から導かれた水素イオンおよびアノード電極から移動した電子とが反応し、水が生成される。生成された水は、電解質膜に適度な湿度を与え、余剰な水は一体化電極アッセンブリ2の外部へ排出される。
At the anode electrode, the fuel gas (hydrogen) supplied through the anode flow path and gas diffusion layer is ionized by the action of a catalyst and passes through the electrolyte membrane to move to the cathode electrode side. The electrons generated at this time pass through an external circuit and are extracted as electrical energy. At the cathode electrode, the oxidant gas (oxygen) supplied through the cathode flow path and gas diffusion layer reacts with the hydrogen ions guided from the anode electrode and the electrons that have moved from the anode electrode to generate water. The generated water provides an appropriate humidity to the electrolyte membrane, and excess water is discharged outside the integrated electrode assembly 2.
前側のエンドユニット20には、貫通孔211~216が開口される。貫通孔211は、セル積層体10の内部に燃料ガスを供給するための貫通孔である。貫通孔212は、セル積層体10から外部に冷却媒体を排出するための貫通孔である。貫通孔213は、セル積層体10から外部に酸化剤ガスを排出するための貫通孔である。貫通孔214は、セル積層体10の内部に酸化剤ガスを供給するための貫通孔である。貫通孔215は、セル積層体10の内部に冷却媒体を供給するための貫通孔である。貫通孔216は、セル積層体10から外部に燃料ガスを排出するための貫通孔である。
Through holes 211 to 216 are opened in the front end unit 20. Through hole 211 is a through hole for supplying fuel gas to the inside of the cell stack 10. Through hole 212 is a through hole for discharging cooling medium from the cell stack 10 to the outside. Through hole 213 is a through hole for discharging oxidant gas from the cell stack 10 to the outside. Through hole 214 is a through hole for supplying oxidant gas to the inside of the cell stack 10. Through hole 215 is a through hole for supplying cooling medium to the inside of the cell stack 10. Through hole 216 is a through hole for discharging fuel gas from the cell stack 10 to the outside.
セル積層体10の左右方向両端部には、貫通孔211~216に連通するように前後方向に延在する複数の流路(マニホールド)が形成される。セル積層体10の内部のアノード流路には、貫通孔211を介して供給された燃料ガスが導かれ、カソード流路には貫通孔214を介して供給された酸化剤ガスが導かれる。これにより発電セル1で発電が行われる。供給後の燃料ガスおよび酸化剤ガスは、それぞれ貫通孔216,213を介してセル積層体10から排出される。セル積層体10には貫通孔212を介して供給された冷却媒体が導かれ、これにより発電面が冷却される。セル積層体10を通過した冷却媒体は、貫通孔215を介して排出される。
A number of flow paths (manifolds) are formed at both left and right ends of the cell stack 10, extending in the front-rear direction so as to communicate with the through holes 211-216. Fuel gas supplied through the through hole 211 is guided to the anode flow path inside the cell stack 10, and oxidant gas supplied through the through hole 214 is guided to the cathode flow path. This allows power generation in the power generation cell 1. After supply, the fuel gas and oxidant gas are discharged from the cell stack 10 through the through holes 216 and 213, respectively. A cooling medium supplied through the through hole 212 is guided to the cell stack 10, thereby cooling the power generation surface. The cooling medium that has passed through the cell stack 10 is discharged through the through hole 215.
燃料電池スタック100は、例えば以下の手順で組み立てられる。まず、組立台の上面に一方のエンドユニット20を載置する。次いで、このエンドユニット20の上面にケース30を載置するとともに、ボルトを用いてエンドユニット20とケース30の一端部(下端部)とを締結する。さらに、ケース30の上面の開口を介して、ケース内の収容空間SP0に複数の発電セル1を積層しながら収容する。このとき、ケース30の内壁面に設けられた前後方向に延在するガイド部材(不図示)などによって発電セル1をケース30に対し位置決めしながら積層する。
The fuel cell stack 100 is assembled, for example, in the following manner. First, one of the end units 20 is placed on the top surface of an assembly table. Next, the case 30 is placed on the top surface of this end unit 20, and the end unit 20 is fastened to one end (lower end) of the case 30 using bolts. Furthermore, multiple power generation cells 1 are stacked and accommodated in the storage space SP0 inside the case through an opening in the top surface of the case 30. At this time, the power generation cells 1 are stacked while being positioned relative to the case 30 by guide members (not shown) that extend in the front-to-rear direction and are provided on the inner wall surface of the case 30.
所定数の発電セル1が積層されると、他方のエンドユニット20を搭載し、加圧機を用いて積層体全体に上方から加圧力を付加する。加圧力の付加によって、上側のエンドユニット20がケース30の他端部(上端部)に当接すると、ボルトと用いてエンドユニット20とケース30の他端部とを締結する。これにより燃料電池スタック100の組立が完了する。燃料電池スタック100が組み立てられた状態では、燃料電池スタック100は、エンドユニット20を介してセル積層体10に所定の圧縮荷重が付加された状態で保持される。
Once a predetermined number of power generation cells 1 have been stacked, the other end unit 20 is mounted and a pressurizing machine is used to apply pressure from above to the entire stack. When the upper end unit 20 comes into contact with the other end (top end) of the case 30 as a result of the application of pressure, the end unit 20 and the other end of the case 30 are fastened together using bolts. This completes the assembly of the fuel cell stack 100. When the fuel cell stack 100 is assembled, it is held in a state in which a predetermined compressive load is applied to the cell stack 10 via the end unit 20.
このような燃料電池スタック100が車両に搭載されると、セル積層体10には、車両に作用する加速度に応じた慣性力が作用する。例えば積層方向が車両の左右方向であるとき、車両の加速時および減速時に車両に前後方向の加速度が作用すると、セル積層体10には、積層方向に直交する方向に慣性力が作用する。また、積層方向が車両の前後方向であるとき、車両の旋回時に車両に左右方向の横加速度が作用すると、セル積層体10には、積層方向に直交する方向に慣性力が作用する。
When such a fuel cell stack 100 is mounted on a vehicle, an inertial force acts on the cell stack 10 in accordance with the acceleration acting on the vehicle. For example, when the stacking direction is in the left-right direction of the vehicle, if longitudinal acceleration acts on the vehicle when the vehicle accelerates and decelerates, an inertial force acts on the cell stack 10 in a direction perpendicular to the stacking direction. Also, when the stacking direction is in the front-rear direction of the vehicle, if lateral acceleration acts on the vehicle when the vehicle turns, an inertial force acts on the cell stack 10 in a direction perpendicular to the stacking direction.
このように車両の通常運転時においてセル積層体10には慣性力が作用するが、これに限らず、車両に外部から衝撃力が作用した場合にも、セル積層体10に慣性力が作用する。例えば積層方向が車両の左右方向であるとき、車両が外部の物体(例えば他車両)に衝突して外部の物体により前方または後方から衝撃が作用すると、セル積層体10には、積層方向に直交する方向に慣性力が作用する。また、積層方向が車両の前後方向であるとき、車両が外部の物体(例えば他車両)に衝突して外部の物体により右方または左方から衝撃が作用すると、セル積層体10には、積層方向に直交する方向に慣性力が作用する。通常運転時に作用する慣性力を通常慣性力と呼び、車両の外部の物体から衝撃力が作用した場合の慣性力を異常慣性力と呼ぶことがある。異常慣性力は、通常慣性力よりも大きいおそれがある。
In this way, an inertial force acts on the cell stack 10 during normal operation of the vehicle, but this is not limited to this, and an inertial force also acts on the cell stack 10 when an impact force acts on the vehicle from the outside. For example, when the stacking direction is the left-right direction of the vehicle, if the vehicle collides with an external object (e.g., another vehicle) and an impact acts from the front or rear by the external object, an inertial force acts on the cell stack 10 in a direction perpendicular to the stacking direction. Also, when the stacking direction is the front-rear direction of the vehicle, if the vehicle collides with an external object (e.g., another vehicle) and an impact acts from the right or left by the external object, an inertial force acts on the cell stack 10 in a direction perpendicular to the stacking direction. The inertial force acting during normal operation is called a normal inertial force, and the inertial force acting when an impact force acts from an object outside the vehicle is sometimes called an abnormal inertial force. The abnormal inertial force may be larger than the normal inertial force.
このようにセル積層体10に、積層方向に直交する方向に慣性力が作用すると、セル積層体10の積層方向の中央部が弓なりに変形する。このとき、セル積層体10の積層面には剪断力が作用することとなり、セル積層体10の積層面(例えばエンドユニット20との境界面)で位置ずれが生じるおそれがある。この点を考慮して、本実施形態では、積層方向に直交する方向へのセル積層体10の変形および位置ずれを防止するため、セル積層体10の移動を制限する制限部材50が設けられる。
When an inertial force acts on the cell stack 10 in a direction perpendicular to the stacking direction, the center of the cell stack 10 in the stacking direction is deformed into a bow shape. At this time, a shear force acts on the stacking surface of the cell stack 10, which may cause misalignment at the stacking surface of the cell stack 10 (e.g., the boundary surface with the end unit 20). Taking this into consideration, in this embodiment, a limiting member 50 is provided that limits the movement of the cell stack 10 to prevent deformation and misalignment of the cell stack 10 in the direction perpendicular to the stacking direction.
図1では、ケース30の前後方向中央部に制限部材50が設けられる。図2は、図1のII-II線に沿った断面図である。図2では、便宜上、セル積層体10については輪郭のみを示す。図2に示すように、ケース30の内側面30aとセル積層体10の外側面10aとの間には、セル積層体10の全周にわたって空隙SP1が設けられる。制限部材50は、空隙SP1を塞ぐように、ケース30の4つの角部、すなわち上下の側壁31と左右の側壁31とが交差する角部に設けられる。
In FIG. 1, a restricting member 50 is provided in the center of the case 30 in the front-to-rear direction. FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1. For convenience, FIG. 2 shows only the outline of the cell stack 10. As shown in FIG. 2, a gap SP1 is provided around the entire circumference of the cell stack 10 between the inner surface 30a of the case 30 and the outer surface 10a of the cell stack 10. The restricting members 50 are provided at the four corners of the case 30, i.e., the corners where the upper and lower side walls 31 intersect with the left and right side walls 31, so as to close the gap SP1.
より詳しくは、ケース30の角部には、前後方向(積層方向)所定長さにわたって開口部32が設けられる。制限部材50は、ケース30の角部に対応して断面略L字状に構成されたカバー51と、カバー51の内面に装着された緩衝体52とを有する。カバー51は、開口部32よりも一回り大きい金属により構成される。緩衝体52は、樹脂材やゴム等の弾性体であり、絶縁体により構成される。緩衝体52は、例えばカバー51の内面に接着され、カバー51と一体に設けられる。緩衝体52は、開口部32を介して空隙SP1に挿入可能であり、セル積層体10の外側面10aの角部の形状に対応して断面略L字に構成される。
More specifically, an opening 32 is provided at the corner of the case 30 over a predetermined length in the front-rear direction (stacking direction). The restricting member 50 has a cover 51 configured with a substantially L-shaped cross section corresponding to the corner of the case 30, and a buffer 52 attached to the inner surface of the cover 51. The cover 51 is made of a metal that is one size larger than the opening 32. The buffer 52 is an elastic body such as a resin material or rubber, and is made of an insulator. The buffer 52 is, for example, bonded to the inner surface of the cover 51 and is provided integrally with the cover 51. The buffer 52 can be inserted into the gap SP1 through the opening 32, and is configured with a substantially L-shaped cross section corresponding to the shape of the corner of the outer surface 10a of the cell stack 10.
カバー51には、角部を挟んで両端部に貫通孔53が設けられる。カバー51には、前後方向両端部にも貫通孔53が設けられる(図1参照)。ケース30には、開口部32の近傍に、貫通孔53に対応してねじ孔33が設けられる。カバー51は、開口部32の全体を塞ぐようにケース30の外側からケース30に取り付けられる。より詳しくは、貫通孔53を挿通したボルト55をねじ孔33に螺合することで、側壁31の外側面31bにカバー51が固定される。図示は省略するが、カバー51と側壁31の外側面31bとの接触面にはシール材が介装され、カバー51はシール材を介して密封状態で側壁31に取り付けられる。
The cover 51 has through holes 53 at both ends, sandwiching the corners. The cover 51 also has through holes 53 at both ends in the front-rear direction (see FIG. 1). The case 30 has screw holes 33 near the opening 32, corresponding to the through holes 53. The cover 51 is attached to the case 30 from the outside so as to cover the entire opening 32. More specifically, the cover 51 is fixed to the outer surface 31b of the side wall 31 by screwing bolts 55 inserted through the through holes 53 into the screw holes 33. Although not shown in the figure, a sealant is interposed at the contact surface between the cover 51 and the outer surface 31b of the side wall 31, and the cover 51 is attached to the side wall 31 in a sealed state via the sealant.
カバー51がケース30に取り付けられた状態では、緩衝体52は、ケース30と干渉することなく開口部32の内側に配置される。このとき、緩衝体52は、ボルト55の締結力によりセル積層体10の角部に押し当てられ、ケース30の角部とセル積層体10の角部との間の空隙SP1が緩衝体52によって塞がれる。これにより、剛性が高いケース30の角部とセル積層体10の角部との間の空隙SP1に、圧縮状態の緩衝体52が介装される。このため、制限部材50によりセル積層体10が上下方向および左右方向に拘束され、セル積層体10に慣性力が作用した場合のセル積層体10の移動を制限することができる。
When the cover 51 is attached to the case 30, the buffer 52 is positioned inside the opening 32 without interfering with the case 30. At this time, the buffer 52 is pressed against the corner of the cell stack 10 by the fastening force of the bolt 55, and the gap SP1 between the corner of the case 30 and the corner of the cell stack 10 is blocked by the buffer 52. As a result, the compressed buffer 52 is interposed in the gap SP1 between the corner of the highly rigid case 30 and the corner of the cell stack 10. Therefore, the restricting member 50 restricts the cell stack 10 in the vertical and horizontal directions, making it possible to limit the movement of the cell stack 10 when an inertial force acts on the cell stack 10.
このように空隙SP1に制限部材50が配置されるので、セル積層体10に慣性力が作用した場合のセル積層体10の剪断方向(上下方向、左右方向)の変位を抑えることができる。しかしながら、セル積層体10の積層方向(前後方向)の全長にわたって制限部材50が配置されると、無駄が多く、燃料電池スタック全体の重量の増加をもたらす。そこで、本実施形態では、セル積層体10に慣性力が作用した場合のセル積層体10の変位、特に積層面でのセル積層体10の滑りによる変位を制限部材50により効率よく抑えることができるよう、以下のように燃料電池スタック100を構成する。
Since the restricting member 50 is disposed in the gap SP1 in this manner, it is possible to suppress displacement of the cell stack 10 in the shear direction (up-down direction, left-right direction) when an inertial force acts on the cell stack 10. However, if the restricting member 50 is disposed over the entire length of the stacking direction (front-back direction) of the cell stack 10, this would be wasteful and would result in an increase in the weight of the entire fuel cell stack. Therefore, in this embodiment, the fuel cell stack 100 is configured as follows so that the restricting member 50 can efficiently suppress displacement of the cell stack 10 when an inertial force acts on the cell stack 10, particularly displacement due to slippage of the cell stack 10 on the stacking surface.
図3は、制限部材50がない状態で、セル積層体10の積層方向に垂直に慣性力が作用したときに発生する力の成分を説明する図である。図3に示すように、車体すなわちケース30に、左方への衝撃力Gが作用すると、セル積層体10に右方への慣性力Fが作用し、セル積層体10は図3の二点鎖線で示すように弓なりに変形する。このとき、セル積層体10に剪断力が作用するが、剪断力はセル積層体10の前後両端面において、つまりセル積層体10とエンドユニット20(例えばターミナルプレート)との境界面において、最大(=F/2)となる。
Figure 3 is a diagram explaining the force components that are generated when an inertial force acts perpendicular to the stacking direction of the cell stack 10 when there is no restricting member 50. As shown in Figure 3, when an impact force G acts to the left on the vehicle body, i.e., the case 30, an inertial force F acts to the right on the cell stack 10, causing the cell stack 10 to deform into a bow shape as shown by the two-dot chain line in Figure 3. At this time, a shear force acts on the cell stack 10, and the shear force is maximum (=F/2) at both front and rear end surfaces of the cell stack 10, that is, at the boundary surface between the cell stack 10 and the end unit 20 (e.g., a terminal plate).
一方、セル積層体10の前後方向両端面には、最大剪断力F/2に対抗するような摩擦力Fsが作用する。摩擦力Fsは、セル積層体10の積層時に付加された前後方向の圧縮荷重をP、セル積層体10とエンドユニット20との境界面における摩擦係数(例えば静止摩擦係数)をμとすると、摩擦力FsはP×μとなる。摩擦係数μは、セル積層体10の積層面の摩擦係数と同一または略同一である。発電セル1の一組あたりの質量をm、セル積層体10の積層数をN、セル積層体10の加速度をaとすると、慣性力Fは、m×N×aとなる。加速度aは、例えば車両に通常慣性力よりも大きい異常慣性力が作用した場合の加速度を用いる。一例を挙げると、加速度aは50m/s2である。
On the other hand, a frictional force Fs against the maximum shear force F/2 acts on both front and rear end surfaces of the cell stack 10. If the compressive load in the front and rear direction applied when stacking the cell stack 10 is P and the friction coefficient (e.g., static friction coefficient) at the boundary surface between the cell stack 10 and the end unit 20 is μ, the frictional force Fs is P×μ. The friction coefficient μ is the same or approximately the same as the friction coefficient of the stacking surface of the cell stack 10. If the mass of each set of power generation cells 1 is m, the number of stacks of the cell stack 10 is N, and the acceleration of the cell stack 10 is a, the inertial force F is m×N×a. For example, the acceleration a is the acceleration when an abnormal inertial force larger than the normal inertial force acts on the vehicle. As an example, the acceleration a is 50 m/s2.
ここで、摩擦力Fsが最大剪断力F/2より小さいと(Fs<F/2)、セル積層体10の前後方向両端面で滑りが生じる。すなわち、次式(I)が成立すると、慣性力によりセル積層体10のずれが生じる。
P×μ<m×N×a/2 ・・・(I) Here, if the friction force Fs is smaller than the maximum shear force F/2 (Fs<F/2), slippage occurs at both front-rear end surfaces of thecell stack 10. In other words, when the following formula (I) is established, the cell stack 10 shifts due to inertial force.
P×μ<m×N×a/2...(I)
P×μ<m×N×a/2 ・・・(I) Here, if the friction force Fs is smaller than the maximum shear force F/2 (Fs<F/2), slippage occurs at both front-rear end surfaces of the
P×μ<m×N×a/2...(I)
上式(I)を整理すると、次式(II)が得られる。
2×P×μ/(m×a)<N ・・・(II) By rearranging the above formula (I), the following formula (II) is obtained.
2×P×μ/(m×a)<N...(II)
2×P×μ/(m×a)<N ・・・(II) By rearranging the above formula (I), the following formula (II) is obtained.
2×P×μ/(m×a)<N...(II)
つまり、発電セル1の積層数Nが上式(II)の左辺で示される値(2Pμ/ma)よりも大きければ、セル積層体10の端面で滑りが生じるが、小さければ、滑りが生じない。この場合の積層数、つまり上式(II)の左辺によって算出される積層数を、限界積層数N0と呼ぶ。本実施形態では、制限部材50によって制限を受けないセル積層体10の積層数Nが限界積層数N0未満となるように制限部材50を配置する。
In other words, if the number of stacks N of the power-generating cells 1 is greater than the value (2Pμ/ma) shown on the left side of the above formula (II), slippage will occur at the end face of the cell stack 10, but if it is smaller, slippage will not occur. The number of stacks in this case, that is, the number of stacks calculated by the left side of the above formula (II), is called the limit number of stacks N0. In this embodiment, the limiting member 50 is positioned so that the number of stacks N of the cell stack 10 that is not limited by the limiting member 50 is less than the limit number of stacks N0.
図4は、本実施形態に係る燃料電池スタック100に含まれる制限部材50の配置の一例を示す図であり、図2のIV-IV線に沿った断面図に相当する。図4に示すように、制限部材50は、セル積層体10の前後方向中央部に配置される。以下では、制限部材50が配置される領域AR1を制限領域と呼び、制限部材50が配置されない領域AR2を非制限領域と呼ぶ。図4では、制限領域AR1の前後両側に非制限領域AR2が設けられる。この場合、前後の非制限領域AR2の発電セル1の積層数Nがいずれも限界積層数N0未満に設定される。
FIG. 4 is a diagram showing an example of the arrangement of the restricting member 50 included in the fuel cell stack 100 according to this embodiment, and corresponds to a cross-sectional view taken along line IV-IV in FIG. 2. As shown in FIG. 4, the restricting member 50 is arranged in the center of the cell stack 10 in the front-rear direction. Hereinafter, the area AR1 in which the restricting member 50 is arranged will be referred to as the restricting area, and the area AR2 in which the restricting member 50 is not arranged will be referred to as the non-restricting area. In FIG. 4, non-restricting areas AR2 are provided on both the front and rear sides of the restricting area AR1. In this case, the number N of stacked power generating cells 1 in both the front and rear non-restricting areas AR2 is set to be less than the limit stacking number N0.
例えば、発電セル1の総数が400であり、上式(II)の左辺の計算結果が156.9である場合、前後の非制限領域AR2の発電セル1の積層数Nはいずれも156に設定される。このとき、制限領域AR1の積層数Nは88である。これにより、非制限領域AR2の前後両端面でのセル積層体10の滑り、すなわち慣性力Fによるセル積層体10の積層面での位置ずれを抑えることができる。図4の例では、制限領域AR1の長さを最小にすることができる。その結果、制限部材50の大きさ(前後方向長さ)を最小限に抑えることができ、コストの低減を図ることができる。
For example, if the total number of power generating cells 1 is 400 and the calculation result of the left side of the above formula (II) is 156.9, the number N of stacked power generating cells 1 in the front and rear non-restricted areas AR2 is set to 156. In this case, the number N of stacked cells in the restricted area AR1 is 88. This makes it possible to suppress slippage of the cell stack 10 at both front and rear end surfaces of the non-restricted area AR2, i.e., misalignment of the stacked surface of the cell stack 10 due to inertial force F. In the example of Figure 4, the length of the restricted area AR1 can be minimized. As a result, the size (front-rear length) of the limiting member 50 can be minimized, and costs can be reduced.
図5は、図4の変形例を示す図である。図5では、セル積層体10の前後方向両端部に制限部材50が配置される。したがって、セル積層体10の前後方向両端部に制限領域AR1が設けられ、前後方向中央部に非制限領域AR2が設けられる。この場合にも、非制限領域AR2の発電セル1の積層数Nが限界積層数N0未満に設定される。
FIG. 5 shows a modified example of FIG. 4. In FIG. 5, restricting members 50 are arranged at both ends of the cell stack 10 in the front-rear direction. Thus, restricted areas AR1 are provided at both ends of the cell stack 10 in the front-rear direction, and a non-restricted area AR2 is provided in the center in the front-rear direction. In this case as well, the number N of stacked power generating cells 1 in the non-restricted area AR2 is set to be less than the limit number N0.
例えば、発電セル1の総数が400であり、上式(II)の左辺の計算結果が156.9である場合、中央の非制限領域AR2の発電セル1の積層数Nが156に設定される。このとき、前後の制限領域AR1の積層数Nはいずれも122に設定される。これにより、非制限領域AR2の前後両端面でのセル積層体10の滑りを抑えることができる。
For example, if the total number of power generating cells 1 is 400 and the calculation result of the left side of the above formula (II) is 156.9, the number N of stacked power generating cells 1 in the central unrestricted area AR2 is set to 156. At this time, the number N of stacked cells in the front and rear restricted areas AR1 are both set to 122. This makes it possible to suppress slippage of the cell stack 10 at both front and rear end surfaces of the unrestricted area AR2.
図5の例では、制限部材50が前後のエンドユニット20に連なって設けられるため、ケース30の開口部32(図2)の加工が容易である。また、制限部材50がケース30の前後方向両端部に面して設けられるため、制限部材50の配置が容易である。例えば、ケース30の前後方向両端の開口面を介して、制限部材50を空隙SP1に挿入することが可能となる。
In the example of Figure 5, the restricting member 50 is provided in connection with the front and rear end units 20, so that the opening 32 (Figure 2) of the case 30 can be easily processed. In addition, the restricting member 50 is provided facing both ends of the case 30 in the front-rear direction, so that the restricting member 50 can be easily positioned. For example, it is possible to insert the restricting member 50 into the gap SP1 through the opening faces at both ends of the case 30 in the front-rear direction.
本実施形態によれば以下のような作用効果を奏することができる。
(1)燃料電池スタック100は、電解質膜と電極とを含む一体化電極アッセンブリ2と、セパレータ3と、を有する発電セル1を、前後方向に積層して構成されたセル積層体10と、セル積層体10の前端面および後端面に隣接してそれぞれ配置された一対のエンドユニット20と、前後方向に所定の圧縮荷重が付加された状態でセル積層体10が保持されるように前端部および後端部がそれぞれ一対のエンドユニット20に固定され、セル積層体10を包囲するケース30と、互いに対向するケース30の内壁面31aとセル積層体10の外側面10aとの間の空隙SP1に配置され、セル積層体10の前後方向に直交する方向の移動を制限する制限部材50と、を備える(図1,図2)。制限部材50は、前後方向における制限部材50が設けられる領域を制限領域AR1(第1領域)、制限部材50が設けられない領域を非制限領域AR2(第2領域)と定義し、さらに、非制限領域AR2における発電セル1の連続した積層数をN、所定の圧縮荷重をP、発電セル1の積層面における摩擦係数をμ、単一の発電セル1の質量をm、セル積層体10に対し前後方向と直交する方向に作用する加速度をaと定義するとき、N<2×P×μ/(m×a)の関係(上式(II))を満たすように配置される(図4,図5)。 According to this embodiment, the following advantageous effects can be obtained.
(1) Thefuel cell stack 100 comprises a cell stack 10 constructed by stacking in the fore-and-aft direction power-generating cells 1, each having an integrated electrode assembly 2 including an electrolyte membrane and an electrode, and a separator 3; a pair of end units 20 arranged adjacent to the front and rear end faces, respectively, of the cell stack 10; a case 30 surrounding the cell stack 10 and having its front and rear ends fixed to the pair of end units 20, respectively, so that the cell stack 10 is held in a state in which a predetermined compressive load is applied in the fore-and-aft direction; and a limiting member 50 arranged in a gap SP1 between the opposing inner wall surface 31a of the case 30 and the outer surface 10a of the cell stack 10, for limiting movement of the cell stack 10 in a direction perpendicular to the fore-and-aft direction ( FIGS. 1 and 2 ). The limiting member 50 is arranged so as to satisfy the relationship N<2×P×μ/(m×a) (formula (II) above) (Figures 4 and 5), where the region in the front-rear direction where the limiting member 50 is provided is defined as a restriction region AR1 (first region), and the region in which the limiting member 50 is not provided is defined as a non-restriction region AR2 (second region).Furthermore, when the number of consecutively stacked power generating cells 1 in the non-restriction region AR2 is defined as N, a predetermined compressive load is defined as P, the friction coefficient at the stacking surface of the power generating cells 1 is defined as μ, the mass of a single power generating cell 1 is defined as m, and the acceleration acting on the cell stack 10 in a direction perpendicular to the front-rear direction is defined as a.
(1)燃料電池スタック100は、電解質膜と電極とを含む一体化電極アッセンブリ2と、セパレータ3と、を有する発電セル1を、前後方向に積層して構成されたセル積層体10と、セル積層体10の前端面および後端面に隣接してそれぞれ配置された一対のエンドユニット20と、前後方向に所定の圧縮荷重が付加された状態でセル積層体10が保持されるように前端部および後端部がそれぞれ一対のエンドユニット20に固定され、セル積層体10を包囲するケース30と、互いに対向するケース30の内壁面31aとセル積層体10の外側面10aとの間の空隙SP1に配置され、セル積層体10の前後方向に直交する方向の移動を制限する制限部材50と、を備える(図1,図2)。制限部材50は、前後方向における制限部材50が設けられる領域を制限領域AR1(第1領域)、制限部材50が設けられない領域を非制限領域AR2(第2領域)と定義し、さらに、非制限領域AR2における発電セル1の連続した積層数をN、所定の圧縮荷重をP、発電セル1の積層面における摩擦係数をμ、単一の発電セル1の質量をm、セル積層体10に対し前後方向と直交する方向に作用する加速度をaと定義するとき、N<2×P×μ/(m×a)の関係(上式(II))を満たすように配置される(図4,図5)。 According to this embodiment, the following advantageous effects can be obtained.
(1) The
この構成により、制限部材50を適切に配置することができ、慣性力によりセル積層体10に滑りが生じることを防止することができる。すなわち、セル積層体10に滑りを生じさせない発電セル1の最大積層数(限界積層数N0未満の最大の積層数)を決定できるため、制限領域AR1を無駄なく効率的に設定することができ、制限部材50を無駄に配置することを防止できる。
This configuration allows the restricting member 50 to be appropriately positioned, and prevents the cell stack 10 from slipping due to inertial forces. In other words, it is possible to determine the maximum number of stacked power generating cells 1 that will not cause slippage in the cell stack 10 (the maximum number of stacked cells less than the limit number of stacked cells N0), so the restriction area AR1 can be set efficiently and without waste, and unnecessary placement of the restricting member 50 can be prevented.
(2)非制限領域AR2は、空隙SP1の前端部と後端部とをそれぞれ含む一対の非制限領域AR2であり、制限領域AR1は、一対の非制限領域AR2に挟まれた領域である(図4)。これにより、制限領域AR1の範囲を最小限に抑えることができ、コストを低減できる。
(2) The non-restricted area AR2 is a pair of non-restricted areas AR2 that respectively include the front and rear ends of the gap SP1, and the restricted area AR1 is an area sandwiched between the pair of non-restricted areas AR2 (FIG. 4). This allows the range of the restricted area AR1 to be minimized, thereby reducing costs.
(3)制限領域AR1は、空隙SP1の前端部と後端部とをそれぞれ含む一対の制限領域AR1であり、非制限領域AR2は、一対の制限領域AR1に挟まれた領域であってもよい(図5)。これにより、空隙SP1に外部からアクセスしやすいケース30の両端部に制限部材50が配置されるようになり、制限部材50の配置が容易である。
(3) The restricted area AR1 may be a pair of restricted areas AR1 each including a front end and a rear end of the gap SP1, and the non-restricted area AR2 may be an area sandwiched between the pair of restricted areas AR1 (FIG. 5). This allows the restricting member 50 to be positioned at both ends of the case 30 where the gap SP1 is easily accessible from the outside, making it easy to position the restricting member 50.
上記実施形態は種々の形態に変形することができる。上記実施形態では、ケース30の外側から制限部材50をケース30に取り付けるようにしたが、制限部材の構成はこれに限らない。例えば開口部32を塞ぐカバー51をケース30の内側に配置し、制限部材をケース30の側壁31の外側面31bから突出しないように構成することもできる。上記実施形態では、ケース40の4つの角部に制限部材50を配置したが、対向する2つの角部に配置するようにしてもよい。角部以外に制限部材を配置してもよい。ケース30の内壁面31aとセル積層体10の外側面10aとの間の空隙SP1に、ボルト以外の固定手段を用いて制限部材を固定するようにしてもよい。
The above embodiment can be modified in various ways. In the above embodiment, the restricting member 50 is attached to the case 30 from the outside of the case 30, but the configuration of the restricting member is not limited to this. For example, a cover 51 that covers the opening 32 can be placed inside the case 30, and the restricting member can be configured not to protrude from the outer surface 31b of the side wall 31 of the case 30. In the above embodiment, the restricting members 50 are placed at the four corners of the case 40, but they may be placed at two opposing corners. The restricting member may be placed at a location other than the corners. The restricting member may be fixed to the gap SP1 between the inner wall surface 31a of the case 30 and the outer surface 10a of the cell stack 10 using fixing means other than bolts.
上記実施形態(図4,図5)では、制限領域AR1および非制限領域AR2の一方を単一の領域としたが、制限領域AR1(第1領域)と非制限領域AR2(第2領域)とを交互にそれぞれ複数設けてもよい。この場合も、上式(II)を満たすように、非制限領域AR2の発電セル1の積層数を設定すればよい。上記実施形態では、電解質膜と電極とを含む膜電極構造体としての一体化電極アッセンブリ2とセパレータ3とを前後方向(所定方向)に交互に積層して積層体(セル積層体10)を構成したが、積層方向は前後方向に限らず上下方向であってもよい。
In the above embodiment (FIGS. 4 and 5), one of the restricted area AR1 and the non-restricted area AR2 is a single area, but the restricted area AR1 (first area) and the non-restricted area AR2 (second area) may be provided alternately in multiples. In this case, the number of stacked power generation cells 1 in the non-restricted area AR2 may be set so as to satisfy the above formula (II). In the above embodiment, the stack (cell stack 10) is formed by stacking the integrated electrode assemblies 2 and separators 3 as membrane electrode structures including an electrolyte membrane and electrodes alternately in the front-rear direction (predetermined direction), but the stacking direction is not limited to the front-rear direction and may be the up-down direction.
以上では、燃料電池スタック100を車両に搭載する例を説明したが、燃料電池スタックは他の移動体にも搭載することができる。この場合にも、移動体に作用する慣性力を考慮して、上式(II)の関係を満たすように制限部材を配置すればよい。
The above describes an example in which the fuel cell stack 100 is mounted on a vehicle, but the fuel cell stack can also be mounted on other moving objects. In this case, too, the limiting member should be positioned to satisfy the relationship in formula (II) above, taking into account the inertial force acting on the moving object.
以上の説明はあくまで一例であり、本発明の特徴を損なわない限り、上述した実施形態および変形例により本発明が限定されるものではない。上記実施形態と変形例の1つまたは複数を任意に組み合わせることも可能であり、変形例同士を組み合わせることも可能である。
The above description is merely an example, and the present invention is not limited to the above-mentioned embodiment and modifications as long as the characteristics of the present invention are not impaired. It is also possible to arbitrarily combine one or more of the above-mentioned embodiment and modifications, and it is also possible to combine modifications together.
1 発電セル、2 一体化電極アッセンブリ、3 セパレータ、10 セル積層体、20 エンドユニット、30 ケース、50 制限部材、100 燃料電池スタック、AR1 制限領域、AR2 非制限領域
1 Power generation cell, 2 Integrated electrode assembly, 3 Separator, 10 Cell stack, 20 End unit, 30 Case, 50 Restriction member, 100 Fuel cell stack, AR1 Restricted area, AR2 Non-restricted area
Claims (3)
- 電解質膜と電極とを含む膜電極構造体と、セパレータと、を有する発電セルを、所定方向に積層して構成されたセル積層体と、
前記セル積層体の前記所定方向における一端面および他端面にそれぞれ隣接して配置された一対のエンドユニットと、
前記所定方向に所定の圧縮荷重が付加された状態で前記セル積層体が保持されるように一端部および他端部がそれぞれ前記一対のエンドユニットに固定され、前記セル積層体を包囲するケースと、
互いに対向する前記ケースの内壁面と前記セル積層体の外側面との間の空隙に配置され、前記セル積層体の前記所定方向に直交する方向の移動を制限する制限部材と、を備え、
前記所定方向における前記制限部材が設けられる領域を第1領域、前記制限部材が設けられない領域を第2領域と定義し、さらに、前記第2領域における前記発電セルの連続した積層数をN、前記所定の圧縮荷重をP、前記セル積層体と前記一対のエンドユニットとの接触面における摩擦係数をμ、単一の前記発電セルの質量をm、前記セル積層体に対し前記所定方向と直交する方向に作用する加速度をaと定義するとき、
N<2×P×μ/(m×a)
の関係を満たすように前記制限部材が配置されることを特徴とする燃料電池スタック。 a cell stack formed by stacking, in a predetermined direction, power generating cells each having a membrane electrode assembly including an electrolyte membrane and an electrode and a separator;
a pair of end units arranged adjacent to one end surface and the other end surface of the cell stack in the predetermined direction,
a case that surrounds the cell stack and has one end and the other end fixed to the pair of end units so that the cell stack is held in a state in which a predetermined compressive load is applied in the predetermined direction;
a limiting member that is disposed in a gap between an inner wall surface of the case and an outer surface of the cell stack that face each other, and that limits movement of the cell stack in a direction perpendicular to the predetermined direction;
A region in the predetermined direction in which the limiting member is provided is defined as a first region, and a region in which the limiting member is not provided is defined as a second region. Furthermore, the number of consecutive stacked power-generating cells in the second region is defined as N, the predetermined compressive load is defined as P, the coefficient of friction at the contact surfaces between the cell stack and the pair of end units is defined as μ, the mass of a single power-generating cell is defined as m, and the acceleration acting on the cell stack in a direction perpendicular to the predetermined direction is defined as a,
N<2×P×μ/(m×a)
The limiting member is disposed so as to satisfy the relationship: - 請求項1に記載の燃料電池スタックにおいて、
前記第2領域は、前記所定方向における前記空隙の一端部と他端部とをそれぞれ含む一対の第2領域であり、前記第1領域は、前記一対の第2領域に挟まれた領域であることを特徴とする燃料電池スタック。 2. The fuel cell stack according to claim 1,
A fuel cell stack characterized in that the second region is a pair of second regions each including one end and the other end of the gap in the specified direction, and the first region is a region sandwiched between the pair of second regions. - 請求項1に記載の燃料電池スタックにおいて、
前記第1領域は、前記所定方向における前記空隙の一端部と他端部とをそれぞれ含む一対の第1領域であり、前記第2領域は、前記一対の第1領域に挟まれた領域であることを特徴とする燃料電池スタック。 2. The fuel cell stack according to claim 1,
A fuel cell stack characterized in that the first region is a pair of first regions each including one end and the other end of the gap in the specified direction, and the second region is a region sandwiched between the pair of first regions.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023044921 | 2023-03-22 | ||
JP2023-044921 | 2023-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024195442A1 true WO2024195442A1 (en) | 2024-09-26 |
Family
ID=92841799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/006898 WO2024195442A1 (en) | 2023-03-22 | 2024-02-27 | Fuel cell stack |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024195442A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005056814A (en) * | 2003-07-22 | 2005-03-03 | Toyota Motor Corp | Fuel cell |
JP2010251007A (en) * | 2009-04-13 | 2010-11-04 | Toyota Motor Corp | Fuel battery stack and manufacturing method for the same |
JP2017111956A (en) * | 2015-12-16 | 2017-06-22 | 株式会社Soken | Fuel cell stack |
-
2024
- 2024-02-27 WO PCT/JP2024/006898 patent/WO2024195442A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005056814A (en) * | 2003-07-22 | 2005-03-03 | Toyota Motor Corp | Fuel cell |
JP2010251007A (en) * | 2009-04-13 | 2010-11-04 | Toyota Motor Corp | Fuel battery stack and manufacturing method for the same |
JP2017111956A (en) * | 2015-12-16 | 2017-06-22 | 株式会社Soken | Fuel cell stack |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1601041B1 (en) | Fuel cell | |
WO2013111669A1 (en) | Fuel cell vehicle | |
US20160344058A1 (en) | Fuel cell stack and mount structure therefor | |
JP2005183358A (en) | Fuel cell | |
US7419739B2 (en) | Flexible bipolar plate | |
JP2010251065A (en) | Fuel cell stack | |
CN101593842B (en) | Fuel cell stack | |
US10818955B2 (en) | Fuel cell unit and fuel cell vehicle | |
JP4450553B2 (en) | Fuel cell | |
JP4645092B2 (en) | Fuel cell device | |
JP2003297377A (en) | On-vehicle type fuel cell | |
WO2024195442A1 (en) | Fuel cell stack | |
KR100569133B1 (en) | A fuel cell module for electric vehicles | |
JP5879239B2 (en) | In-vehicle fuel cell system | |
WO2008133256A1 (en) | Fastening structure for fuel cell stack | |
JP6166223B2 (en) | Vehicle with fuel cell | |
JP2022083107A (en) | Fuel cell stack and method of manufacturing fuel cell stack | |
JP2015170545A (en) | fuel cell stack | |
US10923755B2 (en) | Mount structure for fuel cell stack | |
JP2007184200A (en) | Fuel cell stack | |
JP2007184203A (en) | Fuel cell | |
JP5026616B2 (en) | Fuel cell stack | |
JP4564273B2 (en) | Fuel cell stack | |
JP5740214B2 (en) | Fuel cell | |
JP2010257609A (en) | Fuel battery cell stack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24774587 Country of ref document: EP Kind code of ref document: A1 |