[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024195225A1 - Negative electrode for zinc secondary battery, and nickel zinc secondary battery and method of using same - Google Patents

Negative electrode for zinc secondary battery, and nickel zinc secondary battery and method of using same Download PDF

Info

Publication number
WO2024195225A1
WO2024195225A1 PCT/JP2023/044836 JP2023044836W WO2024195225A1 WO 2024195225 A1 WO2024195225 A1 WO 2024195225A1 JP 2023044836 W JP2023044836 W JP 2023044836W WO 2024195225 A1 WO2024195225 A1 WO 2024195225A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode plate
nickel
positive electrode
secondary battery
Prior art date
Application number
PCT/JP2023/044836
Other languages
French (fr)
Japanese (ja)
Inventor
稔 谷本
毅 八木
歩 小栗
寛己 石原
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2024195225A1 publication Critical patent/WO2024195225A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges

Definitions

  • the present invention relates to a negative electrode for a zinc secondary battery, as well as a nickel-zinc secondary battery and a method for using the same.
  • Patent Document 1 JP 2021-57339 A discloses a negative electrode for a zinc secondary battery, which contains a negative electrode active material containing Zn particles and ZnO particles, and a conductive assistant containing solder. This document describes that the amount of Zn particles in the negative electrode is preferably 1 to 50 parts by weight, assuming that the content of ZnO particles is 100 parts by weight.
  • Patent Document 2 (WO2022/118625) discloses a negative electrode for a zinc secondary battery, which contains a negative electrode active material containing ZnO particles and Zn particles, and a nonionic water-absorbing polymer.
  • a negative electrode was prepared by adding 5.7 parts by weight of metal Zn powder, 1 part by weight of polytetrafluoroethylene (PTFE), and optionally a nonionic water-absorbing polymer or an ionic water-absorbing polymer to 100 parts by weight of ZnO powder.
  • PTFE polytetrafluoroethylene
  • Patent Document 5 (WO2019/069760) and Patent Document 6 (WO2019/077953) propose a zinc secondary battery in which the entire negative electrode active material layer is covered or wrapped with a liquid-retaining member and an LDH separator, and the positive electrode active material layer is covered or wrapped with a liquid-retaining member.
  • a nonwoven fabric is used as the liquid-retaining member.
  • LDH-like compounds are known as hydroxides and/or oxides having a layered crystal structure similar to LDH, and exhibit hydroxide ion conductive properties similar enough to be collectively referred to as hydroxide ion conductive layered compounds together with LDH (see, for example, Patent Documents 1 and 2).
  • Patent Document 7 discloses a hydroxide ion conductive separator comprising a porous substrate and a layered double hydroxide (LDH)-like compound that blocks the pores of the porous substrate, in which the LDH-like compound is a hydroxide and/or oxide having a layered crystal structure containing Mg and one or more elements including at least Ti selected from the group consisting of Ti, Y, and Al.
  • Patent Document 8 discloses an LDH separator using an LDH-like compound containing (i) Ti, Y, and optionally Al and/or Mg, and (ii) an additive element M which is at least one selected from the group consisting of In, Bi, Ca, Sr and Ba.
  • Patent Document 9 discloses an LDH separator containing a mixture of an LDH-like compound and In(OH) 3 , in which the LDH-like compound is a hydroxide and/or oxide having a layered crystal structure containing Mg, Ti, Y, and optionally Al and/or In. According to the separators disclosed in Patent Documents 7 to 9, it is said that the separators have excellent alkali resistance compared to conventional LDH separators, and can more effectively suppress short circuits caused by zinc dendrites.
  • nickel-zinc secondary batteries can also be used as backup power sources in the event of a power outage.
  • trickle charging (1) is therefore performed to compensate for the loss of battery capacity due to self-discharge (2).
  • Trickle charging makes it possible to constantly maintain the battery capacity near full charge.
  • the battery capacity decreases during trickle charging, shortening the battery life.
  • the inventors have now discovered that by using a negative electrode in which a specified amount of metallic Zn particles is mixed with ZnO particles in a zinc secondary battery, it is possible to delay the decrease in battery capacity during trickle charging and extend the battery's lifespan.
  • the object of the present invention is therefore to provide a negative electrode for a zinc secondary battery that can delay the decrease in battery capacity during trickle charging and extend the battery's life.
  • a negative electrode for use in a zinc secondary battery ZnO particles; Metal Zn particles in an amount of 55.0 to 65.0 parts by weight per 100 parts by weight of the ZnO particles; a negative electrode.
  • Aspect 2 2. The negative electrode according to claim 1, wherein the content of the metal Zn particles is 55.0 to 58.0 parts by weight per 100 parts by weight of the ZnO particles.
  • Aspect 3 3. The negative electrode of any one of the preceding claims, further comprising a binder resin.
  • the hydroxide ion conducting separator is a layered double hydroxide (LDH) separator comprising an LDH and/or an LDH-like compound.
  • LDH layered double hydroxide
  • the nickel-zinc battery comprises a stacked cell, the stacked cell comprising: A plurality of the positive electrode plates; a plurality of positive electrode tab leads extending from each end of the positive electrode plate; A plurality of the negative electrode plates; a plurality of negative electrode tab leads extending from each end of the negative electrode plate at positions not overlapping with the positive electrode tab leads; a plurality of hydroxide ion conductive separators isolating the positive electrode plate and the negative electrode plate so as to be capable of conducting hydroxide ions; The electrolyte; The nickel-zinc secondary battery according to any one of aspects 4 to 7, wherein the positive electrode plate and the negative electrode plate are alternately laminated with the hydroxide ion conductive separator sandwiched therebetween.
  • a method for using a nickel-zinc secondary battery comprising trickle charging the nickel-zinc secondary battery according to any one of aspects 4 to 8 so as to provide a charge capacity of 80 to 85% of the on-board capacity of the nickel-zinc secondary battery.
  • Aspect 10 10. The method of using the nickel-zinc secondary battery according to claim 9, wherein the charging capacity is 80% of the installed capacity of the nickel-zinc secondary battery.
  • FIG. 4 illustrates an example of a trickle charge profile.
  • FIG. 1 is a diagram for explaining trickle charging from the viewpoint of battery capacity.
  • FIG. 2 is a schematic cross-sectional view conceptually showing the movement of oxygen caused by self-discharge in a nickel-zinc secondary battery.
  • FIG. 1 is a schematic cross-sectional view showing an example of a nickel-zinc secondary battery according to the present invention.
  • FIG. 5 is a schematic diagram showing a cross section of the nickel-zinc secondary battery shown in FIG. 4 taken along line A-A'.
  • FIG. 5 is a perspective view showing a schematic diagram of a stacked cell of the nickel-zinc secondary battery shown in FIG. 4.
  • FIG. 1 is a diagram for explaining trickle charging from the viewpoint of battery capacity.
  • FIG. 2 is a schematic cross-sectional view conceptually showing the movement of oxygen caused by self-discharge in a nickel-zinc secondary battery.
  • FIG. 1 is a schematic cross-sectional view showing an example of
  • FIG. 5 is a cross-sectional view showing a schematic diagram of a stacked cell of the nickel-zinc secondary battery shown in FIG. 4.
  • FIG. 5 is a perspective view showing a state in which the positive electrode plate or the negative electrode plate in the nickel-zinc secondary battery shown in FIG. 4 is covered with a hydroxide ion conductive separator or a liquid retaining member.
  • FIG. 2 is a diagram conceptually illustrating the transfer of oxygen from a positive electrode plate when the negative electrode plate is covered with a microporous membrane separator.
  • FIG. 1 is a schematic diagram showing the transfer of oxygen from a positive plate when the negative plate is covered with a hydroxide ion conducting separator, where the cross marks indicate that the transfer of oxygen O2 is blocked.
  • FIG. 1 shows the charging profile in the trickle charge accelerated test performed in Examples A1 and A2.
  • FIG. 1 shows the results of an accelerated trickle charge test carried out at 65° C. for Examples A1 and A2.
  • FIG. 1 shows the results of an accelerated trickle charge test carried out at 55° C. for Examples A1 and A2.
  • 1 shows the charging profile for the trickle charge accelerated test performed in Examples B1 and B2.
  • FIG. 1 shows the results of an accelerated trickle charge test conducted at 65° C. for Examples B1 and B2.
  • FIG. 1 shows the results of an accelerated trickle charge test performed at 55° C. for Examples B1 and B2.
  • FIG. 1 shows the results of an accelerated trickle charge test carried out at 55° C. for Examples A1 and B2.
  • FIG. 1 shows the charging profile for the trickle charge accelerated test performed on Examples C1 and C2.
  • FIG. 1 shows the results of an accelerated trickle charge test conducted at 65° C. for Examples C1 and C2.
  • FIG. 2 is a diagram showing a charging curve of an example of a nickel-zinc secondary battery together with changes in oxygen concentration.
  • the term "loading capacity” is defined as the theoretical capacity calculated from the mass of the positive electrode active material in the battery.
  • the loading capacity is defined based on the positive electrode active material is that a battery in which the positive electrode capacity is smaller than the negative electrode capacity is assumed, and in that case, the loading capacity is regulated by the positive electrode capacity. Therefore, if a battery in which the positive electrode capacity is greater than the negative electrode capacity is considered, the "mass of the positive electrode active material" in the above definition should be read as the "mass of the negative electrode active material".
  • rated capacity means the amount of electricity that can be extracted (stored) under specified conditions, more specifically, the amount of electricity that can be extracted from a fully charged state at a specified temperature, discharge current, and end voltage.
  • the rated capacity can be the discharge capacity at an end voltage of 1.4 V and 0.1 C (10-hour rate) in an environment of 25°C.
  • depth and SOC refer to the state of charge (charging rate) of a battery relative to 100% rated capacity. Therefore, the depth of charge (SOC) of a fully discharged state is 0%, and the depth of charge (SOC) of a fully charged state is 100%.
  • self-discharge refers to the phenomenon in which the amount of electricity stored through a chemical reaction gradually decreases over time without current being drawn into an external circuit.
  • trickle charging refers to charging (1) performed to compensate for the loss of battery capacity due to self-discharge (2) of the secondary battery, as shown in Figures 1 and 3. More specifically, as shown in Figure 2, trickle charging compensates for the loss of battery capacity due to self-discharge based on a rated capacity (with 100% state of charge (SOC)) that is specified as a certain percentage of the installed capacity, so that the battery capacity can always be maintained near full charge.
  • Trickle charging is often used in emergency power sources such as uninterruptible power supplies (UPS). When a battery is stored in a fully charged state for a long period of time and then used, it may not be able to perform at its rated performance or be usable. To avoid such problems, trickle charging is widely used as one method of charging to compensate for self-discharge. This ensures a specified battery capacity (80% in Figure 2) or more.
  • the anode of the present invention is an anode used in a zinc secondary battery.
  • the zinc secondary battery is not particularly limited as long as it uses zinc as the anode and uses an alkaline electrolyte (typically an aqueous alkali metal hydroxide solution). Therefore, it can be a nickel zinc secondary battery, a silver oxide zinc secondary battery, a manganese oxide zinc secondary battery, an air zinc secondary battery, or any other type of alkaline zinc secondary battery.
  • the anode is typically a negative electrode plate 14 including a negative electrode active material layer 14a and a negative electrode current collector 14b, as shown in FIG. 3. This negative electrode or negative electrode plate 14 (particularly the negative electrode active material layer 14a) includes ZnO particles and metal Zn particles.
  • the amount of the metal Zn particles is 55.0 to 65.0 parts by weight per 100 parts by weight of ZnO particles.
  • trickle charging (1) is performed to compensate for the battery capacity that is reduced by self-discharge (2).
  • self-discharge (2) there is a problem that the battery capacity decreases during trickle charging, shortening the battery life. This problem is conveniently solved by the negative electrode of the present invention.
  • the mechanism is considered to be as follows.
  • the ZnO particles are not particularly limited and may be either commercially available zinc oxide powder used in zinc secondary batteries or zinc oxide powder obtained by growing the particles by solid-phase reaction using the commercially available zinc oxide powder as the starting material.
  • the average particle size D50 of the ZnO particles is preferably 0.1 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m, and even more preferably 0.1 to 5 ⁇ m.
  • the average particle size D50 refers to the particle size at which the cumulative volume from the small particle size side in the particle size distribution obtained by the laser diffraction/scattering method is 50%.
  • the metal Zn particles can be metal Zn particles commonly used in zinc secondary batteries, but it is more preferable to use smaller metal Zn particles from the viewpoint of extending the cycle life of the battery.
  • the average particle size D50 of the metal Zn particles is preferably 50 to 150 ⁇ m.
  • the content of the metal Zn particles in the negative electrode is preferably 55.0 to 65.0 parts by weight relative to 100 parts by weight of ZnO particles, more preferably 55.0 to 58.0 parts by weight, and even more preferably 56.6 to 57.6 parts by weight.
  • Such an amount is significantly greater than the amount of metal Zn particles in a general negative electrode of a conventionally used nickel-zinc secondary battery, and by using a negative electrode in which the amount of metal Zn particles is increased relative to the amount of ZnO particles in this way for a zinc secondary battery, the decrease in battery capacity during trickle charging can be delayed and the life of the battery can be extended.
  • the amount of metal Zn particles is not too large relative to the ZnO particles, it becomes easier to mold the negative electrode using the metal Zn particles and ZnO particles.
  • the metal Zn particles may be doped with dopants such as In and Bi.
  • the negative electrode or negative electrode plate 14 (particularly the negative electrode active material layer 14a) preferably further contains one or more metal elements selected from In and Bi. These metal elements can suppress the generation of undesirable hydrogen gas due to self-discharge of the negative electrode. These metal elements may be contained in the negative electrode in any form such as metal, oxide, hydroxide, or other compound, but are preferably contained in the form of oxide or hydroxide, and more preferably in the form of oxide particles. Examples of the oxides of the above metal elements include In 2 O 3 and Bi 2 O 3. Examples of the hydroxides of the above metal elements include In(OH) 3 and Bi(OH) 3.
  • the content of the ZnO particles is 100 parts by weight
  • the content of In is preferably 0 to 2 parts by weight in terms of oxide
  • the content of Bi is preferably 0 to 6 parts by weight in terms of oxide, and more preferably the content of In is 0 to 1.5 parts by weight in terms of oxide
  • the content of Bi is preferably 0 to 4.5 parts by weight in terms of oxide.
  • In and/or Bi are contained in the negative electrode in the form of oxide or hydroxide, it is not necessary that all of In and/or Bi are in the form of oxide or hydroxide, and a part of them may be contained in the negative electrode in other forms such as metal or other compounds.
  • the above metal elements may be doped into the metal Zn particles as trace elements.
  • the In concentration in the metal Zn particles is preferably 50 to 2000 ppm by weight, more preferably 200 to 1500 ppm by weight, and the Bi concentration in the metal Zn particles is preferably 50 to 2000 ppm by weight, more preferably 100 to 1300 ppm by weight.
  • the negative electrode or negative electrode plate 14 may further contain a conductive additive.
  • conductive additives include carbon, metal powder (tin, lead, copper, cobalt, etc.), and precious metal paste.
  • the negative electrode or negative electrode plate 14 may further contain a binder resin.
  • a binder resin When the negative electrode contains a binder, it becomes easier to maintain the shape of the negative electrode.
  • Various known binders can be used as the binder resin, but preferred examples include polyvinyl alcohol (PVA) and polytetrafluoroethylene (PTFE). It is particularly preferred to use a combination of both PVA and PTFE as the binder.
  • the negative electrode or negative electrode plate 14 is preferably a sheet-like pressed body. This can prevent the negative electrode active material from falling off and improve the electrode density, and can more effectively suppress changes in the shape of the negative electrode.
  • a sheet-like pressed body can be produced by adding a binder to the negative electrode material and kneading the mixture, and then applying press molding such as roll pressing to the resulting kneaded mixture to form it into a sheet.
  • the negative electrode or negative electrode plate 14 preferably includes a negative electrode current collector 14b.
  • Preferred examples of the negative electrode current collector 14b include copper punched metal and copper expanded metal.
  • a mixture containing a Zn compound, metallic zinc and zinc oxide powder, and optionally a binder (e.g., polytetrafluoroethylene particles) can be applied to the copper punched metal or copper expanded metal to preferably produce a negative electrode plate consisting of a negative electrode/negative electrode current collector.
  • the above-mentioned sheet-shaped press molded body may be pressed onto a current collector such as copper expanded metal.
  • Nickel-zinc secondary battery The negative electrode according to the present invention is preferably used as the negative electrode of a nickel-zinc secondary battery.
  • Figures 4 to 8 show a nickel-zinc secondary battery 10 according to one embodiment of the present invention and its components.
  • the nickel-zinc secondary battery 10 includes a positive electrode plate 12, a negative electrode plate 14, a hydroxide ion conductive separator 16, an electrolyte (not shown), and a battery case 20.
  • the positive electrode plate 12 includes a positive electrode active material layer 12a and a positive electrode current collector 12b.
  • the positive electrode plate 12 (particularly the positive electrode active material layer 12a) includes nickel hydroxide and/or nickel oxyhydroxide.
  • the negative electrode plate 14 (particularly the negative electrode active material layer 14a) includes ZnO particles and metal Zn particles, as described above.
  • the hydroxide ion conductive separator 16 separates the positive electrode plate 12 and the negative electrode plate 14 in a manner that allows hydroxide ion conduction.
  • the battery case 20 houses the positive electrode plate 12, the negative electrode plate 14, and the hydroxide ion conductive separator 16 in a vertical orientation (i.e., perpendicular to the ground plane).
  • the nickel-zinc secondary battery 10 preferably includes a stacked cell 11. As shown in FIG. 7, the stacked cell 11 includes a plurality of positive electrode plates 12, a plurality of positive electrode tab leads 13, a plurality of negative electrode plates 14, a plurality of negative electrode tab leads 15, a plurality of hydroxide ion conductive separators 16, and an electrolyte.
  • the plurality of positive electrode tab leads 13 extend (preferably upward) from each end of the positive electrode plate 12.
  • the plurality of negative electrode tab leads 15 extend (preferably upward) from each end of the negative electrode plate 14 at positions that do not overlap with the positive electrode tab leads 13.
  • the plurality of hydroxide ion conductive separators 16 isolate the positive electrode plates 12 and the negative electrode plates 14 so as to be capable of conducting hydroxide ions.
  • the stacked cell 11 includes the positive electrode plates 12 and the negative electrode plates 14 stacked alternately with the hydroxide ion conductive separators 16 sandwiched therebetween. Therefore, the stacked cell 11 can be said to be in the form of a positive and negative electrode stack in which the unit of positive electrode plate 12/separator 16/negative electrode plate 14 is repeatedly stacked.
  • the nickel-zinc secondary battery 10 preferably includes a plurality of unit cells 10a each having a pair of positive electrode plate 12 and negative electrode plate 14 together with a hydroxide ion conductive separator 16, and the plurality of unit cells 10a as a whole form a stacked cell 11. This is the configuration of a so-called assembled battery or stacked battery, and is advantageous in that it can provide a high voltage and a large current.
  • the positive electrode plate 12 includes a positive electrode active material layer 12a.
  • the positive electrode active material constituting the positive electrode active material layer 12a may be appropriately selected from known positive electrode materials according to the type of zinc secondary battery, and is not particularly limited.
  • a positive electrode containing nickel hydroxide and/or nickel oxyhydroxide may be used.
  • the positive electrode active material layer 12a may contain at least one additive selected from the group consisting of silver compounds, manganese compounds, and titanium compounds, which can promote the positive electrode reaction that absorbs hydrogen gas generated by the self-discharge reaction.
  • the positive electrode active material layer 12a may further contain cobalt. Cobalt is preferably contained in the positive electrode plate 12 in the form of cobalt oxyhydroxide. In the positive electrode active material layer 12a, cobalt functions as a conductive assistant, thereby contributing to improving the charge/discharge capacity.
  • the positive electrode plate 12 further includes a positive electrode collector 12b.
  • a preferred example of the positive electrode collector 12b is a nickel porous substrate such as a foamed nickel plate.
  • a paste containing an electrode active material such as nickel hydroxide is uniformly applied to a nickel porous substrate and then dried to preferably produce a positive electrode plate consisting of a positive electrode/positive electrode collector.
  • the positive electrode collector 12b is a nickel porous substrate such as a foamed nickel plate, the uncoated area of the positive electrode collector 12b may be pressed to form a tab.
  • the positive electrode tab lead 13 is provided so as to extend from the end of the positive electrode plate 12, as shown in FIG. 8.
  • the positive electrode tab lead 13 may be a commercially available metal foil, and is not particularly limited. It is preferable that a plurality of positive electrode tab leads 13 are joined to one positive electrode terminal 26 or a member electrically connected thereto to form a positive electrode tab joint 30. This allows for efficient current collection with a simple configuration, and also makes it easier to connect to the positive electrode terminal 26.
  • the positive electrode tab lead 13 may be joined to members such as the positive electrode current collector 12b and the positive electrode terminal 26 using a known joining method such as ultrasonic welding (ultrasonic welding), laser welding, TIG welding, or resistance welding.
  • the negative electrode plate 14 (particularly the negative electrode active material layer 14a) contains ZnO particles and metal Zn particles as described above.
  • the negative electrode tab lead 15 is provided so as to extend from the end of the negative electrode plate 14 at a position where it does not overlap with the positive electrode tab lead 13 (see FIG. 6).
  • the negative electrode tab lead 15 is not particularly limited and may be a commercially available metal foil. It is preferable that a plurality of negative electrode tab leads 15 are joined to one negative electrode terminal 28 or a member electrically connected thereto to form the negative electrode tab joint 32. This allows for efficient current collection with a simple configuration and also makes it easier to connect to the negative electrode terminal 28.
  • the negative electrode tab lead 15 may be joined to members such as the negative electrode current collector 14b and the negative electrode terminal 28 using a known joining method such as ultrasonic welding (ultrasonic joining), laser welding, TIG welding, or resistance welding.
  • the hydroxide ion conductive separator 16 is provided to isolate the positive electrode plate 12 and the negative electrode plate 14 so as to allow hydroxide ion conductivity.
  • the positive electrode plate 12 and/or the negative electrode plate 14 may be configured to be covered or wrapped with the hydroxide ion conductive separator 16. This makes it possible to manufacture a nickel-zinc secondary battery (particularly a laminated battery thereof) capable of preventing zinc dendrite extension extremely easily and with high productivity, without the need for a complicated sealing joint between the hydroxide ion conductive separator 16 and the battery container.
  • a simple configuration in which the hydroxide ion conductive separator 16 is arranged on one side of the positive electrode plate 12 or the negative electrode plate 14 may also be used.
  • an "LDH separator” is defined as a separator that includes an LDH and/or an LDH-like compound and selectively passes hydroxide ions solely by utilizing the hydroxide ion conductivity of the LDH and/or the LDH-like compound.
  • an "LDH-like compound” is a hydroxide and/or oxide of a layered crystal structure that may not be called an LDH but has hydroxide ion conductivity, and can be considered an equivalent of an LDH.
  • LDH can be interpreted as including not only LDH but also LDH-like compounds.
  • the LDH separator is preferably composited with a porous substrate.
  • the LDH separator preferably further comprises a porous substrate, and is composited with the porous substrate in a form in which the pores of the porous substrate are filled with LDH and/or LDH-like compounds. That is, in a preferred LDH separator, the pores of the porous substrate are blocked with LDH and/or LDH-like compounds so as to exhibit hydroxide ion conductivity and gas impermeability (and therefore function as an LDH separator exhibiting hydroxide ion conductivity).
  • the porous substrate is preferably made of a polymeric material, and it is particularly preferred that the LDH is incorporated throughout the entire thickness of the porous substrate made of a polymeric material.
  • known LDH separators such as those disclosed in Patent Documents 1 to 7 can be used.
  • the thickness of the LDH separator is preferably 5 to 100 ⁇ m, more preferably 5 to 80 ⁇ m, even more preferably 5 to 60 ⁇ m, and particularly preferably 5 to 40 ⁇ m.
  • the hydroxide ion conductive separator 16 it is preferable that not only the hydroxide ion conductive separator 16 but also the liquid retaining member 17 is interposed between the positive electrode plate 12 and the negative electrode plate 14. As shown in Figures 7 and 8, it is preferable that the positive electrode plate 12 and/or the negative electrode plate 14 is covered or wrapped with the liquid retaining member 17. However, a simple configuration in which the liquid retaining member 17 is arranged on one side of the positive electrode plate 12 or the negative electrode plate 14 may also be used.
  • the electrolyte can be evenly present between the positive electrode plate 12 and/or the negative electrode plate 14 and the hydroxide ion conductive separator 16, and hydroxide ions can be efficiently exchanged between the positive electrode plate 12 and/or the negative electrode plate 14 and the hydroxide ion conductive separator 16.
  • the liquid retaining member 17 is not particularly limited as long as it is a material that can retain the electrolyte, but it is preferable that it is a sheet-like member.
  • liquid-retaining member 17 examples include nonwoven fabric, water-absorbent resin, liquid-retaining resin, porous sheet, and various spacers, but nonwoven fabric is particularly preferred because it allows the production of a negative electrode structure with good performance at low cost.
  • the liquid-retaining member 17 or nonwoven fabric preferably has a thickness of 10 to 200 ⁇ m, more preferably 20 to 200 ⁇ m, even more preferably 20 to 150 ⁇ m, particularly preferably 20 to 100 ⁇ m, and most preferably 20 to 60 ⁇ m. If the thickness is within the above range, a sufficient amount of electrolyte can be retained in the liquid-retaining member 17 while keeping the overall size of the positive electrode structure and/or negative electrode structure compact and without waste.
  • the outer edges of the plates are closed (except for the edges from which the positive electrode tab lead 13 and the negative electrode tab lead 15 extend).
  • the closed edges of the outer edges of the liquid retaining member 17 and/or the separator 16 are realized by folding the liquid retaining member 17 and/or the separator 16, or by sealing the liquid retaining members 17 together and/or the separators 16 together.
  • sealing methods include adhesives, heat welding, ultrasonic welding, adhesive tape, sealing tape, and combinations thereof.
  • the LDH separator including a porous substrate made of a polymer material has the advantage of being flexible and therefore easy to bend, it is preferable to form the LDH separator into a long shape and fold it to form a state in which one side of the outer edge is closed.
  • Thermal welding and ultrasonic welding may be performed using a commercially available heat sealer, etc., but in the case of sealing between LDH separators, it is preferable to perform thermal welding and ultrasonic welding by sandwiching the outer peripheral portion of the liquid-retaining member 17 between the LDH separators that constitute the outer peripheral portion, since this allows for more effective sealing.
  • the adhesive, adhesive tape, and sealing tape may be commercially available products, but it is preferable to use those that contain a resin that is resistant to alkali in order to prevent deterioration in an alkaline electrolyte.
  • examples of preferred adhesives include epoxy resin adhesives, natural resin adhesives, modified olefin resin adhesives, and modified silicone resin adhesives, and among them, epoxy resin adhesives are more preferred because they are particularly excellent in alkali resistance.
  • An example of an epoxy resin adhesive product is the epoxy adhesive Hysol (registered trademark) (manufactured by Henkel).
  • the negative electrode plate 14 is covered with a hydroxide ion conductive separator 16, and the outer periphery of the negative electrode plate 14 is airtightly sealed except for the upper end, so that the hydroxide ion conductive separator 16 prevents oxygen generated in the positive electrode plate 12 from reaching the negative electrode plate 14. That is, as described above, oxygen is generated in the positive electrode of a nickel-zinc secondary battery during trickle charging or self-discharge (standing), which causes oxidation of the metal Zn contained in the negative electrode and a resulting decrease in the negative electrode capacity, resulting in a shortened battery life when trickle charging is used.
  • the general microporous membrane separator 116 that has been widely used in the past has gas permeability, so it allows the passage of oxygen O2 generated at the positive electrode, which directly reaches the adjacent negative electrode plate 14 from the positive electrode plate 12, promoting the oxidation of the metal Zn.
  • the hydroxide ion conductive separator 16 prevents oxygen generated in the positive electrode plate 12 from reaching the negative electrode plate 14, thereby suppressing the oxidation of metal Zn caused by oxygen, and thereby further delaying the decrease in battery capacity during trickle charging and further extending the life of the battery.
  • the hydroxide ion conductive separator 16 is a separator that selectively passes hydroxide ions using only hydroxide ion conductivity, and therefore does not have gas permeability.
  • the hydroxide ion conductive separator 16 that does not have gas permeability, oxygen generated in the positive electrode plate 12 is not transmitted, and therefore the oxidation of metal Zn in the negative electrode can be suppressed.
  • the outer periphery of the upper end of the negative electrode plate 14 does not need to be sealed with the hydroxide ion conductive separator 16.
  • the structure may be such that oxygen is allowed to enter the negative electrode plate 14 from the upper end of the negative electrode plate 14.
  • the effect of preventing oxygen from reaching the negative electrode plate 14 directly from the positive electrode plate 12 i.e., the effect of inhibiting oxygen permeation between the opposing surfaces of the positive electrode plate 12 and the negative electrode plate 14 and the resulting effect of inhibiting the oxidation of metallic Zn, contribute greatly, the decrease in battery capacity during trickle charging can be sufficiently delayed.
  • the outer edge of one side that is the upper end of the separator 16 may be open.
  • This open-top type configuration makes it possible to deal with problems that occur when a nickel-zinc battery or the like is overcharged. That is, when a nickel-zinc battery or the like is overcharged, oxygen (O 2 ) may be generated at the positive electrode plate 12, but the LDH separator has such a high density that it allows only hydroxide ions to pass through, and therefore does not allow O 2 to pass through.
  • O 2 can be released above the positive electrode plate 12 and sent to the negative electrode plate 14 side through the open-top part, thereby oxidizing Zn of the negative electrode active material with O 2 and returning it to ZnO.
  • the open-top type stacked cell 11 can be used in a sealed zinc secondary battery to improve overcharge resistance.
  • the same effect as the open-top type configuration can be expected by providing a vent in a part of the closed outer edge.
  • the outer edge of one side of the LDH separator that will be the upper end may be sealed and then an air hole may be opened, or during sealing, part of the outer edge may be left unsealed so that an air hole can be formed.
  • the electrolyte preferably contains an aqueous solution of an alkali metal hydroxide.
  • the electrolyte is not shown in Figs. 1 to 7 because it is distributed throughout the positive and negative plates 12 and 14.
  • alkali metal hydroxides include potassium hydroxide, sodium hydroxide, lithium hydroxide, and ammonium hydroxide, with potassium hydroxide being more preferred.
  • a zinc compound such as zinc oxide or zinc hydroxide may be added to the electrolyte.
  • the electrolyte may be mixed with the positive electrode active material and/or the negative electrode active material to be present in the form of a positive electrode composite and/or a negative electrode composite.
  • the electrolyte may also be gelled to prevent leakage of the electrolyte.
  • the gelling agent it is preferable to use a polymer that absorbs the solvent of the electrolyte and swells, and starch or a polymer such as polyethylene oxide, polyvinyl alcohol, or polyacrylamide is used.
  • the battery case 20 is preferably made of resin.
  • the resin constituting the battery case 20 is preferably a resin that is resistant to alkali metal hydroxides such as potassium hydroxide, more preferably a polyolefin resin, ABS resin, or modified polyphenylene ether, and even more preferably ABS resin or modified polyphenylene ether.
  • the battery case 20 has a top lid 20a.
  • the battery case 20 (e.g., top lid 20a) may have a pressure relief valve for releasing gas.
  • a group of cases in which two or more battery cases 20 are arranged may be housed within an outer frame to form a battery module.
  • the nickel-zinc secondary battery 10 is suitable for backup use as an emergency power source in the event of a power outage.
  • trickle charging is performed to compensate for the battery capacity that is reduced by self-discharge, as shown in Figs. 1 and 2. Therefore, a preferred method of using the nickel-zinc secondary battery 10 includes trickle charging.
  • trickle charging was generally performed so as to provide a charge capacity of about 90% of the installed capacity of the nickel-zinc secondary battery 10, but in this embodiment, trickle charging is performed at a charge capacity (utilization rate) that is lower than conventionally, that is, 80 to 85% of the installed capacity of the nickel-zinc secondary battery 10 (particularly the positive electrode plate 12), thereby further delaying the decrease in battery capacity during trickle charging and further extending the life of the battery.
  • FIG. 13 shows the change in oxygen concentration in the charging curve of a nickel-zinc secondary battery made by the applicant.
  • the positive electrode is charged with oxygen generation in the region where the charge capacity is 90% or more of the installed capacity.
  • the positive electrode active material expands due to charging, in the case of charging which results in a charge capacity of 90% or more of the installed capacity, the positive electrode active material may fall off the positive electrode collector or separate from the positive electrode collector, resulting in an increase in resistance.
  • trickle charging which results in a charge capacity of 80 to 85% of the installed capacity can effectively avoid these problems.
  • the decrease in battery capacity can be delayed even more effectively.
  • the ratio (utilization rate) of the charge capacity to 100% installed capacity during trickle charging is 80-85% of the installed capacity of the nickel-zinc secondary battery 10, more preferably 80-83%, and even more preferably 80%.
  • trickle charging can be performed at as high a depth of charge (SOC) as possible while effectively slowing down the decrease in battery capacity.
  • Examples A1 and A2 (1) Preparation of Negative Electrode Plate Various raw material powders shown below were prepared. ZnO powder (manufactured by Seido Chemical Industry Co., Ltd., JIS standard type 1 grade, average particle size D50: 0.2 ⁇ m) Metal Zn powder (manufactured by EverZinc Co., Ltd., average particle size D50: 100 ⁇ m)
  • ZnO powder was added with metal Zn powder and polytetrafluoroethylene (PTFE), and the mixture was kneaded with propylene glycol.
  • the kneaded product was rolled with a roll press to obtain a negative electrode active material sheet.
  • the negative electrode active material sheet was pressed onto a tin-plated copper expand metal to obtain a negative electrode plate. At this time, an uncoated portion where the negative electrode paste was not coated was present near one end side of the copper expand metal.
  • Positive electrode plate The pores of the nickel foam are filled with a positive electrode paste containing nickel hydroxide and a binder and then dried (there is an uncoated area near one end of the nickel foam where the positive electrode paste is not applied).
  • Positive electrode current collecting tab The uncoated portion of the foamed nickel that constitutes the positive electrode plate is compressed with a roll press to form a tab, and a tab lead (made of pure nickel, thickness: 100 ⁇ m) is ultrasonically welded to this tab to extend it.
  • Negative electrode plate the negative electrode plate prepared in (1) above.
  • Negative electrode current collecting tab a tab lead (made of copper, thickness: 100 ⁇ m) connected to an uncoated portion of the copper expanded metal by ultrasonic welding.
  • LDH separator a hydroxide ion conductive separator having gas impermeability, which is prepared by precipitating Ni-Al-Ti-LDH (layered double hydroxide) in the pores and on the surface of a polyethylene microporous membrane by hydrothermal synthesis and then roll pressing, thickness: 20 ⁇ m;
  • Non-woven fabric polypropylene, thickness 100 ⁇ m
  • Battery case box-shaped case made of modified polyphenylene ether resin (equipped with a pressure relief valve that allows gas generated inside the case to be released); internal dimensions: length 190 mm, width 24 mm, height 165 mm; external dimensions: length 200 mm, width 30 mm, height 170 mm (not including the height of the positive and negative terminals)
  • Electrolyte 5.4 mol/L K
  • the positive electrode plate was wrapped in nonwoven fabric so that it covered both sides, with the nonwoven fabric slightly protruding from the remaining three sides except for the side from which the positive electrode current collector tab extends.
  • the excess nonwoven fabric protruding from the three sides of the positive electrode plate was heat-sealed and sealed with a heat seal bar to obtain a positive electrode structure.
  • the negative electrode plate was wrapped in LDH separator so that it protruding slightly from the remaining three sides except for the side from which the negative electrode current collector tab extends.
  • the excess LDH separator protruding from the three sides of the negative electrode plate was hermetically sealed by heat-sealing with a heat seal bar to obtain a negative electrode structure. In this way, multiple positive electrode structures and multiple negative electrode structures were prepared.
  • the positive electrode tab leads 13 and the negative electrode tab leads 15 are designed to extend from different positions from each other from the electrode current collector when viewed in a plan view, so that the positive electrode tab leads 13 are stacked on top of each other, while the negative electrode tab leads 15 are stacked on top of each other at a different position.
  • the overlapping portions of the positive electrode tab leads 13 were joined together to the positive electrode terminal 26 by laser welding to form a positive electrode tab joint 30.
  • the overlapping portions of the negative electrode tab leads 15 were joined together to the negative electrode terminal 28 by laser welding to form a negative electrode tab joint 32.
  • the discharge capacity thus measured was divided by the initial discharge capacity and multiplied by 100 to calculate the discharge capacity retention rate (%).
  • the test for about 29 days (28 days of rest + 1 day of charging three times) according to the charging profile shown in FIG. 10A was repeated to measure the progress of the discharge capacity retention rate up to about 145 days.
  • the results were as shown in Table 2 and FIG. 10B.
  • Example A2 which uses a negative electrode with a significantly higher content of metal Zn particles, achieves a higher capacity retention rate even after the same number of days have passed, compared to Example A1, which uses a negative electrode with a lower content rate of metal Zn particles.
  • Example A1 which uses a negative electrode with a lower content rate of metal Zn particles.
  • Example A2 which uses a negative electrode with a significantly higher content of metal Zn particles, achieves a higher capacity retention rate even after the same number of days have passed, compared to Example A1, which uses a negative electrode with a lower content rate of metal Zn particles.
  • Example A1 which uses a negative electrode with a lower content rate of metal Zn particles.
  • SOC state of charge
  • Example B2 in which charging is performed to a depth (SOC) of 90% (80% of the installed capacity), achieves a higher capacity retention rate even with the same number of days elapsed, compared to Example B1, in which charging is performed to an SOC of 100% (90% of the installed capacity).
  • SOC depth of 90%
  • Example B1 in which charging is performed to an SOC of 100% (90% of the installed capacity).
  • Example B2 in which charging is performed to a depth (SOC) of 90% (80% of the installed capacity), achieves a higher capacity retention rate even with the same number of days elapsed, compared to Example B1, in which charging is performed to an SOC of 100% (90% of the installed capacity).
  • SOC depth of 90%
  • Example B1 in which charging is performed to an SOC of 100% (90% of the installed capacity).
  • Example B2 i.e., the life extension effect of increasing the content of metallic Zn particles and lowering the maximum SOC during charging
  • results obtained in an accelerated trickle charge test at 55°C for Examples A1 and B2 are compared in Table 6 and Figure 11D.
  • Example B2 in which the content of metal Zn particles is high and charging is performed to a depth (SOC) of 90% (80% of the installed capacity), achieves a particularly high capacity retention rate even with the same number of days elapsed, compared to Example A1, in which the content of metal Zn particles is low and charging is performed to an SOC of 100% (90% of the installed capacity).
  • SOC depth
  • Example A1 in which the content of metal Zn particles is low and charging is performed to an SOC of 100% (90% of the installed capacity).
  • a particularly high capacity retention rate can be achieved by increasing the content of metal Zn in the negative electrode and limiting trickle charging to an SOC of 90% (80% of the installed capacity).
  • the expected battery life at 25°C for the battery in Example B2 which has a battery life of approximately 270 days in the accelerated test at 55°C, is approximately 5.9 years, which is an estimated increase in battery life of approximately 3.1 years compared to the battery in Example A1.
  • the following polymeric microporous membrane separator product name: #3401, manufactured by Celgard, material: polypropylene, thickness: 25 ⁇ m
  • an accelerated trickle charge test was performed at 65° C. up to SOC 100% (90% of the installed capacity) according to the charging profile shown in FIG. 12A .
  • the LDH separator is not permeable to gases and does not allow oxygen generated from the positive electrode to pass through, so it has the effect of preventing oxidation of the negative electrode, suppressing the decrease in battery capacity, and extending the lifespan.
  • the lifespan line is set to 50%
  • the battery of Example C2 which uses a gas-permeable LDH separator
  • This test is a trickle charge accelerated test performed at a high temperature of 55°C, but it is generally known that the lifespan of a secondary battery is approximately 1/2 when the temperature rises by 10°C. Based on this general knowledge, the expected lifespan of the battery of Example C2, which has a lifespan of approximately 150 days in the accelerated test at 55°C, at 25°C is approximately 6.6 years, which is estimated to be an increase of approximately 1.8 years compared to the battery of Example C1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a negative electrode for a zinc secondary battery, the negative electrode being capable of extending the life of a battery by delaying a decrease in battery capacity during trickle charging. The negative electrode contains: ZnO particles; and metal Zn particles in an amount 55.0-65.0 parts by weight with respect to 100 parts by weight of the ZnO particles.

Description

亜鉛二次電池用負極、並びにニッケル亜鉛二次電池及びその使用方法Anode for zinc secondary battery, nickel-zinc secondary battery and method of using same
 本発明は、亜鉛二次電池用負極、並びにニッケル亜鉛二次電池及びその使用方法に関するものである。 The present invention relates to a negative electrode for a zinc secondary battery, as well as a nickel-zinc secondary battery and a method for using the same.
 ニッケル亜鉛二次電池の負極には、ZnO粒子と金属Zn粒子が併用されるのが一般的である。特許文献1(特開2021-57339号公報)には、Zn粒子及びZnO粒子を含む負極活物質と、はんだを含む導電助剤を含む、亜鉛二次電池用の負極が開示されている。この文献には、負極におけるZn粒子の量が、ZnO粒子の含有量を100重量部とした場合に、1~50重量部であるのが好ましいことが記載されている。特許文献2(WO2022/118625)には、ZnO粒子及びZn粒子を含む負極活物質と、ノニオン性吸水ポリマーとを含む、亜鉛二次電池用の負極が開示されている。この文献には、ZnO粉末100重量部に、金属Zn粉末5.7重量部、ポリテトラフルオロエチレン(PTFE)1重量部、並びに場合によりノニオン性吸水ポリマー又はイオン性吸水ポリマーを添加して負極を作製したことが開示されている。 ZnO particles and metal Zn particles are generally used in combination in the negative electrode of a nickel-zinc secondary battery. Patent Document 1 (JP 2021-57339 A) discloses a negative electrode for a zinc secondary battery, which contains a negative electrode active material containing Zn particles and ZnO particles, and a conductive assistant containing solder. This document describes that the amount of Zn particles in the negative electrode is preferably 1 to 50 parts by weight, assuming that the content of ZnO particles is 100 parts by weight. Patent Document 2 (WO2022/118625) discloses a negative electrode for a zinc secondary battery, which contains a negative electrode active material containing ZnO particles and Zn particles, and a nonionic water-absorbing polymer. This document discloses that a negative electrode was prepared by adding 5.7 parts by weight of metal Zn powder, 1 part by weight of polytetrafluoroethylene (PTFE), and optionally a nonionic water-absorbing polymer or an ionic water-absorbing polymer to 100 parts by weight of ZnO powder.
 ところで、ニッケル亜鉛二次電池、空気亜鉛二次電池等の亜鉛二次電池では、充電時に負極から金属亜鉛がデンドライト状に析出し、不織布等のセパレータの空隙を貫通して正極に到達し、その結果、短絡を引き起こすことが知られている。このような亜鉛デンドライトに起因する短絡は繰り返し充放電寿命の短縮を招く。この問題に対処すべく、水酸化物イオンを選択的に透過させながら、亜鉛デンドライトの貫通を阻止する、層状複水酸化物(LDH)セパレータを備えた電池が提案されている(例えば、特許文献1及び2、並びに特許文献3(WO2016/076047)、特許文献4(WO2019/124270)参照)。また、特許文献5(WO2019/069760)及び特許文献6(WO2019/077953)には、負極活物質層の全体を保液部材及びLDHセパレータで覆う又は包み込み、かつ、正極活物質層を保液部材で覆う又は包み込んだ構成の亜鉛二次電池が提案されている。保液部材としては不織布が用いられている。かかる構成によれば、LDHセパレータと電池容器との煩雑な封止接合を不要にして、亜鉛デンドライト伸展を防止可能な亜鉛二次電池(特にその積層電池)を極めて簡便にかつ高い生産性で作製することができるとされている。 Incidentally, in zinc secondary batteries such as nickel-zinc secondary batteries and air-zinc secondary batteries, it is known that metallic zinc precipitates in the form of dendrites from the negative electrode during charging, penetrating the voids in the separator such as a nonwoven fabric to reach the positive electrode, resulting in a short circuit. Such short circuits caused by zinc dendrites shorten the repeated charge/discharge life. To address this problem, batteries have been proposed that include a layered double hydroxide (LDH) separator that selectively allows hydroxide ions to pass through while preventing the penetration of zinc dendrites (see, for example, Patent Documents 1 and 2, Patent Document 3 (WO2016/076047), and Patent Document 4 (WO2019/124270)). In addition, Patent Document 5 (WO2019/069760) and Patent Document 6 (WO2019/077953) propose a zinc secondary battery in which the entire negative electrode active material layer is covered or wrapped with a liquid-retaining member and an LDH separator, and the positive electrode active material layer is covered or wrapped with a liquid-retaining member. A nonwoven fabric is used as the liquid-retaining member. With this configuration, it is said that a zinc secondary battery (especially a stacked battery thereof) capable of preventing zinc dendrite extension can be produced extremely easily and with high productivity, eliminating the need for a complicated sealing joint between the LDH separator and the battery container.
 さらに、LDHとは呼べないもののそれに類する層状結晶構造の水酸化物及び/又は酸化物としてLDH様化合物が知られており、LDHとともに水酸化物イオン伝導層状化合物と総称できる程に類似した水酸化物イオン伝導特性を呈する(例えば、特許文献1及び2を参照)。具体的には、特許文献7(WO2020/255856)には、多孔質基材と、多孔質基材の孔を塞ぐ層状複水酸化物(LDH)様化合物とを含む、水酸化物イオン伝導セパレータであって、このLDH様化合物が、Mgと、Ti、Y及びAlからなる群から選択される少なくともTiを含む1以上の元素とを含む層状結晶構造の水酸化物及び/又は酸化物であるものが開示されている。また、特許文献8(WO2021/229916)には、(i)Ti、Y、及び所望によりAl及び/又はMgと、(ii)In、Bi、Ca、Sr及びBaからなる群から選択される少なくとも1種である添加元素Mとを含むLDH様化合物を用いたLDHセパレータが開示されている。さらに、特許文献9(WO2021/229917号)には、LDH様化合物及びIn(OH)の混合物を含むLDHセパレータに関して、LDH様化合物が、Mg、Ti、Y、及び所望によりAl及び/又はInを含む層状結晶構造の水酸化物及び/又は酸化物であるものが開示されている。特許文献7~9に開示されるセパレータによれば、従来のLDHセパレータと比べ、耐アルカリ性に優れ、かつ、亜鉛デンドライトに起因する短絡をより一層効果的に抑制できるとされている。 Furthermore, although they cannot be called LDH, LDH-like compounds are known as hydroxides and/or oxides having a layered crystal structure similar to LDH, and exhibit hydroxide ion conductive properties similar enough to be collectively referred to as hydroxide ion conductive layered compounds together with LDH (see, for example, Patent Documents 1 and 2). Specifically, Patent Document 7 (WO2020/255856) discloses a hydroxide ion conductive separator comprising a porous substrate and a layered double hydroxide (LDH)-like compound that blocks the pores of the porous substrate, in which the LDH-like compound is a hydroxide and/or oxide having a layered crystal structure containing Mg and one or more elements including at least Ti selected from the group consisting of Ti, Y, and Al. In addition, Patent Document 8 (WO2021/229916) discloses an LDH separator using an LDH-like compound containing (i) Ti, Y, and optionally Al and/or Mg, and (ii) an additive element M which is at least one selected from the group consisting of In, Bi, Ca, Sr and Ba. Furthermore, Patent Document 9 (WO2021/229917) discloses an LDH separator containing a mixture of an LDH-like compound and In(OH) 3 , in which the LDH-like compound is a hydroxide and/or oxide having a layered crystal structure containing Mg, Ti, Y, and optionally Al and/or In. According to the separators disclosed in Patent Documents 7 to 9, it is said that the separators have excellent alkali resistance compared to conventional LDH separators, and can more effectively suppress short circuits caused by zinc dendrites.
特開2021-57339号公報JP 2021-57339 A WO2022/118625WO2022/118625 WO2016/076047WO2016/076047 WO2019/124270WO2019/124270 WO2019/069760WO2019/069760 WO2019/077953WO2019/077953 WO2020/255856WO2020/255856 WO2021/229916WO2021/229916 WO2021/229917WO2021/229917
 ニッケル亜鉛二次電池の用途には、充放電を繰り返して使用するサイクル用途以外にも、停電時用の非常用電源としてのバックアップ用途が存在する。バックアップ用途においては、電池の最低保証容量を担保するため、電池容量を満充電付近で維持することが望まれる。そこで、図1に示されるように、自己放電(2)により目減りする電池容量を補うためにトリクル充電(1)が行われる。トリクル充電を行うことで電池容量を満充電付近に常時維持することができる。しかしながら、トリクル充電時に電池容量が低下して電池寿命が短くなるとの問題がある。 In addition to cyclic applications in which the battery is repeatedly charged and discharged, nickel-zinc secondary batteries can also be used as backup power sources in the event of a power outage. In backup applications, it is desirable to maintain the battery capacity near full charge to ensure the battery's minimum guaranteed capacity. As shown in Figure 1, trickle charging (1) is therefore performed to compensate for the loss of battery capacity due to self-discharge (2). Trickle charging makes it possible to constantly maintain the battery capacity near full charge. However, there is a problem in that the battery capacity decreases during trickle charging, shortening the battery life.
 本発明者らは、今般、ZnO粒子に対して金属Zn粒子を所定量配合した負極を亜鉛二次電池に用いることで、トリクル充電時における電池容量の低下を遅延して電池の寿命を延伸できることを見出した。 The inventors have now discovered that by using a negative electrode in which a specified amount of metallic Zn particles is mixed with ZnO particles in a zinc secondary battery, it is possible to delay the decrease in battery capacity during trickle charging and extend the battery's lifespan.
 したがって、本発明の目的は、トリクル充電時における電池容量の低下を遅延して電池の寿命を延伸することが可能な、亜鉛二次電池用の負極を提供することにある。 The object of the present invention is therefore to provide a negative electrode for a zinc secondary battery that can delay the decrease in battery capacity during trickle charging and extend the battery's life.
 本発明によれば、以下の態様が提供される。
[態様1]
 亜鉛二次電池に用いられる負極であって、
 ZnO粒子と、
 前記ZnO粒子100重量部に対して55.0~65.0重量部の量の金属Zn粒子と、
を含む、負極。
[態様2]
 前記金属Zn粒子の含有量が、前記ZnO粒子100重量部に対して、55.0~58.0重量部である、態様1に記載の負極。
[態様3]
 バインダー樹脂をさらに含む、態様1又は2に記載の負極。
[態様4]
 水酸化ニッケル及び/又はオキシ水酸化ニッケルを含む正極板と、
 態様1~3のいずれか一つに記載の負極板と、
 前記正極板と前記負極板とを水酸化物イオン伝導可能に隔離する水酸化物イオン伝導セパレータと、
 電解液と、
 前記正極板、前記負極板、及び水酸化物イオン伝導セパレータが縦向きに収容される電池ケースと、
を備えた、ニッケル亜鉛二次電池。
[態様5]
 前記水酸化物イオン伝導セパレータが、層状複水酸化物(LDH)及び/又はLDH様化合物を含むLDHセパレータである、態様4に記載のニッケル亜鉛二次電池。
[態様6]
 前記LDHセパレータが多孔質基材と複合化されている、態様5に記載のニッケル亜鉛二次電池。
[態様7]
 前記負極板が前記水酸化物イオン伝導セパレータで覆われ、かつ、前記負極板の上端部以外の外周部が気密に封止されており、それにより前記正極板で生じる酸素の前記負極板への到達が前記水酸化物イオン伝導セパレータで阻止される、態様4~6のいずれか一つに記載のニッケル亜鉛二次電池。
[態様8]
 前記ニッケル亜鉛電池が積層セルを備えており、前記積層セルが、
 複数の前記正極板と、
 前記正極板の各々の端部から延出する複数の正極タブリードと、
 複数の前記負極板と、
 前記負極板の各々の端部から、前記正極タブリードと重ならない位置で延出する複数の負極タブリードと、
 前記正極板及び前記負極板を水酸化物イオン伝導可能に隔離する複数の前記水酸化物イオン伝導セパレータと、
 前記電解液と、
を備え、前記正極板と前記負極板が前記水酸化物イオン伝導セパレータを挟んで交互積層されたものである、態様4~7のいずれか一つに記載のニッケル亜鉛二次電池。
[態様9]
 態様4~8のいずれか一つに記載のニッケル亜鉛二次電池に対して、前記ニッケル亜鉛二次電池の搭載容量の80~85%の充電容量をもたらすようにトリクル充電を行うことを含む、ニッケル亜鉛二次電池の使用方法。
[態様10]
 前記充電容量が前記ニッケル亜鉛二次電池の搭載容量の80%である、態様9に記載のニッケル亜鉛二次電池の使用方法。
According to the present invention, the following aspects are provided.
[Aspect 1]
A negative electrode for use in a zinc secondary battery,
ZnO particles;
Metal Zn particles in an amount of 55.0 to 65.0 parts by weight per 100 parts by weight of the ZnO particles;
a negative electrode.
[Aspect 2]
2. The negative electrode according to claim 1, wherein the content of the metal Zn particles is 55.0 to 58.0 parts by weight per 100 parts by weight of the ZnO particles.
[Aspect 3]
3. The negative electrode of any one of the preceding claims, further comprising a binder resin.
[Aspect 4]
A positive electrode plate containing nickel hydroxide and/or nickel oxyhydroxide;
A negative electrode plate according to any one of aspects 1 to 3,
a hydroxide ion conductive separator that separates the positive electrode plate and the negative electrode plate so as to be capable of conducting hydroxide ions;
An electrolyte;
a battery case in which the positive electrode plate, the negative electrode plate, and a hydroxide ion conductive separator are housed vertically;
A nickel-zinc secondary battery comprising:
[Aspect 5]
5. The nickel-zinc secondary battery of claim 4, wherein the hydroxide ion conducting separator is a layered double hydroxide (LDH) separator comprising an LDH and/or an LDH-like compound.
[Aspect 6]
The nickel-zinc secondary battery of claim 5, wherein the LDH separator is composited with a porous substrate.
[Aspect 7]
A nickel-zinc secondary battery according to any one of aspects 4 to 6, wherein the negative electrode plate is covered with the hydroxide ion conductive separator, and the outer periphery of the negative electrode plate other than the upper end is hermetically sealed, thereby preventing oxygen generated at the positive electrode plate from reaching the negative electrode plate by the hydroxide ion conductive separator.
[Aspect 8]
The nickel-zinc battery comprises a stacked cell, the stacked cell comprising:
A plurality of the positive electrode plates;
a plurality of positive electrode tab leads extending from each end of the positive electrode plate;
A plurality of the negative electrode plates;
a plurality of negative electrode tab leads extending from each end of the negative electrode plate at positions not overlapping with the positive electrode tab leads;
a plurality of hydroxide ion conductive separators isolating the positive electrode plate and the negative electrode plate so as to be capable of conducting hydroxide ions;
The electrolyte;
The nickel-zinc secondary battery according to any one of aspects 4 to 7, wherein the positive electrode plate and the negative electrode plate are alternately laminated with the hydroxide ion conductive separator sandwiched therebetween.
[Aspect 9]
A method for using a nickel-zinc secondary battery, comprising trickle charging the nickel-zinc secondary battery according to any one of aspects 4 to 8 so as to provide a charge capacity of 80 to 85% of the on-board capacity of the nickel-zinc secondary battery.
[Aspect 10]
10. The method of using the nickel-zinc secondary battery according to claim 9, wherein the charging capacity is 80% of the installed capacity of the nickel-zinc secondary battery.
トリクル充電プロファイルの一例を示す図である。FIG. 4 illustrates an example of a trickle charge profile. トリクル充電を電池容量の観点から説明するための図である。FIG. 1 is a diagram for explaining trickle charging from the viewpoint of battery capacity. ニッケル亜鉛二次電池における自己放電により生じた酸素の移動を概念的に示す模式断面図である。FIG. 2 is a schematic cross-sectional view conceptually showing the movement of oxygen caused by self-discharge in a nickel-zinc secondary battery. 本発明によるニッケル亜鉛二次電池の一例を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a nickel-zinc secondary battery according to the present invention. 図4に示されるニッケル亜鉛二次電池のA-A’線断面を模式的に示す図である。FIG. 5 is a schematic diagram showing a cross section of the nickel-zinc secondary battery shown in FIG. 4 taken along line A-A'. 図4に示されるニッケル亜鉛二次電池の積層セルを模式的に示す斜視図である。FIG. 5 is a perspective view showing a schematic diagram of a stacked cell of the nickel-zinc secondary battery shown in FIG. 4. 図4に示されるニッケル亜鉛二次電池の積層セルを模式的に示す断面図である。FIG. 5 is a cross-sectional view showing a schematic diagram of a stacked cell of the nickel-zinc secondary battery shown in FIG. 4. 図4に示されるニッケル亜鉛二次電池における、正極板又は負極板の、水酸化物イオン伝導セパレータ又は保液部材で覆われた形態を示す斜視図である。FIG. 5 is a perspective view showing a state in which the positive electrode plate or the negative electrode plate in the nickel-zinc secondary battery shown in FIG. 4 is covered with a hydroxide ion conductive separator or a liquid retaining member. 微多孔膜セパレータで負極板が覆われた場合における、正極板からの酸素の移動を概念的に示す図である。FIG. 2 is a diagram conceptually illustrating the transfer of oxygen from a positive electrode plate when the negative electrode plate is covered with a microporous membrane separator. 水酸化物イオン伝導セパレータで負極板が覆われた場合における、正極板からの酸素の移動を概念的に示す図である。図中、×印は酸素Oの移動がそこで阻止されることを意味する。FIG. 1 is a schematic diagram showing the transfer of oxygen from a positive plate when the negative plate is covered with a hydroxide ion conducting separator, where the cross marks indicate that the transfer of oxygen O2 is blocked. 例A1及びA2で行われたトリクル充電加速試験における充電プロファイルを示す。1 shows the charging profile in the trickle charge accelerated test performed in Examples A1 and A2. 例A1及びA2において65℃で行われたトリクル充電加速試験の結果を示す図である。FIG. 1 shows the results of an accelerated trickle charge test carried out at 65° C. for Examples A1 and A2. 例A1及びA2において55℃で行われたトリクル充電加速試験の結果を示す図である。FIG. 1 shows the results of an accelerated trickle charge test carried out at 55° C. for Examples A1 and A2. 例B1及びB2で行われたトリクル充電加速試験における充電プロファイルを示す。1 shows the charging profile for the trickle charge accelerated test performed in Examples B1 and B2. 例B1及びB2において65℃で行われたトリクル充電加速試験の結果を示す図である。FIG. 1 shows the results of an accelerated trickle charge test conducted at 65° C. for Examples B1 and B2. 例B1及びB2において55℃で行われたトリクル充電加速試験の結果を示す図である。FIG. 1 shows the results of an accelerated trickle charge test performed at 55° C. for Examples B1 and B2. 例A1及びB2において55℃で行われたトリクル充電加速試験の結果を示す図である。FIG. 1 shows the results of an accelerated trickle charge test carried out at 55° C. for Examples A1 and B2. 例C1及びC2で行われたトリクル充電加速試験における充電プロファイルを示す。1 shows the charging profile for the trickle charge accelerated test performed on Examples C1 and C2. 例C1及びC2において65℃で行われたトリクル充電加速試験の結果を示す図である。FIG. 1 shows the results of an accelerated trickle charge test conducted at 65° C. for Examples C1 and C2. ニッケル亜鉛二次電池の一例における充電曲線を酸素濃度の変化とともに示す図である。FIG. 2 is a diagram showing a charging curve of an example of a nickel-zinc secondary battery together with changes in oxygen concentration.
 定義
 本明細書において使用される用語の定義を以下に示す。
Definitions The following are definitions of terms used in this specification.
 本明細書において「搭載容量」は、電池内における正極活物質の質量から算出した理論容量として定義される。質量1gの理論容量Cm(Ah/g)は、Cm=F×N×M(式中、Fは電子1molの電荷量、Nは電極材料1mol当たりの反応可能な電子のモル数、Mは電極材料1g当たりのモル数を表す)の式から算出することができる。Ni(OH)の単位質量1g当たりの理論容量は289.1mAh/gであることから、正極活物質としてNi(OH)を345.9g搭載した電池の搭載容量は100Ahとなる。なお、正極活物質に基づいて搭載容量を定義しているのは、正極容量が負極容量よりも小さくなる電池を想定しており、その場合、搭載容量が正極容量で規制されることになるためである。したがって、仮に正極容量が負極容量よりも大きくなる電池を想定する場合には、上記定義における「正極活物質の質量」を「負極活物質の質量」と読み替えればよい。 In this specification, the term "loading capacity" is defined as the theoretical capacity calculated from the mass of the positive electrode active material in the battery. The theoretical capacity Cm (Ah/g) of 1 g of mass can be calculated from the formula Cm = F x N x M (where F is the charge amount of 1 mol of electrons, N is the number of moles of reactive electrons per mol of electrode material, and M is the number of moles per 1 g of electrode material). Since the theoretical capacity per unit mass of Ni(OH) 2 is 289.1 mAh/g, the loading capacity of a battery loaded with 345.9 g of Ni(OH) 2 as the positive electrode active material is 100 Ah. The reason why the loading capacity is defined based on the positive electrode active material is that a battery in which the positive electrode capacity is smaller than the negative electrode capacity is assumed, and in that case, the loading capacity is regulated by the positive electrode capacity. Therefore, if a battery in which the positive electrode capacity is greater than the negative electrode capacity is considered, the "mass of the positive electrode active material" in the above definition should be read as the "mass of the negative electrode active material".
 本明細書において「定格容量」は、規定された条件下で取り出すことができる(蓄えられる)電気量、より具体的には、規定温度、放電電流及び終止電圧で完全充電状態から取り出せる電気量を意味する。例えば、定格容量は、25℃の環境下で、終止電圧1.4V、0.1C(10時間率)での放電容量でありうる。 In this specification, "rated capacity" means the amount of electricity that can be extracted (stored) under specified conditions, more specifically, the amount of electricity that can be extracted from a fully charged state at a specified temperature, discharge current, and end voltage. For example, the rated capacity can be the discharge capacity at an end voltage of 1.4 V and 0.1 C (10-hour rate) in an environment of 25°C.
 本明細書において「深度」及び「SOC」は、定格容量100%に対する電池の充電状態(充電率)を意味する。したがって、完全放電状態の深度(SOC)は0%であり、満充電状態の深度(SOC)は100%となる。 In this specification, "depth" and "SOC" refer to the state of charge (charging rate) of a battery relative to 100% rated capacity. Therefore, the depth of charge (SOC) of a fully discharged state is 0%, and the depth of charge (SOC) of a fully charged state is 100%.
 本明細書において「利用率」は、搭載容量100%に対する充電容量の比率を意味する。例えば、搭載容量が133.3Ahでかつ定格容量が120Ahの場合、定格容量(すなわち深度(SOC)100%)における利用率は、搭載容量100%に対する定格容量比率である90%(=(120/133.3)×100)となる。 In this specification, "utilization rate" means the ratio of the charging capacity to 100% installed capacity. For example, if the installed capacity is 133.3 Ah and the rated capacity is 120 Ah, the utilization rate at the rated capacity (i.e., 100% SOC) is 90%, which is the ratio of the rated capacity to 100% installed capacity (= (120/133.3) x 100).
 本明細書において「自己放電」は、外部回路に電流が取り出されること無く、化学反応によって蓄えられている電気の量が時間の経過と共に徐々に減少する現象を意味する。 In this specification, "self-discharge" refers to the phenomenon in which the amount of electricity stored through a chemical reaction gradually decreases over time without current being drawn into an external circuit.
 本明細書において「トリクル充電」は、図1及び3に示されるように、二次電池の自己放電(2)により目減りする電池容量を補うために行われる充電(1)を意味する。より詳しくは、図2に示されるように、搭載容量に対して一定の割合に規定された定格容量(これを深度(SOC)100%とする)を基準に自己放電により目減りする電池容量をトリクル充電で補って電池容量を満充電付近に常時維持することができる。トリクル充電は、無停電電源装置(UPS)等の非常用電源に多く採用されている。電池を満充電状態で長期間保管した後に使用する際には定格の性能が発揮できない又は使用できない場合があり、かかる問題を回避するため、自己放電を補う充電を行う方法の一つとしてトリクル充電が広く用いられている。これにより所定の電池容量(図2では80%)以上を保証することができる。 In this specification, "trickle charging" refers to charging (1) performed to compensate for the loss of battery capacity due to self-discharge (2) of the secondary battery, as shown in Figures 1 and 3. More specifically, as shown in Figure 2, trickle charging compensates for the loss of battery capacity due to self-discharge based on a rated capacity (with 100% state of charge (SOC)) that is specified as a certain percentage of the installed capacity, so that the battery capacity can always be maintained near full charge. Trickle charging is often used in emergency power sources such as uninterruptible power supplies (UPS). When a battery is stored in a fully charged state for a long period of time and then used, it may not be able to perform at its rated performance or be usable. To avoid such problems, trickle charging is widely used as one method of charging to compensate for self-discharge. This ensures a specified battery capacity (80% in Figure 2) or more.
 亜鉛二次電池用負極
 本発明の負極は、亜鉛二次電池に用いられる負極である。亜鉛二次電池は、亜鉛を負極として用い、かつ、アルカリ電解液(典型的にはアルカリ金属水酸化物水溶液)を用いた二次電池であれば特に限定されない。したがって、ニッケル亜鉛二次電池、酸化銀亜鉛二次電池、酸化マンガン亜鉛二次電池、空気亜鉛二次電池、その他各種のアルカリ亜鉛二次電池であることができる。負極は、図3に示されるように、負極活物質層14a及び負極集電体14bを含む負極板14であるのが典型的である。この負極ないし負極板14(特に負極活物質層14a)は、ZnO粒子と、金属Zn粒子とを含む。そして、金属Zn粒子の量は、ZnO粒子100重量部に対して55.0~65.0重量部とする。このようにZnO粒子に対して金属Zn粒子を所定量配合した負極を亜鉛二次電池に用いることで、トリクル充電時における電池容量の低下を遅延して電池の寿命を延伸できる。
Anode for zinc secondary battery The anode of the present invention is an anode used in a zinc secondary battery. The zinc secondary battery is not particularly limited as long as it uses zinc as the anode and uses an alkaline electrolyte (typically an aqueous alkali metal hydroxide solution). Therefore, it can be a nickel zinc secondary battery, a silver oxide zinc secondary battery, a manganese oxide zinc secondary battery, an air zinc secondary battery, or any other type of alkaline zinc secondary battery. The anode is typically a negative electrode plate 14 including a negative electrode active material layer 14a and a negative electrode current collector 14b, as shown in FIG. 3. This negative electrode or negative electrode plate 14 (particularly the negative electrode active material layer 14a) includes ZnO particles and metal Zn particles. The amount of the metal Zn particles is 55.0 to 65.0 parts by weight per 100 parts by weight of ZnO particles. By using a negative electrode in which a predetermined amount of metal Zn particles is mixed with ZnO particles in a zinc secondary battery, the decrease in battery capacity during trickle charging can be delayed, thereby extending the life of the battery.
 すなわち、前述したように、ニッケル亜鉛二次電池のバックアップ用途においては、電池の最低保証容量を担保するため、電池容量を満充電付近で維持することが望まれる。そこで、図1に示されるように、自己放電(2)により目減りする電池容量を補うためにトリクル充電(1)が行われる。しかしながら、トリクル充電時に電池容量が低下して電池寿命が短くなるとの問題がある。この問題が本発明の負極によれば好都合に解消される。そのメカニズムは以下のようなものと考えられる。すなわち、ニッケル亜鉛二次電池の正極では、トリクル充電時や自己放電(静置)時に以下の反応:
(1)充電反応:
・正極:4OH→O↑+2HO+4e
(2)自己放電反応:
・正極:2NiOOH+HO→2Ni(OH)+1/2O
により酸素が発生する。そして、発生した酸素が、図3に示されるように正極板12から負極板14に保液部材17やセパレータ116を通り抜けて移動すると、以下の反応:
・負極:Zn+1/2O→ZnO
により、負極板14に含まれる金属Zn(充電状態の活物質)が酸化してZnO(放電状態の活物質)となり、負極容量が減少する。結果として、電池容量が減少して、トリクル充電使用時の電池寿命が短くなる。そこで、ZnO粒子に対して金属Zn粒子を増量した負極を亜鉛二次電池に用いることで、トリクル充電時における電池容量の低下を遅延して電池の寿命を延伸することができる。
That is, as mentioned above, in the backup use of nickel-zinc secondary batteries, it is desirable to maintain the battery capacity near full charge in order to guarantee the minimum guaranteed capacity of the battery. Therefore, as shown in FIG. 1, trickle charging (1) is performed to compensate for the battery capacity that is reduced by self-discharge (2). However, there is a problem that the battery capacity decreases during trickle charging, shortening the battery life. This problem is conveniently solved by the negative electrode of the present invention. The mechanism is considered to be as follows. That is, in the positive electrode of a nickel-zinc secondary battery, the following reaction occurs during trickle charging or self-discharge (standing):
(1) Charging reaction:
Positive electrode: 4OH-O2 ↑+ 2H2O + 4e-
(2) Self-discharge reaction:
Positive electrode: 2NiOOH + H2O → 2Ni(OH) 2 + 1/ 2O2
Then, when the generated oxygen moves from the positive electrode plate 12 to the negative electrode plate 14 through the liquid retaining member 17 and the separator 116 as shown in FIG. 3, the following reaction occurs:
・Negative electrode: Zn+1/2O 2 →ZnO
As a result, the metallic Zn (active material in a charged state) contained in the negative electrode plate 14 is oxidized to ZnO (active material in a discharged state), and the negative electrode capacity is reduced. As a result, the battery capacity is reduced, and the battery life during trickle charging is shortened. Therefore, by using a negative electrode in which the amount of metallic Zn particles is increased relative to the amount of ZnO particles in a zinc secondary battery, the decrease in battery capacity during trickle charging can be delayed, and the battery life can be extended.
 ZnO粒子は亜鉛二次電池に用いられる市販の酸化亜鉛粉末、もしくはそれらを出発原料として用いて固相反応等により粒成長させた酸化亜鉛粉末を用いればよく特に限定されない。ZnO粒子の平均粒径D50は、好ましくは0.1~20μmであり、より好ましくは0.1~10μm、さらに好ましくは0.1~5μmである。なお、本明細書において、平均粒径D50は、レーザー回折・散乱法によって得られる粒度分布において小粒径側からの積算体積が50%になる粒径を意味するものとする。 The ZnO particles are not particularly limited and may be either commercially available zinc oxide powder used in zinc secondary batteries or zinc oxide powder obtained by growing the particles by solid-phase reaction using the commercially available zinc oxide powder as the starting material. The average particle size D50 of the ZnO particles is preferably 0.1 to 20 μm, more preferably 0.1 to 10 μm, and even more preferably 0.1 to 5 μm. In this specification, the average particle size D50 refers to the particle size at which the cumulative volume from the small particle size side in the particle size distribution obtained by the laser diffraction/scattering method is 50%.
 金属Zn粒子は、亜鉛二次電池に一般的に使用される金属Zn粒子が使用可能であるが、それよりも小さい金属Zn粒子の使用が電池のサイクル寿命を長くする観点からより好ましい。具体的には、金属Zn粒子の平均粒径D50は、好ましくは50~150μmである。負極における金属Zn粒子の含有量は、ZnO粒子100重量部に対して55.0~65.0重量部であるのが好ましく、より好ましくは55.0~58.0重量部、さらに好ましくは56.6~57.6重量部である。このような量は従来使用されているニッケル亜鉛二次電池の一般的な負極における金属Zn粒子量よりも格段に多いものであり、このようにZnO粒子に対して金属Zn粒子を増量した負極を亜鉛二次電池に用いることで、トリクル充電時における電池容量の低下を遅延して電池の寿命を延伸することができる。また、金属Zn粒子がZnO粒子に対して多すぎないようにすることで、金属Zn粒子及びZnO粒子を用いた負極の成型がしやすくなる。金属Zn粒子にはIn、Bi等のドーパントがドープされていてもよい。 The metal Zn particles can be metal Zn particles commonly used in zinc secondary batteries, but it is more preferable to use smaller metal Zn particles from the viewpoint of extending the cycle life of the battery. Specifically, the average particle size D50 of the metal Zn particles is preferably 50 to 150 μm. The content of the metal Zn particles in the negative electrode is preferably 55.0 to 65.0 parts by weight relative to 100 parts by weight of ZnO particles, more preferably 55.0 to 58.0 parts by weight, and even more preferably 56.6 to 57.6 parts by weight. Such an amount is significantly greater than the amount of metal Zn particles in a general negative electrode of a conventionally used nickel-zinc secondary battery, and by using a negative electrode in which the amount of metal Zn particles is increased relative to the amount of ZnO particles in this way for a zinc secondary battery, the decrease in battery capacity during trickle charging can be delayed and the life of the battery can be extended. In addition, by ensuring that the amount of metal Zn particles is not too large relative to the ZnO particles, it becomes easier to mold the negative electrode using the metal Zn particles and ZnO particles. The metal Zn particles may be doped with dopants such as In and Bi.
 負極ないし負極板14(特に負極活物質層14a)は、In及びBiから選択される1種以上の金属元素をさらに含むのが好ましい。これらの金属元素は負極の自己放電による望ましくない水素ガスの発生を抑制することができる。これらの金属元素は、金属、酸化物、水酸化物、その他の化合物等のいかなる形態で負極に含まれてもよいが、酸化物又は水酸化物の形態で含まれるのが好ましく、より好ましくは酸化物粒子の形態で含まれる。上記金属元素の酸化物の例としては、In、Bi等が挙げられる。上記金属元素の水酸化物の例としては、In(OH)、Bi(OH)等が挙げられる。いずれにしても、ZnO粒子の含有量を100重量部とした場合に、Inの含有量が酸化物換算で0~2重量部であり、かつ、Biの含有量が酸化物換算で0~6重量部であるのが好ましく、より好ましくはInの含有量が酸化物換算で0~1.5重量部であり、かつ、Biの含有量が酸化物換算で0~4.5重量部である。In及び/又はBiが酸化物又は水酸化物の形態で負極に含まれる場合、In及び/又はBiの全てが酸化物又は水酸化物の形態である必要は無く、それらの一部が金属又は他の化合物等の他の形態で負極に含まれていてもよい。例えば、上記金属元素が金属Zn粒子に微量元素としてドープされていてもよい。この場合、金属Zn粒子中のIn濃度は好ましくは50~2000重量ppm、より好ましくは200~1500重量ppm、金属Zn粒子中のBi濃度は好ましくは50~2000重量ppm、より好ましくは100~1300重量ppmである。 The negative electrode or negative electrode plate 14 (particularly the negative electrode active material layer 14a) preferably further contains one or more metal elements selected from In and Bi. These metal elements can suppress the generation of undesirable hydrogen gas due to self-discharge of the negative electrode. These metal elements may be contained in the negative electrode in any form such as metal, oxide, hydroxide, or other compound, but are preferably contained in the form of oxide or hydroxide, and more preferably in the form of oxide particles. Examples of the oxides of the above metal elements include In 2 O 3 and Bi 2 O 3. Examples of the hydroxides of the above metal elements include In(OH) 3 and Bi(OH) 3. In any case, when the content of the ZnO particles is 100 parts by weight, the content of In is preferably 0 to 2 parts by weight in terms of oxide, and the content of Bi is preferably 0 to 6 parts by weight in terms of oxide, and more preferably the content of In is 0 to 1.5 parts by weight in terms of oxide, and the content of Bi is preferably 0 to 4.5 parts by weight in terms of oxide. When In and/or Bi are contained in the negative electrode in the form of oxide or hydroxide, it is not necessary that all of In and/or Bi are in the form of oxide or hydroxide, and a part of them may be contained in the negative electrode in other forms such as metal or other compounds. For example, the above metal elements may be doped into the metal Zn particles as trace elements. In this case, the In concentration in the metal Zn particles is preferably 50 to 2000 ppm by weight, more preferably 200 to 1500 ppm by weight, and the Bi concentration in the metal Zn particles is preferably 50 to 2000 ppm by weight, more preferably 100 to 1300 ppm by weight.
 負極ないし負極板14(特に負極活物質層14a)は導電助剤をさらに含んでいてもよい。導電助剤の例としては、カーボン、金属粉末(錫、鉛、銅、コバルト等)、及び貴金属ペーストが挙げられる。 The negative electrode or negative electrode plate 14 (particularly the negative electrode active material layer 14a) may further contain a conductive additive. Examples of conductive additives include carbon, metal powder (tin, lead, copper, cobalt, etc.), and precious metal paste.
 負極ないし負極板14(特に負極活物質層14a)はバインダー樹脂をさらに含んでいてもよい。負極がバインダーを含むことで、負極形状を保持しやすくなる。バインダー樹脂は公知の様々なバインダーが使用可能であるが、好ましい例としては、ポリビニルアルコール(PVA)、ポリテトラフルオロエチレン(PTFE)が挙げられる。PVA及びPTFEの両方を組み合わせてバインダーとして用いるのが特に好ましい。 The negative electrode or negative electrode plate 14 (particularly the negative electrode active material layer 14a) may further contain a binder resin. When the negative electrode contains a binder, it becomes easier to maintain the shape of the negative electrode. Various known binders can be used as the binder resin, but preferred examples include polyvinyl alcohol (PVA) and polytetrafluoroethylene (PTFE). It is particularly preferred to use a combination of both PVA and PTFE as the binder.
 負極ないし負極板14はシート状のプレス成形体であるのが好ましい。こうすることで、負極活物質の脱落防止や電極密度の向上を図ることができ、負極の形態変化をより効果的に抑制することができる。かかるシート状のプレス成形体の作製は、負極材料にバインダーを加えて混練し、得られた混練物にロールプレス等のプレス成形を施してシート状に成形すればよい。 The negative electrode or negative electrode plate 14 is preferably a sheet-like pressed body. This can prevent the negative electrode active material from falling off and improve the electrode density, and can more effectively suppress changes in the shape of the negative electrode. Such a sheet-like pressed body can be produced by adding a binder to the negative electrode material and kneading the mixture, and then applying press molding such as roll pressing to the resulting kneaded mixture to form it into a sheet.
 負極ないし負極板14は負極集電体14bを備えるのが好ましい。負極集電体14bの好ましい例としては、銅パンチングメタルや銅エキスパンドメタルが挙げられる。この場合、例えば、銅パンチングメタルや銅エキスパンドメタル上に、Zn化合物、金属亜鉛及び酸化亜鉛粉末、並びに所望によりバインダー(例えばポリテトラフルオロエチレン粒子)を含む混合物を塗布して負極/負極集電体からなる負極板を好ましく作製することができる。その際、乾燥後の負極板(すなわち負極/負極集電体)にプレス処理を施して、電極活物質の脱落防止や電極密度の向上を図ることも好ましい。あるいは、上述したようなシート状のプレス成形体を銅エキスパンドメタル等の集電体に圧着してもよい。 The negative electrode or negative electrode plate 14 preferably includes a negative electrode current collector 14b. Preferred examples of the negative electrode current collector 14b include copper punched metal and copper expanded metal. In this case, for example, a mixture containing a Zn compound, metallic zinc and zinc oxide powder, and optionally a binder (e.g., polytetrafluoroethylene particles) can be applied to the copper punched metal or copper expanded metal to preferably produce a negative electrode plate consisting of a negative electrode/negative electrode current collector. In this case, it is also preferable to press the negative electrode plate (i.e., the negative electrode/negative electrode current collector) after drying to prevent the electrode active material from falling off and improve the electrode density. Alternatively, the above-mentioned sheet-shaped press molded body may be pressed onto a current collector such as copper expanded metal.
 ニッケル亜鉛二次電池
 本発明による負極はニッケル亜鉛二次電池の負極として用いられるのが好ましい。図4~8に本発明の一態様によるニッケル亜鉛二次電池10及びその構成要素を示す。ニッケル亜鉛二次電池10は、正極板12と、負極板14と、水酸化物イオン伝導セパレータ16と、電解液(図示せず)と、電池ケース20とを備える。典型的には、正極板12は、正極活物質層12a及び正極集電体12bを含む。正極板12(特に正極活物質層12a)は、水酸化ニッケル及び/又はオキシ水酸化ニッケルを含む。負極板14(特に負極活物質層14a)は、前述したとおり、ZnO粒子及び金属Zn粒子を含む。水酸化物イオン伝導セパレータ16は、正極板12と負極板14とを水酸化物イオン伝導可能に隔離する。電池ケース20は、正極板12、負極板14、及び水酸化物イオン伝導セパレータ16が縦向きに(すなわち接地面に対して垂直となるように)収容される。
Nickel-zinc secondary battery The negative electrode according to the present invention is preferably used as the negative electrode of a nickel-zinc secondary battery. Figures 4 to 8 show a nickel-zinc secondary battery 10 according to one embodiment of the present invention and its components. The nickel-zinc secondary battery 10 includes a positive electrode plate 12, a negative electrode plate 14, a hydroxide ion conductive separator 16, an electrolyte (not shown), and a battery case 20. Typically, the positive electrode plate 12 includes a positive electrode active material layer 12a and a positive electrode current collector 12b. The positive electrode plate 12 (particularly the positive electrode active material layer 12a) includes nickel hydroxide and/or nickel oxyhydroxide. The negative electrode plate 14 (particularly the negative electrode active material layer 14a) includes ZnO particles and metal Zn particles, as described above. The hydroxide ion conductive separator 16 separates the positive electrode plate 12 and the negative electrode plate 14 in a manner that allows hydroxide ion conduction. The battery case 20 houses the positive electrode plate 12, the negative electrode plate 14, and the hydroxide ion conductive separator 16 in a vertical orientation (i.e., perpendicular to the ground plane).
 ニッケル亜鉛二次電池10は積層セル11を備えるのが好ましい。積層セル11は、図7に示されるように、複数の正極板12と、複数の正極タブリード13と、複数の負極板14と、複数の負極タブリード15と、複数の水酸化物イオン伝導セパレータ16と、電解液とを備える。複数の正極タブリード13は、正極板12の各々の端部から(好ましくは上向きに)延出する。複数の負極タブリード15は、負極板14の各々の端部から、正極タブリード13と重ならない位置で(好ましくは上向きに)延出する。複数の水酸化物イオン伝導セパレータ16は、正極板12及び負極板14を水酸化物イオン伝導可能に隔離する。そして、積層セル11は、正極板12と負極板14が水酸化物イオン伝導セパレータ16を挟んで交互積層されたものである。したがって、積層セル11は、正極板12/セパレータ16/負極板14の単位が繰り返されるように積層された正負極積層体の形態であるといえる。すなわち、ニッケル亜鉛二次電池10は、1対の正極板12及び負極板14を水酸化物イオン伝導セパレータ16とともに有する単位セル10aを複数個含み、それにより複数個の単位セル10aが全体として積層セル11をなしているのが好ましい。これはいわゆる組電池ないし積層電池の構成であり、高電圧や大電流が得られる点で有利である。 The nickel-zinc secondary battery 10 preferably includes a stacked cell 11. As shown in FIG. 7, the stacked cell 11 includes a plurality of positive electrode plates 12, a plurality of positive electrode tab leads 13, a plurality of negative electrode plates 14, a plurality of negative electrode tab leads 15, a plurality of hydroxide ion conductive separators 16, and an electrolyte. The plurality of positive electrode tab leads 13 extend (preferably upward) from each end of the positive electrode plate 12. The plurality of negative electrode tab leads 15 extend (preferably upward) from each end of the negative electrode plate 14 at positions that do not overlap with the positive electrode tab leads 13. The plurality of hydroxide ion conductive separators 16 isolate the positive electrode plates 12 and the negative electrode plates 14 so as to be capable of conducting hydroxide ions. The stacked cell 11 includes the positive electrode plates 12 and the negative electrode plates 14 stacked alternately with the hydroxide ion conductive separators 16 sandwiched therebetween. Therefore, the stacked cell 11 can be said to be in the form of a positive and negative electrode stack in which the unit of positive electrode plate 12/separator 16/negative electrode plate 14 is repeatedly stacked. In other words, the nickel-zinc secondary battery 10 preferably includes a plurality of unit cells 10a each having a pair of positive electrode plate 12 and negative electrode plate 14 together with a hydroxide ion conductive separator 16, and the plurality of unit cells 10a as a whole form a stacked cell 11. This is the configuration of a so-called assembled battery or stacked battery, and is advantageous in that it can provide a high voltage and a large current.
 正極板12は、正極活物質層12aを含む。正極活物質層12aを構成する正極活物質は、亜鉛二次電池の種類に応じて公知の正極材料を適宜選択すればよく、特に限定されない。例えば、ニッケル亜鉛二次電池の場合には、水酸化ニッケル及び/又はオキシ水酸化ニッケルを含む正極を用いればよい。この場合、正極活物質層12aは、銀化合物、マンガン化合物、及びチタン化合物からなる群から選択される少なくとも1種である添加剤を含んでいてもよく、これにより自己放電反応により発生する水素ガスを吸収する正極反応を促進することができる。また、正極活物質層12aは、コバルトをさらに含んでいてもよい。コバルトは、オキシ水酸化コバルトの形態で正極板12に含まれるのが好ましい。正極活物質層12aにおいて、コバルトは導電助剤として機能することで、充放電容量の向上に寄与する。 The positive electrode plate 12 includes a positive electrode active material layer 12a. The positive electrode active material constituting the positive electrode active material layer 12a may be appropriately selected from known positive electrode materials according to the type of zinc secondary battery, and is not particularly limited. For example, in the case of a nickel-zinc secondary battery, a positive electrode containing nickel hydroxide and/or nickel oxyhydroxide may be used. In this case, the positive electrode active material layer 12a may contain at least one additive selected from the group consisting of silver compounds, manganese compounds, and titanium compounds, which can promote the positive electrode reaction that absorbs hydrogen gas generated by the self-discharge reaction. The positive electrode active material layer 12a may further contain cobalt. Cobalt is preferably contained in the positive electrode plate 12 in the form of cobalt oxyhydroxide. In the positive electrode active material layer 12a, cobalt functions as a conductive assistant, thereby contributing to improving the charge/discharge capacity.
 正極板12は正極集電体12bをさらに含む。正極集電体12bの好ましい例としては、発泡ニッケル板等のニッケル製多孔質基板が挙げられる。この場合、例えば、ニッケル製多孔質基板上に水酸化ニッケル等の電極活物質を含むペーストを均一に塗布して乾燥させることにより正極/正極集電体からなる正極板を好ましく作製することができる。その際、乾燥後の正極板(すなわち正極/正極集電体)にプレス処理を施して、電極活物質の脱落防止や電極密度の向上を図ることも好ましい。正極集電体12bが発泡ニッケル板等のニッケル製多孔質基板の場合、正極集電体12bの未塗工領域をプレスすることでタブ状に加工してもよい。 The positive electrode plate 12 further includes a positive electrode collector 12b. A preferred example of the positive electrode collector 12b is a nickel porous substrate such as a foamed nickel plate. In this case, for example, a paste containing an electrode active material such as nickel hydroxide is uniformly applied to a nickel porous substrate and then dried to preferably produce a positive electrode plate consisting of a positive electrode/positive electrode collector. In this case, it is also preferred to press the dried positive electrode plate (i.e., the positive electrode/positive electrode collector) to prevent the electrode active material from falling off and to improve the electrode density. When the positive electrode collector 12b is a nickel porous substrate such as a foamed nickel plate, the uncoated area of the positive electrode collector 12b may be pressed to form a tab.
 正極タブリード13は、図8に示されるように、正極板12の端部から延出するように設けられている。正極タブリード13は、市販の金属薄片を使用すればよく特に限定されない。複数枚の正極タブリード13が1つの正極端子26又はそれと電気的に接続された部材に接合されて正極タブ接合部30を構成するのが好ましい。こうすることで簡素な構成でスペース効率良く集電を行えるとともに、正極端子26への接続もしやすくなる。正極タブリード13と正極集電体12b、正極端子26等の部材との接合は、超音波溶接(超音波接合)、レーザー溶接、TIG溶接、抵抗溶接等の公知の接合手法を用いて行えばよい。 The positive electrode tab lead 13 is provided so as to extend from the end of the positive electrode plate 12, as shown in FIG. 8. The positive electrode tab lead 13 may be a commercially available metal foil, and is not particularly limited. It is preferable that a plurality of positive electrode tab leads 13 are joined to one positive electrode terminal 26 or a member electrically connected thereto to form a positive electrode tab joint 30. This allows for efficient current collection with a simple configuration, and also makes it easier to connect to the positive electrode terminal 26. The positive electrode tab lead 13 may be joined to members such as the positive electrode current collector 12b and the positive electrode terminal 26 using a known joining method such as ultrasonic welding (ultrasonic welding), laser welding, TIG welding, or resistance welding.
 負極板14(特に負極活物質層14a)は、前述したとおり、ZnO粒子及び金属Zn粒子を含む。負極タブリード15は、図8に示されるように、負極板14の端部から、正極タブリード13と重ならない位置(図6を参照)で延出するように設けられている。負極タブリード15は、市販の金属薄片を使用すればよく特に限定されない。複数枚の負極タブリード15が1つの負極端子28又はそれと電気的に接続された部材に接合されて負極タブ接合部32を構成するのが好ましい。こうすることで簡素な構成でスペース効率良く集電を行えるとともに、負極端子28への接続もしやすくなる。負極タブリード15と負極集電体14b、負極端子28等の部材との接合は、超音波溶接(超音波接合)、レーザー溶接、TIG溶接、抵抗溶接等の公知の接合手法を用いて行えばよい。 The negative electrode plate 14 (particularly the negative electrode active material layer 14a) contains ZnO particles and metal Zn particles as described above. As shown in FIG. 8, the negative electrode tab lead 15 is provided so as to extend from the end of the negative electrode plate 14 at a position where it does not overlap with the positive electrode tab lead 13 (see FIG. 6). The negative electrode tab lead 15 is not particularly limited and may be a commercially available metal foil. It is preferable that a plurality of negative electrode tab leads 15 are joined to one negative electrode terminal 28 or a member electrically connected thereto to form the negative electrode tab joint 32. This allows for efficient current collection with a simple configuration and also makes it easier to connect to the negative electrode terminal 28. The negative electrode tab lead 15 may be joined to members such as the negative electrode current collector 14b and the negative electrode terminal 28 using a known joining method such as ultrasonic welding (ultrasonic joining), laser welding, TIG welding, or resistance welding.
 水酸化物イオン伝導セパレータ16は、正極板12及び負極板14を水酸化物イオン伝導可能に隔離するように設けられる。例えば、図7及び8に示されるように、正極板12及び/又は負極板14(好ましくは負極板14)が、水酸化物イオン伝導セパレータ16で覆われ又は包み込まれる構成としてもよい。こうすることで、水酸化物イオン伝導セパレータ16と電池容器との煩雑な封止接合を不要にして、亜鉛デンドライト伸展を防止可能なニッケル亜鉛二次電池(特にその積層電池)を極めて簡便にかつ高い生産性で作製することが可能となる。もっとも、正極板12又は負極板14の一面側に水酸化物イオン伝導セパレータ16が配置されるシンプルな構成であってもよい。 The hydroxide ion conductive separator 16 is provided to isolate the positive electrode plate 12 and the negative electrode plate 14 so as to allow hydroxide ion conductivity. For example, as shown in Figs. 7 and 8, the positive electrode plate 12 and/or the negative electrode plate 14 (preferably the negative electrode plate 14) may be configured to be covered or wrapped with the hydroxide ion conductive separator 16. This makes it possible to manufacture a nickel-zinc secondary battery (particularly a laminated battery thereof) capable of preventing zinc dendrite extension extremely easily and with high productivity, without the need for a complicated sealing joint between the hydroxide ion conductive separator 16 and the battery container. However, a simple configuration in which the hydroxide ion conductive separator 16 is arranged on one side of the positive electrode plate 12 or the negative electrode plate 14 may also be used.
 水酸化物イオン伝導セパレータ16は、正極板12及び負極板14を水酸化物イオン伝導可能に隔離可能なセパレータであれば特に限定されないが、典型的には、水酸化物イオン伝導固体電解質を含み、専ら水酸化物イオン伝導性を利用して水酸化物イオンを選択的に通すセパレータである。好ましい水酸化物イオン伝導固体電解質は、層状複水酸化物(LDH)及び/又はLDH様化合物である。したがって、水酸化物イオン伝導セパレータ16はLDHセパレータであるのが好ましい。本明細書において「LDHセパレータ」は、LDH及び/又はLDH様化合物を含むセパレータであって、専らLDH及び/又はLDH様化合物の水酸化物イオン伝導性を利用して水酸化物イオンを選択的に通すものとして定義される。本明細書において「LDH様化合物」は、LDHとは呼べないかもしれないが水酸化物イオン伝導性を有する層状結晶構造の水酸化物及び/又は酸化物であり、LDHの均等物といえるものである。もっとも、広義の定義として、「LDH」はLDHのみならずLDH様化合物を包含するものとして解釈することも可能である。LDHセパレータは多孔質基材と複合化されているのが好ましい。したがって、LDHセパレータは、多孔質基材を更に含み、LDH及び/又はLDH様化合物が多孔質基材の孔に充填された形態で多孔質基材と複合化されているのが好ましい。すなわち、好ましいLDHセパレータは、水酸化物イオン伝導性及びガス不透過性を呈するように(それ故水酸化物イオン伝導性を呈するLDHセパレータとして機能するように)LDH及び/又はLDH様化合物が多孔質基材の孔を塞いでいる。多孔質基材は高分子材料製であるのが好ましく、LDHは高分子材料製多孔質基材の厚さ方向の全域にわたって組み込まれているのが特に好ましい。例えば、特許文献1~7に開示されるような公知のLDHセパレータが使用可能である。LDHセパレータの厚さは、5~100μmが好ましく、より好ましくは5~80μm、さらに好ましくは5~60μm、特に好ましくは5~40μmである。 The hydroxide ion conductive separator 16 is not particularly limited as long as it is a separator capable of isolating the positive electrode plate 12 and the negative electrode plate 14 in a hydroxide ion conductive manner, but is typically a separator that includes a hydroxide ion conductive solid electrolyte and selectively passes hydroxide ions solely by utilizing hydroxide ion conductivity. A preferred hydroxide ion conductive solid electrolyte is a layered double hydroxide (LDH) and/or an LDH-like compound. Thus, the hydroxide ion conductive separator 16 is preferably an LDH separator. In this specification, an "LDH separator" is defined as a separator that includes an LDH and/or an LDH-like compound and selectively passes hydroxide ions solely by utilizing the hydroxide ion conductivity of the LDH and/or the LDH-like compound. In this specification, an "LDH-like compound" is a hydroxide and/or oxide of a layered crystal structure that may not be called an LDH but has hydroxide ion conductivity, and can be considered an equivalent of an LDH. However, in a broad definition, "LDH" can be interpreted as including not only LDH but also LDH-like compounds. The LDH separator is preferably composited with a porous substrate. Therefore, the LDH separator preferably further comprises a porous substrate, and is composited with the porous substrate in a form in which the pores of the porous substrate are filled with LDH and/or LDH-like compounds. That is, in a preferred LDH separator, the pores of the porous substrate are blocked with LDH and/or LDH-like compounds so as to exhibit hydroxide ion conductivity and gas impermeability (and therefore function as an LDH separator exhibiting hydroxide ion conductivity). The porous substrate is preferably made of a polymeric material, and it is particularly preferred that the LDH is incorporated throughout the entire thickness of the porous substrate made of a polymeric material. For example, known LDH separators such as those disclosed in Patent Documents 1 to 7 can be used. The thickness of the LDH separator is preferably 5 to 100 μm, more preferably 5 to 80 μm, even more preferably 5 to 60 μm, and particularly preferably 5 to 40 μm.
 正極板12及び負極板14の間に、水酸化物イオン伝導セパレータ16のみならず、保液部材17が介在されているのが好ましい。そして、図7及び8に示されるように、正極板12及び/又は負極板14が保液部材17で覆われる又は包み込まれているのが好ましい。もっとも、正極板12又は負極板14の一面側に保液部材17が配置するシンプルな構成であってもよい。いずれにしても、保液部材17を介在させることで、正極板12及び/負極板14と水酸化物イオン伝導セパレータ16の間に電解液を万遍なく存在させることができ、正極板12及び/負極板14と水酸化物イオン伝導セパレータ16との間における水酸化物イオンの授受を効率良く行うことができる。保液部材17は電解液を保持可能な部材であれば特に限定されないが、シート状の部材であるのが好ましい。保液部材17の好ましい例としては不織布、吸水性樹脂、保液性樹脂、多孔シート、各種スペーサが挙げられるが、特に好ましくは、低コストで性能の良い負極構造体を作製できる点で不織布である。保液部材17ないし不織布は10~200μmの厚さを有するのが好ましく、より好ましくは20~200μmであり、さらに好ましくは20~150μmであり、特に好ましくは20~100μmであり、最も好ましくは20~60μmである。上記範囲内の厚さであると、正極構造体及び/又は負極構造体の全体サイズを無駄無くコンパクトに抑えながら、保液部材17内に十分な量の電解液を保持させることができる。 It is preferable that not only the hydroxide ion conductive separator 16 but also the liquid retaining member 17 is interposed between the positive electrode plate 12 and the negative electrode plate 14. As shown in Figures 7 and 8, it is preferable that the positive electrode plate 12 and/or the negative electrode plate 14 is covered or wrapped with the liquid retaining member 17. However, a simple configuration in which the liquid retaining member 17 is arranged on one side of the positive electrode plate 12 or the negative electrode plate 14 may also be used. In any case, by interposing the liquid retaining member 17, the electrolyte can be evenly present between the positive electrode plate 12 and/or the negative electrode plate 14 and the hydroxide ion conductive separator 16, and hydroxide ions can be efficiently exchanged between the positive electrode plate 12 and/or the negative electrode plate 14 and the hydroxide ion conductive separator 16. The liquid retaining member 17 is not particularly limited as long as it is a material that can retain the electrolyte, but it is preferable that it is a sheet-like member. Preferred examples of the liquid-retaining member 17 include nonwoven fabric, water-absorbent resin, liquid-retaining resin, porous sheet, and various spacers, but nonwoven fabric is particularly preferred because it allows the production of a negative electrode structure with good performance at low cost. The liquid-retaining member 17 or nonwoven fabric preferably has a thickness of 10 to 200 μm, more preferably 20 to 200 μm, even more preferably 20 to 150 μm, particularly preferably 20 to 100 μm, and most preferably 20 to 60 μm. If the thickness is within the above range, a sufficient amount of electrolyte can be retained in the liquid-retaining member 17 while keeping the overall size of the positive electrode structure and/or negative electrode structure compact and without waste.
 正極板12及び/又は負極板14が、保液部材17及び/又はセパレータ16で覆われる又は包み込まれる場合、それらの外縁が(正極タブリード13や負極タブリード15が延出される辺を除いて)閉じられているのが好ましい。この場合、保液部材17及び/又はセパレータ16の外縁の閉じられた辺が、保液部材17及び/又はセパレータ16の折り曲げや、保液部材17同士及び/又はセパレータ16同士の封止により実現されているのが好ましい。封止手法の好ましい例としては、接着剤、熱溶着、超音波溶着、接着テープ、封止テープ、及びそれらの組合せが挙げられる。特に、高分子材料製の多孔質基材を含むLDHセパレータはフレキシブル性を有するが故に折り曲げやすいとの利点を有するため、LDHセパレータを長尺状に形成してそれを折り曲げることで、外縁の1辺が閉じた状態を形成するのが好ましい。熱溶着及び超音波溶着は市販のヒートシーラー等を用いて行えばよいが、LDHセパレータ同士の封止の場合、外周部分を構成するLDHセパレータの間に保液部材17の外周部分を挟み込むようにして熱溶着及び超音波溶着を行うのが、より効果的な封止を行える点で好ましい。一方、接着剤、接着テープ及び封止テープは市販品を用いればよいが、アルカリ電解液中での劣化を防ぐため、耐アルカリ性を有する樹脂を含むものが好ましい。かかる観点から、好ましい接着剤の例としては、エポキシ樹脂系接着剤、天然樹脂系接着剤、変性オレフィン樹脂系接着剤、及び変成シリコーン樹脂系接着剤が挙げられ、中でもエポキシ樹脂系接着剤が耐アルカリ性に特に優れる点でより好ましい。エポキシ樹脂系接着剤の製品例としては、エポキシ接着剤Hysol(登録商標)(Henkel製)が挙げられる。 When the positive electrode plate 12 and/or the negative electrode plate 14 are covered or wrapped with the liquid retaining member 17 and/or the separator 16, it is preferable that the outer edges of the plates are closed (except for the edges from which the positive electrode tab lead 13 and the negative electrode tab lead 15 extend). In this case, it is preferable that the closed edges of the outer edges of the liquid retaining member 17 and/or the separator 16 are realized by folding the liquid retaining member 17 and/or the separator 16, or by sealing the liquid retaining members 17 together and/or the separators 16 together. Preferred examples of sealing methods include adhesives, heat welding, ultrasonic welding, adhesive tape, sealing tape, and combinations thereof. In particular, since the LDH separator including a porous substrate made of a polymer material has the advantage of being flexible and therefore easy to bend, it is preferable to form the LDH separator into a long shape and fold it to form a state in which one side of the outer edge is closed. Thermal welding and ultrasonic welding may be performed using a commercially available heat sealer, etc., but in the case of sealing between LDH separators, it is preferable to perform thermal welding and ultrasonic welding by sandwiching the outer peripheral portion of the liquid-retaining member 17 between the LDH separators that constitute the outer peripheral portion, since this allows for more effective sealing. On the other hand, the adhesive, adhesive tape, and sealing tape may be commercially available products, but it is preferable to use those that contain a resin that is resistant to alkali in order to prevent deterioration in an alkaline electrolyte. From this perspective, examples of preferred adhesives include epoxy resin adhesives, natural resin adhesives, modified olefin resin adhesives, and modified silicone resin adhesives, and among them, epoxy resin adhesives are more preferred because they are particularly excellent in alkali resistance. An example of an epoxy resin adhesive product is the epoxy adhesive Hysol (registered trademark) (manufactured by Henkel).
 本発明に好ましい態様においては、図7及び8に示されるように、負極板14が水酸化物イオン伝導セパレータ16で覆われ、かつ、負極板14の上端部以外の外周部が気密に封止されており、それにより正極板12で生じる酸素の負極板14への到達が水酸化物イオン伝導セパレータ16で阻止されるように構成されている。すなわち、前述したように、ニッケル亜鉛二次電池の正極では、トリクル充電時や自己放電(静置)時に酸素が発生して、負極に含まれる金属Znの酸化及びそれに起因する負極容量の減少をもたらし、結果としてトリクル充電使用時の電池寿命が短くなる。この点、図9Aに示されるように、従来から広く採用されている一般的な微多孔膜セパレータ116はガス透過性を有するため、正極で発生した酸素Oの通過を許してしまい、正極板12からそれに隣接する負極板14にダイレクトに到達し、金属Znの酸化を促進してしまう。しかしながら、本開示の好ましい態様によれば、図9Bに×印で示されるように、正極板12で生じる酸素の負極板14への到達が水酸化物イオン伝導セパレータ16で阻止されることで、酸素に起因する金属Znの酸化を抑制することができ、それによりトリクル充電時における電池容量の低下を更に遅延して電池の寿命をより一層延伸することができる。これは、水酸化物イオン伝導セパレータ16は専ら水酸化物イオン伝導性を利用して水酸化物イオンを選択的に通すセパレータであるため、ガス透過性を有しないためである。すなわち、そのようにガス透過性を有しない水酸化物イオン伝導セパレータ16で負極板14を気密に覆うことで、正極板12で発生する酸素を透過しないため、負極における金属Znの酸化を抑制できる。なお、本態様において、負極板14の上端部の外周部は水酸化物イオン伝導セパレータ16で封止される必要は無い。この場合、負極板14の上端部から酸素が負極板14に入り込むことを許容する構造になりうる。しかし、正極板12から負極板14にダイレクトに酸素が到達しないことによる効果、すなわち正極板12と負極板14の対向する面同士間における酸素透過抑制効果及びそれによる金属Znの酸化抑制効果の寄与が大きいため、トリクル充電時における電池容量の低下を十分に遅延させることができる。 In a preferred embodiment of the present invention, as shown in Figures 7 and 8, the negative electrode plate 14 is covered with a hydroxide ion conductive separator 16, and the outer periphery of the negative electrode plate 14 is airtightly sealed except for the upper end, so that the hydroxide ion conductive separator 16 prevents oxygen generated in the positive electrode plate 12 from reaching the negative electrode plate 14. That is, as described above, oxygen is generated in the positive electrode of a nickel-zinc secondary battery during trickle charging or self-discharge (standing), which causes oxidation of the metal Zn contained in the negative electrode and a resulting decrease in the negative electrode capacity, resulting in a shortened battery life when trickle charging is used. In this regard, as shown in Figure 9A, the general microporous membrane separator 116 that has been widely used in the past has gas permeability, so it allows the passage of oxygen O2 generated at the positive electrode, which directly reaches the adjacent negative electrode plate 14 from the positive electrode plate 12, promoting the oxidation of the metal Zn. However, according to a preferred embodiment of the present disclosure, as shown by the cross in FIG. 9B, the hydroxide ion conductive separator 16 prevents oxygen generated in the positive electrode plate 12 from reaching the negative electrode plate 14, thereby suppressing the oxidation of metal Zn caused by oxygen, and thereby further delaying the decrease in battery capacity during trickle charging and further extending the life of the battery. This is because the hydroxide ion conductive separator 16 is a separator that selectively passes hydroxide ions using only hydroxide ion conductivity, and therefore does not have gas permeability. In other words, by airtightly covering the negative electrode plate 14 with the hydroxide ion conductive separator 16 that does not have gas permeability, oxygen generated in the positive electrode plate 12 is not transmitted, and therefore the oxidation of metal Zn in the negative electrode can be suppressed. In this embodiment, the outer periphery of the upper end of the negative electrode plate 14 does not need to be sealed with the hydroxide ion conductive separator 16. In this case, the structure may be such that oxygen is allowed to enter the negative electrode plate 14 from the upper end of the negative electrode plate 14. However, since the effect of preventing oxygen from reaching the negative electrode plate 14 directly from the positive electrode plate 12, i.e., the effect of inhibiting oxygen permeation between the opposing surfaces of the positive electrode plate 12 and the negative electrode plate 14 and the resulting effect of inhibiting the oxidation of metallic Zn, contribute greatly, the decrease in battery capacity during trickle charging can be sufficiently delayed.
 したがって、セパレータ16の上端となる1辺の外縁は開放されていてもよい。この上部開放型の構成はニッケル亜鉛電池等における過充電時の問題への対処を可能とするものである。すなわち、ニッケル亜鉛電池等において過充電されると正極板12で酸素(O)が発生しうるが、LDHセパレータは水酸化物イオンしか実質的に通さないといった高度な緻密性を有するが故に、Oを通さない。この点、上部開放型の構成によれば、電池ケース20内において、Oを正極板12の上方に逃がして上部開放部を介して負極板14側へと送り込むことができ、それによってOで負極活物質のZnを酸化してZnOへと戻すことができる。このような酸素反応サイクルを経ることで、上部開放型の積層セル11を密閉型亜鉛二次電池に用いることで過充電耐性を向上させることができる。なお、セパレータ16や保液部材17の上端となる1辺の外縁が閉じられている場合であっても、閉じられた外縁の一部に通気孔を設けることで上記開放型の構成と同様の効果が期待できる。例えば、LDHセパレータの上端となる1辺の外縁を封止した後に通気孔を開けてもよいし、封止の際、通気孔が形成されるように上記外縁の一部を非封止としてもよい。 Therefore, the outer edge of one side that is the upper end of the separator 16 may be open. This open-top type configuration makes it possible to deal with problems that occur when a nickel-zinc battery or the like is overcharged. That is, when a nickel-zinc battery or the like is overcharged, oxygen (O 2 ) may be generated at the positive electrode plate 12, but the LDH separator has such a high density that it allows only hydroxide ions to pass through, and therefore does not allow O 2 to pass through. In this regard, according to the open-top type configuration, in the battery case 20, O 2 can be released above the positive electrode plate 12 and sent to the negative electrode plate 14 side through the open-top part, thereby oxidizing Zn of the negative electrode active material with O 2 and returning it to ZnO. By going through such an oxygen reaction cycle, the open-top type stacked cell 11 can be used in a sealed zinc secondary battery to improve overcharge resistance. Note that even if the outer edge of one side that is the upper end of the separator 16 or the liquid-retaining member 17 is closed, the same effect as the open-top type configuration can be expected by providing a vent in a part of the closed outer edge. For example, the outer edge of one side of the LDH separator that will be the upper end may be sealed and then an air hole may be opened, or during sealing, part of the outer edge may be left unsealed so that an air hole can be formed.
 電解液はアルカリ金属水酸化物水溶液を含むのが好ましい。図1~7において電解液は図示されていないが、これは正極板12及び負極板14の全体に行き渡っているためである。アルカリ金属水酸化物の例としては、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、水酸化アンモニウム等が挙げられるが、水酸化カリウムがより好ましい。亜鉛及び/又は酸化亜鉛の自己溶解を抑制するために、電解液中に酸化亜鉛、水酸化亜鉛等の亜鉛化合物を添加してもよい。前述のとおり、電解液は正極活物質及び/又は負極活物質と混合させて正極合材及び/又は負極合材の形態で存在させてもよい。また、電解液の漏洩を防止するために電解液をゲル化してもよい。ゲル化剤としては電解液の溶媒を吸収して膨潤するようなポリマーを用いるのが望ましく、ポリエチレンオキサイド、ポリビニルアルコール、ポリアクリルアミドなどのポリマーやデンプンが用いられる。 The electrolyte preferably contains an aqueous solution of an alkali metal hydroxide. The electrolyte is not shown in Figs. 1 to 7 because it is distributed throughout the positive and negative plates 12 and 14. Examples of alkali metal hydroxides include potassium hydroxide, sodium hydroxide, lithium hydroxide, and ammonium hydroxide, with potassium hydroxide being more preferred. In order to suppress the self-dissolution of zinc and/or zinc oxide, a zinc compound such as zinc oxide or zinc hydroxide may be added to the electrolyte. As mentioned above, the electrolyte may be mixed with the positive electrode active material and/or the negative electrode active material to be present in the form of a positive electrode composite and/or a negative electrode composite. The electrolyte may also be gelled to prevent leakage of the electrolyte. As the gelling agent, it is preferable to use a polymer that absorbs the solvent of the electrolyte and swells, and starch or a polymer such as polyethylene oxide, polyvinyl alcohol, or polyacrylamide is used.
 電池ケース20は樹脂製であるのが好ましい。電池ケース20を構成する樹脂は水酸化カリウム等のアルカリ金属水酸化物に対する耐性を有する樹脂であるのが好ましく、より好ましくはポリオレフィン樹脂、ABS樹脂、又は変性ポリフェニレンエーテルであり、さらに好ましくはABS樹脂又は変性ポリフェニレンエーテルである。電池ケース20は上蓋20aを有する。電池ケース20(例えば上蓋20a)はガスを放出するための放圧弁を有していてもよい。また、2以上の電池ケース20が配列されたケース群を外枠内に収容して、電池モジュールの構成としてもよい。 The battery case 20 is preferably made of resin. The resin constituting the battery case 20 is preferably a resin that is resistant to alkali metal hydroxides such as potassium hydroxide, more preferably a polyolefin resin, ABS resin, or modified polyphenylene ether, and even more preferably ABS resin or modified polyphenylene ether. The battery case 20 has a top lid 20a. The battery case 20 (e.g., top lid 20a) may have a pressure relief valve for releasing gas. In addition, a group of cases in which two or more battery cases 20 are arranged may be housed within an outer frame to form a battery module.
 ニッケル亜鉛二次電池の使用方法
 上述したとおり、本発明によるニッケル亜鉛二次電池10は、停電時用の非常用電源としてのバックアップ用途に適している。バックアップ用途では、図1及び2に示されるように、自己放電により目減りする電池容量を補うためにトリクル充電が行われる。したがって、ニッケル亜鉛二次電池10の好ましい使用方法は、トリクル充電を行うことを含む。その際、ニッケル亜鉛二次電池10に対して、ニッケル亜鉛二次電池10の搭載容量(これを100%とする)の80~85%の充電容量(利用率)をもたらすようにトリクル充電を行うのが好ましい。従来、トリクル充電はニッケル亜鉛二次電池10の搭載容量の約90%の充電容量をもたらすように行われるのが一般的であったが、本態様では、ニッケル亜鉛二次電池10(特に正極板12)の搭載容量の80~85%という従来よりも低い充電容量(利用率)でトリクル充電を行うことで、トリクル充電時における電池容量の低下を更に遅延して電池の寿命をより一層延伸することができる。
Usage of the nickel-zinc secondary battery As described above, the nickel-zinc secondary battery 10 according to the present invention is suitable for backup use as an emergency power source in the event of a power outage. In backup use, trickle charging is performed to compensate for the battery capacity that is reduced by self-discharge, as shown in Figs. 1 and 2. Therefore, a preferred method of using the nickel-zinc secondary battery 10 includes trickle charging. In this case, it is preferable to perform trickle charging on the nickel-zinc secondary battery 10 so as to provide a charge capacity (utilization rate) of 80 to 85% of the installed capacity of the nickel-zinc secondary battery 10 (which is taken as 100%). Conventionally, trickle charging was generally performed so as to provide a charge capacity of about 90% of the installed capacity of the nickel-zinc secondary battery 10, but in this embodiment, trickle charging is performed at a charge capacity (utilization rate) that is lower than conventionally, that is, 80 to 85% of the installed capacity of the nickel-zinc secondary battery 10 (particularly the positive electrode plate 12), thereby further delaying the decrease in battery capacity during trickle charging and further extending the life of the battery.
 すなわち、前述したように、ニッケル亜鉛二次電池の正極では、トリクル充電時に酸素が発生して、負極に含まれる金属Znの酸化及びそれに起因する負極容量の減少をもたらす。この点、出願人が作製したあるニッケル亜鉛二次電池における充電曲線を酸素濃度の変化を図13に示す。図13から分かるように、正極は搭載容量に対して90%以上の充電容量となる領域では酸素発生を伴いながら充電されることが分かる。また、充電により正極活物質が膨張するため、搭載容量の90%以上の充電容量をもたらす充電の場合、正極集電体から正極活物質が脱落する又は正極集電体から正極活物質が離れる結果、抵抗が増加しうる。この点、搭載容量の80~85%の充電容量をもたらすトリクル充電であれば、これらの問題を効果的に回避できる。すなわち、充電時の正極板12での酸素発生を低減して負極板14の酸化を抑制できるとともに、正極板12の体積膨張に伴う抵抗の増加も抑制することができる。その結果、電池容量の低下をより一層効果的に遅延することができる。 That is, as mentioned above, oxygen is generated in the positive electrode of a nickel-zinc secondary battery during trickle charging, which causes oxidation of the metal Zn contained in the negative electrode and a resulting decrease in the negative electrode capacity. In this regard, FIG. 13 shows the change in oxygen concentration in the charging curve of a nickel-zinc secondary battery made by the applicant. As can be seen from FIG. 13, the positive electrode is charged with oxygen generation in the region where the charge capacity is 90% or more of the installed capacity. In addition, since the positive electrode active material expands due to charging, in the case of charging which results in a charge capacity of 90% or more of the installed capacity, the positive electrode active material may fall off the positive electrode collector or separate from the positive electrode collector, resulting in an increase in resistance. In this regard, trickle charging which results in a charge capacity of 80 to 85% of the installed capacity can effectively avoid these problems. In other words, it is possible to reduce oxygen generation in the positive electrode plate 12 during charging and suppress oxidation of the negative electrode plate 14, and also to suppress an increase in resistance due to the volume expansion of the positive electrode plate 12. As a result, the decrease in battery capacity can be delayed even more effectively.
 トリクル充電時の搭載容量100%に対する充電容量の比率(利用率)は、ニッケル亜鉛二次電池10の搭載容量の80~85%であり、より好ましくは80~83%、さらに好ましくは80%である。このようにトリクル充電時の充電容量(利用率)を従来よりも下げつつも下げすぎないことで、電池容量の低下を効果的に遅延しながらも、トリクル充電をできるだけ高い深度(SOC)で行うことができる。 The ratio (utilization rate) of the charge capacity to 100% installed capacity during trickle charging is 80-85% of the installed capacity of the nickel-zinc secondary battery 10, more preferably 80-83%, and even more preferably 80%. In this way, by lowering the charge capacity (utilization rate) during trickle charging compared to conventional methods but not lowering it too much, trickle charging can be performed at as high a depth of charge (SOC) as possible while effectively slowing down the decrease in battery capacity.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be further illustrated by the following examples.
 例A1及びA2
(1)負極板の作製
 以下に示される各種原料粉末を用意した。
・ZnO粉末(正同化学工業株式会社製、JIS規格1種グレード、平均粒径D50:0.2μm)
・金属Zn粉末(EverZinc株式会社製、平均粒径D50:100μm)
Examples A1 and A2
(1) Preparation of Negative Electrode Plate Various raw material powders shown below were prepared.
ZnO powder (manufactured by Seido Chemical Industry Co., Ltd., JIS standard type 1 grade, average particle size D50: 0.2 μm)
Metal Zn powder (manufactured by EverZinc Co., Ltd., average particle size D50: 100 μm)
 表1に示される配合割合に従い、ZnO粉末に、金属Zn粉末及びポリテトラフルオロエチレン(PTFE)を添加し、プロピレングリコールと共に混練した。得られた混練物をロールプレスで圧延して、負極活物質シートを得た。負極活物質シートを、錫メッキが施された銅エキスパンドメタルに圧着して、負極板を得た。このとき、銅エキスパンドメタルの端部1辺の近傍に負極ペーストを塗工しない未塗工部が存在するようにした。
Figure JPOXMLDOC01-appb-T000001
According to the mixing ratio shown in Table 1, ZnO powder was added with metal Zn powder and polytetrafluoroethylene (PTFE), and the mixture was kneaded with propylene glycol. The kneaded product was rolled with a roll press to obtain a negative electrode active material sheet. The negative electrode active material sheet was pressed onto a tin-plated copper expand metal to obtain a negative electrode plate. At this time, an uncoated portion where the negative electrode paste was not coated was present near one end side of the copper expand metal.
Figure JPOXMLDOC01-appb-T000001
(2)ニッケル亜鉛二次電池の作製
 以下に示される正極板、正極集電タブ、負極板、負極集電タブ、LDHセパレータ、不織布、電池ケース、及び電解液を用意した。このとき、組成の異なる2種類の負極板を用意した。
・正極板:発泡ニッケルの孔内に水酸化ニッケル及びバインダーを含む正極ペーストを充填して乾燥させたもの(発泡ニッケルの端部1辺の近傍に正極ペーストを塗工しない未塗工部が存在)。
・正極集電タブ:正極板を構成する発泡ニッケルの未塗工部をロールプレスで圧縮してタブに加工し、このタブにタブリード(純ニッケル製、厚さ:100μm)を超音波溶接して延長させたもの。
・負極板:上記(1)で作製した負極板
・負極集電タブ:銅エキスパンドメタルの未塗工部にタブリード(銅製、厚さ:100μm)を超音波溶接で接続したもの。
・LDHセパレータ:ポリエチレン微多孔膜の孔内及び表面にNi-Al-Ti-LDH(層状複水酸化物)を水熱合成により析出させてロールプレスしたガス不透過性を有する水酸化物イオン伝導セパレータ、厚さ:20μm、
・不織布:ポリプロピレン製、厚さ100μm
・電池ケース:変性ポリフェニレンエーテル樹脂製の箱型ケース(ケース内で発生したガスを放出可能とする放圧弁を備える)、内寸:長さ190mm、幅24mm、高さ165mm、外寸:長さ200mm、幅30mm、高さ170mm(正極端子および負極端子の高さを含まない)
・電解液:0.4mol/LのZnOを溶解させた5.4mol/LのKOH水溶液
(2) Preparation of nickel-zinc secondary battery The following positive electrode plate, positive electrode current collector tab, negative electrode plate, negative electrode current collector tab, LDH separator, nonwoven fabric, battery case, and electrolyte were prepared. Two types of negative electrode plates with different compositions were prepared.
Positive electrode plate: The pores of the nickel foam are filled with a positive electrode paste containing nickel hydroxide and a binder and then dried (there is an uncoated area near one end of the nickel foam where the positive electrode paste is not applied).
Positive electrode current collecting tab: The uncoated portion of the foamed nickel that constitutes the positive electrode plate is compressed with a roll press to form a tab, and a tab lead (made of pure nickel, thickness: 100 μm) is ultrasonically welded to this tab to extend it.
Negative electrode plate: the negative electrode plate prepared in (1) above. Negative electrode current collecting tab: a tab lead (made of copper, thickness: 100 μm) connected to an uncoated portion of the copper expanded metal by ultrasonic welding.
LDH separator: a hydroxide ion conductive separator having gas impermeability, which is prepared by precipitating Ni-Al-Ti-LDH (layered double hydroxide) in the pores and on the surface of a polyethylene microporous membrane by hydrothermal synthesis and then roll pressing, thickness: 20 μm;
Non-woven fabric: polypropylene, thickness 100 μm
Battery case: box-shaped case made of modified polyphenylene ether resin (equipped with a pressure relief valve that allows gas generated inside the case to be released); internal dimensions: length 190 mm, width 24 mm, height 165 mm; external dimensions: length 200 mm, width 30 mm, height 170 mm (not including the height of the positive and negative terminals)
Electrolyte: 5.4 mol/L KOH aqueous solution with 0.4 mol/L ZnO dissolved therein
 正極板を両面から覆うように不織布で包み込んで、正極集電タブが延出する1辺を除く残り3辺から不織布が若干はみ出すようにした。正極板の3辺からはみ出した不織布の余剰部分をヒートシールバーで熱融着封止して、正極構造体を得た。また、負極板を両面からLDHセパレータで包み込み、負極集電タブが延出する1辺を除く残り3辺からLDHセパレータが若干はみ出すようにした。負極板の3辺からはみ出したLDHセパレータの余剰部分をヒートシールバーで熱融着により気密封止して、負極構造体を得た。こうして、複数枚の正極構造体及び複数枚の負極構造体を準備した。 The positive electrode plate was wrapped in nonwoven fabric so that it covered both sides, with the nonwoven fabric slightly protruding from the remaining three sides except for the side from which the positive electrode current collector tab extends. The excess nonwoven fabric protruding from the three sides of the positive electrode plate was heat-sealed and sealed with a heat seal bar to obtain a positive electrode structure. The negative electrode plate was wrapped in LDH separator so that it protruding slightly from the remaining three sides except for the side from which the negative electrode current collector tab extends. The excess LDH separator protruding from the three sides of the negative electrode plate was hermetically sealed by heat-sealing with a heat seal bar to obtain a negative electrode structure. In this way, multiple positive electrode structures and multiple negative electrode structures were prepared.
 12枚の正極構造体及び13枚の負極構造体を交互に積み重ねて様々な厚さの42個の積層セルを作製した。図6に示される構成と同様に、複数枚の正極タブリード13と、複数枚の負極タブリード15は、平面視した場合に、電極集電体から互いに異なる位置から延出する設計になっているため、複数枚の正極タブリード13同士が重ねられる一方、それとは別の位置で複数枚の負極タブリード15同士が重ねられる。図7に示されるように、複数枚の正極タブリード13の重なり部分をまとめて正極端子26にレーザー溶接により接合して、正極タブ接合部30を形成した。同様に、複数枚の負極タブリード15の重なり部分をまとめてレーザー溶接により負極端子28に接合して、負極タブ接合部32を形成した。こうして、正極タブリード13及び負極タブリード15を備えた電極構造体のスタックを積層セル11として得た。図4及び5に示されるように、この積層セル11を電池ケース20に入れて、電解液を注入して積層セル11に含浸させて、上蓋20aを閉じて封止した。こうして各例において2個のニッケル亜鉛二次電池を作製した。 12 positive electrode structures and 13 negative electrode structures were alternately stacked to produce 42 stacked cells of various thicknesses. As in the configuration shown in FIG. 6, the positive electrode tab leads 13 and the negative electrode tab leads 15 are designed to extend from different positions from each other from the electrode current collector when viewed in a plan view, so that the positive electrode tab leads 13 are stacked on top of each other, while the negative electrode tab leads 15 are stacked on top of each other at a different position. As shown in FIG. 7, the overlapping portions of the positive electrode tab leads 13 were joined together to the positive electrode terminal 26 by laser welding to form a positive electrode tab joint 30. Similarly, the overlapping portions of the negative electrode tab leads 15 were joined together to the negative electrode terminal 28 by laser welding to form a negative electrode tab joint 32. In this way, a stack of electrode structures including the positive electrode tab leads 13 and the negative electrode tab leads 15 was obtained as the stacked cell 11. As shown in Figures 4 and 5, this stacked cell 11 was placed in a battery case 20, an electrolyte was injected to impregnate the stacked cell 11, and the top lid 20a was closed and sealed. In this way, two nickel-zinc secondary batteries were produced in each example.
(3)トリクル充電加速試験
 作製した2個のニッケル亜鉛二次電池の各々に対してトリクル充電加速試験を65℃の温度条件にて以下の手順で行った。充放電装置(東洋システム株式会社製、TOSCAT3200)を用いて、作製したニッケル亜鉛二次電池に対し、0.1C充電及び0.2C放電で化成を実施した。その後、0.2C充電及び0.1C放電を実施して、初期放電容量を測定した。その後、図10Aに示される充電プロファイルに従って、ニッケル亜鉛二次を深度(SOC)100%まで充電した後、約168時間(約7日間)休止状態で放置した。約168時間の放置の間、ニッケル亜鉛二次電池の深度は自己放電により図10Aに示されるとおり低下した。トリクル充電は充放電装置(東洋システム株式会社製、TOSCAT3000S)を用いて、作製したニッケル亜鉛二次電池に対し、SOC100%まで0.025C充電で行い、約168時間の放置(自己放電)を更に3回繰り返すことで、約1か月間、ニッケル亜鉛二次電池を間欠的にトリクル充電しながら高いSOCで保持した。その後、図10Aに示されるように、0.2C充電及び0.1C放電を実施して、約29日経過後の放電容量を測定した。こうして測定された放電容量を、初期放電容量で除して100を乗じることにより、放電容量維持率(%)を算出した。同様にして、図10Aに示される充電プロファイルに従った約29日間(休止28日+充電3回による1日)の試験を繰り返すことで、最大約145日までの放電容量維持率の推移を測定した。結果は、表2及び図10Bに示されるとおりであった。
Figure JPOXMLDOC01-appb-T000002
(3) Trickle Charge Acceleration Test A trickle charge acceleration test was performed on each of the two nickel-zinc secondary batteries prepared at a temperature of 65°C according to the following procedure. Using a charge/discharge device (TOSCAT3200, manufactured by Toyo Systems Co., Ltd.), the nickel-zinc secondary batteries prepared were subjected to formation at 0.1C charge and 0.2C discharge. Then, 0.2C charge and 0.1C discharge were performed to measure the initial discharge capacity. Then, according to the charge profile shown in Figure 10A, the nickel-zinc secondary battery was charged to a depth of charge (SOC) of 100%, and then left in a rest state for about 168 hours (about 7 days). During the approximately 168 hours of leaving, the depth of the nickel-zinc secondary battery decreased due to self-discharge as shown in Figure 10A. Trickle charging was performed on the nickel-zinc secondary battery prepared using a charge/discharge device (TOSCAT3000S, manufactured by Toyo Systems Co., Ltd.) at 0.025C up to SOC100%, and then the battery was left for about 168 hours (self-discharge) three more times, so that the nickel-zinc secondary battery was kept at a high SOC while being intermittently trickle charged for about one month. Thereafter, as shown in FIG. 10A, 0.2C charging and 0.1C discharging were performed to measure the discharge capacity after about 29 days. The discharge capacity thus measured was divided by the initial discharge capacity and multiplied by 100 to calculate the discharge capacity retention rate (%). Similarly, the test for about 29 days (28 days of rest + 1 day of charging three times) according to the charging profile shown in FIG. 10A was repeated to measure the progress of the discharge capacity retention rate up to about 145 days. The results were as shown in Table 2 and FIG. 10B.
Figure JPOXMLDOC01-appb-T000002
 表2及び図10Bに示される結果から、金属Zn粒子の含有割合が格段に大きい負極を用いた例A2は、金属Zn粒子の含有割合が小さい負極を用いた例A1と比較して、同じ経過日数でもより高い容量維持率が実現されることが分かる。すなわち、負極の酸化による金属亜鉛損失による導電性の低下と負極容量の低下とを金属Zn粒子の増量で補うことで、容量維持率を改善して電池容量の低下を遅延させることができる。具体的には、図10Bに示されるように、寿命ラインを50%とした場合、金属Zn粒子の含有割合を増やした例A2の電池は、比較例である例A1の電池に対して、約1.3倍に寿命が延びることが分かる。本試験は65℃という高温で実施されたトリクル充電加速試験であるが、二次電池の温度が10℃上がると寿命が約1/2になることが一般的に知られている。この一般的な知識に基づくと、65℃の加速試験で寿命が約130日となる例A2の電池の25℃において期待される寿命は、約5.7年となり、例B1の電池に対し約1.3年の寿命増加と見積もられる。 From the results shown in Table 2 and Figure 10B, it can be seen that Example A2, which uses a negative electrode with a significantly higher content of metal Zn particles, achieves a higher capacity retention rate even after the same number of days have passed, compared to Example A1, which uses a negative electrode with a lower content rate of metal Zn particles. In other words, by compensating for the decrease in conductivity and the decrease in negative electrode capacity due to the loss of metal zinc caused by the oxidation of the negative electrode with an increase in the amount of metal Zn particles, it is possible to improve the capacity retention rate and delay the decrease in battery capacity. Specifically, as shown in Figure 10B, when the life line is set to 50%, it can be seen that the battery of Example A2, which has an increased content rate of metal Zn particles, has a life that is approximately 1.3 times longer than the battery of Example A1, which is a comparative example. This test was a trickle charge accelerated test performed at a high temperature of 65°C, and it is generally known that the life of a secondary battery is approximately 1/2 when the temperature increases by 10°C. Based on this general knowledge, the expected life of the battery of Example A2, which has a life of about 130 days in an accelerated test at 65°C, at 25°C is estimated to be about 5.7 years, an increase of about 1.3 years over the battery of Example B1.
 次に、温度条件を55℃にしたこと以外は上記同様にして、ニッケル亜鉛二次電池に対してトリクル充電加速試験を行った。結果は、表3及び図10Cに示されるとおりであった。
Figure JPOXMLDOC01-appb-T000003
Next, an accelerated trickle charge test was performed on the nickel-zinc secondary battery in the same manner as above, except that the temperature condition was 55° C. The results are shown in Table 3 and FIG.
Figure JPOXMLDOC01-appb-T000003
 表3及び図10Cに示される結果から、金属Zn粒子の含有割合が格段に大きい負極を用いた例A2は、金属Zn粒子の含有割合が小さい負極を用いた例A1と比較して、同じ経過日数でもより高い容量維持率が実現されることが分かる。すなわち、負極の酸化による金属亜鉛損失による導電性の低下と負極容量の低下とを金属Zn粒子の増量で補うことで、容量維持率を改善して電池容量の低下を遅延させることができる。具体的には、図10Cに示されるように、寿命ラインを50%とした場合、金属Zn粒子の含有割合を増やした例A2の電池は、比較例である例A1の電池に対して、約1.8倍に寿命が延びることが分かる。本試験は55℃という高温で実施されたトリクル充電加速試験であるが、二次電池の温度が10℃上がると寿命が約1/2になることが一般的に知られている。この一般的な知識に基づくと、55℃の加速試験で寿命が約240日となる例A2の電池の25℃において期待される寿命は、約5.3年となり、例A1の電池に対し約2.4年の寿命増加と見積もられる。 From the results shown in Table 3 and Figure 10C, it can be seen that Example A2, which uses a negative electrode with a significantly higher content of metal Zn particles, achieves a higher capacity retention rate even after the same number of days have passed, compared to Example A1, which uses a negative electrode with a lower content rate of metal Zn particles. In other words, by compensating for the decrease in conductivity and the decrease in negative electrode capacity due to the loss of metal zinc caused by the oxidation of the negative electrode with an increase in the amount of metal Zn particles, it is possible to improve the capacity retention rate and delay the decrease in battery capacity. Specifically, as shown in Figure 10C, when the life line is set to 50%, it can be seen that the battery of Example A2, which has an increased content rate of metal Zn particles, has a life that is approximately 1.8 times longer than the battery of Example A1, which is a comparative example. This test was a trickle charge acceleration test performed at a high temperature of 55°C, and it is generally known that the life of a secondary battery is approximately 1/2 when the temperature increases by 10°C. Based on this general knowledge, the expected life of the battery of Example A2, which has a life of about 240 days in an accelerated test at 55°C, at 25°C is estimated to be about 5.3 years, an increase of about 2.4 years over the battery of Example A1.
 例B1及びB2
 深度(SOC)100%を正極の搭載容量に対して90%(例B1)又は80%(例B2)と設定したこと、及びトリクル充電を図11Aに示される充電プロファイルに従ってSOC100%(搭載容量の90%)まで(例B1)又はSOC90%(搭載容量の80%)まで行ったこと以外は、例A2と同様にしてニッケル亜鉛二次電池(ZnO:Zn=100:57.1wt%)の作製及びトリクル充電加速試験を行った。
Examples B1 and B2
A nickel-zinc secondary battery (ZnO:Zn=100:57.1 wt%) was produced and a trickle charge accelerated test was performed in the same manner as in Example A2, except that 100% state of charge (SOC) was set to 90% (Example B1) or 80% (Example B2) of the installed capacity of the positive electrode, and trickle charging was performed up to SOC 100% (90% of the installed capacity) (Example B1) or SOC 90% (80% of the installed capacity) according to the charging profile shown in FIG. 11A.
 65℃におけるトリクル充電加速試験の結果は、表4及び図11Bに示されるとおりであった。
Figure JPOXMLDOC01-appb-T000004
The results of the accelerated trickle charge test at 65° C. are shown in Table 4 and FIG. 11B.
Figure JPOXMLDOC01-appb-T000004
 表4及び図11Bに示される結果から、充電が深度(SOC)90%(搭載容量に対して80%)まで行われる例B2は、SOC100%(搭載容量に対して90%)まで行われる例B1と比較して、同じ経過日数でもより高い容量維持率が実現されることが分かる。すなわち、正極の搭載容量に対する充電容量を下げることで、負極の酸化による金属亜鉛消費による負極容量低下、及び正極の劣化(特に正極活物質の脱落と抵抗増加)を抑制し、容量維持率を改善して電池容量の低下を遅延させることができる。具体的には、図11Bに示されるように、寿命ラインを50%とした場合、充電時の最大SOCを低くした例B2の電池は、充電時の最大SOCがより高い例B1の電池に対して、約1.25倍に寿命が延びることが分かる。本試験は65℃という高温で実施されたトリクル充電加速試験であるが、二次電池の温度が10℃上がると寿命が約1/2になることが一般的に知られている。この一般的な知識に基づくと、65℃の加速試験で寿命が約150日となる例B2の電池の25℃において期待される寿命は、約6.6年となり、例B1の電池に対し約1.3年の寿命増加と見積もられる。 From the results shown in Table 4 and FIG. 11B, it can be seen that Example B2, in which charging is performed to a depth (SOC) of 90% (80% of the installed capacity), achieves a higher capacity retention rate even with the same number of days elapsed, compared to Example B1, in which charging is performed to an SOC of 100% (90% of the installed capacity). In other words, by lowering the charging capacity relative to the installed capacity of the positive electrode, it is possible to suppress the decrease in negative electrode capacity due to consumption of metallic zinc caused by oxidation of the negative electrode, and the deterioration of the positive electrode (especially the loss of positive electrode active material and increased resistance), improve the capacity retention rate, and delay the decrease in battery capacity. Specifically, as shown in FIG. 11B, when the life line is set to 50%, it can be seen that the battery of Example B2, in which the maximum SOC during charging is lowered, has a life of about 1.25 times longer than the battery of Example B1, in which the maximum SOC during charging is higher. This test is a trickle charge accelerated test performed at a high temperature of 65°C, and it is generally known that the life of a secondary battery is reduced by about half when the temperature rises by 10°C. Based on this general knowledge, the expected life of the battery of Example B2, which has a life of about 150 days in an accelerated test at 65°C, at 25°C is estimated to be about 6.6 years, an increase of about 1.3 years over the battery of Example B1.
 55℃におけるトリクル充電加速試験の結果は、表5及び図11Cに示されるとおりであった。 The results of the accelerated trickle charge test at 55°C are shown in Table 5 and Figure 11C.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5及び図11Cに示される結果から、充電が深度(SOC)90%(搭載容量に対して80%)まで行われる例B2は、SOC100%(搭載容量に対して90%)まで行われる例B1と比較して、同じ経過日数でもより高い容量維持率が実現されることが分かる。すなわち、正極の搭載容量に対する充電容量を下げることで、負極の酸化による金属亜鉛消費による負極容量低下、及び正極の劣化(特に正極活物質の脱落と抵抗増加)を抑制し、容量維持率を改善して電池容量の低下を遅延させることができる。具体的には、図11Cに示されるように、寿命ラインを50%とした場合、充電時の最大SOCを低くした例B2の電池は、充電時の最大SOCがより高い例B1の電池に対して、約1.2倍に寿命が延びることが分かる。本試験は55℃という高温で実施されたトリクル充電加速試験であるが、二次電池の温度が10℃上がると寿命が約1/2になることが一般的に知られている。この一般的な知識に基づくと、55℃の加速試験で寿命が約270日となる例B2の電池の25℃において期待される寿命は約5.9年となり、例B1の電池に対し約0.9年の寿命増加と見積もられる。 From the results shown in Table 5 and FIG. 11C, it can be seen that Example B2, in which charging is performed to a depth (SOC) of 90% (80% of the installed capacity), achieves a higher capacity retention rate even with the same number of days elapsed, compared to Example B1, in which charging is performed to an SOC of 100% (90% of the installed capacity). In other words, by lowering the charging capacity relative to the installed capacity of the positive electrode, it is possible to suppress the decrease in negative electrode capacity due to consumption of metallic zinc caused by oxidation of the negative electrode, and the deterioration of the positive electrode (especially the loss of positive electrode active material and increased resistance), improve the capacity retention rate, and delay the decrease in battery capacity. Specifically, as shown in FIG. 11C, when the life line is set to 50%, it can be seen that the battery of Example B2, in which the maximum SOC during charging is lowered, has a life extended by about 1.2 times compared to the battery of Example B1, in which the maximum SOC during charging is higher. This test is a trickle charge accelerated test performed at a high temperature of 55°C, and it is generally known that the life of a secondary battery is reduced by about half when the temperature rises by 10°C. Based on this general knowledge, the expected life of the battery of Example B2, which has a life of about 270 days in an accelerated test at 55°C, at 25°C is about 5.9 years, which is an estimated increase in life of about 0.9 years compared to the battery of Example B1.
 例B2の優位性(すなわち金属Zn粒子の含有割合を増やし、かつ、充電時の最大SOCを低くすることによる延命効果)を検証するため、例A1及びB2において55℃でのトリクル充電加速試験で得られた結果を表6及び図11Dに比較して示す。 To verify the superiority of Example B2 (i.e., the life extension effect of increasing the content of metallic Zn particles and lowering the maximum SOC during charging), the results obtained in an accelerated trickle charge test at 55°C for Examples A1 and B2 are compared in Table 6 and Figure 11D.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6及び図11Dに示される結果から、金属Zn粒子の含有割合が大きく、かつ、充電が深度(SOC)90%(搭載容量に対して80%)まで行われる例B2は、金属Zn粒子の含有割合が小さく、かつ、SOC100%(搭載容量に対して90%)まで行われる例A1と比較して、同じ経過日数でもとりわけ高い容量維持率が実現されることが分かる。すなわち、負極における金属Znの含有割合を大きくして、かつ、トリクル充電をSOC90%(搭載容量に対して80%)までに留めることで、とりわけ高い容量維持率を実現できるといえる。具体的には、図11Dに示されるように、寿命ラインを50%とした場合、金属Zn粒子の含有割合を増やし、かつ、充電時の最大SOCを低くした例B2の電池は、比較例である例A1の電池に対して、55℃で約1.8倍に寿命が延びることが分かる。本試験は55℃という高温で実施されたトリクル充電加速試験であるが、二次電池の温度が10℃上がると寿命が約1/2になることが一般的に知られている。この一般的な知識に基づくと、55℃の加速試験で寿命が約270日となる例B2の電池の25℃において期待される寿命は約5.9年となり、例A1の電池に対し約3.1年の寿命増加と見積もられる。 From the results shown in Table 6 and Figure 11D, it can be seen that Example B2, in which the content of metal Zn particles is high and charging is performed to a depth (SOC) of 90% (80% of the installed capacity), achieves a particularly high capacity retention rate even with the same number of days elapsed, compared to Example A1, in which the content of metal Zn particles is low and charging is performed to an SOC of 100% (90% of the installed capacity). In other words, it can be said that a particularly high capacity retention rate can be achieved by increasing the content of metal Zn in the negative electrode and limiting trickle charging to an SOC of 90% (80% of the installed capacity). Specifically, as shown in Figure 11D, when the life line is set to 50%, it can be seen that the battery of Example B2, in which the content of metal Zn particles is increased and the maximum SOC during charging is lowered, has a lifespan that is approximately 1.8 times longer at 55°C than the battery of Example A1, which is a comparative example. This test was a trickle charge accelerated test carried out at a high temperature of 55°C, but it is generally known that a 10°C rise in temperature of a secondary battery reduces the battery life by approximately half. Based on this general knowledge, the expected battery life at 25°C for the battery in Example B2, which has a battery life of approximately 270 days in the accelerated test at 55°C, is approximately 5.9 years, which is an estimated increase in battery life of approximately 3.1 years compared to the battery in Example A1.
 例C1(比較)
 LDHセパレータの代わりに以下の高分子微多孔膜セパレータ(製品名:#3401、セルガード社製、材質:ポリプロピレン、厚さ:25μm)を用いたこと以外は例A2と同様にしてニッケル亜鉛二次電池(ZnO:Zn=100:57.1wt%)を作製し、図12Aに示される充電プロファイルに従ってSOC100%(搭載容量の90%)までのトリクル充電加速試験を65℃で行った。
Example C1 (Comparative)
A nickel-zinc secondary battery (ZnO:Zn=100:57.1 wt %) was produced in the same manner as in Example A2, except that the following polymeric microporous membrane separator (product name: #3401, manufactured by Celgard, material: polypropylene, thickness: 25 μm) was used instead of the LDH separator, and an accelerated trickle charge test was performed at 65° C. up to SOC 100% (90% of the installed capacity) according to the charging profile shown in FIG. 12A .
 例C2
 高分子微多孔膜セパレータの代わりに例A1~B2と同様のLDHセパレータを用いたこと以外は、例C1と同様にして、ニッケル亜鉛二次電池(ZnO:Zn=100:57.1wt%)を作製し、図11Aに示される充電プロファイルに従ってSOC100%(搭載容量の90%)までのトリクル充電加速試験を65℃で行った
Example C2
A nickel-zinc secondary battery (ZnO:Zn=100:57.1 wt%) was prepared in the same manner as in Example C1, except that an LDH separator similar to that in Examples A1 to B2 was used instead of the polymer microporous membrane separator, and a trickle charge accelerated test was performed at 65° C. up to SOC 100% (90% of the installed capacity) according to the charging profile shown in FIG. 11A.
 例C1及びC2の結果は、表7及び図12Bに示されるとおりであった。
Figure JPOXMLDOC01-appb-T000007
The results of Examples C1 and C2 are shown in Table 7 and FIG. 12B.
Figure JPOXMLDOC01-appb-T000007
 表7及び図12Bに示される結果から、LDHセパレータはガス透過性がなく、正極から生じる酸素も透過しないため、負極の酸化を防止し、電池容量低下を抑え、寿命が延伸する効果があることが分かる。具体的には、図11Dに示されるように、寿命ラインを50%とした場合、ガス透過性の無いLDHセパレータを採用した例C2の電池は、高分子微多孔膜セパレータを採用した比較例である例C1の電池に対して、65℃で約1.4倍に寿命が延びることが分かる。本試験は55℃という高温で実施されたトリクル充電加速試験であるが、二次電池の温度が10℃上がると寿命が約1/2になることが一般的に知られている。この一般的な知識に基づくと、55℃の加速試験で寿命が約150日となる例C2の電池の25℃において期待される寿命は、約6.6年となり、例C1の電池に対し約1.8年の寿命増加と見積もられる。 From the results shown in Table 7 and Figure 12B, it can be seen that the LDH separator is not permeable to gases and does not allow oxygen generated from the positive electrode to pass through, so it has the effect of preventing oxidation of the negative electrode, suppressing the decrease in battery capacity, and extending the lifespan. Specifically, as shown in Figure 11D, when the lifespan line is set to 50%, the battery of Example C2, which uses a gas-permeable LDH separator, has a lifespan that is approximately 1.4 times longer at 65°C than the battery of Example C1, which is a comparative example that uses a polymer microporous membrane separator. This test is a trickle charge accelerated test performed at a high temperature of 55°C, but it is generally known that the lifespan of a secondary battery is approximately 1/2 when the temperature rises by 10°C. Based on this general knowledge, the expected lifespan of the battery of Example C2, which has a lifespan of approximately 150 days in the accelerated test at 55°C, at 25°C is approximately 6.6 years, which is estimated to be an increase of approximately 1.8 years compared to the battery of Example C1.

Claims (10)

  1.  亜鉛二次電池に用いられる負極であって、
     ZnO粒子と、
     前記ZnO粒子100重量部に対して55.0~65.0重量部の量の金属Zn粒子と、
    を含む、負極。
    A negative electrode for use in a zinc secondary battery,
    ZnO particles;
    Metal Zn particles in an amount of 55.0 to 65.0 parts by weight per 100 parts by weight of the ZnO particles;
    a negative electrode.
  2.  前記金属Zn粒子の含有量が、前記ZnO粒子100重量部に対して、55.0~58.0重量部である、請求項1に記載の負極。 The negative electrode according to claim 1, wherein the content of the metal Zn particles is 55.0 to 58.0 parts by weight per 100 parts by weight of the ZnO particles.
  3.  バインダー樹脂をさらに含む、請求項1に記載の負極。 The negative electrode of claim 1, further comprising a binder resin.
  4.  水酸化ニッケル及び/又はオキシ水酸化ニッケルを含む正極板と、
     請求項1~3のいずれか一項に記載の負極板と、
     前記正極板と前記負極板とを水酸化物イオン伝導可能に隔離する水酸化物イオン伝導セパレータと、
     電解液と、
     前記正極板、前記負極板、及び水酸化物イオン伝導セパレータが縦向きに収容される電池ケースと、
    を備えた、ニッケル亜鉛二次電池。
    a positive electrode plate containing nickel hydroxide and/or nickel oxyhydroxide;
    The negative electrode plate according to any one of claims 1 to 3,
    a hydroxide ion conductive separator that separates the positive electrode plate and the negative electrode plate so as to be capable of conducting hydroxide ions;
    An electrolyte;
    a battery case in which the positive electrode plate, the negative electrode plate, and a hydroxide ion conductive separator are housed vertically;
    A nickel-zinc secondary battery comprising:
  5.  前記水酸化物イオン伝導セパレータが、層状複水酸化物(LDH)及び/又はLDH様化合物を含むLDHセパレータである、請求項4に記載のニッケル亜鉛二次電池。 The nickel-zinc secondary battery of claim 4, wherein the hydroxide ion conductive separator is an LDH separator containing a layered double hydroxide (LDH) and/or an LDH-like compound.
  6.  前記LDHセパレータが多孔質基材と複合化されている、請求項5に記載のニッケル亜鉛二次電池。 The nickel-zinc secondary battery according to claim 5, wherein the LDH separator is composited with a porous substrate.
  7.  前記負極板が前記水酸化物イオン伝導セパレータで覆われ、かつ、前記負極板の上端部以外の外周部が気密に封止されており、それにより前記正極板で生じる酸素の前記負極板への到達が前記水酸化物イオン伝導セパレータで阻止される、請求項4に記載のニッケル亜鉛二次電池。 The nickel-zinc secondary battery of claim 4, wherein the negative electrode plate is covered with the hydroxide ion conductive separator, and the outer periphery of the negative electrode plate other than the upper end is hermetically sealed, so that the hydroxide ion conductive separator prevents oxygen generated in the positive electrode plate from reaching the negative electrode plate.
  8.  前記ニッケル亜鉛電池が積層セルを備えており、前記積層セルが、
     複数の前記正極板と、
     前記正極板の各々の端部から延出する複数の正極タブリードと、
     複数の前記負極板と、
     前記負極板の各々の端部から、前記正極タブリードと重ならない位置で延出する複数の負極タブリードと、
     前記正極板及び前記負極板を水酸化物イオン伝導可能に隔離する複数の前記水酸化物イオン伝導セパレータと、
     前記電解液と、
    を備え、前記正極板と前記負極板が前記水酸化物イオン伝導セパレータを挟んで交互積層されたものである、請求項4に記載のニッケル亜鉛二次電池。
    The nickel-zinc battery comprises a stacked cell, the stacked cell comprising:
    A plurality of the positive electrode plates;
    a plurality of positive electrode tab leads extending from each end of the positive electrode plate;
    A plurality of the negative electrode plates;
    a plurality of negative electrode tab leads extending from each end of the negative electrode plate at positions not overlapping with the positive electrode tab leads;
    a plurality of hydroxide ion conductive separators isolating the positive electrode plate and the negative electrode plate so as to be capable of conducting hydroxide ions;
    The electrolyte;
    5. The nickel-zinc secondary battery according to claim 4, wherein the positive electrode plate and the negative electrode plate are alternately laminated with the hydroxide ion conductive separator interposed therebetween.
  9.  請求項4に記載のニッケル亜鉛二次電池に対して、前記ニッケル亜鉛二次電池の搭載容量の80~85%の充電容量をもたらすようにトリクル充電を行うことを含む、ニッケル亜鉛二次電池の使用方法。 A method of using a nickel-zinc secondary battery, comprising trickle charging the nickel-zinc secondary battery described in claim 4 to provide a charge capacity of 80 to 85% of the installed capacity of the nickel-zinc secondary battery.
  10.  前記充電容量が前記ニッケル亜鉛二次電池の搭載容量の80%である、請求項9に記載のニッケル亜鉛二次電池の使用方法。 The method for using the nickel-zinc secondary battery according to claim 9, wherein the charging capacity is 80% of the installed capacity of the nickel-zinc secondary battery.
PCT/JP2023/044836 2023-03-23 2023-12-14 Negative electrode for zinc secondary battery, and nickel zinc secondary battery and method of using same WO2024195225A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-047249 2023-03-23
JP2023047249 2023-03-23

Publications (1)

Publication Number Publication Date
WO2024195225A1 true WO2024195225A1 (en) 2024-09-26

Family

ID=92841548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/044836 WO2024195225A1 (en) 2023-03-23 2023-12-14 Negative electrode for zinc secondary battery, and nickel zinc secondary battery and method of using same

Country Status (1)

Country Link
WO (1) WO2024195225A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139855A (en) * 1988-11-18 1990-05-29 Sanyo Electric Co Ltd Zinc electrode for alkaline storage battery and its manufacture
WO2020049902A1 (en) * 2018-09-03 2020-03-12 日本碍子株式会社 Negative electrode and zinc secondary battery
WO2022190460A1 (en) * 2021-03-12 2022-09-15 日本碍子株式会社 Zinc secondary battery
WO2022201638A1 (en) * 2021-03-26 2022-09-29 日本碍子株式会社 Zinc secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139855A (en) * 1988-11-18 1990-05-29 Sanyo Electric Co Ltd Zinc electrode for alkaline storage battery and its manufacture
WO2020049902A1 (en) * 2018-09-03 2020-03-12 日本碍子株式会社 Negative electrode and zinc secondary battery
WO2022190460A1 (en) * 2021-03-12 2022-09-15 日本碍子株式会社 Zinc secondary battery
WO2022201638A1 (en) * 2021-03-26 2022-09-29 日本碍子株式会社 Zinc secondary battery

Similar Documents

Publication Publication Date Title
KR101268989B1 (en) Lithium ion secondary cell
US20180006322A1 (en) Electrode plate and secondary battery
JP4977375B2 (en) Lithium ion battery and battery pack using the same
JP6494861B2 (en) Battery cell with electrode lead containing gas adsorbent
JP2020077611A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP5259662B2 (en) Electrode assembly and secondary battery including the same
JP5273124B2 (en) Positive electrode and non-aqueous electrolyte battery
JP2016507871A (en) Paste-type nickel hydroxide electrodes and additives for rechargeable alkaline batteries
JP2015125832A (en) Manufacturing method for electrode for secondary battery
JP6359454B2 (en) Nonaqueous electrolyte secondary battery
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
WO2024195225A1 (en) Negative electrode for zinc secondary battery, and nickel zinc secondary battery and method of using same
JP2019016494A (en) Method for manufacturing multilayer electrode body and method for manufacturing power storage element
WO2023188490A1 (en) Zinc secondary battery
US20230261204A1 (en) Negative electrode and zinc secondary battery
JP7506822B2 (en) Nickel-zinc secondary battery
WO2022190460A1 (en) Zinc secondary battery
JP2020095955A (en) Alkaline secondary battery
WO2021220627A1 (en) Nickel-zinc secondary battery
WO2024176531A1 (en) Zinc secondary battery
JP7313236B2 (en) Negative electrodes for all-solid-state batteries and all-solid-state batteries
JP2019091533A (en) Negative electrode for nickel hydrogen secondary battery, and nickel hydrogen secondary battery including the same
JP2019016493A (en) Electrode body sub-unit, electrode unit, multilayer electrode body and power storage element
WO2022195943A1 (en) Zinc secondary battery
WO2024024728A1 (en) Electrochemical element, method for manufacturing same, and electrochemical element module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23928791

Country of ref document: EP

Kind code of ref document: A1