[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024193918A1 - Determining properties of contents - Google Patents

Determining properties of contents Download PDF

Info

Publication number
WO2024193918A1
WO2024193918A1 PCT/EP2024/054135 EP2024054135W WO2024193918A1 WO 2024193918 A1 WO2024193918 A1 WO 2024193918A1 EP 2024054135 W EP2024054135 W EP 2024054135W WO 2024193918 A1 WO2024193918 A1 WO 2024193918A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
filling material
measuring
filling
frequency
Prior art date
Application number
PCT/EP2024/054135
Other languages
German (de)
French (fr)
Inventor
Johannes BAUREITHEL
Peter KLÖFER
Jawad Tayyub
Alexander Vogel
Original Assignee
Endress+Hauser SE+Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress+Hauser SE+Co. KG filed Critical Endress+Hauser SE+Co. KG
Publication of WO2024193918A1 publication Critical patent/WO2024193918A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2962Measuring transit time of reflected waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/80Arrangements for signal processing
    • G01F23/802Particular electronic circuits for digital processing equipment
    • G01F23/804Particular electronic circuits for digital processing equipment containing circuits handling parameters other than liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/20Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of apparatus for measuring liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4481Neural networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/417Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section involving the use of neural networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning

Definitions

  • the invention relates to the determination of additional filling material properties in the course of runtime-based level measurement.
  • appropriate field devices are used to record relevant process parameters.
  • suitable measuring principles are implemented in the respective field device types in order to be able to record process parameters such as a fill level, a flow rate, a pressure, a temperature, a pH value, a redox potential, a media density or a conductivity.
  • process parameters such as a fill level, a flow rate, a pressure, a temperature, a pH value, a redox potential, a media density or a conductivity.
  • a wide variety of such field device types are manufactured and sold by the Endress + Hauser group of companies.
  • Time-of-flight based measuring methods have become established for measuring the fill level of filling materials in containers.
  • Probe-based measuring methods based on the TDR measuring principle (“Time Domain Reflectometry”) can be used to measure the signal time of flight.
  • ultrasound or radar-based measuring methods have also been established, which are based on the pulse time of flight or the FMCW principle (“Frequency Modulated Continuous H/ave”) and emit corresponding high-frequency signals via a suitable antenna.
  • the various runtime-based level and distance measurement methods have in common that the measurement signal obtained represents the signal runtime or the equivalent distance to the surface of the filling material.
  • the measurement signal is generated to determine the level/distance by mixing the high-frequency signal to be transmitted with the high-frequency signal received after reflection.
  • the high-frequency signal is generated with a temporal sawtooth-shaped frequency change.
  • the frequency of the resulting measurement signal which is also known as an IF signal in FMCW, represents the distance or the signal runtime to the surface of the filling material according to the FMCW principle.
  • the FMCW-based level measurement method is described, for example, in the published patent application DE 10 2013 108 490 A1.
  • the radar-based measurement signal is obtained by so-called sub-sampling of the high-frequency signal received after reflection.
  • the measurement signal represents the signal amplitude of the received high-frequency signal in time-stretched form, with the time-stretching factor being defined by the frequency of the sub-sampling.
  • the high-frequency unit of the measuring device generates or processes the high-frequency signals in the form of ultrasound.
  • the pulse transit time method can be used again.
  • the received ultrasound signal is not subjected to subsampling, since the frequency of the high-frequency signal is sufficiently low in this case. Accordingly, the resulting measurement signal in the case of ultrasound directly represents the temporal amplitude curve of the ultrasound signal received after reflection.
  • the filling material In addition to the fill level, it is often also of interest in industrial processes to determine other properties of the filling material, such as the geometry of the filling material surface, or the density, porosity, any moisture, grain size or roughness.
  • the mass or volume of the filling material can also be of interest.
  • additional measuring devices may be required, which can affect production costs and the hygienic conditions in the container.
  • the invention solves this problem by a measuring system for measuring a filling property of a filling material in a container, which comprises the following components:
  • a high frequency based measuring device with o an antenna arrangement or in the case of TDR a measuring probe, by means of which high frequency signals can be sent to the filling material and received after reflection on the filling material surface, and o a high frequency unit which is designed
  • the invention is therefore based on the knowledge that the measurement signal or the relevant signal maximum of runtime-based level measuring devices can not only be used to determine the level value. Rather, the characteristics of the measurement signal are also influenced by many other properties of the filling material, such as density, porosity, any moisture, grain size, etc.
  • the geometry of the reflecting area of the product surface also influences the characteristics of the measuring signal, so that the received signal is is deformed. This allows the volume or mass below the filling material surface to be determined much more precisely than is possible with point-based measurement. Accordingly, the invention uses the knowledge that it is possible, in particular using machine learning algorithms, to teach runtime-based measuring devices or corresponding measuring systems in such a way that the corresponding filling material properties can be determined from the characteristics of the measuring signal. In comparison to a point-based filling level value, this enables a much more in-depth assessment of the process without the need for additional or more complex measuring device hardware.
  • this can be implemented, for example, as an artificial neural network, in particular in the form of a deep learning method, such as "LSTM (Long Short Term Memory)", “MLP (Multilayer Perceptron)", “CNN (Convolutional Neural Network) or “Transformer”, so that the determination of the filling material property can be learned accordingly based on the received signal.
  • the algorithm can determine as a filling material property, for example, the volume or mass of the filling material, a material property of the filling material, in particular a density, a moisture content, a porosity, a grain size or roughness, and/or a geometry of at least a partial area of the filling material surface.
  • a machine learning algorithm If a machine learning algorithm is implemented, it can preferably be taught using the principle of "supervised learning", i.e. under known filling material properties. In the case of the filling volume or the filling mass, this so-called “supervised learning” corresponds to the following process steps:
  • the algorithm can be further developed or taught if necessary in such a way that, after any teaching, the geometry of the filling material surface can be determined at least between
  • the evaluation unit can assign and output the corresponding, previous change in state of the container if the geometry of the filling material surface is designed accordingly.
  • the respective filling material property can be determined within the scope of the invention either on the basis of the entire measurement signal.
  • the area around the signal maximum that can be assigned to the signal reflection of the high-frequency signal on the filling material surface.
  • the evaluation unit can be implemented in the form of an independent and possibly portable microcontroller, which is arranged directly on the container or in its immediate vicinity. It is also conceivable that the evaluation unit is designed as a hardware component of the measuring device. In contrast to this, however, a central or decentralized server can also function as an evaluation unit.
  • the term "unit 1" is understood to mean in principle any electronic circuit or hardware that is designed to be suitable for the intended purpose. Depending on the requirements, it can therefore be an analog circuit for generating or processing corresponding analog signals. However, the "unit” can also be a digital circuit, such as an FPGA or a storage medium in conjunction with a program.
  • an electronic unit can be made up of a plurality of networked storage/computing units.
  • the measuring system can preferably be equipped with a position or acceleration sensor.
  • the sensor can preferably be designed as an integral part of the measuring device, since the level measuring device is attached to the tiltable container.
  • the invention can be applied to any transit time-based measuring device that generates a corresponding measurement signal.
  • the high-frequency unit of the measuring device is designed in this case to generate a corresponding radar signal according to the FMCW or pulse transit time method or to process it into a corresponding measurement signal. It is not relevant in what form the measurement signal is available for evaluation: Depending on the radar method, the evaluation unit can determine the filling material properties using a digitized, rectified or Fourier transformed measurement signal or can be taught based on this.
  • ultrasound and TDR-based measuring devices are also suitable for implementing the invention, with TDR-based measuring devices comprising a measuring probe protruding into the container as an antenna arrangement, in contrast to free high-frequency signal radiation.
  • the high-frequency unit of the measuring device according to the invention generates an ultrasound signal as a high-frequency signal, with the measuring signal being processed according to the TDR method.
  • Fig. 1 A measuring system according to the invention for determining the filling volume of a tiltable container
  • Fig. 2 Different types of state changes on the container and their influence on the filling product surface.
  • Fig. 1 shows a tiltable container 3, such as an erectable cement silo, in which container 3 there is a corresponding filling material 2.
  • a radar measuring device 1 operating according to the time-of-flight principle is attached to container 3 in such a way that, when container 3 is in the erected state, measuring device 1 is attached at a fixed installation height h above the container brine. In this state, measuring device 1 is aligned in such a way that, depending on the radar method implemented, corresponding radar signals SHF are emitted approximately vertically downwards in the direction of filling material 2.
  • the measuring device 1 After reflection at a corresponding area of the filling material surface, the measuring device 1 receives the radar signals RHF reflected at the filling material surface after a defined signal propagation time t, which depends on the distance d of the measuring device 1 to the corresponding point or area on the filling material surface. Depending on the measuring method, the measuring device 1 generates a measuring signal R m based on the received radar signal RHF, the characteristics of which are the same for all measuring methods.
  • the high-frequency signal SHF to be transmitted is generated with a sawtooth-shaped frequency change.
  • the reflected high-frequency signal RHF is mixed with the high-frequency signal SHF generated in the measuring device 1, whereby the measurement signal R m characteristic of FMCW is obtained after subsequent Fourier transformation.
  • the measurement signal R m represents the received signal SHF in time-expanded form, since it is obtained by subsampling and subsequent rectification of the received high-frequency signal RHF.
  • the measurement signal R m has a signal maximum at the signal runtime t that corresponds to the reflection at the container surface.
  • the time axis of the measurement signal R m is according to
  • an ultrasound-based measuring device or a probe-based measuring device based on the TDR method (“Time Domain Reflectometry”) instead of a radar-based measuring method.
  • the measuring device 1 is connected to a higher-level unit 4, such as a process control system or a decentralized server, via a suitable interface, such as “PROFIBL/S”, “HART 1 ”, “Wireless HART 1 ” , “4-20mA”, “Bluetooth” or “Ethernet”, thereby creating a corresponding measuring system.
  • the fill level value L can be transmitted via the interface.
  • the pure distance value d or the pure measurement signal R m can also be transmitted.
  • the advantage of this is that the installation height h of the fill level measuring device 1 for calculating the fill level value L can be stored or modified in a decentralized manner, rather than in the measuring device 1 itself.
  • the measuring device 1 or the higher-level unit 4 cannot determine the volume of the currently stored filling material 2 in the situation shown in Fig. 1 using a linearization table, since the filling material 2 is in bulk form and therefore no planar filling material surface is formed.
  • a linearization table according to the state of the art describes the relationship between the measured fill level L and the volume occupied in the respective container type for liquid filling materials 2, which form correspondingly planar surfaces.
  • the invention makes use of the fact that in runtime-based measuring methods the course or characteristic of the measuring signal R m does not only depend on the filling level L, but also on certain material properties of the respective filling material 2, such as the porosity, the grain size or roughness or the dielectric value.
  • the material moisture and the density of the filling material 2 may also influence the characteristics of the measuring signal R m :
  • the strength of the reflected high-frequency signal RHF or, above all, the amplitude of the signal maximum in the measuring signal R m , which can be assigned to the reflection at the filling material surface, is influenced not only by the filling level L but also by the dielectric value or the density of the filling material 2.
  • the height-to-width ratio of this signal maximum as well as the overall signal-to-noise ratio (“SNR”) can be attributed to the surface roughness or any grain size of the filling material 2.
  • any asymmetry of the signal maximum can be caused by an inclined (i) or a conical (ii) or conically recessed (iii) product surface. Conversely, a symmetrical signal maximum can be used to conclude that the product surface is flat.
  • An inclined surface results, for example, from erecting the container 3 after it has been filled.
  • a conical surface results from filling the container 3 after it has been set up and/or emptied.
  • a conical recessed surface results, for example, if the container 3 is emptied after it has been set up.
  • the filling volume occupied by the filling material 2 in the container 3 can be determined based on the filling material properties of a flat filling material surface or, in the case of an uneven filling material surface, based on the possible surface geometries (i), (ii), (iii) taking into account the point filling level value L.
  • the type of the stored filling material 2 is known and a homogeneous filling material density can therefore be assumed, it is also possible to calculate the mass of the filling material 2 in the container on the basis of the determined filling volume, again either in the level measuring device 1 itself or in the evaluation unit 4.
  • the previously described relationships between the characteristics of the measurement signal R m and the corresponding filling material properties can be used according to the invention by enabling the evaluation unit 4 to quantitatively determine the above-mentioned characteristics from the measurement signal R m by means of an appropriately designed algorithm and to use this to determine the underlying filling material properties or the corresponding change in state of the container 3. Since, depending on the filling material properties, only a certain part of the measurement signal R m is relevant for determining this filling material property, the algorithm can be designed to avoid unnecessary computing power so that only the relevant sub-area of the measurement signal R m is evaluated in this regard. As previously described, for many possible filling material properties this particularly affects the sub-area in the vicinity of the signal maximum in the measurement signal which can be assigned to the reflection of the high-frequency signal SHF on the filling material surface.
  • machine learning also known under the term “machine learning”
  • the evaluation unit 4 it is particularly suitable to implement a machine learning algorithm (also known under the term “machine learning”) in the evaluation unit 4 in order to learn the determination of the desired filling material property based on measurement signals R m . It is not prescribed which form of the machine learning algorithm is implemented, for example as an artificial neural network or in the form of “deep learning.
  • the measuring system 1, 4 can preferably be taught under monitored conditions. There are a wide variety of implementation forms for this, such as “Decision Trees”, “Naive Bayes”, “Artificial Neural Networks” or “Support Vector Machine”. Across all implementation forms, the filling material property to be recorded is first defined. Based on this, the measuring system 1, 4 can carry out at least one measurement or generate a corresponding measurement signal R m in a teaching phase with a known value of the specific filling material property. It is advantageous if the boundary conditions of the teaching correspond as closely as possible to those of the later measuring environment. This applies in particular to the container type and the filling material 2.
  • the measurement signal R m and the corresponding, known value of the filling material property are assigned to each other.
  • the filling material property to be recorded can be determined more precisely in later, regular measuring operation, the more monitored measurements are carried out in the learning phase, or the more different values of the filling material property are measured and assigned to corresponding measurement signals R m .
  • monitored learning specifically includes the following process steps:

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Acoustics & Sound (AREA)
  • Thermal Sciences (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

The invention relates to a measuring system (1, 4) for determining a selected property of contents in containers (3) of industrial process installations, such as the surface geometry of the contents or a material property of the contents (2), in particular its roughness or its porosity. Analogously to time-of-flight-based fill level measurement, for this purpose a corresponding high-frequency measuring device (1) emits high-frequency signals (SHF, RHF) toward the contents (2) and receives said signals after reflection by the surface of the contents, so that corresponding measurement signals (Rm) are captured according to the time-of-flight-based method. In an evaluation unit (4) of the measuring system, according to the invention a learning algorithm, in particular a machine learning algorithm, is implemented in order to determine the desired property of the contents on the basis of the measurement signal (Rm). Accordingly, use is made of the insight according to the invention that not only can the measurement signal (Rm) be used to determine the fill level (L), but the characteristic of the measurement signal (Rm) is also influenced by many other properties of the contents. Therefore, depending on the property of the contents, other measuring devices besides the high-frequency measuring device (1) can be dispensed with, which accordingly reduces the measurement complexity in the context of the relevant industrial process.

Description

Ermittlung von Füllgut-Eigenschaften Determination of filling material properties
Die Erfindung betrifft die Ermittlung zusätzlicher Füllgut-Eigenschaften im Zuge laufzeitbasierter Füllstandsmessung. The invention relates to the determination of additional filling material properties in the course of runtime-based level measurement.
In der industriellen Prozessautomatisierungstechnik werden zur Erfassung relevanter Prozessparameter entsprechende Feldgeräte eingesetzt. Zwecks Erfassung der jeweiligen Prozessparameter sind in den jeweiligen Feldgeräte-Typen daher geeignete Messprinzipien implementiert, um als Prozessparameter, etwa einen Füllstand, einen Durchfluss, einen Druck, eine Temperatur, einen pH-Wert, ein Redoxpotential, eine Medien-Dichte oder eine Leitfähigkeit erfassen zu können. Verschiedenste solcher Feldgeräte-Typen werden von der Firmengruppe Endress + Hauser hergestellt und vertrieben. In industrial process automation technology, appropriate field devices are used to record relevant process parameters. In order to record the respective process parameters, suitable measuring principles are implemented in the respective field device types in order to be able to record process parameters such as a fill level, a flow rate, a pressure, a temperature, a pH value, a redox potential, a media density or a conductivity. A wide variety of such field device types are manufactured and sold by the Endress + Hauser group of companies.
Zur Füllstandsmessung von Füllgütern in Behältern haben sich laufzeitbasierte Messverfahren durchgesetzt. Zur Signal-Laufzeitmessung können einerseits Sondenbasierte Messverfahren eingesetzt werden, die beispielsweise auf dem TDR-Messprinzip („Time Domain Reflectometry“) beruhen. Daneben haben sich auch Ultraschall- oder Radar-basierte Messverfahren etabliert, die beispielsweise auf dem Pulslaufzeit- oder dem FMCW-Prinzip („Frequency Modulated Continuous H/ave“) basieren und entsprechende Hochfrequenz-Signale über eine hierzu geeignete Antenne abstrahlen. Time-of-flight based measuring methods have become established for measuring the fill level of filling materials in containers. Probe-based measuring methods based on the TDR measuring principle (“Time Domain Reflectometry”) can be used to measure the signal time of flight. In addition, ultrasound or radar-based measuring methods have also been established, which are based on the pulse time of flight or the FMCW principle (“Frequency Modulated Continuous H/ave”) and emit corresponding high-frequency signals via a suitable antenna.
Den verschiedenen, laufzeitbasierten Füllstands- bzw. Abstandmessverfahren ist gemeinsam, dass das gewonnene Mess-Signal die Signallaufzeit bzw. den äquivalenten Abstand zur Füllgut-Oberfläche repräsentiert. Im Falle des FMCW-Verfahrens wird zur Bestimmung des Füllstandes/Abstandes das Mess-Signal generiert, indem das auszusendende Hochfrequenz-Signal mit dem nach Reflektion empfangenen Hochfrequenz-Signal gemischt wird. Dabei wird das Hochfrequenz-Signal mit einer zeitlich sägezahnförmigen Frequenzänderung erzeugt. Hierdurch repräsentiert die Frequenz des resultierenden Mess-Signals, welches bei FMCW auch als ZF-Signal bekannt ist, gemäß des FMCW-Prinzips den Abstand bzw. die Signallaufzeit zur Oberfläche des Füllgutes. Das FMCW-basierte Füllstands-Messverfahren wird beispielsweise in der Offenlegungsschrift DE 10 2013 108 490 A1 beschrieben. The various runtime-based level and distance measurement methods have in common that the measurement signal obtained represents the signal runtime or the equivalent distance to the surface of the filling material. In the case of the FMCW method, the measurement signal is generated to determine the level/distance by mixing the high-frequency signal to be transmitted with the high-frequency signal received after reflection. The high-frequency signal is generated with a temporal sawtooth-shaped frequency change. As a result, the frequency of the resulting measurement signal, which is also known as an IF signal in FMCW, represents the distance or the signal runtime to the surface of the filling material according to the FMCW principle. The FMCW-based level measurement method is described, for example, in the published patent application DE 10 2013 108 490 A1.
Im Falle des Pulslaufzeit-Verfahrens wird das Radar-basierte Mess-Signal durch so genannte Unterabtastung des nach Reflektion empfangenen Hochfrequenz-Signals erhalten. Hierdurch repräsentiert das Mess-Signal die Signal-Amplitude des empfangenen Hochfrequenz-Signals in zeitgedehnter Form, wobei der Zeitdehnungsfaktor durch die Frequenz der Unterabtastung definiert wird. Auch sofern die Hochfrequenz-Einheit des Messgerätes die Hochfrequenz-Signale in Form von Ultraschall erzeugt bzw. verarbeitet, kann wiederum das Pulslaufzeit-Verfahren eingesetzt werden. Im Gegensatz zu Radarbasierter Pulslaufzeitmessung wird das empfangene Ultraschall-Signal jedoch keiner Unterabtastung unterzogen, da die Frequenz des Hochfrequenz-Signals in diesem Fall hinreichend gering ist. Dementsprechend repräsentiert das resultierende Mess-Signal im Falle von Ultraschalle direkt den zeitlichen Amplituden-Verlauf des nach Reflektion eingegangenen Ultraschall-Signals. In the case of the pulse transit time method, the radar-based measurement signal is obtained by so-called sub-sampling of the high-frequency signal received after reflection. As a result, the measurement signal represents the signal amplitude of the received high-frequency signal in time-stretched form, with the time-stretching factor being defined by the frequency of the sub-sampling. Even if the high-frequency unit of the measuring device generates or processes the high-frequency signals in the form of ultrasound, The pulse transit time method can be used again. In contrast to radar-based pulse transit time measurement, however, the received ultrasound signal is not subjected to subsampling, since the frequency of the high-frequency signal is sufficiently low in this case. Accordingly, the resulting measurement signal in the case of ultrasound directly represents the temporal amplitude curve of the ultrasound signal received after reflection.
Neben dem Füllstand ist es im Rahmen von industriellen Prozessen oftmals auch von Interesse, weitere Füllgut-Eigenschaften zu bestimmen, wie die Geometrie der Füllgut- Oberfläche, oder auch die Dichte, die Porosität, etwaige Feuchte, die Korngröße bzw. Rauigkeit. Auch die Masse bzw. das Volumen des Füllgutes können von Interesse sein. Je nach Füllgut-Eigenschaft braucht man hierfür jedoch ggf. weitere Messgeräte, was sich auf Produktionskosten und die hygienischen Voraussetzungen im Behälter auswirken kann. In addition to the fill level, it is often also of interest in industrial processes to determine other properties of the filling material, such as the geometry of the filling material surface, or the density, porosity, any moisture, grain size or roughness. The mass or volume of the filling material can also be of interest. Depending on the filling material properties, however, additional measuring devices may be required, which can affect production costs and the hygienic conditions in the container.
Es ist dementsprechend eine Aufgabe der Erfindung, ohne zusätzliche Messgeräte zusätzlich oder alternativ zum Füllstand weitere Füllgut-Eigenschaften bestimmen zu können. It is therefore an object of the invention to be able to determine further filling material properties in addition to or as an alternative to the filling level without additional measuring devices.
Die Erfindung löst diese Aufgabe durch ein Mess-System zur Messung einer Füllgut- Eigenschaft eines Füllgutes in einem Behälter, das folgende Komponenten umfasst: The invention solves this problem by a measuring system for measuring a filling property of a filling material in a container, which comprises the following components:
Ein Hochfrequenz-basiertes Messgerät, mit o einer Antennen-Anordnung bzw. im Falle von TDR eine Mess-Sonde, mittels welcher Hochfrequenz-Signale gen Füllgut sendbar und nach Reflektion an der Füllgut-Oberfläche empfangbar sind, und o einer Hochfrequenz-Einheit, die ausgelegt ist, A high frequency based measuring device, with o an antenna arrangement or in the case of TDR a measuring probe, by means of which high frequency signals can be sent to the filling material and received after reflection on the filling material surface, and o a high frequency unit which is designed
■ das auszusendende Hochfrequenz-Signal zu erzeugen, und■ to generate the high frequency signal to be transmitted, and
■ nach dessen Empfang an der Antennen-Anordnung ein entsprechendes Mess-Signal aufzuzeichnen, und eine Auswerte-Einheit, in weicher ein derartiger Algorithmus implementiert ist, um anhand des Empfangs-Signals zumindest eine Füllgut-Eigenschaft, bei der es sich nicht um den Füllstand handelt, zu bestimmen. ■ to record a corresponding measurement signal after it has been received at the antenna arrangement, and an evaluation unit in which such an algorithm is implemented in order to determine at least one property of the filling material, which is not the filling level, based on the received signal.
Die Erfindung basiert somit auf der Erkenntnis, dass das Mess-Signal bzw. das betreffende Signal-Maximum von laufzeitbasierten Füllstandsmessgeräten nicht nur herangezogen werden kann, um den Füllstandswert zu bestimmen. Vielmehr wird die Charakteristik des Mess-Signals auch von vielen weiteren Füllgut-Eigenschaften beeinflusst, wie der Dichte, der Porosität, etwaiger Feuchte, der Korngröße bzw. The invention is therefore based on the knowledge that the measurement signal or the relevant signal maximum of runtime-based level measuring devices can not only be used to determine the level value. Rather, the characteristics of the measurement signal are also influenced by many other properties of the filling material, such as density, porosity, any moisture, grain size, etc.
Rauigkeit. Auch die Geometrie des reflektierenden Bereichs der Füllgut-Oberfläche prägt die Charakteristik des Mess-Signals, als dass das Empfangs-Signal entsprechend verformt wird. Hierdurch können das unterhalb der Füllgut-Oberfläche befindliche Volumen bzw. die Masse deutlich genauer bestimmt werden, als es mit punktueller Messung möglich ist. Dementsprechend wird erfindungsgemäß die Erkenntnis genutzt, dass es insbesondere mittels maschineller Lernalgorithmen möglich ist, laufzeitbasierte Messgeräte bzw. entsprechende Mess-Systeme so einzulernen, um aus der Charakteristik des Mess-Signals entsprechende Füllgut-Eigenschaften bestimmen. Dies ermöglicht im Vergleich zu einem punktuellen Füllstandswert eine deutlich tiefere Beurteilung des Prozess-Geschehens, ohne dass hierfür weitere bzw. aufwendigere Messgeräte-Hardware notwendig ist. Roughness. The geometry of the reflecting area of the product surface also influences the characteristics of the measuring signal, so that the received signal is is deformed. This allows the volume or mass below the filling material surface to be determined much more precisely than is possible with point-based measurement. Accordingly, the invention uses the knowledge that it is possible, in particular using machine learning algorithms, to teach runtime-based measuring devices or corresponding measuring systems in such a way that the corresponding filling material properties can be determined from the characteristics of the measuring signal. In comparison to a point-based filling level value, this enables a much more in-depth assessment of the process without the need for additional or more complex measuring device hardware.
Im Falle des maschinellen Lern-Algorithmus kann dieser beispielsweise als künstliches neuronales Netzwerk, insbesondere in Form einer tiefen Lernmethode, wie bspw. „LSTM (Long Short Term Memory)“, „MLP (Multilayer Perceptron)“, „CNN (Convolutional Neural Network) oder „Transformer“ implementiert sein, so dass die Bestimmung der Füllgut- Eigenschaft anhand des Empfangs-Signals entsprechend einlernbar ist. Dabei kann der Algorithmus je nach Einlernen bzw. je nach Implementierung als Füllgut-Eigenschaft bspw. das Volumen bzw. die Masse des Füllgutes, eine Material-Eigenschaft des Füllgutes, insbesondere eine Dichte, eine Feuchte, eine Porosität, eine Korngröße bzw. Rauigkeit, und/oder eine Geometrie von zumindest einem Teilbereich der Füllgut-Oberfläche bestimmen. In the case of the machine learning algorithm, this can be implemented, for example, as an artificial neural network, in particular in the form of a deep learning method, such as "LSTM (Long Short Term Memory)", "MLP (Multilayer Perceptron)", "CNN (Convolutional Neural Network) or "Transformer", so that the determination of the filling material property can be learned accordingly based on the received signal. Depending on the learning or implementation, the algorithm can determine as a filling material property, for example, the volume or mass of the filling material, a material property of the filling material, in particular a density, a moisture content, a porosity, a grain size or roughness, and/or a geometry of at least a partial area of the filling material surface.
Sofern ein maschineller Lern- Algorithmus implementiert ist, kann dieser vorzugsweise mittels des Prinzips des „Supervised „Learning“ eingelernt werden, also unter jeweils bekannten Füllgut-Eigenschaften. Im Falle des Füll-Volumens bzw. der Füll-Masse entspricht dieses so genannt „überwachte Lernen“ folgenden Verfahrensschritten: If a machine learning algorithm is implemented, it can preferably be taught using the principle of "supervised learning", i.e. under known filling material properties. In the case of the filling volume or the filling mass, this so-called "supervised learning" corresponds to the following process steps:
Befüllen des Behälters mit einem bekannten Füll-Volumen bzw. mit einer bekannten Masse, Filling the container with a known filling volume or with a known mass,
Erzeugung eines Hochfrequenz-Signals und Aufzeichnen eines entsprechenden Mess-Signals nach Empfang des reflektierten Hochfrequenz-Signals, und Zuordnen des Mess-Signals zur bekannten Masse bzw. zum bekannten Volumen, wobei diese Verfahrensschritte innerhalb der Einlernphase für zumindest zwei verschiedene Massen bzw. Volumina wiederholt werden. Dabei ist es logisch, dass die Bestimmung des Füll-Volumens im regulären Messbetrieb, also nach Ende der Einlernphase umso genauer ist, bei je mehr unterschiedlichen Füll-Massen/Volumina diese Verfahrensschritte während der Einlernphase wiederholt werden. Realistisch ist eine Wiederholung der Verfahrensschritte von bis zu mehreren tausendmal. Anstatt, während der Einlernphase auf reale Mess-Signale zurückzugreifen, ist es im Rahmen des „Supervised „Learning auch denkbar, auf solche Mess-Signale zurückzugreifen, die per Simulation generiert wurden. Dies reduziert den Aufwand des Einlernens erheblich, birgt jedoch das Risiko eines unrealistischeren Lernergebnisses. Generation of a high-frequency signal and recording of a corresponding measurement signal after receiving the reflected high-frequency signal, and assignment of the measurement signal to the known mass or volume, whereby these process steps are repeated for at least two different masses or volumes during the learning phase. It is logical that the determination of the filling volume in regular measuring operation, i.e. after the end of the learning phase, is all the more accurate the more different filling masses/volumes these process steps are repeated for during the learning phase. It is realistic to repeat the process steps up to several thousand times. Instead of using real measurement signals during the learning phase, it is also conceivable within the framework of "supervised learning" to use measurement signals that are Simulation. This significantly reduces the effort required for training, but carries the risk of a more unrealistic learning outcome.
Für den Fall, dass mittels des Mess-Systems eine Oberflächen-Geometrie zu bestimmen ist, kann der Algorithmus im Bedarfsfall derart weiterentwickelt bzw. eingelernt werden, um nach etwaigem Einlernen als Geometrie der Füllgut-Oberfläche zumindest zwischenIn the event that a surface geometry is to be determined using the measuring system, the algorithm can be further developed or taught if necessary in such a way that, after any teaching, the geometry of the filling material surface can be determined at least between
(i) einer geneigten Füllgut-Oberfläche, (i) an inclined product surface,
(ii) einer kegelförmigen Füllgut-Oberfläche, (ii) a conical filling surface,
(iii) einer kegelförmig vertieften Füllgut-Oberfläche, und/oder einer glatten bzw. horizontal verlaufenden Füllgut-Oberfläche zu unterscheiden. Gleiches gilt auch für Teilbereiche der Füllgut-Oberfläche. Solch eine Unterscheidung macht vor allem bei Schüttgut-artigen Füllgütern Sinn und kann mit einer entsprechenden, vorhergehenden Zustandsänderung am Behälter verknüpft werden:(iii) a conically recessed filling material surface and/or a smooth or horizontally running filling material surface. The same applies to parts of the filling material surface. Such a distinction makes sense especially for bulk-type filling materials and can be linked to a corresponding, previous change in the state of the container:
(i) Aufstellen des Behälters nach dessen Befüllen, (i) erecting the container after it has been filled,
(ii) Befüllen des Behälters nach dessen Aufstellen bzw. nach dessen Entleeren, und(ii) filling the container after it has been set up or after it has been emptied, and
(iii) Entleeren des Behälters nach dessen Aufstellen bzw. nach dessen Befüllung.(iii) Emptying the container after it has been set up or after it has been filled.
Zumindest im Falle von Schüttgut kann die Auswerte-Einheit bei entsprechender Auslegung der jeweils ermittelten Geometrie der Füllgut-Oberfläche die entsprechende, vorherige Zustandsänderung am Behälter zuordnen und ausgeben. At least in the case of bulk material, the evaluation unit can assign and output the corresponding, previous change in state of the container if the geometry of the filling material surface is designed accordingly.
Allgemein kann die jeweilige Füllgut-Eigenschaft im Rahmen der Erfindung entweder auf Basis des gesamten Mess-Signals bestimmt werden. Es ist jedoch auch denkbar, lediglich solche Teilbereiche des Mess-Signals zur Bestimmung der Füllgut-Eigenschaft heranzuziehen, welche besondere Aussagekraft für ausgewählte Füllgut-Eigenschaften besitzen. Interessant ist diesbezüglich insbesondere der Bereich um dasjenige Signal- Maximum, welches der Signal-Reflektion des Hochfrequenz-Signals an der Füllgut- Oberfläche zuordbar ist. Denkbar bzw. vorteilhaft ist daher je nach Füllgut-Eigenschaft, den Algorithmus derart zu implementieren bzw. einzulernen, so dass die entsprechende Füllgut-Eigenschaft anhand einer charakteristischen Größe dieses Signal-Maximums, wie insbesondere einem Höhe-zu Breite Verhältnis und/oder einem Asymmetrie-Faktor, bestimmt wird. In general, the respective filling material property can be determined within the scope of the invention either on the basis of the entire measurement signal. However, it is also conceivable to use only those sub-areas of the measurement signal to determine the filling material property that are particularly meaningful for selected filling material properties. Of particular interest in this regard is the area around the signal maximum that can be assigned to the signal reflection of the high-frequency signal on the filling material surface. Depending on the filling material property, it is therefore conceivable or advantageous to implement or teach the algorithm in such a way that the corresponding filling material property is determined based on a characteristic size of this signal maximum, such as in particular a height-to-width ratio and/or an asymmetry factor.
Wie bzw. wo die Auswerte-Einheit technisch realisiert ist, ist im Rahmen der Erfindung nicht fest vorgeschrieben. Im einfachsten Fall kann die Auswerte-Einheit in Form eines eigenständigen und ggf. portablen Mikrocontrollers realisiert sein, welcher direkt am Behälter oder in dessen naher Umgebung angeordnet ist. Außerdem ist es denkbar, dass die Auswerte-Einheit als hardwaretechnischer Bestandteil des Messgerätes ausgelegt ist. Im Gegensatz hierzu kann jedoch auch ein zentraler oder dezentraler Server als Auswerte-Einheit fungieren. Dabei wird im Rahmen der Erfindung unter dem Begriff „Einheit1 prinzipiell jede elektronische Schaltung bzw. Hardware verstanden werden, die für den angedachten Einsatzzweck geeignet ausgelegt ist. Es kann sich also je nach Anforderung um eine Analogschaltung zur Erzeugung bzw. Verarbeitung entsprechender analoger Signale handeln. Es kann sich jedoch bei der „Einheit“ auch um eine Digitalschaltung, wie ein FPGA oder ein Speichermedium in Zusammenwirken mit einem Programm handeln. Dabei ist das Programm ausgelegt, die entsprechenden Verfahrensschritte durchzuführen bzw. die notwendigen Rechenoperationen der jeweiligen Einheit anzuwenden. In diesem Kontext kann sich eine elektronische Einheit aus einer Mehrzahl an vernetzten Speicher-ZRechen-Einheiten zusammensetzen. Um die aktuell relevante Art der Zustands-Änderung zu ermitteln, kann das Mess-System vorzugsweise mit einem Lage- bzw. Beschleunigungs-Sensor ausgestattet werden. Dabei kann der Sensor vorzugsweise als integraler Bestandteil des Messgerätes ausgelegt sein, da das Füllstandsmessgerät am kippbaren am Behälter befestigt ist. How and where the evaluation unit is technically implemented is not strictly prescribed within the scope of the invention. In the simplest case, the evaluation unit can be implemented in the form of an independent and possibly portable microcontroller, which is arranged directly on the container or in its immediate vicinity. It is also conceivable that the evaluation unit is designed as a hardware component of the measuring device. In contrast to this, however, a central or decentralized server can also function as an evaluation unit. In the context of the invention, the term "unit 1" is understood to mean in principle any electronic circuit or hardware that is designed to be suitable for the intended purpose. Depending on the requirements, it can therefore be an analog circuit for generating or processing corresponding analog signals. However, the "unit" can also be a digital circuit, such as an FPGA or a storage medium in conjunction with a program. The program is designed to carry out the corresponding process steps or to apply the necessary computing operations of the respective unit. In this context, an electronic unit can be made up of a plurality of networked storage/computing units. In order to determine the currently relevant type of state change, the measuring system can preferably be equipped with a position or acceleration sensor. The sensor can preferably be designed as an integral part of the measuring device, since the level measuring device is attached to the tiltable container.
Die Erfindung kann prinzipiell auf jegliches laufzeitbasierte Messgerät angewendet werden, welches ein entsprechendes Mess-Signal generiert. Dies umfasst Radar-basierte Messgeräte, die beispielsweise auf dem Pulslaufzeit- oder dem FMCW-Prinzip basieren. Die Hochfrequenz-Einheit des Messgerätes ist in diesem Fall so ausgelegt, um gemäß des FMCW- oder Pulslaufzeit-Verfahrens ein entsprechendes Radar-Signal zu erzeugen bzw. zu einem entsprechenden Mess-Signal zu verarbeiten. Dabei ist es nicht relevant, in welcher Form das Mess-Signal zur Auswertung vorliegt: Je nach Radar-Verfahren kann die Auswerte-Einheit die Füllgut-Eigenschaft anhand eines digitalisierten, gleichgerichteten oder per Fourier-Transformation verarbeiteten Mess-Signals bestimmen bzw. hierauf basierend eingelernt werden. In principle, the invention can be applied to any transit time-based measuring device that generates a corresponding measurement signal. This includes radar-based measuring devices that are based on the pulse transit time or FMCW principle, for example. The high-frequency unit of the measuring device is designed in this case to generate a corresponding radar signal according to the FMCW or pulse transit time method or to process it into a corresponding measurement signal. It is not relevant in what form the measurement signal is available for evaluation: Depending on the radar method, the evaluation unit can determine the filling material properties using a digitized, rectified or Fourier transformed measurement signal or can be taught based on this.
Neben Radar-basierten Messgeräten sind zur Umsetzung der Erfindung außerdem Ultraschall- und TDR-basierte Messgeräte geeignet, wobei TDR-basierte Messgeräte als Antennen-Anordnung im Gegensatz zu freier Hochfrequenz-Signalabstrahlung eine in den Behälter abstehende Mess-Sonde umfassen. Bei dieser Auslegung erzeugt die Hochfrequenz-Einheit des erfindungsgemäßen Messgerätes ein Ultraschall-Signal als Hochfrequenz-Signal, wobei das Mess-Signal entsprechend des TDR-Verfahrens verarbeitet wird. In addition to radar-based measuring devices, ultrasound and TDR-based measuring devices are also suitable for implementing the invention, with TDR-based measuring devices comprising a measuring probe protruding into the container as an antenna arrangement, in contrast to free high-frequency signal radiation. In this design, the high-frequency unit of the measuring device according to the invention generates an ultrasound signal as a high-frequency signal, with the measuring signal being processed according to the TDR method.
Anhand der nachfolgenden Figuren wird die Erfindung näher erläutert. Es zeigt: The invention is explained in more detail using the following figures. It shows:
Fig. 1 : Ein erfindungsgemäßes Mess-System zur Bestimmung des Füll-Volumens an einem kippbaren Behälter, und Fig. 1 : A measuring system according to the invention for determining the filling volume of a tiltable container, and
Fig. 2: unterschiedliche Arten der Zustands-Änderung am Behälter und deren Einfluss auf die Füllgut-Oberfläche. Zum Verständnis der Erfindung ist in Fig. 1 ein kippbarer Behälter 3, wie beispielsweise ein aufrichtbares Zement-Silo gezeigt, wobei sich in dem Behälter 3 ein entsprechendes Füllgut 2 befindet. Um beispielsweise den Befüll- oder Entleerungs-Vorgang zu steuern, ist die Masse des im Behälter 3 befindlichen Füllgutes 2 zu erfassen. Hierzu ist bei der in Fig. 1 gezeigten Ausführungsvariante ein nach dem Laufzeitprinzip arbeitendes Radar- Messgerät 1 derart am Behälter 3 angebracht, dass sich das Messgerät 1 im aufgerichteten Zustand des Behälters 3 in einer festen Einbauhöhe h oberhalb der Behälter-Sole angebracht ist. In diesem Zustand ist das Messgerät 1 so ausgerichtet, dass in Abhängigkeit des implementierten Radar-Verfahrens entsprechende Radar- Signale SHF ungefähr vertikal nach unten in Richtung des Füllgutes 2 ausgesendet werden. Fig. 2: Different types of state changes on the container and their influence on the filling product surface. To understand the invention, Fig. 1 shows a tiltable container 3, such as an erectable cement silo, in which container 3 there is a corresponding filling material 2. In order to control the filling or emptying process, for example, the mass of the filling material 2 in container 3 must be recorded. For this purpose, in the embodiment shown in Fig. 1, a radar measuring device 1 operating according to the time-of-flight principle is attached to container 3 in such a way that, when container 3 is in the erected state, measuring device 1 is attached at a fixed installation height h above the container brine. In this state, measuring device 1 is aligned in such a way that, depending on the radar method implemented, corresponding radar signals SHF are emitted approximately vertically downwards in the direction of filling material 2.
Nach Reflektion an einem entsprechenden Bereich der Füllgut-Oberfläche empfängt das Messgerät 1 die an der Füllgut-Oberfläche reflektierten Radar-Signale RHF nach einer definierten Signallaufzeit t, welche vom Abstand d des Messgerätes 1 zum entsprechenden Punkt bzw. Bereich auf der Füllgut-Oberfläche abhängt. Je nach Messverfahren generiert das Messgerät 1 auf Basis des empfangenen Radar-Signals RHF ein Mess-Signal Rm, welches von der Charakteristik her bei allen Messverfahren gleich ist. After reflection at a corresponding area of the filling material surface, the measuring device 1 receives the radar signals RHF reflected at the filling material surface after a defined signal propagation time t, which depends on the distance d of the measuring device 1 to the corresponding point or area on the filling material surface. Depending on the measuring method, the measuring device 1 generates a measuring signal R m based on the received radar signal RHF, the characteristics of which are the same for all measuring methods.
Im Falle des FMCW-Verfahrens wird das auszusendende Hochfrequenz-Signal SHF mit einer sägezahnförmigen Frequenzänderung erzeugt. Nach Empfang wird das reflektierte Hochfrequenz-Signal RHF mit dem im Messgerät 1 erzeugten Hochfrequenz-Signal SHF signaltechnisch gemischt, wodurch nach anschließender Fouriertransformation das bei FMCW charakteristische Mess-Signal Rm erhalten wird. Sofern im Messgerät 1 das Pulslaufzeit-Verfahren implementiert ist, bildet das Mess-Signal Rm das Empfangs-Signal SHF in zeitgedehnter Form dar, da es durch Unterabtastung und anschließender Gleichrichtung des empfangenen Hochfrequenz-Signals RHF erhalten wird. In the case of the FMCW method, the high-frequency signal SHF to be transmitted is generated with a sawtooth-shaped frequency change. After reception, the reflected high-frequency signal RHF is mixed with the high-frequency signal SHF generated in the measuring device 1, whereby the measurement signal R m characteristic of FMCW is obtained after subsequent Fourier transformation. If the pulse transit time method is implemented in the measuring device 1, the measurement signal R m represents the received signal SHF in time-expanded form, since it is obtained by subsampling and subsequent rectification of the received high-frequency signal RHF.
Wie in Fig. 1 dargestellt ist, weist das Mess-Signal Rm bei derjenigen Signallaufzeit t, die der Reflektion an der Behälter-Oberfläche entspricht, ein Signal-Maximum auf. Dabei ist die Zeit-Achse des Mess-Signals Rm gemäß As shown in Fig. 1, the measurement signal R m has a signal maximum at the signal runtime t that corresponds to the reflection at the container surface. The time axis of the measurement signal R m is according to
2d c — — t äquivalent zum Abstand d, welcher in Strahlrichtung vom Messgerät 1 ausgeht. Die medienabhängige Ausbreitungsgeschwindigkeit c ist hierbei zumindest näherungsweise bekannt. Sowohl im Falle von FMCW, als auch beim Pulslaufzeit-Verfahren wird das Mess-Signal Rm dahingehend ausgewertet, dass das Signal-Maximum und somit dessen korrespondierende Signallaufzeit t ermittelt wird. Durch Ermittlung der Signallaufzeit t bzw. des Abstandes d ist es dem Messgerät 1 bei entsprechender Auslegung möglich, den Füllstandswert L punktuell gemäß d = h — L zu ermitteln, sofern die Einbauhöhe h des Füllstandsmessgerätes 1 über der Behälter- Sole im Füllstandsmessgerät 1 hinterlegt ist. Im Gegensatz zu der in Fig. 1 gezeigten Ausführungsvariante ist es im Rahmen der Erfindung außerdem möglich, anstelle eines Radar-basierten Messverfahrens ein Ultraschall-basiertes Messgerät oder ein Sondenbasiertes Messgerät einzusetzen, welches auf dem TDR- Verfahren („Time Domain Reflectometry“) basiert. 2d c — — t equivalent to the distance d, which extends in the beam direction from the measuring device 1. The media-dependent propagation speed c is known at least approximately. In the case of FMCW as well as in the pulse transit time method, the measuring signal R m is evaluated in such a way that the signal maximum and thus its corresponding signal transit time t is determined. By determining the signal transit time t or the distance d, the measuring device 1 can, with appropriate design, determine the fill level value L at a specific point according to d = h - L, provided that the installation height h of the fill level measuring device 1 above the container brine is stored in the fill level measuring device 1. In contrast to the embodiment shown in Fig. 1, it is also possible within the scope of the invention to use an ultrasound-based measuring device or a probe-based measuring device based on the TDR method (“Time Domain Reflectometry”) instead of a radar-based measuring method.
In der Regel ist das Messgerät 1 über eine geeignete Schnittstelle, etwa „PROFIBL/S“, „HART1, „Wireless HART1, „4-20mA“, „Bluetooth“ oder „Ethernet“ mit einer übergeordneten Einheit 4 wie z. B. einem Prozessleitsystem oder einem dezentralen Server verbunden, wodurch ein entsprechendes Mess-System ausgebildet wird. Über die Schnittstelle kann der Füllstandswert L übermittelt werden. Es kann aber auch der reine Abstandswert d bzw. das reine Mess-Signal Rm übermittelt werden. Vorteilhaft hieran ist, dass die Einbauhöhe h des Füllstandsmessgerätes 1 zur Berechnung des Füllstandswertes L nicht im Messgerät 1 selbst, sondern dezentral hinterlegt bzw. abänderbar sein kann. As a rule, the measuring device 1 is connected to a higher-level unit 4, such as a process control system or a decentralized server, via a suitable interface, such as “PROFIBL/S”, “HART 1 ”, “Wireless HART 1 ” , “4-20mA”, “Bluetooth” or “Ethernet”, thereby creating a corresponding measuring system. The fill level value L can be transmitted via the interface. However, the pure distance value d or the pure measurement signal R m can also be transmitted. The advantage of this is that the installation height h of the fill level measuring device 1 for calculating the fill level value L can be stored or modified in a decentralized manner, rather than in the measuring device 1 itself.
Auf Basis des punktuell ermittelten Füllstandswertes L kann das Messgerät 1 bzw. die übergeordnete Einheit 4 das Volumen an momentan eingelagertem Füllgut 2 bei der in Fig. 1 dargestellten Situation nicht per Linearisierungstabelle ermitteln, da das Füllgut 2 dort Schüttgut-förmig vorliegt und somit keine planare Füllgut-Oberfläche ausgebildet wird. Dabei beschreibt eine Linearisierungstabelle gemäß dem Stand der Technik den Zusammenhang zwischen dem gemessenen Füllstand L und dem eingenommenen Volumen im jeweiligen Behälter-Typ für flüssige Füllgüter 2, die entsprechend planare Oberflächen ausbilden. Based on the fill level value L determined at a specific point, the measuring device 1 or the higher-level unit 4 cannot determine the volume of the currently stored filling material 2 in the situation shown in Fig. 1 using a linearization table, since the filling material 2 is in bulk form and therefore no planar filling material surface is formed. In this case, a linearization table according to the state of the art describes the relationship between the measured fill level L and the volume occupied in the respective container type for liquid filling materials 2, which form correspondingly planar surfaces.
Um daher zusätzlich oder alternativ zum Füllstand L das Füll-Volumen oder andere Füllgut-Eigenschaften zu bestimmen, wird sich erfindungsgemäß zunutze gemacht, dass bei laufzeitbasierten Messverfahren der Verlauf bzw. die Charakteristik des Mess-Signals Rm nicht lediglich vom Füllstand L, sondern zudem von gewissen Material-Eigenschaften des jeweiligen Füllgutes 2 abhängt, wie der Porosität, der Korngröße bzw. Rauigkeit oder dem Dielektrizitätswert. Gegebenenfalls beeinflussen auch die Material-Feuchte und die Dichte des Füllgutes 2 die Charakteristik des Mess-Signals Rm: Die Stärke des reflektierten Hochfrequenz-Signals RHF bzw. vor allem die Amplitude desjenigen Signal-Maximums im Mess-Signal Rm, welches der Reflektion an der Füllgut-Oberfläche zuzuordnen ist, wird neben dem Füllstand L maßgeblich vom Dielektrizitätswert bzw. von der Dichte des Füllgutes 2 beeinflusst. In order to determine the filling volume or other filling material properties in addition to or as an alternative to the filling level L, the invention makes use of the fact that in runtime-based measuring methods the course or characteristic of the measuring signal R m does not only depend on the filling level L, but also on certain material properties of the respective filling material 2, such as the porosity, the grain size or roughness or the dielectric value. The material moisture and the density of the filling material 2 may also influence the characteristics of the measuring signal R m : The strength of the reflected high-frequency signal RHF or, above all, the amplitude of the signal maximum in the measuring signal R m , which can be assigned to the reflection at the filling material surface, is influenced not only by the filling level L but also by the dielectric value or the density of the filling material 2.
Das Höhe- zu Breite-Verhältnis dieses Signal-Maximums sowie das Signal- zu Rausch-Verhältnis („SNR“) insgesamt können auf die Oberflächen-Rauigkeit bzw. eine etwaige Korngröße des Füllgutes 2 zurückgeführt werden. The height-to-width ratio of this signal maximum as well as the overall signal-to-noise ratio (“SNR”) can be attributed to the surface roughness or any grain size of the filling material 2.
Eine etwaige Asymmetrie des Signal-Maximums kann durch eine geneigte (i) bzw. eine kegelförmige (ii) oder kegelförmig vertiefte (iii) Füllgut-Oberfläche bedingt sein. Im Umkehrschluss lässt sich aus einem symmetrischen Signal- Maximum ggf. auf eine eben Füllgut-Oberfläche schließen. Any asymmetry of the signal maximum can be caused by an inclined (i) or a conical (ii) or conically recessed (iii) product surface. Conversely, a symmetrical signal maximum can be used to conclude that the product surface is flat.
Schematisch dargestellt sind diese unterschiedlichen Geometrien (I), (ii), (iii) unebener Füllgut-Oberflächen in Fig. 2. Zurückzuführen sind diese auf korrespondierende Zustands-Änderungen am Behälter 3: These different geometries (I), (ii), (iii) of uneven filling material surfaces are shown schematically in Fig. 2. These are due to corresponding changes in the state of the container 3:
(i) Eine geneigte Oberfläche resultiert beispielsweise durch Aufstellen des Behälters 3, nachdem dieser befüllt wurde. (i) An inclined surface results, for example, from erecting the container 3 after it has been filled.
(ii) Eine kegelförmige Oberfläche resultiert durch Befüllung des Behälters 3, nachdem dieser aufgestellt und/oder entleert wurde. (ii) A conical surface results from filling the container 3 after it has been set up and/or emptied.
(iii) Eine kegelförmig vertiefte Oberfläche resultiert beispielsweise, sofern der Behälter 3 nach dessen Aufstellen entleert wird. (iii) A conical recessed surface results, for example, if the container 3 is emptied after it has been set up.
Zusätzlich kann anhand der Füllgut-Eigenschaft einer ebenen Füllgut-Oberfläche oder im Falle einer unebenen Füllgut-Oberfläche anhand der möglichen Oberflächen-Geometrien (i), (ii), (iii) unter Miteinbezug des punktuellen Füllstandswertes L auf das vom Füllgut 2 im Behälter 3 eingenommene Füll-Volumen geschlossen werden. Für den Fall, dass der Typ des eingelagerten Füllgutes 2 bekannt ist und daher eine homogene Füllgut-Dichte vorausgesetzt werden kann, ist es auf Basis des ermittelten Füll-Volumens darüber hinaus auch möglich, die Masse des im Behälter s befindlichen Füllgutes 2 zu berechnen, wiederum entweder im Füllstandsmessgerät 1 selbst oder in der Auswerte-Einheit 4. In addition, the filling volume occupied by the filling material 2 in the container 3 can be determined based on the filling material properties of a flat filling material surface or, in the case of an uneven filling material surface, based on the possible surface geometries (i), (ii), (iii) taking into account the point filling level value L. In the event that the type of the stored filling material 2 is known and a homogeneous filling material density can therefore be assumed, it is also possible to calculate the mass of the filling material 2 in the container on the basis of the determined filling volume, again either in the level measuring device 1 itself or in the evaluation unit 4.
Genutzt werden können die zuvor beschriebenen Zusammenhänge zwischen der Charakteristik des Mess-Signals Rm und der jeweils korrespondierenden Füllgut- Eigenschaft erfindungsgemäß, indem die Auswerte-Einheit 4 mittels eines entsprechend ausgelegten Algorithmus befähigt wird, die oben aufgeführten Charakteristika aus dem Mess-Signal Rm quantitativ zu ermitteln und hieraus die zugrundeliegende Füllgut- Eigenschaft bzw. die korrespondierende Zustands-Änderung am Behälter 3 zu bestimmen. Da je nach Füllgut-Eigenschaft lediglich ein bestimmter Teilbereich des Mess-Signals Rm zur Bestimmung dieser Füllgut-Eigenschaft relevant ist, kann der Algorithmus zur Vermeidung unnötiger Rechenleistung so ausgelegt werden, dass nur der relevante Teilbereich des Mess-Signals Rm diesbezüglich ausgewertet wird. Wie zuvor beschrieben, betrifft dies für viele mögliche Füllgut-Eigenschaften insbesondere den Teilbereich im Umfeld desjenigen Signal-Maximums im Mess-Signal, welches der Reflektion des Hochfrequenz-Signals SHF an der Füllgut-Oberfläche zuzuordnen ist. The previously described relationships between the characteristics of the measurement signal R m and the corresponding filling material properties can be used according to the invention by enabling the evaluation unit 4 to quantitatively determine the above-mentioned characteristics from the measurement signal R m by means of an appropriately designed algorithm and to use this to determine the underlying filling material properties or the corresponding change in state of the container 3. Since, depending on the filling material properties, only a certain part of the measurement signal R m is relevant for determining this filling material property, the algorithm can be designed to avoid unnecessary computing power so that only the relevant sub-area of the measurement signal R m is evaluated in this regard. As previously described, for many possible filling material properties this particularly affects the sub-area in the vicinity of the signal maximum in the measurement signal which can be assigned to the reflection of the high-frequency signal SHF on the filling material surface.
Besonders geeignet ist es, einen maschinellen Lern-Algorithmus (auch bekannt unter dem Begriff „Machine Learning“) in der Auswerte-Einheit 4 zu implementieren, um die Bestimmung der gewünschten Füllgut-Eigenschaft anhand von Mess-Signale Rm einzulernen. Dabei ist es nicht vorgeschrieben, welche Form des maschinellen Lern- Algorithmus implementiert wird, beispielsweise als künstliches neuronales Netzwerk, bzw. in Form von „Deep Learning. It is particularly suitable to implement a machine learning algorithm (also known under the term “machine learning”) in the evaluation unit 4 in order to learn the determination of the desired filling material property based on measurement signals R m . It is not prescribed which form of the machine learning algorithm is implemented, for example as an artificial neural network or in the form of “deep learning.
Für den Fall, dass in der Auswerte-Einheit 4 ein maschineller Lern-Algorithmus implementiert ist, lässt sich das Mess-System 1 , 4 vorzugsweise unter überwachten Bedingungen einlernen. Hierfür gibt es unterschiedlichste Implementierungsformen, wie beispielsweise „Decision Trees“, „Naive Bayes“, „Artificial Neural Networks“ oder „Support Vector Machine“ . Implementierungsform-übergreifend wird zunächst die zu erfassende Füllgut-Eigenschaft definiert. Hierauf basierend kann das Mess-System 1 , 4 in einer Einlernphase bei jeweils bekanntem Wert der konkreten Füllgut-Eigenschaft zumindest eine Messung durchführen bzw. ein entsprechendes Mess-Signal Rm generieren. Dabei ist es vorteilhaft, wenn die Randbedingungen des Einlernens möglichst denen der späteren Mess-Umgebung entsprechen. Dies betrifft insbesondere den Behälter-Typ sowie das Füllgut 2. If a machine learning algorithm is implemented in the evaluation unit 4, the measuring system 1, 4 can preferably be taught under monitored conditions. There are a wide variety of implementation forms for this, such as "Decision Trees", "Naive Bayes", "Artificial Neural Networks" or "Support Vector Machine". Across all implementation forms, the filling material property to be recorded is first defined. Based on this, the measuring system 1, 4 can carry out at least one measurement or generate a corresponding measurement signal R m in a teaching phase with a known value of the specific filling material property. It is advantageous if the boundary conditions of the teaching correspond as closely as possible to those of the later measuring environment. This applies in particular to the container type and the filling material 2.
Im Anschluss an die jeweilige Messung werden das Mess-Signal Rm und der korrespondierende, bekannte Wert der Füllgut-Eigenschaft einander zugeordnet. Dabei kann die zu erfassende Füllgut-Eigenschaft im späteren, regulären Messbetrieb umso genauer bestimmt werden, je mehr überwachte Messungen in der Einlernphase durchgeführt werden, bzw. bei je mehr unterschiedlichen Werten der Füllgut-Eigenschaft entsprechende Mess-Signale Rm gemessen und zugeordnet werden. Beispielsweise beinhaltet überwachtes Lernen im Falle des im Behälter 3 befindlichen Füll-Volumens als Füllgut-Eigenschaft konkret folgende Verfahrensschritte: Following the respective measurement, the measurement signal R m and the corresponding, known value of the filling material property are assigned to each other. The filling material property to be recorded can be determined more precisely in later, regular measuring operation, the more monitored measurements are carried out in the learning phase, or the more different values of the filling material property are measured and assigned to corresponding measurement signals R m . For example, in the case of the filling volume in container 3 as a filling material property, monitored learning specifically includes the following process steps:
Befüllen des Behälters 3 mit einer bekannten Befüll- bzw. Entleerungs-Rate, so dass das im Behälter s eingelagerte Füll-Volumen an Füllgut 2 für jeden Zeitpunkt der Befüllung/Entleerung bekannt ist, und zeitlich hierauf abgestimmte Messung bzw. Aufzeichnung entsprechender Mess- Signals Rm mit definierter Messrate, so dass zu jedem Mess-Signal Rm das jeweils bekannte Füll-Volumen zugeordnet werden kann. Je höher dabei die Messrate ist, desto besser ist dabei auch das Lernergebnis. Filling the container 3 with a known filling or emptying rate, so that the filling volume of filling material 2 stored in the container s is known for each time of filling/emptying, and measuring or recording the corresponding measuring signal R m at a defined measuring rate at a time coordinated with this, so that the known filling volume can be assigned to each measuring signal R m . The higher the measurement rate, the better the learning result.
Bezugszeichenliste List of reference symbols
1 Messgerät 1 measuring device
2 Füllgut 3 Behälter 2 Filling material 3 Container
4 Auswerte-Einheit 4 Evaluation unit
11 Antennen-Anordnung d Abstand zur Füllgut-Oberfläche h Einbauhöhe über der Behälter-Sole L Füllstand 11 Antenna arrangement d Distance to the filling material surface h Installation height above the container brine L Fill level
RHF Reflektiertes Hochfrequenz-Signal RHF Reflected high frequency signal
Rm Mess-Signal R m measuring signal
SHF Hochfrequenz-Signal i, ii, iii Art der Zustands-Änderung SHF high frequency signal i, ii, iii type of state change

Claims

Patentansprüche Patent claims
1 . Mess-System zur Bestimmung einer Füllgut-Eigenschaft eines Füllgutes (2) in einem Behälter (3), umfassend: 1 . Measuring system for determining a filling material property of a filling material (2) in a container (3), comprising:
Ein Hochfrequenz-basiertes Messgerät (1), mit o einer Antennen-Anordnung (11), mittels welcher Hochfrequenz-Signale (SHF, RHF) gen Füllgut (2) sendbar und nach Reflektion an der Füllgut- Oberfläche empfangbar sind, und o einer Hochfrequenz-Einheit, die ausgelegt ist, A high-frequency-based measuring device (1), with o an antenna arrangement (11) by means of which high-frequency signals (SHF, RHF) can be transmitted to the filling material (2) and can be received after reflection on the filling material surface, and o a high-frequency unit which is designed,
■ die auszusendenden Hochfrequenz-Signale (SHF) ZU erzeugen, und ■ generate the high frequency signals (SHF) to be transmitted, and
■ nach deren Empfang an der Antennen-Anordnung (11 ) jeweils ein entsprechendes Mess-Signal (Rm) aufzuzeichnen, und eine Auswerte-Einheit (4), in welcher ein derartiger Algorithmus implementiert ist, um anhand des Mess-Signals (Rm) zumindest eine Füllgut-Eigenschaft zu bestimmen. ■ to record a corresponding measurement signal (R m ) after reception at the antenna arrangement (11 ), and an evaluation unit (4) in which such an algorithm is implemented in order to determine at least one filling material property based on the measurement signal (R m ).
2. Mess-System nach einem der vorhergehenden Ansprüche, wobei der Algorithmus derart als maschineller Lern-Algorithmus, insbesondere als künstliches neuronales Netzwerk, insbesondere in Form einer tiefen Lernmethode implementiert ist, so dass die Bestimmung der Füllgut-Eigenschaft anhand des Mess-Signals (Rm) einlernbar ist. 2. Measuring system according to one of the preceding claims, wherein the algorithm is implemented as a machine learning algorithm, in particular as an artificial neural network, in particular in the form of a deep learning method, so that the determination of the filling material property can be learned on the basis of the measuring signal (R m ).
3. Mess-System nach Anspruch 1 oder 2, wobei der Algorithmus derart implementiert bzw. einlernbar ist, um als Füllgut-Eigenschaft das Volumen bzw. die Masse des Füllgutes (2), eine Material-Eigenschaft, insbesondere eine Dichte, eine Feuchte, eine Porosität, eine Korngröße bzw. Rauigkeit, und/oder eine Geometrie von zumindest einem Teilbereich der Füllgut-Oberfläche zu bestimmen. 3. Measuring system according to claim 1 or 2, wherein the algorithm is implemented or can be taught in such a way as to determine the volume or mass of the filling material (2), a material property, in particular a density, a moisture content, a porosity, a grain size or roughness, and/or a geometry of at least a partial area of the filling material surface as a filling material property.
4. Mess-System nach einem der vorhergehenden Ansprüche, wobei der Algorithmus derart implementiert bzw. einlernbar ist, um die Füllgut-Eigenschaft anhand einer charakteristischen Größe, insbesondere einem Höhe- zu Breite-Verhältnis und/oder einem Asymmetrie-Faktor eines Signal-Maximums des Mess-Signals (Rm) zu bestimmen. 4. Measuring system according to one of the preceding claims, wherein the algorithm is implemented or can be taught in such a way to determine the filling material property based on a characteristic size, in particular a height to width ratio and/or an asymmetry factor of a signal maximum of the measuring signal (R m ).
5. Mess-System nach einem der vorhergehenden Ansprüche, wobei die Auswerte-Einheit als integraler Bestandteil des Messgerätes (1) ausgelegt ist, oder wobei die Auswerte- Einheit (4) als Bestandteil eines übergeordneten Netzwerkes, insbesondere eines Server- Systems oder eines Prozessleit-Systems, ausgelegt ist. 5. Measuring system according to one of the preceding claims, wherein the evaluation unit is designed as an integral component of the measuring device (1), or wherein the evaluation unit (4) is designed as a component of a higher-level network, in particular a server system or a process control system.
6. Mess-System nach Anspruch einem der Ansprüche 1 bis 5, wobei der Algorithmus derart implementiert bzw. einlernbar ist, um als Geometrie der Füllgut-Oberfläche zumindest zwischen 6. Measuring system according to one of claims 1 to 5, wherein the algorithm is implemented or can be taught in such a way that the geometry of the filling material surface is at least between
(i) einer geneigten Füllgut-Oberfläche, (i) an inclined product surface,
(ii) einer kegelförmigen Füllgut-Oberfläche, (ii) a conical filling surface,
(iii) einer kegelförmig vertieften Füllgut-Oberfläche, und/oder einer glatten bzw. horizontal verlaufenden Füllgut-Oberfläche zu unterscheiden. (iii) a conically recessed filling surface and/or a smooth or horizontal filling surface.
7. Mess-System nach Anspruch 6, wobei die Auswerte-Einheit (4) ausgelegt ist, der jeweils ermittelten Geometrie der Füllgut-Oberfläche als entsprechende, vorhergehende Zustandsänderung am Behälter (3) 7. Measuring system according to claim 6, wherein the evaluation unit (4) is designed to use the respectively determined geometry of the filling material surface as a corresponding, preceding change in state of the container (3)
(i) ein Aufstellen des Behälters (3) nach dessen Befüllen, (i) erecting the container (3) after it has been filled,
(ii) ein Befüllen des Behälters (3) nach dessen Aufstellen bzw. nach dessen Entleeren, und (ii) filling the container (3) after it has been set up or after it has been emptied, and
(iii) ein Entleeren des Behälters (3) nach dessen Aufstellen bzw. nach dessen Befüllung zuzuordnen. (iii) emptying of the container (3) after it has been set up or after it has been filled.
8. Mess-System nach einem der vorhergehenden Ansprüche, wobei die Hochfrequenz- Einheit des Messgerätes (1) ausgelegt ist, als Hochfrequenz-Signal ein Radar-Signal (SHF, RHF) insbesondere gemäß des FMCW- oder Pulslaufzeit-Verfahrens zu erzeugen bzw. zu einem entsprechenden Mess-Signal (Rm) zu verarbeiten. 8. Measuring system according to one of the preceding claims, wherein the high-frequency unit of the measuring device (1) is designed to generate a radar signal (SHF, RHF) as a high-frequency signal, in particular according to the FMCW or pulse transit time method, or to process it to a corresponding measuring signal (R m ).
9. Mess-System nach Anspruch 8, wobei die Auswerte-Einheit (4) zur Bestimmung der Füllgut-Eigenschaft und/oder zum Einlernen das Mess-Signals (Rm) einer Gleichrichtung, einer Digitalisierung, und/oder einer Fourier-Transformation unterzieht, insbesondere sofern die Hochfrequenz-Einheit ausgelegt ist, das Hochfrequenz-Signal (SHF, HF) gemäß des FMCW-Verfahrens zu erstellen bzw. zu verarbeiten. 9. Measuring system according to claim 8, wherein the evaluation unit (4) subjects the measuring signal (R m ) to a rectification, a digitization, and/or a Fourier transformation for determining the filling material property and/or for teaching, in particular if the high-frequency unit is designed to create or process the high-frequency signal (SHF, HF) according to the FMCW method.
10. Mess-System nach einem der Ansprüche 1 bis 7, wobei die Hochfrequenz-Einheit des Messgerätes (1) ausgelegt ist, als Hochfrequenz-Signal ein Ultraschall-Signal (SHF, RHF) insbesondere gemäß des Pulslaufzeit-Verfahrens zu erzeugen bzw. zu einem entsprechenden Mess-Signal (Rm) zu verarbeiten. 10. Measuring system according to one of claims 1 to 7, wherein the high-frequency unit of the measuring device (1) is designed to generate an ultrasonic signal (SHF, RHF) as a high-frequency signal, in particular according to the pulse transit time method, or to process it to a corresponding measuring signal (R m ).
11. Verfahren zum Einlernen des Mess-Systems (1 , 4) gemäß einem der Ansprüche 2 bis 10, folgende Verfahrensschritte umfassend: 11. Method for teaching the measuring system (1, 4) according to one of claims 2 to 10, comprising the following method steps:
Befüllen des Behälters (3) mit einer bekannten Masse, Erzeugung eines Hochfrequenz-Signals (SHF) und Aufzeichnen eines entsprechenden Mess-Signals (Rm) nach Empfang des reflektierten Hochfrequenz-Signals (RHF), und Filling the container (3) with a known mass, Generating a high frequency signal (SHF) and recording a corresponding measurement signal (R m ) after receiving the reflected high frequency signal (RHF), and
Zuordnen des Mess-Signals (Rm) zur bekannten Masse bzw. zum bekannten Volumen, wobei die Verfahrensschritte innerhalb einer Einlernphase für zumindest zwei verschiedene Massen bzw. Volumina wiederholt werden. Assigning the measuring signal (R m ) to the known mass or to the known volume, wherein the process steps are repeated within a learning phase for at least two different masses or volumes.
12. Verfahren zum Einlernen des Mess-Systems gemäß einem der Ansprüche 2 bis 10 mittels per Simulation generierter Mess-Signale (Rm). 12. Method for teaching the measuring system according to one of claims 2 to 10 by means of measurement signals (R m ) generated by simulation.
PCT/EP2024/054135 2023-03-17 2024-02-19 Determining properties of contents WO2024193918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102023106819.9 2023-03-17
DE102023106819.9A DE102023106819A1 (en) 2023-03-17 2023-03-17 Determination of filling material properties

Publications (1)

Publication Number Publication Date
WO2024193918A1 true WO2024193918A1 (en) 2024-09-26

Family

ID=89984871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2024/054135 WO2024193918A1 (en) 2023-03-17 2024-02-19 Determining properties of contents

Country Status (2)

Country Link
DE (1) DE102023106819A1 (en)
WO (1) WO2024193918A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157894A (en) * 1997-12-23 2000-12-05 Simmonds Precision Products, Inc. Liquid gauging using sensor fusion and data fusion
DE102013108490A1 (en) 2013-08-07 2015-02-12 Endress + Hauser Gmbh + Co. Kg Dispersion correction for FMCW radar in a tube
DE102020134379A1 (en) * 2020-12-21 2022-06-23 Endress+Hauser SE+Co. KG conductivity measurement
DE102021107744A1 (en) * 2021-03-26 2022-09-29 Vega Grieshaber Kg gauge
DE102021114169A1 (en) * 2021-06-01 2022-12-01 Endress+Hauser SE+Co. KG Filling volume determination in tipping containers
DE102021115871A1 (en) * 2021-06-18 2022-12-22 Endress+Hauser SE+Co. KG boundary layer detection

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4223346C2 (en) 1992-07-16 1996-05-02 Grieshaber Vega Kg Arrangement and method for non-contact level measurement
DE19541459A1 (en) 1995-11-07 1997-05-15 Siemens Ag Method for determining the direction and distance of a measurement object with an ultrasonic transducer
US6577960B1 (en) 2000-07-13 2003-06-10 Simmonds Precision Products, Inc. Liquid gauging apparatus using a time delay neural network
HUE031382T2 (en) 2008-05-27 2017-07-28 Grieshaber Vega Kg Evaluation of an echo shape of filling level sensors
CN103499374B (en) 2013-09-05 2016-06-15 江苏大学 A kind of ultrasound wave dynamic liquid level detection method based on neutral net and system
US11494930B2 (en) 2019-06-17 2022-11-08 SafeAI, Inc. Techniques for volumetric estimation
AT523436B1 (en) 2020-05-20 2021-08-15 Rosenberger Telematics Gmbh Method for determining the amount of bulk material in a standing container
US20230280286A1 (en) 2020-08-20 2023-09-07 Agco Corporation Stored grain inventory management neural network
DE102020129321A1 (en) 2020-11-06 2022-05-12 Vega Grieshaber Kg Measuring system and method for determining the flow behavior of a filling
US20240183799A1 (en) 2021-03-22 2024-06-06 Gsi Electronique Inc Resonance-Based Imaging in Grain Bins
DE102022200917A1 (en) 2022-01-27 2023-07-27 Vega Grieshaber Kg Level gauge with acoustic sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157894A (en) * 1997-12-23 2000-12-05 Simmonds Precision Products, Inc. Liquid gauging using sensor fusion and data fusion
DE102013108490A1 (en) 2013-08-07 2015-02-12 Endress + Hauser Gmbh + Co. Kg Dispersion correction for FMCW radar in a tube
DE102020134379A1 (en) * 2020-12-21 2022-06-23 Endress+Hauser SE+Co. KG conductivity measurement
DE102021107744A1 (en) * 2021-03-26 2022-09-29 Vega Grieshaber Kg gauge
DE102021114169A1 (en) * 2021-06-01 2022-12-01 Endress+Hauser SE+Co. KG Filling volume determination in tipping containers
DE102021115871A1 (en) * 2021-06-18 2022-12-22 Endress+Hauser SE+Co. KG boundary layer detection

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DUYSAK HUSEYIN ET AL: "Determination of the Amount of Grain in Silos With Deep Learning Methods Based on Radar Spectrogram Data", IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, IEEE, USA, vol. 70, 3 June 2021 (2021-06-03), pages 1 - 10, XP011862626, ISSN: 0018-9456, [retrieved on 20210622], DOI: 10.1109/TIM.2021.3085939 *
DUYSAK HUSEYIN ET AL: "Machine learning based quantity measurement method for grain silos", MEASUREMENT, INSTITUTE OF MEASUREMENT AND CONTROL. LONDON, GB, vol. 152, 30 November 2019 (2019-11-30), XP086004382, ISSN: 0263-2241, [retrieved on 20191130], DOI: 10.1016/J.MEASUREMENT.2019.107279 *

Also Published As

Publication number Publication date
DE102023106819A1 (en) 2024-09-19

Similar Documents

Publication Publication Date Title
DE4223346C2 (en) Arrangement and method for non-contact level measurement
WO2011076478A2 (en) Method for determining and monitoring the level of a medium in a container according to a runtime measurement method
DE102012003373B4 (en) Method for monitoring and method for operating a working according to the radar principle level measuring system and corresponding level measuring system
EP2527801B1 (en) Method and device for determining media and container characteristics
EP3619507B1 (en) Method for determining and/or monitoring the fill level
WO2013182418A1 (en) Method for measuring fill-level in accordance with the delay principle
DE102007042042A1 (en) Method for determining and monitoring the level of a medium in a container according to a transit time measurement method
WO2007065469A1 (en) Method for evaluating and correcting measurement signals of a filling level measurement instrument operating according to the transit time measurement method
EP2652465A1 (en) Determination of media characteristics during filling level measurement
WO2024193918A1 (en) Determining properties of contents
DE102021114169A1 (en) Filling volume determination in tipping containers
EP2739946B1 (en) Linear relationship between tracks
EP3695197B1 (en) Method for determining the filling level of a product contained in a container
WO2024165338A1 (en) Fill volume determination for tiltable containers
EP3746753B1 (en) Method for detecting potential faulty states on an fmcw-based filling level measuring apparatus
DE102021115871A1 (en) boundary layer detection
DE102020206108A1 (en) Level measuring arrangement for determining a level or volume of a product in a mobile container
WO2019233704A1 (en) Radar-based filling level measurement device
DE102018119976A1 (en) level meter
EP3894806B1 (en) Method of level measurement and radar-based level gauge
EP3887777B1 (en) Method for measuring a filling level
WO2024165339A1 (en) Method for defining a filling level measurement range
EP4189337A1 (en) Method for distributed determination of a fill level or limit level
DE102021115874A1 (en) level measurement
EP4441475A1 (en) Fill level measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24706401

Country of ref document: EP

Kind code of ref document: A1