[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024190249A1 - Inkjet head and inkjet recording device - Google Patents

Inkjet head and inkjet recording device Download PDF

Info

Publication number
WO2024190249A1
WO2024190249A1 PCT/JP2024/005150 JP2024005150W WO2024190249A1 WO 2024190249 A1 WO2024190249 A1 WO 2024190249A1 JP 2024005150 W JP2024005150 W JP 2024005150W WO 2024190249 A1 WO2024190249 A1 WO 2024190249A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
ink
inkjet head
inkjet
flow path
Prior art date
Application number
PCT/JP2024/005150
Other languages
French (fr)
Japanese (ja)
Inventor
洋明 香西
晃久 山田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2024190249A1 publication Critical patent/WO2024190249A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling

Definitions

  • the present invention relates to an inkjet head and an inkjet recording device.
  • an inkjet recording device that ejects ink droplets onto the recording surface of a recording medium to record an image.
  • the inkjet recording device ejects ink droplets from the nozzles of an inkjet head at appropriate timing.
  • Patent Document 1 describes an inkjet recording device that ejects UV ink.
  • UV ink is a phase-transition ink that undergoes a reversible sol-gel phase transition depending on the temperature.
  • UV ink is in a gel state, i.e., has high viscosity. Therefore, the invention of Patent Document 1 uses a heater to heat the UV ink to make it in a sol state. This allows the invention of Patent Document 1 to eject UV ink efficiently.
  • phase-change ink changes with the phase change.
  • This change causes physical distortion at the bonded parts between the components that make up the inkjet head.
  • the deterioration of adhesion due to this distortion may cause the bonded parts between the components to peel off.
  • This risk is even greater when the phase-change ink is a wax ink, which has a large volumetric shrinkage rate with temperature changes.
  • the present invention was made in consideration of these circumstances. Its purpose is to provide an inkjet head and inkjet recording device that are highly durable against repeated cold and hot cycles.
  • An inkjet head including a head chip having a nozzle formed therein for ejecting ink that undergoes a reversible phase transition at a phase transition temperature, a cover member that accommodates the head chip, a common ink chamber that supplies ink to the head chip, and a heater that heats the ink from outside the common ink chamber;
  • the cover member comprises a first member having an exposure through hole for exposing a nozzle opening surface of the head chip, and a second member connected to a lower surface of the first member and covering a side surface of the head chip and the common ink chamber,
  • the first member and the second member are connected to each other with an adhesive having a Young's modulus after hardening of 0.5 GPa or more and 3 GPa or less.
  • the present invention as set forth in claim 2 is the inkjet head as set forth in claim 1,
  • the adhesive is an epoxy resin adhesive.
  • the present invention as set forth in claim 3 is the ink jet head as set forth in claim 2,
  • the adhesive contains hollow particles having an average particle size of 10 ⁇ m or more and 70 ⁇ m or less.
  • a fourth aspect of the present invention provides the inkjet head according to the third aspect,
  • the hollow particles are contained in the adhesive at a volume ratio of 45% to 85%.
  • the invention according to claim 5 is the inkjet head according to any one of claims 1 to 4, A primer layer is provided between the adhesive and the first member.
  • a sixth aspect of the present invention provides the ink-jet head according to the fifth aspect,
  • the primer layer has a thickness of 0.1 ⁇ m or more.
  • the present invention as set forth in claim 7 is the inkjet head as set forth in any one of claims 1 to 4,
  • the adhesive that connects the first member and the second member is in contact with the ink.
  • the invention according to claim 8 is the inkjet head according to any one of claims 1 to 4,
  • the heater heats the ink to a temperature of 60° C. or higher and 120° C. or lower.
  • the present invention according to claim 9 is an inkjet recording apparatus, The inkjet head according to claim 1 .
  • the present invention improves durability against repeated cooling and heating.
  • FIG. 1 is a perspective view of an inkjet recording apparatus.
  • FIG. 2 is a bottom view of the head unit.
  • FIG. 2 is a perspective view of an inkjet head.
  • FIG. 2 is an exploded perspective view of a main part of the inkjet head.
  • FIG. 2 is an enlarged cross-sectional view of a portion of the inkjet head including a head chip.
  • 1 is a graph showing the measurement results of Example 1 of Test 1.
  • 1 is a graph showing the measurement results of Comparative Example 1 of Test 1.
  • 13 is a graph showing the measurement results of Test 3.
  • FIG. 1 is a schematic diagram of an inkjet recording apparatus 1.
  • the inkjet recording apparatus 1 includes a transport section 2 and a head unit 3.
  • the transport unit 2 includes two transport rollers 2a and 2b that rotate in the Y direction (transport direction) around a rotation axis extending in the X direction in Fig. 1.
  • the transport unit 2 also includes a ring-shaped transport belt 2c.
  • the inner side of the conveyor belt 2c is supported by conveyor rollers 2a and 2b.
  • the recording medium M is placed on the conveyor surface of the conveyor belt 2c.
  • the conveyor rollers 2a and 2b rotate and move in the Y direction in response to the operation of a conveyor motor (not shown). As a result, the conveyor belt 2c conveys the recording medium M in the Y direction.
  • the recording medium M is, for example, a sheet of paper cut to a certain size.
  • the recording medium M is fed onto the conveyor belt 2c by a paper feeder (not shown).
  • Ink is ejected from the head unit 3 onto the recording medium M to record an image, and the recording medium M is then discharged to a predetermined paper discharge section.
  • a continuous roll of paper may be used as the recording medium M.
  • the recording medium M may also be a cloth or a sheet-like resin. In this way, the recording medium M may be any medium as long as it is capable of fixing the ink that has landed on its surface.
  • the head unit 3 records an image on the recording medium M transported by the transport unit 2.
  • the head unit 3 ejects ink at appropriate timing based on image data to record an image.
  • the inkjet recording device 1 of this embodiment includes four head units 3 corresponding to the four colors of ink, yellow (Y), magenta (M), cyan (C), and black (K).
  • the four head units 3 are arranged at predetermined intervals in the order of colors YMCK from the upstream side in the transport direction of the recording medium M.
  • the number of head units 3 may be three or less, or five or more.
  • the ink ejected from the head unit 3 is a phase-transition ink that undergoes a reversible phase transition between gel and sol, or between solid and liquid.
  • the phase-transition ink is heated to a temperature equal to or higher than the phase transition temperature by the heater 105 (see FIG. 5) and ejected in liquid form.
  • the phase-transition ink solidifies by exposure to energy rays such as ultraviolet rays or by natural cooling.
  • Specific examples of phase-transition ink include solder resist ink, UV ink, and wax ink.
  • [Inkjet head] 2 is a plan view of one head unit 3 as viewed from the side facing the transport surface of the transport belt 2c, i.e., from the Z direction perpendicular to the X and Y directions.
  • the head unit 3 includes a plate-shaped base 3a and a plurality of inkjet heads 100.
  • the inkjet heads 100 are fitted and fixed in the through holes of the base 3a with the surface on which the openings of the nozzles 111 are provided being exposed from the through holes of the base 3a in the -Z direction.
  • a plurality of nozzles 111 are arranged at equal intervals in the X direction.
  • Each inkjet head 100 has a nozzle row which is a row of nozzles 111 arranged one-dimensionally at equal intervals in the X direction.
  • the inkjet head 100 may have a plurality of nozzle rows. In this case, the nozzle rows are arranged such that the positions of the nozzles 111 in the X direction are shifted from each other so that they do not overlap with each other.
  • the multiple inkjet heads 100 are arranged in a staggered pattern so that the X-direction arrangement ranges of the nozzles 111 are continuous.
  • the X-direction arrangement range of the nozzles 111 in the head unit 3 covers the X-direction width of an image recordable area of the recording medium M transported by the transport belt 2c.
  • the head unit 3 is fixed in position during image recording, and ejects ink to each position at a predetermined interval (interval in the transport direction) in response to the transport of the recording medium M.
  • the inkjet recording device 1 records an image by a single pass method.
  • FIG. 3 is a perspective view of one ink-jet head 100.
  • the inkjet head 100 includes an exterior member 101 and a cover member 102.
  • the exterior member 101 is fitted into the cover member 102 at its bottom end.
  • the main components of the inkjet head 100 are housed inside the exterior member 101 and the cover member 102.
  • the cover member 102 is provided with an inlet 103a through which ink is supplied from the outside, and outlets 103b and 103c through which ink is discharged to the outside.
  • the cover member 102 is also provided with a plurality of mounting holes 104 for mounting the inkjet head 100 to the base 3a of the head unit 3.
  • Figure 4 is an exploded perspective view of the main parts of one inkjet head 100.
  • each component is drawn so that the nozzle opening surface 112 of the inkjet head 100 faces upward, i.e., the top and bottom are inverted from Figure 2.
  • the surface on the -Z side of each substrate is also referred to as the top surface, and the surface on the +Z side is also referred to as the bottom surface.
  • Figure 4 shows the main components of the inkjet head 100 that are housed inside the cover member 102.
  • Figure 4 shows a head chip 10 having a nozzle substrate 11, a flow path spacer substrate 12 (flow path substrate), and a pressure chamber substrate 13.
  • Figure 4 also shows a wiring substrate 14 fixed to the head chip 10, and an FPC 20 (Flexible Printed Circuit) electrically connected to the wiring substrate 14.
  • FPC 20 Flexible Printed Circuit
  • the head chip 10 has a structure in which a nozzle substrate 11, a flow path spacer substrate 12, and a pressure chamber substrate 13 are stacked.
  • the nozzle substrate 11, the flow path spacer substrate 12, the pressure chamber substrate 13, and the wiring substrate 14 are all plate-like members that are approximately rectangular prism-shaped and elongated in the X direction.
  • the nozzle substrate 11 is a silicon substrate on which nozzles 111, which are holes penetrating in the Z direction, are provided in a row. When viewed from the Z direction, each nozzle 111 is provided at a position overlapping with a through-flow path 122 of an ink flow path 121 (described later) of the flow path spacer substrate 12.
  • the planar shape of the nozzle substrate 11 is substantially the same as those of the flow path spacer substrate 12 and the pressure chamber substrate 13.
  • the surface of the nozzle substrate 11 opposite to the flow path spacer substrate 12 forms a nozzle opening surface 112 of the inkjet head 100.
  • the thickness of the nozzle substrate 11 is, for example, about several tens of ⁇ m to several hundreds of ⁇ m.
  • the flow channel spacer substrate 12 is a rectangular parallelepiped plate-like member having approximately the same size as the pressure chamber substrate 13 in a plan view.
  • the flow channel spacer substrate 12 is bonded (fixed) to the upper surface of the pressure chamber substrate 13.
  • the flow channel spacer substrate 12 in this embodiment is made of a silicon substrate.
  • the thickness of the flow channel spacer substrate 12 is not particularly limited, but is approximately several hundred ⁇ m.
  • the ink flow path 121 provided in the flow path spacer substrate 12 has a through flow path 122 and an individual ink discharge flow path 123.
  • the through flow passage 122 is a flow passage that penetrates the flow passage spacer substrate 12 at a position that overlaps with the position where the pressure chamber 131 described below is formed when viewed from the Z direction.
  • the cross-sectional shape of the through flow passage 122 parallel to the XY plane is a rectangle that is approximately the same as the cross-sectional shape of the pressure chamber 131.
  • the opening of the through flow passage 122 on the pressure chamber substrate 13 side is connected to the pressure chamber 131.
  • the opening of the through flow passage 122 on the nozzle substrate 11 side is connected to the nozzle 111.
  • the individual ink discharge flow path 123 is a flow path branched from the through flow path 122.
  • the individual ink discharge flow path 123 has a horizontal individual discharge flow path 123a and a vertical individual discharge flow path 123b.
  • the horizontal individual discharge flow path 123a is a pair of groove-shaped flow paths each extending in the Y direction along the surface of the flow path spacer substrate 12 from the opening on the nozzle substrate 11 side of the through flow path 122.
  • the vertical individual discharge flow path 123b is a flow path provided penetrating the flow path spacer substrate 12 from the end of the horizontal individual discharge flow path 123a.
  • the opening on the pressure chamber substrate 13 side of the vertical individual discharge flow path 123b is connected to the horizontal common discharge flow path 132a of the common ink discharge flow path 132 described later. Therefore, the individual ink discharge flow path 123 guides the ink that has flowed into the horizontal individual discharge flow path 123a from the through flow path 122 to the common ink discharge flow path 132 via the vertical individual discharge flow path 123b.
  • an ink discharge flow path is formed by the individual ink discharge flow paths 123 provided in the flow path spacer substrate 12 and the common ink discharge flow path 132 provided in the pressure chamber substrate 13. This ink discharge flow path discharges the ink in the pressure chamber 131 that has not been ejected from the nozzle 111.
  • the pressure chamber substrate 13 is made of a ceramic piezoelectric material.
  • a piezoelectric material is a member that deforms in response to the application of a voltage. Examples of the piezoelectric material include PZT (lead zirconate titanate), lithium niobate, barium titanate, lead titanate, and lead metaniobate.
  • the pressure chambers 131 of the pressure chamber substrate 13 are through-holes provided in positions of the pressure chamber substrate 13 that overlap with the nozzles 111 when viewed from the Z direction.
  • a cross section of the pressure chambers 131 along the XY plane forms a rectangle whose length is in the Y direction.
  • a plurality of pressure chambers 131 are arranged in a row along the X direction. Ink is supplied to each pressure chamber 131 via an ink supply port 141 (described later) of the wiring substrate 14.
  • Each pressure chamber 131 also communicates with the nozzle 111 via an ink flow path 121 of the flow path spacer substrate 12.
  • Each pressure chamber 131 is separated from the other by a piezoelectric partition wall, and a drive electrode is provided on the inner wall surface of the partition wall.
  • the partition wall repeatedly displaces in response to a drive signal applied to the drive electrode. The pressure of the ink in the pressure chamber 131 then fluctuates, causing the ink to be ejected from the nozzle 111.
  • a common ink discharge flow path 132 is provided in the pressure chamber substrate 13.
  • the common ink discharge flow paths 132 are provided at positions sandwiching the multiple pressure chambers 131 in the Y direction. A portion of the ink that is supplied from the pressure chambers 131 to the ink flow paths 121 of the flow path spacer substrate 12 and that is not ejected from the nozzles 111 returns to the common ink discharge flow path 132.
  • the common ink discharge flow path 132 includes a horizontal common discharge flow path 132a and a vertical common discharge flow path 132b.
  • the horizontal common discharge flow path 132a is a groove-shaped flow path that extends in the X direction along the surface of the pressure chamber substrate 13 on the flow path spacer substrate 12 side near the Y direction end.
  • the vertical common discharge flow path 132b is connected to the horizontal common discharge flow path 132a at the end on the +X direction side of the horizontal common discharge flow path 132a, and is a flow path that penetrates the pressure chamber substrate 13 in the Z direction.
  • the ink that returns to the horizontal common discharge flow path 132a passes through the vertical common discharge flow path 132b and the discharge hole 142 provided in the wiring substrate 14. The ink is then discharged to the outside of the inkjet head 100 from the outlet 103b or the outlet 103c.
  • the wiring board 14 is a plate-like member for connecting wiring that applies a driving voltage from a driving circuit (not shown) to each driving electrode of the pressure chamber substrate 13.
  • the wiring board 14 is a substrate made of, for example, glass, ceramics, silicon, plastic, etc. From the viewpoint of ensuring a bonding area with the pressure chamber substrate 13, the wiring board 14 is preferably a flat substrate having an area larger than the area of the pressure chamber substrate 13.
  • the wiring substrate 14 is provided with a plurality of ink supply ports 141 at positions overlapping with the plurality of pressure chambers 131 of the pressure chamber substrate 13 when viewed from the Z direction.
  • the wiring substrate 14 is also provided with a pair of discharge holes 142 at positions overlapping with the pair of vertical common discharge channels 132b.
  • the bonding surface of the wiring substrate 14 to the pressure chamber substrate 13 is also provided with a plurality of wirings 143 extending from the ends of the plurality of ink supply ports 141 toward the ends of the wiring substrate 14.
  • a common ink chamber 15 (see FIG. 5) is connected to the lower surface of the wiring substrate 14. Ink is supplied from the common ink chamber 15 to the ink supply port 141.
  • the pressure chamber substrate 13 and the wiring substrate 14 are bonded together via a conductive adhesive containing conductive particles. This electrically connects the connection electrode on the surface of the pressure chamber substrate 13, which is electrically connected to the drive electrode, and the wiring 143 on the wiring substrate 14, electrically connected together via the conductive particles.
  • the FPC 20 is connected to the end of the wiring board 14 where the wiring 143 is provided, via, for example, an ACF (Anisotropic Conductive Film).
  • ACF Adisotropic Conductive Film
  • FIG. 5 is a schematic cross-sectional view of a portion of the inkjet head 100 that includes the head chip 10.
  • FIG. 5 shows a cross section of the inkjet head 100 perpendicular to the X direction.
  • cover member 102 is provided so as to cover a part of head chip 10 while exposing nozzle opening surface 112 of nozzle substrate 11 of head chip 10. Cover member 102 is adhered to head chip 10 with adhesive 80 interposed therebetween.
  • the cover member 102 has a top plate (first member) 1021 , a housing (second member) 1022 , and a sealing plate 1023 .
  • the top plate 1021 is a rectangular plate-like member in which a recess forming surface 1021a, which is its upper surface, has a shape recessed in the center so as to have a recess R.
  • the top plate 1021 is also provided with an exposed through hole 1021b having an opening at the deepest part of the recess R.
  • the nozzle substrate 11 is attached to the exposed through hole 1021b via an adhesive 80.
  • the head chip 10 may be attached to the top plate 1021 so that the nozzle opening surface 112 protrudes within the range of the recess R. With this structure, it becomes easier to bring the wiping member into contact with the nozzle opening surface 112 when wiping the recess forming surface 1021a of the top plate 1021 and the nozzle opening surface 112 with the wiping member.
  • the housing 1022 is a plate-like member that covers the sides of the head chip 10.
  • the housing 1022 is connected to the lower surface of the top plate 1021 via an adhesive 80.
  • the housing 1022 is made of, for example, aluminum.
  • the sealing plate 1023 is a plate-shaped member extending along the side surfaces of the flow channel spacer substrate 12 and the pressure chamber substrate 13 of the head chip 10.
  • the sealing plate 1023 is connected to the surface of the top plate 1021 on the +Z direction side.
  • the sealing plate 1023 holds the head chip 10 in the housing 1022.
  • the sealing plate 1023 may be a separate member from the top plate 1021.
  • the sealing plate 1023 may also be provided integrally with the top plate 1021.
  • the heater 105 is a member that heats ink inside the housing 1022 and outside the head chip 10.
  • the heater 105 is, for example, an electric heating wire or a heat transfer member.
  • the heater 105 covers each member that constitutes the common ink chamber 15.
  • the heater 105 is attached to the outer surface of each member that constitutes the common ink chamber 15.
  • the ink in the head chip 10 is heated and kept at a predetermined temperature or higher by the heater 105. Specifically, the heater 105 heats the ink to a temperature of 60° C. or higher and 120° C. or lower. This causes the phase-change ink to be sufficiently liquid.
  • a top plate 1021, a housing 1022 and a head chip 10 are bonded together with an adhesive 80 to form an integrated unit.
  • the lower surface of the top plate 1021 and the housing 1022 are bonded with an adhesive 80.
  • the housing 1022 and the inlet 103a and the outlets 103b and 103c are bonded with an adhesive 80.
  • the side portion of the top plate 1021 and the side portion of the head chip 10 are bonded with an adhesive 80.
  • the adhesive 80 of the present invention bonds the various components that make up the inkjet head 100 together.
  • the adhesive 80 not only functions as a simple adhesive member, but also as a sealing member that prevents ink from flowing in from outside the cover member 102.
  • the adhesive 80 used is one that is resistant to ink, i.e., solvent resistant. In other words, it is preferable that the adhesive 80 be hard and have a high Tg (glass transition point). Specifically, it is preferable that the adhesive 80 have a Tg of 80°C or higher.
  • adhesives 80 include epoxy adhesives, phenol adhesives, polyurethane-isocyanate adhesives, and acrylic ester adhesives.
  • Epoxy adhesives consist of a combination of an epoxy resin (base) and a curing agent.
  • base agents include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triazine skeleton epoxy resin, and glycidyl amine type epoxy resin.
  • curing agents include amine type curing agents, polyaminoamide type curing agents, acid anhydride type curing agents, dicyandiamide type curing agents, polymercaptan type curing agents, and imidazole type curing agents.
  • the adhesive 80 used has a Young's modulus of 0.5 GPa or more and 3 GPa or less after curing.
  • the Young's modulus is measured by evaluation using the Plastics - Tensile Properties Test Method (JIS K7161-1994).
  • JIS K7161-1994 the Plastics - Tensile Properties Test Method
  • the adhesive 80 has suitable elasticity.
  • mechanical stress can be uniformly distributed, and mechanical strength against bending and impact can be increased.
  • the adhesive 80 can then absorb thermal stress while maintaining its adhesive force. This makes it possible to suppress peeling between components in the inkjet recording device 1, even when the temperature of the phase-change ink is returned to room temperature.
  • epoxy adhesives with a Young's modulus of 3 GPa or less after curing are rare. Therefore, when using epoxy adhesives, it is necessary to reduce the Young's modulus after curing.
  • One method for reducing the Young's modulus of the cured adhesive 80 to 3 GPa or less is to add balloon-shaped hollow particles containing gas. When hollow particles are added to the adhesive 80, the density of the adhesive 80 decreases, and the Young's modulus decreases.
  • balloon-like refers to a core/shell type microcapsule with gas enclosed inside the shell.
  • the hollow particles that are preferably used are generally called microballoons.
  • microballoons are used that contain ethylene gas inside a rubber material with a thickness of 0.1 ⁇ m or less and are made spherical by heating and expanding them.
  • polymer hollow microsphere composites (Matsumoto Microsphere MFL series, manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) are used.
  • hollow silica particles Hipressica
  • the average particle diameter of the hollow particles is 10 ⁇ m or more and 70 ⁇ m or less. If the average particle diameter is less than 10 ⁇ m, the stress relaxation effect of the hollow particles is not effectively expressed.
  • the thickness of the adhesive 80 that bonds the side portion of the top plate 1021 and the side portion of the head chip 10 is 50 ⁇ m to 100 ⁇ m. Therefore, if the average particle diameter of the hollow particles is more than 70 ⁇ m, the adhesive 80 will not have solvent resistance at the joint, which is not preferable.
  • the average particle diameter of the hollow particles is 10 ⁇ m or more and 70 ⁇ m or less, the adhesive 80 will have a stress relaxation effect without significantly reducing the sealing performance at the joint. In particular, it is more preferable that the average particle diameter of the hollow particles is 10 ⁇ m to 30 ⁇ m.
  • the mixing ratio of hollow particles in adhesive 80 is preferably 45% to 85% by volume relative to the total amount of adhesive 80. If the volume ratio of hollow particles to adhesive 80 is less than 45%, the Young's modulus of adhesive 80 does not decrease, and thermal stress cannot be absorbed, which is not preferable. Also, if the volume ratio of hollow particles to adhesive 80 is more than 85%, mixing with adhesive 80 becomes incomplete, and adhesive 80 loses solvent resistance, which is not preferable. On the other hand, if the mixing ratio of hollow particles is 45% or more and 85% or less by volume relative to the total amount of adhesive 80, adhesive 80 has a stress relaxation effect and solvent resistance.
  • the Young's modulus of the adhesive 80 may be set to 0.5 GPa or more and 3 GPa or less by adding acrylic rubber particles that contain an elastic polymer mainly composed of acrylic ester.
  • the method for setting the Young's modulus of the adhesive 80 to 0.5 GPa or more and 3 GPa or less is not particularly limited, and any known method may be used as appropriate.
  • Primer layer 90 As shown in FIG. 5, it is preferable to provide a primer layer 90 between the adhesive 80 and the top plate 1021 .
  • the top plate 1021 is made of metal and has low surface tension, so that the adhesive 80 has low adhesion to it. Therefore, by providing a primer layer 90 on the surface of the top plate 1021, the adhesion between the adhesive 80 and the top plate 1021 can be improved.
  • the primer layer 90 is not particularly limited as long as it is transparent and has a large amount of hydroxyl groups on the surface.
  • Orgatix organotitanium compound (TA-21, manufactured by Matsumoto Fine Chemical Co., Ltd.) is used for the primer layer 90.
  • Orgatix organotitanium compound contains metal atoms or M-OH groups (alkoxide), and forms an amorphous (non-crystallized) titanium oxide film by hydrolysis caused by heat treatment. These then bond with the MOM groups contained in the top plate 1021 or form covalent bonds or hydrogen bonds with the M-OH groups, improving the adhesion between the primer layer 90 and the top plate 1021.
  • the primer layer 90 can be formed by a vacuum film formation method, mainly a sputtering method, or a sol-gel method.
  • a vacuum film formation method mainly a sputtering method, or a sol-gel method.
  • the primer layer 90 becomes a thin film that may crack, making it difficult to obtain the desired characteristics.
  • the primer layer 90 becomes a thick film with a thickness of 0.1 ⁇ m or more, reducing the possibility of cracking, making it easier to obtain the desired characteristics.
  • adhesive A is adhesive 80 containing microballoons, which has a Young's modulus of about 2.6 GPa when cured at 60° C. for 6 hours.
  • Adhesive B is an adhesive not containing microballoons, which has a Young's modulus of about 5.41 GPa when cured at 60° C. for 6 hours.
  • Example 1 and Comparative Example 1 are shown in Table II.
  • Example 1 and Comparative Example 1 was peeled off so that the PI was folded back by 90°.
  • the peel strength of each bonded object was then measured three times using a tensile tester (Strograph, manufactured by Toyo Seiki Seisakusho).
  • Figure 6 is a graph showing the measurement results for Example 1.
  • Figure 7 is a graph showing the measurement results for Comparative Example 1.
  • the horizontal axis shows the stroke (mm).
  • the vertical axis shows the peel strength (N/10 mm).
  • the peel strength of Example 1, which was bonded with adhesive A containing microballoons was 5.7 N/10 mm on average. The cohesive failure rate was confirmed visually and was about 90%.
  • the peel strength of Comparative Example 1, which was bonded with adhesive B not containing microballoons was 2.1 N/10 mm on average. The cohesive failure rate was confirmed visually and was 10% or less, indicating interfacial peeling. In this way, the use of adhesive 80 in which the elastic modulus after hardening is reduced by adding microballoons reduces stress and increases peel strength.
  • Example 2-8 and Comparative Example 2-5 were subjected to Tests 2-1 and 2-2 described below.
  • Test 2-1 Heat cycle test
  • the inkjet heads 100 of Example 2-8 and Comparative Example 2-5 were placed in a thermostatic chamber at 100° C. for 1 hour and then placed in a thermostatic chamber at ⁇ 20° C. for 1 hour, and this cycle was repeated 10 times. Thereafter, the inkjet heads 100 of Example 2-8 and Comparative Example 2-5 were checked for the presence or absence of sealing leakage at the joints. Specifically, the ink flow path 121 was depressurized to 0.1 atm for 10 seconds, and air leakage was measured.
  • the evaluation criteria for Test 2-1 were as follows. A: There was no air leakage. B: Air leakage is 0.2 ml or less. C: Air leakage exceeds 0.2 ml.
  • Test 2-2 Solvent-resistant ink characteristic test
  • the inkjet heads 100 of Example 2-8 and Comparative Example 2-5 were immersed in a test liquid at 60° C. for one week.
  • the test liquids in this test were cyclohexane, ethyl lactate, xylene, and ethylene glycol monobutyl ether, which are solvents used in solvent inks.
  • the ink flow path 121 was depressurized to 0.1 atm for 10 seconds, and air leakage was measured.
  • the evaluation criteria for Test 2-2 were as follows: G: Air leakage is 0.2 ml or less. NG: Air leakage exceeds 0.2 ml.
  • Table V shows the results of Test 2-1 and Test 2-2.
  • the overall evaluation is given as "A” when Test 2-1 is “A” and Test 2-2 is “G”.
  • Test 2-1 is “B” and Test 2-2 is “G”, it is given as “B”.
  • Test 2-1 is “C” or Test 2-2 is “NG”, it is given as "C”.
  • Example 5 Comparing Example 5 with Comparative Example 5, and Example 7 with Comparative Example 3, it can be seen that by connecting with adhesive 80 having a Young's modulus after curing of 0.5 GPa or more and 3 GPa or less, an inkjet head 100 that can withstand thermal stress and has solvent resistance can be obtained.
  • Example 2 Compared Example 2 with Example 3, Example 4 with Example 5, and Example 6 with Example 7, it is found that providing the primer layer 90 improves the thermal stress absorption of the adhesive 80.
  • Comparisons 3 and 4 are compared with the other examples and comparative examples. It is found that the inkjet head 100 has solvent resistance by using an adhesive 80 in which the hollow particles are 70 ⁇ m or less and the mixing ratio of the hollow particles is 85% or less by volume relative to the total amount of adhesive 80.
  • the adhesive strength with and without the primer layer 90 was evaluated by a 90 degree peel strength test (JIS K6854-1:1999). Specifically, two sets were prepared, each consisting of a top plate 1021 made of SUS430 and one day after plasma treatment, and PI (polyimide). The top plate 1021 and PI of each set were bonded with adhesive A. At this time, the top plate 1021 of the first set (Example 9) was not provided with a primer layer 90. The top plate 1021 of the second set (Example 10) was provided with a primer layer 90.
  • the primer layer 90 in this test was made of an ORGATIX organic compound, and had a thickness of 0.1 ⁇ m or more, formed by the sol-gel method. Next, a part of these adhesives was peeled off, and the PI was folded back by 90°. The peel strength of each adhesive was measured using a tensile tester (Strograph, manufactured by Toyo Seiki Seisakusho).
  • FIG. 8 is a graph showing the measurement results of Test 3.
  • the vertical axis shows the peel strength (N/10 mm) of Examples 9 and 10.
  • the peel strength of Example 10 in which the primer layer 90 is provided is improved by about 20% compared to the peel strength of Example 9, in which the primer layer 90 is not provided.
  • the inkjet head 100 includes the cover member 102 that houses the head chip 10, the common ink chamber 15, and the heater 105.
  • the cover member 102 includes the first member 1021 and the second member 1022 that are connected with the adhesive 80 having a Young's modulus after hardening of 0.5 GPa or more and 3 GPa or less.
  • the adhesive 80 has elasticity and can absorb thermal stress while maintaining the adhesive strength of the adhesive 80. Therefore, even if thermal stress occurs due to changes in the volume and volumetric shrinkage rate associated with temperature changes in the phase-change ink, the inkjet head 100 can withstand the thermal stress.
  • the adhesive 80 is an epoxy resin adhesive. According to this configuration, the first member 1021 and the second member 1022 can be strongly bonded to each other.
  • the adhesive 80 contains hollow particles having an average particle size of 10 ⁇ m or more and 70 ⁇ m or less. According to this configuration, it is possible to provide a stress relaxation effect without significantly reducing the adhesive sealing performance at the joint of the adhesive 80, and it is also possible to achieve solvent resistance.
  • the hollow particles are contained in the adhesive 80 at a volume ratio of 45% to 85%. If the volume ratio of the hollow particles to the adhesive 80 is increased, the curing property of the adhesive 80 deteriorates, and the solvent resistance and adhesive performance decrease. However, by adopting the above-mentioned configuration, it is possible to achieve both the solvent resistance and the effect of decreasing the Young's modulus.
  • a primer layer 90 is provided between the adhesive 80 and the first member 1021 . According to this configuration, the adhesive strength of the first member 1021 can be further increased.
  • the primer layer 90 has a thickness of 0.1 ⁇ m or more. According to this configuration, the primer layer 90 becomes a thick film, so that cracks are less likely to occur and the desired characteristics are more easily obtained.
  • the adhesive 80 that bonds the first member 1021 and the second member 1022 comes into contact with the ink.
  • the adhesive 80 comes into contact with ink, if peeling occurs between the components, the ink will seep in through the peeled portion and come into contact with the electrical connection parts of the FPC 20, etc., causing a break in the wire.
  • peeling between the components can be suppressed, so that even with the above configuration, breaks in the electrical connection parts can be suppressed.
  • the heater 105 heats the ink to a temperature of 60° C. or higher and 120° C. or lower. According to this configuration, ink that has undergone a sufficient phase transition to a liquid state can be ejected onto the recording medium M.
  • the present invention can be used in inkjet heads and inkjet recording devices that have excellent durability against repeated hot and cold cycles.
  • Inkjet recording apparatus 10 Head chip 102 Cover member 1021 Top plate (first member) 1021b Exposure through hole 1022 Housing (second member) 105 heater 111 nozzle 112 nozzle opening surface 15 common ink chamber 80 adhesive 90 primer layer 100 inkjet head

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

An inkjet head 100 includes a cover member 102 which accommodates therein a head tip 10 on which a nozzle 111 for discharging ink reversibly phase-transitioning at a phase transition temperature is formed, a common ink chamber 15, and a heater 105. The cover member 102 includes a first member 1021 and a second member 1022. The first member 1021 and the second member 1022 are connected by an adhesive 80 having a Young's modulus of 0.5-3 GPa.

Description

インクジェットヘッド及びインクジェット記録装置Inkjet head and inkjet recording device
 本発明は、インクジェットヘッド及びインクジェット記録装置に関する。 The present invention relates to an inkjet head and an inkjet recording device.
 従来、記録媒体の記録面にインク滴を吐出して画像を記録するインクジェット記録装置が知られている。当該インクジェット記録装置は、インクジェットヘッドのノズルから適切なタイミングでインク滴を吐出する。  Conventionally, there is known an inkjet recording device that ejects ink droplets onto the recording surface of a recording medium to record an image. The inkjet recording device ejects ink droplets from the nozzles of an inkjet head at appropriate timing.
 これに関連して、例えば特許文献1には、UVインクを吐出するインクジェット記録装置が記載されている。UVインクは温度によって可逆的にゾルゲル相転移する相転移型インクである。UVインクは、低温ではゲル状、すなわち、高粘度となる。そのため、特許文献1の発明は、ヒータでUVインクを加熱してゾル状とする。これにより、特許文献1の発明は、効率良くUVインクを吐出できる。 In this regard, for example, Patent Document 1 describes an inkjet recording device that ejects UV ink. UV ink is a phase-transition ink that undergoes a reversible sol-gel phase transition depending on the temperature. At low temperatures, UV ink is in a gel state, i.e., has high viscosity. Therefore, the invention of Patent Document 1 uses a heater to heat the UV ink to make it in a sol state. This allows the invention of Patent Document 1 to eject UV ink efficiently.
特開2003-165217号公報JP 2003-165217 A
 しかしながら、相転移型インクは、相転移に伴ってその体積及び体積収縮率が変化する。当該変化に伴って、インクジェットヘッドを構成する部材間の接着部分に物理的な歪みが生じる。また、当該歪みによる接着劣化が、部材間の接着部分を剥離させるおそれがある。相転移型インクが、温度変化に伴う体積収縮率の大きいワックスインクである場合、当該おそれはより大きくなる。そして、部材同士が剥離すると、インクジェットヘッドのノズル構成面に付着したインクが、部材間の隙間からインクジェットヘッドの内部に侵入する。結果、電気的に接続している箇所が断線する等、種々の不具合が生じる。 However, the volume and volumetric shrinkage rate of phase-change ink changes with the phase change. This change causes physical distortion at the bonded parts between the components that make up the inkjet head. Furthermore, the deterioration of adhesion due to this distortion may cause the bonded parts between the components to peel off. This risk is even greater when the phase-change ink is a wax ink, which has a large volumetric shrinkage rate with temperature changes. When the components peel off from each other, the ink that has adhered to the nozzle surface of the inkjet head penetrates into the interior of the inkjet head through the gaps between the components. As a result, various problems occur, such as electrical connections being disconnected.
 インクジェット記録装置の使用時はインクジェットヘッドを常に高温に保ち、相転移型インクが常温に戻るのを抑制すれば、部材間の接着部分の剥離は抑制できる。しかしながら、インクジェットヘッドを常に高温に保とうとすると、消費電力が増加する。したがって、環境的にもコスト的にも、相転移型インクを常に高温に保つことで接着部材間の剥離を抑制するのは好ましくない。 When using an inkjet recording device, peeling of the adhesive between components can be prevented by constantly keeping the inkjet head at a high temperature and preventing the phase change ink from returning to room temperature. However, constantly keeping the inkjet head at a high temperature increases power consumption. Therefore, from both an environmental and cost perspective, it is not desirable to constantly keep the phase change ink at a high temperature to prevent peeling between adhesive components.
 本発明はかかる事情に鑑みてなされたものである。その目的は、冷熱繰り返しの耐久性に優れたインクジェットヘッド及びインクジェット記録装置を提供することである。 The present invention was made in consideration of these circumstances. Its purpose is to provide an inkjet head and inkjet recording device that are highly durable against repeated cold and hot cycles.
 以上の課題を解決するために、請求項1に記載の発明は、
 相転移温度で可逆的に相転移するインクを吐出するノズルが形成されたヘッドチップを備えたインクジェットヘッドであって、
 前記ヘッドチップと、前記ヘッドチップにインクを供給する共通インク室と、当該共通インク室の外側からインクを加熱するヒーターと、が内部に収容されるカバー部材を備え、
 前記カバー部材は、前記ヘッドチップのノズル開口面を露出させる露出貫通孔を備える第1の部材と、当該第1の部材の下面と接続され、前記ヘッドチップ及び前記共通インク室の側面部を覆う第2の部材と、を備え、
 前記第1の部材と前記第2の部材とは、硬化後のヤング率が0.5GPa以上3GPa以下の接着剤で接続されている。
In order to solve the above problems, the invention described in claim 1 is:
An inkjet head including a head chip having a nozzle formed therein for ejecting ink that undergoes a reversible phase transition at a phase transition temperature,
a cover member that accommodates the head chip, a common ink chamber that supplies ink to the head chip, and a heater that heats the ink from outside the common ink chamber;
the cover member comprises a first member having an exposure through hole for exposing a nozzle opening surface of the head chip, and a second member connected to a lower surface of the first member and covering a side surface of the head chip and the common ink chamber,
The first member and the second member are connected to each other with an adhesive having a Young's modulus after hardening of 0.5 GPa or more and 3 GPa or less.
 請求項2に記載の発明は、請求項1に記載のインクジェットヘッドであって、
 前記接着剤は、エポキシ樹脂系接着剤である。
The present invention as set forth in claim 2 is the inkjet head as set forth in claim 1,
The adhesive is an epoxy resin adhesive.
 請求項3に記載の発明は、請求項2に記載のインクジェットヘッドであって、
 前記接着剤は、平均粒径が10μm以上70μm以下の中空粒子が添加されている。
The present invention as set forth in claim 3 is the ink jet head as set forth in claim 2,
The adhesive contains hollow particles having an average particle size of 10 μm or more and 70 μm or less.
 請求項4に記載の発明は、請求項3に記載のインクジェットヘッドであって、
 前記中空粒子は、前記接着剤に対して体積比率で45%以上85%以下含有されている。
A fourth aspect of the present invention provides the inkjet head according to the third aspect,
The hollow particles are contained in the adhesive at a volume ratio of 45% to 85%.
 請求項5に記載の発明は、請求項1から4のいずれか一項に記載のインクジェットヘッドであって、
 前記接着剤と前記第1の部材との間にプライマー層が設けられている。
The invention according to claim 5 is the inkjet head according to any one of claims 1 to 4,
A primer layer is provided between the adhesive and the first member.
 請求項6に記載の発明は、請求項5に記載のインクジェットヘッドであって、
 前記プライマー層は膜厚が0.1μm以上のものである。
A sixth aspect of the present invention provides the ink-jet head according to the fifth aspect,
The primer layer has a thickness of 0.1 μm or more.
 請求項7に記載の発明は、請求項1から4のいずれか一項に記載のインクジェットヘッドであって、
 前記第1の部材と前記第2の部材とを接続する接着剤がインクに当接する。
The present invention as set forth in claim 7 is the inkjet head as set forth in any one of claims 1 to 4,
The adhesive that connects the first member and the second member is in contact with the ink.
 請求項8に記載の発明は、請求項1から4のいずれか一項に記載のインクジェットヘッドであって、
 前記ヒーターは、インクを60℃以上120℃以下に加熱する。
The invention according to claim 8 is the inkjet head according to any one of claims 1 to 4,
The heater heats the ink to a temperature of 60° C. or higher and 120° C. or lower.
 請求項9に記載の発明は、インクジェット記録装置であって、
 請求項1から4のいずれか一項に記載のインクジェットヘッドを備える。
The present invention according to claim 9 is an inkjet recording apparatus,
The inkjet head according to claim 1 .
 本発明によれば、冷熱繰り返しの耐久性を向上できる。 The present invention improves durability against repeated cooling and heating.
インクジェット記録装置の斜視図である。FIG. 1 is a perspective view of an inkjet recording apparatus. ヘッドユニットの底面図である。FIG. 2 is a bottom view of the head unit. インクジェットヘッドの斜視図である。FIG. 2 is a perspective view of an inkjet head. インクジェットヘッドの主要部の分解斜視図である。FIG. 2 is an exploded perspective view of a main part of the inkjet head. インクジェットヘッドのうちヘッドチップを含む部分の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a portion of the inkjet head including a head chip. 試験1の実施例1の測定結果を示すグラフである。1 is a graph showing the measurement results of Example 1 of Test 1. 試験1の比較例1の測定結果を示すグラフである。1 is a graph showing the measurement results of Comparative Example 1 of Test 1. 試験3の測定結果を示すグラフである。13 is a graph showing the measurement results of Test 3.
 以下に本発明の一実施形態につき、各図面を参照して説明する。以下の説明は本発明の一実施形態の例示であって、本発明を限定しない。 Below, one embodiment of the present invention will be described with reference to the drawings. The following description is an example of one embodiment of the present invention and does not limit the present invention.
[インクジェット記録装置]
 初めに、インクジェットヘッド100を備えるインクジェット記録装置1の構成例を開示する。
 図1は、インクジェット記録装置1の概略構成図である。インクジェット記録装置1は、搬送部2と、ヘッドユニット3とを備える。
[Inkjet recording device]
First, a configuration example of an inkjet recording apparatus 1 equipped with an inkjet head 100 will be disclosed.
1 is a schematic diagram of an inkjet recording apparatus 1. The inkjet recording apparatus 1 includes a transport section 2 and a head unit 3.
(搬送部)
 搬送部2は、図1のX方向に延びる回転軸を中心にY方向(搬送方向)に回転する2本の搬送ローラ2a、2bを備える。また、搬送部2は、輪状の搬送ベルト2cを備える。
 搬送ベルト2cは、その内側が搬送ローラ2a、2bに支持される。また、搬送ベルト2cは、その搬送面上に記録媒体Mが載置される。そして、搬送ローラ2a、2bは、図示略の搬送モーターの動作に応じてY方向に回転して周回移動する。結果、搬送ベルト2cは、Y方向に記録媒体Mを搬送する。
(Transportation section)
The transport unit 2 includes two transport rollers 2a and 2b that rotate in the Y direction (transport direction) around a rotation axis extending in the X direction in Fig. 1. The transport unit 2 also includes a ring-shaped transport belt 2c.
The inner side of the conveyor belt 2c is supported by conveyor rollers 2a and 2b. The recording medium M is placed on the conveyor surface of the conveyor belt 2c. The conveyor rollers 2a and 2b rotate and move in the Y direction in response to the operation of a conveyor motor (not shown). As a result, the conveyor belt 2c conveys the recording medium M in the Y direction.
 記録媒体Mは、例えば一定の寸法に裁断された枚葉紙である。記録媒体Mは、図示略の給紙装置により搬送ベルト2c上に供給される。記録媒体Mは、ヘッドユニット3からインクが吐出されて画像が記録され、所定の排紙部に排出される。
 なお、記録媒体Mは、連続したロール紙を用いてもよい。また、記録媒体Mは、普通紙や塗工紙といった紙のほか、布帛又はシート状の樹脂等を用いてもよい。このように、記録媒体Mは、その表面に着弾したインクを定着可能であればよく、種々の媒体であってよい。
The recording medium M is, for example, a sheet of paper cut to a certain size. The recording medium M is fed onto the conveyor belt 2c by a paper feeder (not shown). Ink is ejected from the head unit 3 onto the recording medium M to record an image, and the recording medium M is then discharged to a predetermined paper discharge section.
A continuous roll of paper may be used as the recording medium M. Furthermore, in addition to paper such as plain paper or coated paper, the recording medium M may also be a cloth or a sheet-like resin. In this way, the recording medium M may be any medium as long as it is capable of fixing the ink that has landed on its surface.
(ヘッドユニット)
 ヘッドユニット3は、搬送部2により搬送される記録媒体Mに画像を記録する。ヘッドユニット3は、画像データに基づく適切なタイミングでインクを吐出して画像を記録する。本実施形態のインクジェット記録装置1は、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の4色のインクに各々対応する4つのヘッドユニット3を備える。当該4つのヘッドユニット3は、記録媒体Mの搬送方向上流側からYMCKの色の順に所定の間隔で並ぶように配列される。なお、ヘッドユニット3の数は3つ以下又は5つ以上であってもよい。
(Head unit)
The head unit 3 records an image on the recording medium M transported by the transport unit 2. The head unit 3 ejects ink at appropriate timing based on image data to record an image. The inkjet recording device 1 of this embodiment includes four head units 3 corresponding to the four colors of ink, yellow (Y), magenta (M), cyan (C), and black (K). The four head units 3 are arranged at predetermined intervals in the order of colors YMCK from the upstream side in the transport direction of the recording medium M. The number of head units 3 may be three or less, or five or more.
 ヘッドユニット3から吐出されるインクは、ゲルとゾル、あるいは固体と液体との間で可逆的に相転移する相転移型インクである。相転移型インクは、ヒーター105(図5参照)で相転移温度以上に加熱されて液状で吐出される。そして、相転移型インクは、記録媒体Mに着弾した後は、紫外線等のエネルギー線の照射や自然冷却により凝固する。相転移型インクは、具体的には、ソルダーレジストインクやUVインク、ワックスインク等である。 The ink ejected from the head unit 3 is a phase-transition ink that undergoes a reversible phase transition between gel and sol, or between solid and liquid. The phase-transition ink is heated to a temperature equal to or higher than the phase transition temperature by the heater 105 (see FIG. 5) and ejected in liquid form. After landing on the recording medium M, the phase-transition ink solidifies by exposure to energy rays such as ultraviolet rays or by natural cooling. Specific examples of phase-transition ink include solder resist ink, UV ink, and wax ink.
[インクジェットヘッド]
 図2は、1つのヘッドユニット3を搬送ベルト2cの搬送面に相対する側、すなわち、X方向及びY方向に垂直なZ方向から見た平面図である。ヘッドユニット3は、板状の基部3aと、複数のインクジェットヘッド100を備える。インクジェットヘッド100は、ノズル111の開口部が設けられた面が、基部3aの貫通孔から-Z方向に向けて露出した状態で、基部3aの貫通孔に嵌合して固定される。
[Inkjet head]
2 is a plan view of one head unit 3 as viewed from the side facing the transport surface of the transport belt 2c, i.e., from the Z direction perpendicular to the X and Y directions. The head unit 3 includes a plate-shaped base 3a and a plurality of inkjet heads 100. The inkjet heads 100 are fitted and fixed in the through holes of the base 3a with the surface on which the openings of the nozzles 111 are provided being exposed from the through holes of the base 3a in the -Z direction.
 インクジェットヘッド100では、複数のノズル111がX方向に等間隔にそれぞれ配列される。そして、各インクジェットヘッド100は、X方向に等間隔に一次元配列されたノズル111の列であるノズル列を有する。
 なお、インクジェットヘッド100は、ノズル列を複数有しても良い。この場合、複数のノズル列は、ノズル111のX方向についての位置が重ならないように、X方向の位置が互いにずらされて配置される。
In the inkjet head 100, a plurality of nozzles 111 are arranged at equal intervals in the X direction. Each inkjet head 100 has a nozzle row which is a row of nozzles 111 arranged one-dimensionally at equal intervals in the X direction.
The inkjet head 100 may have a plurality of nozzle rows. In this case, the nozzle rows are arranged such that the positions of the nozzles 111 in the X direction are shifted from each other so that they do not overlap with each other.
 ヘッドユニット3において、複数のインクジェットヘッド100は、ノズル111のX方向の配置範囲が連続するように千鳥格子状に配置される。ヘッドユニット3におけるノズル111のX方向の配置範囲は、搬送ベルト2cにより搬送される記録媒体Mの画像記録可能な領域のX方向の幅をカバーしている。
 また、ヘッドユニット3は、画像記録時には位置が固定されて、記録媒体Mの搬送に応じて所定間隔(搬送方向間隔)の各位置に対してインクを吐出する。すなわち、インクジェット記録装置1は、シングルパス方式で画像を記録する。
In the head unit 3, the multiple inkjet heads 100 are arranged in a staggered pattern so that the X-direction arrangement ranges of the nozzles 111 are continuous. The X-direction arrangement range of the nozzles 111 in the head unit 3 covers the X-direction width of an image recordable area of the recording medium M transported by the transport belt 2c.
Furthermore, the head unit 3 is fixed in position during image recording, and ejects ink to each position at a predetermined interval (interval in the transport direction) in response to the transport of the recording medium M. In other words, the inkjet recording device 1 records an image by a single pass method.
 図3は、1つのインクジェットヘッド100の斜視図である。
 インクジェットヘッド100は、外装部材101と、カバー部材102とを備える。外装部材101は、その下端でカバー部材102と嵌合する。外装部材101及びカバー部材102の内部には、インクジェットヘッド100の主要な構成要素が収容される。このうちカバー部材102には、外部からインクが供給されるインレット103aと、インクが外部に排出されるアウトレット103b及び103cと、が設けられる。また、カバー部材102には、インクジェットヘッド100をヘッドユニット3の基部3aに取り付けるための複数の取付穴104が設けられる。
FIG. 3 is a perspective view of one ink-jet head 100. As shown in FIG.
The inkjet head 100 includes an exterior member 101 and a cover member 102. The exterior member 101 is fitted into the cover member 102 at its bottom end. The main components of the inkjet head 100 are housed inside the exterior member 101 and the cover member 102. Among these, the cover member 102 is provided with an inlet 103a through which ink is supplied from the outside, and outlets 103b and 103c through which ink is discharged to the outside. The cover member 102 is also provided with a plurality of mounting holes 104 for mounting the inkjet head 100 to the base 3a of the head unit 3.
 図4は、1つのインクジェットヘッド100の主要部の分解斜視図である。図4では、インクジェットヘッド100のノズル開口面112が上方となるように、すなわち図2とは上下が反転されるように各部材が描かれている。以下では、各基板の-Z方向側の面を上面、+Z方向側の面を下面とも記す。 Figure 4 is an exploded perspective view of the main parts of one inkjet head 100. In Figure 4, each component is drawn so that the nozzle opening surface 112 of the inkjet head 100 faces upward, i.e., the top and bottom are inverted from Figure 2. Below, the surface on the -Z side of each substrate is also referred to as the top surface, and the surface on the +Z side is also referred to as the bottom surface.
 図4は、インクジェットヘッド100の構成部材のうち、カバー部材102の内部に収容されている主要な構成部材を示す。具体的には、図4は、ノズル基板11、流路スペーサー基板12(流路基板)及び圧力室基板13を有するヘッドチップ10を示す。また、図4は、ヘッドチップ10に固着された配線基板14と、配線基板14に電気的に接続されたFPC20(Flexible Printed Circuit)とを示す。また、図5に示すように、カバー部材102の内部には、ヒーター105が設けられている。 Figure 4 shows the main components of the inkjet head 100 that are housed inside the cover member 102. Specifically, Figure 4 shows a head chip 10 having a nozzle substrate 11, a flow path spacer substrate 12 (flow path substrate), and a pressure chamber substrate 13. Figure 4 also shows a wiring substrate 14 fixed to the head chip 10, and an FPC 20 (Flexible Printed Circuit) electrically connected to the wiring substrate 14. Furthermore, as shown in Figure 5, a heater 105 is provided inside the cover member 102.
 ヘッドチップ10は、ノズル基板11と、流路スペーサー基板12と、圧力室基板13と、が積層された構造である。ノズル基板11、流路スペーサー基板12及び圧力室基板13と、配線基板14とは、いずれもX方向に長尺な略四角柱状の板状部材である。 The head chip 10 has a structure in which a nozzle substrate 11, a flow path spacer substrate 12, and a pressure chamber substrate 13 are stacked. The nozzle substrate 11, the flow path spacer substrate 12, the pressure chamber substrate 13, and the wiring substrate 14 are all plate-like members that are approximately rectangular prism-shaped and elongated in the X direction.
(ノズル基板)
 ノズル基板11は、Z方向に貫通する孔であるノズル111が列をなすように設けられたシリコン基板である。各ノズル111は、Z方向から見て、流路スペーサー基板12の後述するインク流路121のうち、貫通流路122と重なる位置に設けられる。ノズル基板11の平面形状は、流路スペーサー基板12及び圧力室基板13と略同一である。ノズル基板11の流路スペーサー基板12と反対側の面は、インクジェットヘッド100のノズル開口面112をなす。ノズル基板11の厚さは、例えば数十μmから数百μm程度である。
(Nozzle substrate)
The nozzle substrate 11 is a silicon substrate on which nozzles 111, which are holes penetrating in the Z direction, are provided in a row. When viewed from the Z direction, each nozzle 111 is provided at a position overlapping with a through-flow path 122 of an ink flow path 121 (described later) of the flow path spacer substrate 12. The planar shape of the nozzle substrate 11 is substantially the same as those of the flow path spacer substrate 12 and the pressure chamber substrate 13. The surface of the nozzle substrate 11 opposite to the flow path spacer substrate 12 forms a nozzle opening surface 112 of the inkjet head 100. The thickness of the nozzle substrate 11 is, for example, about several tens of μm to several hundreds of μm.
(流路スペーサー基板)
 流路スペーサー基板12は、平面視で圧力室基板13と略同等の大きさを有する直方体形状の板状部材である。流路スペーサー基板12は、圧力室基板13の上面に接着(固着)される。本実施形態の流路スペーサー基板12は、シリコン基板からなる。流路スペーサー基板12の厚さは、特に限定されないが、数百μm程度である。
(Flow channel spacer substrate)
The flow channel spacer substrate 12 is a rectangular parallelepiped plate-like member having approximately the same size as the pressure chamber substrate 13 in a plan view. The flow channel spacer substrate 12 is bonded (fixed) to the upper surface of the pressure chamber substrate 13. The flow channel spacer substrate 12 in this embodiment is made of a silicon substrate. The thickness of the flow channel spacer substrate 12 is not particularly limited, but is approximately several hundred μm.
 流路スペーサー基板12に設けられたインク流路121は、貫通流路122と、個別インク排出流路123と、を有する。 The ink flow path 121 provided in the flow path spacer substrate 12 has a through flow path 122 and an individual ink discharge flow path 123.
 貫通流路122は、Z方向から見て後述する圧力室131の形成位置と重なる位置において、流路スペーサー基板12を貫通する流路である。貫通流路122のX-Y平面に平行な断面形状は、圧力室131の断面形状と略同一の矩形である。貫通流路122は、圧力室基板13側の開口部が圧力室131に接続される。また、貫通流路122は、ノズル基板11側の開口部がノズル111に接続される。 The through flow passage 122 is a flow passage that penetrates the flow passage spacer substrate 12 at a position that overlaps with the position where the pressure chamber 131 described below is formed when viewed from the Z direction. The cross-sectional shape of the through flow passage 122 parallel to the XY plane is a rectangle that is approximately the same as the cross-sectional shape of the pressure chamber 131. The opening of the through flow passage 122 on the pressure chamber substrate 13 side is connected to the pressure chamber 131. In addition, the opening of the through flow passage 122 on the nozzle substrate 11 side is connected to the nozzle 111.
 個別インク排出流路123は、貫通流路122から分岐する流路である。個別インク排出流路123は、水平個別排出流路123aと、垂直個別排出流路123bとを有する。水平個別排出流路123aは、貫通流路122のノズル基板11側の開口部から流路スペーサー基板12の表面に沿ってY方向に各々延びる一対の溝状の流路である。また、垂直個別排出流路123bは、当該水平個別排出流路123aの端部から流路スペーサー基板12を貫通して設けられた流路である。垂直個別排出流路123bの圧力室基板13側の開口部は、後述する共通インク排出流路132の水平共通排出流路132aに接続される。したがって、個別インク排出流路123は、貫通流路122から水平個別排出流路123aに流入したインクを、垂直個別排出流路123bを経由して共通インク排出流路132に導く。 The individual ink discharge flow path 123 is a flow path branched from the through flow path 122. The individual ink discharge flow path 123 has a horizontal individual discharge flow path 123a and a vertical individual discharge flow path 123b. The horizontal individual discharge flow path 123a is a pair of groove-shaped flow paths each extending in the Y direction along the surface of the flow path spacer substrate 12 from the opening on the nozzle substrate 11 side of the through flow path 122. The vertical individual discharge flow path 123b is a flow path provided penetrating the flow path spacer substrate 12 from the end of the horizontal individual discharge flow path 123a. The opening on the pressure chamber substrate 13 side of the vertical individual discharge flow path 123b is connected to the horizontal common discharge flow path 132a of the common ink discharge flow path 132 described later. Therefore, the individual ink discharge flow path 123 guides the ink that has flowed into the horizontal individual discharge flow path 123a from the through flow path 122 to the common ink discharge flow path 132 via the vertical individual discharge flow path 123b.
 このように、流路スペーサー基板12に設けられた個別インク排出流路123と、圧力室基板13に設けられた共通インク排出流路132により、インク排出流路が構成される。当該インク排出流路は、圧力室131内のインクのうち、ノズル111から吐出されなかったインクを排出する。 In this way, an ink discharge flow path is formed by the individual ink discharge flow paths 123 provided in the flow path spacer substrate 12 and the common ink discharge flow path 132 provided in the pressure chamber substrate 13. This ink discharge flow path discharges the ink in the pressure chamber 131 that has not been ejected from the nozzle 111.
(圧力室)
 圧力室基板13は、セラミックスの圧電体からなる。圧電体とは、電圧の印加に応じて変形する部材である。圧電体は、例えばPZT(チタン酸ジルコン酸鉛)、ニオブ酸リチウム、チタン酸バリウム、チタン酸鉛、メタニオブ酸鉛等である。
(Pressure chamber)
The pressure chamber substrate 13 is made of a ceramic piezoelectric material. A piezoelectric material is a member that deforms in response to the application of a voltage. Examples of the piezoelectric material include PZT (lead zirconate titanate), lithium niobate, barium titanate, lead titanate, and lead metaniobate.
 圧力室基板13の圧力室131は、圧力室基板13のうち、Z方向から見てノズル111と重なる位置に各々設けられた貫通孔である。圧力室131は、X-Y平面に沿った断面がY方向に長い矩形をなす。本実施形態の圧力室基板13では、複数の圧力室131がX方向に沿って列をなすように配置される。
 各圧力室131には、配線基板14の後述するインク供給口141を経由してインクが供給される。また、各圧力室131は、流路スペーサー基板12のインク流路121を経由してノズル111に連通する。また、各圧力室131との間は圧電体の隔壁によって仕切られており、隔壁の内壁面には駆動電極が設けられている。圧力室基板13では、当該駆動電極に印加された駆動信号に応じて隔壁が変位を繰り返す。そして、圧力室131内のインクの圧力が変動してノズル111から吐出される。
The pressure chambers 131 of the pressure chamber substrate 13 are through-holes provided in positions of the pressure chamber substrate 13 that overlap with the nozzles 111 when viewed from the Z direction. A cross section of the pressure chambers 131 along the XY plane forms a rectangle whose length is in the Y direction. In the pressure chamber substrate 13 of this embodiment, a plurality of pressure chambers 131 are arranged in a row along the X direction.
Ink is supplied to each pressure chamber 131 via an ink supply port 141 (described later) of the wiring substrate 14. Each pressure chamber 131 also communicates with the nozzle 111 via an ink flow path 121 of the flow path spacer substrate 12. Each pressure chamber 131 is separated from the other by a piezoelectric partition wall, and a drive electrode is provided on the inner wall surface of the partition wall. In the pressure chamber substrate 13, the partition wall repeatedly displaces in response to a drive signal applied to the drive electrode. The pressure of the ink in the pressure chamber 131 then fluctuates, causing the ink to be ejected from the nozzle 111.
 また、図4に示されるように、圧力室基板13には、共通インク排出流路132が設けられる。共通インク排出流路132は、Y方向について複数の圧力室131を挟む位置に1つずつ設けられている。共通インク排出流路132には、圧力室131から流路スペーサー基板12のインク流路121に供給されたインクのうち、ノズル111から吐出されなかったインクの一部が戻入する。 Also, as shown in FIG. 4, a common ink discharge flow path 132 is provided in the pressure chamber substrate 13. The common ink discharge flow paths 132 are provided at positions sandwiching the multiple pressure chambers 131 in the Y direction. A portion of the ink that is supplied from the pressure chambers 131 to the ink flow paths 121 of the flow path spacer substrate 12 and that is not ejected from the nozzles 111 returns to the common ink discharge flow path 132.
 共通インク排出流路132は、水平共通排出流路132aと、垂直共通排出流路132bと、を備える。水平共通排出流路132aは、Y方向の端部近傍で、圧力室基板13の流路スペーサー基板12側の表面に沿ってX方向に延びる溝状の流路である。また、垂直共通排出流路132bは、水平共通排出流路132aの+X方向側の端部で水平共通排出流路132aに接続され、圧力室基板13をZ方向に貫通する流路である。水平共通排出流路132aに戻入したインクは、垂直共通排出流路132b、及び配線基板14に設けられた排出孔142を通る。そして、当該インクは、アウトレット103b又はアウトレット103cからインクジェットヘッド100の外部に排出される。 The common ink discharge flow path 132 includes a horizontal common discharge flow path 132a and a vertical common discharge flow path 132b. The horizontal common discharge flow path 132a is a groove-shaped flow path that extends in the X direction along the surface of the pressure chamber substrate 13 on the flow path spacer substrate 12 side near the Y direction end. The vertical common discharge flow path 132b is connected to the horizontal common discharge flow path 132a at the end on the +X direction side of the horizontal common discharge flow path 132a, and is a flow path that penetrates the pressure chamber substrate 13 in the Z direction. The ink that returns to the horizontal common discharge flow path 132a passes through the vertical common discharge flow path 132b and the discharge hole 142 provided in the wiring substrate 14. The ink is then discharged to the outside of the inkjet head 100 from the outlet 103b or the outlet 103c.
(配線基板)
 配線基板14は、圧力室基板13の各駆動電極に、図示しない駆動回路からの駆動電圧を印加する配線を接続するための板状の部材である。配線基板14は、例えばガラス、セラミックス、シリコン、プラスチック等の基板である。配線基板14は、圧力室基板13との接合領域を確保する観点から圧力室基板13の面積よりも大きな面積を有する平板状の基板であるのが好ましい。
(Wiring board)
The wiring board 14 is a plate-like member for connecting wiring that applies a driving voltage from a driving circuit (not shown) to each driving electrode of the pressure chamber substrate 13. The wiring board 14 is a substrate made of, for example, glass, ceramics, silicon, plastic, etc. From the viewpoint of ensuring a bonding area with the pressure chamber substrate 13, the wiring board 14 is preferably a flat substrate having an area larger than the area of the pressure chamber substrate 13.
 配線基板14には、Z方向から見て圧力室基板13の複数の圧力室131と重なる位置に複数のインク供給口141が設けられている。また、配線基板14には、一対の垂直共通排出流路132bと重なる位置に一対の排出孔142が設けられている。また、配線基板14の圧力室基板13との接着面には、複数のインク供給口141の各々の端部から配線基板14の端部に向かって延びる複数の配線143が設けられている。
 配線基板14の下面には、共通インク室15(図5参照)が接続されている。そして、当該共通インク室15からインク供給口141にインクが供給される。
The wiring substrate 14 is provided with a plurality of ink supply ports 141 at positions overlapping with the plurality of pressure chambers 131 of the pressure chamber substrate 13 when viewed from the Z direction. The wiring substrate 14 is also provided with a pair of discharge holes 142 at positions overlapping with the pair of vertical common discharge channels 132b. The bonding surface of the wiring substrate 14 to the pressure chamber substrate 13 is also provided with a plurality of wirings 143 extending from the ends of the plurality of ink supply ports 141 toward the ends of the wiring substrate 14.
A common ink chamber 15 (see FIG. 5) is connected to the lower surface of the wiring substrate 14. Ink is supplied from the common ink chamber 15 to the ink supply port 141.
 圧力室基板13と配線基板14とは、導電性粒子を含有させた導電性接着剤を隔てて接着される。これにより、駆動電極と電気的に接続された、圧力室基板13の表面の接続電極と、配線基板14上の配線143とが、導電性粒子を隔てて電気的に接続される。 The pressure chamber substrate 13 and the wiring substrate 14 are bonded together via a conductive adhesive containing conductive particles. This electrically connects the connection electrode on the surface of the pressure chamber substrate 13, which is electrically connected to the drive electrode, and the wiring 143 on the wiring substrate 14, electrically connected together via the conductive particles.
 また、配線基板14のうち配線143が設けられている端部には、FPC20が、例えばACF(Anisotropic Conductive Film:異方性導電フィルム)を隔てて接続される。当該接続により、配線基板14の複数の配線143と、FPC20上の複数の配線21とが、一対一で対応するように各々電気的に接続される。 Furthermore, the FPC 20 is connected to the end of the wiring board 14 where the wiring 143 is provided, via, for example, an ACF (Anisotropic Conductive Film). This connection electrically connects the multiple wirings 143 of the wiring board 14 to the multiple wirings 21 on the FPC 20 in one-to-one correspondence.
 図5は、インクジェットヘッド100のうちヘッドチップ10を含む部分の模式断面図である。図5は、インクジェットヘッド100の、X方向に垂直な断面を示す。 FIG. 5 is a schematic cross-sectional view of a portion of the inkjet head 100 that includes the head chip 10. FIG. 5 shows a cross section of the inkjet head 100 perpendicular to the X direction.
(カバー部材)
 図5に示されるように、カバー部材102は、ヘッドチップ10のうちノズル基板11のノズル開口面112を露出させてヘッドチップ10の一部を覆うように設けられる。また、カバー部材102は、接着剤80を隔ててヘッドチップ10に接着される。
 カバー部材102は、天板(第1の部材)1021、筐体(第2の部材)1022、封止板1023を有する。
(Cover member)
5, cover member 102 is provided so as to cover a part of head chip 10 while exposing nozzle opening surface 112 of nozzle substrate 11 of head chip 10. Cover member 102 is adhered to head chip 10 with adhesive 80 interposed therebetween.
The cover member 102 has a top plate (first member) 1021 , a housing (second member) 1022 , and a sealing plate 1023 .
{天板}
 天板1021は、その上面である凹部形成面1021aが、凹部Rを有するように中央部が窪んだ形状を有する矩形の板状部材である。また、天板1021には、凹部Rの最深部に開口部を有する露出貫通孔1021bが設けられる。当該露出貫通孔1021bには、接着剤80を介してノズル基板11が取り付けられる。ノズル基板11を凹部R内とすると、ノズル開口面112と、記録媒体Mないし異物との接触による不具合を抑制できる。
{Tabletop}
The top plate 1021 is a rectangular plate-like member in which a recess forming surface 1021a, which is its upper surface, has a shape recessed in the center so as to have a recess R. The top plate 1021 is also provided with an exposed through hole 1021b having an opening at the deepest part of the recess R. The nozzle substrate 11 is attached to the exposed through hole 1021b via an adhesive 80. By placing the nozzle substrate 11 within the recess R, problems caused by contact between the nozzle opening surface 112 and the recording medium M or foreign matter can be suppressed.
 なお、ノズル開口面112が凹部R内の範囲で突出するように、ヘッドチップ10を天板1021に取り付けるようにしてもよい。当該構造とすると、払拭部材で天板1021の凹部形成面1021a及びノズル開口面112を払拭する際に、払拭部材をノズル開口面112に当接させやすくなる。 The head chip 10 may be attached to the top plate 1021 so that the nozzle opening surface 112 protrudes within the range of the recess R. With this structure, it becomes easier to bring the wiping member into contact with the nozzle opening surface 112 when wiping the recess forming surface 1021a of the top plate 1021 and the nozzle opening surface 112 with the wiping member.
{筐体}
 筐体1022は、ヘッドチップ10の側方を覆う板状の部材である。筐体1022は、接着剤80を介して天板1021の下面と接続される。また、筐体1022は、例えばアルミからなる。
{Housing}
The housing 1022 is a plate-like member that covers the sides of the head chip 10. The housing 1022 is connected to the lower surface of the top plate 1021 via an adhesive 80. The housing 1022 is made of, for example, aluminum.
{封止板}
 封止板1023は、ヘッドチップ10のうち流路スペーサー基板12及び圧力室基板13の側面に沿って延びる板状の部材である。封止板1023は、天板1021の+Z方向側の面に接続される。封止板1023により、ヘッドチップ10が筐体1022に保持される。封止板1023は、天板1021とは別個の部材が用いられても良い。また、封止板1023は、天板1021と一体的に設けられていても良い。
{Sealing plate}
The sealing plate 1023 is a plate-shaped member extending along the side surfaces of the flow channel spacer substrate 12 and the pressure chamber substrate 13 of the head chip 10. The sealing plate 1023 is connected to the surface of the top plate 1021 on the +Z direction side. The sealing plate 1023 holds the head chip 10 in the housing 1022. The sealing plate 1023 may be a separate member from the top plate 1021. The sealing plate 1023 may also be provided integrally with the top plate 1021.
{ヒーター}
 ヒーター105は、筐体1022の内部かつヘッドチップ10の外側でインクを加熱する部材である。ヒーター105は、例えば電熱線や伝熱部材である。ヒーター105は、共通インク室15を構成する各部材を覆う。あるいは、ヒーター105は、共通インク室15を構成する各部材の外面に貼り付けられる。
 ヒーター105により、ヘッドチップ10内のインクが加熱及び保温されて、所定温度以上に保たれる。具体的には、ヒーター105は、インクを60℃以上120℃以下となるように加熱する。これにより、相転移型インクが充分に液状に相転移した状態となる。
{Heater}
The heater 105 is a member that heats ink inside the housing 1022 and outside the head chip 10. The heater 105 is, for example, an electric heating wire or a heat transfer member. The heater 105 covers each member that constitutes the common ink chamber 15. Alternatively, the heater 105 is attached to the outer surface of each member that constitutes the common ink chamber 15.
The ink in the head chip 10 is heated and kept at a predetermined temperature or higher by the heater 105. Specifically, the heater 105 heats the ink to a temperature of 60° C. or higher and 120° C. or lower. This causes the phase-change ink to be sufficiently liquid.
{接着剤}
 図5に示すように、インクジェットヘッド100において、天板1021、筐体1022及びヘッドチップ10は接着剤80で接着されて一体化されている。
 詳細には、天板1021の下面と、筐体1022は、接着剤80で接着されている。また、筐体1022と、インレット103a及びアウトレット103b、103cは、接着剤80で接着されている。また、天板1021の側面部と、ヘッドチップ10の側面部は、接着剤80で接着されている。
{glue}
As shown in FIG. 5, in the inkjet head 100, a top plate 1021, a housing 1022 and a head chip 10 are bonded together with an adhesive 80 to form an integrated unit.
In detail, the lower surface of the top plate 1021 and the housing 1022 are bonded with an adhesive 80. Moreover, the housing 1022 and the inlet 103a and the outlets 103b and 103c are bonded with an adhesive 80. Moreover, the side portion of the top plate 1021 and the side portion of the head chip 10 are bonded with an adhesive 80.
 このように、本発明における接着剤80は、インクジェットヘッド100を構成する各部材同士を接着する。そして、それにより、接着剤80は、単なる接着部材としての役割だけでなく、カバー部材102外からのインクの流入を防ぐ封止部材としての役割も果たす。 In this way, the adhesive 80 of the present invention bonds the various components that make up the inkjet head 100 together. As a result, the adhesive 80 not only functions as a simple adhesive member, but also as a sealing member that prevents ink from flowing in from outside the cover member 102.
 接着剤80は、インクに対する耐性、すなわち耐溶剤性を有しているものが用いられる。すなわち、接着剤80は、硬く、Tg(Glass transition;ガラス転移点)が高いものが好ましい。具体的には、接着剤80は、Tgが80℃以上であるものが好ましい。このような接着剤80としては、エポキシ系接着剤、フェノール系接着剤、ポリウレタン・イソシアネート系接着剤、アクリル酸エステル系接着剤等が挙げられる。 The adhesive 80 used is one that is resistant to ink, i.e., solvent resistant. In other words, it is preferable that the adhesive 80 be hard and have a high Tg (glass transition point). Specifically, it is preferable that the adhesive 80 have a Tg of 80°C or higher. Examples of such adhesives 80 include epoxy adhesives, phenol adhesives, polyurethane-isocyanate adhesives, and acrylic ester adhesives.
 これらの中でも、エポキシ系接着剤は、強靭で接着強度が高いため好ましい。エポキシ系接着剤は、エポキシ樹脂(主剤)と硬化剤との組み合わせからなる。主剤は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリアジン骨格エポキシ樹脂、グリシジルアミン型エポキシ樹脂等が挙げられる。また、硬化剤は、アミン系硬化剤、ポリアミノアミド系硬化剤、酸無水物系硬化剤、ジシアンジアミド系硬化剤、ポリメルカプタン系硬化剤、イミダゾール系硬化剤等が挙げられる。 Among these, epoxy adhesives are preferred because they are tough and have high adhesive strength. Epoxy adhesives consist of a combination of an epoxy resin (base) and a curing agent. Examples of base agents include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triazine skeleton epoxy resin, and glycidyl amine type epoxy resin. Examples of curing agents include amine type curing agents, polyaminoamide type curing agents, acid anhydride type curing agents, dicyandiamide type curing agents, polymercaptan type curing agents, and imidazole type curing agents.
 また、接着剤80は、硬化後のヤング率が0.5GPa以上3GPa以下となるものを用いる。当該ヤング率は、プラスチック-引張特性の試験方法(JIS K7161―1994)によって評価によって測定される。硬化後のヤング率を0.5GPa以上3GPa以下とすると、接着剤80が好適な弾性を有する。結果、機械的なストレスを均一に分散可能となり、曲げや衝撃に対する機械的強度を高められる。そして、接着剤80が接着力を維持しながら熱応力を吸収できるようになる。これにより、インクジェット記録装置1において、相転移型インクの温度を常温に戻しても部材間で剥離が生じるのを抑制できる。 The adhesive 80 used has a Young's modulus of 0.5 GPa or more and 3 GPa or less after curing. The Young's modulus is measured by evaluation using the Plastics - Tensile Properties Test Method (JIS K7161-1994). When the Young's modulus after curing is 0.5 GPa or more and 3 GPa or less, the adhesive 80 has suitable elasticity. As a result, mechanical stress can be uniformly distributed, and mechanical strength against bending and impact can be increased. The adhesive 80 can then absorb thermal stress while maintaining its adhesive force. This makes it possible to suppress peeling between components in the inkjet recording device 1, even when the temperature of the phase-change ink is returned to room temperature.
 しかしながら、硬化後のヤング率が3GPa以下となるエポキシ系接着剤は希少である。そのため、エポキシ系接着剤を用いる場合、その硬化後のヤング率を低下させる必要がある。 However, epoxy adhesives with a Young's modulus of 3 GPa or less after curing are rare. Therefore, when using epoxy adhesives, it is necessary to reduce the Young's modulus after curing.
 硬化後の接着剤80のヤング率を3GPa以下まで低下させる方法としては、気体を内包したバルーン状の中空粒子を添加する方法が挙げられる。中空粒子を接着剤80に添加すると、接着剤80の密度が小さくなり、ヤング率が低下する。 One method for reducing the Young's modulus of the cured adhesive 80 to 3 GPa or less is to add balloon-shaped hollow particles containing gas. When hollow particles are added to the adhesive 80, the density of the adhesive 80 decreases, and the Young's modulus decreases.
 ここで、バルーン状とは、シェル(殻)の内部に気体を包み込んだコア/シェルタイプのマイクロカプセル状のものを指す。そして、当該中空粒子としては、一般にマイクロバルーンと呼ばれるものが好ましく用いられる。具体的には、例えば厚さ0.1μm以下のゴム材料の内部にエチレンガスが含まれ、加熱膨張させて球体化したマイクロバルーンが用いられる。更に具体的には、例えば高分子中空微小球コンポジット(マツモト油脂製薬株式会社製 マツモトマイクロスフェアー MFLシリーズ)が用いられる。あるいは、中空シリカ粒子(ハイプレシカ)が用いられる。 Here, balloon-like refers to a core/shell type microcapsule with gas enclosed inside the shell. The hollow particles that are preferably used are generally called microballoons. Specifically, for example, microballoons are used that contain ethylene gas inside a rubber material with a thickness of 0.1 μm or less and are made spherical by heating and expanding them. More specifically, for example, polymer hollow microsphere composites (Matsumoto Microsphere MFL series, manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) are used. Alternatively, hollow silica particles (Hipressica) are used.
 また、中空粒子の平均粒径は10μm以上70μm以下とするのが好ましい。平均粒径が10μmより小さいと、中空粒子による応力緩和効果が有効に発現されない。一方、天板1021の側面部と、ヘッドチップ10の側面部を接合する接着剤80の厚みは、50μm~100μmである。そのため、中空粒子の平均粒径が70μmより大きいと、当該接合部において、接着剤80が耐溶剤性を有さなくなるため、好ましくない。これに対して、中空粒子の平均粒径が10μm以上70μm以下であれば、接着剤80が、接合部における封止性能をあまり落とさずに応力緩和効果を持つようになる。特に、中空粒子の平均粒径は、10μm~30μmとするのがより好ましい。 Also, it is preferable that the average particle diameter of the hollow particles is 10 μm or more and 70 μm or less. If the average particle diameter is less than 10 μm, the stress relaxation effect of the hollow particles is not effectively expressed. On the other hand, the thickness of the adhesive 80 that bonds the side portion of the top plate 1021 and the side portion of the head chip 10 is 50 μm to 100 μm. Therefore, if the average particle diameter of the hollow particles is more than 70 μm, the adhesive 80 will not have solvent resistance at the joint, which is not preferable. On the other hand, if the average particle diameter of the hollow particles is 10 μm or more and 70 μm or less, the adhesive 80 will have a stress relaxation effect without significantly reducing the sealing performance at the joint. In particular, it is more preferable that the average particle diameter of the hollow particles is 10 μm to 30 μm.
 接着剤80における中空粒子の混合比率は、接着剤80の全量に対して体積比率で45%~85%とすることが好ましい。接着剤80に対する中空粒子の体積比率が45%未満であると、接着剤80のヤング率が低下せず、熱応力を吸収できないため、好ましくない。また、接着剤80に対する中空粒子の体積比率が85%よりも多くなると、接着剤80との混合が不完全となって、接着剤80が耐溶剤性を有さなくなるため、好ましくない。他方、中空粒子の混合比率を、接着剤80の全量に対する体積比率で45%以上85%以下とすると、応力緩和効果と耐溶剤性を有した接着剤80となる。 The mixing ratio of hollow particles in adhesive 80 is preferably 45% to 85% by volume relative to the total amount of adhesive 80. If the volume ratio of hollow particles to adhesive 80 is less than 45%, the Young's modulus of adhesive 80 does not decrease, and thermal stress cannot be absorbed, which is not preferable. Also, if the volume ratio of hollow particles to adhesive 80 is more than 85%, mixing with adhesive 80 becomes incomplete, and adhesive 80 loses solvent resistance, which is not preferable. On the other hand, if the mixing ratio of hollow particles is 45% or more and 85% or less by volume relative to the total amount of adhesive 80, adhesive 80 has a stress relaxation effect and solvent resistance.
 また、アクリル酸エステルを主体とする弾性重合体を含有するアクリルゴム粒子を含有させることで、接着剤80のヤング率を0.5GPa以上3GPa以下としてもよい。このように、接着剤80のヤング率を0.5GPa以上3GPa以下とするための方法は、特に限定されるものではなく、適宜公知の方法を用いて良い。 Also, the Young's modulus of the adhesive 80 may be set to 0.5 GPa or more and 3 GPa or less by adding acrylic rubber particles that contain an elastic polymer mainly composed of acrylic ester. In this way, the method for setting the Young's modulus of the adhesive 80 to 0.5 GPa or more and 3 GPa or less is not particularly limited, and any known method may be used as appropriate.
{プライマー層}
 図5に示すように、接着剤80と天板1021との間には、プライマー層90を設けるのが好ましい。
 天板1021は、金属からなり、その表面張力が低いため、接着剤80の密着性が低い。そこで、天板1021の表面にプライマー層90を設けることで、接着剤80と天板1021の密着性を向上させられる。プライマー層90は、透明で、表面に水酸基を多量に有するような構成であれば、特に限定されない。例えば、シリカ、アルミナあるいはジルコニア等の無機層でプライマー層90を形成するのが好ましい。また、ポリシラザンでプライマー層90を形成するのがより好ましい。
{Primer layer}
As shown in FIG. 5, it is preferable to provide a primer layer 90 between the adhesive 80 and the top plate 1021 .
The top plate 1021 is made of metal and has low surface tension, so that the adhesive 80 has low adhesion to it. Therefore, by providing a primer layer 90 on the surface of the top plate 1021, the adhesion between the adhesive 80 and the top plate 1021 can be improved. The primer layer 90 is not particularly limited as long as it is transparent and has a large amount of hydroxyl groups on the surface. For example, it is preferable to form the primer layer 90 from an inorganic layer such as silica, alumina, or zirconia. It is more preferable to form the primer layer 90 from polysilazane.
 プライマー層90は、例えばオルガチックス有機チタン化合物(マツモトファインケミカル株式会社製 TA-21)が用いられる。オルガチックス有機チタン化合物は、金属原子又はM-OH基(アルコキシド)が存在し、加熱処理による加水分解によってアモルファス(非晶結)酸化チタン膜を形成する。そして、これらが天板1021に含まれるMOM基と結合又はM-OH基と共有結合、あるいは水素結合して、プライマー層90と天板1021の間の密着性が向上する。 For example, Orgatix organotitanium compound (TA-21, manufactured by Matsumoto Fine Chemical Co., Ltd.) is used for the primer layer 90. Orgatix organotitanium compound contains metal atoms or M-OH groups (alkoxide), and forms an amorphous (non-crystallized) titanium oxide film by hydrolysis caused by heat treatment. These then bond with the MOM groups contained in the top plate 1021 or form covalent bonds or hydrogen bonds with the M-OH groups, improving the adhesion between the primer layer 90 and the top plate 1021.
 プライマー層90は、スパッタ法を主とする真空成膜法や、ゾルゲル法により成膜できる。スパッタ法で成膜した場合、プライマー層90が薄膜となってクラックするおそれがあり、所望の特性を得にくい。一方で、ゾルゲル法で成膜した場合、プライマー層90が膜厚0.1μm以上の厚膜となってクラックする可能性が低減するため、所望の特性を得やすい。 The primer layer 90 can be formed by a vacuum film formation method, mainly a sputtering method, or a sol-gel method. When formed by a sputtering method, the primer layer 90 becomes a thin film that may crack, making it difficult to obtain the desired characteristics. On the other hand, when formed by a sol-gel method, the primer layer 90 becomes a thick film with a thickness of 0.1 μm or more, reducing the possibility of cracking, making it easier to obtain the desired characteristics.
 次に、本発明の実施例及び比較例について、好ましい構成を各種の試験により評価した結果を説明する。以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Next, the results of evaluating the preferred configurations of the examples and comparative examples of the present invention through various tests will be described. The present invention will be specifically described below using examples, but the present invention is not limited to these.
[試験1.接着剤種による比較]
 接着剤80におけるマイクロバルーンの有無による剥離強度につき、90度剥離強度試験(JIS K6854-1:1999)によって評価した。
 具体的には、SUS304からなり、プラズマ処理から1日後の天板1021と、PI(ポリイミド)からなる組を6組用意した。初めに、天板1021とPIを、接着しろが10mm幅となるようにそれぞれ90°曲げた。そして、各組の天板1021とPIの接着しろ同士を接着剤で接着させた。
 ここで、半分の第1の組(実施例1)は接着剤Aで接着させた。また、もう半分の第2の組(比較例1)は、接着剤Bで接着させた。表Iに示すように、接着剤Aは、60℃で6時間硬化させた際にヤング率が2.6GPa程度となる、マイクロバルーンを含む接着剤80である。また、接着剤Bは、60℃で6時間硬化させた際にヤング率が5.41GPa程度となる、マイクロバルーンを含まない接着剤である。表IIに実施例1及び比較例1を示す。
[Test 1. Comparison by adhesive type]
The peel strength of the adhesive 80 with and without the microballoons was evaluated by a 90 degree peel strength test (JIS K6854-1:1999).
Specifically, six pairs of a top plate 1021 made of SUS304 one day after plasma treatment and PI (polyimide) were prepared. First, the top plate 1021 and the PI were each bent 90° so that the bonding margin was 10 mm wide. Then, the bonding margins of the top plate 1021 and the PI of each pair were bonded together with an adhesive.
Here, half of the first set (Example 1) was bonded with adhesive A. The other half of the second set (Comparative Example 1) was bonded with adhesive B. As shown in Table I, adhesive A is adhesive 80 containing microballoons, which has a Young's modulus of about 2.6 GPa when cured at 60° C. for 6 hours. Adhesive B is an adhesive not containing microballoons, which has a Young's modulus of about 5.41 GPa when cured at 60° C. for 6 hours. Example 1 and Comparative Example 1 are shown in Table II.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 次いで、実施例1及び比較例1の一部を剥離して、PIが90°折り返された状態にした。そして、引張試験機(東洋精機製作所製のストログラフ)を用いて、各接着物の剥離強度を3回ずつ測定した。 Next, a portion of Example 1 and Comparative Example 1 was peeled off so that the PI was folded back by 90°. The peel strength of each bonded object was then measured three times using a tensile tester (Strograph, manufactured by Toyo Seiki Seisakusho).
 図6は、実施例1の測定結果を示すグラフである。また、図7は比較例1の測定結果を示すグラフである。両図において、横軸はストローク(mm)を示す。また、両図において、縦軸は剥離強度(N/10mm)を示す。 Figure 6 is a graph showing the measurement results for Example 1. Figure 7 is a graph showing the measurement results for Comparative Example 1. In both figures, the horizontal axis shows the stroke (mm). In both figures, the vertical axis shows the peel strength (N/10 mm).
 図6に示すように、マイクロバルーンを含む接着剤Aで接着した実施例1の剥離強度は平均5.7N/10mmであった。また、目視にて凝集破壊率を確認したところ、90%程度であった。一方で、図7に示すように、マイクロバルーンを含まない接着剤Bで接着した比較例1の剥離強度は平均2.1N/10mmであった。また、目視にて凝集破壊率を確認したところ、10%以下であり、界面剥離が生じていた。
 このように、マイクロバルーンの添加により、硬化後の弾性率を低下させた接着剤80を用いる方が、応力が緩和されて剥離強度が高まる。
As shown in Fig. 6, the peel strength of Example 1, which was bonded with adhesive A containing microballoons, was 5.7 N/10 mm on average. The cohesive failure rate was confirmed visually and was about 90%. On the other hand, as shown in Fig. 7, the peel strength of Comparative Example 1, which was bonded with adhesive B not containing microballoons, was 2.1 N/10 mm on average. The cohesive failure rate was confirmed visually and was 10% or less, indicating interfacial peeling.
In this way, the use of adhesive 80 in which the elastic modulus after hardening is reduced by adding microballoons reduces stress and increases peel strength.
[試験2.ヘッド評価]
 初めに、表IIIに示す接着剤A~Hにより天板1021と筐体1022を接続して、表IVに示す実施例2-8、比較例2-5のインクジェットヘッド100を作製した。
[Test 2. Head Evaluation]
First, the top plate 1021 and the housing 1022 were connected with adhesives A to H shown in Table III to prepare the inkjet heads 100 of Example 2-8 and Comparative Example 2-5 shown in Table IV.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 次いで、実施例2-8、比較例2-5のインクジェットヘッド100に、以下に示す試験2-1並びに試験2-2を実施した。 Next, the inkjet heads 100 of Example 2-8 and Comparative Example 2-5 were subjected to Tests 2-1 and 2-2 described below.
(試験2-1.ヒートサイクル試験)
 実施例2-8、比較例2-5のインクジェットヘッド100を、100℃の恒温槽に1時間静置した後に-20℃の恒温槽に1時間静置する操作を1サイクルとして、10サイクル繰り返した。その後、実施例2-8、比較例2-5のインクジェットヘッド100の接合部における封止漏れの有無を確認した。具体的には、インク流路121を10秒間、0.1気圧に減圧して、空気の漏れを測定した。試験2-1の評価基準は以下の通りである。
A:空気の漏れが無かった。
B:空気の漏れが0.2ml以下。
C:空気の漏れが0.2mlを超える。
(Test 2-1. Heat cycle test)
The inkjet heads 100 of Example 2-8 and Comparative Example 2-5 were placed in a thermostatic chamber at 100° C. for 1 hour and then placed in a thermostatic chamber at −20° C. for 1 hour, and this cycle was repeated 10 times. Thereafter, the inkjet heads 100 of Example 2-8 and Comparative Example 2-5 were checked for the presence or absence of sealing leakage at the joints. Specifically, the ink flow path 121 was depressurized to 0.1 atm for 10 seconds, and air leakage was measured. The evaluation criteria for Test 2-1 were as follows.
A: There was no air leakage.
B: Air leakage is 0.2 ml or less.
C: Air leakage exceeds 0.2 ml.
(試験2-2.耐溶剤インク特性試験)
 実施例2-8、比較例2-5のインクジェットヘッド100を、60℃の試験液に1週間浸漬した。本試験における試験液は、溶剤インクに使用される溶剤である、シクロヘキサン、エチルラクテート、キシレン、エチレングリコールモノブチルエーテルである。試験液への浸漬後、インク流路121を10秒間、0.1気圧に減圧して、空気の漏れを測定した。試験2-2の評価基準は以下の通りである。
G:空気の漏れが0.2ml以下。
NG:空気の漏れが0.2mlを超える。
(Test 2-2. Solvent-resistant ink characteristic test)
The inkjet heads 100 of Example 2-8 and Comparative Example 2-5 were immersed in a test liquid at 60° C. for one week. The test liquids in this test were cyclohexane, ethyl lactate, xylene, and ethylene glycol monobutyl ether, which are solvents used in solvent inks. After immersion in the test liquid, the ink flow path 121 was depressurized to 0.1 atm for 10 seconds, and air leakage was measured. The evaluation criteria for Test 2-2 were as follows:
G: Air leakage is 0.2 ml or less.
NG: Air leakage exceeds 0.2 ml.
 表Vに試験2-1及び試験2-2の結果を示す。なお、表Vにおいては、総合評価として、試験2-1が「A」であり、かつ、試験2-2が「G」である場合を「A」としている。また、試験2-1が「B」であり、かつ、試験2-2が「G」である場合を「B」としている。また、試験2-1が「C」である、または、試験2-2が「NG」である場合を「C」としている。 Table V shows the results of Test 2-1 and Test 2-2. In Table V, the overall evaluation is given as "A" when Test 2-1 is "A" and Test 2-2 is "G". Also, when Test 2-1 is "B" and Test 2-2 is "G", it is given as "B". Also, when Test 2-1 is "C" or Test 2-2 is "NG", it is given as "C".
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例5と比較例5、実施例7と比較例3を比較する。すると、硬化後のヤング率が0.5GPa以上3GPa以下の接着剤80で接続することで、熱応力に耐えられ、かつ、耐溶剤性を有するインクジェットヘッド100となることがわかる。 Comparing Example 5 with Comparative Example 5, and Example 7 with Comparative Example 3, it can be seen that by connecting with adhesive 80 having a Young's modulus after curing of 0.5 GPa or more and 3 GPa or less, an inkjet head 100 that can withstand thermal stress and has solvent resistance can be obtained.
 また、実施例2と実施例3、実施例4と実施例5、実施例6と実施例7を比較する。すると、プライマー層90を設けることで、接着剤80の熱応力吸収性が高められることがわかる。 Furthermore, comparing Example 2 with Example 3, Example 4 with Example 5, and Example 6 with Example 7, it is found that providing the primer layer 90 improves the thermal stress absorption of the adhesive 80.
 また、比較例3及び比較例4とその他の実施例及び比較例を比較する。すると、中空粒子が70μm以下であり、かつ、その混合比率が接着剤80の全量に対して体積比率で85%以下である接着剤80を用いることで、耐溶剤性を有するインクジェットヘッド100となることがわかる。 Comparisons 3 and 4 are compared with the other examples and comparative examples. It is found that the inkjet head 100 has solvent resistance by using an adhesive 80 in which the hollow particles are 70 μm or less and the mixing ratio of the hollow particles is 85% or less by volume relative to the total amount of adhesive 80.
[試験3.プライマー層の有無による比較]
 プライマー層90の有無による密着強度につき、90度剥離強度試験(JIS K6854-1:1999)により評価した。
 具体的には、SUS430からなり、プラズマ処理から1日後の天板1021と、PI(ポリイミド)からなる組を2組用意した。そして、各組の天板1021とPIを接着剤Aで接着させた。このとき、第1の組(実施例9)の天板1021にはプライマー層90を設けなかった。また、第2の組(実施例10)の天板1021にはプライマー層90を設けた。なお、本試験におけるプライマー層90は、オルガチックス有機化合物からなり、ゾルゲル法により成膜した厚さ0.1μm以上のものである。次いで、これらの接着物の一部を剥離して、PIが90°折り返された状態にした。そして、引張試験機(東洋精機製作所製のストログラフ)を用いて、各接着物の剥離強度を測定した。
[Test 3. Comparison with and without primer layer]
The adhesive strength with and without the primer layer 90 was evaluated by a 90 degree peel strength test (JIS K6854-1:1999).
Specifically, two sets were prepared, each consisting of a top plate 1021 made of SUS430 and one day after plasma treatment, and PI (polyimide). The top plate 1021 and PI of each set were bonded with adhesive A. At this time, the top plate 1021 of the first set (Example 9) was not provided with a primer layer 90. The top plate 1021 of the second set (Example 10) was provided with a primer layer 90. The primer layer 90 in this test was made of an ORGATIX organic compound, and had a thickness of 0.1 μm or more, formed by the sol-gel method. Next, a part of these adhesives was peeled off, and the PI was folded back by 90°. The peel strength of each adhesive was measured using a tensile tester (Strograph, manufactured by Toyo Seiki Seisakusho).
 図8は試験3の測定結果を示すグラフである。図8において、縦軸は実施例9及び実施例10の剥離強度(N/10mm)を示す。
 図8に示すように、プライマー層90を設けなかった実施例9の剥離強度と比較すると、プライマー層90を設けた実施例10の剥離強度は、約20%向上する。
 このように、天板1021にプライマー層90を設けることで、剥離強度を高められる。
8 is a graph showing the measurement results of Test 3. In Fig. 8, the vertical axis shows the peel strength (N/10 mm) of Examples 9 and 10.
As shown in FIG. 8, the peel strength of Example 10, in which the primer layer 90 is provided, is improved by about 20% compared to the peel strength of Example 9, in which the primer layer 90 is not provided.
By providing the primer layer 90 on the top plate 1021 in this manner, the peel strength can be increased.
[技術的効果]
 以上に示すように、本実施形態に係るインクジェットヘッド100は、ヘッドチップ10と、共通インク室15と、ヒーター105と、が内部に収容されるカバー部材102を備える。そして、カバー部材102は、硬化後のヤング率が0.5GPa以上3GPa以下の接着剤80で接続される第1の部材1021と、第2の部材1022と、を備える。
 当該構成によれば、接着剤80が弾性を有し、接着剤80の接着力を維持しながら熱応力を吸収できる。そのため、相転移型インクの温度変化に伴う体積及び体積収縮率の変化を受けて熱応力が発生しても、当該熱応力に耐えるインクジェットヘッド100となる。
[Technical effect]
As described above, the inkjet head 100 according to this embodiment includes the cover member 102 that houses the head chip 10, the common ink chamber 15, and the heater 105. The cover member 102 includes the first member 1021 and the second member 1022 that are connected with the adhesive 80 having a Young's modulus after hardening of 0.5 GPa or more and 3 GPa or less.
According to this configuration, the adhesive 80 has elasticity and can absorb thermal stress while maintaining the adhesive strength of the adhesive 80. Therefore, even if thermal stress occurs due to changes in the volume and volumetric shrinkage rate associated with temperature changes in the phase-change ink, the inkjet head 100 can withstand the thermal stress.
 また、本実施形態に係るインクジェットヘッド100において、接着剤80は、エポキシ樹脂系接着剤である。
 当該構成によれば、強靭に第1の部材1021と第2の部材1022とを接着できる。
In the inkjet head 100 according to this embodiment, the adhesive 80 is an epoxy resin adhesive.
According to this configuration, the first member 1021 and the second member 1022 can be strongly bonded to each other.
 また、本実施形態に係るインクジェットヘッド100において、接着剤80は、平均粒径が10μm以上70μm以下の中空粒子が添加されている。
 当該構成によれば、接着剤80の接合部における接着封止性能をあまり落とさずに応力緩和効果を持たせられ、かつ、耐溶剤性と両立できる。
In the inkjet head 100 according to this embodiment, the adhesive 80 contains hollow particles having an average particle size of 10 μm or more and 70 μm or less.
According to this configuration, it is possible to provide a stress relaxation effect without significantly reducing the adhesive sealing performance at the joint of the adhesive 80, and it is also possible to achieve solvent resistance.
 また、本実施形態に係るインクジェットヘッド100において、中空粒子は、接着剤80に対して体積比率で45%以上85%以下含有されている。
 接着剤80に対して中空粒子の体積比率を多くすると、接着剤80の硬化性が悪くなり耐溶剤性と接着性能が低下する。しかしながら、上記構成とすることで、耐溶剤性と、ヤング率の低下効果とを両立できる。
In the inkjet head 100 according to this embodiment, the hollow particles are contained in the adhesive 80 at a volume ratio of 45% to 85%.
If the volume ratio of the hollow particles to the adhesive 80 is increased, the curing property of the adhesive 80 deteriorates, and the solvent resistance and adhesive performance decrease. However, by adopting the above-mentioned configuration, it is possible to achieve both the solvent resistance and the effect of decreasing the Young's modulus.
 また、本実施形態に係るインクジェットヘッド100において、接着剤80と第1の部材1021との間にプライマー層90が設けられている。
 当該構成によれば、より第1の部材1021の接着強度を高められる。
In the inkjet head 100 according to this embodiment, a primer layer 90 is provided between the adhesive 80 and the first member 1021 .
According to this configuration, the adhesive strength of the first member 1021 can be further increased.
 また、本実施形態に係るインクジェットヘッド100において、プライマー層90は膜厚が0.1μm以上のものである。
 当該構成によれば、プライマー層90が厚膜となるため、クラックが生じにくくなり、所望の特性を得やすくなる。
In the inkjet head 100 according to this embodiment, the primer layer 90 has a thickness of 0.1 μm or more.
According to this configuration, the primer layer 90 becomes a thick film, so that cracks are less likely to occur and the desired characteristics are more easily obtained.
 また、本実施形態に係るインクジェットヘッド100において、第1の部材1021と第2の部材1022とに接着する接着剤80がインクに当接する。
 従来の発明においては、接着剤80がインクに当接すると、部材間剥離が生じた際に剥離箇所からインクが侵入し、FPC20等の電気接続部に接触して断線が生じていた。しかしながら、本願発明においては、部材間剥離を抑制できるため、上記構成としても電気接続部の断線を抑制できる。
In the inkjet head 100 according to this embodiment, the adhesive 80 that bonds the first member 1021 and the second member 1022 comes into contact with the ink.
In the conventional invention, when the adhesive 80 comes into contact with ink, if peeling occurs between the components, the ink will seep in through the peeled portion and come into contact with the electrical connection parts of the FPC 20, etc., causing a break in the wire. However, in the present invention, peeling between the components can be suppressed, so that even with the above configuration, breaks in the electrical connection parts can be suppressed.
 また、本実施形態に係るインクジェットヘッド100において、ヒーター105は、インクを60℃以上120℃以下に加熱する。
 当該構成によれば、充分に液状に相転移したインクを記録媒体Mに吐出できる。
In the inkjet head 100 according to this embodiment, the heater 105 heats the ink to a temperature of 60° C. or higher and 120° C. or lower.
According to this configuration, ink that has undergone a sufficient phase transition to a liquid state can be ejected onto the recording medium M.
 上記においては、本発明の1つの実施の形態を説明したが、本発明の範囲は、上記の実施の形態に限定するものではない。本発明の範囲は、特許請求の範囲に記載された発明の範囲とその均等の範囲を含む。 The above describes one embodiment of the present invention, but the scope of the present invention is not limited to the above embodiment. The scope of the present invention includes the scope of the invention described in the claims and its equivalents.
 本発明は、冷熱繰り返しの耐久性に優れたインクジェットヘッド及びインクジェット記録装置に利用することができる。 The present invention can be used in inkjet heads and inkjet recording devices that have excellent durability against repeated hot and cold cycles.
1 インクジェット記録装置
10 ヘッドチップ
102 カバー部材
1021 天板(第1の部材)
1021b 露出貫通孔
1022 筐体(第2の部材)
105 ヒーター
111 ノズル
112 ノズル開口面
15 共通インク室
80 接着剤
90 プライマー層
100 インクジェットヘッド
1 Inkjet recording apparatus 10 Head chip 102 Cover member 1021 Top plate (first member)
1021b Exposure through hole 1022 Housing (second member)
105 heater 111 nozzle 112 nozzle opening surface 15 common ink chamber 80 adhesive 90 primer layer 100 inkjet head

Claims (9)

  1.  相転移温度で可逆的に相転移するインクを吐出するノズルが形成されたヘッドチップを備えたインクジェットヘッドであって、
     前記ヘッドチップと、前記ヘッドチップにインクを供給する共通インク室と、当該共通インク室の外側からインクを加熱するヒーターと、が内部に収容されるカバー部材を備え、
     前記カバー部材は、前記ヘッドチップのノズル開口面を露出させる露出貫通孔を備える第1の部材と、当該第1の部材の下面と接続され、前記ヘッドチップ及び前記共通インク室の側面部を覆う第2の部材と、を備え、
     前記第1の部材と前記第2の部材とは、硬化後のヤング率が0.5GPa以上3GPa以下の接着剤で接続されているインクジェットヘッド。
    An inkjet head including a head chip having a nozzle formed therein for ejecting ink that undergoes a reversible phase transition at a phase transition temperature,
    a cover member that accommodates the head chip, a common ink chamber that supplies ink to the head chip, and a heater that heats the ink from outside the common ink chamber;
    the cover member comprises a first member having an exposure through hole for exposing a nozzle opening surface of the head chip, and a second member connected to a lower surface of the first member and covering a side surface of the head chip and the common ink chamber,
    The inkjet head, wherein the first member and the second member are connected to each other with an adhesive having a Young's modulus after hardening of 0.5 GPa or more and 3 GPa or less.
  2.  前記接着剤は、エポキシ樹脂系接着剤である請求項1に記載のインクジェットヘッド。 The inkjet head according to claim 1, wherein the adhesive is an epoxy resin adhesive.
  3.  前記接着剤は、平均粒径が10μm以上70μm以下の中空粒子が添加されている請求項2に記載のインクジェットヘッド。 The inkjet head according to claim 2, wherein the adhesive contains hollow particles having an average particle size of 10 μm or more and 70 μm or less.
  4.  前記中空粒子は、前記接着剤に対して体積比率で45%以上85%以下含有されている請求項3に記載のインクジェットヘッド。 The inkjet head according to claim 3, wherein the hollow particles are contained in the adhesive at a volume ratio of 45% to 85%.
  5.  前記接着剤と前記第1の部材との間にプライマー層が設けられている請求項1から4のいずれか一項に記載のインクジェットヘッド。 An inkjet head according to any one of claims 1 to 4, wherein a primer layer is provided between the adhesive and the first member.
  6.  前記プライマー層は膜厚が0.1μm以上のものである請求項5に記載のインクジェットヘッド。 The inkjet head according to claim 5, wherein the primer layer has a thickness of 0.1 μm or more.
  7.  前記第1の部材と前記第2の部材とを接続する接着剤がインクに当接する請求項1から4のいずれか一項に記載のインクジェットヘッド。 An inkjet head according to any one of claims 1 to 4, in which the adhesive connecting the first member and the second member contacts the ink.
  8.  前記ヒーターは、インクを60℃以上120℃以下に加熱する請求項1から4のいずれか一項に記載のインクジェットヘッド。 An inkjet head according to any one of claims 1 to 4, wherein the heater heats the ink to 60°C or higher and 120°C or lower.
  9.  請求項1から4のいずれか一項に記載のインクジェットヘッドを備えるインクジェット記録装置。 An inkjet recording device equipped with an inkjet head according to any one of claims 1 to 4.
PCT/JP2024/005150 2023-03-16 2024-02-15 Inkjet head and inkjet recording device WO2024190249A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-042296 2023-03-16
JP2023042296 2023-03-16

Publications (1)

Publication Number Publication Date
WO2024190249A1 true WO2024190249A1 (en) 2024-09-19

Family

ID=92755215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/005150 WO2024190249A1 (en) 2023-03-16 2024-02-15 Inkjet head and inkjet recording device

Country Status (1)

Country Link
WO (1) WO2024190249A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040004649A1 (en) * 2002-07-03 2004-01-08 Andreas Bibl Printhead
JP2009149056A (en) * 2007-11-30 2009-07-09 Canon Inc Inkjet recording head and inkjet recording apparatus
JP2012011560A (en) * 2010-06-29 2012-01-19 Seiko Epson Corp Liquid ejection head
JP2015145062A (en) * 2014-01-31 2015-08-13 セイコーエプソン株式会社 Liquid ejection head and liquid ejection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040004649A1 (en) * 2002-07-03 2004-01-08 Andreas Bibl Printhead
JP2009149056A (en) * 2007-11-30 2009-07-09 Canon Inc Inkjet recording head and inkjet recording apparatus
JP2012011560A (en) * 2010-06-29 2012-01-19 Seiko Epson Corp Liquid ejection head
JP2015145062A (en) * 2014-01-31 2015-08-13 セイコーエプソン株式会社 Liquid ejection head and liquid ejection device

Similar Documents

Publication Publication Date Title
US7585060B2 (en) Liquid ejecting head and liquid ejecting apparatus
US6170931B1 (en) Ink jet heater chip module including a nozzle plate coupling a heater chip to a carrier
JP2007050638A (en) Device mounting structure, device mounting method, electronic device, droplet ejecting head, and droplet ejector
US8608287B2 (en) Printhead module
US9004648B2 (en) Inkjet printheads containing epoxy adhesives and methods for fabrication thereof
JP5059300B2 (en) Inkjet head
WO2024190249A1 (en) Inkjet head and inkjet recording device
US7589420B2 (en) Print head with reduced bonding stress and method
CN107433777B (en) Liquid ejecting head and liquid ejecting apparatus
KR101867275B1 (en) Inket printhead and method of manufacturing the same
US11027549B2 (en) Bonding structure, head module, head device, and liquid discharge apparatus
JP2017213845A (en) Liquid jet head and liquid jet device
JP2002331667A (en) Recording head, its manufacturing method and ink jet recorder
WO2003078167A1 (en) Liquid jet head and liquid jet device
JP4109898B2 (en) Inkjet recording head
JP2007050639A (en) Device mounting structure, device mounting method, electronic device, droplet ejecting head, and droplet ejector
US7438394B2 (en) Inkjet head and method for making the same
JP2007190684A (en) Head unit and liquid ejector
JP2004001382A (en) Printing head for ink jet
JPH10337875A (en) Nozzle forming member, manufacture thereof and ink jet head
JP7540237B2 (en) LIQUID EJECTION HEAD, HEAD MODULE, LIQUID CARTRIDGE, LIQUID EJECTION UNIT, AND LIQUID EJECTION APPARATUS
CN112622446B (en) Ink jet head and ink jet printer
JP7147319B2 (en) Liquid ejecting device and liquid ejecting head
JP2001030488A (en) Ink-jet head and its manufacture
JP2019104131A (en) Manufacturing method of ink jet head, ink jet head, and image forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24770364

Country of ref document: EP

Kind code of ref document: A1