[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024189889A1 - Indoor unit of air conditioner, and air conditioner provided with same - Google Patents

Indoor unit of air conditioner, and air conditioner provided with same Download PDF

Info

Publication number
WO2024189889A1
WO2024189889A1 PCT/JP2023/010295 JP2023010295W WO2024189889A1 WO 2024189889 A1 WO2024189889 A1 WO 2024189889A1 JP 2023010295 W JP2023010295 W JP 2023010295W WO 2024189889 A1 WO2024189889 A1 WO 2024189889A1
Authority
WO
WIPO (PCT)
Prior art keywords
blower
indoor unit
air conditioner
fan
scroll casing
Prior art date
Application number
PCT/JP2023/010295
Other languages
French (fr)
Japanese (ja)
Inventor
惇司 河野
拓矢 寺本
奈穂 安達
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2023/010295 priority Critical patent/WO2024189889A1/en
Publication of WO2024189889A1 publication Critical patent/WO2024189889A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0033Indoor units, e.g. fan coil units characterised by fans having two or more fans

Definitions

  • This disclosure relates to an indoor unit for an air conditioner and an air conditioner equipped with the same.
  • the cross-flow fan of Patent Document 1 is characterized in that an impeller is configured with multiple blades around a central axis between partition plates provided at both ends in the central axis direction, and in that the rotation of the impeller causes air to flow through and blow out from one peripheral side of the impeller facing the suction side to the other peripheral side, multiple auxiliary blades are provided around the central axis on the outer surface of the partition plate, and an auxiliary casing is provided that covers the auxiliary blades rotating around the central axis on one peripheral side, and the auxiliary blades are configured as a centrifugal fan that draws in air in the central axis direction and blows out air to the other peripheral side.
  • the auxiliary blades can suppress the drop in flow rate at the fan ends of the cross-flow fan, making the distribution of the blowing flow rate uniform along the central axis, and preventing backflow on the side walls caused by uneven flow rate at low flow rates.
  • This disclosure has been made to solve the problems described above, and aims to provide an indoor unit for an air conditioner with improved pressure recovery, and an air conditioner equipped with the same.
  • the indoor unit of the air conditioner comprises a housing in which an intake port and an exhaust port are formed, a heat exchanger provided inside the housing, a first blower provided inside the housing downstream of the heat exchanger and configured as a cross-flow fan rotating about a first rotation shaft, a second blower provided on both ends of the first blower in the direction of the first rotation shaft and configured as a centrifugal fan rotating about a second rotation shaft, and a scroll casing provided on the outer periphery of the second blower and forming an exhaust air passage for the second blower, the second blower having a disk-shaped or annular
  • the rotor blade has a main plate with a circular cross section, an annular side plate arranged opposite the main plate, and a plurality of blades arranged in a circumferential direction centered on the second rotating shaft, with one end connected to the main plate and the other end connected to the side plate.
  • Each of the plurality of blades has an inner peripheral end located on the second rotating shaft side in a radial direction centered on the second rotating shaft, an outer peripheral end located on the outer side of the inner peripheral end in the radial direction, a sirocco blade portion that includes the outer peripheral end and forms a forward blade with an outlet angle greater than 90 degrees, and a turbo blade portion that includes the inner peripheral end and forms a backward blade.
  • the air conditioner disclosed herein is equipped with the above indoor unit and an outdoor unit.
  • each of the blades of the second blower has a sirocco blade portion that includes an outer circumferential end and forms a forward-facing blade with an outlet angle greater than 90 degrees, and a turbo blade portion that includes an inner circumferential end and forms a backward-facing blade, so that pressure recovery can be improved compared to when a sirocco fan or radial fan is used as the second blower.
  • FIG. 1 is an external perspective view of an indoor unit of an air conditioner according to a first embodiment, as viewed from the front side.
  • FIG. 1 is a schematic front view showing the internal configuration of an indoor unit of an air conditioner according to Embodiment 1.
  • FIG. 3 is a schematic side view of the AA cross section of FIG. 2 as viewed in the direction of the arrows.
  • 3 is a schematic side view of the BB cross section of FIG. 2 as viewed in the direction of the arrows.
  • FIG. 3 is an enlarged schematic front view of part C in FIG. 2 .
  • FIG. 2 is an external perspective view of the scroll casing according to the first embodiment, as viewed from the first blower side.
  • FIG. 2 is an external perspective view of the scroll casing according to the first embodiment, as viewed from the side wall side.
  • FIG. 2 is a schematic front view showing a first fan and a second fan according to the first embodiment.
  • FIG. 2 is a schematic side view showing the first fan according to the first embodiment.
  • FIG. 4 is a schematic side view showing the second fan according to the first embodiment.
  • FIG. 10 is a partial enlarged view of the first blower shown in FIG. 9 .
  • FIG. 11 is a partial enlarged view of the second blower shown in FIG. 10 .
  • FIG. 2 is a perspective view showing a second fan according to the first embodiment.
  • FIG. 6 is an enlarged schematic front view of a portion D in FIG. 5 .
  • 15 is a schematic plan view of part E in FIG.
  • FIG. 6 is an enlarged schematic front view of a modified example of the portion D in FIG. 5 .
  • 11 is a schematic front view showing an enlarged view of a portion of the internal configuration of an indoor unit of an air conditioner according to a second embodiment.
  • FIG. 11 is a schematic front view showing an enlarged view of a portion of the internal configuration of an indoor unit of an air conditioner according to embodiment 3.
  • FIG. 13 is a diagram showing a configuration example of an air conditioner according to a fourth embodiment.
  • FIG. 1 is an external perspective view of an indoor unit 100 of an air conditioner according to embodiment 1, as viewed from the front side.
  • the indoor unit 100 has a rear case 1, the rear surface 1a of which is attached to a wall surface, and a box-shaped housing 2, which is attached to the front surface of the rear case 1 and forms an outer shell.
  • the housing 2 is formed with an inlet 3 for mainly drawing indoor air into the interior and an outlet 4 for supplying conditioned air to an area to be air-conditioned.
  • the inlet 3 is formed as an opening in the upper part of the housing 2, and the outlet 4 is formed as an opening in the lower part of the housing 2.
  • An openable front design panel 5 is attached to the front surface of the housing 2.
  • side walls 2a are provided on the left and right sides of the housing 2.
  • side walls 2a are provided on the left and right sides of the housing 2.
  • a wall-mounted indoor unit is described in the embodiment, a floor-standing or ceiling cassette type indoor unit may also be used, in which case the positions of the inlet and outlet depend on the shape of the indoor unit.
  • FIG. 2 is a schematic front view showing the internal configuration of the indoor unit 100 of the air conditioner according to the first embodiment.
  • FIG. 3 is a schematic side view of the A-A cross section of FIG. 2, seen in the direction of the arrows.
  • FIG. 4 is a schematic side view of the B-B cross section of FIG. 2, seen in the direction of the arrows.
  • FIG. 5 is a schematic front view of an enlarged C section of FIG. 2.
  • FIG. 6 is an external perspective view of the scroll casing 31 according to the first embodiment, seen from the first blower 20 side.
  • FIG. 7 is an external perspective view of the scroll casing 31 according to the first embodiment, seen from the side wall 2a side.
  • the dashed arrows in FIG. 2, FIG. 3, and FIG. 5 indicate the flow of air (air current).
  • the inside of the indoor unit 100 is provided with a first blower 20 and two second blowers 30 that suck in indoor air from the intake port 3 and blow out conditioned air from the exhaust port 4.
  • the two second blowers 30 are provided on both ends of the first blower 20 in the direction of the rotation axis O (the direction in which the shaft 15 described later extends, and the left-right direction in FIG. 2).
  • a heat exchanger 7 is provided in the air passage from the intake port 3 to the exhaust port 4, with its longitudinal direction being the left-right direction, and which creates conditioned air by exchanging heat between the refrigerant and the indoor air.
  • a front air passage wall 8 and a rear air passage wall 9 are provided, which form a first exhaust air passage 42a from the downstream side of the first blower 20 to the exhaust port 4. Furthermore, on the downstream side of each second blower 30, a scroll casing 31 is provided, which forms a second exhaust air passage 42b from the downstream side of the second blower 30 to the exhaust port 4.
  • the rear air passage wall 9 is also referred to as the casing.
  • the heat exchanger 7 is disposed downstream of the intake port 3 and upstream of the first blower 20 and the two second blowers 30.
  • a fin-tube type heat exchanger or the like may be used for this heat exchanger 7.
  • the heat exchanger 7 exchanges heat between the refrigerant and the indoor air. For example, during cooling operation, it functions as an evaporator, evaporating and vaporizing the refrigerant. During heating operation, it functions as a condenser, condensing and liquefying the refrigerant.
  • the first blower 20 and the two second blowers 30 are arranged upstream of the air outlet 4 and downstream of the heat exchanger 7.
  • the first blower 20 is a cross-flow fan
  • the second blower 30 is a centrifugal fan.
  • An air passage front wall 8 and an air passage rear wall 9 are provided on the outer periphery of the first blower 20.
  • a scroll casing 31 is provided on the outer periphery of the second blower 30. These components communicate an air flow path within the housing 2.
  • the air passage front wall 8 has a tongue portion 8a and is located on the front side and below the first blower 20.
  • the tongue portion 8a is provided on the front side and below the first blower 20.
  • the air passage rear wall 9 is located on the rear side of the first blower 20.
  • the scroll casing 31 has a tongue portion 31a and is provided on the side wall 2a side of the first blower 20.
  • the tongue portion 31a is provided on the front and lower side of the second blower 30.
  • the second blower 30 is provided at both ends of the rotation axis O direction of the first blower 20, and a cross-flow fan is used for the first blower 20, and a centrifugal fan with higher aerodynamic characteristics at high static pressure than a cross-flow fan is used for the second blower 30.
  • the scroll casing 31 has a recess 31b on the first blower 20 side that is recessed toward the side wall 2a and in which the second blower 30 is disposed.
  • a bell mouth 51 is provided on the opposite side of the scroll casing 31 from the first blower 20 (the side wall 2a side) to form an intake port 31d that takes in air sucked in from the intake port 3 into the second blower 30 in the scroll casing 31.
  • An exhaust port 31e is formed on the exhaust port 4 side of the scroll casing 31 to blow air out of the scroll casing 31.
  • An air duct partition plate 50 is formed on the heat exchanger 7 side of the scroll casing 31.
  • This air duct partition plate 50 is a plate-shaped member that protrudes toward the heat exchanger 7 from the outer circumferential end of the scroll casing 31 on the heat exchanger 7 side.
  • the air passage partition plate 50 divides the air passage from the air intake 3 to the upstream side of the first blower 20 and the two second blowers 30 into a first air intake passage 41a from the air intake 3 to the upstream side of the first blower 20 and a second air intake passage 41b from the air intake 3 to the upstream side of the second blower 30.
  • the air passage partition plate 50 may be in contact with the heat exchanger 7, or there may be a gap between the air passage partition plate 50 and the heat exchanger 7.
  • the suction air duct from the suction port 3 to the upstream sides of the first blower 20 and the two second blowers 30 is divided into a first suction air duct 41a and a second suction air duct 41b by an air duct partition plate 50.
  • the first blower 20 is not affected by the second blower 30, and the operation of each is stabilized, thereby suppressing an increase in input noise.
  • FIG. 8 is a schematic front view showing the first blower 20 and the second blower 30 according to the first embodiment.
  • FIG. 9 is a schematic side view showing the first blower 20 according to the first embodiment.
  • FIG. 10 is a schematic side view showing the second blower 30 according to the first embodiment.
  • FIG. 11 is a partially enlarged view of the first blower 20 shown in FIG. 9.
  • FIG. 12 is a partially enlarged view of the second blower 30 shown in FIG. 10.
  • FIG. 13 is a perspective view showing the second blower 30 according to the first embodiment. Note that FIG. 8 shows only a part of the right side of the first blower 20 and the right second blower 30, and does not show a part of the left side of the first blower 20 and the left second blower 30.
  • the solid arrows in FIG. 9, FIG. 10, and FIG. 13 indicate the direction of rotation of the first blower 20 or the second blower 30.
  • the first blower 20 is configured with one blower unit consisting of two disk-shaped or annular partition plates 21 and a plurality of first blades 26 connected to the two partition plates 21 facing each other in the direction of the rotation axis O and arranged in the circumferential direction centered on the rotation axis O, and is configured with approximately 7 to 14 blower units connected in the direction of the rotation axis O.
  • the second blower 30 is equipped with a disk-shaped or annular main plate 32, an annular side plate 33 arranged facing the main plate 32 in the direction of the rotation axis O, and a plurality of second blades 36 connected to the main plate 32 and the side plate 33 and arranged in the circumferential direction centered on the rotation axis O.
  • the main plate 32 is disposed on the first blower 20 side, and the side plate 33 is disposed on the bellmouth 51 side.
  • the one closest to the second blower 30 also serves as the main plate 32 of the second blower 30, and they are the same.
  • the partition plate 21 closest to the second blower 30 and the main plate 32 may each be provided as separate bodies.
  • the outer diameter of the partition plate 21 of the first blower 20 and the outer diameter of the side plate 33 of the second blower 30 are the same length. In this way, by making the outer diameter of the partition plate 21 of the first blower 20 and the outer diameter of the side plate 33 of the second blower 30 the same length, the tongue portion 8a of the air passage front wall 8 of the first blower 20 and the tongue portion 31a of the scroll casing 31 of the second blower 30 can be in the same position when viewed from the side, which simplifies the parts that make up the indoor unit 100 and improves manufacturability.
  • the second blade 36 has a sirocco blade portion 36a including an outer peripheral end 36o and configured as a forward blade (a blade facing in the direction of rotation), and a turbo blade portion 36b including an inner peripheral end 36i and configured as a rearward blade (a blade facing in the opposite direction of rotation).
  • the sirocco blade portion 36a constitutes the outer peripheral side of the second blade 36
  • the turbo blade portion 36b constitutes the inner peripheral side of the second blade 36. That is, in the radial direction of the second blower 30, the second blade 36 is configured in the order of the turbo blade portion 36b and the sirocco blade portion 36a from the rotation axis O toward the outer peripheral side.
  • the sirocco blade portion 36a and the turbo blade portion 36b are formed integrally.
  • the turbo blade portion 36b constitutes the leading edge 36i1 of the second blade 36
  • the sirocco blade portion 36a constitutes the trailing edge 36o1 of the second blade 36.
  • the turbo region 36br is larger than the sirocco region 36ar.
  • the outlet angle of the sirocco blade portion 36a of the second blade 36 is ⁇ 1
  • the outlet angle of the turbo blade portion 36b of the second blade 36 is ⁇ 2.
  • the outlet angle ⁇ 1 is defined as the angle between the tangent TL1 of the circle C3 and the tangent TL2 of the outer peripheral end 36o on the negative pressure surface 36n side at the intersection of the arc of the circle C3 centered on the rotation axis O and the outer peripheral end 36o.
  • the outlet angle ⁇ 2 is defined as the angle between the tangent TL3 of the circle C2 and the tangent TL4 of the turbo blade portion 36b on the negative pressure surface 36n side at the intersection of the arc of the circle C2 centered on the rotation axis O and the turbo blade portion 36b.
  • the outlet angle ⁇ 1 of the sirocco blade portion 36a of the second blade 36 is an angle larger than 90 degrees
  • the outlet angle ⁇ 2 of the turbo blade portion 36b of the second blade 36 is an angle smaller than 90 degrees.
  • the surface of the second blade 36 facing the direction of rotation is the positive pressure surface 36p
  • the surface opposite the positive pressure surface 36p is the negative pressure surface 36n.
  • the inlet angle of the first blade 26 is ⁇ 1
  • the inlet angle of the second blade 36 is ⁇ 2.
  • the inlet angle ⁇ 1 is defined as the angle between the tangent TL5 of the circle C4 and the tangent TL6 of the inner circumferential ends 26i, 36i on the negative pressure surface 26n, 36n side at the intersection of the arc of the circle C4 centered on the rotation axis O and the inner circumferential end 26i.
  • the inlet angle ⁇ 2 is defined as the angle between the tangent TL7 of the circle C1 and the tangent TL8 of the inner circumferential end 36i on the negative pressure surface 36n side at the intersection of the arc of the circle C1 centered on the rotation axis O and the inner circumferential end 36i.
  • the inlet angle ⁇ 2 of the second blade 36 is smaller than the inlet angle ⁇ 1 of the first blade 26.
  • the surface of the first blade 26 facing the direction of rotation is the positive pressure surface 26p, and the surface opposite the positive pressure surface 26p is the negative pressure surface 26n.
  • the inlet angle ⁇ 2 of the second blade 36 at the left and right ends of the indoor unit 100 where ventilation resistance is high is made smaller than the inlet angle ⁇ 1 of the first blade 26 at the center of the indoor unit 100, thereby reducing leading edge separation of the airflow.
  • the blade length WL of the second blade 36 is defined as the distance between the inner circumferential end 26i and the outer circumferential end 36o in a cross section perpendicular to the second rotation axis of the second blower 30.
  • the second blade 36 of the second blower 30 is formed such that the blade length WL in a first region R1 closer to the main plate 32 than the intermediate position CT (see FIG. 13) in the direction of the rotation axis O is longer than the blade length WL in a second region R2 closer to the side plate 33 than the intermediate position CT in the direction of the rotation axis O.
  • the airflow can easily flow to the main plate 32 side, and the air speed distribution blowing out from the end side of the indoor unit 100 can be made uniform.
  • first blower 20 rotates in the direction of the arrow R in FIG. 3, it sucks in air between the first blades 26 on the first intake air passage 41a side and blows out air between the first blades 26 on the first exhaust air passage 42a side.
  • second blower 30 rotates in the direction of the arrow R in FIG. 4, it sucks in air that has passed through the heat exchanger 7 from the bell mouth 51 provided on the opposite side (side wall 2a side) of the scroll casing 31 from the first blower 20, and blows out air from the outlet 31e of the scroll casing 31.
  • the second blowers 30 are provided on both the left and right ends of the first blower 20 and are connected by the same shaft 15.
  • first rotating shaft which is the rotating shaft of the first blower 20
  • second rotating shaft which is the rotating shaft of the second blower 30
  • the first blower 20 and the two second blowers 30 are driven to rotate by the same motor (not shown).
  • first blower 20 and the two second blowers 30 are connected by the same shaft 15, but the present invention is not limited to this.
  • a separate shaft 15 may be provided for each of the first blower 20 and the two second blowers 30, the partition plate 21 and the main plate 32 closest to the second blower 30 may be provided as separate bodies, and the first blower 20 and the two second blowers 30 may be installed in parallel in the left-right direction, and each may be driven to rotate by a separate motor (not shown).
  • the intake port 3 is provided with a finger guard (not shown) and a filter 13.
  • the outlet port 4 is provided with an up-down air deflector 11 that changes the blowing direction in the up-down direction.
  • the first outlet air passage 42a which runs from the downstream side of the first blower 20 to the outlet port 4, is provided with a left-right air deflector 12 that changes the blowing direction in the left-right direction.
  • a plate member 16 is provided within the housing 2 to prevent the air that has passed through the second intake air passage 41b from flowing anywhere other than the bell mouth 51 of the scroll casing 31, that is, to prevent the air that has passed through the second intake air passage 41b from leaking into the housing 2.
  • indoor air flows into the indoor unit 100 from the intake port 3 formed in the upper part of the housing 2 by the first blower 20 and the two second blowers 30. At this time, dust contained in the air is removed by the filter 13.
  • this indoor air passes through the heat exchanger 7, it is heated or cooled by the refrigerant flowing through the heat exchanger 7 to become conditioned air.
  • the conditioned air is divided into one that flows through the first intake air duct 41a, the first blower 20, and the first exhaust air duct 42a, and one that flows through the second intake air duct 41b, the second blower 30, and the second exhaust air duct 42b, and is blown out from the exhaust port 4 formed in the lower part of the housing 2 to the outside of the indoor unit 100, that is, to the area to be air-conditioned.
  • the direction of the conditioned air blown out to the area to be air-conditioned is changed by the up-down air deflector 11 and the left-right air deflector 12.
  • the first distance W1 from the point on the air passage rear wall 9 of the first blower 20 closest to the rear surface 1a of the rear case 1 to the rear surface 1a of the rear case 1 is shorter than the second distance W2 from the point on the scroll casing 31 of the second blower 30 closest to the rear surface 1a of the rear case 1 to the rear surface 1a of the rear case 1 (i.e., W1 ⁇ W2).
  • the first distance W1 from the part of the air passage rear wall 9 of the first blower 20 closest to the rear surface 1a of the rear case 1 to the rear surface 1a of the rear case 1 is made shorter than the second distance W2 from the part of the scroll casing 31 of the second blower 30 closest to the rear surface 1a of the rear case 1 to the rear surface 1a of the rear case 1, thereby increasing the pressure loss of the second outlet air passage 42b, suppressing the excessive suction ratio of the second blower 30, stabilizing the operation of the first blower 20 and the second blower 30, and suppressing an increase in input noise.
  • the maximum point (vertex) X of the height of the scroll casing 31 in the direction of the rotation axis O is located between the outer peripheral end E1 and the inner peripheral end E2 on the heat exchanger 7 side of the scroll casing 31.
  • the height of the scroll casing 31 in the direction of the rotation axis O gradually increases from the outer peripheral end E1 on the heat exchanger 7 side of the scroll casing 31 toward the position of maximum point X on the suction port 31d side, and gradually decreases from the position of maximum point X toward the inner peripheral end E2 on the heat exchanger 7 side.
  • the air flowing into the second blower 30 flows into the suction port 31d through the gap between the scroll casing 31 and the side wall 2a of the housing 2, resulting in high pressure loss in the second suction air passage 41b.
  • the second suction air passage 41b expands from the position of the maximum point X toward the inner peripheral end E2 on the heat exchanger 7 side, reducing pressure loss in the second suction air passage 41b and reducing the input noise of the second blower 30.
  • the maximum point X of the height of the scroll casing 31 in the direction of the rotation axis O is located inside the outer end 7a of the heat exchanger 7 in the direction of the rotation axis O.
  • the outer end of the second blower 30 on the side of the suction port 31d is located inside the outer end 7a of the heat exchanger 7.
  • the suction port 31d of the scroll casing 31 is located within the installation range of the heat exchanger 7.
  • the air that has passed through the heat exchanger 7 flows directly into the second blower 30, reducing the pressure loss in the second suction air passage 41b, and the input noise of the second blower 30 can be reduced.
  • the width H1 of the second intake air passage 41b which is the distance from the air passage partition plate 50 to the outer end 7a of the heat exchanger 7 in the direction of the rotation axis O, is equal to the width H2 of the second exhaust air passage 42b, which is the height of the scroll casing 31, or the second intake air passage 41b and the second exhaust air passage 42b are formed so that the width H1 of the second intake air passage 41b is greater than the width H2 of the second exhaust air passage 42b.
  • FIG. 14 is a front view of an enlarged D portion of FIG. 5.
  • FIG. 15 is a plan view of an E portion of FIG. 14 as viewed in the direction of the arrow.
  • FIG. 16 is a front view of an enlarged D portion of FIG. 5.
  • the second blower 30 has a main plate 32 on the first blower 20 side in the direction of the rotation axis O, and a side plate 33 on the opposite side (side wall 2a side) of the first blower 20 in the direction of the rotation axis O.
  • a gap G of about 4 mm is formed between the outer peripheral end 32a of the main plate 32 and the inner peripheral end 31f of the scroll casing 31 on the main plate 32 side.
  • the main plate 32 and the inner peripheral end 31f of the scroll casing 31 on the main plate 32 side are arranged so as to coincide with each other, that is, so that they all overlap (face each other).
  • the main plate 32 and the inner peripheral end 31f of the scroll casing 31 on the main plate 32 side may be arranged slightly offset in the direction of the rotation axis O so that they partially overlap (face each other).
  • the indoor unit 100 of the air conditioner comprises a housing 2 in which an intake port 3 and an exhaust port 4 are formed, a heat exchanger 7 provided inside the housing 2, a first blower 20 provided inside the housing 2 downstream of the heat exchanger 7 and configured as a cross-flow fan rotating about a first rotation axis, a second blower 30 provided on both ends of the first blower 20 in the direction of the first rotation axis and configured as a centrifugal fan rotating about a second rotation axis, and a scroll casing 31 provided on the outer periphery of the second blower 30 and forming an outlet air passage for the second blower 30, the second blower 30 being a disk-shaped or
  • the rotor blade 30 includes an annular main plate 32, an annular side plate 33 arranged opposite the main plate 32, and a plurality of blades arranged in a circumferential direction centered on the second rotating shaft, with one end connected to the main plate 32 and the other end connected to the side plate 33.
  • Each of the blades has an inner circumferential end 36i located on the second rotating shaft side in the radial direction centered on the second rotating shaft, an outer circumferential end 36o located on the outer side of the inner circumferential end 36i in the radial direction, a sirocco blade portion 36a including the outer circumferential end 36o and constituting a forward blade with an outlet angle ⁇ 1 greater than 90 degrees, and a turbo blade portion 36b including the inner circumferential end 36i and constituting a backward blade.
  • each of the blades of the second blower 30 has a sirocco blade portion 36a that includes the outer circumferential end 36o and forms a forward-facing blade with an outlet angle ⁇ 1 greater than 90 degrees, and a turbo blade portion 36b that includes the inner circumferential end 36i and forms a backward-facing blade, so that pressure recovery can be improved compared to when a sirocco fan or a radial fan is used as the second blower 30.
  • the second blower 30 on both ends of the first blower 20 in the first rotation axis direction, configuring the first blower 20 as a cross-flow fan, and configuring the second blower 30 as a centrifugal fan that has higher aerodynamic characteristics at high static pressure than a cross-flow fan, reverse suction is eliminated at both left and right ends of the indoor unit 100 even at low air volume or high pressure loss, so that an increase in input noise due to reverse suction can be suppressed, and condensation caused by contact of moist air with the surface of the air outlet 4 due to reverse suction during cooling operation can also be suppressed.
  • the first blower 20 has multiple blades arranged in a circumferential direction centered on the first rotation axis, and the inlet angle ⁇ 2 of the multiple blades of the second blower 30 is smaller than the inlet angle ⁇ 1 of the multiple blades of the first blower 20.
  • the inlet angle ⁇ 2 of the blades of the second blower 30 at both ends of the first blower 20, where the ventilation resistance is high is made smaller than the inlet angle ⁇ 1 of the blades of the first blower 20 between the second blowers 30, thereby reducing leading edge separation of the airflow.
  • the scroll casing 31 has a bell mouth 51 that forms an intake port 31d that draws air into the scroll casing 31, and the bell mouth 51 is provided on the opposite side to the first blower 20 in the direction of the second rotation axis.
  • the indoor unit 100 of the air conditioner by providing a bell mouth 51 on the opposite side to the first blower 20, the flow coming in from the bell mouth 51 can be rectified and the air passage pressure loss in the intake air passage can be reduced.
  • the first blower 20 and the second blower 30 can be configured as one unit, and by measuring one location, it is possible to determine whether the gap G between the outer peripheral end 32a of the main plate 32 and the inner peripheral end 31f on the main plate 32 side of the scroll casing 31 is secured, making tolerance management easier.
  • the multiple blades of the second blower 30 are formed so that the blade length WL in the first region R1 closer to the main plate 32 than the intermediate position CT in the second rotational shaft direction is longer than the blade length WL in the second region R2 closer to the side plate 33 than the intermediate position CT in the second rotational shaft direction.
  • the blades of the second blower 30 are formed so that the blade length WL in the first region R1 is longer than the blade length WL in the second region R2, which makes it easier for the airflow to flow to the main board 32 side, and makes it possible to uniformize the distribution of the air speed blowing out from the end side of the indoor unit 100.
  • the indoor unit 100 of the air conditioner according to embodiment 1 is provided with a casing that is provided on the outer periphery of the first blower 20 and forms the airflow path of the first blower 20, and the first distance W1 from the point of the casing closest to the rear surface to the rear surface is shorter than the second distance W2 from the point of the scroll casing 31 closest to the rear surface to the rear surface.
  • the indoor unit 100 of the air conditioner of embodiment 1 by making the first distance W1 shorter than the second distance W2, the pressure loss in the second outlet air passage 42b is increased, and the suction ratio of the second blower 30 is prevented from becoming excessive, the operation of the first blower 20 and the second blower 30 can be stabilized, and an increase in input noise can be suppressed.
  • the maximum point X of the height in the second rotation axis direction of the scroll casing 31 is located between the outer circumferential end E1 and the inner circumferential end E2 on the heat exchanger 7 side of the scroll casing 31.
  • the maximum point X of the height in the second rotation axis direction of the scroll casing 31 is positioned between the outer peripheral end E1 and the inner peripheral end E2 on the heat exchanger 7 side of the scroll casing 31, so that the second intake air passage 41b expands from the position of the maximum point X toward the inner peripheral end E2 on the heat exchanger 7 side, and the pressure loss in the second intake air passage 41b is reduced, thereby reducing the input noise of the second blower 30.
  • the maximum point X of the height of the scroll casing 31 in the second rotational axis direction is located inside the outer end 7a of the heat exchanger 7 in the second rotational axis direction.
  • the indoor unit 100 of the air conditioner According to the indoor unit 100 of the air conditioner according to the first embodiment, air can be sucked into the suction port 31d of the scroll casing 31 from the suction port 3 formed in the upper part of the housing 2, and there is no need to form an suction port on the side of the housing 2, which simplifies the structure of the indoor unit 100 and improves manufacturability. Also, in the direction of the rotation axis O, the suction port 31d of the scroll casing 31 is located within the installation range of the heat exchanger 7. As a result, air that has passed through the heat exchanger 7 flows directly into the second blower 30, which reduces the pressure loss in the second suction air passage 41b and reduces the input noise of the second blower 30.
  • the main plate 32 and the inner peripheral end 31f of the scroll casing 31 on the main plate 32 side are arranged to coincide or partially overlap in the second rotation axis direction, and a gap G is formed between the outer peripheral end 32a of the main plate 32 and the inner peripheral end 31f of the scroll casing 31 on the main plate 32 side.
  • the main plate 32 and the inner peripheral end 31f of the scroll casing 31 on the main plate 32 side are arranged to coincide or partially overlap in the second rotation axis direction, and the gap G between the outer peripheral end 32a of the main plate 32 and the inner peripheral end 31f of the scroll casing 31 on the main plate 32 side is minimized, thereby preventing air from being blown out from anywhere other than the air outlet 31e of the scroll casing 31, in other words, preventing air from leaking from the scroll casing 31, thereby reducing the input noise of the second blower 30.
  • the first blower 20 has a disk-shaped or annular partition plate 21
  • the second blower 30 has an annular side plate 33, and the outer diameter of the partition plate 21 and the outer diameter of the side plate 33 are the same length.
  • the outer diameter of the partition plate 21 of the first blower 20 and the outer diameter of the side plate 33 of the second blower 30 are made the same length, so that the tongue portion 8a of the air passage front wall 8 of the first blower 20 and the tongue portion 31a of the scroll casing 31 of the second blower 30 can be in the same position when viewed from the side, simplifying the components that make up the indoor unit 100 and improving manufacturability.
  • the scroll casing 31 has an air duct partition plate 50 that divides the intake air duct from the intake port 3 to the upstream side of the first blower 20 and the second blower 30 into a first intake air duct 41a from the intake port 3 to the upstream side of the first blower 20 and a second intake air duct 41b from the intake port 3 to the upstream side of the second blower 30.
  • the air duct partition plate 50 divides the intake air duct from the air inlet 3 to the upstream side of the first blower 20 and the two second blowers 30 into the first intake air duct 41a and the second intake air duct 41b. This prevents the first blower 20 from being affected by the second blower 30, stabilizing the operation of each blower, and suppresses an increase in input noise.
  • the width H1 of the second intake air duct 41b is equal to or greater than the width H2 of the second exhaust air duct 42b.
  • the pressure loss in the second intake air duct 41b is reduced, and the input noise of the second blower 30 can be reduced.
  • Embodiment 2 Hereinafter, the second embodiment will be described, but explanations of parts that overlap with the first embodiment will be omitted, and parts that are the same as or equivalent to the first embodiment will be given the same reference numerals.
  • FIG. 17 is a schematic front view showing an enlarged view of part of the internal structure of the indoor unit 100 of the air conditioner according to embodiment 2. Note that FIG. 17 is a schematic front view showing an enlarged view of part C in FIG. 2, similar to FIG. 5. Also, the dashed arrows in FIG. 17 indicate the air flow (air current).
  • a bell mouth 51 that forms the suction port 31d is provided on the first blower 20 side of the scroll casing 31.
  • the position where the suction port 31d of the scroll casing 31 is formed is on the opposite side in the direction of the rotation axis O to the scroll casing 31 in the first embodiment.
  • the scroll casing 31 has a bell mouth 51 that forms an intake port 31d that draws air into the scroll casing 31, and the bell mouth 51 is provided on the first blower 20 side in the second rotation axis direction.
  • the indoor unit 100 of the air conditioner according to the second embodiment when the air flowing in from the intake port 31d on the first blower 20 side flows out from the scroll casing 31 of the second blower 30, it flows out toward the main plate 32 of the centrifugal fan located at both the left and right ends of the indoor unit 100, so the wind speed blowing out from both the left and right sides of the outlet 4 becomes high. Therefore, even in the operating range where the pressure loss inside the indoor unit 100 is high, there is no reverse suction at both the left and right ends of the indoor unit 100, so it is possible to suppress the increase in input noise due to reverse suction, and it is possible to suppress the occurrence of condensation caused by contact of moist air with the surface of the outlet 4 due to reverse suction during cooling operation.
  • Embodiment 3 Hereinafter, the third embodiment will be described, but explanations of parts that overlap with the first and second embodiments will be omitted, and parts that are the same as or equivalent to the first and second embodiments will be given the same reference numerals.
  • FIG. 18 is a schematic front view showing an enlarged view of part of the internal structure of the indoor unit 100 of the air conditioner according to embodiment 3. Note that FIG. 18 is a schematic front view showing an enlarged view of part C in FIG. 2, similar to FIG. 5. Also, the dashed arrows in FIG. 18 indicate the flow of air (air current).
  • bell mouths 51 that form suction ports 31d are provided on the first blower 20 side of the scroll casing 31 and on the opposite side of the first blower 20 (side wall 2a side).
  • the suction ports 31d of the scroll casing 31 are formed on the first blower 20 side and on the opposite side of the first blower 20 (side wall 2a side), and air is sucked in from both sides of the second blower 30.
  • the pressure loss in the heat exchanger 7 or the first intake air passage 41a is relatively low, and the intake air volume of the second blower 30 can be ensured even in an operating range where the aerodynamic characteristics of the first blower 20 are high. Therefore, the operation of the first blower 20 and the second blower 30 can be stabilized, and an increase in input noise can be suppressed.
  • the scroll casing 31 has a bell mouth 51 that forms an intake port 31d that draws air into the scroll casing 31, and the bell mouth 51 is provided on the first blower 20 side and on the opposite side to the first blower 20 in the second rotation axis direction.
  • the indoor unit 100 of the air conditioner according to the third embodiment by drawing in air from both sides of the second blower 30 in the second rotational axis direction, the pressure loss in the heat exchanger 7 or the first intake air passage 41a is relatively low, and the intake air volume of the second blower 30 can be ensured even in an operating range where the aerodynamic characteristics of the first blower 20 are high. Therefore, the operation of the first blower 20 and the second blower 30 can be stabilized, and an increase in input noise can be suppressed.
  • Embodiment 4 Hereinafter, the fourth embodiment will be described, but explanations of parts that overlap with the first to third embodiments will be omitted, and the same parts as or corresponding parts to the first to third embodiments will be given the same reference numerals.
  • FIG. 19 is a diagram showing an example of the configuration of an air conditioner according to embodiment 4. Note that in FIG. 19, the components described in embodiments 1 to 3 operate in the same manner. Also, the solid arrows in FIG. 19 indicate the flow of refrigerant during cooling operation, and the dashed arrows indicate the flow during heating operation.
  • the air conditioner according to the fourth embodiment has an indoor unit 100 and an outdoor unit 200, as described in the first to third embodiments, connected by a gas refrigerant pipe 300 and a liquid refrigerant pipe 400.
  • the indoor unit 100 has a heat exchanger 7.
  • the outdoor unit 200 has a compressor 210, a flow switching device 220, an outdoor heat exchanger 230, and a throttling device 240.
  • This air conditioner has a refrigerant circuit in which the compressor 210, the flow switching device 220, the outdoor heat exchanger 230, the throttling device 240, and the heat exchanger 7 are connected in sequence by refrigerant pipes including the gas refrigerant pipe 300 and the liquid refrigerant pipe 400, and the refrigerant circulates.
  • the compressor 210 compresses the sucked refrigerant and discharges it.
  • the compressor 210 may be configured to change its capacity (the amount of refrigerant pumped out per unit time) by arbitrarily changing the operating frequency, for example, by an inverter circuit.
  • the flow path switching device 220 is, for example, a four-way valve, which switches between cooling operation and heating operation by switching the flow direction of the refrigerant. Note that instead of a four-way valve, a combination of a two-way valve and a three-way valve may be used as the flow path switching device 220.
  • the outdoor heat exchanger 230 exchanges heat between the refrigerant and the outdoor air. For example, during heating operation, it functions as an evaporator, evaporating and vaporizing the refrigerant. During cooling operation, it functions as a condenser, condensing and liquefying the refrigerant.
  • the throttling device 240 reduces the pressure of the refrigerant to expand it. For example, if it is configured as an electronic expansion valve, the opening degree is adjusted based on instructions from a control device (not shown) or the like.
  • the flow path switching device 220 is switched so that the refrigerant discharged from the compressor 210 flows into the outdoor heat exchanger 230.
  • the low-temperature, low-pressure refrigerant is then compressed by the compressor 210 and discharged as high-temperature, high-pressure gas refrigerant.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 210 flows into the outdoor heat exchanger 230 via the flow path switching device 220.
  • the high-temperature, high-pressure gas refrigerant that flows into the outdoor heat exchanger 230 condenses while releasing heat to the outdoor air, becoming high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that flows out of the outdoor heat exchanger 230 is then reduced in pressure by the throttling device 240 to a low-temperature, low-pressure two-phase refrigerant, and then flows out of the outdoor unit 200, passes through the liquid refrigerant piping 400, and flows into the indoor unit 100.
  • the low-temperature, low-pressure two-phase refrigerant that flows into the indoor unit 100 flows into the heat exchanger 7 that acts as an evaporator, and cools the indoor air by absorbing heat from it, becoming a low-temperature, low-pressure gas refrigerant.
  • the low-temperature, low-pressure gas refrigerant that flows out of the heat exchanger 7 passes through the gas refrigerant piping 300 and flows into the outdoor unit 200.
  • the refrigerant that flows into the outdoor unit 200 is sucked into the compressor 210 via the flow path switching device 220.
  • the flow path switching device 220 is switched so that the refrigerant discharged from the compressor 210 flows into the heat exchanger 7. Then, the low-temperature, low-pressure refrigerant is compressed by the compressor 210 and discharged as a high-temperature, high-pressure gas refrigerant.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 210 flows out of the outdoor unit 200 via the flow path switching device 220, passes through the gas refrigerant piping 300, and flows into the indoor unit 100.
  • the high-temperature, high-pressure gas refrigerant that flows into the indoor unit 100 dissipates heat to the indoor air in the heat exchanger 7 and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that flows out of the heat exchanger 7 flows out of the indoor unit 100, passes through the liquid refrigerant piping 400, and flows into the outdoor unit 200.
  • the high-pressure liquid refrigerant that flows into the outdoor unit 200 is decompressed to a low-temperature, low-pressure two-phase refrigerant by the throttling device 240, and then flows into the outdoor heat exchanger 230.
  • the low-temperature, low-pressure two-phase refrigerant that flows into the outdoor heat exchanger 230 absorbs heat from the outdoor air and becomes a low-temperature, low-pressure gas refrigerant.
  • the low-temperature, low-pressure gas refrigerant that flows out of the outdoor heat exchanger 230 is sucked into the compressor 210 via the flow switching device 220.
  • the air conditioner according to the fourth embodiment includes the indoor unit 100 and the outdoor unit 200 described in the first to third embodiments.
  • the air conditioner according to embodiment 4 can achieve the same effects as the indoor unit 100 described in embodiments 1 to 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

An indoor unit (100) of an air conditioner is provided with: a housing (2) in which an intake port (3) and a blow-out port (4) are formed; a heat exchanger (7) that is provided in the interior of the housing (2); a first blower (20) that is provided in the interior of the housing (2), on the downstream side of the heat exchanger (7), and is composed of a through-flow fan rotating around a first rotational axis; a second blower (30) that is provided on both end sides of the first blower (20) in the first rotational axis direction and is composed of a centrifugal fan rotating around a second rotational axis; and a scroll casing (31) that is provided to the outer circumference of the second blower (30) and forms a blow-out passage (42b) of the second blower (30), wherein the second blower (30) is provided with a disc-shaped or ring-shaped main plate (32), a ring-shaped side plate (33) that is positioned facing the main plate (32), and a plurality of blades (36) that are connected to the main plate (32) at one end, are connected to the side plate (33) at the other end, and are arranged in the circumferential direction around the second rotational axis, and each of the plurality of blades (36) has an inner circumference end (31i) that is located on the second rotational axis side in the radial direction treating the second rotational axis as the center, an outer circumference end (36o) that is located further to the outer circumference side than the inner circumference end (36i) in the radial direction, a sirocco blade section (36a) that includes the outer circumference end (36o) and constitutes a front-facing blade in which the outlet angle is formed at an angle greater than 90 degrees, and a turbo blade section (36b) that includes the inner circumference end (36i) and constitutes a rear-facing blade.

Description

空気調和機の室内機、および、それを備えた空気調和機Indoor unit of air conditioner and air conditioner equipped with same
 本開示は、空気調和機の室内機、および、それを備えた空気調和機に関するものである。 This disclosure relates to an indoor unit for an air conditioner and an air conditioner equipped with the same.
 従来、空気調和機の室内機などに使用される貫流ファンにおいて、低流量時の逆流や高流量時の不安定流を防止し、騒音発生を抑制したものがある(例えば、特許文献1参照)。  Conventionally, there have been cross-flow fans used in indoor units of air conditioners and the like that prevent backflow at low flow rates and unstable flow at high flow rates, and suppress noise generation (see, for example, Patent Document 1).
 特許文献1の貫流ファンでは、中心軸方向の両端部に設けられた仕切板の間において中心軸周りに複数のブレードを備えて羽根車を構成し、同羽根車の回転により吸い込み側に面する同羽根車の一方の周面側から他の周面側へ空気を貫流させて吹き出す貫流ファンにおいて、前記仕切板の外側面に前記中心軸周りに複数の補助ブレードを設けるとともに、同中心軸回りに回転する同補助ブレードを前記一方の周面側で覆う補助ケーシングを備えて、同補助ブレードを前記中心軸方向で空気を吸い込み前記他の周面側へ空気を吹き出す遠心ファンとして構成してなることを特徴とする。 The cross-flow fan of Patent Document 1 is characterized in that an impeller is configured with multiple blades around a central axis between partition plates provided at both ends in the central axis direction, and in that the rotation of the impeller causes air to flow through and blow out from one peripheral side of the impeller facing the suction side to the other peripheral side, multiple auxiliary blades are provided around the central axis on the outer surface of the partition plate, and an auxiliary casing is provided that covers the auxiliary blades rotating around the central axis on one peripheral side, and the auxiliary blades are configured as a centrifugal fan that draws in air in the central axis direction and blows out air to the other peripheral side.
 そして、この貫流ファンは上記の特徴を有することで、補助ブレードにより貫流ファンのファン端部での流量低下を抑えることができるので、吹き出し流量の分布が中心軸方向に対して均一になり、低流量時においては流量の不均一を原因とした側壁部での逆流を防ぐことができる。 And because this cross-flow fan has the above features, the auxiliary blades can suppress the drop in flow rate at the fan ends of the cross-flow fan, making the distribution of the blowing flow rate uniform along the central axis, and preventing backflow on the side walls caused by uneven flow rate at low flow rates.
特開2002-357194号公報JP 2002-357194 A
 しかしながら、特許文献1の貫流ファンでは、補助ブレードの遠心ファンとして、シロッコファンあるいはラジアルファンを用いることが考えられるが、その場合は翼間で十分な圧力回復が得られず、前縁剥離を生じやすいという課題があった。 However, in the cross-flow fan of Patent Document 1, it is possible to use a centrifugal fan or a radial fan as the auxiliary blade centrifugal fan, but in that case, there is an issue that sufficient pressure recovery cannot be obtained between the blades and leading edge separation is likely to occur.
 本開示は、以上のような課題を解決するためになされたもので、圧力回復を向上させた空気調和機の室内機、および、それを備えた空気調和機を提供することを目的としている。 This disclosure has been made to solve the problems described above, and aims to provide an indoor unit for an air conditioner with improved pressure recovery, and an air conditioner equipped with the same.
 本開示に係る空気調和機の室内機は、吸込口および吹出口が形成された筐体と、前記筐体の内部に設けられた熱交換器と、前記筐体の内部において前記熱交換器の下流側に設けられ、第一回転軸を中心に回転する貫流ファンで構成された第一の送風機と、前記第一回転軸方向における前記第一の送風機の両端側に設けられ、第二回転軸を中心に回転する遠心ファンで構成された第二の送風機と、前記第二の送風機の外周に設けられ、前記第二の送風機の吹出風路を形成するスクロールケーシングと、を備え、前記第二の送風機は、円板状あるいは環状の主板と、前記主板と対向して配置される環状の側板と、一端が前記主板と接続され、他端が前記側板と接続され、前記第二回転軸を中心とする周方向に配列された複数の羽根と、を備え、前記複数の羽根のそれぞれは、前記第二回転軸を中心とする径方向において前記第二回転軸側に位置する内周端と、前記径方向において前記内周端よりも外周側に位置する外周端と、前記外周端を含み出口角が90度よりも大きい角度に形成された前向羽根を構成するシロッコ翼部と、前記内周端を含み後向羽根を構成するターボ翼部と、を有するものである。 The indoor unit of the air conditioner according to the present disclosure comprises a housing in which an intake port and an exhaust port are formed, a heat exchanger provided inside the housing, a first blower provided inside the housing downstream of the heat exchanger and configured as a cross-flow fan rotating about a first rotation shaft, a second blower provided on both ends of the first blower in the direction of the first rotation shaft and configured as a centrifugal fan rotating about a second rotation shaft, and a scroll casing provided on the outer periphery of the second blower and forming an exhaust air passage for the second blower, the second blower having a disk-shaped or annular The rotor blade has a main plate with a circular cross section, an annular side plate arranged opposite the main plate, and a plurality of blades arranged in a circumferential direction centered on the second rotating shaft, with one end connected to the main plate and the other end connected to the side plate. Each of the plurality of blades has an inner peripheral end located on the second rotating shaft side in a radial direction centered on the second rotating shaft, an outer peripheral end located on the outer side of the inner peripheral end in the radial direction, a sirocco blade portion that includes the outer peripheral end and forms a forward blade with an outlet angle greater than 90 degrees, and a turbo blade portion that includes the inner peripheral end and forms a backward blade.
 また、本開示に係る空気調和機は、上記の室内機と、室外機とを備えたものである。 The air conditioner disclosed herein is equipped with the above indoor unit and an outdoor unit.
 本開示に係る空気調和機の室内機、および、それを備えた空気調和機によれば、第二の送風機の複数の羽根のそれぞれは、外周端を含み出口角が90度よりも大きい角度に形成された前向羽根を構成するシロッコ翼部と、内周端を含み後向羽根を構成するターボ翼部と、を有するため、第二の送風機としてシロッコファンあるいはラジアルファンを用いた場合に比べて、圧力回復を向上させることができる。 In the air conditioner indoor unit and the air conditioner equipped therewith according to the present disclosure, each of the blades of the second blower has a sirocco blade portion that includes an outer circumferential end and forms a forward-facing blade with an outlet angle greater than 90 degrees, and a turbo blade portion that includes an inner circumferential end and forms a backward-facing blade, so that pressure recovery can be improved compared to when a sirocco fan or radial fan is used as the second blower.
実施の形態1に係る空気調和機の室内機を正面側から見た外観斜視図である。1 is an external perspective view of an indoor unit of an air conditioner according to a first embodiment, as viewed from the front side. FIG. 実施の形態1に係る空気調和機の室内機の内部構成を示す正面模式図である。1 is a schematic front view showing the internal configuration of an indoor unit of an air conditioner according to Embodiment 1. FIG. 図2のA-A断面を矢視方向に見た側面模式図である。3 is a schematic side view of the AA cross section of FIG. 2 as viewed in the direction of the arrows. 図2のB-B断面を矢視方向に見た側面模式図である。3 is a schematic side view of the BB cross section of FIG. 2 as viewed in the direction of the arrows. 図2のC部を拡大した正面模式図である。FIG. 3 is an enlarged schematic front view of part C in FIG. 2 . 実施の形態1に係るスクロールケーシングを第一の送風機側から見た外観斜視図である。FIG. 2 is an external perspective view of the scroll casing according to the first embodiment, as viewed from the first blower side. 実施の形態1に係るスクロールケーシングを側壁側から見た外観斜視図である。FIG. 2 is an external perspective view of the scroll casing according to the first embodiment, as viewed from the side wall side. 実施の形態1に係る第一の送風機および第二の送風機を示す正面模式図である。FIG. 2 is a schematic front view showing a first fan and a second fan according to the first embodiment. 実施の形態1に係る第一の送風機を示す側面模式図である。FIG. 2 is a schematic side view showing the first fan according to the first embodiment. 実施の形態1に係る第二の送風機を示す側面模式図である。FIG. 4 is a schematic side view showing the second fan according to the first embodiment. 図9に示す第一の送風機の部分拡大図である。FIG. 10 is a partial enlarged view of the first blower shown in FIG. 9 . 図10に示す第二の送風機の部分拡大図である。FIG. 11 is a partial enlarged view of the second blower shown in FIG. 10 . 実施の形態1に係る第二の送風機を示す斜視図である。FIG. 2 is a perspective view showing a second fan according to the first embodiment. 図5のD部を拡大した正面模式図である。FIG. 6 is an enlarged schematic front view of a portion D in FIG. 5 . 図14のE部を矢視方向に見た平面模式図である。15 is a schematic plan view of part E in FIG. 14 as viewed in the direction of the arrow. 図5のD部の変形例を拡大した正面模式図である。FIG. 6 is an enlarged schematic front view of a modified example of the portion D in FIG. 5 . 実施の形態2に係る空気調和機の室内機の内部構成の一部を拡大した正面模式図である。11 is a schematic front view showing an enlarged view of a portion of the internal configuration of an indoor unit of an air conditioner according to a second embodiment. FIG. 実施の形態3に係る空気調和機の室内機の内部構成の一部を拡大した正面模式図である。FIG. 11 is a schematic front view showing an enlarged view of a portion of the internal configuration of an indoor unit of an air conditioner according to embodiment 3. 実施の形態4に係る空気調和機の構成例を示す図である。FIG. 13 is a diagram showing a configuration example of an air conditioner according to a fourth embodiment.
 以下、本開示の実施の形態を図面に基づいて説明する。なお、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Below, embodiments of the present disclosure are described with reference to the drawings. Note that the forms of the components shown in the entire specification are merely examples, and are not limited to the forms described in the specification. In particular, the combinations of the components are not limited to the combinations in each embodiment, and components described in other embodiments can be applied to other embodiments. Also, the size relationships between the components in the following drawings may differ from the actual relationships.
 また、以下の説明において、理解を容易にするために方向を表す用語、例えば「上」、「下」、「右」、「左」、「前」、「後」、などを適宜用いるが、これは説明のためのものであって、これらの用語は実施の形態を限定するものではない。また、実施の形態では、空気調和機の室内機を正面視した状態において、「上」、「下」、「右」、「左」、「前」、「後」などを使用する。 In addition, in the following explanation, terms indicating directions such as "up," "down," "right," "left," "front," and "rear" are used as appropriate to facilitate understanding, but these are for the purpose of explanation and do not limit the embodiments. In the embodiments, terms such as "up," "down," "right," "left," "front," and "rear" are used when looking at the indoor unit of the air conditioner from the front.
 実施の形態1.
 図1は、実施の形態1に係る空気調和機の室内機100を正面側から見た外観斜視図である。図1に示すように、室内機100は、背面1aが壁面に取り付けられる背面ケース1と、背面ケース1の前面に取り付けられ外殻を構成する箱体形状の筐体2と、を有している。筐体2には、主に室内空気を内部に吸い込むための吸込口3と、調和空気を空調対象域に供給するための吹出口4とが形成されている。吸込口3は、筐体2の上部に開口形成されており、吹出口4は、筐体2の下部に開口形成されている。筐体2の前面には、開閉可能な前面意匠パネル5が取り付けられている。また、筐体2の左右側面には、側壁2aが設けられている。なお、実施の形態では壁掛形の室内機について述べるが、床置形あるいは天井カセット形の室内機でもよく、その場合、吸込口および吹出口の位置は、その室内機の形による。
Embodiment 1.
FIG. 1 is an external perspective view of an indoor unit 100 of an air conditioner according to embodiment 1, as viewed from the front side. As shown in FIG. 1, the indoor unit 100 has a rear case 1, the rear surface 1a of which is attached to a wall surface, and a box-shaped housing 2, which is attached to the front surface of the rear case 1 and forms an outer shell. The housing 2 is formed with an inlet 3 for mainly drawing indoor air into the interior and an outlet 4 for supplying conditioned air to an area to be air-conditioned. The inlet 3 is formed as an opening in the upper part of the housing 2, and the outlet 4 is formed as an opening in the lower part of the housing 2. An openable front design panel 5 is attached to the front surface of the housing 2. In addition, side walls 2a are provided on the left and right sides of the housing 2. Note that, although a wall-mounted indoor unit is described in the embodiment, a floor-standing or ceiling cassette type indoor unit may also be used, in which case the positions of the inlet and outlet depend on the shape of the indoor unit.
 図2は、実施の形態1に係る空気調和機の室内機100の内部構成を示す正面模式図である。図3は、図2のA-A断面を矢視方向に見た側面模式図である。図4は、図2のB-B断面を矢視方向に見た側面模式図である。図5は、図2のC部を拡大した正面模式図である。図6は、実施の形態1に係るスクロールケーシング31を第一の送風機20側から見た外観斜視図である。図7は、実施の形態1に係るスクロールケーシング31を側壁2a側から見た外観斜視図である。なお、図2、図3、および図5の破線矢印は、空気の流れ(気流)を示している。 FIG. 2 is a schematic front view showing the internal configuration of the indoor unit 100 of the air conditioner according to the first embodiment. FIG. 3 is a schematic side view of the A-A cross section of FIG. 2, seen in the direction of the arrows. FIG. 4 is a schematic side view of the B-B cross section of FIG. 2, seen in the direction of the arrows. FIG. 5 is a schematic front view of an enlarged C section of FIG. 2. FIG. 6 is an external perspective view of the scroll casing 31 according to the first embodiment, seen from the first blower 20 side. FIG. 7 is an external perspective view of the scroll casing 31 according to the first embodiment, seen from the side wall 2a side. The dashed arrows in FIG. 2, FIG. 3, and FIG. 5 indicate the flow of air (air current).
 室内機100の内部には、図2~図5に示すように、吸込口3から室内空気を吸い込み、吹出口4から調和空気を吹き出す第一の送風機20および二つの第二の送風機30が設けられている。二つの第二の送風機30は、第一の送風機20の回転軸O方向(後述するシャフト15が延びる方向であり図2の左右方向)の両端側に設けられている。また、吸込口3から吹出口4までの風路に、長手方向が左右方向となるように配置され、冷媒と室内空気との間で熱交換することで調和空気を作り出す熱交換器7が設けられている。第一の送風機20の下流側に、第一の送風機20の下流側から吹出口4に至る第一吹出風路42aを形成する風路前壁8および風路後壁9が設けられている。さらに、各第二の送風機30の下流側に、第二の送風機30の下流側から吹出口4に至る第二吹出風路42bを形成するスクロールケーシング31がそれぞれ設けられている。なお、以下において、風路後壁9は、ケーシングとも称する。 2 to 5, the inside of the indoor unit 100 is provided with a first blower 20 and two second blowers 30 that suck in indoor air from the intake port 3 and blow out conditioned air from the exhaust port 4. The two second blowers 30 are provided on both ends of the first blower 20 in the direction of the rotation axis O (the direction in which the shaft 15 described later extends, and the left-right direction in FIG. 2). In addition, a heat exchanger 7 is provided in the air passage from the intake port 3 to the exhaust port 4, with its longitudinal direction being the left-right direction, and which creates conditioned air by exchanging heat between the refrigerant and the indoor air. On the downstream side of the first blower 20, a front air passage wall 8 and a rear air passage wall 9 are provided, which form a first exhaust air passage 42a from the downstream side of the first blower 20 to the exhaust port 4. Furthermore, on the downstream side of each second blower 30, a scroll casing 31 is provided, which forms a second exhaust air passage 42b from the downstream side of the second blower 30 to the exhaust port 4. In the following, the rear air passage wall 9 is also referred to as the casing.
 熱交換器7は、吸込口3の下流側で、かつ、第一の送風機20および二つの第二の送風機30の上流側に配置されている。この熱交換器7には、例えばフィンチューブ型熱交換器などを用いるとよい。熱交換器7は、冷媒と室内空気との熱交換を行う。例えば、冷房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。また、暖房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。 The heat exchanger 7 is disposed downstream of the intake port 3 and upstream of the first blower 20 and the two second blowers 30. For example, a fin-tube type heat exchanger or the like may be used for this heat exchanger 7. The heat exchanger 7 exchanges heat between the refrigerant and the indoor air. For example, during cooling operation, it functions as an evaporator, evaporating and vaporizing the refrigerant. During heating operation, it functions as a condenser, condensing and liquefying the refrigerant.
 第一の送風機20および二つの第二の送風機30は、吹出口4の上流側で、かつ、熱交換器7の下流側に配置されている。第一の送風機20は、貫流ファン(クロスフローファン)で構成されており、第二の送風機30は、遠心ファンで構成されている。第一の送風機20の外周には、風路前壁8および風路後壁9が設けられている。また、第二の送風機30の外周には、スクロールケーシング31が設けられている。そして、これらの構成要素により筐体2内に空気流路が連通されている。風路前壁8は、舌部8aを有し、第一の送風機20の前面側かつ下側に位置している。舌部8aは、第一の送風機20の前面側かつ下側に設けられている。風路後壁9は、第一の送風機20の背面側に位置している。スクロールケーシング31は、舌部31aを有し、第一の送風機20よりも側壁2a側に設けられている。舌部31aは、第二の送風機30の前面側かつ下側に設けられている。 The first blower 20 and the two second blowers 30 are arranged upstream of the air outlet 4 and downstream of the heat exchanger 7. The first blower 20 is a cross-flow fan, and the second blower 30 is a centrifugal fan. An air passage front wall 8 and an air passage rear wall 9 are provided on the outer periphery of the first blower 20. A scroll casing 31 is provided on the outer periphery of the second blower 30. These components communicate an air flow path within the housing 2. The air passage front wall 8 has a tongue portion 8a and is located on the front side and below the first blower 20. The tongue portion 8a is provided on the front side and below the first blower 20. The air passage rear wall 9 is located on the rear side of the first blower 20. The scroll casing 31 has a tongue portion 31a and is provided on the side wall 2a side of the first blower 20. The tongue portion 31a is provided on the front and lower side of the second blower 30.
 ここで、空気調和機の室内機において一般的に用いられる貫流ファンは、低風量時あるいは高圧損時に流れが不安定となり、室内機の左右両端部で逆吸込みが起こり、モータへの入力電力および騒音が悪化する場合がある。そこで、実施の形態1では、第二の送風機30を第一の送風機20の回転軸O方向の両端側に設け、第一の送風機20に貫流ファン、第二の送風機30に貫流ファンよりも高静圧時に空力特性が高い遠心ファンを用いることで、低風量時あるいは高圧損時でも室内機100の左右両端部で逆吸込みがなくなるため、逆吸込みによるモータ(図示せず)への入力電力の増大および騒音の増大(以下、入力騒音の増大と称する)を抑制することができ、冷房運転時の逆吸込みによる湿った空気の吹出口4表面への接触に起因する結露の発生を抑制することができる。 Here, in the case of a cross-flow fan generally used in an indoor unit of an air conditioner, the flow becomes unstable at low air volume or high pressure loss, and reverse suction occurs at both left and right ends of the indoor unit, which may worsen the input power and noise to the motor. Therefore, in the first embodiment, the second blower 30 is provided at both ends of the rotation axis O direction of the first blower 20, and a cross-flow fan is used for the first blower 20, and a centrifugal fan with higher aerodynamic characteristics at high static pressure than a cross-flow fan is used for the second blower 30. This eliminates reverse suction at both left and right ends of the indoor unit 100 even at low air volume or high pressure loss, so that the increase in input power to the motor (not shown) and the increase in noise (hereinafter referred to as an increase in input noise) due to reverse suction can be suppressed, and the occurrence of condensation due to contact of moist air with the surface of the air outlet 4 due to reverse suction during cooling operation can be suppressed.
 図6および図7に示すように、スクロールケーシング31の第一の送風機20側には、側壁2a側に凹んでおり、第二の送風機30が配置される凹部31bが形成されている。スクロールケーシング31の第一の送風機20とは反対側(側壁2a側)には、吸込口3から吸い込まれた空気をスクロールケーシング31内の第二の送風機30に取り込む吸込口31dを形成するベルマウス51が設けられている。スクロールケーシング31の吹出口4側には、スクロールケーシング31外に空気を吹き出す吹出口31eが形成されている。スクロールケーシング31の熱交換器7側には、風路仕切板50が形成されている。この風路仕切板50は、スクロールケーシング31の熱交換器7側の外周端部から熱交換器7側に突出した板状部材である。そして、風路仕切板50は、吸込口3から第一の送風機20および二つの第二の送風機30の上流側に至る吸込風路を、吸込口3から第一の送風機20の上流側に至る第一吸込風路41aと吸込口3から第二の送風機30の上流側に至る第二吸込風路41bとに仕切る。なお、風路仕切板50は、熱交換器7と接触していてもよいし、熱交換器7との間に隙間が空いていてもよい。 6 and 7, the scroll casing 31 has a recess 31b on the first blower 20 side that is recessed toward the side wall 2a and in which the second blower 30 is disposed. A bell mouth 51 is provided on the opposite side of the scroll casing 31 from the first blower 20 (the side wall 2a side) to form an intake port 31d that takes in air sucked in from the intake port 3 into the second blower 30 in the scroll casing 31. An exhaust port 31e is formed on the exhaust port 4 side of the scroll casing 31 to blow air out of the scroll casing 31. An air duct partition plate 50 is formed on the heat exchanger 7 side of the scroll casing 31. This air duct partition plate 50 is a plate-shaped member that protrudes toward the heat exchanger 7 from the outer circumferential end of the scroll casing 31 on the heat exchanger 7 side. The air passage partition plate 50 divides the air passage from the air intake 3 to the upstream side of the first blower 20 and the two second blowers 30 into a first air intake passage 41a from the air intake 3 to the upstream side of the first blower 20 and a second air intake passage 41b from the air intake 3 to the upstream side of the second blower 30. The air passage partition plate 50 may be in contact with the heat exchanger 7, or there may be a gap between the air passage partition plate 50 and the heat exchanger 7.
 ここで、高圧損時では、第二の送風機30の吸込み割合が過大になると、第一の送風機20の動作が不安定となる恐れがある。そこで、実施の形態1では、風路仕切板50によって、吸込口3から第一の送風機20および二つの第二の送風機30の上流側に至る吸込風路を、第一吸込風路41aと第二吸込風路41bとに仕切っている。そうすることで、第一の送風機20が第二の送風機30の影響を受けることなく、それぞれの動作が安定するため、入力騒音の増大を抑制することができる。 Here, if the suction ratio of the second blower 30 becomes excessively large during high pressure loss, the operation of the first blower 20 may become unstable. Therefore, in the first embodiment, the suction air duct from the suction port 3 to the upstream sides of the first blower 20 and the two second blowers 30 is divided into a first suction air duct 41a and a second suction air duct 41b by an air duct partition plate 50. In this way, the first blower 20 is not affected by the second blower 30, and the operation of each is stabilized, thereby suppressing an increase in input noise.
 図8は、実施の形態1に係る第一の送風機20および第二の送風機30を示す正面模式図である。図9は、実施の形態1に係る第一の送風機20を示す側面模式図である。図10は、実施の形態1に係る第二の送風機30を示す側面模式図である。図11は、図9に示す第一の送風機20の部分拡大図である。図12は、図10に示す第二の送風機30の部分拡大図である。図13は、実施の形態1に係る第二の送風機30を示す斜視図である。なお、図8は、第一の送風機20の右側の一部および右側の第二の送風機30のみを示し、第一の送風機20の左側の一部および左側の第二の送風機30については図示省略している。また、図9、図10、および図13の実線の矢印は、第一の送風機20あるいは第二の送風機30の回転方向を示している。 FIG. 8 is a schematic front view showing the first blower 20 and the second blower 30 according to the first embodiment. FIG. 9 is a schematic side view showing the first blower 20 according to the first embodiment. FIG. 10 is a schematic side view showing the second blower 30 according to the first embodiment. FIG. 11 is a partially enlarged view of the first blower 20 shown in FIG. 9. FIG. 12 is a partially enlarged view of the second blower 30 shown in FIG. 10. FIG. 13 is a perspective view showing the second blower 30 according to the first embodiment. Note that FIG. 8 shows only a part of the right side of the first blower 20 and the right second blower 30, and does not show a part of the left side of the first blower 20 and the left second blower 30. The solid arrows in FIG. 9, FIG. 10, and FIG. 13 indicate the direction of rotation of the first blower 20 or the second blower 30.
 図8および図9に示すように、第一の送風機20は、2つ円板状あるいは環状の仕切板21と、回転軸O方向に対向する2つの仕切板21に接続され、回転軸Oを中心とする周方向に配置された複数の第一羽根26とで1つの送風機ユニットを構成し、回転軸O方向に7~14程度の送風機ユニットが連なって構成されている。また、図8および図10に示すように、第二の送風機30は、円板状あるいは環状の主板32と、主板32と回転軸O方向に対向して配置される環状の側板33と、主板32と側板33とに接続され、回転軸Oを中心とする周方向に配置された複数の第二羽根36と、を備えている。 As shown in Figures 8 and 9, the first blower 20 is configured with one blower unit consisting of two disk-shaped or annular partition plates 21 and a plurality of first blades 26 connected to the two partition plates 21 facing each other in the direction of the rotation axis O and arranged in the circumferential direction centered on the rotation axis O, and is configured with approximately 7 to 14 blower units connected in the direction of the rotation axis O. Also, as shown in Figures 8 and 10, the second blower 30 is equipped with a disk-shaped or annular main plate 32, an annular side plate 33 arranged facing the main plate 32 in the direction of the rotation axis O, and a plurality of second blades 36 connected to the main plate 32 and the side plate 33 and arranged in the circumferential direction centered on the rotation axis O.
 なお、主板32は、第一の送風機20側に配置されており、側板33は、ベルマウス51側に配置されている。また、実施の形態1では、第一の送風機20の複数の仕切板21のうち、最も第二の送風機30側は、第二の送風機30の主板32を兼ねており、それらは同じものである。ただし、それに限定されず、最も第二の送風機30側の仕切板21と主板32とをそれぞれ別体として設けてもよい。 The main plate 32 is disposed on the first blower 20 side, and the side plate 33 is disposed on the bellmouth 51 side. In addition, in the first embodiment, of the multiple partition plates 21 of the first blower 20, the one closest to the second blower 30 also serves as the main plate 32 of the second blower 30, and they are the same. However, this is not limited to this, and the partition plate 21 closest to the second blower 30 and the main plate 32 may each be provided as separate bodies.
 また、第一の送風機20の仕切板21の外径と第二の送風機30の側板33の外径とは同じ長さである。このように、第一の送風機20の仕切板21の外径と第二の送風機30の側板33の外径とを同じ長さにすることで、第一の送風機20に係る風路前壁8の舌部8aと第二の送風機30に係るスクロールケーシング31の舌部31aとを側面視して同じ位置にすることができるため、室内機100を構成する部品を簡素化でき、製造性を向上させることができる。 Furthermore, the outer diameter of the partition plate 21 of the first blower 20 and the outer diameter of the side plate 33 of the second blower 30 are the same length. In this way, by making the outer diameter of the partition plate 21 of the first blower 20 and the outer diameter of the side plate 33 of the second blower 30 the same length, the tongue portion 8a of the air passage front wall 8 of the first blower 20 and the tongue portion 31a of the scroll casing 31 of the second blower 30 can be in the same position when viewed from the side, which simplifies the parts that make up the indoor unit 100 and improves manufacturability.
 図10に示すように、第二羽根36は、外周端36oを含み前向羽根(回転方向に向いた羽根)として構成されたシロッコ翼部36aと、内周端36iを含み後向羽根(反回転方向に向いた羽根)として構成されたターボ翼部36bとを有する。第二の送風機30の径方向において、シロッコ翼部36aは第二羽根36の外周側を構成し、ターボ翼部36bは、第二羽根36の内周側を構成する。すなわち、第二羽根36は、第二の送風機30の径方向において、回転軸Oから外周側に向かって、ターボ翼部36b、シロッコ翼部36aの順に構成されている。第二羽根36において、シロッコ翼部36aとターボ翼部36bとは一体に形成されている。また、図13に示すように、ターボ翼部36bは、第二羽根36の前縁36i1を構成し、シロッコ翼部36aは、第二羽根36の後縁36o1を構成する。また、第二の送風機30の径方向において、第二羽根36のシロッコ翼部36aを構成する領域をシロッコ領域36arと定義し、第二羽根36のターボ翼部36bを構成する領域をターボ領域36brと定義した場合、ターボ領域36brがシロッコ領域36arよりも大きい。 As shown in FIG. 10, the second blade 36 has a sirocco blade portion 36a including an outer peripheral end 36o and configured as a forward blade (a blade facing in the direction of rotation), and a turbo blade portion 36b including an inner peripheral end 36i and configured as a rearward blade (a blade facing in the opposite direction of rotation). In the radial direction of the second blower 30, the sirocco blade portion 36a constitutes the outer peripheral side of the second blade 36, and the turbo blade portion 36b constitutes the inner peripheral side of the second blade 36. That is, in the radial direction of the second blower 30, the second blade 36 is configured in the order of the turbo blade portion 36b and the sirocco blade portion 36a from the rotation axis O toward the outer peripheral side. In the second blade 36, the sirocco blade portion 36a and the turbo blade portion 36b are formed integrally. 13, the turbo blade portion 36b constitutes the leading edge 36i1 of the second blade 36, and the sirocco blade portion 36a constitutes the trailing edge 36o1 of the second blade 36. In addition, if the region constituting the sirocco blade portion 36a of the second blade 36 in the radial direction of the second blower 30 is defined as the sirocco region 36ar, and the region constituting the turbo blade portion 36b of the second blade 36 is defined as the turbo region 36br, the turbo region 36br is larger than the sirocco region 36ar.
 図10に示すように、第二羽根36のシロッコ翼部36aの出口角α1とし、第二羽根36のターボ翼部36bの出口角α2とする。出口角α1は、回転軸Oを中心とする円C3の円弧と外周端36oとの交点において、円C3の接線TL1と、負圧面36n側の外周端36oの接線TL2とがなす角度と定義する。出口角α2は、回転軸Oを中心とする円C2の円弧とターボ翼部36bとの交点において、円C2の接線TL3と、負圧面36n側のターボ翼部36bの接線TL4とがなす角度と定義する。この場合、第二羽根36のシロッコ翼部36aの出口角α1は、90度よりも大きい角度であり、第二羽根36のターボ翼部36bの出口角α2は、90度よりも小さい角度である。なお、第二羽根36において、回転方向側の面が正圧面36pであり、正圧面36pとは反対側の面が負圧面36nである。 10, the outlet angle of the sirocco blade portion 36a of the second blade 36 is α1, and the outlet angle of the turbo blade portion 36b of the second blade 36 is α2. The outlet angle α1 is defined as the angle between the tangent TL1 of the circle C3 and the tangent TL2 of the outer peripheral end 36o on the negative pressure surface 36n side at the intersection of the arc of the circle C3 centered on the rotation axis O and the outer peripheral end 36o. The outlet angle α2 is defined as the angle between the tangent TL3 of the circle C2 and the tangent TL4 of the turbo blade portion 36b on the negative pressure surface 36n side at the intersection of the arc of the circle C2 centered on the rotation axis O and the turbo blade portion 36b. In this case, the outlet angle α1 of the sirocco blade portion 36a of the second blade 36 is an angle larger than 90 degrees, and the outlet angle α2 of the turbo blade portion 36b of the second blade 36 is an angle smaller than 90 degrees. In addition, the surface of the second blade 36 facing the direction of rotation is the positive pressure surface 36p, and the surface opposite the positive pressure surface 36p is the negative pressure surface 36n.
 図11に示すように、第一羽根26の入口角β1とし、図12に示すように、第二羽根36の入口角β2とする。図11に示すように、入口角β1は、回転軸Oを中心とする円C4の円弧と内周端26iとの交点において、円C4の接線TL5と、負圧面26n、36n側の内周端26i、36iの接線TL6とがなす角度と定義する。図12に示すように、入口角β2は、回転軸Oを中心とする円C1の円弧と内周端36iとの交点において、円C1の接線TL7と、負圧面36n側の内周端36iの接線TL8とがなす角度と定義する。この場合、第二羽根36の入口角β2は、第一羽根26の入口角β1よりも小さい。なお、第一羽根26において、回転方向側の面が正圧面26pであり、正圧面26pとは反対側の面が負圧面26nである。 As shown in Figure 11, the inlet angle of the first blade 26 is β1, and as shown in Figure 12, the inlet angle of the second blade 36 is β2. As shown in Figure 11, the inlet angle β1 is defined as the angle between the tangent TL5 of the circle C4 and the tangent TL6 of the inner circumferential ends 26i, 36i on the negative pressure surface 26n, 36n side at the intersection of the arc of the circle C4 centered on the rotation axis O and the inner circumferential end 26i. As shown in Figure 12, the inlet angle β2 is defined as the angle between the tangent TL7 of the circle C1 and the tangent TL8 of the inner circumferential end 36i on the negative pressure surface 36n side at the intersection of the arc of the circle C1 centered on the rotation axis O and the inner circumferential end 36i. In this case, the inlet angle β2 of the second blade 36 is smaller than the inlet angle β1 of the first blade 26. In addition, the surface of the first blade 26 facing the direction of rotation is the positive pressure surface 26p, and the surface opposite the positive pressure surface 26p is the negative pressure surface 26n.
 ここで、第二の送風機30が位置する室内機100の左右両端部は通風抵抗が高いため、気流が第二羽根36間に流入する際に第二羽根36の負圧面36nで前縁剥離を生じやすい。そこで、実施の形態1では、通風抵抗が高い室内機100の左右両端部における第二羽根36の入口角β2を室内機100の中央部における第一羽根26の入口角β1よりも小さくすることで、気流の前縁剥離を低減することができる。 Here, since the left and right ends of the indoor unit 100 where the second blower 30 is located have high ventilation resistance, leading edge separation is likely to occur on the negative pressure surface 36n of the second blade 36 when the airflow flows between the second blades 36. Therefore, in the first embodiment, the inlet angle β2 of the second blade 36 at the left and right ends of the indoor unit 100 where ventilation resistance is high is made smaller than the inlet angle β1 of the first blade 26 at the center of the indoor unit 100, thereby reducing leading edge separation of the airflow.
 また、図12に示すように、第二羽根36の翼長WLは、第二の送風機30の第二回転軸に垂直な断面における内周端26iと外周端36oとの距離で定義される。そして、第二の送風機30の第二羽根36は、回転軸O方向の中間位置CT(図13参照)よりも主板32側の第一領域R1における翼長WLが、回転軸O方向の中間位置CTよりも側板33側の第二領域R2における翼長WLよりも長くなるように、それぞれ形成されている。 12, the blade length WL of the second blade 36 is defined as the distance between the inner circumferential end 26i and the outer circumferential end 36o in a cross section perpendicular to the second rotation axis of the second blower 30. The second blade 36 of the second blower 30 is formed such that the blade length WL in a first region R1 closer to the main plate 32 than the intermediate position CT (see FIG. 13) in the direction of the rotation axis O is longer than the blade length WL in a second region R2 closer to the side plate 33 than the intermediate position CT in the direction of the rotation axis O.
 このように、第一領域R1における翼長WLが第二領域R2における翼長WLよりも長くなるように第二羽根36を形成することで、気流が主板32側まで流入しやすくなり、室内機100の端部側から吹き出す風速分布を均一化できる。 In this way, by forming the second blade 36 so that the blade length WL in the first region R1 is longer than the blade length WL in the second region R2, the airflow can easily flow to the main plate 32 side, and the air speed distribution blowing out from the end side of the indoor unit 100 can be made uniform.
 第一の送風機20は、図3中の矢印Rの向きに回転すると、第一吸込風路41a側の第一羽根26間から空気を吸い込み、第一吹出風路42a側の第一羽根26間から空気を吹き出すものである。第二の送風機30は、図4中の矢印Rの向きに回転すると、熱交換器7を通過した空気をスクロールケーシング31の第一の送風機20とは反対側(側壁2a側)に設けられたベルマウス51から吸い込み、スクロールケーシング31の吹出口31eから空気を吹き出すものである。第二の送風機30は、第一の送風機20の左右両端側に設けられ、同一のシャフト15で連結されている。つまり、第一の送風機20の回転軸である第一回転軸と第二の送風機30の回転軸である第二回転軸とは同一である。そして、第一の送風機20と二つの第二の送風機30とは、同一のモータ(図示せず)で回転駆動される。 When the first blower 20 rotates in the direction of the arrow R in FIG. 3, it sucks in air between the first blades 26 on the first intake air passage 41a side and blows out air between the first blades 26 on the first exhaust air passage 42a side. When the second blower 30 rotates in the direction of the arrow R in FIG. 4, it sucks in air that has passed through the heat exchanger 7 from the bell mouth 51 provided on the opposite side (side wall 2a side) of the scroll casing 31 from the first blower 20, and blows out air from the outlet 31e of the scroll casing 31. The second blowers 30 are provided on both the left and right ends of the first blower 20 and are connected by the same shaft 15. In other words, the first rotating shaft, which is the rotating shaft of the first blower 20, and the second rotating shaft, which is the rotating shaft of the second blower 30, are the same. The first blower 20 and the two second blowers 30 are driven to rotate by the same motor (not shown).
 なお、実施の形態1では、第一の送風機20と二つの第二の送風機30とが同一のシャフト15で連結されている場合について説明したが、それに限定されない。第一の送風機20と二つの第二の送風機30とにそれぞれ別々のシャフト15を設け、最も第二の送風機30側の仕切板21と主板32とをそれぞれ別体として設け、第一の送風機20と二つの第二の送風機30とを左右方向に並列に設置し、それぞれ別々のモータ(図示せず)で回転駆動させる構成でもよい。 In the first embodiment, the first blower 20 and the two second blowers 30 are connected by the same shaft 15, but the present invention is not limited to this. A separate shaft 15 may be provided for each of the first blower 20 and the two second blowers 30, the partition plate 21 and the main plate 32 closest to the second blower 30 may be provided as separate bodies, and the first blower 20 and the two second blowers 30 may be installed in parallel in the left-right direction, and each may be driven to rotate by a separate motor (not shown).
 図3に示すように、吸込口3には、フィンガーガード(図示せず)およびフィルター13が設けられている。また、吹出口4には、上下方向の吹出方向を変更する上下風向板11が設けられている。また、第一の送風機20の下流側から吹出口4に至る第一吹出風路42aには、左右方向の吹出方向を変更する左右風向板12が設けられている。 As shown in FIG. 3, the intake port 3 is provided with a finger guard (not shown) and a filter 13. The outlet port 4 is provided with an up-down air deflector 11 that changes the blowing direction in the up-down direction. The first outlet air passage 42a, which runs from the downstream side of the first blower 20 to the outlet port 4, is provided with a left-right air deflector 12 that changes the blowing direction in the left-right direction.
 図2および図5に示すように、筐体2内には、第二吸込風路41bを通過した空気がスクロールケーシング31のベルマウス51以外に流れること、つまり第二吸込風路41bを通過した空気が筐体2内に漏れることを抑制する防ぐ板部材16が設けられている。 As shown in Figures 2 and 5, a plate member 16 is provided within the housing 2 to prevent the air that has passed through the second intake air passage 41b from flowing anywhere other than the bell mouth 51 of the scroll casing 31, that is, to prevent the air that has passed through the second intake air passage 41b from leaking into the housing 2.
 次に、実施の形態に係る空気調和機の室内機100内における空気の流れについて簡単に説明する。まず、室内空気は、第一の送風機20および二つの第二の送風機30によって筐体2の上部に形成されている吸込口3から室内機100内に流れ込む。このとき、フィルター13によって空気に含まれている塵埃が除去される。この室内空気は、熱交換器7を通過する際に熱交換器7内を導通している冷媒によって加熱または冷却されて調和空気となる。そして、調和空気は、第一吸込風路41a、第一の送風機20、および第一吹出風路42aを流れるものと、第二吸込風路41b、第二の送風機30、および第二吹出風路42bを流れるものとに分かれ、筐体2の下部に形成されている吹出口4から室内機100の外部、つまり空調対象域に吹き出される。このとき、上下風向板11および左右風向板12によって、空調対象域に吹き出される調和空気の向きが変更されるようになっている。 Next, the air flow in the indoor unit 100 of the air conditioner according to the embodiment will be briefly described. First, indoor air flows into the indoor unit 100 from the intake port 3 formed in the upper part of the housing 2 by the first blower 20 and the two second blowers 30. At this time, dust contained in the air is removed by the filter 13. When this indoor air passes through the heat exchanger 7, it is heated or cooled by the refrigerant flowing through the heat exchanger 7 to become conditioned air. Then, the conditioned air is divided into one that flows through the first intake air duct 41a, the first blower 20, and the first exhaust air duct 42a, and one that flows through the second intake air duct 41b, the second blower 30, and the second exhaust air duct 42b, and is blown out from the exhaust port 4 formed in the lower part of the housing 2 to the outside of the indoor unit 100, that is, to the area to be air-conditioned. At this time, the direction of the conditioned air blown out to the area to be air-conditioned is changed by the up-down air deflector 11 and the left-right air deflector 12.
 第一の送風機20の風路後壁9のうち最も背面ケース1の背面1aに近い箇所から背面ケース1の背面1aまでの第一距離W1は、第二の送風機30のスクロールケーシング31のうち最も背面ケース1の背面1aに近い箇所から背面ケース1の背面1aまでの第二距離W2よりも短い(つまり、W1<W2)。 The first distance W1 from the point on the air passage rear wall 9 of the first blower 20 closest to the rear surface 1a of the rear case 1 to the rear surface 1a of the rear case 1 is shorter than the second distance W2 from the point on the scroll casing 31 of the second blower 30 closest to the rear surface 1a of the rear case 1 to the rear surface 1a of the rear case 1 (i.e., W1 < W2).
 高圧損時では、第二の送風機30の吸込み割合が過大になると、第一の送風機20の動作が不安定となる恐れがある。そこで、実施の形態1では、上記のように第一の送風機20の風路後壁9のうち最も背面ケース1の背面1aに近い箇所から背面ケース1の背面1aまでの第一距離W1を、第二の送風機30のスクロールケーシング31のうち最も背面ケース1の背面1aに近い箇所から背面ケース1の背面1aまでの第二距離W2よりも短くすることで、第二吹出風路42bの圧力損失が高くなり、第二の送風機30の吸込み割合の過大が抑制され、第一の送風機20および第二の送風機30の動作を安定させることができ、入力騒音の増大を抑制することができる。 When there is a high pressure loss, if the suction ratio of the second blower 30 becomes excessive, the operation of the first blower 20 may become unstable. Therefore, in the first embodiment, as described above, the first distance W1 from the part of the air passage rear wall 9 of the first blower 20 closest to the rear surface 1a of the rear case 1 to the rear surface 1a of the rear case 1 is made shorter than the second distance W2 from the part of the scroll casing 31 of the second blower 30 closest to the rear surface 1a of the rear case 1 to the rear surface 1a of the rear case 1, thereby increasing the pressure loss of the second outlet air passage 42b, suppressing the excessive suction ratio of the second blower 30, stabilizing the operation of the first blower 20 and the second blower 30, and suppressing an increase in input noise.
 また、図2および図5に示すように、スクロールケーシング31の回転軸O方向の高さの極大点(頂点)Xは、スクロールケーシング31の熱交換器7側における外周端E1と内周端E2との間に位置している。つまり、スクロールケーシング31の回転軸O方向の高さは、スクロールケーシング31の熱交換器7側における外周端E1から吸込口31d側の極大点Xとなる位置に向かうにつれて徐々に増加し、極大点Xとなる位置から熱交換器7側における内周端E2に向かうにつれて徐々に減少している。 Also, as shown in Figures 2 and 5, the maximum point (vertex) X of the height of the scroll casing 31 in the direction of the rotation axis O is located between the outer peripheral end E1 and the inner peripheral end E2 on the heat exchanger 7 side of the scroll casing 31. In other words, the height of the scroll casing 31 in the direction of the rotation axis O gradually increases from the outer peripheral end E1 on the heat exchanger 7 side of the scroll casing 31 toward the position of maximum point X on the suction port 31d side, and gradually decreases from the position of maximum point X toward the inner peripheral end E2 on the heat exchanger 7 side.
 吸込口3が筐体2の上部に形成されている場合、第二の送風機30に流入する空気は、スクロールケーシング31と筐体2の側壁2aとの隙間を通って吸込口31dに流入するため、第二吸込風路41bの圧力損失が高いが、スクロールケーシング31の回転軸O方向の高さの極大点Xを、スクロールケーシング31の熱交換器7側における外周端E1と内周端E2との間に位置させることで、第二吸込風路41bが極大点Xとなる位置から熱交換器7側における内周端E2に向かうにつれて拡大し、第二吸込風路41bの圧力損失が低減するため、第二の送風機30の入力騒音を低減することができる。 When the suction port 3 is formed at the top of the housing 2, the air flowing into the second blower 30 flows into the suction port 31d through the gap between the scroll casing 31 and the side wall 2a of the housing 2, resulting in high pressure loss in the second suction air passage 41b. However, by positioning the maximum point X of the height of the scroll casing 31 in the direction of the rotation axis O between the outer peripheral end E1 and the inner peripheral end E2 on the heat exchanger 7 side of the scroll casing 31, the second suction air passage 41b expands from the position of the maximum point X toward the inner peripheral end E2 on the heat exchanger 7 side, reducing pressure loss in the second suction air passage 41b and reducing the input noise of the second blower 30.
 また、図2および図5に示すように、スクロールケーシング31の回転軸O方向の高さの極大点Xは、熱交換器7の回転軸O方向の外側端部7aよりも内側に位置している。つまり、回転軸O方向において、第二の送風機30の吸込口31d側の外側端部は、熱交換器7の外側端部7aよりも内側に位置している。このようにすることで、筐体2の上部に形成されている吸込口3からスクロールケーシング31の吸込口31dに空気を吸い込むことができ、筐体2の側面に吸込口を形成せずに済むため、室内機100の構造が簡単になり、製造性を向上させることができる。また、回転軸O方向において、スクロールケーシング31の吸込口31dが熱交換器7の設置範囲内に位置していることになる。その結果、熱交換器7を通過した空気が直接、第二の送風機30に流入することになり、第二吸込風路41bの圧力損失が低減するため、第二の送風機30の入力騒音を低減することができる。 Also, as shown in Figs. 2 and 5, the maximum point X of the height of the scroll casing 31 in the direction of the rotation axis O is located inside the outer end 7a of the heat exchanger 7 in the direction of the rotation axis O. In other words, in the direction of the rotation axis O, the outer end of the second blower 30 on the side of the suction port 31d is located inside the outer end 7a of the heat exchanger 7. In this way, air can be sucked into the suction port 31d of the scroll casing 31 from the suction port 3 formed in the upper part of the housing 2, and it is not necessary to form an suction port on the side of the housing 2, so the structure of the indoor unit 100 is simplified and manufacturability can be improved. In addition, in the direction of the rotation axis O, the suction port 31d of the scroll casing 31 is located within the installation range of the heat exchanger 7. As a result, the air that has passed through the heat exchanger 7 flows directly into the second blower 30, reducing the pressure loss in the second suction air passage 41b, and the input noise of the second blower 30 can be reduced.
 また、図2および図5に示すように、回転軸O方向において風路仕切板50から熱交換器7の外側端部7aまで間の距離である第二吸込風路41bの幅H1は、スクロールケーシング31の高さである第二吹出風路42bの幅H2と等しくなる、あるいは、第二吸込風路41bの幅H1が第二吹出風路42bの幅H2よりも大きくなるように、第二吸込風路41bおよび第二吹出風路42bが形成されている。 Also, as shown in Figures 2 and 5, the width H1 of the second intake air passage 41b, which is the distance from the air passage partition plate 50 to the outer end 7a of the heat exchanger 7 in the direction of the rotation axis O, is equal to the width H2 of the second exhaust air passage 42b, which is the height of the scroll casing 31, or the second intake air passage 41b and the second exhaust air passage 42b are formed so that the width H1 of the second intake air passage 41b is greater than the width H2 of the second exhaust air passage 42b.
 このように、H1=H2もしくはH1>H2(つまりH1≧H2)となるように第二吸込風路41bおよび第二吹出風路42bを形成することで、第二吸込風路41bの圧力損失が低減するため、第二の送風機30の入力騒音を低減することができる。 In this way, by forming the second intake air duct 41b and the second exhaust air duct 42b so that H1 = H2 or H1 > H2 (i.e., H1 ≥ H2), the pressure loss in the second intake air duct 41b is reduced, and the input noise of the second blower 30 can be reduced.
 図14は、図5のD部を拡大した正面模式図である。図15は、図14のE部を矢視方向に見た平面模式図である。図16は、図5のD部の変形例を拡大した正面模式図である。図8に示すように、第二の送風機30は、回転軸O方向の第一の送風機20側に主板32を有しており、回転軸O方向の第一の送風機20とは反対側(側壁2a側)に側板33を有している。そして、図14および図15に示すように、主板32の外周端32aとスクロールケーシング31の主板32側の内周端31fとの間には、約4mmの隙間Gが形成されている。また、回転軸O方向において、主板32とスクロールケーシング31の主板32側の内周端31fとは、一致するように、つまりそれらが全て重なるように(対向するように)に配置されている。なお、図16に示すように、回転軸O方向において、主板32とスクロールケーシング31の主板32側の内周端31fとは、一部が重なるように(対向するように)、少しそれらがずれて配置されていてもよい。 14 is a front view of an enlarged D portion of FIG. 5. FIG. 15 is a plan view of an E portion of FIG. 14 as viewed in the direction of the arrow. FIG. 16 is a front view of an enlarged D portion of FIG. 5. As shown in FIG. 8, the second blower 30 has a main plate 32 on the first blower 20 side in the direction of the rotation axis O, and a side plate 33 on the opposite side (side wall 2a side) of the first blower 20 in the direction of the rotation axis O. As shown in FIG. 14 and FIG. 15, a gap G of about 4 mm is formed between the outer peripheral end 32a of the main plate 32 and the inner peripheral end 31f of the scroll casing 31 on the main plate 32 side. In addition, in the direction of the rotation axis O, the main plate 32 and the inner peripheral end 31f of the scroll casing 31 on the main plate 32 side are arranged so as to coincide with each other, that is, so that they all overlap (face each other). As shown in FIG. 16, the main plate 32 and the inner peripheral end 31f of the scroll casing 31 on the main plate 32 side may be arranged slightly offset in the direction of the rotation axis O so that they partially overlap (face each other).
 このように、回転軸O方向において、主板32とスクロールケーシング31の主板32側の内周端31fとを、一致するようにまたは一部が重なるように配置し、かつ、主板32の外周端32aとスクロールケーシング31の主板32側の内周端31fとの間の隙間Gを最小とすることにより、スクロールケーシング31の吹出口31e以外から空気が吹き出されること、つまり、スクロールケーシング31から空気が漏れることが抑制されるため、第二の送風機30の入力騒音を低減することができる。 In this way, by arranging the main plate 32 and the inner peripheral end 31f of the scroll casing 31 on the main plate 32 side so that they coincide or partially overlap in the direction of the rotation axis O, and minimizing the gap G between the outer peripheral end 32a of the main plate 32 and the inner peripheral end 31f of the scroll casing 31 on the main plate 32 side, it is possible to prevent air from being blown out from anywhere other than the outlet 31e of the scroll casing 31, in other words, to prevent air from leaking from the scroll casing 31, thereby reducing the input noise of the second blower 30.
 以上、実施の形態1に係る空気調和機の室内機100は、吸込口3および吹出口4が形成された筐体2と、筐体2の内部に設けられた熱交換器7と、筐体2の内部において熱交換器7の下流側に設けられ、第一回転軸を中心に回転する貫流ファンで構成された第一の送風機20と、第一回転軸方向における第一の送風機20の両端側に設けられ、第二回転軸を中心に回転する遠心ファンで構成された第二の送風機30と、第二の送風機30の外周に設けられ、第二の送風機30の吹出風路を形成するスクロールケーシング31と、を備え、第二の送風機30は、円板状あるいは環状の主板32と、主板32と対向して配置される環状の側板33と、一端が主板32と接続され、他端が側板33と接続され、第二回転軸を中心とする周方向に配列された複数の羽根と、を備え、複数の羽根のそれぞれは、第二回転軸を中心とする径方向において第二回転軸側に位置する内周端36iと、径方向において内周端36iよりも外周側に位置する外周端36oと、外周端36oを含み出口角α1が90度よりも大きい角度に形成された前向羽根を構成するシロッコ翼部36aと、内周端36iを含み後向羽根を構成するターボ翼部36bと、を有するものである。 As described above, the indoor unit 100 of the air conditioner according to the first embodiment comprises a housing 2 in which an intake port 3 and an exhaust port 4 are formed, a heat exchanger 7 provided inside the housing 2, a first blower 20 provided inside the housing 2 downstream of the heat exchanger 7 and configured as a cross-flow fan rotating about a first rotation axis, a second blower 30 provided on both ends of the first blower 20 in the direction of the first rotation axis and configured as a centrifugal fan rotating about a second rotation axis, and a scroll casing 31 provided on the outer periphery of the second blower 30 and forming an outlet air passage for the second blower 30, the second blower 30 being a disk-shaped or The rotor blade 30 includes an annular main plate 32, an annular side plate 33 arranged opposite the main plate 32, and a plurality of blades arranged in a circumferential direction centered on the second rotating shaft, with one end connected to the main plate 32 and the other end connected to the side plate 33. Each of the blades has an inner circumferential end 36i located on the second rotating shaft side in the radial direction centered on the second rotating shaft, an outer circumferential end 36o located on the outer side of the inner circumferential end 36i in the radial direction, a sirocco blade portion 36a including the outer circumferential end 36o and constituting a forward blade with an outlet angle α1 greater than 90 degrees, and a turbo blade portion 36b including the inner circumferential end 36i and constituting a backward blade.
 実施の形態1に係る空気調和機の室内機100によれば、第二の送風機30の複数の羽根のそれぞれは、外周端36oを含み出口角α1が90度よりも大きい角度に形成された前向羽根を構成するシロッコ翼部36aと、内周端36iを含み後向羽根を構成するターボ翼部36bと、を有するため、第二の送風機30としてシロッコファンあるいはラジアルファンを用いた場合に比べて、圧力回復を向上させることができる。また、第一回転軸方向における第一の送風機20の両端側に第二の送風機30を設け、第一の送風機20を貫流ファンで構成し、第二の送風機30を貫流ファンよりも高静圧時に空力特性が高い遠心ファンで構成することにより、低風量時あるいは高圧損時でも室内機100の左右両端部で逆吸込みがなくなるため、逆吸込みによる入力騒音の増大を抑制することができ、冷房運転時の逆吸込みによる湿った空気の吹出口4表面への接触に起因する結露の発生も抑制することができる。 According to the indoor unit 100 of the air conditioner according to the first embodiment, each of the blades of the second blower 30 has a sirocco blade portion 36a that includes the outer circumferential end 36o and forms a forward-facing blade with an outlet angle α1 greater than 90 degrees, and a turbo blade portion 36b that includes the inner circumferential end 36i and forms a backward-facing blade, so that pressure recovery can be improved compared to when a sirocco fan or a radial fan is used as the second blower 30. In addition, by providing the second blower 30 on both ends of the first blower 20 in the first rotation axis direction, configuring the first blower 20 as a cross-flow fan, and configuring the second blower 30 as a centrifugal fan that has higher aerodynamic characteristics at high static pressure than a cross-flow fan, reverse suction is eliminated at both left and right ends of the indoor unit 100 even at low air volume or high pressure loss, so that an increase in input noise due to reverse suction can be suppressed, and condensation caused by contact of moist air with the surface of the air outlet 4 due to reverse suction during cooling operation can also be suppressed.
 また、実施の形態1に係る空気調和機の室内機100において、第一の送風機20は、第一回転軸を中心とする周方向に配列された複数の羽根を備え、第二の送風機30の複数の羽根の入口角β2は、第一の送風機20の複数の羽根の入口角β1よりも小さい。 Furthermore, in the indoor unit 100 of the air conditioner according to embodiment 1, the first blower 20 has multiple blades arranged in a circumferential direction centered on the first rotation axis, and the inlet angle β2 of the multiple blades of the second blower 30 is smaller than the inlet angle β1 of the multiple blades of the first blower 20.
 実施の形態1に係る空気調和機の室内機100によれば、通風抵抗が高い第一の送風機20の両端側における第二の送風機30の羽根の入口角β2を、第二の送風機30の間における第一の送風機20の羽根の入口角β1よりも小さくすることで、気流の前縁剥離を低減することができる。 In the air conditioner indoor unit 100 according to the first embodiment, the inlet angle β2 of the blades of the second blower 30 at both ends of the first blower 20, where the ventilation resistance is high, is made smaller than the inlet angle β1 of the blades of the first blower 20 between the second blowers 30, thereby reducing leading edge separation of the airflow.
 また、実施の形態1に係る空気調和機の室内機100において、スクロールケーシング31は、スクロールケーシング31内に空気を吸い込む吸込口31dを形成するベルマウス51を有し、ベルマウス51は、第二回転軸方向において、第一の送風機20とは反対側に設けられている。 In addition, in the indoor unit 100 of the air conditioner according to embodiment 1, the scroll casing 31 has a bell mouth 51 that forms an intake port 31d that draws air into the scroll casing 31, and the bell mouth 51 is provided on the opposite side to the first blower 20 in the direction of the second rotation axis.
 実施の形態1に係る空気調和機の室内機100によれば、第一の送風機20とは反対側にベルマウス51を設けることにより、ベルマウス51から流入する流れを整流し、吸込風路の風路圧損を低減することができる。また、第一の送風機20と第二の送風機30と一体で構成でき、一か所を計測すれば主板32の外周端32aとスクロールケーシング31の主板32側の内周端31fとの間の隙間Gが確保されているか分かるため、公差管理しやすくなる。 According to the indoor unit 100 of the air conditioner according to the first embodiment, by providing a bell mouth 51 on the opposite side to the first blower 20, the flow coming in from the bell mouth 51 can be rectified and the air passage pressure loss in the intake air passage can be reduced. In addition, the first blower 20 and the second blower 30 can be configured as one unit, and by measuring one location, it is possible to determine whether the gap G between the outer peripheral end 32a of the main plate 32 and the inner peripheral end 31f on the main plate 32 side of the scroll casing 31 is secured, making tolerance management easier.
 また、実施の形態1に係る空気調和機の室内機100において、第二の送風機30の複数の羽根は、第二回転軸方向の中間位置CTよりも主板32側の第一領域R1における翼長WLが、第二回転軸方向の中間位置CTよりも側板33側の第二領域R2における翼長WLよりも長くなるように形成されている。 Furthermore, in the indoor unit 100 of the air conditioner according to embodiment 1, the multiple blades of the second blower 30 are formed so that the blade length WL in the first region R1 closer to the main plate 32 than the intermediate position CT in the second rotational shaft direction is longer than the blade length WL in the second region R2 closer to the side plate 33 than the intermediate position CT in the second rotational shaft direction.
 実施の形態1に係る空気調和機の室内機100によれば、第一領域R1における翼長WLが第二領域R2における翼長WLよりも長くなるように第二の送風機30の羽根を形成することで、気流が主板32側まで流入しやすくなり、室内機100の端部側から吹き出す風速分布を均一化できる。 In the air conditioner indoor unit 100 according to the first embodiment, the blades of the second blower 30 are formed so that the blade length WL in the first region R1 is longer than the blade length WL in the second region R2, which makes it easier for the airflow to flow to the main board 32 side, and makes it possible to uniformize the distribution of the air speed blowing out from the end side of the indoor unit 100.
 また、実施の形態1に係る空気調和機の室内機100において、第一の送風機20の外周に設けられ、第一の送風機20の吹出風路を形成するケーシングを備え、ケーシングのうち最も背面に近い箇所から背面までの第一距離W1は、スクロールケーシング31のうち背面に近い箇所から背面までの第二距離W2よりも短い。 Furthermore, the indoor unit 100 of the air conditioner according to embodiment 1 is provided with a casing that is provided on the outer periphery of the first blower 20 and forms the airflow path of the first blower 20, and the first distance W1 from the point of the casing closest to the rear surface to the rear surface is shorter than the second distance W2 from the point of the scroll casing 31 closest to the rear surface to the rear surface.
 高圧損時では、第二の送風機30の吸込み割合が過大になると、第一の送風機20の動作が不安定となる恐れがある。そこで、実施の形態1に係る空気調和機の室内機100によれば、第一距離W1を第二距離W2よりも短くすることで、第二吹出風路42bの圧力損失が高くなり、第二の送風機30の吸込み割合の過大が抑制され、第一の送風機20および第二の送風機30の動作を安定させることができ、入力騒音の増大を抑制することができる。 When there is a high pressure loss, if the suction ratio of the second blower 30 becomes excessive, there is a risk that the operation of the first blower 20 will become unstable. Therefore, according to the indoor unit 100 of the air conditioner of embodiment 1, by making the first distance W1 shorter than the second distance W2, the pressure loss in the second outlet air passage 42b is increased, and the suction ratio of the second blower 30 is prevented from becoming excessive, the operation of the first blower 20 and the second blower 30 can be stabilized, and an increase in input noise can be suppressed.
 また、実施の形態1に係る空気調和機の室内機100において、スクロールケーシング31の第二回転軸方向の高さの極大点Xは、スクロールケーシング31の熱交換器7側における外周端E1と内周端E2との間に位置している。 In addition, in the indoor unit 100 of the air conditioner according to embodiment 1, the maximum point X of the height in the second rotation axis direction of the scroll casing 31 is located between the outer circumferential end E1 and the inner circumferential end E2 on the heat exchanger 7 side of the scroll casing 31.
 実施の形態1に係る空気調和機の室内機100によれば、スクロールケーシング31の第二回転軸方向の高さの極大点Xは、スクロールケーシング31の熱交換器7側における外周端E1と内周端E2との間に位置させることで、第二吸込風路41bが極大点Xとなる位置から熱交換器7側における内周端E2に向かうにつれて拡大し、第二吸込風路41bの圧力損失が低減するため、第二の送風機30の入力騒音を低減することができる。 In the indoor unit 100 of the air conditioner according to the first embodiment, the maximum point X of the height in the second rotation axis direction of the scroll casing 31 is positioned between the outer peripheral end E1 and the inner peripheral end E2 on the heat exchanger 7 side of the scroll casing 31, so that the second intake air passage 41b expands from the position of the maximum point X toward the inner peripheral end E2 on the heat exchanger 7 side, and the pressure loss in the second intake air passage 41b is reduced, thereby reducing the input noise of the second blower 30.
 また、実施の形態1に係る空気調和機の室内機100において、スクロールケーシング31の第二回転軸方向の高さの極大点Xは、熱交換器7の第二回転軸方向の外側端部7aよりも内側に位置している。 Furthermore, in the indoor unit 100 of the air conditioner according to embodiment 1, the maximum point X of the height of the scroll casing 31 in the second rotational axis direction is located inside the outer end 7a of the heat exchanger 7 in the second rotational axis direction.
 実施の形態1に係る空気調和機の室内機100によれば、筐体2の上部に形成されている吸込口3からスクロールケーシング31の吸込口31dに空気を吸い込むことができ、筐体2の側面に吸込口を形成せずに済むため、室内機100の構造が簡単になり、製造性を向上させることができる。また、回転軸O方向において、スクロールケーシング31の吸込口31dが熱交換器7の設置範囲内に位置していることになる。その結果、熱交換器7を通過した空気が直接、第二の送風機30に流入することになり、第二吸込風路41bの圧力損失が低減するため、第二の送風機30の入力騒音を低減することができる。 According to the indoor unit 100 of the air conditioner according to the first embodiment, air can be sucked into the suction port 31d of the scroll casing 31 from the suction port 3 formed in the upper part of the housing 2, and there is no need to form an suction port on the side of the housing 2, which simplifies the structure of the indoor unit 100 and improves manufacturability. Also, in the direction of the rotation axis O, the suction port 31d of the scroll casing 31 is located within the installation range of the heat exchanger 7. As a result, air that has passed through the heat exchanger 7 flows directly into the second blower 30, which reduces the pressure loss in the second suction air passage 41b and reduces the input noise of the second blower 30.
 また、実施の形態1に係る空気調和機の室内機100において、第二回転軸方向において、主板32とスクロールケーシング31の主板32側の内周端31fとは、一致するようにまたは一部が重なるように配置されており、かつ、主板32の外周端32aとスクロールケーシング31の主板32側の内周端31fとの間には隙間Gが形成されている。 In addition, in the indoor unit 100 of the air conditioner according to embodiment 1, the main plate 32 and the inner peripheral end 31f of the scroll casing 31 on the main plate 32 side are arranged to coincide or partially overlap in the second rotation axis direction, and a gap G is formed between the outer peripheral end 32a of the main plate 32 and the inner peripheral end 31f of the scroll casing 31 on the main plate 32 side.
 実施の形態1に係る空気調和機の室内機100によれば、第二回転軸方向において、主板32とスクロールケーシング31の主板32側の内周端31fとを、一致するようにまたは一部が重なるように配置し、かつ、主板32の外周端32aとスクロールケーシング31の主板32側の内周端31fとの間の隙間Gを最小とすることにより、スクロールケーシング31の吹出口31e以外から空気が吹き出されること、つまり、スクロールケーシング31から空気が漏れることが抑制されるため、第二の送風機30の入力騒音を低減することができる。 According to the indoor unit 100 of the air conditioner according to the first embodiment, the main plate 32 and the inner peripheral end 31f of the scroll casing 31 on the main plate 32 side are arranged to coincide or partially overlap in the second rotation axis direction, and the gap G between the outer peripheral end 32a of the main plate 32 and the inner peripheral end 31f of the scroll casing 31 on the main plate 32 side is minimized, thereby preventing air from being blown out from anywhere other than the air outlet 31e of the scroll casing 31, in other words, preventing air from leaking from the scroll casing 31, thereby reducing the input noise of the second blower 30.
 また、実施の形態1に係る空気調和機の室内機100において、第一の送風機20は円板状あるいは環状の仕切板21を有し、第二の送風機30は環状の側板33を有し、仕切板21の外径と側板33の外径とは同じ長さである。 In addition, in the indoor unit 100 of the air conditioner according to embodiment 1, the first blower 20 has a disk-shaped or annular partition plate 21, and the second blower 30 has an annular side plate 33, and the outer diameter of the partition plate 21 and the outer diameter of the side plate 33 are the same length.
 実施の形態1に係る空気調和機の室内機100によれば、第一の送風機20の仕切板21の外径と第二の送風機30の側板33の外径とを同じ長さにすることで、第一の送風機20に係る風路前壁8の舌部8aと第二の送風機30に係るスクロールケーシング31の舌部31aとを側面視して同じ位置にすることができるため、室内機100を構成する部品を簡素化でき、製造性を向上させることができる。 In the indoor unit 100 of the air conditioner according to embodiment 1, the outer diameter of the partition plate 21 of the first blower 20 and the outer diameter of the side plate 33 of the second blower 30 are made the same length, so that the tongue portion 8a of the air passage front wall 8 of the first blower 20 and the tongue portion 31a of the scroll casing 31 of the second blower 30 can be in the same position when viewed from the side, simplifying the components that make up the indoor unit 100 and improving manufacturability.
 また、実施の形態1に係る空気調和機の室内機100において、スクロールケーシング31は、吸込口3から第一の送風機20および第二の送風機30の上流側に至る吸込風路を、吸込口3から第一の送風機20の上流側に至る第一吸込風路41aと吸込口3から第二の送風機30の上流側に至る第二吸込風路41bとに仕切る風路仕切板50を有する。 In addition, in the indoor unit 100 of the air conditioner according to embodiment 1, the scroll casing 31 has an air duct partition plate 50 that divides the intake air duct from the intake port 3 to the upstream side of the first blower 20 and the second blower 30 into a first intake air duct 41a from the intake port 3 to the upstream side of the first blower 20 and a second intake air duct 41b from the intake port 3 to the upstream side of the second blower 30.
 実施の形態1に係る空気調和機の室内機100によれば、風路仕切板50で、吸込口3から第一の送風機20および二つの第二の送風機30の上流側に至る吸込風路を、第一吸込風路41aと第二吸込風路41bとに仕切ることで、第一の送風機20が第二の送風機30の影響を受けることなく、それぞれの動作が安定するため、入力騒音の増大を抑制することができる。 In the indoor unit 100 of the air conditioner according to the first embodiment, the air duct partition plate 50 divides the intake air duct from the air inlet 3 to the upstream side of the first blower 20 and the two second blowers 30 into the first intake air duct 41a and the second intake air duct 41b. This prevents the first blower 20 from being affected by the second blower 30, stabilizing the operation of each blower, and suppresses an increase in input noise.
 また、実施の形態1に係る空気調和機の室内機100において、第二吸込風路41bの幅H1は、第二吹出風路42bの幅H2と等しいあるいは第二吹出風路42bの幅H2よりも大きい。 In addition, in the indoor unit 100 of the air conditioner according to embodiment 1, the width H1 of the second intake air duct 41b is equal to or greater than the width H2 of the second exhaust air duct 42b.
 実施の形態1に係る空気調和機の室内機100によれば、H1=H2もしくはH1>H2(つまりH1≧H2)となるように第二吸込風路41bおよび第二吹出風路42bを形成することで、第二吸込風路41bの圧力損失が低減するため、第二の送風機30の入力騒音を低減することができる。 In the air conditioner indoor unit 100 according to the first embodiment, by forming the second intake air duct 41b and the second exhaust air duct 42b so that H1 = H2 or H1 > H2 (i.e., H1 ≥ H2), the pressure loss in the second intake air duct 41b is reduced, and the input noise of the second blower 30 can be reduced.
 実施の形態2.
 以下、実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 2.
Hereinafter, the second embodiment will be described, but explanations of parts that overlap with the first embodiment will be omitted, and parts that are the same as or equivalent to the first embodiment will be given the same reference numerals.
 図17は、実施の形態2に係る空気調和機の室内機100の内部構成の一部を拡大した正面模式図である。なお、図17は、図5と同様に図2のC部を拡大した正面模式図である。また、図17の破線矢印は、空気の流れ(気流)を示している。 FIG. 17 is a schematic front view showing an enlarged view of part of the internal structure of the indoor unit 100 of the air conditioner according to embodiment 2. Note that FIG. 17 is a schematic front view showing an enlarged view of part C in FIG. 2, similar to FIG. 5. Also, the dashed arrows in FIG. 17 indicate the air flow (air current).
 図17に示すように、実施の形態2では、スクロールケーシング31の第一の送風機20側に、吸込口31dを形成するベルマウス51が設けられている。つまり、実施の形態2では、スクロールケーシング31の吸込口31dが形成されている位置が、実施の形態1に係るスクロールケーシング31と回転軸O方向において反対側になっている。 As shown in FIG. 17, in the second embodiment, a bell mouth 51 that forms the suction port 31d is provided on the first blower 20 side of the scroll casing 31. In other words, in the second embodiment, the position where the suction port 31d of the scroll casing 31 is formed is on the opposite side in the direction of the rotation axis O to the scroll casing 31 in the first embodiment.
 このように、スクロールケーシング31の吸込口31dを第一の送風機20側に形成することで、第二の送風機30に遠心ファンを用いた場合、第一の送風機20側の吸込口31dから流入した空気が第二の送風機30のスクロールケーシング31から流出する際、室内機100の左右両端部に位置する遠心ファンの主板32側に寄って流出するため、吹出口4の左右両側から吹き出す風速が高くなる。よって、室内機100の内部の圧力損失が高い動作領域でも、室内機100の左右両端部で逆吸込みがなくなるため、逆吸込みによる入力騒音の増大を抑制することができ、冷房運転時の逆吸込みによる湿った空気の吹出口4表面への接触に起因する結露の発生を抑制することができる。 In this way, by forming the suction port 31d of the scroll casing 31 on the first blower 20 side, when a centrifugal fan is used for the second blower 30, when the air that flows in from the suction port 31d on the first blower 20 side flows out of the scroll casing 31 of the second blower 30, it flows out toward the main plate 32 of the centrifugal fan located at both the left and right ends of the indoor unit 100, so the wind speed blowing out from both the left and right sides of the outlet 4 becomes high. Therefore, even in an operating range where the pressure loss inside the indoor unit 100 is high, there is no reverse suction at both the left and right ends of the indoor unit 100, so it is possible to suppress an increase in input noise due to reverse suction, and it is possible to suppress the occurrence of condensation caused by contact of moist air with the surface of the outlet 4 due to reverse suction during cooling operation.
 以上、実施の形態2に係る空気調和機の室内機100において、スクロールケーシング31は、スクロールケーシング31内に空気を吸い込む吸込口31dを形成するベルマウス51を有し、ベルマウス51は、第二回転軸方向において、第一の送風機20側に設けられている。 As described above, in the indoor unit 100 of the air conditioner according to the second embodiment, the scroll casing 31 has a bell mouth 51 that forms an intake port 31d that draws air into the scroll casing 31, and the bell mouth 51 is provided on the first blower 20 side in the second rotation axis direction.
 実施の形態2に係る空気調和機の室内機100によれば、第一の送風機20側の吸込口31dから流入した空気が第二の送風機30のスクロールケーシング31から流出する際、室内機100の左右両端部に位置する遠心ファンの主板32側に寄って流出するため、吹出口4の左右両側から吹き出す風速が高くなる。よって、室内機100の内部の圧力損失が高い動作領域でも、室内機100の左右両端部で逆吸込みがなくなるため、逆吸込みによる入力騒音の増大を抑制することができ、冷房運転時の逆吸込みによる湿った空気の吹出口4表面への接触に起因する結露の発生を抑制することができる。 According to the indoor unit 100 of the air conditioner according to the second embodiment, when the air flowing in from the intake port 31d on the first blower 20 side flows out from the scroll casing 31 of the second blower 30, it flows out toward the main plate 32 of the centrifugal fan located at both the left and right ends of the indoor unit 100, so the wind speed blowing out from both the left and right sides of the outlet 4 becomes high. Therefore, even in the operating range where the pressure loss inside the indoor unit 100 is high, there is no reverse suction at both the left and right ends of the indoor unit 100, so it is possible to suppress the increase in input noise due to reverse suction, and it is possible to suppress the occurrence of condensation caused by contact of moist air with the surface of the outlet 4 due to reverse suction during cooling operation.
 実施の形態3.
 以下、実施の形態3について説明するが、実施の形態1および2と重複するものについては説明を省略し、実施の形態1および2と同じ部分または相当する部分には同じ符号を付す。
Embodiment 3.
Hereinafter, the third embodiment will be described, but explanations of parts that overlap with the first and second embodiments will be omitted, and parts that are the same as or equivalent to the first and second embodiments will be given the same reference numerals.
 図18は、実施の形態3に係る空気調和機の室内機100の内部構成の一部を拡大した正面模式図である。なお、図18は、図5と同様に図2のC部を拡大した正面模式図である。また、図18の破線矢印は、空気の流れ(気流)を示している。 FIG. 18 is a schematic front view showing an enlarged view of part of the internal structure of the indoor unit 100 of the air conditioner according to embodiment 3. Note that FIG. 18 is a schematic front view showing an enlarged view of part C in FIG. 2, similar to FIG. 5. Also, the dashed arrows in FIG. 18 indicate the flow of air (air current).
 図18に示すように、実施の形態3では、スクロールケーシング31の第一の送風機20側および第一の送風機20とは反対側(側壁2a側)に、吸込口31dを形成するベルマウス51がそれぞれ設けられている。つまり、実施の形態3では、回転軸O方向において、スクロールケーシング31の吸込口31dが、第一の送風機20側および第一の送風機20とは反対側(側壁2a側)にそれぞれ形成されており、第二の送風機30の両側から空気を吸い込む。 As shown in FIG. 18, in the third embodiment, bell mouths 51 that form suction ports 31d are provided on the first blower 20 side of the scroll casing 31 and on the opposite side of the first blower 20 (side wall 2a side). In other words, in the third embodiment, in the direction of the rotation axis O, the suction ports 31d of the scroll casing 31 are formed on the first blower 20 side and on the opposite side of the first blower 20 (side wall 2a side), and air is sucked in from both sides of the second blower 30.
 回転軸O方向において、第二の送風機30の両側から空気を吸い込むことにより、熱交換器7あるいは第一吸込風路41aの圧力損失が比較的低く、第一の送風機20の空力特性が高い動作領域においても、第二の送風機30の吸込み風量を確保できる。そのため、第一の送風機20および第二の送風機30の動作を安定させることができ、入力騒音の増大を抑制することができる。 By drawing in air from both sides of the second blower 30 in the direction of the rotation axis O, the pressure loss in the heat exchanger 7 or the first intake air passage 41a is relatively low, and the intake air volume of the second blower 30 can be ensured even in an operating range where the aerodynamic characteristics of the first blower 20 are high. Therefore, the operation of the first blower 20 and the second blower 30 can be stabilized, and an increase in input noise can be suppressed.
 以上、実施の形態3に係る空気調和機の室内機100において、スクロールケーシング31は、スクロールケーシング31内に空気を吸い込む吸込口31dを形成するベルマウス51を有し、ベルマウス51は、第二回転軸方向において、第一の送風機20側および第一の送風機20とは反対側にそれぞれ設けられている。 As described above, in the indoor unit 100 of the air conditioner according to the third embodiment, the scroll casing 31 has a bell mouth 51 that forms an intake port 31d that draws air into the scroll casing 31, and the bell mouth 51 is provided on the first blower 20 side and on the opposite side to the first blower 20 in the second rotation axis direction.
 実施の形態3に係る空気調和機の室内機100によれば、第二回転軸方向において、第二の送風機30の両側から空気を吸い込むことにより、熱交換器7あるいは第一吸込風路41aの圧力損失が比較的低く、第一の送風機20の空力特性が高い動作領域においても、第二の送風機30の吸込み風量を確保できる。そのため、第一の送風機20および第二の送風機30の動作を安定させることができ、入力騒音の増大を抑制することができる。 According to the indoor unit 100 of the air conditioner according to the third embodiment, by drawing in air from both sides of the second blower 30 in the second rotational axis direction, the pressure loss in the heat exchanger 7 or the first intake air passage 41a is relatively low, and the intake air volume of the second blower 30 can be ensured even in an operating range where the aerodynamic characteristics of the first blower 20 are high. Therefore, the operation of the first blower 20 and the second blower 30 can be stabilized, and an increase in input noise can be suppressed.
 実施の形態4.
 以下、実施の形態4について説明するが、実施の形態1~3と重複するものについては説明を省略し、実施の形態1~3と同じ部分または相当する部分には同じ符号を付す。
Embodiment 4.
Hereinafter, the fourth embodiment will be described, but explanations of parts that overlap with the first to third embodiments will be omitted, and the same parts as or corresponding parts to the first to third embodiments will be given the same reference numerals.
 図19は、実施の形態4に係る空気調和機の構成例を示す図である。なお。図19において、実施の形態1~3で説明したものについては、同様の動作を行うものとする。また、図19の実線の矢印は冷房運転時の冷媒の流れを示しており、破線の矢印は暖房運転時の流れを示している。 FIG. 19 is a diagram showing an example of the configuration of an air conditioner according to embodiment 4. Note that in FIG. 19, the components described in embodiments 1 to 3 operate in the same manner. Also, the solid arrows in FIG. 19 indicate the flow of refrigerant during cooling operation, and the dashed arrows indicate the flow during heating operation.
 実施の形態4に係る空気調和機は、図19に示すように、実施の形態1~3で説明した室内機100と、室外機200とが、ガス冷媒配管300および液冷媒配管400により接続されている。室内機100は、熱交換器7を有している。また、室外機200は、圧縮機210、流路切替装置220、室外熱交換器230、および、絞り装置240を有している。そして、この空気調和機は、圧縮機210、流路切替装置220、室外熱交換器230、絞り装置240、および熱交換器7が、ガス冷媒配管300および液冷媒配管400を含む冷媒配管で順次接続され、冷媒が循環する冷媒回路を備えている。 As shown in FIG. 19, the air conditioner according to the fourth embodiment has an indoor unit 100 and an outdoor unit 200, as described in the first to third embodiments, connected by a gas refrigerant pipe 300 and a liquid refrigerant pipe 400. The indoor unit 100 has a heat exchanger 7. The outdoor unit 200 has a compressor 210, a flow switching device 220, an outdoor heat exchanger 230, and a throttling device 240. This air conditioner has a refrigerant circuit in which the compressor 210, the flow switching device 220, the outdoor heat exchanger 230, the throttling device 240, and the heat exchanger 7 are connected in sequence by refrigerant pipes including the gas refrigerant pipe 300 and the liquid refrigerant pipe 400, and the refrigerant circulates.
 圧縮機210は、吸入した冷媒を圧縮して吐出する。ここで、特に限定するものではないが、圧縮機210は例えばインバータ回路などにより、運転周波数を任意に変化させることにより、圧縮機210の容量(単位時間あたりの冷媒を送り出す量)を変化させることができるようにしてもよい。流路切替装置220は、例えば四方弁であり、冷媒の流れ方向を切り替えることで、冷房運転と暖房運転とを切り替えるものである。なお、流路切替装置220として、四方弁に代えて二方弁および三方弁の組み合わせなどを用いてもよい。 The compressor 210 compresses the sucked refrigerant and discharges it. Although not particularly limited here, the compressor 210 may be configured to change its capacity (the amount of refrigerant pumped out per unit time) by arbitrarily changing the operating frequency, for example, by an inverter circuit. The flow path switching device 220 is, for example, a four-way valve, which switches between cooling operation and heating operation by switching the flow direction of the refrigerant. Note that instead of a four-way valve, a combination of a two-way valve and a three-way valve may be used as the flow path switching device 220.
 室外熱交換器230は、冷媒と室外空気との熱交換を行う。例えば、暖房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。 The outdoor heat exchanger 230 exchanges heat between the refrigerant and the outdoor air. For example, during heating operation, it functions as an evaporator, evaporating and vaporizing the refrigerant. During cooling operation, it functions as a condenser, condensing and liquefying the refrigerant.
 絞り装置240は、冷媒を減圧して膨張させるものである。例えば電子式膨張弁などで構成した場合には、制御装置(図示せず)などの指示に基づいて開度調整を行う。 The throttling device 240 reduces the pressure of the refrigerant to expand it. For example, if it is configured as an electronic expansion valve, the opening degree is adjusted based on instructions from a control device (not shown) or the like.
 次に、実施の形態4に係る空気調和機の冷房運転時および暖房運転時における冷媒の流れを説明する。 Next, we will explain the flow of refrigerant during cooling and heating operation of the air conditioner according to embodiment 4.
 冷房運転時は、図19の実線のように、圧縮機210から吐出された冷媒を室外熱交換器230へ流入させるように、流路切替装置220が切り換えられる。そして、低温低圧の冷媒が、圧縮機210によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機210から吐出された高温高圧のガス冷媒は、流路切替装置220を介して室外熱交換器230へ流入する。室外熱交換器230へ流入した高温高圧のガス冷媒は、室外空気に放熱しながら凝縮し高圧の液冷媒となる。そして、室外熱交換器230から流出した高圧の液冷媒は、絞り装置240によって低温低圧の二相冷媒に減圧された後、室外機200から流出し、液冷媒配管400を通り、室内機100へ流入する。室内機100へ流入した低温低圧の二相冷媒は、蒸発器として作用する熱交換器7へ流入し、室内空気から吸熱することで室内空気を冷却し、低温低圧のガス冷媒となる。熱交換器7から流出した低温低圧のガス冷媒は、ガス冷媒配管300を通り、室外機200へ流入する。室外機200へ流入した冷媒は、流路切替装置220を介して圧縮機210へ吸入される。 During cooling operation, as shown by the solid line in FIG. 19, the flow path switching device 220 is switched so that the refrigerant discharged from the compressor 210 flows into the outdoor heat exchanger 230. The low-temperature, low-pressure refrigerant is then compressed by the compressor 210 and discharged as high-temperature, high-pressure gas refrigerant. The high-temperature, high-pressure gas refrigerant discharged from the compressor 210 flows into the outdoor heat exchanger 230 via the flow path switching device 220. The high-temperature, high-pressure gas refrigerant that flows into the outdoor heat exchanger 230 condenses while releasing heat to the outdoor air, becoming high-pressure liquid refrigerant. The high-pressure liquid refrigerant that flows out of the outdoor heat exchanger 230 is then reduced in pressure by the throttling device 240 to a low-temperature, low-pressure two-phase refrigerant, and then flows out of the outdoor unit 200, passes through the liquid refrigerant piping 400, and flows into the indoor unit 100. The low-temperature, low-pressure two-phase refrigerant that flows into the indoor unit 100 flows into the heat exchanger 7 that acts as an evaporator, and cools the indoor air by absorbing heat from it, becoming a low-temperature, low-pressure gas refrigerant. The low-temperature, low-pressure gas refrigerant that flows out of the heat exchanger 7 passes through the gas refrigerant piping 300 and flows into the outdoor unit 200. The refrigerant that flows into the outdoor unit 200 is sucked into the compressor 210 via the flow path switching device 220.
 一方、暖房運転時は、図19の破線のように、圧縮機210から吐出された冷媒を熱交換器7へ流入させるように、流路切替装置220が切り換えられる。そして、低温低圧の冷媒が、圧縮機210によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機210から吐出された高温高圧のガス冷媒は、流路切替装置220を介して室外機200から流出し、ガス冷媒配管300を通り、室内機100へ流入する。室内機100へ流入した高温高圧ガス冷媒は、熱交換器7で室内空気に放熱し、高圧の液冷媒となる。熱交換器7から流出した高圧の液冷媒は、室内機100を流出し、液冷媒配管400を通り、室外機200へ流入する。室外機200へ流入した高圧の液冷媒は、絞り装置240によって低温低圧の二相冷媒に減圧された後、室外熱交換器230へ流入する。室外熱交換器230へ流入した低温低圧の二相冷媒は、室外空気から吸熱することで低温低圧のガス冷媒となる。室外熱交換器230から流出した低温低圧のガス冷媒は、流路切替装置220を介して圧縮機210へ吸入される。 On the other hand, during heating operation, as shown by the dashed line in FIG. 19, the flow path switching device 220 is switched so that the refrigerant discharged from the compressor 210 flows into the heat exchanger 7. Then, the low-temperature, low-pressure refrigerant is compressed by the compressor 210 and discharged as a high-temperature, high-pressure gas refrigerant. The high-temperature, high-pressure gas refrigerant discharged from the compressor 210 flows out of the outdoor unit 200 via the flow path switching device 220, passes through the gas refrigerant piping 300, and flows into the indoor unit 100. The high-temperature, high-pressure gas refrigerant that flows into the indoor unit 100 dissipates heat to the indoor air in the heat exchanger 7 and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that flows out of the heat exchanger 7 flows out of the indoor unit 100, passes through the liquid refrigerant piping 400, and flows into the outdoor unit 200. The high-pressure liquid refrigerant that flows into the outdoor unit 200 is decompressed to a low-temperature, low-pressure two-phase refrigerant by the throttling device 240, and then flows into the outdoor heat exchanger 230. The low-temperature, low-pressure two-phase refrigerant that flows into the outdoor heat exchanger 230 absorbs heat from the outdoor air and becomes a low-temperature, low-pressure gas refrigerant. The low-temperature, low-pressure gas refrigerant that flows out of the outdoor heat exchanger 230 is sucked into the compressor 210 via the flow switching device 220.
 上記のように空気調和機を構成し、室外機200の流路切替装置220により冷媒の流れを切り換えることで、冷房運転および暖房運転を実現することができる。 By configuring the air conditioner as described above and switching the flow of refrigerant using the flow path switching device 220 of the outdoor unit 200, cooling operation and heating operation can be achieved.
 以上、実施の形態4に係る空気調和機は、実施の形態1~3で説明した室内機100と、室外機200とを備えたものである。 As described above, the air conditioner according to the fourth embodiment includes the indoor unit 100 and the outdoor unit 200 described in the first to third embodiments.
 実施の形態4に係る空気調和機によれば、実施の形態1~3で説明した室内機100と同様の効果を得ることができる。 The air conditioner according to embodiment 4 can achieve the same effects as the indoor unit 100 described in embodiments 1 to 3.
 1 背面ケース、1a 背面、2 筐体、2a 側壁、3 吸込口、4 吹出口、5 前面意匠パネル、7 熱交換器、7a 外側端部、8 風路前壁、8a 舌部、9 風路後壁、11 上下風向板、12 左右風向板、13 フィルター、15 シャフト、16 板部材、20 第一の送風機、21 仕切板、26 第一羽根、26i 内周端、26n 負圧面、26о 外周端、26p 正圧面、30 第二の送風機、31 スクロールケーシング、31a 舌部、31b 凹部、31d 吸込口、31e 吹出口、31f 内周端、32 主板、32a 外周端、33 側板、36 第二羽根、36a シロッコ翼部、36ar シロッコ領域、36b ターボ翼部、36br ターボ領域、36i 内周端、36i1 前縁、36n 負圧面、36p 正圧面、36o 外周端、36o1 後縁、41a 第一吸込風路、41b 第二吸込風路、42a 第一吹出風路、42b 第二吹出風路、50 風路仕切板、51 ベルマウス、100 室内機、200 室外機、210 圧縮機、220 流路切替装置、230 室外熱交換器、240 絞り装置、300 ガス冷媒配管、400 液冷媒配管。 1 rear case, 1a rear, 2 housing, 2a side wall, 3 intake port, 4 exhaust port, 5 front design panel, 7 heat exchanger, 7a outer end, 8 air passage front wall, 8a tongue, 9 air passage rear wall, 11 up and down air direction vanes, 12 left and right air direction vanes, 13 filter, 15 shaft, 16 plate member, 20 first blower, 21 partition plate, 26 first blade, 26i inner peripheral end, 26n negative pressure surface, 26o outer peripheral end, 26p positive pressure surface, 30 second blower, 31 scroll casing, 31a tongue, 31b recess, 31d intake port, 31e exhaust port, 31f inner peripheral end, 32 main plate, 3 2a outer circumferential edge, 33 side plate, 36 second blade, 36a sirocco blade section, 36ar sirocco region, 36b turbo blade section, 36br turbo region, 36i inner circumferential edge, 36i1 leading edge, 36n negative pressure surface, 36p positive pressure surface, 36o outer circumferential edge, 36o1 trailing edge, 41a first suction duct, 41b second suction duct, 42a first outlet duct, 42b second outlet duct, 50 duct partition plate, 51 bell mouth, 100 indoor unit, 200 outdoor unit, 210 compressor, 220 flow path switching device, 230 outdoor heat exchanger, 240 throttling device, 300 gas refrigerant piping, 400 liquid refrigerant piping.

Claims (14)

  1.  吸込口および吹出口が形成された筐体と、
     前記筐体の内部に設けられた熱交換器と、
     前記筐体の内部において前記熱交換器の下流側に設けられ、第一回転軸を中心に回転する貫流ファンで構成された第一の送風機と、
     前記第一回転軸方向における前記第一の送風機の両端側に設けられ、第二回転軸を中心に回転する遠心ファンで構成された第二の送風機と、
     前記第二の送風機の外周に設けられ、前記第二の送風機の吹出風路を形成するスクロールケーシングと、を備え、
     前記第二の送風機は、
     円板状あるいは環状の主板と、
     前記主板と対向して配置される環状の側板と、
     一端が前記主板と接続され、他端が前記側板と接続され、前記第二回転軸を中心とする周方向に配列された複数の羽根と、を備え、
     前記複数の羽根のそれぞれは、
     前記第二回転軸を中心とする径方向において前記第二回転軸側に位置する内周端と、
     前記径方向において前記内周端よりも外周側に位置する外周端と、
     前記外周端を含み出口角が90度よりも大きい角度に形成された前向羽根を構成するシロッコ翼部と、
     前記内周端を含み後向羽根を構成するターボ翼部と、を有する
     空気調和機の室内機。
    A housing having an inlet and an outlet formed therein;
    A heat exchanger provided inside the housing;
    a first blower provided inside the housing on a downstream side of the heat exchanger and configured as a cross-flow fan rotating around a first rotation shaft;
    a second fan provided at both ends of the first fan in the first rotation shaft direction and configured as a centrifugal fan rotating around a second rotation shaft;
    a scroll casing provided on an outer periphery of the second blower and forming an outlet air passage of the second blower,
    The second blower is
    A disk-shaped or annular main plate;
    an annular side plate arranged opposite the main plate;
    a plurality of blades, one end of which is connected to the main plate and the other end of which is connected to the side plate, and which are arranged in a circumferential direction around the second rotation shaft;
    Each of the plurality of blades includes:
    an inner circumferential end located on the second rotation shaft side in a radial direction centered on the second rotation shaft;
    an outer circumferential end located on the outer circumferential side of the inner circumferential end in the radial direction;
    a sirocco blade portion including the outer circumferential end and constituting a forward inclined vane having an outlet angle greater than 90 degrees;
    a turbo blade portion including the inner circumferential end and constituting a backward-inverted blade.
  2.  前記第一の送風機は、前記第一回転軸を中心とする周方向に配列された複数の羽根を備え、
     前記第二の送風機の前記複数の羽根の入口角は、前記第一の送風機の前記複数の羽根の入口角よりも小さい
     請求項1に記載の空気調和機の室内機。
    The first fan includes a plurality of blades arranged in a circumferential direction around the first rotation shaft,
    The indoor unit of an air conditioner according to claim 1 , wherein an inlet angle of the blades of the second fan is smaller than an inlet angle of the blades of the first fan.
  3.  前記第二の送風機の前記複数の羽根は、
     前記第二回転軸方向の中間位置よりも前記主板側の第一領域における翼長が、前記第二回転軸方向の中間位置よりも前記側板側の第二領域における翼長よりも長くなるように形成されている
     請求項1または2に記載の空気調和機の室内機。
    The plurality of blades of the second fan include
    The indoor unit of an air conditioner according to claim 1 or 2, wherein a blade length in a first region closer to the main plate than a middle position in the second rotational shaft direction is longer than a blade length in a second region closer to the side plate than a middle position in the second rotational shaft direction.
  4.  前記スクロールケーシングは、前記スクロールケーシング内に空気を吸い込む吸込口を形成するベルマウスを有し、
     前記ベルマウスは、前記第二回転軸方向において、前記第一の送風機とは反対側に設けられている
     請求項1~3のいずれか一項に記載の空気調和機の室内機。
    The scroll casing has a bell mouth that forms an inlet port for drawing air into the scroll casing,
    The indoor unit for an air conditioner according to any one of claims 1 to 3, wherein the bell mouth is provided on an opposite side to the first fan in a direction of the second rotation axis.
  5.  前記スクロールケーシングは、前記スクロールケーシング内に空気を吸い込む吸込口を形成するベルマウスを有し、
     前記ベルマウスは、前記第二回転軸方向において、前記第一の送風機側に設けられている
     請求項1~3のいずれか一項に記載の空気調和機の室内機。
    The scroll casing has a bell mouth that forms an inlet port for drawing air into the scroll casing,
    The indoor unit for an air conditioner according to any one of claims 1 to 3, wherein the bell mouth is provided on a side of the first fan in a direction of the second rotation axis.
  6.  前記スクロールケーシングは、前記スクロールケーシング内に空気を吸い込む吸込口を形成するベルマウスを有し、
     前記ベルマウスは、前記第二回転軸方向において、前記第一の送風機側および前記第一の送風機とは反対側にそれぞれ設けられている
     請求項1~3のいずれか一項に記載の空気調和機の室内機。
    The scroll casing has a bell mouth that forms an inlet port for drawing air into the scroll casing,
    The indoor unit of an air conditioner according to any one of claims 1 to 3, wherein the bell mouths are provided on a side of the first fan and an opposite side to the first fan in the second rotational axis direction.
  7.  前記第一の送風機の外周に設けられ、前記第一の送風機の吹出風路を形成するケーシングを備え、
     前記ケーシングのうち最も背面に近い箇所から背面までの第一距離は、前記スクロールケーシングのうち最も背面に近い箇所から背面までの第二距離よりも短い
     請求項1~6のいずれか一項に記載の空気調和機の室内機。
    a casing provided around an outer periphery of the first fan and forming an outlet air passage of the first fan;
    The indoor unit of an air conditioner according to any one of claims 1 to 6, wherein a first distance from a point of the casing closest to the rear surface to the rear surface is shorter than a second distance from a point of the scroll casing closest to the rear surface to the rear surface.
  8.  前記スクロールケーシングの前記第二回転軸方向の高さの極大点は、前記スクロールケーシングの前記熱交換器側における外周端と内周端との間に位置している
     請求項1~7のいずれか一項に記載の空気調和機の室内機。
    The indoor unit of an air conditioner according to any one of claims 1 to 7, wherein a maximum point of height of the scroll casing in the second rotation axis direction is located between an outer peripheral end and an inner peripheral end of the scroll casing on the heat exchanger side.
  9.  前記スクロールケーシングの前記第二回転軸方向の高さの極大点は、前記熱交換器の前記第二回転軸方向の外側端部よりも内側に位置している
     請求項1~8のいずれか一項に記載の空気調和機の室内機。
    The indoor unit of an air conditioner according to any one of claims 1 to 8, wherein a maximum point of height of the scroll casing in the second rotational axis direction is located inside an outer end portion of the heat exchanger in the second rotational axis direction.
  10.  前記第二回転軸方向において、前記主板と前記スクロールケーシングの前記主板側の内周端とは、一致するようにまたは一部が重なるように配置されており、かつ、
     前記主板の外周端と前記スクロールケーシングの前記主板側の内周端との間には隙間が形成されている
     請求項1~9のいずれか一項に記載の空気調和機の室内機。
    In the second rotation axis direction, the main plate and an inner peripheral end of the scroll casing on the main plate side are arranged to coincide with each other or to overlap each other partially,
    The indoor unit for an air conditioner according to any one of claims 1 to 9, wherein a gap is formed between an outer circumferential end of the main plate and an inner circumferential end of the scroll casing on the main plate side.
  11.  前記第一の送風機は円板状あるいは環状の仕切板を有し、
     前記仕切板の外径と前記側板の外径とは同じ長さである
     請求項1~10のいずれか一項に記載の空気調和機の室内機。
    The first blower has a disk-shaped or annular partition plate,
    The indoor unit for an air conditioner according to any one of claims 1 to 10, wherein an outer diameter of the partition plate and an outer diameter of the side plate are the same length.
  12.  前記スクロールケーシングは、
     前記吸込口から前記第一の送風機および前記第二の送風機の上流側に至る吸込風路を、前記吸込口から前記第一の送風機の上流側に至る第一吸込風路と前記吸込口から前記第二の送風機の上流側に至る第二吸込風路とに仕切る風路仕切板を有する
     請求項1~11のいずれか一項に記載の空気調和機の室内機。
    The scroll casing comprises:
    The indoor unit of an air conditioner according to any one of claims 1 to 11, further comprising an air duct partition plate that divides an intake air duct extending from the intake port to the upstream side of the first fan and the second fan into a first intake air duct extending from the intake port to the upstream side of the first fan and a second intake air duct extending from the intake port to the upstream side of the second fan.
  13.  前記第二吸込風路の幅は、前記第二吹出風路の幅と等しいあるいは前記第二吹出風路の幅よりも大きい
     請求項12に記載の空気調和機の室内機。
    The indoor unit of an air conditioner according to claim 12, wherein a width of the second intake air duct is equal to or greater than a width of the second outlet air duct.
  14.  請求項1~13のいずれか一項に記載の空気調和機の室内機と、室外機とを備えた
     空気調和機。
    An air conditioner comprising an indoor unit of the air conditioner according to any one of claims 1 to 13 and an outdoor unit.
PCT/JP2023/010295 2023-03-16 2023-03-16 Indoor unit of air conditioner, and air conditioner provided with same WO2024189889A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/010295 WO2024189889A1 (en) 2023-03-16 2023-03-16 Indoor unit of air conditioner, and air conditioner provided with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/010295 WO2024189889A1 (en) 2023-03-16 2023-03-16 Indoor unit of air conditioner, and air conditioner provided with same

Publications (1)

Publication Number Publication Date
WO2024189889A1 true WO2024189889A1 (en) 2024-09-19

Family

ID=92754811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010295 WO2024189889A1 (en) 2023-03-16 2023-03-16 Indoor unit of air conditioner, and air conditioner provided with same

Country Status (1)

Country Link
WO (1) WO2024189889A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710215U (en) * 1980-06-19 1982-01-19
JPH05164084A (en) * 1991-12-10 1993-06-29 Taiheiyo Kogyo Kk Blower and blowing fan
JP2000111078A (en) * 1998-09-30 2000-04-18 Fujitsu General Ltd Indoor unit for corner type air conditioner
JP2002357194A (en) * 2001-05-30 2002-12-13 Mitsubishi Heavy Ind Ltd Cross-flow fan
JP2008292137A (en) * 2007-04-25 2008-12-04 Mitsubishi Electric Corp Air conditioner
WO2011114925A1 (en) * 2010-03-15 2011-09-22 シャープ株式会社 Fan, metallic mold, and fluid delivery device
JP2015145190A (en) * 2014-02-04 2015-08-13 カルソニックカンセイ株式会社 Cross-flow fan device
WO2020217367A1 (en) * 2019-04-25 2020-10-29 三菱電機株式会社 Impeller, multi-blade blower, and air-conditioning device
WO2022130519A1 (en) * 2020-12-16 2022-06-23 三菱電機株式会社 Blower, indoor unit, and air-conditioning device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710215U (en) * 1980-06-19 1982-01-19
JPH05164084A (en) * 1991-12-10 1993-06-29 Taiheiyo Kogyo Kk Blower and blowing fan
JP2000111078A (en) * 1998-09-30 2000-04-18 Fujitsu General Ltd Indoor unit for corner type air conditioner
JP2002357194A (en) * 2001-05-30 2002-12-13 Mitsubishi Heavy Ind Ltd Cross-flow fan
JP2008292137A (en) * 2007-04-25 2008-12-04 Mitsubishi Electric Corp Air conditioner
WO2011114925A1 (en) * 2010-03-15 2011-09-22 シャープ株式会社 Fan, metallic mold, and fluid delivery device
JP2015145190A (en) * 2014-02-04 2015-08-13 カルソニックカンセイ株式会社 Cross-flow fan device
WO2020217367A1 (en) * 2019-04-25 2020-10-29 三菱電機株式会社 Impeller, multi-blade blower, and air-conditioning device
WO2022130519A1 (en) * 2020-12-16 2022-06-23 三菱電機株式会社 Blower, indoor unit, and air-conditioning device

Similar Documents

Publication Publication Date Title
CN111279085B (en) Centrifugal blower, blower device, air conditioner, and refrigeration cycle device
CN106481574B (en) Centrifugal fan and air conditioner comprising same
CN109247023B (en) Centrifugal blower, air conditioner, and refrigeration cycle device
WO2016071948A1 (en) Propeller fan, propeller fan device, and outdoor equipment for air-conditioning device
JP6625305B1 (en) Blower, air conditioner indoor unit and air conditioner
CN112352108B (en) Multi-blade blower and air conditioner
JP6755331B2 (en) Propeller fan and refrigeration cycle equipment
WO2024189889A1 (en) Indoor unit of air conditioner, and air conditioner provided with same
CN113195903B (en) Centrifugal blower, blower device, air conditioner, and refrigeration cycle device
CN110678659B (en) Propeller fan and refrigeration cycle device
WO2024214236A1 (en) Indoor unit of air conditioner and air conditioner provided therewith
WO2024189871A1 (en) Indoor unit for air conditioner and air conditioner equipped with same
CN109891101B (en) Propeller fan, outdoor unit, and refrigeration cycle device
WO2024214237A1 (en) Centrifugal blower, air conditioning machine, and refrigeration cycle device
JP7466765B2 (en) Blower, air conditioner and refrigeration cycle device
WO2024214327A1 (en) Centrifugal blower, air conditioning machine, and refrigeration cycle device
JP7378505B2 (en) Centrifugal blower and air conditioner equipped with it
JP6430032B2 (en) Centrifugal fan, air conditioner and refrigeration cycle apparatus
CN115516211A (en) Axial fan, air supply device, and refrigeration cycle device
WO2023223383A1 (en) Cross flow fan, blowing device, and refrigeration cycle device
JP7258225B2 (en) Axial fan, air blower, and refrigeration cycle device
WO2024089808A1 (en) Axial flow fan, air blower, and air conditioner
WO2024209504A1 (en) Blower, air conditioner, and refrigeration cycle device
WO2023058228A1 (en) Centrifugal blower, air conditioning device, and refrigeration cycle device
CN116507809A (en) Axial fan, air supply device, and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23927508

Country of ref document: EP

Kind code of ref document: A1