WO2024189849A1 - Auxetic structure and cushioning material - Google Patents
Auxetic structure and cushioning material Download PDFInfo
- Publication number
- WO2024189849A1 WO2024189849A1 PCT/JP2023/010139 JP2023010139W WO2024189849A1 WO 2024189849 A1 WO2024189849 A1 WO 2024189849A1 JP 2023010139 W JP2023010139 W JP 2023010139W WO 2024189849 A1 WO2024189849 A1 WO 2024189849A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- arc
- recess
- auxetic structure
- diagonal
- virtual
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims description 35
- 239000011800 void material Substances 0.000 claims description 54
- 230000006835 compression Effects 0.000 claims description 18
- 238000007906 compression Methods 0.000 claims description 18
- 230000005484 gravity Effects 0.000 claims description 13
- 230000035939 shock Effects 0.000 description 23
- 238000010521 absorption reaction Methods 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 19
- 239000000758 substrate Substances 0.000 description 14
- 229920002725 thermoplastic elastomer Polymers 0.000 description 11
- 238000010586 diagram Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 229920001971 elastomer Polymers 0.000 description 5
- 239000000806 elastomer Substances 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- 230000000452 restraining effect Effects 0.000 description 5
- 239000013013 elastic material Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 229920006351 engineering plastic Polymers 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- 229920006345 thermoplastic polyamide Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/36—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
- F16F1/373—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F7/00—Vibration-dampers; Shock-absorbers
Definitions
- the present invention relates to an auxetic structure that exhibits macroscopic behavior that has a negative Poisson's ratio, and to a cushioning material that uses the auxetic structure.
- General materials have a positive Poisson's ratio, and when the material is compressed in a certain direction, it deforms so that it expands in a direction perpendicular to that direction.
- the voids may work together to deform under macroscopic stress and strain loads, causing the structure to behave as if it has a negative Poisson's ratio.
- when the structure is compressed in a certain direction it also shrinks in a direction perpendicular to that direction.
- auxetic structures are used, for example, to relieve stress caused by thermal expansion.
- auxetic structures also shrink in a direction perpendicular to a certain direction when subjected to compressive stress from that direction, so they can be used favorably as cushioning materials to relieve mechanical shocks.
- Patent Document 1 discloses an auxetic structure in which multiple elongated openings are arranged in a lattice pattern with their longitudinal orientations shifted by 90°. Patent Document 1 gives examples of the shapes of the elongated openings, such as an elongated oval, a concave hole shape, and an H-shape stretched out horizontally.
- the object of the present invention is to provide an auxetic structure that combines shock absorbing capacity with long-term durability, and a cushioning material that uses such an auxetic structure.
- the auxetic structure of one embodiment of the present invention is an auxetic structure made of an elastic body having voids, the void portion has a shape inscribed in three sides of an imaginary triangle, and the outer periphery of the void portion forms an integrated shape by connecting each of the first recess (A), the straight line portion (B), the convex portion (C) and the second recess (D);
- the first recess (A) has a center on each axis of symmetry of the imaginary triangle, is formed by an arc of an inscribed circle inscribed in each of two sides that sandwich a vertex of the imaginary triangle, and both ends of the arc are on the two sides of the imaginary triangle, and has a concave shape that curves outwardly of the imaginary triangle when viewed from the center of gravity of the imaginary triangle
- the straight line portion (B) is a line segment forming a part of each side of the virtual triangle, and connects an end of the first recess (A) and one end of the second recess (D), the con
- the above-mentioned auxetic structure has a void portion having a shape inscribed in a virtual triangle virtually set in an elastic body, and the void portion has an outer periphery formed by connecting a first concave portion (A) provided at each vertex of the virtual triangle, inscribed in two sides of the virtual triangle, and curved outward from the virtual triangle, a straight portion (B) on a side of the virtual triangle and one end of which is connected to an end of the first concave portion (A), a convex portion (C) made of an arc curving toward the center of gravity of the virtual triangle, and a second concave portion (D) made of an arc connecting the end of the convex portion (C) and the other end of the straight portion (B) to form an integral shape.
- the auxetic structure according to the present invention having a void portion having a shape inscribed in a virtual triangle by connecting the first concave portion (A), the straight portion (B), the convex portion (C), and the second concave portion (D) is not limited to a void portion having a shape inscribed in a virtual triangle.
- an auxetic structure having a void portion having a shape inscribed in a convex rectangle virtually set in an elastic body is also included in the scope of the present invention.
- the auxetic structure comprises: An auxetic structure made of an elastic body having voids,
- the gap portion includes a first gap portion and a second gap portion, the first gap has a shape inscribed in four sides of a virtual rhombus having a first diagonal and a second diagonal perpendicular to each other, and the outer periphery of the first gap forms an integrated shape by connecting each of the first recess (A), the straight line portion (B), the protrusion (C), and the second recess (D);
- the first recess (A) has a center on a first diagonal of the virtual rhombus, is formed by an arc of an inscribed circle inscribed in each of two sides that sandwich a vertex that is both ends of the first diagonal of the virtual rhombus, and both ends of the arc of the inscribed circle are on the two sides of the virtual rhombus, and has a concave shape that curves outward when viewed from the intersection of the first diagonal and the second diagonal,
- the cushioning material for a battery module is characterized by being made of the above-mentioned auxetic structure.
- the invention makes it possible to obtain an auxetic structure that combines shock absorbing capacity with long-term durability, and a cushioning material that uses such an auxetic structure.
- FIG. 2A is a plan view illustrating the auxetic structure of the first embodiment
- FIG. 2B is an enlarged view of a void portion formed in the auxetic structure of the first embodiment
- FIG. 2 is a diagram illustrating the shape of a void in the auxetic structure shown in FIG. 1
- 1A to 1C are diagrams illustrating deformation when compressive stress is applied to the auxetic structure of the first embodiment
- 1A is a plan view illustrating an auxetic structure according to a second embodiment
- FIG. 1B is an enlarged view of a void portion formed in the auxetic structure according to the second embodiment
- 5 is a diagram illustrating the shape of a first void portion of the auxetic structure shown in FIG. 4.
- FIG. 11A to 11C are diagrams illustrating deformation when compressive stress is applied to the auxetic structure of the second embodiment.
- FIG. 2 is a schematic front view of the battery module.
- FIG. 2A is a plan view illustrating an auxetic structure of a comparative example
- FIG. 2B is an enlarged view of a void portion formed in the auxetic structure of the comparative example.
- FIG. 1 shows strain distribution in the auxetic structure of Example 1.
- FIG. 13 shows strain distribution in the auxetic structure of Example 2.
- FIG. 13 shows strain distribution in an auxetic structure of a comparative example.
- FIG. 2 is a stress-strain diagram of an auxetic structure.
- the auxetic structure according to the present invention is constructed by arranging a plurality of voids in a substrate, i.e., an elastic body, made of an elastic material.
- a force is applied in a certain direction and the auxetic structure is compressed, it has the property of contracting in a direction different from the direction in which the force is applied, and has a negative Poisson's ratio macroscopically.
- FIG. 1(a) shows an auxetic structure according to a first embodiment of the present invention
- FIG. 1(b) is an enlarged view of an arbitrary void portion shown in FIG. 1(a).
- the illustrated auxetic structure 10 is configured by arranging a plurality of void portions 12 in a substrate 11 made of an elastic material. The details of the shape of the void portion 12 are shown in FIG. 2.
- the void portion 12 may be exposed as an opening on the surface of the substrate 11, or may be formed inside the substrate 11 without being exposed on the surface.
- an XY orthogonal coordinate system is defined as shown in FIG. 1, the auxetic structure 10 has the property of shrinking in the X direction when a compressive stress is applied from the outside along the Y direction and compressed.
- the shape of the void will be described in detail below with reference to Figures 1(b) and 2.
- the void 12 has a shape inscribed in three sides of an equilateral triangle, i.e., a virtual triangle 15, which is virtually set in the base material 11, which is an elastic body.
- the three vertices of the virtual triangle 15 are T1, T2, and T3.
- the perpendicular lines drawn from the vertices T1, T2, and T3 to the opposing sides are lines L1, L2, and L3, respectively.
- the lines L1 to L3 pass through the center of gravity G of the virtual triangle 15 and are the symmetry axes of the virtual triangle 15, and the perpendicular lines L1, L2, and L3 are also the perpendicular bisectors of the corresponding sides.
- the outline, i.e., the periphery, of the gap 12 in the XY plane is represented by a closed curve, but is divided by 18 points, P1 to P18.
- the periphery of the gap 12 is composed of 18 sections connected together to form a single shape.
- the 18 sections are classified into a first recess A, a straight section B, a convex section C, and a second recess D.
- a side, line segment, or arc connecting point U and point V will be represented as U-V.
- the first recess A is a section that is arranged at each vertex of the virtual triangle 15, is defined by an arc of an inscribed circle inscribed in both of the two sides that sandwich the vertex, and curves away from the center of gravity G of the virtual triangle 15.
- the arc P18-P1 defined by the circle C1 inscribed in both sides T1-T2 and T3-T1 is the first recess A.
- the arc P6-P7 defined by the circle C2 inscribed in both sides T1-T2 and T2-T3 is the first recess A
- the arc P12-P13 defined by the circle C3 inscribed in both sides T2-T3 and T3-T1 is the first recess A.
- the centers of the circles C1-C3 are indicated by points O1-O3, respectively.
- the centers O1 to O3 of the circles C1 to C3 are on the straight lines L1 to L3, which are the axes of symmetry of the imaginary triangle 15.
- the radii of the circles C1 to C3 are all Ra.
- straight line portion B is a section of a line segment that is arranged at each end of first recess A and has one end connected to the end of first recess A, and this line segment is on a side of imaginary triangle 15.
- straight line portion B is a section of a line segment that is part of a side of imaginary triangle 15.
- line segments P1-P2 and P5-P6 are straight line portion B, and both of these line segments are on side T1-T2.
- line segments P7-P8 and P11-P12 are straight line portion B
- line segments P13-P14 and P17-P18 are straight line portion B.
- the convex portion C forms a constriction in the void portion 12 by protruding from the center of each side of the imaginary triangle 15 toward the center of the void portion 12. More specifically, the convex portion C is a section that is arranged on each side of the imaginary triangle 15, is defined by an arc of a circle having a center on the perpendicular bisector of the side and a radius equal to or greater than the radius of the inscribed circle that defines the arc of the first recess A, is located inside the imaginary triangle, and is curved to approach the center of gravity G of the imaginary triangle 15.
- the arc P3-P4 has a center O4 on the straight line L3 that is the perpendicular bisector, and is part of the circumference of the circle C4 with a radius of Rb, and is the convex portion C.
- Rb ⁇ Ra.
- the arc P9-P10 has a center O5 on the straight line L1 and is part of the circumference of the circle C5 with a radius of Rb, and is the convex portion C.
- arc P15-P16 which is part of the circumference of circle C6 with center O6 on line L2 and radius Rb, is convex portion C.
- the second recess D is a section defined by arcs that are arranged at both ends of the convex portion C for each side of the imaginary triangle 15 and smoothly connect the ends of the convex portion C to the other end of the straight portion B. Smooth connection here means that no bending occurs at the connection position, that is, the formed arcs are in contact with each other at their respective ends.
- arcs P2-P3 and P4-P5 correspond to the second recess D.
- Arc P2-P3 is an arc of circle C7 whose center is point O7. This circle C7 is tangent to side T1-T2 at point P2, and has a common tangent with circle C4 at point P3.
- arc P2-P3 smoothly connects to line segment P1-P2, which is straight portion B, and also smoothly connects to arc P3-P4, which is convex portion C.
- the arc P4-P5 is an arc of the circle C8 whose center is the point O8, and smoothly connects to the arc P3-P4 and the line segment P5-P6.
- the arc P8-P9 of the circle C9 whose center is the point O9 and the arc P10-P11 of the circle C10 whose center is the point O10 correspond to the second recess D.
- the arc P8-P9 smoothly connects to both the line segment P7-P8 and the arc P9-P10, and the arc P10-P11 smoothly connects to both the arc P9-P10 and the line segment P11-P12.
- the arc P14-P15 of the circle C11 whose center is the point O11 and the arc P16-P17 of the circle C12 whose center is the point O12 correspond to the second recess D.
- the arc P14-P15 smoothly connects to both the line segment P13-P14 and the arc P15-P16, and the arc P16-P17 smoothly connects to both the arc P15-P16 and the line segment P17-P18.
- the radii of the circles C7 to C12 are all Rc.
- each void 12 is arranged so that the perpendicular lines, i.e., the straight lines L1 to L3, drawn from each vertex of the imaginary triangle 15 that defines the voids 12 to the opposing sides are parallel to the lattice lines of the regular triangular lattice.
- the distance K between the centers of gravity G of adjacent voids 12 must be greater than 2/3 of the height H of the imaginary triangle 15, as shown in Figure 2.
- the adjacent voids 12 overlap each other, and the condition that the voids 12 are inscribed in the imaginary triangle 15 is not satisfied.
- the distance K exceeds the height H, the distance between the adjacent voids 12 becomes too large, and when a compressive stress is applied to the auxetic structure 10, the deformation obtained by the cooperation of the voids 12 may not be performed smoothly. Therefore, it is preferable that K ⁇ H.
- Figure 3 shows the change in shape of the auxetic structure 10 of the first embodiment when compressive stress is applied in the Y direction.
- (a) shows the shape of the auxetic structure 10 when no compressive stress is applied
- (b) shows the shape when compressive stress is applied.
- the voids 12 are crushed, and the auxetic structure 10 also shrinks in the X direction as a result.
- the shape of the auxetic structure 10 returns to its original state.
- the auxetic structure 10 of the first embodiment by providing the straight portion B on the outer periphery of the void portion 12, when a compressive stress is applied from the outside, the structure 10 is deformed without local stress strain occurring in the auxetic structure 10. This indicates that the shock absorption capacity of the auxetic structure 10 is high because the local strain is small. It is also possible to directly connect the straight portion B and the convex portion C without providing the second concave portion D, but in that case, the strain at the connection point between the straight portion B and the convex portion C may become large, and the durability of the auxetic structure may deteriorate.
- the second concave portion D is interposed between the straight portion B and the convex portion C to reduce the local strain and increase the durability of the auxetic structure 10.
- the virtual triangle 15 has been described as being an equilateral triangle.
- the interior angles of each vertex of an equilateral triangle are all strictly 60°.
- the virtual triangle 15 may have a shape that deviates slightly from a strictly equilateral triangle, so long as the structure obtained by disposing the voids 12 in the substrate 11 exhibits macroscopic behavior of a negative Poisson's ratio.
- the interior angles at each vertex of the virtual triangle 15 are in the range of 50° to 70°, the virtual triangle 15 can be treated as being an equilateral triangle to form the auxetic structure 10 of the first embodiment.
- FIG. 4(a) shows an auxetic structure according to a second embodiment of the present invention
- FIG. 4(b) is an enlarged view of an arbitrary void portion described in FIG. 4(a).
- the illustrated auxetic structure 20 is a structure in which a plurality of first void portions 22 and a plurality of second void portions 23 are arranged in a substrate 21 made of an elastic material, as in the first embodiment. Details of the shape of the first void portion 22 are shown in FIG. 5.
- the second void portion 23 is a simple rotation of the first void portion 22 in the substrate 21, which is an elastic body, so a detailed description of the shape of the second void portion 23 is omitted.
- the auxetic structure 20 of the second embodiment has the property of shrinking in the X direction as well when a compressive stress is applied from the outside along the Y direction and compressed.
- the first void 22 has a shape inscribed in the four sides of a rhombus, i.e., a virtual rhombus 25, which is virtually set in the substrate 21.
- the four vertices of the virtual rhombus 25 are S1, S2, S3, and S4.
- the diagonal connecting the vertices S1 and S3 is the first diagonal L11
- the diagonal connecting the vertices S2 and S4 is the second diagonal L12.
- the intersection point M is also the center of gravity of the virtual rhombus 15.
- the second void 23 has a shape obtained by rotating the first void 22 by 90° around the intersection point M in the XY plane.
- the outline, i.e., the periphery, of the first void portion 22 in the XY plane is expressed by a closed curve, but is divided by 12 points Q1 to Q12.
- the periphery of the first void portion 22 is configured as an integral shape with 12 sections connected together. As shown in FIG. 4(b), the 12 sections are classified into a first recess A, a straight section B, a convex section C, and a second recess D, as in the first embodiment.
- the first recess A is disposed at each of the vertices S1 and S3 located at both ends of the first diagonal line L11, and is a section that is an arc of an inscribed circle inscribed in both of the two sides that sandwich the vertex, and both ends are defined by arcs on the two sides, and curves away from the intersection point M.
- the arc Q12-Q1 defined by the circle C21 inscribed in both sides S1-S2 and S1-S4 is the first recess A.
- the arc Q6-Q7 defined by the circle C22 inscribed in both sides S2-S3 and S3-S4 is the first recess A.
- the centers of the circles C21 and C22 are indicated by points O21 and O22, respectively.
- the radii of the circles C21 and C22 are both Ra.
- arc Q4-Q5 of circle C26 whose center is point O26 corresponds to the second recess D.
- Arc Q4-Q5 smoothly connects to both arc Q3-Q4 and line segment Q5-Q6.
- arc Q8-Q9 of circle C27 whose center is point O27, corresponds to second recess D.
- Arc Q8-Q9 smoothly connects to both line segment Q7-Q8 and arc Q9-Q10.
- arc Q10-Q11 of circle C28 whose center is point O28, corresponds to second recess D.
- Arc Q10-Q11 smoothly connects to both arc Q9-Q10 and line segment Q11-Q12.
- the radii of circles C25 to C28 are all Rc.
- a plurality of first voids 22 and a plurality of second voids 23 are arranged in a lattice pattern so that the first voids 22 and the second voids 23 are alternately arranged in two mutually orthogonal directions, specifically, in the X direction and the Y direction, in the substrate 21, which is an elastic body.
- the length h is the length of the first gap 22 measured along the first diagonal L11, specifically, the distance from the intersection of the arc Q12-Q1, which is one of the first recesses A, and the first diagonal L11 to the intersection L12 of the arc Q6-Q7, which is the other first recess A, and the first diagonal.
- the maximum width w is the maximum value of the dimension of the first gap 22 in the direction perpendicular to the first diagonal L11 (i.e., the direction in which the second diagonal L12 extends).
- the maximum width w is the length of the longest line segment connecting the second recesses D that are located in line symmetrical positions with respect to the first diagonal L11.
- the ratio h/w can be determined.
- This ratio h/w is a parameter equivalent to the aspect ratio mentioned in Patent Document 1, except that the ratio h/w can be less than 1.
- the ratio h/w is preferably 1 or more and 1.5 or less. If the ratio h/w is less than 1, when compressive stress is applied to the auxetic structure 20, the deformation obtained by the cooperation of the voids 22 and 23 does not occur smoothly.
- the central angle ⁇ of the arcs (arc Q12-Q1 and arc Q6-Q7) constituting the first recess A is 70° or more and 100° or less. If the central angle ⁇ is less than 70°, when compressive stress is applied to the auxetic structure 20, the deformation obtained by the cooperation of the voids 22, 23 may not occur smoothly. On the other hand, if the central angle ⁇ exceeds 100°, the auxetic structure 20 cannot deform uniformly, and the shock absorption capacity decreases.
- the distance L must be greater than the maximum width w. If the distance L is less than or equal to the maximum width w, the adjacent first and second voids 22 and 23 will overlap and merge with each other, and the condition that the first void 22 is inscribed in the imaginary rhombus 25 will no longer be satisfied. On the other hand, if the distance L exceeds the length h, the distance between the adjacent first and second voids 22 and 23 will become too large, and the first and second voids 22 and 23 will not be able to deform in cooperation with each other. Therefore, it is preferable that L ⁇ h.
- FIG. 6 shows the change in shape when compressive stress is applied in the Y direction in the auxetic structure 20 of the second embodiment.
- (a) shows the shape of the auxetic structure 20 when no compressive stress is applied
- (b) shows the shape when compressive stress is applied.
- the auxetic structure 20 contracts in the X direction accordingly.
- the auxetic structure 20 returns to its original shape. Note that when compressive stress is applied to the auxetic structure 20 in the X direction, the structure 20 contracts in the Y direction. This can be easily understood because the structure 20 has a negative Poisson's ratio.
- the auxetic structure 20 of the second embodiment similarly to the auxetic structure 10 of the first embodiment, by providing straight portion B on the outer periphery of the first void portion 22 and the second void portion 23, when compressive stress is applied from the outside, the auxetic structure 20 deforms without local stress strain. This indicates that the shock absorption capacity of the auxetic structure 20 is high because the local strain is small.
- a rhombus is a quadrilateral with four sides of equal length, but in the present invention, the lengths of the four sides of the virtual rhombus 25 may vary somewhat as long as the structure obtained by disposing the voids 12 in the substrate 11 exhibits macroscopic behavior with a negative Poisson's ratio. For example, if a quadrilateral has a reference length and the length of each side is within a range of ⁇ 10% of the reference length, the quadrilateral can be used as the virtual rhombus 25 to form the auxetic structure 20 of the second embodiment.
- any material having elasticity such as metal, ceramics, or resin
- Resin materials that can be used as the elastic body include general-purpose plastics such as polyethylene (PE), polypropylene (PP), ABS resin (ABS), polyethylene terephthalate (PET), and methacrylic resin (PMMA), as well as general-purpose engineering plastics such as polyamide (PA), polycarbonate (PC), polyacetal (POM), polybutylene terephthalate (PBT), polyphenylene ether (PPE), and epoxy resin (EP).
- general-purpose plastics such as polyamide (PA), polycarbonate (PC), polyacetal (POM), polybutylene terephthalate (PBT), polyphenylene ether (PPE), and epoxy resin (EP).
- super engineering plastics such as fluororesin, polyimide (PI), polyethersulfone (PES), and polyetherimide (PEI) may also be used.
- Elastomers that can be used as the elastic body include thermosetting elastomers such as silicone rubber (Q), urethane rubber (U), natural rubber (NR), ethylene propylene diene rubber (EPDM), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber (CR), and butyl rubber (isobutylene-isoprene rubber) (IIR), as well as thermoplastic elastomers such as polystyrene thermoplastic elastomer (TPS), olefin thermoplastic elastomer (TPO) (also called alkene thermoplastic elastomer), polyvinyl chloride thermoplastic elastomer (TPVC), polyurethane thermoplastic elastomer (TPU), polyester thermoplastic elastomer (TPC), and polyamide thermoplastic elastomer (TPAE).
- thermosetting elastomers such as silicone rubber (Q), urethane rubber
- the auxetic structure according to the present invention is made of an elastic body having a plurality of voids, and can be manufactured by dispersing and forming a plurality of voids in a base material that is an elastic body. Specifically, it can be manufactured by laser cutting or water jet cutting, or by molding using a mold or a 3D (three-dimensional) printer, similar to the molding of general resin materials and elastomer materials.
- the manufacturing method of the auxetic structure is not limited to the method described here, and any manufacturing method may be used as long as it is a method that can form voids in a dispersed manner.
- FIG. 7 is a schematic front view showing a battery module 40.
- the battery module 40 is an integrated device in which a plurality of battery cells 45 are held by a restraining member 41 so as to obtain a desired output voltage and capacity.
- the battery cells 45 are unit cells of a rechargeable secondary battery, and preferably unit cells of a lithium-ion battery.
- the battery cells 45 and the cushioning material 50 are alternately stacked along the X direction shown in the figure, and the restraining member 41 restrains each battery cell 45 from both ends of the stacking direction (X direction shown in the figure).
- As the restraining member 41 an L-shaped member or a case-shaped member is used as shown in the figure.
- the material of the restraining member 41 is a metal such as aluminum, but a hard resin such as polyamide-imide resin (PAI) or polyether-ether-ketone resin (PEEK) may also be used. .
- PAI polyamide-imide resin
- PEEK polyether-
- the battery cell 45 is, for example, a metal case 45a with an electrode body 45b sealed inside.
- the electrode body 45b is a spirally wound battery cell 45 with a positive electrode and a negative electrode sandwiched between separators (not shown).
- the negative electrode in the electrode body 45b absorbs ions and expands, and at the same time, the electrode body 45b generates heat and expands thermally.
- the battery cell 45 expands mainly in the stacking direction, that is, in the X direction in FIG. 7, when the battery cell 45 is charged, and the amount of expansion of the battery cell 45 is maximized when the battery cell 45 is fully charged.
- the battery cell 45 returns to its initial state. However, when the battery cell 45 is repeatedly charged and discharged, the distance between the electrodes of the electrode body 45b increases, and the electrical characteristics of the battery cell 45 deteriorate.
- the cushioning material 50 arranged between the battery cells 45 or between the battery cells 45 and the restraining member 41 is required to be able to absorb the deformation caused by the expansion and contraction (return to the initial state) of the battery cells 45. Furthermore, when the cushioning material 50 is compressed due to the expansion of the battery cells 45, if the reaction force of the cushioning material 50 becomes excessively large, the battery cells 45 may be damaged.
- the auxetic structure based on the present invention has a small change in stress (or reaction force) relative to the amount of deformation (or strain), so it can be suitably used as the cushioning material 50 for the battery module 40.
- the cushioning material 50 made of the auxetic structure based on the present invention in order to reliably absorb the volume change of the battery cells 45.
- the auxetic structure 20 described in the second embodiment of the present invention is used for the cushioning material 50 shown in FIG. 7.
- the present invention will be described in detail based on examples and comparative examples.
- the strain distribution was evaluated by simulation, and the relationship between the compression ratio and stress was measured using an actually fabricated auxetic structure, and the impact absorption capacity was evaluated.
- a 3D printer manufactured by Formlabs, product name: Form 3L
- an ultraviolet (UV) curable silicone-based elastomer manufactured by Formlabs, product name: Elastic 50A was used as the elastic material.
- UV ultraviolet
- Example 1 the auxetic structure 10 of the first embodiment was used, and in Example 2, the auxetic structure 20 of the second embodiment was used. Furthermore, as a comparative example, an auxetic structure 60 having the shape shown in FIG. 8 was used.
- the auxetic structure 60 of the comparative example is, like the auxetic structure 20 of the second embodiment, an elastic base body 61 in which first voids 62 and second voids 63 are alternately arranged in a lattice pattern.
- the auxetic structure 60 of the comparative example differs from the auxetic structure 20 of the second embodiment in the shape of the first voids 62.
- the first void of the comparative example does not have a straight line portion B and a second recessed portion D, and has a shape in which a first recessed portion A consisting of an arc with a radius Ra and a convex portion C consisting of an arc with a radius Rb are directly connected, and is an auxetic structure having voids as shown in Patent Document 1.
- Table 1 shows the dimensions of the auxetic structures of Example 1, Example 2 and Comparative Example, the distance between voids, and parameters indicating the shape of each void.
- the height of the auxetic structure is the overall length of the auxetic structure along the Y direction in Figures 1, 4 and 8, and similarly the width is the overall length of the auxetic structure along the X direction.
- the thickness of the auxetic structure is the thickness in a direction perpendicular to both the X and Y directions.
- the distance between voids is the distance K between adjacent voids 12 shown in Figure 1 in Example 1, and is the distance L between adjacent first voids 22, 62 and second voids 23, 63 shown in Figures 4 and 8 in Example 2 and Comparative Example.
- the parameters that indicate the shape of each void are the height H of the virtual triangle 15, the height h and maximum width w of the first voids 22 and 62, the radius Ra of the circle corresponding to the arc that defines the first recess A, the radius Rb of the circle corresponding to the arc that defines the protrusion B, and the radius Rc of the circle corresponding to the arc that defines the second recess D.
- strain distribution evaluation The simulation software used was Abaqus/CAE 2020 from Dassault Systems, Inc., and the distribution of strain in the auxetic structure when compressed by 20% was analyzed.
- the analysis results of the strain distribution in Example 1 are shown in FIG. 9, the analysis results in Example 2 in FIG. 10, and the analysis results in the comparative example in FIG. 11. In FIG. 9 to FIG. 11, the greater the strain, the lower the brightness, and the smaller the strain, the higher the brightness.
- the shock absorbing capacity of the auxetic structure was measured under the following test conditions, and the relationship between the compression rate (%) and the stress (kPa) was used to confirm whether the structure had a high shock absorbing capacity, i.e., whether low stress was achieved even with a high compression rate. Note that the stress was measured using the surface pressure during compression.
- Compression tester Universal material testing machine (Instron, model number: 5585H) Compression conditions: 0.5 to 30 ⁇ 5% Test speed: 1 mm/min ⁇ Compression measurements: 3 times
- Figure 12 shows stress-strain diagrams (FS diagrams) for each of Example 1, Example 2, and Comparative Example.
- FS diagrams stress-strain diagrams
- the auxetic structure has a shock absorption capacity index s2/s1 of 1 ⁇ s2/s1 ⁇ 3 (1) It is preferable to satisfy the above. If the shock absorption capacity index s2/s1 is within the range defined by formula (1), the auxetic structure can be evaluated as having good shock absorption capacity. If the shock absorption capacity index is smaller than 1, the structure will break when an impact is input. On the other hand, if the shock absorption capacity index is larger than 3, the input impact will be transmitted without being absorbed. In other words, the shock absorption capacity will not be exerted. Table 2 shows the average stresses s1, s2 and the shock absorption capacity index s2/s1 actually measured in the auxetic structures of Example 1, Example 2, and Comparative Example.
- the auxetic structures of Examples 1 and 2 have shock absorption capacity indices s2/s1 within the range defined by formula (1), and therefore exhibit good shock absorption capacity.
- the auxetic structure based on the present invention can increase the shock absorption capacity and alleviate local strain compared to auxetic structures of the prior art.
- the auxetic structure of the present invention can be applied to fields where auxetic structures have not been applicable until now due to concerns about long-term durability, such as cushioning materials for battery modules, insulating materials for battery modules, vibration-proofing materials for electric vehicles, shock-absorbing flooring materials, etc.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Springs (AREA)
Abstract
An auxetic structure (10) comprising an elastic body (11) having a plurality of gap parts (12), the gap parts each having a shape inscribed to three sides of a virtually set virtual triangle, and the outer peripheries of the gap parts each forming an integrated shape by connecting first recessed parts (A), linear parts (B), protruding parts (C), and second recessed parts (D). The first recessed parts (A) are each formed by an arc of an inscribed circle inscribed to each of two sides located on either side of a vertex of the virtual triangle. The linear parts (B) each form part of the side of the virtual triangle, and connect one end of a first recessed part (A) and one end of a second recessed part (D). The protruding parts (C) are each formed by an arc having a center on a vertical bisector of each side of the virtual triangle and having a radius greater than the radius of an inscribed circle of a first recessed part (A). The second recessed parts (D) each connect one end of a protruding part (C) and one end of a linear part (B), and are formed by an arc of which the center is present inside the virtual triangle.
Description
本発明は、巨視的には負のポアソン比を有するような挙動を示すオーセチック(Auxetic)構造体と、オーセチック構造体を用いた緩衝材とに関する。
The present invention relates to an auxetic structure that exhibits macroscopic behavior that has a negative Poisson's ratio, and to a cushioning material that uses the auxetic structure.
一般的な材料は、正のポアソン比を有しており、ある方向からその材料が圧縮されたときにはその方向と直交する方向に膨らむように変形する。しかしながら材料中に複数の空隙部や開口部を分散させてボイド構造(void structure)やセル構造体(cellular solid)とも呼ばれる構造体としたときには、巨視的な応力及びひずみ負荷の下でそれらの空隙部が協働して変形することにより、その構造体が負のポアソン比を有するような挙動を示すことがある。すなわちその構造体は、ある方向に圧縮されたときに、その方向と直交する方向でも収縮する。巨視的には負のポアソン比を有する挙動を示す構造体は、オーセチック構造体と呼ばれ、一例として、熱膨張によって生じる応力を緩和するために用いられる。またオーセチック構造体は、ある方向から圧縮応力を受けたときにその方向に対して直交する方向でも収縮することから、機械的な衝撃を緩和する緩衝材としても好ましく使用することができる。
General materials have a positive Poisson's ratio, and when the material is compressed in a certain direction, it deforms so that it expands in a direction perpendicular to that direction. However, when multiple voids or openings are distributed in the material to form a structure also called a void structure or cellular solid, the voids may work together to deform under macroscopic stress and strain loads, causing the structure to behave as if it has a negative Poisson's ratio. In other words, when the structure is compressed in a certain direction, it also shrinks in a direction perpendicular to that direction. Structures that behave with a negative Poisson's ratio macroscopically are called auxetic structures, and are used, for example, to relieve stress caused by thermal expansion. Auxetic structures also shrink in a direction perpendicular to a certain direction when subjected to compressive stress from that direction, so they can be used favorably as cushioning materials to relieve mechanical shocks.
特許文献1は、複数の細長い開口部をその長手方向の向きを90°ずつずらしながら格子状に配置したオーセチック構造体を開示している。特許文献1では、細長い開口部の形状の例として、細長い楕円、凹んだ穴状の形状、H字を横に引き延ばしたような形状などが示されている。
Patent Document 1 discloses an auxetic structure in which multiple elongated openings are arranged in a lattice pattern with their longitudinal orientations shifted by 90°. Patent Document 1 gives examples of the shapes of the elongated openings, such as an elongated oval, a concave hole shape, and an H-shape stretched out horizontally.
特許文献1に開示されるオーセチック構造体では、開口部における長軸の長さと短軸の長さの比すなわちアスペクト比が例えば5から40であって大きいので、圧縮応力を受けたときにおいても開口部の体積が大きく、緩衝材などとして用いたときに衝撃吸収能力が低い、という課題がある。アスペクト比が大きいことから特許文献1に開示されるオーセチック構造体は、変形したときの局所的なひずみが大きくなって耐久性が低下する、という課題も有する。
In the auxetic structure disclosed in Patent Document 1, the ratio of the length of the long axis to the length of the short axis at the opening, i.e., the aspect ratio, is large, for example, from 5 to 40, so that the volume of the opening is large even when subjected to compressive stress, and there is a problem that the shock absorption capacity is low when used as a cushioning material, etc. Because the aspect ratio is large, the auxetic structure disclosed in Patent Document 1 also has the problem that local strain increases when deformed, reducing durability.
本発明の目的は、衝撃吸収能力と長期の耐久性とを両立させたオーセチック構造体と、そのようなオーセチック構造体を用いた緩衝材とを提供することにある。
The object of the present invention is to provide an auxetic structure that combines shock absorbing capacity with long-term durability, and a cushioning material that uses such an auxetic structure.
本発明の一態様のオーセチック構造体は、空隙部を有する弾性体からなるオーセチック構造体であって、
前記空隙部は、仮想的に設定された仮想三角形の3つの辺に内接する形状を有するとともに、該空隙部の外周は、第1凹部(A)、直線部(B)、凸部(C)及び第2凹部(D)の各々を連結して一体化した形状を成し、
前記第1凹部(A)は、前記仮想三角形の各々の対称軸上に中心を有し、前記仮想三角形の頂点を挟む2つの辺の各々に内接する内接円の円弧により形成されるとともに、当該円弧の両端が前記仮想三角形の2つの辺上にあり、かつ前記仮想三角形の重心から見て当該仮想三角形の外方向に湾曲する凹形状を有し、
前記直線部(B)は、前記仮想三角形の各々の辺の一部を形成する線分であるとともに、前記第1凹部(A)の端部と前記第2凹部(D)の一端とを接続し、
前記凸部(C)は、前記仮想三角形の各々の辺の垂直二等分線上に中心を有し、かつ前記第1凹部(A)の前記内接円の半径以上の半径を有する円弧により形成されるとともに、前記仮想三角形の重心に向かって凸形状を有し
前記第2凹部(D)は、前記凸部(C)の端部と前記直線部(B)の他端に接する円弧であり、さらに当該円弧の中心は、前記仮想三角形の内部に存在するとともに、該円弧の中心からみて前記仮想三角形の外方向に湾曲する凹形状を有し、
前記弾性体に配置される複数の前記空隙部は、前記空隙部が内接する前記仮想三角形の重心を三角格子の格子点に配置している。 The auxetic structure of one embodiment of the present invention is an auxetic structure made of an elastic body having voids,
the void portion has a shape inscribed in three sides of an imaginary triangle, and the outer periphery of the void portion forms an integrated shape by connecting each of the first recess (A), the straight line portion (B), the convex portion (C) and the second recess (D);
the first recess (A) has a center on each axis of symmetry of the imaginary triangle, is formed by an arc of an inscribed circle inscribed in each of two sides that sandwich a vertex of the imaginary triangle, and both ends of the arc are on the two sides of the imaginary triangle, and has a concave shape that curves outwardly of the imaginary triangle when viewed from the center of gravity of the imaginary triangle,
The straight line portion (B) is a line segment forming a part of each side of the virtual triangle, and connects an end of the first recess (A) and one end of the second recess (D),
the convex portion (C) has a center on the perpendicular bisector of each side of the virtual triangle, is formed by an arc having a radius equal to or greater than the radius of the inscribed circle of the first concave portion (A), and has a convex shape toward the center of gravity of the virtual triangle; the second concave portion (D) is an arc tangent to an end of the convex portion (C) and the other end of the straight portion (B), and further, the center of the arc is inside the virtual triangle, and has a concave shape that curves outward from the virtual triangle when viewed from the center of the arc;
The plurality of voids arranged in the elastic body are arranged such that the centers of gravity of the imaginary triangles in which the voids are inscribed are located at the lattice points of a triangular lattice.
前記空隙部は、仮想的に設定された仮想三角形の3つの辺に内接する形状を有するとともに、該空隙部の外周は、第1凹部(A)、直線部(B)、凸部(C)及び第2凹部(D)の各々を連結して一体化した形状を成し、
前記第1凹部(A)は、前記仮想三角形の各々の対称軸上に中心を有し、前記仮想三角形の頂点を挟む2つの辺の各々に内接する内接円の円弧により形成されるとともに、当該円弧の両端が前記仮想三角形の2つの辺上にあり、かつ前記仮想三角形の重心から見て当該仮想三角形の外方向に湾曲する凹形状を有し、
前記直線部(B)は、前記仮想三角形の各々の辺の一部を形成する線分であるとともに、前記第1凹部(A)の端部と前記第2凹部(D)の一端とを接続し、
前記凸部(C)は、前記仮想三角形の各々の辺の垂直二等分線上に中心を有し、かつ前記第1凹部(A)の前記内接円の半径以上の半径を有する円弧により形成されるとともに、前記仮想三角形の重心に向かって凸形状を有し
前記第2凹部(D)は、前記凸部(C)の端部と前記直線部(B)の他端に接する円弧であり、さらに当該円弧の中心は、前記仮想三角形の内部に存在するとともに、該円弧の中心からみて前記仮想三角形の外方向に湾曲する凹形状を有し、
前記弾性体に配置される複数の前記空隙部は、前記空隙部が内接する前記仮想三角形の重心を三角格子の格子点に配置している。 The auxetic structure of one embodiment of the present invention is an auxetic structure made of an elastic body having voids,
the void portion has a shape inscribed in three sides of an imaginary triangle, and the outer periphery of the void portion forms an integrated shape by connecting each of the first recess (A), the straight line portion (B), the convex portion (C) and the second recess (D);
the first recess (A) has a center on each axis of symmetry of the imaginary triangle, is formed by an arc of an inscribed circle inscribed in each of two sides that sandwich a vertex of the imaginary triangle, and both ends of the arc are on the two sides of the imaginary triangle, and has a concave shape that curves outwardly of the imaginary triangle when viewed from the center of gravity of the imaginary triangle,
The straight line portion (B) is a line segment forming a part of each side of the virtual triangle, and connects an end of the first recess (A) and one end of the second recess (D),
the convex portion (C) has a center on the perpendicular bisector of each side of the virtual triangle, is formed by an arc having a radius equal to or greater than the radius of the inscribed circle of the first concave portion (A), and has a convex shape toward the center of gravity of the virtual triangle; the second concave portion (D) is an arc tangent to an end of the convex portion (C) and the other end of the straight portion (B), and further, the center of the arc is inside the virtual triangle, and has a concave shape that curves outward from the virtual triangle when viewed from the center of the arc;
The plurality of voids arranged in the elastic body are arranged such that the centers of gravity of the imaginary triangles in which the voids are inscribed are located at the lattice points of a triangular lattice.
上述したオーセチック構造体は、弾性体に仮想的に設定された仮想三角形に内接する形状を有する空隙部を有し、空隙部が、仮想三角形の頂点ごとに設けられて仮想三角形の2つの辺に内接し仮想三角形の外方向に湾曲する円弧からなる第1凹部(A)と、仮想三角形の辺上にあって一端が第1凹部(A)の端部に接続する直線部(B)と、仮想三角形の重心に向かって湾曲する円弧からなる凸部(C)と、凸部(C)の端部と直線部(B)の他端とを接続する円弧からなる第2凹部(D)とを連結して一体形状とした外周を有することを特徴とするものである。このように、第1凹部(A)、直線部(B)、凸部(C)及び第2凹部(D)を連結した形状を有する空隙部を備える本発明に基づくオーセチック構造体は、その空隙部が仮想三角形に内接する形状を有するものに限定されるものではない。例えば、弾性体に仮想的に設定された凸四角形に内接する形状を有する空隙部を有するオーセチック構造体も本発明の範疇に含まれる。
The above-mentioned auxetic structure has a void portion having a shape inscribed in a virtual triangle virtually set in an elastic body, and the void portion has an outer periphery formed by connecting a first concave portion (A) provided at each vertex of the virtual triangle, inscribed in two sides of the virtual triangle, and curved outward from the virtual triangle, a straight portion (B) on a side of the virtual triangle and one end of which is connected to an end of the first concave portion (A), a convex portion (C) made of an arc curving toward the center of gravity of the virtual triangle, and a second concave portion (D) made of an arc connecting the end of the convex portion (C) and the other end of the straight portion (B) to form an integral shape. Thus, the auxetic structure according to the present invention having a void portion having a shape inscribed in a virtual triangle by connecting the first concave portion (A), the straight portion (B), the convex portion (C), and the second concave portion (D) is not limited to a void portion having a shape inscribed in a virtual triangle. For example, an auxetic structure having a void portion having a shape inscribed in a convex rectangle virtually set in an elastic body is also included in the scope of the present invention.
したがって本発明の別の態様のオーセチック構造体は、
空隙部を有する弾性体からなるオーセチック構造体であって、
前記空隙部は、第1空隙部と第2空隙部からなり、
前記第1空隙部は、相互に直交する第1対角線及び第2対角線を有する仮想菱形の4つの辺に内接する形状を有するとともに、該第1空隙部の外周は、第1凹部(A)、直線部(B)、凸部(C)及び第2凹部(D)の各々を連結して一体化した形状を成し、
前記第1凹部(A)は、前記仮想菱形の第1対角線上に中心を有し、前記仮想菱形の前記第1対角線の両端部である頂点を挟む2つの辺の各々に内接する内接円の円弧により形成されるとともに、当該内接円の円弧の両端が前記仮想菱形の2つの辺上にあり、かつ前記第1対角線と前記第2対角線との交点からみて外側に湾曲する凹形状を有し、
前記直線部(B)は、前記仮想菱形の前記第1対角線の両端部である頂点を挟む2つの辺の一部を形成する線分であるとともに、前記第1凹部(A)の端部と前記第2凹部(D)の端部とを接続し、
前記凸部(C)は、前記仮想菱形の前記第2対角線上に中心を有し、かつ前記第1凹部(A)の前記内接円の半径より大きい半径を有する円弧により形成され、前記仮想菱形の第1対角線と前記第2対角線の交点に向かって湾曲する凸形状を有し、
前記第2凹部(D)は、前記凸部(C)の端部と前記直線部(B)の他端に接する円弧であり、さらに当該円弧の中心は前記仮想菱形の内部に存在するとともに、当該円弧の中心からみて前記仮想菱形の外方向に湾曲する凹形状を有し、
前記第2空隙部は、前記仮想菱形の前記第1対角線と前記第2対角線の交点を中心として、前記第1空隙部を90°回転させた形状を有し、
前記弾性体に配置される前記第1空隙部と前記第2空隙部は、前記第1空隙部と前記第2空隙部とを1つの単位として格子状に配置している。 Thus, according to another aspect of the invention, the auxetic structure comprises:
An auxetic structure made of an elastic body having voids,
The gap portion includes a first gap portion and a second gap portion,
the first gap has a shape inscribed in four sides of a virtual rhombus having a first diagonal and a second diagonal perpendicular to each other, and the outer periphery of the first gap forms an integrated shape by connecting each of the first recess (A), the straight line portion (B), the protrusion (C), and the second recess (D);
the first recess (A) has a center on a first diagonal of the virtual rhombus, is formed by an arc of an inscribed circle inscribed in each of two sides that sandwich a vertex that is both ends of the first diagonal of the virtual rhombus, and both ends of the arc of the inscribed circle are on the two sides of the virtual rhombus, and has a concave shape that curves outward when viewed from the intersection of the first diagonal and the second diagonal,
The straight line portion (B) is a line segment forming a part of two sides sandwiching a vertex that is both ends of the first diagonal of the virtual rhombus, and connects an end of the first recess (A) and an end of the second recess (D),
the convex portion (C) has a center on the second diagonal of the virtual rhombus, is formed by an arc having a radius larger than the radius of the inscribed circle of the first concave portion (A), and has a convex shape curved toward an intersection of the first diagonal and the second diagonal of the virtual rhombus,
the second recess (D) is an arc tangent to an end of the protrusion (C) and the other end of the straight line portion (B), the center of the arc is inside the imaginary rhombus, and the second recess (D) has a concave shape that is curved outward from the imaginary rhombus when viewed from the center of the arc,
the second gap portion has a shape obtained by rotating the first gap portion by 90° around an intersection point of the first diagonal line and the second diagonal line of the virtual rhombus,
The first gap and the second gap disposed in the elastic body are arranged in a lattice pattern with the first gap and the second gap serving as one unit.
空隙部を有する弾性体からなるオーセチック構造体であって、
前記空隙部は、第1空隙部と第2空隙部からなり、
前記第1空隙部は、相互に直交する第1対角線及び第2対角線を有する仮想菱形の4つの辺に内接する形状を有するとともに、該第1空隙部の外周は、第1凹部(A)、直線部(B)、凸部(C)及び第2凹部(D)の各々を連結して一体化した形状を成し、
前記第1凹部(A)は、前記仮想菱形の第1対角線上に中心を有し、前記仮想菱形の前記第1対角線の両端部である頂点を挟む2つの辺の各々に内接する内接円の円弧により形成されるとともに、当該内接円の円弧の両端が前記仮想菱形の2つの辺上にあり、かつ前記第1対角線と前記第2対角線との交点からみて外側に湾曲する凹形状を有し、
前記直線部(B)は、前記仮想菱形の前記第1対角線の両端部である頂点を挟む2つの辺の一部を形成する線分であるとともに、前記第1凹部(A)の端部と前記第2凹部(D)の端部とを接続し、
前記凸部(C)は、前記仮想菱形の前記第2対角線上に中心を有し、かつ前記第1凹部(A)の前記内接円の半径より大きい半径を有する円弧により形成され、前記仮想菱形の第1対角線と前記第2対角線の交点に向かって湾曲する凸形状を有し、
前記第2凹部(D)は、前記凸部(C)の端部と前記直線部(B)の他端に接する円弧であり、さらに当該円弧の中心は前記仮想菱形の内部に存在するとともに、当該円弧の中心からみて前記仮想菱形の外方向に湾曲する凹形状を有し、
前記第2空隙部は、前記仮想菱形の前記第1対角線と前記第2対角線の交点を中心として、前記第1空隙部を90°回転させた形状を有し、
前記弾性体に配置される前記第1空隙部と前記第2空隙部は、前記第1空隙部と前記第2空隙部とを1つの単位として格子状に配置している。 Thus, according to another aspect of the invention, the auxetic structure comprises:
An auxetic structure made of an elastic body having voids,
The gap portion includes a first gap portion and a second gap portion,
the first gap has a shape inscribed in four sides of a virtual rhombus having a first diagonal and a second diagonal perpendicular to each other, and the outer periphery of the first gap forms an integrated shape by connecting each of the first recess (A), the straight line portion (B), the protrusion (C), and the second recess (D);
the first recess (A) has a center on a first diagonal of the virtual rhombus, is formed by an arc of an inscribed circle inscribed in each of two sides that sandwich a vertex that is both ends of the first diagonal of the virtual rhombus, and both ends of the arc of the inscribed circle are on the two sides of the virtual rhombus, and has a concave shape that curves outward when viewed from the intersection of the first diagonal and the second diagonal,
The straight line portion (B) is a line segment forming a part of two sides sandwiching a vertex that is both ends of the first diagonal of the virtual rhombus, and connects an end of the first recess (A) and an end of the second recess (D),
the convex portion (C) has a center on the second diagonal of the virtual rhombus, is formed by an arc having a radius larger than the radius of the inscribed circle of the first concave portion (A), and has a convex shape curved toward an intersection of the first diagonal and the second diagonal of the virtual rhombus,
the second recess (D) is an arc tangent to an end of the protrusion (C) and the other end of the straight line portion (B), the center of the arc is inside the imaginary rhombus, and the second recess (D) has a concave shape that is curved outward from the imaginary rhombus when viewed from the center of the arc,
the second gap portion has a shape obtained by rotating the first gap portion by 90° around an intersection point of the first diagonal line and the second diagonal line of the virtual rhombus,
The first gap and the second gap disposed in the elastic body are arranged in a lattice pattern with the first gap and the second gap serving as one unit.
本発明のさらに別の態様によれば電池モジュール用緩衝材は、上述したオーセチック構造体からなることを特徴とする。
According to yet another aspect of the present invention, the cushioning material for a battery module is characterized by being made of the above-mentioned auxetic structure.
発明によれば、衝撃吸収能力と長期の耐久性とを両立させたオーセチック構造体と、そのようなオーセチック構造体を用いた緩衝材とを得ることができる。
The invention makes it possible to obtain an auxetic structure that combines shock absorbing capacity with long-term durability, and a cushioning material that uses such an auxetic structure.
次に、本発明を実施するための形態について、図面を参照して説明する。本発明に基づくオーセチック構造体は、弾性材料からなる基材すなわち弾性体に複数の空隙部を配置して構成されたものである。オーセチック構造体は、ある特定の方向に力を印加されて圧縮されたときに、力の印加方向とは異なる方向においても収縮する性質を有するものであり、巨視的には負のポアソン比を有するものである。
Next, a form for carrying out the present invention will be described with reference to the drawings. The auxetic structure according to the present invention is constructed by arranging a plurality of voids in a substrate, i.e., an elastic body, made of an elastic material. When a force is applied in a certain direction and the auxetic structure is compressed, it has the property of contracting in a direction different from the direction in which the force is applied, and has a negative Poisson's ratio macroscopically.
[第1の実施形態]
図1(a)は、本発明の第1の実施形態のオーセチック構造体を示し、図1(b)は、図1(a)に記載されている任意の空隙部の拡大図である。図示されるオーセチック構造体10は、弾性材料からなる基材11に対して複数の空隙部12を配置して構成されたものである。また、空隙部12の形状の詳細は、図2に示されている。空隙部12は基材11の表面に開口として露出していてもよいし、あるいは、表面に露出することなく基材11の内部に形成されていてもよい。図1に示すようにXY直交座標系を定義したとき、オーセチック構造体10は、Y方向に沿って外部から圧縮応力が加えられて圧縮したときに、X方向においても収縮する性質を有するものである。 [First embodiment]
FIG. 1(a) shows an auxetic structure according to a first embodiment of the present invention, and FIG. 1(b) is an enlarged view of an arbitrary void portion shown in FIG. 1(a). The illustratedauxetic structure 10 is configured by arranging a plurality of void portions 12 in a substrate 11 made of an elastic material. The details of the shape of the void portion 12 are shown in FIG. 2. The void portion 12 may be exposed as an opening on the surface of the substrate 11, or may be formed inside the substrate 11 without being exposed on the surface. When an XY orthogonal coordinate system is defined as shown in FIG. 1, the auxetic structure 10 has the property of shrinking in the X direction when a compressive stress is applied from the outside along the Y direction and compressed.
図1(a)は、本発明の第1の実施形態のオーセチック構造体を示し、図1(b)は、図1(a)に記載されている任意の空隙部の拡大図である。図示されるオーセチック構造体10は、弾性材料からなる基材11に対して複数の空隙部12を配置して構成されたものである。また、空隙部12の形状の詳細は、図2に示されている。空隙部12は基材11の表面に開口として露出していてもよいし、あるいは、表面に露出することなく基材11の内部に形成されていてもよい。図1に示すようにXY直交座標系を定義したとき、オーセチック構造体10は、Y方向に沿って外部から圧縮応力が加えられて圧縮したときに、X方向においても収縮する性質を有するものである。 [First embodiment]
FIG. 1(a) shows an auxetic structure according to a first embodiment of the present invention, and FIG. 1(b) is an enlarged view of an arbitrary void portion shown in FIG. 1(a). The illustrated
以下、図1(b)及び図2を用いて空隙部の形状を詳細に説明する。空隙部12は、弾性体である基材11において仮想的に設定された正三角形すなわち仮想三角形15の3つの辺に内接する形状を有する。仮想三角形15の3つの頂点は、T1,T2,T3である。頂点T1,T2,T3からそれらに対向する辺に下した垂線がそれぞれ直線L1,L2,L3である。ここでは仮想三角形15は正三角形であるから直線L1~L3は、仮想三角形15の重心Gを通過するとともに仮想三角形15の対象軸であり、垂線である直線L1,L2,L3は、対応する辺の垂直二等分線でもある。
The shape of the void will be described in detail below with reference to Figures 1(b) and 2. The void 12 has a shape inscribed in three sides of an equilateral triangle, i.e., a virtual triangle 15, which is virtually set in the base material 11, which is an elastic body. The three vertices of the virtual triangle 15 are T1, T2, and T3. The perpendicular lines drawn from the vertices T1, T2, and T3 to the opposing sides are lines L1, L2, and L3, respectively. Here, since the virtual triangle 15 is an equilateral triangle, the lines L1 to L3 pass through the center of gravity G of the virtual triangle 15 and are the symmetry axes of the virtual triangle 15, and the perpendicular lines L1, L2, and L3 are also the perpendicular bisectors of the corresponding sides.
XY平面における空隙部12の輪郭すなわち外周は閉曲線で表されるが、P1~P18の18個の点で区切られており、その結果、空隙部12の外周は18個の区間が連結して一体形状のものとして構成されている。18個の区間は、第1凹部A、直線部B、凸部C及び第2凹部Dに分類される。以下の説明において、例えば、点Uと点Vを結ぶ辺や線分、円弧などをU-Vと表記する。
The outline, i.e., the periphery, of the gap 12 in the XY plane is represented by a closed curve, but is divided by 18 points, P1 to P18. As a result, the periphery of the gap 12 is composed of 18 sections connected together to form a single shape. The 18 sections are classified into a first recess A, a straight section B, a convex section C, and a second recess D. In the following explanation, for example, a side, line segment, or arc connecting point U and point V will be represented as U-V.
図1(b)に示すように、第1凹部Aは、仮想三角形15の頂点ごとに配置され、その頂点を挟む2つの辺の両方に内接する内接円の円弧であって両端がそれぞれ当該2つの辺上にある円弧によって規定され、仮想三角形15の重心Gから遠ざかるように湾曲する区間である。そして、図2に示すように、頂点T1に関して言えば、辺T1-T2と辺T3-T1の両方に内接する円C1によって規定される円弧P18-P1が第1凹部Aである。同様に頂点T2に関しては、辺T1-T2と辺T2-T3の両方に内接する円C2によって規定される円弧P6-P7が第1凹部Aとなり、頂点T3に関しては、辺T2-T3と辺T3-T1の両方に内接する円C3によって規定される円弧P12-P13が第1凹部Aである。図2において円C1~C3の中心がそれぞれ点O1~O3で示されている。円C1~C3の中心O1~O3は、それぞれ、仮想三角形15の対称軸である直線L1~L3上にある。円C1~C3の半径はいずれもRaである。
As shown in FIG. 1(b), the first recess A is a section that is arranged at each vertex of the virtual triangle 15, is defined by an arc of an inscribed circle inscribed in both of the two sides that sandwich the vertex, and curves away from the center of gravity G of the virtual triangle 15. As shown in FIG. 2, for the vertex T1, the arc P18-P1 defined by the circle C1 inscribed in both sides T1-T2 and T3-T1 is the first recess A. Similarly, for the vertex T2, the arc P6-P7 defined by the circle C2 inscribed in both sides T1-T2 and T2-T3 is the first recess A, and for the vertex T3, the arc P12-P13 defined by the circle C3 inscribed in both sides T2-T3 and T3-T1 is the first recess A. In FIG. 2, the centers of the circles C1-C3 are indicated by points O1-O3, respectively. The centers O1 to O3 of the circles C1 to C3 are on the straight lines L1 to L3, which are the axes of symmetry of the imaginary triangle 15. The radii of the circles C1 to C3 are all Ra.
また、直線部Bは、第1凹部Aの端部ごとに配置されて一端が第1凹部Aの端部に接続する線分による区間であり、この線分は、仮想三角形15の辺上にある。すなわち直線部Bは、仮想三角形15の辺の一部である線分の区間である。辺T1-T2に関しては、線分P1-P2と線分P5-P6が直線部Bであり、これらの線分はいずれも辺T1-T2上にある。同様に辺T2-T3に関しては、線分P7-P8と線分P11-P12が直線部Bであり、辺T3-T1に関しては、線分P13-P14と線分P17-P18が直線部Bである。
In addition, straight line portion B is a section of a line segment that is arranged at each end of first recess A and has one end connected to the end of first recess A, and this line segment is on a side of imaginary triangle 15. In other words, straight line portion B is a section of a line segment that is part of a side of imaginary triangle 15. For side T1-T2, line segments P1-P2 and P5-P6 are straight line portion B, and both of these line segments are on side T1-T2. Similarly, for side T2-T3, line segments P7-P8 and P11-P12 are straight line portion B, and for side T3-T1, line segments P13-P14 and P17-P18 are straight line portion B.
さらに、凸部Cは、仮想三角形15の各辺の中央部から空隙部12の中心に向かってせり出すことによって空隙部12にくびれ部を形成するものである。より具体的には凸部Cは、仮想三角形15の辺ごとに配置され、その辺の垂直二等分線上に中心を有して第1凹部Aの円弧を規定する内接円の半径以上の半径を有する円の円弧によって規定されて仮想三角形の内部に位置し、仮想三角形15の重心Gに近づくように湾曲している区間である。辺T1-T2に関しては、その垂直二等分線である直線L3上に中心O4を有し、半径がRbである円C4の円周の一部である円弧P3-P4が凸部Cである。ここでRb≧Raである。同様に辺T2-T3に関しては、直線L1上に中心O5を有し、半径がRbである円C5の円周の一部である円弧P9-P10が凸部Cである。同様に辺T3-T1に関しては、直線L2上に中心O6を有し、半径がRbである円C6の円周の一部である円弧P15-P16が凸部Cである。
Furthermore, the convex portion C forms a constriction in the void portion 12 by protruding from the center of each side of the imaginary triangle 15 toward the center of the void portion 12. More specifically, the convex portion C is a section that is arranged on each side of the imaginary triangle 15, is defined by an arc of a circle having a center on the perpendicular bisector of the side and a radius equal to or greater than the radius of the inscribed circle that defines the arc of the first recess A, is located inside the imaginary triangle, and is curved to approach the center of gravity G of the imaginary triangle 15. For side T1-T2, the arc P3-P4 has a center O4 on the straight line L3 that is the perpendicular bisector, and is part of the circumference of the circle C4 with a radius of Rb, and is the convex portion C. Here, Rb ≧ Ra. Similarly, for side T2-T3, the arc P9-P10 has a center O5 on the straight line L1 and is part of the circumference of the circle C5 with a radius of Rb, and is the convex portion C. Similarly, for side T3-T1, arc P15-P16, which is part of the circumference of circle C6 with center O6 on line L2 and radius Rb, is convex portion C.
加えて、第2凹部Dは、仮想三角形15の辺ごとに凸部Cの両端にそれぞれ配置されて凸部Cの端部と直線部Bの他端とを滑らかに接続する円弧によって規定される区間である。ここで滑らかに接続するとは、接続位置で折れ曲がりが生じない、すなわち、形成された円弧は、各々の端部を接点として接していることを意味する。辺T1-T2に関し、円弧P2-P3と円弧P4-P5が第2凹部Dに該当する。円弧P2-P3は、中心が点O7である円C7の円弧である。この円C7は点P2において辺T1-T2に接するとともに、点P3において円C4と共通の接線を有している。したがって円弧P2-P3は、直線部Bである線分P1-P2と滑らかに接続し、凸部Cである円弧P3-P4とも滑らかに接続する。同様に円弧P4-P5は、中心が点O8である円C8の円弧であり、円弧P3-P4とも線分P5-P6とも滑らかに接続する。辺T2-T3において、中心が点O9である円C9の円弧P8-P9と、中心が点O10である円C10の円弧P10-P11とが第2凹部Dに該当する。円弧P8-P9は、線分P7-P8と円弧P9-P10の両方に対して滑らかに接続し、円弧P10-P11は、円弧P9-P10と線分P11-P12の両方に対して滑らかに接続する。辺T3-T1において、中心が点O11である円C11の円弧P14-P15と、中心が点O12である円C12の円弧P16-P17とが第2凹部Dに該当する。円弧P14-P15は、線分P13-P14と円弧P15-P16の両方に対して滑らかに接続し、円弧P16-P17は、円弧P15-P16と線分P17-P18の両方に対して滑らかに接続する。円C7~C12の半径はいずれもRcである。
In addition, the second recess D is a section defined by arcs that are arranged at both ends of the convex portion C for each side of the imaginary triangle 15 and smoothly connect the ends of the convex portion C to the other end of the straight portion B. Smooth connection here means that no bending occurs at the connection position, that is, the formed arcs are in contact with each other at their respective ends. With respect to side T1-T2, arcs P2-P3 and P4-P5 correspond to the second recess D. Arc P2-P3 is an arc of circle C7 whose center is point O7. This circle C7 is tangent to side T1-T2 at point P2, and has a common tangent with circle C4 at point P3. Therefore, arc P2-P3 smoothly connects to line segment P1-P2, which is straight portion B, and also smoothly connects to arc P3-P4, which is convex portion C. Similarly, the arc P4-P5 is an arc of the circle C8 whose center is the point O8, and smoothly connects to the arc P3-P4 and the line segment P5-P6. On the side T2-T3, the arc P8-P9 of the circle C9 whose center is the point O9 and the arc P10-P11 of the circle C10 whose center is the point O10 correspond to the second recess D. The arc P8-P9 smoothly connects to both the line segment P7-P8 and the arc P9-P10, and the arc P10-P11 smoothly connects to both the arc P9-P10 and the line segment P11-P12. On the side T3-T1, the arc P14-P15 of the circle C11 whose center is the point O11 and the arc P16-P17 of the circle C12 whose center is the point O12 correspond to the second recess D. The arc P14-P15 smoothly connects to both the line segment P13-P14 and the arc P15-P16, and the arc P16-P17 smoothly connects to both the arc P15-P16 and the line segment P17-P18. The radii of the circles C7 to C12 are all Rc.
次に、弾性体である基材11における空隙部12の配置について、図1(a)及び図2を用いて説明する。図2に示すように、基材11において正三角格子が設定されており、空隙部12を規定する仮想三角形15の各頂点から対向する辺に下した垂線すなわち直線L1~L3が正三角格子の格子線に平行になるように各空隙部12が配置される。また、図1(a)に示すように、隣接する空隙部12の重心G間の距離Kは、図2に示すように、仮想三角形15の高さをHとして、Hの2/3よりも大きい必要がある。距離Kが高さHの2/3以下であるときは、隣接する空隙部12が相互に重なり合うこととなり、仮想三角形15に内接する空隙部12という条件を満たさなくなる。一方、距離Kが高さHを超えると、隣接する空隙部12間の距離が大きくなりすぎて、オーセチック構造体10に圧縮応力を加えた際に、空隙部12同士が協働して得られる変形が円滑に行なわれないおそれがある。したがって、K≦Hであることが好ましい。
Next, the arrangement of the voids 12 in the base material 11, which is an elastic body, will be described with reference to Figures 1(a) and 2. As shown in Figure 2, a regular triangular lattice is set in the base material 11, and each void 12 is arranged so that the perpendicular lines, i.e., the straight lines L1 to L3, drawn from each vertex of the imaginary triangle 15 that defines the voids 12 to the opposing sides are parallel to the lattice lines of the regular triangular lattice. Also, as shown in Figure 1(a), the distance K between the centers of gravity G of adjacent voids 12 must be greater than 2/3 of the height H of the imaginary triangle 15, as shown in Figure 2. When the distance K is 2/3 or less of the height H, the adjacent voids 12 overlap each other, and the condition that the voids 12 are inscribed in the imaginary triangle 15 is not satisfied. On the other hand, when the distance K exceeds the height H, the distance between the adjacent voids 12 becomes too large, and when a compressive stress is applied to the auxetic structure 10, the deformation obtained by the cooperation of the voids 12 may not be performed smoothly. Therefore, it is preferable that K≦H.
図3は、第1の実施形態のオーセチック構造体10において、Y方向に圧縮応力が加わったときの形状の変化を示している。図3中、(a)は圧縮応力が加わっていないときのオーセチック構造体10の形状を示し、(b)は圧縮応力が加わったときの形状を示している。図示されるように、オーセチック構造体10のY方向に沿って圧縮応力が加わることにより、空隙部12が潰され、それに伴ってX方向にもオーセチック構造体10は収縮する。圧縮応力を取り除くと、オーセチック構造体10の形状は元に戻る。
Figure 3 shows the change in shape of the auxetic structure 10 of the first embodiment when compressive stress is applied in the Y direction. In Figure 3, (a) shows the shape of the auxetic structure 10 when no compressive stress is applied, and (b) shows the shape when compressive stress is applied. As shown in the figure, when compressive stress is applied along the Y direction of the auxetic structure 10, the voids 12 are crushed, and the auxetic structure 10 also shrinks in the X direction as a result. When the compressive stress is removed, the shape of the auxetic structure 10 returns to its original state.
このように、第1の実施形態のオーセチック構造体10では、空隙部12の外周に直線部Bを設けることによって、外部から圧縮応力が加わった際に、オーセチック構造体10に局所的な応力歪が生じることなく、構造体10の変形が行なわれる。このことは、局所的な歪が小さいために、オーセチック構造体10の衝撃吸収能力が高いことを示している。第2凹部Dを設けずに直線部Bと凸部Cとを直接接続することも可能であるが、その場合、直線部Bと凸部Cとの接続箇所においてひずみが大きくなり、オーセチック構造体の耐久性が劣化するおそれがある。そこで本実施形態では、直線部Bと凸部Cとの間に第2凹部Dを介在させて局所ひずみを小さくし、オーセチック構造体10の耐久性を高めている。なお、本発明の第1実施形態において、オーセチック構造体10に圧縮応力が加わったときに局所ひずみが小さいことを、図9~図11を用いて詳細に後述する。また、衝撃吸収能力の詳細についても後述する。
In this way, in the auxetic structure 10 of the first embodiment, by providing the straight portion B on the outer periphery of the void portion 12, when a compressive stress is applied from the outside, the structure 10 is deformed without local stress strain occurring in the auxetic structure 10. This indicates that the shock absorption capacity of the auxetic structure 10 is high because the local strain is small. It is also possible to directly connect the straight portion B and the convex portion C without providing the second concave portion D, but in that case, the strain at the connection point between the straight portion B and the convex portion C may become large, and the durability of the auxetic structure may deteriorate. Therefore, in this embodiment, the second concave portion D is interposed between the straight portion B and the convex portion C to reduce the local strain and increase the durability of the auxetic structure 10. Note that in the first embodiment of the present invention, the fact that the local strain is small when a compressive stress is applied to the auxetic structure 10 will be described in detail later using Figures 9 to 11. Details of the shock absorption capacity will also be described later.
上述したように、仮想三角形15は正三角形であるものとして説明を行ってきた。しかし、数学での定義によれば正三角形の各頂点の内角はいずれも厳密に60°であるが、本発明においては、仮想三角形15は、基材11に空隙部12を配置して得られる構造体が巨視的に負のポアソン比の挙動を示すのであれば、厳密な正三角形から多少ずれた形状を有していてもよい。例えば仮想三角形15の各頂点での内角が50°以上70°以下の範囲にあるのであれば、その仮想三角形15が正三角形であるものとして扱って第1の実施形態のオーセチック構造体10を構成することができる。
As described above, the virtual triangle 15 has been described as being an equilateral triangle. However, according to the mathematical definition, the interior angles of each vertex of an equilateral triangle are all strictly 60°. However, in the present invention, the virtual triangle 15 may have a shape that deviates slightly from a strictly equilateral triangle, so long as the structure obtained by disposing the voids 12 in the substrate 11 exhibits macroscopic behavior of a negative Poisson's ratio. For example, if the interior angles at each vertex of the virtual triangle 15 are in the range of 50° to 70°, the virtual triangle 15 can be treated as being an equilateral triangle to form the auxetic structure 10 of the first embodiment.
[第2の実施形態]
図4(a)は、本発明の第2の実施形態のオーセチック構造体を示し、図4(b)は、図4(a)に記載されている任意の空隙部の拡大図である。図示されるオーセチック構造体20は、第1の実施形態と同様に、弾性材料からなる基材21に対し、複数の第1空隙部22と複数の第2空隙部23とを配置したものである。第1空隙部22の形状の詳細は、図5に示されている。第2空隙部23は、弾性体である基材21において第1空隙部22を単純に回転させたものであるので、第2空隙部23の形状の詳細についての説明を省略する。なお、第1空隙部22及び第2空隙部23は基材21の表面に開口として露出していても、あるいは基材21の内部に形成されていてもよい。図4に示すようにXY直交座標系を定義したとき、第2の実施形態のオーセチック構造体20は、Y方向に沿って外部から圧縮応力が加えられて圧縮したときに、X方向においても収縮する性質を有するものである。 Second Embodiment
FIG. 4(a) shows an auxetic structure according to a second embodiment of the present invention, and FIG. 4(b) is an enlarged view of an arbitrary void portion described in FIG. 4(a). The illustratedauxetic structure 20 is a structure in which a plurality of first void portions 22 and a plurality of second void portions 23 are arranged in a substrate 21 made of an elastic material, as in the first embodiment. Details of the shape of the first void portion 22 are shown in FIG. 5. The second void portion 23 is a simple rotation of the first void portion 22 in the substrate 21, which is an elastic body, so a detailed description of the shape of the second void portion 23 is omitted. Note that the first void portion 22 and the second void portion 23 may be exposed as openings on the surface of the substrate 21, or may be formed inside the substrate 21. When an XY orthogonal coordinate system is defined as shown in FIG. 4, the auxetic structure 20 of the second embodiment has the property of shrinking in the X direction as well when a compressive stress is applied from the outside along the Y direction and compressed.
図4(a)は、本発明の第2の実施形態のオーセチック構造体を示し、図4(b)は、図4(a)に記載されている任意の空隙部の拡大図である。図示されるオーセチック構造体20は、第1の実施形態と同様に、弾性材料からなる基材21に対し、複数の第1空隙部22と複数の第2空隙部23とを配置したものである。第1空隙部22の形状の詳細は、図5に示されている。第2空隙部23は、弾性体である基材21において第1空隙部22を単純に回転させたものであるので、第2空隙部23の形状の詳細についての説明を省略する。なお、第1空隙部22及び第2空隙部23は基材21の表面に開口として露出していても、あるいは基材21の内部に形成されていてもよい。図4に示すようにXY直交座標系を定義したとき、第2の実施形態のオーセチック構造体20は、Y方向に沿って外部から圧縮応力が加えられて圧縮したときに、X方向においても収縮する性質を有するものである。 Second Embodiment
FIG. 4(a) shows an auxetic structure according to a second embodiment of the present invention, and FIG. 4(b) is an enlarged view of an arbitrary void portion described in FIG. 4(a). The illustrated
以下、図4(b)及び図5を用いて、空隙部22,23の形状を詳細に説明する。図5に示すように、第1空隙部22は、基材21において仮想的に設定された菱形すなわち仮想菱形25の4つの辺に内接する形状を有している。仮想菱形25の4つの頂点はS1,S2,S3,S4であり、仮想菱形25の2本の対角線のうち、頂点S1と頂点S3を結ぶ対角線を第1対角線L11とし、頂点S2と頂点S4を結ぶ対角線を第2対角線L12とする。菱形であるから第1対角線L11と第2対角線L12とは直交し、その交点をMとする。交点Mは仮想菱形15の重心でもある。第2空隙部23は、XY平面内で第1空隙部22をその交点Mの周りで90°回転させた形状を有する。
The shapes of the voids 22 and 23 will be described in detail below with reference to Fig. 4(b) and Fig. 5. As shown in Fig. 5, the first void 22 has a shape inscribed in the four sides of a rhombus, i.e., a virtual rhombus 25, which is virtually set in the substrate 21. The four vertices of the virtual rhombus 25 are S1, S2, S3, and S4. Of the two diagonals of the virtual rhombus 25, the diagonal connecting the vertices S1 and S3 is the first diagonal L11, and the diagonal connecting the vertices S2 and S4 is the second diagonal L12. Since it is a rhombus, the first diagonal L11 and the second diagonal L12 are perpendicular to each other, and the intersection point is M. The intersection point M is also the center of gravity of the virtual rhombus 15. The second void 23 has a shape obtained by rotating the first void 22 by 90° around the intersection point M in the XY plane.
XY平面における第1空隙部22の輪郭すなわち外周は、閉曲線で表されるが、Q1~Q12の12個の点で区切られており、その結果、第1空隙部22の外周は12個の区間が連結して一体形状のものとして構成されている。12個の区間は、図4(b)に示すように、第1の実施形態同様、第1凹部A、直線部B、凸部C及び第2凹部Dに分類される。
The outline, i.e., the periphery, of the first void portion 22 in the XY plane is expressed by a closed curve, but is divided by 12 points Q1 to Q12. As a result, the periphery of the first void portion 22 is configured as an integral shape with 12 sections connected together. As shown in FIG. 4(b), the 12 sections are classified into a first recess A, a straight section B, a convex section C, and a second recess D, as in the first embodiment.
第1凹部Aは、第1対角線L11の両端に位置する頂点S1,S3の各々ごとに配置されており、その頂点を挟む2つの辺の両方に内接する内接円の円弧であって両端がそれぞれ当該2つの辺上にある円弧によって規定され、交点Mから遠ざかるように湾曲する区間である。頂点S1に関して言えば、辺S1-S2と辺S1-S4の両方に内接する円C21によって規定される円弧Q12-Q1が第1凹部Aである。同様に頂点S3に関しては、辺S2-S3と辺S3-S4の両方に内接する円C22によって規定される円弧Q6-Q7が第1凹部Aである。図5において円C21,C22の中心がそれぞれ点O21,O22で示されている。また円C21,C22の半径はいずれもRaである。
The first recess A is disposed at each of the vertices S1 and S3 located at both ends of the first diagonal line L11, and is a section that is an arc of an inscribed circle inscribed in both of the two sides that sandwich the vertex, and both ends are defined by arcs on the two sides, and curves away from the intersection point M. With respect to the vertex S1, the arc Q12-Q1 defined by the circle C21 inscribed in both sides S1-S2 and S1-S4 is the first recess A. Similarly, with respect to the vertex S3, the arc Q6-Q7 defined by the circle C22 inscribed in both sides S2-S3 and S3-S4 is the first recess A. In FIG. 5, the centers of the circles C21 and C22 are indicated by points O21 and O22, respectively. The radii of the circles C21 and C22 are both Ra.
直線部Bは、第1凹部Aの端部ごとに配置されて一端が第1凹部Aの端部に接続する線分による区間であり、この線分は、仮想菱形25の辺上にある。すなわち直線部Bは、仮想菱形25の辺の一部である線分の区間である。辺S1-S2に関しては、線分Q1-Q2が直線部Bであり、この線分は辺S1-S2上にある。同様に辺S2-S3に関しては、線分Q5-Q6が直線部Bであり、辺S3-S4に関しては、線分Q7-Q8が直線部Bであり、辺S4-S1に関しては、線分Q11-Q12が直線部Bである。
Straight line portion B is a section of a line segment that is arranged at each end of first recess A and has one end connected to the end of first recess A, and this line segment is on a side of imaginary rhombus 25. In other words, straight line portion B is a section of a line segment that is part of a side of imaginary rhombus 25. For side S1-S2, line segment Q1-Q2 is straight line portion B, and this line segment is on side S1-S2. Similarly, for side S2-S3, line segment Q5-Q6 is straight line portion B, for side S3-S4, line segment Q7-Q8 is straight line portion B, and for side S4-S1, line segment Q11-Q12 is straight line portion B.
凸部Cは、第2対角線L12に沿って第1空隙部22の中心に向かってせり出すことによって第1空隙部22に凸部を形成するものである。より具体的には凸部Cは、第1対角線L11を挟む両側に配置され、第2対角線L12またはその延長上に中心を有して第1凹部Aの円弧を規定する内接円の半径以上の半径を有する円の円弧によって規定され、しかも、仮想菱形25の内部に位置し、交点Mに近づくように湾曲(=凸部)している区間である。図5において第1対角線L11より左側の領域においては、交点Mより左側の位置で第2対角線L12上に中心O23を有し半径がRbである円C23の円周の一部である円弧Q3-Q4が凸部Cである。ここでRb≧Raである。同様に第1対角線L11より右側の領域においては、交点Mより右側の位置で第2対角線L12上に中心O24を有し、半径がRbである円C24の円周の一部である円弧Q9-Q10が凸部Cである。
The convex portion C forms a convex portion in the first gap portion 22 by protruding toward the center of the first gap portion 22 along the second diagonal line L12. More specifically, the convex portion C is a section that is located on both sides of the first diagonal line L11, is defined by an arc of a circle having a center on the second diagonal line L12 or an extension thereof and having a radius equal to or greater than the radius of the inscribed circle that defines the arc of the first recess portion A, is located inside the imaginary rhombus 25, and curves (=convex portion) to approach the intersection point M. In the region to the left of the first diagonal line L11 in FIG. 5, the convex portion C is the arc Q3-Q4 that is part of the circumference of a circle C23 that has a center O23 on the second diagonal line L12 at a position to the left of the intersection point M and has a radius Rb. Here, Rb ≧ Ra. Similarly, in the region to the right of the first diagonal L11, the arc Q9-Q10, which is part of the circumference of a circle C24 with a radius Rb and a center O24 on the second diagonal L12 to the right of the intersection point M, is the convex portion C.
第2凹部Dは、仮想菱形25の辺ごとに配置されて凸部Cの端部と直線部Bの他端とに接する円弧によって規定される区間である。辺S1-S2に関し、円弧Q2-Q3が第2凹部Dに該当する。円弧Q2-Q3は、中心が点O25である円C25の円弧である。この円C25は点Q2において辺S1-S2に接するとともに、点Q3において円C23と共通の接線を有している。したがって円弧Q2-Q3は、直線部Bである線分Q1-Q2と滑らかに接続し、凸部Cである円弧Q3-Q4とも滑らかに接続する。辺S2-S3において、中心が点O26である円C26の円弧Q4-Q5が第2凹部Dに該当する。円弧Q4-Q5は、円弧Q3-Q4と線分Q5-Q6の両方に対して滑らかに接続する。辺S3-S4において、中心が点O27である円C27の円弧Q8-Q9が第2凹部Dに該当する。円弧Q8-Q9は、線分Q7-Q8と円弧Q9-Q10の両方に対して滑らかに接続する。辺S4-S1において、中心が点O28である円C28の円弧Q10-Q11が第2凹部Dに該当する。円弧Q10-Q11は、円弧Q9-Q10と線分Q11-Q12の両方に対して滑らかに接続する。円C25~C28の半径はいずれもRcである。
The second recess D is a section defined by arcs arranged on each side of the imaginary rhombus 25 and tangent to the end of the convex portion C and the other end of the straight portion B. For side S1-S2, arc Q2-Q3 corresponds to the second recess D. Arc Q2-Q3 is an arc of circle C25 whose center is point O25. This circle C25 is tangent to side S1-S2 at point Q2 and has a common tangent with circle C23 at point Q3. Therefore, arc Q2-Q3 smoothly connects to line segment Q1-Q2, which is straight portion B, and also smoothly connects to arc Q3-Q4, which is convex portion C. For side S2-S3, arc Q4-Q5 of circle C26 whose center is point O26 corresponds to the second recess D. Arc Q4-Q5 smoothly connects to both arc Q3-Q4 and line segment Q5-Q6. On side S3-S4, arc Q8-Q9 of circle C27, whose center is point O27, corresponds to second recess D. Arc Q8-Q9 smoothly connects to both line segment Q7-Q8 and arc Q9-Q10. On side S4-S1, arc Q10-Q11 of circle C28, whose center is point O28, corresponds to second recess D. Arc Q10-Q11 smoothly connects to both arc Q9-Q10 and line segment Q11-Q12. The radii of circles C25 to C28 are all Rc.
次に、基材21における第1空隙部22及び第2空隙部23の配置について説明する。上述したように第2空隙部23は、第1空隙部22での第1対角線L11と第2対角線L12との交点Mの周りで第1空隙部22を90°回転させた形状、すなわち第1空隙部22を横倒しした形状を有する。交点Mは回転中心であるので、第2空隙部23についてもその仮想菱形における1対の対角線の交点として、交点Mを定めることができる。オーセチック構造体20では、弾性体である基材21において相互に直交する2つの方向、具体的にはX方向とY方向の各々において第1空隙部22と第2空隙部23とが交互に配置されるように、複数の第1空隙部22と複数の第2空隙部23とが格子状に配置されている。
Next, the arrangement of the first voids 22 and the second voids 23 in the substrate 21 will be described. As described above, the second voids 23 have a shape obtained by rotating the first voids 22 by 90° around the intersection point M of the first diagonal line L11 and the second diagonal line L12 in the first voids 22, that is, a shape obtained by turning the first voids 22 on its side. Since the intersection point M is the center of rotation, the intersection point M of the second voids 23 can also be determined as the intersection point of a pair of diagonals in the virtual rhombus. In the auxetic structure 20, a plurality of first voids 22 and a plurality of second voids 23 are arranged in a lattice pattern so that the first voids 22 and the second voids 23 are alternately arranged in two mutually orthogonal directions, specifically, in the X direction and the Y direction, in the substrate 21, which is an elastic body.
ところで、図4(b)に示すように、第1空隙部22の寸法を長さhと最大幅wとによって表した場合に、長さhは、第1対角線L11に沿って測った第1空隙部22の長さであり、具体的には、一方の第1凹部Aである円弧Q12-Q1と第1対角線L11との交点から他方の第1凹部Aである円弧Q6-Q7と第1対角線との交点L12までの距離である。そして、最大幅wは、第1対角線L11に直交する方向(すなわち第2対角線L12の延びる方向)での第1空隙部22の寸法の最大値である。第1空隙部22において第2対角線L12が延びる方向に最も膨らんでいるのは第2凹部Dであるから、最大幅wは、第1対角線L11に関して線対称の位置にあるそれぞれの第2凹部Dを結ぶ線分が最長となる線分の長さである。
As shown in FIG. 4(b), when the dimensions of the first gap 22 are expressed by the length h and the maximum width w, the length h is the length of the first gap 22 measured along the first diagonal L11, specifically, the distance from the intersection of the arc Q12-Q1, which is one of the first recesses A, and the first diagonal L11 to the intersection L12 of the arc Q6-Q7, which is the other first recess A, and the first diagonal. The maximum width w is the maximum value of the dimension of the first gap 22 in the direction perpendicular to the first diagonal L11 (i.e., the direction in which the second diagonal L12 extends). Since the second recess D is the one that bulges the most in the direction in which the second diagonal L12 extends in the first gap 22, the maximum width w is the length of the longest line segment connecting the second recesses D that are located in line symmetrical positions with respect to the first diagonal L11.
このように、長さhと最大幅wとを定義すれば、比h/wを定めることができる。この比h/wは、比h/wが1未満となり得ることを除けば、特許文献1において言及されているアスペクト比と同等のパラメータである。本実施形態では、比h/wは、1以上1.5以下であることが好ましい。比h/wが1未満であると、オーセチック構造体20に圧縮応力を加えた際、空隙部22,23同士が協働して得られる変形が円滑に行なわれない。一方、比h/wが1.5を超えると、オーセチック構造体20に圧縮応力が加わった際に、空隙部22と空隙部23のそれぞれの変形量の差が大きくなり、一方の空隙部23が潰れやすく他方の空隙部22が潰れにくくなるために、オーセチック構造体20が均一に変形できずに衝撃吸収能力が低下するという問題が生じる。特許文献1に記載されたオーセチック構造体におけるアスペクト比は5~20であるが、これと比べると本実施形態のオーセチック構造体20のアスペクト比は1~1.5と十分に小さい。そのため、本実施形態のオーセチック構造体20では、構造体20に圧縮応力が印加されたときに空隙部22と空隙部23とが各々均一に変形できるため、構造体20も均一に変形し、衝撃吸収能力が向上する。
In this way, by defining the length h and the maximum width w, the ratio h/w can be determined. This ratio h/w is a parameter equivalent to the aspect ratio mentioned in Patent Document 1, except that the ratio h/w can be less than 1. In this embodiment, the ratio h/w is preferably 1 or more and 1.5 or less. If the ratio h/w is less than 1, when compressive stress is applied to the auxetic structure 20, the deformation obtained by the cooperation of the voids 22 and 23 does not occur smoothly. On the other hand, if the ratio h/w exceeds 1.5, when compressive stress is applied to the auxetic structure 20, the difference in the amount of deformation between the voids 22 and 23 becomes large, and one void 23 is easily crushed while the other void 22 is not easily crushed, resulting in a problem that the auxetic structure 20 cannot deform uniformly and the shock absorption capacity is reduced. The aspect ratio of the auxetic structure described in Patent Document 1 is 5 to 20, but in comparison, the aspect ratio of the auxetic structure 20 of this embodiment is sufficiently small at 1 to 1.5. Therefore, in the auxetic structure 20 of this embodiment, when a compressive stress is applied to the structure 20, the voids 22 and 23 can each deform uniformly, so that the structure 20 also deforms uniformly, improving the shock absorption capacity.
さらに、第1凹部Aを構成する円弧(円弧Q12-Q1及び円弧Q6-Q7)の中心角θを70°以上100°以下とすることが好ましい。中心角θが70°未満であるとオーオーセティック構造体20に圧縮応力を加えた際に、空隙部22,23同士が協働して得られる変形が円滑に行なわれないおそれがある。一方、中心角θが100°を超えると、オーセチック構造体20が均一に変形できないため、衝撃吸収能力が低下する。
Furthermore, it is preferable that the central angle θ of the arcs (arc Q12-Q1 and arc Q6-Q7) constituting the first recess A is 70° or more and 100° or less. If the central angle θ is less than 70°, when compressive stress is applied to the auxetic structure 20, the deformation obtained by the cooperation of the voids 22, 23 may not occur smoothly. On the other hand, if the central angle θ exceeds 100°, the auxetic structure 20 cannot deform uniformly, and the shock absorption capacity decreases.
加えて、オーセチック構造体20において隣接する第1空隙部22と第2空隙部23のそれぞれの交点M間の距離をLとすると、距離Lは、最大幅wよりも大きい必要がある。距離Lが最大幅w以下であるときは、隣接する第1空隙部22と第2空隙部23とが相互に重なり合って合体してしまい、第1空隙部22が仮想菱形25に内接するという条件を満たさなくなる。一方、距離Lが長さhを超えると、隣接する第1空隙部22と第2空隙部23との間の距離が大きくなりすぎて、第1空隙部22と第2空隙部23とが協働して変形できない。したがって、L≦hであることが好ましい。
In addition, if the distance between the intersections M of adjacent first and second voids 22 and 23 in the auxetic structure 20 is L, then the distance L must be greater than the maximum width w. If the distance L is less than or equal to the maximum width w, the adjacent first and second voids 22 and 23 will overlap and merge with each other, and the condition that the first void 22 is inscribed in the imaginary rhombus 25 will no longer be satisfied. On the other hand, if the distance L exceeds the length h, the distance between the adjacent first and second voids 22 and 23 will become too large, and the first and second voids 22 and 23 will not be able to deform in cooperation with each other. Therefore, it is preferable that L≦h.
図6は、第2の実施形態のオーセチック構造体20において、Y方向に圧縮応力が加わったときの形状の変化を示している。図6中、(a)は圧縮応力が加わっていないときのオーセチック構造体20の形状を示し、(b)は圧縮応力が加わったときの形状を示している。図示されるように、Y方向に圧縮応力が加わると、第1空隙部22及び第2空隙部23が収縮し、それに伴ってX方向においてオーセチック構造体20は収縮する。圧縮応力を取り除くと、オーセチック構造体20は元に戻る。なお、オーセチック構造体20のX方向に圧縮応力が加わった場合には、構造体20はY方向に収縮する。これは、構造体20が負のポアソン比を有することから、容易に理解できる。
FIG. 6 shows the change in shape when compressive stress is applied in the Y direction in the auxetic structure 20 of the second embodiment. In FIG. 6, (a) shows the shape of the auxetic structure 20 when no compressive stress is applied, and (b) shows the shape when compressive stress is applied. As shown in the figure, when compressive stress is applied in the Y direction, the first void portion 22 and the second void portion 23 contract, and the auxetic structure 20 contracts in the X direction accordingly. When the compressive stress is removed, the auxetic structure 20 returns to its original shape. Note that when compressive stress is applied to the auxetic structure 20 in the X direction, the structure 20 contracts in the Y direction. This can be easily understood because the structure 20 has a negative Poisson's ratio.
上述したように、第2の実施形態のオーセチック構造体20においても、第1の実施形態のオーセチック構造体10と同様に、第1空隙部22や第2空隙部23の外周に直線部Bを設けることによって、外部から圧縮応力が加わった際にオーセチック構造体20に局所的な応力歪が生じることなく、構造体20の変形が行なわれる。このことは、局所的な歪が小さいために、オーセチック構造体20の衝撃吸収能力が高いことを示している。ここで、第2凹部Dを設けずに直線部Bと凸部Cとが直接接続することも可能であるが、この場合には、第1の実施形態で説明したものと同様に、直線部Bと凸部Cとの接続箇所においてひずみが大きくなり、耐久性が劣化するおそれがある。
As described above, in the auxetic structure 20 of the second embodiment, similarly to the auxetic structure 10 of the first embodiment, by providing straight portion B on the outer periphery of the first void portion 22 and the second void portion 23, when compressive stress is applied from the outside, the auxetic structure 20 deforms without local stress strain. This indicates that the shock absorption capacity of the auxetic structure 20 is high because the local strain is small. Here, it is also possible to directly connect the straight portion B and the convex portion C without providing the second concave portion D, but in this case, as in the case described in the first embodiment, strain may increase at the connection point between the straight portion B and the convex portion C, resulting in a deterioration in durability.
ところで、数学での定義によれば菱形は4つの辺の長さが相等しい四角形であるが、本発明においては、仮想菱形25の4辺の長さは、基材11に空隙部12を配置して得られる構造体が巨視的に負のポアソン比の挙動を示すのであれば、多少ばらついていてもよい。例えば、基準長を定めて各辺の長さが基準長の±10%の範囲内にあるような四角形であれば、その四角形を仮想菱形25として、第2の実施形態のオーセチック構造体20を構成することができる。
According to the mathematical definition, a rhombus is a quadrilateral with four sides of equal length, but in the present invention, the lengths of the four sides of the virtual rhombus 25 may vary somewhat as long as the structure obtained by disposing the voids 12 in the substrate 11 exhibits macroscopic behavior with a negative Poisson's ratio. For example, if a quadrilateral has a reference length and the length of each side is within a range of ±10% of the reference length, the quadrilateral can be used as the virtual rhombus 25 to form the auxetic structure 20 of the second embodiment.
[弾性体を構成する材料]
次に、本発明に基づくオーセチック構造体において使用できる弾性体について説明する。上述の各実施形態のオーセチック構造体10,20を含めて本発明に基づくオーセチック構造体では、弾性体として、金属、セラミックス、樹脂など弾性を有するあらゆる材料を使用することができる。中でも高弾性を示す樹脂材料やエラストマー材料を弾性体として使用することが好ましい。 [Materials constituting the elastic body]
Next, an elastic body that can be used in the auxetic structure according to the present invention will be described. In the auxetic structure according to the present invention, including the auxetic structures 10 and 20 of the above-mentioned embodiments, any material having elasticity, such as metal, ceramics, or resin, can be used as the elastic body. Among them, it is preferable to use a resin material or an elastomer material exhibiting high elasticity as the elastic body.
次に、本発明に基づくオーセチック構造体において使用できる弾性体について説明する。上述の各実施形態のオーセチック構造体10,20を含めて本発明に基づくオーセチック構造体では、弾性体として、金属、セラミックス、樹脂など弾性を有するあらゆる材料を使用することができる。中でも高弾性を示す樹脂材料やエラストマー材料を弾性体として使用することが好ましい。 [Materials constituting the elastic body]
Next, an elastic body that can be used in the auxetic structure according to the present invention will be described. In the auxetic structure according to the present invention, including the
弾性体として使用できる樹脂材料は、ポリエチレン(PE)、ポリプロピレン(PP)、ABS樹脂(ABS)、ポリエチレンテレフタレート(PET)、メタクリル樹脂(PMMA)などに代表される汎用プラスチック、さらに、ポリアミド(PA)、ポリカーボネート(PC)、ポリアセタール(POM)、ポリブチレンテレフタレート(PBT)、ポリフェニレンエーテル(PPE)、エポキシ樹脂(EP)などに代表される汎用エンジニアリングプラスチックが挙げられる。加えて、フッ素樹脂、ポリイミド(PI)、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)などに代表されるスーパーエンジニアリングプラスチックを用いても良い。
Resin materials that can be used as the elastic body include general-purpose plastics such as polyethylene (PE), polypropylene (PP), ABS resin (ABS), polyethylene terephthalate (PET), and methacrylic resin (PMMA), as well as general-purpose engineering plastics such as polyamide (PA), polycarbonate (PC), polyacetal (POM), polybutylene terephthalate (PBT), polyphenylene ether (PPE), and epoxy resin (EP). In addition, super engineering plastics such as fluororesin, polyimide (PI), polyethersulfone (PES), and polyetherimide (PEI) may also be used.
また、弾性体として使用できるエラストマーは、シリコーンゴム(Q)、ウレタンゴム(U)、天然ゴム(NR)、エチレンプロピレンジエンゴム(EPDM)、スチレン・ブタジエンゴム(SBR)、アクリロニトリル・ブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(イソブチレン・イソプレンゴム)(IIR)などに代表される熱硬化性エラストマー、さらに、ポリスチレン系熱可塑性エラストマー(TPS)、オレフィン系熱可塑性エラストマー(TPO)(アルケン系可塑性エラストマーともいう)、ポリ塩化ビニル系熱可塑性エラストマー(TPVC)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、ポリアミド系熱可塑性エラストマー(TPAE)などに代表される熱可塑性エラストマーが挙げられる。
Elastomers that can be used as the elastic body include thermosetting elastomers such as silicone rubber (Q), urethane rubber (U), natural rubber (NR), ethylene propylene diene rubber (EPDM), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber (CR), and butyl rubber (isobutylene-isoprene rubber) (IIR), as well as thermoplastic elastomers such as polystyrene thermoplastic elastomer (TPS), olefin thermoplastic elastomer (TPO) (also called alkene thermoplastic elastomer), polyvinyl chloride thermoplastic elastomer (TPVC), polyurethane thermoplastic elastomer (TPU), polyester thermoplastic elastomer (TPC), and polyamide thermoplastic elastomer (TPAE).
[オーセチック構造体の製造方法]
本発明に基づくオーセチック構造体は、複数の空隙部を有する弾性体からなるものであるから、弾性体である基材に複数の空隙部を分散させて形成することによって製造できる。具体的には、レーザー切断処理や水噴射切断処理、あるいは、一般的な樹脂材料やエラストマー材料の成形と同様に、金型を用いた成形、もしくは、3D(三次元)プリンタを用いて製造することもできる。なお、オーセチック構造体の製造方法は、ここで述べた方法に限定されるものではなく、空隙部を分散して形成できる方法であれば、如何なる製造方法を用いても良い。 [Method of manufacturing auxetic structure]
The auxetic structure according to the present invention is made of an elastic body having a plurality of voids, and can be manufactured by dispersing and forming a plurality of voids in a base material that is an elastic body. Specifically, it can be manufactured by laser cutting or water jet cutting, or by molding using a mold or a 3D (three-dimensional) printer, similar to the molding of general resin materials and elastomer materials. The manufacturing method of the auxetic structure is not limited to the method described here, and any manufacturing method may be used as long as it is a method that can form voids in a dispersed manner.
本発明に基づくオーセチック構造体は、複数の空隙部を有する弾性体からなるものであるから、弾性体である基材に複数の空隙部を分散させて形成することによって製造できる。具体的には、レーザー切断処理や水噴射切断処理、あるいは、一般的な樹脂材料やエラストマー材料の成形と同様に、金型を用いた成形、もしくは、3D(三次元)プリンタを用いて製造することもできる。なお、オーセチック構造体の製造方法は、ここで述べた方法に限定されるものではなく、空隙部を分散して形成できる方法であれば、如何なる製造方法を用いても良い。 [Method of manufacturing auxetic structure]
The auxetic structure according to the present invention is made of an elastic body having a plurality of voids, and can be manufactured by dispersing and forming a plurality of voids in a base material that is an elastic body. Specifically, it can be manufactured by laser cutting or water jet cutting, or by molding using a mold or a 3D (three-dimensional) printer, similar to the molding of general resin materials and elastomer materials. The manufacturing method of the auxetic structure is not limited to the method described here, and any manufacturing method may be used as long as it is a method that can form voids in a dispersed manner.
[オーセチック構造体の応用例]
以下、本発明に基づくオーセチック構造体の応用例として、電池モジュール用緩衝材にオーセチック構造体を適用した例を説明する。 [Application examples of auxetic structures]
Hereinafter, as an application example of the auxetic structure according to the present invention, an example in which the auxetic structure is applied to a cushioning material for a battery module will be described.
以下、本発明に基づくオーセチック構造体の応用例として、電池モジュール用緩衝材にオーセチック構造体を適用した例を説明する。 [Application examples of auxetic structures]
Hereinafter, as an application example of the auxetic structure according to the present invention, an example in which the auxetic structure is applied to a cushioning material for a battery module will be described.
図7は電池モジュール40を示す概略正面図である。電池モジュール40は、所望の出力電圧や容量が得られるように、拘束部材41によって複数の電池セル45を保持し、一体の装置としたものである。電池セル45は、充放電可能な二次電池の単位セルであり、例えばリチウムイオンバッテリーの単位セルが好ましい。電池モジュール40では、図示X方向に沿って電池セル45と緩衝材50とが交互に積層しており、拘束部材41は、電池セル45の積層方向(図示X方向)の両端から各電池セル45を拘束する。拘束部材41としては、図示されるようにL字状の部材や、ケース状の部材が使用される。また、拘束部材41の材料は、アルミニウムなどの金属であるが、ポリアミドイミド樹脂(PAI)やポリエーテルエーテルケトン樹脂(PEEK)などの硬質樹脂を用いてもよい。。
FIG. 7 is a schematic front view showing a battery module 40. The battery module 40 is an integrated device in which a plurality of battery cells 45 are held by a restraining member 41 so as to obtain a desired output voltage and capacity. The battery cells 45 are unit cells of a rechargeable secondary battery, and preferably unit cells of a lithium-ion battery. In the battery module 40, the battery cells 45 and the cushioning material 50 are alternately stacked along the X direction shown in the figure, and the restraining member 41 restrains each battery cell 45 from both ends of the stacking direction (X direction shown in the figure). As the restraining member 41, an L-shaped member or a case-shaped member is used as shown in the figure. The material of the restraining member 41 is a metal such as aluminum, but a hard resin such as polyamide-imide resin (PAI) or polyether-ether-ketone resin (PEEK) may also be used. .
図示した例では4個の電池セル45が設けられており、これらの電池セル45のうち左から2番目の電池セル45については、電池セル45の内部構造が示されている。電池セル45は、例えば金属製の筐体45aの内部に電極体45bを封入したものである。電極体45bは、正極と負極とをセパレータ(図示せず)で挟んで渦巻き状に巻回したものである。電池セル45では、充電に伴って電極体45b内の負極がイオンを吸蔵して膨張し、同時に、電極体45bが発熱することによる熱膨張も生ずる。このため、電池セル45は、充電により主としてその積層方向、すなわち図7ではX方向に膨張し、満充電となった時に、電池セル45の膨張量も最大となる。また、放電時には、電池セル45は、初期状態に戻る。しかしながら充放電が繰り返されると電極体45bの電極間距離が大きくなり、電池セル45の電気的特性が低下する。
In the illustrated example, four battery cells 45 are provided, and the internal structure of the second battery cell 45 from the left is shown. The battery cell 45 is, for example, a metal case 45a with an electrode body 45b sealed inside. The electrode body 45b is a spirally wound battery cell 45 with a positive electrode and a negative electrode sandwiched between separators (not shown). When the battery cell 45 is charged, the negative electrode in the electrode body 45b absorbs ions and expands, and at the same time, the electrode body 45b generates heat and expands thermally. For this reason, the battery cell 45 expands mainly in the stacking direction, that is, in the X direction in FIG. 7, when the battery cell 45 is charged, and the amount of expansion of the battery cell 45 is maximized when the battery cell 45 is fully charged. When the battery cell 45 is discharged, the battery cell 45 returns to its initial state. However, when the battery cell 45 is repeatedly charged and discharged, the distance between the electrodes of the electrode body 45b increases, and the electrical characteristics of the battery cell 45 deteriorate.
したがって電池セル45の相互間や電池セル45と拘束部材41との間に配置される緩衝材50は、電池セル45の膨張および収縮(初期状態に戻る)に伴う変形を吸収できることが求められる。さらに、電池セル45の膨張により、緩衝材50が圧縮された際に、緩衝材50の反力が過剰に大きくなると、電池セル45が破損する恐れがある。本発明に基づくオーセチック構造体は、変形量(あるいはひずみ)に対する応力(または反力)の変化が小さいので、電池モジュール40用の緩衝材50として好適に用いることができる。特に、電池モジュール40を構成する電池セル45の個数が多い場合には、電池セル45の膨張および収縮に伴う体積の変化が大きくなるため、電池セル45の体積変化を確実に吸収するために本発明に基づくオーセチック構造体からなる緩衝材50を用いることが特に好ましい。なお、図7に示した緩衝材50には、本発明の第2の実施形態で説明したオーセチック構造体20が使用されている。
Therefore, the cushioning material 50 arranged between the battery cells 45 or between the battery cells 45 and the restraining member 41 is required to be able to absorb the deformation caused by the expansion and contraction (return to the initial state) of the battery cells 45. Furthermore, when the cushioning material 50 is compressed due to the expansion of the battery cells 45, if the reaction force of the cushioning material 50 becomes excessively large, the battery cells 45 may be damaged. The auxetic structure based on the present invention has a small change in stress (or reaction force) relative to the amount of deformation (or strain), so it can be suitably used as the cushioning material 50 for the battery module 40. In particular, when the number of battery cells 45 constituting the battery module 40 is large, the change in volume caused by the expansion and contraction of the battery cells 45 becomes large, so it is particularly preferable to use the cushioning material 50 made of the auxetic structure based on the present invention in order to reliably absorb the volume change of the battery cells 45. Note that the auxetic structure 20 described in the second embodiment of the present invention is used for the cushioning material 50 shown in FIG. 7.
実施例及び比較例に基づき、本発明を詳細に説明する。実施例及び比較例では、シミュレーションによってひずみ分布の評価を行うとともに、実際に作製したオーセチック構造体を用いて圧縮率と応力との関係を測定し、衝撃吸収能力の評価を行った。オーセチック構造体の作製には3Dプリンター(Formlabs社製、製品名:Form 3L)を使用し、弾性体材料としては、紫外線(UV)硬化性のシリコーン系エラストマー(Formlabs社製、製品名:Elastic 50A)を使用した。以下に、作製したオーセチック構造体の仕様を説明する。
The present invention will be described in detail based on examples and comparative examples. In the examples and comparative examples, the strain distribution was evaluated by simulation, and the relationship between the compression ratio and stress was measured using an actually fabricated auxetic structure, and the impact absorption capacity was evaluated. A 3D printer (manufactured by Formlabs, product name: Form 3L) was used to fabricate the auxetic structure, and an ultraviolet (UV) curable silicone-based elastomer (manufactured by Formlabs, product name: Elastic 50A) was used as the elastic material. The specifications of the fabricated auxetic structure are described below.
実施例1では、第1の実施形態のオーセチック構造体10を用い、実施例2では、第2の実施形態のオーセチック構造体20を用いた。さらに、比較例として、図8に示す形状のオーセチック構造体60を用いた。比較例のオーセチック構造体60は、第2の実施形態のオーセチック構造体20と同様に、弾性体である基体61に第1空隙部62と第2空隙部63とを交互に格子状に配置したものである。ただし、比較例のオーセチック構造体60は、第2の実施形態のオーセチック構造体20とは、第1空隙部62の形状が異なる。具体的には、比較例の第1空隙部は、直線部Bと第2凹部Dとが存在せず、半径がRaである円弧からなる第1凹部Aと半径がRbである円弧からなる凸部Cとが直接接続した形状であり、特許文献1に示された空隙部を有するオーセチック構造体である。
In Example 1, the auxetic structure 10 of the first embodiment was used, and in Example 2, the auxetic structure 20 of the second embodiment was used. Furthermore, as a comparative example, an auxetic structure 60 having the shape shown in FIG. 8 was used. The auxetic structure 60 of the comparative example is, like the auxetic structure 20 of the second embodiment, an elastic base body 61 in which first voids 62 and second voids 63 are alternately arranged in a lattice pattern. However, the auxetic structure 60 of the comparative example differs from the auxetic structure 20 of the second embodiment in the shape of the first voids 62. Specifically, the first void of the comparative example does not have a straight line portion B and a second recessed portion D, and has a shape in which a first recessed portion A consisting of an arc with a radius Ra and a convex portion C consisting of an arc with a radius Rb are directly connected, and is an auxetic structure having voids as shown in Patent Document 1.
実施例1、実施例2及び比較例のオーセチック構造体の寸法と、空隙部間の距離と、各空隙部の形状を示すパラメータとを表1に示す。ここで、オーセチック構造体の高さとは、図1、図4及び図8におけるY方向に沿ったオーセチック構造体の全体の長さであり、同様に幅はX方向に沿ったオーセチック構造体の全体の長さである。さらに、オーセチック構造体の厚さは、X方向及びY方向の両方に直交する方向の厚さである。また、空隙部間の距離は、実施例1においては図1で示す隣接する空隙部12間の距離Kであり、実施例2及び比較例においては図4及び図8において示した隣接する第1空隙部22,62と第2空隙部23,63の間の距離Lである。各空隙部の形状を示すパラメータは、仮想三角形15の高さHと、第1空隙部22,62の高さh及び最大幅wと、第1凹部Aを規定する円弧に対応する円の半径Raと、凸部Bを規定する円弧に対応する円の半径Rbと、第2凹部Dを規定する円弧に対応する円の半径Rcである。
Table 1 shows the dimensions of the auxetic structures of Example 1, Example 2 and Comparative Example, the distance between voids, and parameters indicating the shape of each void. Here, the height of the auxetic structure is the overall length of the auxetic structure along the Y direction in Figures 1, 4 and 8, and similarly the width is the overall length of the auxetic structure along the X direction. Furthermore, the thickness of the auxetic structure is the thickness in a direction perpendicular to both the X and Y directions. Furthermore, the distance between voids is the distance K between adjacent voids 12 shown in Figure 1 in Example 1, and is the distance L between adjacent first voids 22, 62 and second voids 23, 63 shown in Figures 4 and 8 in Example 2 and Comparative Example. The parameters that indicate the shape of each void are the height H of the virtual triangle 15, the height h and maximum width w of the first voids 22 and 62, the radius Ra of the circle corresponding to the arc that defines the first recess A, the radius Rb of the circle corresponding to the arc that defines the protrusion B, and the radius Rc of the circle corresponding to the arc that defines the second recess D.
以下、評価結果について説明する。
[ひずみ分布評価]
シミュレーションソフトウエアとしてDassault Systemes社のAbaqus/CAE 2020を使用し、20%圧縮したときのオーセチック構造体内のひずみの分布を解析した。実施例1でのひずみ分布の解析結果を図9、実施例2での解析結果を図10、比較例での解析結果を図11に示す。図9~図11においては、ひずみが大きい領域ほど明度が低く、ひずみの小さい領域ほど明度が高く表現されている。 The evaluation results will be explained below.
[Strain distribution evaluation]
The simulation software used was Abaqus/CAE 2020 from Dassault Systems, Inc., and the distribution of strain in the auxetic structure when compressed by 20% was analyzed. The analysis results of the strain distribution in Example 1 are shown in FIG. 9, the analysis results in Example 2 in FIG. 10, and the analysis results in the comparative example in FIG. 11. In FIG. 9 to FIG. 11, the greater the strain, the lower the brightness, and the smaller the strain, the higher the brightness.
[ひずみ分布評価]
シミュレーションソフトウエアとしてDassault Systemes社のAbaqus/CAE 2020を使用し、20%圧縮したときのオーセチック構造体内のひずみの分布を解析した。実施例1でのひずみ分布の解析結果を図9、実施例2での解析結果を図10、比較例での解析結果を図11に示す。図9~図11においては、ひずみが大きい領域ほど明度が低く、ひずみの小さい領域ほど明度が高く表現されている。 The evaluation results will be explained below.
[Strain distribution evaluation]
The simulation software used was Abaqus/CAE 2020 from Dassault Systems, Inc., and the distribution of strain in the auxetic structure when compressed by 20% was analyzed. The analysis results of the strain distribution in Example 1 are shown in FIG. 9, the analysis results in Example 2 in FIG. 10, and the analysis results in the comparative example in FIG. 11. In FIG. 9 to FIG. 11, the greater the strain, the lower the brightness, and the smaller the strain, the higher the brightness.
図9~図11から、比較例のオーセチック構造体では、各空隙部の第1凹部Aの近傍および凸部Cの近傍でのひずみが特に大きく、構造体の全体としてもひずみが大きいことがわかる。これに対して、本発明に基づく実施例1及び実施例2のオーセチック構造体では、全体的にひずみが小さく、特に比較例と比べて第1凹部Aの近傍及び凸部Cの近傍でのひずみが小さいことがわかる。なお、実施例1と実施例2とを比較すると、実施例1の方がひずみのばらつきが小さく、オーセチック構造体全体にひずみが均一に分散していることがわかる。
From Figures 9 to 11, it can be seen that in the auxetic structure of the comparative example, the strain is particularly large near the first recess A and near the convex C of each void, and the strain is also large throughout the structure. In contrast, in the auxetic structures of Examples 1 and 2 based on the present invention, the strain is small overall, and the strain is particularly small near the first recess A and near the convex C compared to the comparative example. Furthermore, when comparing Example 1 and Example 2, it can be seen that Example 1 has smaller variation in strain, and that the strain is distributed evenly throughout the auxetic structure.
[衝撃吸収能力の評価]
オーセチック構造体の衝撃吸収能力は、下記の試験条件で測定を行い、圧縮率(%)と応力(kPa)の関係から、高い衝撃吸収能力を有するかどうか、すなわち高い圧縮率でも低い応力が成り立つか否かを確認した。なお、応力には、圧縮時の面圧を使用した。 [Evaluation of impact absorption capacity]
The shock absorbing capacity of the auxetic structure was measured under the following test conditions, and the relationship between the compression rate (%) and the stress (kPa) was used to confirm whether the structure had a high shock absorbing capacity, i.e., whether low stress was achieved even with a high compression rate. Note that the stress was measured using the surface pressure during compression.
オーセチック構造体の衝撃吸収能力は、下記の試験条件で測定を行い、圧縮率(%)と応力(kPa)の関係から、高い衝撃吸収能力を有するかどうか、すなわち高い圧縮率でも低い応力が成り立つか否かを確認した。なお、応力には、圧縮時の面圧を使用した。 [Evaluation of impact absorption capacity]
The shock absorbing capacity of the auxetic structure was measured under the following test conditions, and the relationship between the compression rate (%) and the stress (kPa) was used to confirm whether the structure had a high shock absorbing capacity, i.e., whether low stress was achieved even with a high compression rate. Note that the stress was measured using the surface pressure during compression.
(試験条件)
・圧縮試験機:万能材料試験機(インストロン社製、型番:5585H)
・圧縮条件:0.5~30±5%
・試験速度:1mm/min
・圧縮測定回数:3回 (Test conditions)
Compression tester: Universal material testing machine (Instron, model number: 5585H)
Compression conditions: 0.5 to 30 ± 5%
Test speed: 1 mm/min
・Compression measurements: 3 times
・圧縮試験機:万能材料試験機(インストロン社製、型番:5585H)
・圧縮条件:0.5~30±5%
・試験速度:1mm/min
・圧縮測定回数:3回 (Test conditions)
Compression tester: Universal material testing machine (Instron, model number: 5585H)
Compression conditions: 0.5 to 30 ± 5%
Test speed: 1 mm/min
・Compression measurements: 3 times
図12は、実施例1、実施例2、比較例それぞれの応力-ひずみ線図(F-S線図)を示している。図12に示すように、比較例のオーセチック構造体は、圧縮率が20%以下の領域においては、緩やかに応力が上昇し、圧縮率が20%以上の領域においては、急激な応力上昇がみられる。これに対して、実施例1のオーセチック構造体では、圧縮率が略30%までは応力上昇が緩やかである。また、実施例2のオーセチック構造体では、圧縮率が5%以上20%以下の領域においては、圧縮率に対する応力の上昇は、ほぼ見られない。また、圧縮率が20%以上の領域においても圧縮率に対する応力の上昇は緩やかである。
Figure 12 shows stress-strain diagrams (FS diagrams) for each of Example 1, Example 2, and Comparative Example. As shown in Figure 12, in the auxetic structure of the comparative example, stress increases gradually in the region where the compression ratio is 20% or less, and a rapid increase in stress is observed in the region where the compression ratio is 20% or more. In contrast, in the auxetic structure of Example 1, the stress increases gradually up to a compression ratio of approximately 30%. Furthermore, in the auxetic structure of Example 2, in the region where the compression ratio is 5% or more and 20% or less, there is almost no increase in stress relative to the compression ratio. Furthermore, even in the region where the compression ratio is 20% or more, the increase in stress relative to the compression ratio is gradual.
圧縮率が5%以上10%以下の領域での平均応力をs1とし、圧縮率が25%以上30%以下の領域での平均応力をs2として、s2/s1を衝撃吸収能力指標とすると、オーセチック構造体は、その衝撃吸収能力指標s2/s1が
1≦s2/s1≦3 (1)
を満たすことが好ましい。衝撃吸収能力指標s2/s1が式(1)で規定される範囲内にあれば、そのオーセチック構造体は良好な衝撃吸収能力を有すると評価することができる。衝撃吸収能力指標が1より小さい場合、衝撃が入力された際に構造体が壊れてしまう。一方で、衝撃吸収能力指標が3より大きい場合、入力された衝撃が吸収されずに伝達されてしまう。すなわち衝撃吸収能力が発揮されないことになる。表2は、実施例1、実施例2及び比較例のオーセチック構造体において実測された平均応力s1,s2と衝撃吸収能力指標s2/s1とを示している。 If the average stress in the region where the compression ratio is 5% or more and 10% or less is s1, the average stress in the region where the compression ratio is 25% or more and 30% or less is s2, and s2/s1 is the shock absorption capacity index, the auxetic structure has a shock absorption capacity index s2/s1 of 1≦s2/s1≦3 (1)
It is preferable to satisfy the above. If the shock absorption capacity index s2/s1 is within the range defined by formula (1), the auxetic structure can be evaluated as having good shock absorption capacity. If the shock absorption capacity index is smaller than 1, the structure will break when an impact is input. On the other hand, if the shock absorption capacity index is larger than 3, the input impact will be transmitted without being absorbed. In other words, the shock absorption capacity will not be exerted. Table 2 shows the average stresses s1, s2 and the shock absorption capacity index s2/s1 actually measured in the auxetic structures of Example 1, Example 2, and Comparative Example.
1≦s2/s1≦3 (1)
を満たすことが好ましい。衝撃吸収能力指標s2/s1が式(1)で規定される範囲内にあれば、そのオーセチック構造体は良好な衝撃吸収能力を有すると評価することができる。衝撃吸収能力指標が1より小さい場合、衝撃が入力された際に構造体が壊れてしまう。一方で、衝撃吸収能力指標が3より大きい場合、入力された衝撃が吸収されずに伝達されてしまう。すなわち衝撃吸収能力が発揮されないことになる。表2は、実施例1、実施例2及び比較例のオーセチック構造体において実測された平均応力s1,s2と衝撃吸収能力指標s2/s1とを示している。 If the average stress in the region where the compression ratio is 5% or more and 10% or less is s1, the average stress in the region where the compression ratio is 25% or more and 30% or less is s2, and s2/s1 is the shock absorption capacity index, the auxetic structure has a shock absorption capacity index s2/s1 of 1≦s2/s1≦3 (1)
It is preferable to satisfy the above. If the shock absorption capacity index s2/s1 is within the range defined by formula (1), the auxetic structure can be evaluated as having good shock absorption capacity. If the shock absorption capacity index is smaller than 1, the structure will break when an impact is input. On the other hand, if the shock absorption capacity index is larger than 3, the input impact will be transmitted without being absorbed. In other words, the shock absorption capacity will not be exerted. Table 2 shows the average stresses s1, s2 and the shock absorption capacity index s2/s1 actually measured in the auxetic structures of Example 1, Example 2, and Comparative Example.
表2に示すように、比較例のオーセチック構造体と比較して、実施例1及び実施例2のオーセチック構造体は、それらの衝撃吸収能力指標s2/s1が式(1)に規定する範囲内にあり、良好な衝撃吸収能力を示すことがわかる。
As shown in Table 2, compared to the auxetic structure of the comparative example, the auxetic structures of Examples 1 and 2 have shock absorption capacity indices s2/s1 within the range defined by formula (1), and therefore exhibit good shock absorption capacity.
以上説明した各実施例及び比較例での結果から、本発明に基づくオーセチック構造体は、従来技術のオーセチック構造体よりも衝撃吸収能力を大きくすることができ、かつ局所的ひずみを緩和できることがわかる。このため、長期耐久性に関する懸念からこれまでオーセチック構造体を適用できなかった分野、例えば電池モジュール用緩衝材、電池モジュール用断熱材、電気自動車用防振材、衝撃吸収用床材等の分野にも本発明のオーセチック構造体を適用できることは勿論である。
From the results of each of the examples and comparative examples described above, it can be seen that the auxetic structure based on the present invention can increase the shock absorption capacity and alleviate local strain compared to auxetic structures of the prior art. For this reason, it goes without saying that the auxetic structure of the present invention can be applied to fields where auxetic structures have not been applicable until now due to concerns about long-term durability, such as cushioning materials for battery modules, insulating materials for battery modules, vibration-proofing materials for electric vehicles, shock-absorbing flooring materials, etc.
10,20,60 オーセチック構造体
11,21,61 基材
12,22,23,62,63 空隙部
15 仮想三角形
16 仮想菱形
40 電池モジュール
45 電池セル
50 緩衝材
A 第1凹部
B 直線部
C 凸部
D 第2凹部
10, 20, 60 Auxetic structure 11, 21, 61 Substrate 12, 22, 23, 62, 63 Vacant portion 15 Virtual triangle 16 Virtual rhombus 40 Battery module 45 Battery cell 50 Cushioning material A First recess B Straight portion C Convex portion D Second recess
11,21,61 基材
12,22,23,62,63 空隙部
15 仮想三角形
16 仮想菱形
40 電池モジュール
45 電池セル
50 緩衝材
A 第1凹部
B 直線部
C 凸部
D 第2凹部
10, 20, 60
Claims (7)
- 空隙部を有する弾性体からなるオーセチック構造体であって、
前記空隙部は、仮想的に設定された仮想三角形の3つの辺に内接する形状を有するとともに、該空隙部の外周は、第1凹部(A)、直線部(B)、凸部(C)及び第2凹部(D)の各々を連結して一体化した形状を成し、
前記第1凹部(A)は、前記仮想三角形の各々の対称軸上に中心を有し、前記仮想三角形の頂点を挟む2つの辺の各々に内接する内接円の円弧により形成されるとともに、当該円弧の両端が前記仮想三角形の2つの辺上にあり、かつ前記仮想三角形の重心から見て当該仮想三角形の外方向に湾曲する凹形状を有し、
前記直線部(B)は、前記仮想三角形の各々の辺の一部を形成する線分であるとともに、前記第1凹部(A)の端部と前記第2凹部(D)の一端とを接続し、
前記凸部(C)は、前記仮想三角形の各々の辺の垂直二等分線上に中心を有し、かつ前記第1凹部(A)の前記内接円の半径以上の半径を有する円弧により形成されるとともに、前記仮想三角形の重心に向かって凸形状を有し、
前記第2凹部(D)は、前記凸部(C)の端部と前記直線部(B)の他端に接する円弧であり、さらに当該円弧の中心は、前記仮想三角形の内部に存在するとともに、該円弧の中心からみて前記仮想三角形の外方向に湾曲する凹形状を有し、
前記弾性体に配置される複数の前記空隙部は、前記空隙部が内接する前記仮想三角形の重心を三角格子の格子点に配置した、オーセチック構造体。 An auxetic structure made of an elastic body having voids,
the void portion has a shape inscribed in three sides of an imaginary triangle, and the outer periphery of the void portion forms an integrated shape by connecting each of the first recess (A), the straight line portion (B), the convex portion (C) and the second recess (D);
the first recess (A) has a center on each axis of symmetry of the imaginary triangle, is formed by an arc of an inscribed circle inscribed in each of two sides that sandwich a vertex of the imaginary triangle, and both ends of the arc are on the two sides of the imaginary triangle, and has a concave shape that curves outwardly of the imaginary triangle when viewed from the center of gravity of the imaginary triangle,
The straight line portion (B) is a line segment forming a part of each side of the virtual triangle, and connects an end of the first recess (A) and one end of the second recess (D),
the convex portion (C) has a center on the perpendicular bisector of each side of the imaginary triangle, is formed by an arc having a radius equal to or greater than the radius of the inscribed circle of the first concave portion (A), and has a convex shape toward the center of gravity of the imaginary triangle,
the second recess (D) is an arc tangent to an end of the protrusion (C) and the other end of the straight line portion (B), the center of the arc is inside the imaginary triangle, and the second recess (D) has a concave shape that is curved outwardly of the imaginary triangle as viewed from the center of the arc,
An auxetic structure in which the multiple voids arranged in the elastic body are arranged such that the centers of gravity of the virtual triangles in which the voids are inscribed are positioned at the lattice points of a triangular lattice. - 前記三角格子の格子点に配置される前記複数の空隙部間の距離は、前記空隙部が内接する前記仮想三角形の重心間の距離に等しく、当該距離は、前記仮想三角形の高さの2/3超、前記仮想三角形の高さ以下である、請求項1に記載のオーセチック構造体。 The auxetic structure of claim 1, wherein the distance between the plurality of voids arranged at the lattice points of the triangular lattice is equal to the distance between the centers of gravity of the virtual triangles inscribed by the voids, and the distance is greater than 2/3 of the height of the virtual triangles and less than or equal to the height of the virtual triangles.
- 空隙部を有する弾性体からなるオーセチック構造体であって、
前記空隙部は、第1空隙部と第2空隙部からなり、
前記第1空隙部は、相互に直交する第1対角線及び第2対角線を有する仮想菱形の4つの辺に内接する形状を有するとともに、該第1空隙部の外周は、第1凹部(A)、直線部(B)、凸部(C)及び第2凹部(D)の各々を連結して一体化した形状を成し、
前記第1凹部(A)は、前記仮想菱形の第1対角線上に中心を有し、前記仮想菱形の前記第1対角線の両端部である頂点を挟む2つの辺の各々に内接する内接円の円弧により形成されるとともに、当該内接円の円弧の両端が前記仮想菱形の2つの辺上にあり、かつ前記第1対角線と前記第2対角線との交点からみて外側に湾曲する凹形状を有し、
前記直線部(B)は、前記仮想菱形の前記第1対角線の両端部である頂点を挟む2つの辺の一部を形成する線分であるとともに、前記第1凹部(A)の端部と前記第2凹部(D)の端部とを接続し、
前記凸部(C)は、前記仮想菱形の前記第2対角線上に中心を有し、かつ前記第1凹部(A)の前記内接円の半径より大きい半径を有する円弧により形成され、前記仮想菱形の第1対角線と前記第2対角線の交点に向かって湾曲する凸形状を有し、
前記第2凹部(D)は、前記凸部(C)の端部と前記直線部(B)の他端に接する円弧であり、さらに当該円弧の中心は前記仮想菱形の内部に存在するととともに、当該円弧の中心からみて前記仮想菱形の外方向に湾曲する凹形状を有し、
前記第2空隙部は、前記仮想菱形の前記第1対角線と前記第2対角線の交点を中心として、前記第1空隙部を90°回転させた形状を有し、
前記弾性体に配置される前記第1空隙部と前記第2空隙部は、前記第1空隙部と前記第2空隙部とを1つの単位として格子状に配置した、オーセチック構造体。 An auxetic structure made of an elastic body having voids,
The gap portion includes a first gap portion and a second gap portion,
the first gap has a shape inscribed in four sides of a virtual rhombus having a first diagonal and a second diagonal perpendicular to each other, and the outer periphery of the first gap forms an integrated shape by connecting each of the first recess (A), the straight line portion (B), the protrusion (C), and the second recess (D);
the first recess (A) has a center on a first diagonal of the virtual rhombus, is formed by an arc of an inscribed circle inscribed in each of two sides that sandwich a vertex that is both ends of the first diagonal of the virtual rhombus, and both ends of the arc of the inscribed circle are on the two sides of the virtual rhombus, and has a concave shape that curves outward when viewed from the intersection of the first diagonal and the second diagonal,
The straight line portion (B) is a line segment forming a part of two sides sandwiching a vertex that is both ends of the first diagonal of the virtual rhombus, and connects an end of the first recess (A) and an end of the second recess (D),
the convex portion (C) has a center on the second diagonal of the virtual rhombus, is formed by an arc having a radius larger than the radius of the inscribed circle of the first concave portion (A), and has a convex shape curved toward an intersection of the first diagonal and the second diagonal of the virtual rhombus,
the second recess (D) is an arc tangent to an end of the protrusion (C) and the other end of the straight line portion (B), the center of the arc is inside the imaginary rhombus, and the second recess (D) has a concave shape that is curved outwardly of the imaginary rhombus when viewed from the center of the arc,
the second gap portion has a shape obtained by rotating the first gap portion by 90° around an intersection point of the first diagonal line and the second diagonal line of the virtual rhombus,
An auxetic structure, wherein the first void portion and the second void portion arranged in the elastic body are arranged in a lattice pattern with the first void portion and the second void portion as one unit. - 前記第1空隙部の長さをh、前記第1空隙部の最大幅をwとしたとき、
1.0≦h/w≦1.5
を満たす、請求項3に記載のオーセチック構造体。 When the length of the first gap portion is h and the maximum width of the first gap portion is w,
1.0≦h/w≦1.5
The auxetic structure according to claim 3, which satisfies: - 相互に隣接する前記第1空隙部及び前記第2空隙部における前記仮想菱形の前記第1対角線と前記第2対角線の交点間の距離Lは、
w<L≦h
を満たす、請求項4に記載のオーセチック構造体。 A distance L between the intersections of the first diagonal and the second diagonal of the virtual rhombus in the first gap portion and the second gap portion adjacent to each other is
w<L≦h
The auxetic structure according to claim 4, which satisfies: - 前記オーセチック構造体に対して圧縮応力を作用させたときに、圧縮率が5%以上10%以下である領域における平均応力をs1とし、圧縮率が25%以上30%以下である領域における平均応力をs2として、
1≦s2/s1≦3
を満たす、請求項1乃至5のいずれか1項に記載のオーセチック構造体。 When compressive stress is applied to the auxetic structure, the average stress in the region where the compression rate is 5% or more and 10% or less is defined as s1, and the average stress in the region where the compression rate is 25% or more and 30% or less is defined as s2.
1≦s2/s1≦3
The auxetic structure according to any one of claims 1 to 5, which satisfies the above. - 請求項1乃至5のいずれか1項に記載のオーセチック構造体からなる、電池モジュール用緩衝材。
A cushioning material for a battery module, comprising the auxetic structure according to any one of claims 1 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/010139 WO2024189849A1 (en) | 2023-03-15 | 2023-03-15 | Auxetic structure and cushioning material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/010139 WO2024189849A1 (en) | 2023-03-15 | 2023-03-15 | Auxetic structure and cushioning material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024189849A1 true WO2024189849A1 (en) | 2024-09-19 |
Family
ID=92754782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/010139 WO2024189849A1 (en) | 2023-03-15 | 2023-03-15 | Auxetic structure and cushioning material |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024189849A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002327797A (en) * | 2001-05-01 | 2002-11-15 | Showa Electric Wire & Cable Co Ltd | Vibrationproof member |
JP2006342851A (en) * | 2005-06-07 | 2006-12-21 | Chuo Spring Co Ltd | Cylindrical spring |
JP2012513489A (en) * | 2008-12-23 | 2012-06-14 | ダウ コーニング コーポレーション | Elastomer composition |
JP2016520784A (en) * | 2013-03-15 | 2016-07-14 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Void structure with repeated elongated opening pattern |
JP2020126962A (en) * | 2019-02-06 | 2020-08-20 | トヨタ自動車株式会社 | Thin deformable panel out-of-plane deforming using auxetic structure |
JP2022537027A (en) * | 2019-06-14 | 2022-08-23 | アクチュエーション ラボ リミテッド | Retraction device for use as actuator, pump or compressor |
JP2022548087A (en) * | 2019-09-12 | 2022-11-16 | ジー-フォーム,エルエルシー | Conformable and Expandable Protective Cushion Pads and Apparel Containing Such Pads |
-
2023
- 2023-03-15 WO PCT/JP2023/010139 patent/WO2024189849A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002327797A (en) * | 2001-05-01 | 2002-11-15 | Showa Electric Wire & Cable Co Ltd | Vibrationproof member |
JP2006342851A (en) * | 2005-06-07 | 2006-12-21 | Chuo Spring Co Ltd | Cylindrical spring |
JP2012513489A (en) * | 2008-12-23 | 2012-06-14 | ダウ コーニング コーポレーション | Elastomer composition |
JP2016520784A (en) * | 2013-03-15 | 2016-07-14 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Void structure with repeated elongated opening pattern |
JP2020126962A (en) * | 2019-02-06 | 2020-08-20 | トヨタ自動車株式会社 | Thin deformable panel out-of-plane deforming using auxetic structure |
JP2022537027A (en) * | 2019-06-14 | 2022-08-23 | アクチュエーション ラボ リミテッド | Retraction device for use as actuator, pump or compressor |
JP2022548087A (en) * | 2019-09-12 | 2022-11-16 | ジー-フォーム,エルエルシー | Conformable and Expandable Protective Cushion Pads and Apparel Containing Such Pads |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8960485B2 (en) | Pressure vessel having rib structure corresponding to stress distribution | |
US9324982B2 (en) | Battery module | |
JP7063744B2 (en) | Cushioning sheet for battery module | |
US20160248053A1 (en) | Flexible battery | |
US10259264B2 (en) | Tire-type device for a vehicle | |
GB2578296A (en) | Materials and structures exhibiting Zero Poisson's Ratio | |
JP2017162637A (en) | Flexible battery | |
JP7350418B2 (en) | Pouch-type battery case, manufacturing equipment for manufacturing the same, and pouch-type secondary battery | |
EP3139424B1 (en) | Bendable electrochemical device for storing energy | |
WO2024189849A1 (en) | Auxetic structure and cushioning material | |
WO2019220887A1 (en) | Pneumatic tire | |
JP2019217899A (en) | Pneumatic tire | |
US8740008B2 (en) | Pressure vessel | |
JP6994992B2 (en) | Restraint and all-solid-state battery assembly | |
CN115461925B (en) | Electrode assembly and secondary battery including the same | |
US20230178791A1 (en) | Sheet for Battery Cases Having Gas Pocket Portion Formed In Movement Direction, Battery Cell Manufactured Using the Same, and Method of Manufacturing the Battery Cell | |
WO2023089770A1 (en) | Elastic body for battery module | |
JP2023528045A (en) | Exterior material and battery using exterior material | |
CN113757281A (en) | Energy-absorbing unit body based on multistable state and energy-absorbing material | |
JP2005310579A (en) | Square secondary battery | |
JP2023526932A (en) | A cladding, a method of patterning a cladding, and a method of producing a battery including the cladding | |
US20210070104A1 (en) | Non-pneumatic tire | |
WO2019220889A1 (en) | Pneumatic tire | |
JP7052680B2 (en) | Battery case | |
JP2023068872A (en) | buffer rubber material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23927469 Country of ref document: EP Kind code of ref document: A1 |