[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024189676A1 - Domain wall displacement element and magnetic array - Google Patents

Domain wall displacement element and magnetic array Download PDF

Info

Publication number
WO2024189676A1
WO2024189676A1 PCT/JP2023/009321 JP2023009321W WO2024189676A1 WO 2024189676 A1 WO2024189676 A1 WO 2024189676A1 JP 2023009321 W JP2023009321 W JP 2023009321W WO 2024189676 A1 WO2024189676 A1 WO 2024189676A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
domain wall
layer
magnetization
wall motion
Prior art date
Application number
PCT/JP2023/009321
Other languages
French (fr)
Japanese (ja)
Inventor
心人 市川
祥吾 米村
章悟 山田
竜雄 柴田
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to PCT/JP2023/009321 priority Critical patent/WO2024189676A1/en
Publication of WO2024189676A1 publication Critical patent/WO2024189676A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a domain wall motion element and a magnetic array.
  • Magnetoresistance effect elements are known that utilize a change in resistance value (magnetoresistance change) based on a change in the relative angle between the magnetizations of two ferromagnetic layers.
  • the domain wall motion type magnetoresistance effect element (hereinafter referred to as domain wall motion element) described in Patent Document 1 is one example of a magnetoresistance effect element.
  • domain wall motion elements the resistance value in the stacking direction changes depending on the position of the domain wall, and data can be recorded in multi-value or analog form.
  • the magnetic domain wall motion element can be used in neuromorphic devices that mimic the functions of the brain, as described in Patent Document 2, for example.
  • the domain wall motion element writes signals by applying a write current.
  • the write current is one of the causes of heat generation in the domain wall motion element. Heat generation in the domain wall motion element reduces the stability of magnetization within the domain wall motion element, and reduces the reliability of the domain wall motion element. Furthermore, if the domain wall motion element is subjected to excessive heat, the domain wall motion element may be damaged.
  • This disclosure has been made in consideration of the above problems, and aims to provide a domain wall motion element and magnetic array that can efficiently dissipate heat.
  • the domain wall motion element includes a first ferromagnetic layer, a second ferromagnetic layer, a non-magnetic layer, a first magnetization fixed portion, a second magnetization fixed portion, and an insulating layer.
  • the first ferromagnetic layer has a domain wall therein.
  • the non-magnetic layer is sandwiched between the first ferromagnetic layer and the second ferromagnetic layer.
  • the first magnetization fixed portion is connected to the first ferromagnetic layer.
  • the second magnetization fixed portion is connected to the first ferromagnetic layer at a position spaced apart from the first magnetization fixed portion in the first direction.
  • the insulating layer is sandwiched in the first direction between the first magnetization fixed portion and the second magnetization fixed portion when viewed from the stacking direction.
  • the insulating layer includes a first region to which a metal or metal nitride different from the main element constituting the insulating layer is added.
  • FIG. 2 is a block diagram of a magnetic array according to the first embodiment.
  • FIG. 2 is a circuit diagram of an integrated region of the magnetic array according to the first embodiment.
  • 3 is a cross-sectional view of the vicinity of a domain wall motion element of the magnetic array according to the first embodiment.
  • FIG. 1 is a cross-sectional view of a domain wall motion element according to a first embodiment.
  • FIG. 2 is a plan view of the domain wall motion element according to the first embodiment.
  • FIG. 2 is a plan view of an insulating layer of the domain wall motion element according to the first embodiment.
  • FIG. 13 is a plan view of a domain wall motion element according to a first modified example.
  • FIG. 1 is a cross-sectional view of a domain wall motion element according to a first embodiment.
  • FIG. 2 is a plan view of the domain wall motion element according to the first embodiment.
  • FIG. 2 is a plan view of an insulating layer of the domain wall motion element according to the first embodiment.
  • FIG. 13 is a plan view of an insulating layer of a domain wall motion element according to a second modified example.
  • FIG. 11 is a cross-sectional view of a domain wall motion element according to a third modified example.
  • FIG. 13 is a cross-sectional view of a domain wall motion element according to a fourth modified example.
  • FIG. 1 is a block diagram of a magnetic array MA according to a first embodiment.
  • the magnetic array MA has an integration region 1 and a peripheral region 2.
  • the magnetic array MA can be used for, for example, a magnetic memory, a multiply-and-accumulate calculator, a neuromorphic device, a spin memristor, or a magneto-optical element.
  • the accumulation region 1 is an area where multiple domain wall motion elements are accumulated.
  • the magnetic array MA is used as a memory, data is stored in the accumulation region 1.
  • the magnetic array MA is used as a neuromorphic device, learning and inference are performed in the accumulation region 1.
  • the peripheral region 2 is an area in which a control element that controls the operation of the domain wall motion element in the integration region 1 is implemented.
  • the peripheral region 2 includes, for example, a pulse application device 3, a resistance detection device 4, and an output section 5.
  • the pulse application device 3 is configured to apply a pulse to at least one of the multiple domain wall motion elements in the accumulation region 1.
  • the pulse application device 3 has, for example, a control unit 6 and a power supply 7.
  • the control unit 6 has, for example, a processor and a memory.
  • the processor is, for example, a CPU (Central Processing Unit).
  • the processor operates based on an operating program stored in the memory.
  • the control unit 6 controls, for example, the address of the domain wall motion element to which a pulse is applied, the magnitude of the pulse (voltage, pulse length) to be applied to a specific domain wall motion element, etc.
  • the control unit 6 may also have a clock, a counter, a random number generator, etc.
  • the clock is an indicator of the timing for applying the pulse, and the counter counts the number of times the pulse is applied, etc.
  • the power supply 7 applies a pulse to the domain wall motion element according to instructions from the control unit 6.
  • the resistance detection device 4 is configured to detect the resistance value of the domain wall motion elements in the integration region 1.
  • the resistance detection device 4 may detect the resistance of each domain wall motion element in the integration region 1, or may detect the total resistance of domain wall motion elements belonging to the same column, for example.
  • the resistance detection device 4 has, for example, a comparator that compares the magnitude of the detected resistance values.
  • the comparator may, for example, compare the detected resistance values with each other, or may compare the detected resistance value with a preset reference resistance value.
  • the output unit 5 is connected to the resistance detection device 4.
  • the output unit 5 has, for example, a processor, an output capacitor, an amplifier, a converter, etc.
  • the output unit 5 may perform a calculation to substitute the detection result of the resistance detection device 4 into an activation function. The calculation is performed, for example, by a processor.
  • the output unit 5 outputs the calculation result to the outside.
  • the output unit 5 may perform an operation such as outputting the calculation result as an input signal for another magnetic array, or may perform an operation such as outputting the calculation result to the outside as a discrimination rate.
  • the output unit 5 may also feed back the calculation result to the pulse application device 3.
  • FIG. 2 is a circuit diagram of the integrated region 1 according to the first embodiment.
  • the integrated region 1 includes a plurality of domain wall motion elements 100, a plurality of write wirings WL, a plurality of common wirings CL, a plurality of read wirings RL, a plurality of first switching elements SW1, and a plurality of second switching elements SW2.
  • the third switching element SW3 may belong to, for example, the pulse application device 3 in the peripheral region 2.
  • the multiple domain wall motion elements 100 are arranged, for example, in a matrix.
  • the multiple domain wall motion elements 100 are not limited to elements arranged in a matrix in the actual device, but may be arranged in a matrix in a circuit diagram.
  • Each of the write wirings WL is used when writing data. Each of the write wirings WL electrically connects the pulse application device 3 to one or more domain wall motion elements 100. Each of the common wirings CL is used when both writing and reading data. Each of the common wirings CL is connected to, for example, a resistance detection device 4. The common wiring CL may be provided for each of the multiple domain wall motion elements 100, or may be provided across the multiple domain wall motion elements 100. Each of the read wirings RL is used when reading data. Each of the read wirings RL electrically connects the pulse application device 3 to one or more domain wall motion elements 100.
  • the first switching element SW1, the second switching element SW2, and the third switching element SW3 are elements that control the flow of current.
  • the first switching element SW1, the second switching element SW2, and the third switching element SW3 are, for example, elements that utilize a phase change in a crystal layer such as a transistor or an Ovonic Threshold Switch (OTS), elements that utilize a change in band structure such as a Metal-Insulator Transition (MIT) switch, elements that utilize a breakdown voltage such as a Zener diode or an avalanche diode, and elements whose conductivity changes with a change in atomic position.
  • OTS Ovonic Threshold Switch
  • MIT Metal-Insulator Transition
  • the first switching element SW1 and the second switching element SW2 are connected, for example, to each domain wall motion element 100.
  • the first switching element SW1 is connected, for example, between the domain wall motion element 100 and the write wiring WL.
  • the second switching element SW2 is connected, for example, between the domain wall motion element 100 and the common wiring CL.
  • the third switching element SW3 is connected, for example, across multiple domain wall motion elements 100.
  • the third switching element SW3 is connected, for example, to the read wiring RL.
  • the positional relationship between the first switching element SW1, the second switching element SW2, and the third switching element SW3 is not limited to that shown in FIG. 2.
  • the first switching element SW1 may be connected across multiple domain wall motion elements 100 and located upstream of the write wiring WL.
  • the second switching element SW2 may be connected across multiple domain wall motion elements 100 and located upstream of the common wiring CL.
  • the third switching element SW3 may be connected to each domain wall motion element 100 one by one.
  • FIG. 3 is a cross-sectional view of the vicinity of the domain wall motion element 100 in the accumulation region 1 according to the first embodiment.
  • FIG. 3 is a cross-section of one domain wall motion element 100 in FIG. 2 cut along the xz plane passing through the center of the width of the first ferromagnetic layer 10 in the y direction.
  • the first switching element SW1 and the second switching element SW2 shown in FIG. 3 are transistors Tr.
  • the transistor Tr has a gate electrode G, a gate insulating film GI, and a source S and a drain D formed on a substrate Sub.
  • the source S and the drain D are determined by the direction of current flow, and are both semiconductor active regions.
  • FIG. 3 shows only one example, and the positional relationship between the source S and the drain D may be reversed.
  • the substrate Sub is, for example, a semiconductor substrate.
  • the third switching element SW3 is electrically connected to the read wiring RL, and is, for example, shifted in the y direction in FIG. 3.
  • the transistor Tr, write wiring WL, common wiring CL, read wiring RL, and domain wall motion element 100 are connected by via wiring Vw extending in the z direction or in-plane wiring IPw extending in any direction within the xy plane.
  • the via wiring Vw and in-plane wiring IPw contain a conductive material.
  • An insulating layer 90 is formed between different layers in the z direction, except for the via wiring Vw.
  • the insulating layer 90 is an insulating layer that insulates between wirings of a multilayer wiring and between elements.
  • the domain wall motion element 100 and the transistor Tr are electrically isolated by the insulating layer 90, except for the via wiring Vw.
  • the insulating layer 90 is, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), silicon carbide (SiC), chromium nitride, silicon carbonitride (SiCN), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO x ), or the like.
  • FIG. 4 is a cross-sectional view of the domain wall motion element 100 cut in the xz plane passing through the center of the first ferromagnetic layer 10 in the y direction.
  • the arrows in the figure are an example of the orientation direction of the magnetization of the ferromagnetic material.
  • FIG. 5 is a plan view of the domain wall motion element 100 as seen from the z direction.
  • the domain wall motion element 100 includes, for example, a first ferromagnetic layer 10, a non-magnetic layer 20, a second ferromagnetic layer 30, a first magnetization fixed layer 40, a second magnetization fixed layer 50, an insulating layer 60, a first wiring W1, a second wiring W2, and a third wiring W3. At least one of the multiple domain wall motion elements included in the integration region 1 is the domain wall motion element 100 shown in Figures 4 and 5.
  • the first ferromagnetic layer 10 extends in the x direction. When viewed from the z direction, the length of the first ferromagnetic layer 10 in the x direction is longer than the length in the y direction.
  • the first ferromagnetic layer 10 has two magnetic domains inside, and a domain wall DW at the boundary between the two magnetic domains.
  • the first ferromagnetic layer 10 is, for example, a layer capable of magnetically recording information by changing the magnetic state.
  • the first ferromagnetic layer 10 is also called an analog layer, a magnetic recording layer, or a domain wall displacement layer.
  • the first ferromagnetic layer 10 has a first magnetization region A1, a second magnetization region A2, and a third magnetization region A3.
  • the first magnetization region A1 is a region in which the orientation direction of the magnetization M A1 is fixed in one direction.
  • the magnetization being fixed means that the magnetization does not reverse during normal operation of the domain wall motion element 100 (when no external force exceeding the expected value is applied).
  • the first magnetization region A1 is, for example, a region of the first ferromagnetic layer 10 that overlaps with the first magnetization fixed layer 40 when viewed from the z direction.
  • the magnetization M A1 of the first magnetization region A1 is fixed by, for example, the magnetization M 40 of the first magnetization fixed layer 40.
  • the second magnetization region A2 is a region in which the orientation direction of the magnetization M A2 is fixed in one direction.
  • the orientation direction of the magnetization M A2 of the second magnetization region A2 is different from the orientation direction of the magnetization M A1 of the first magnetization region A1.
  • the orientation direction of the magnetization M A2 of the second magnetization region A2 is, for example, opposite to the orientation direction of the magnetization M A1 of the first magnetization region A1.
  • the second magnetization region A2 is, for example, a region of the first ferromagnetic layer 10 that overlaps with the second magnetization fixed layer 50 when viewed from the z direction.
  • the magnetization M A2 of the second magnetization region A2 is, for example, fixed by the magnetization M 50 of the second magnetization fixed layer 50.
  • the third magnetization region A3 is a region other than the first magnetization region A1 and the second magnetization region A2 of the first ferromagnetic layer 10.
  • the third magnetization region A3 is, for example, a region sandwiched between the first magnetization region A1 and the second magnetization region A2 in the x direction.
  • the third magnetized region A3 is a region where the magnetization direction changes and the domain wall DW can move.
  • the third magnetized region A3 is called a domain wall movable region.
  • the third magnetized region A3 has a first magnetic domain A31 and a second magnetic domain A32.
  • the first magnetic domain A31 and the second magnetic domain A32 have magnetization orientation directions opposite to each other.
  • the boundary between the first magnetic domain A31 and the second magnetic domain A32 is the domain wall DW.
  • the magnetization M A31 of the first magnetic domain A31 is oriented in the same direction as the magnetization M A1 of the first magnetized region A1, for example.
  • the magnetization M A32 of the second magnetic domain A32 is oriented in the same direction as the magnetization M A2 of the adjacent second magnetized region A2, for example.
  • the domain wall DW moves within the third magnetized region A3 and does not invade the first magnetized region A1 and the second magnetized region A2.
  • the domain wall DW moves.
  • the domain wall DW moves by applying a write current in the x direction of the third magnetized region A3.
  • a write current e.g., a current pulse
  • electrons flow in the -x direction opposite to the current, and the domain wall DW moves in the -x direction.
  • a current flows from the first magnetic domain A31 to the second magnetic domain A32
  • the electrons spin-polarized in the second magnetic domain A32 reverse the magnetization M A31 of the first magnetic domain A31.
  • the domain wall DW moves in the -x direction.
  • the first ferromagnetic layer 10 is composed of a magnetic material.
  • the first ferromagnetic layer 10 may be a ferromagnetic material, a ferrimagnetic material, or a combination of these with an antiferromagnetic material whose magnetic state can be changed by a current.
  • the first ferromagnetic layer 10 preferably contains at least one element selected from the group consisting of Co, Ni, Fe, Pt, Pd, Gd, Tb, Mn, Ge, and Ga.
  • Examples of materials used for the first ferromagnetic layer 10 include a laminated film of Co and Ni, a laminated film of Co and Pt, a laminated film of Co and Pd, a laminated film of Co x Fe 1-x B (0 ⁇ x ⁇ 1) and a material similar to the non-magnetic layer 20 described later, MnGa-based materials, GdCo-based materials, and TbCo-based materials.
  • Ferrimagnetic materials such as MnGa-based materials, GdCo-based materials, and TbCo-based materials have small saturation magnetization, and the threshold current required to move the domain wall DW is small.
  • the laminated film of Co and Ni, the laminated film of Co and Pt, and the laminated film of Co and Pd have large coercive force, and the moving speed of the domain wall DW is slow.
  • antiferromagnetic materials include Mn 3 X (X is Sn, Ge, Ga, Pt, Ir, etc.), CuMnAs, and Mn 2 Au.
  • the first ferromagnetic layer 10 may be made of the same material as the second ferromagnetic layer 30 described later. A laminate of two or more types of films or materials may also be used.
  • the nonmagnetic layer 20 is sandwiched between the first ferromagnetic layer 10 and the second ferromagnetic layer 30.
  • the nonmagnetic layer 20 inhibits magnetic coupling between the first ferromagnetic layer 10 and the second ferromagnetic layer 30.
  • the nonmagnetic layer 20 is stacked on one side of the second ferromagnetic layer 30.
  • the nonmagnetic layer 20 is made of, for example, a nonmagnetic insulator, semiconductor, or metal.
  • the nonmagnetic layer 20 is preferably, for example, a nonmagnetic insulator.
  • the nonmagnetic insulator is, for example, Al 2 O 3 , SiO 2 , MgO, MgAl 2 O 4 , and materials in which a part of Al, Si, and Mg is replaced with Zn, Be, Ga, Ti, or the like. These materials have a large band gap and excellent insulating properties.
  • the nonmagnetic insulator is, for example, an oxide containing Mg or Al.
  • the nonmagnetic layer 20 is a tunnel barrier layer.
  • the nonmagnetic metal is, for example, Cu, Au, Ag, or the like.
  • the nonmagnetic semiconductor is, for example, Si, Ge, CuInSe 2 , CuGaSe 2 , Cu(In,Ga)Se 2 , or the like.
  • the thickness of the nonmagnetic layer 20 is, for example, 20 ⁇ or more, and may be 25 ⁇ or more.
  • the second ferromagnetic layer 30 is positioned so that at least a portion of it overlaps with the third magnetization region A3 in the z direction.
  • the second ferromagnetic layer 30 is, for example, closer to the substrate Sub than the first ferromagnetic layer 10.
  • the magnetization M30 of the second ferromagnetic layer 30 is more difficult to reverse than the magnetization of the third magnetization region A3 of the first ferromagnetic layer 10.
  • the magnetization M30 of the second ferromagnetic layer 30 is fixed and does not change direction when an external force strong enough to reverse the magnetization of the third magnetization region A3 is applied.
  • the second ferromagnetic layer 30 may also be called a fixed layer or a reference layer.
  • the second ferromagnetic layer 30 includes a ferromagnetic material.
  • the second ferromagnetic layer 30 includes, for example, a material that is easy to obtain a coherent tunnel effect between the first ferromagnetic layer 10 and the second ferromagnetic layer 30.
  • the second ferromagnetic layer 30 includes, for example, a metal selected from the group consisting of Cr, Mn, Co, Fe, and Ni, an alloy containing one or more of these metals, an alloy containing these metals and at least one of the elements B, C, and N, etc.
  • the second ferromagnetic layer 30 is, for example, Co-Fe, Co-Fe-B, or Ni-Fe.
  • a laminated film of Co and Ni, a laminated film of Co and Pt, or a laminated film of Co and Pd may be used as part of the second ferromagnetic layer 30.
  • the second ferromagnetic layer 30 may be, for example, a Heusler alloy.
  • the Heusler alloy is a half metal and has a high spin polarization.
  • the Heusler alloy is an intermetallic compound having a chemical composition of XYZ or X 2 YZ, where X is a transition metal element or a noble metal element of the Co, Fe, Ni, or Cu group on the periodic table, Y is a transition metal element or an element type of X of the Mn, V, Cr, or Ti group, and Z is a typical element of groups III to V.
  • Examples of Heusler alloys include Co 2 FeSi, Co 2 FeGe, Co 2 FeGa, Co 2 MnSi, Co 2 Mn 1-a Fe a Al b Si 1-b , and Co 2 FeGe 1-c Ga c .
  • the second ferromagnetic layer 30 may have multiple layers and may be a synthetic antiferromagnetic structure (SAF structure).
  • the synthetic antiferromagnetic structure is made up of two magnetic layers sandwiching a nonmagnetic spacer layer.
  • the magnetic layers include, for example, a ferromagnetic material, and may include an antiferromagnetic material such as IrMn or PtMn.
  • the spacer layer includes, for example, at least one selected from the group consisting of Ru, Ir, and Rh.
  • Each of the second ferromagnetic layer 30 and the non-magnetic layer 20 is, for example, longer in the x direction than the third magnetization region A3.
  • the portion where the second ferromagnetic layer 30 and the third magnetization region A3 face each other with the non-magnetic layer 20 in between is responsible for the resistance change of the domain wall motion element 100. If the length in the x direction of the second ferromagnetic layer 30 and the non-magnetic layer 20 is longer than the length in the x direction of the third region, it becomes easier to divide the resistance change width of the domain wall motion element 100 into multiple values.
  • the second ferromagnetic layer 30 is, for example, longer than the first ferromagnetic layer 10 in the x direction.
  • the heat dissipation of the first ferromagnetic layer 10 is improved.
  • the stability of the magnetization of the first magnetization region A1 and the magnetization of the second magnetization region A2 is increased, and the reliability of the data of the domain wall motion element 100 is improved.
  • the first magnetization fixed layer 40 is connected to the first ferromagnetic layer 10.
  • the first magnetization fixed layer 40 is an example of a first magnetization fixed portion.
  • the first magnetization fixed layer 40 is connected to the first magnetization region A1 of the first ferromagnetic layer 10.
  • the magnetization M40 of the first magnetization fixed layer 40 fixes the magnetization of the first magnetization region A1.
  • the first magnetization fixed layer 40 is a write electrode used when applying a write current to the domain wall motion element 100. The write current flows between the first magnetization fixed layer 40 and the second magnetization fixed layer 50.
  • the first magnetization pinned layer 40 is, for example, a ferromagnetic material.
  • the first magnetization pinned layer 40 can be made of, for example, the same material as the first ferromagnetic layer 10 or the second ferromagnetic layer 30.
  • the first magnetization pinned layer 40 may have multiple layers and may be a synthetic antiferromagnetic structure (SAF structure).
  • the synthetic antiferromagnetic structure is made up of two magnetic layers sandwiching a nonmagnetic spacer layer.
  • the magnetic layers include, for example, a ferromagnetic material, and may include an antiferromagnetic material such as IrMn or PtMn.
  • the spacer layer includes, for example, at least one selected from the group consisting of Ru, Ir, and Rh.
  • the first magnetization pinned layer 40 is not limited to a ferromagnetic material. If the first magnetization pinned layer 40 is not a ferromagnetic material, the current density of the current flowing through the first ferromagnetic layer 10 changes suddenly in the region overlapping with the first magnetization pinned layer 40, thereby restricting the movement of the domain wall DW and pinning the magnetization of the first magnetization region A1.
  • the second magnetization fixed layer 50 is connected to the first ferromagnetic layer 10 at a position spaced apart from the first magnetization fixed layer 40 in the x-direction.
  • the second magnetization fixed layer 50 is an example of a second magnetization fixed section.
  • the second magnetization fixed layer 50 is connected to the second magnetization region A2 of the first ferromagnetic layer 10.
  • the magnetization M50 of the second magnetization fixed layer 50 fixes the magnetization of the second magnetization region A2.
  • the second magnetization fixed layer 50 is a common electrode used when applying a write current to the domain wall motion element 100 and when applying a read current to the domain wall motion element 100.
  • the second magnetization pinned layer 50 may be made of the same material as the first magnetization pinned layer 40.
  • the second magnetization pinned layer 50 may be a synthetic antiferromagnetic structure (SAF structure).
  • the film thickness of the second magnetization pinned layer 50 may be different from that of the first magnetization pinned layer 40, for example.
  • the film thickness of the second magnetization pinned layer 50 is, for example, thinner than that of the first magnetization pinned layer 40. If the film thickness of the second magnetization pinned layer 50 and the film thickness of the first magnetization pinned layer 40 are different, a difference in the coercive force between the second magnetization pinned layer 50 and the first magnetization pinned layer 40 is likely to occur.
  • the first wiring W1 is connected to the first magnetization fixed layer 40.
  • the second wiring W2 is connected to the second magnetization fixed layer 50.
  • the third wiring W3 is connected to the second ferromagnetic layer 30.
  • Each of the first wiring W1, the second wiring W2, and the third wiring W3 includes a material having electrical conductivity.
  • Each of the first wiring W1, the second wiring W2, and the third wiring W3 may be a via wiring extending in the z direction.
  • the insulating layer 60 When viewed from the z direction, the insulating layer 60 is sandwiched in the x direction between the first magnetization fixed layer 40 and the second magnetization fixed layer 50.
  • the insulating layer 60 is a part of the insulating layer 90.
  • the main elements constituting the insulating layer 60 are, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), silicon carbide (SiC), chromium nitride, silicon carbonitride (SiCN), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO x ), etc.
  • the insulating layer 60 includes a first region 61.
  • the first region 61 is formed by adding a metal or metal nitride different from the main element constituting the insulating layer 60 to the material constituting the insulating layer 60.
  • the metal or metal nitride different from the main element constituting the insulating layer 60 is a metal or metal nitride other than Si.
  • the metal or metal nitride different from the main element constituting the insulating layer 60 is a metal or metal nitride other than Al.
  • the metal or metal nitride different from the main element constituting the insulating layer 60 is a metal or metal nitride other than Zr.
  • the first region 61 has better heat dissipation properties than the insulating layer 60 because a metal or metal nitride is added to it. Even though the first region 61 contains a metal or metal nitride, it is still an insulator overall.
  • the metal or metal nitride contained in the first region 61 is, for example, any one selected from the group consisting of Ti, Ta, Ru, Ni, Cr, Fe, TiN, and TaN.
  • the first region 61 may contain two or more types of metals or metal nitrides. If the first region 61 contains two or more types of metals or metal nitrides, the diffusion of these metals or metal nitrides can be suppressed.
  • the concentration of the metal or metal nitride in the first region 61 is, for example, 0.1 atm% or more.
  • the concentration of the metal or metal nitride in the first region 61 is, for example, 5 atm% or less.
  • the concentration of the metal or metal nitride in the first region 61 may be lower, for example, in the z direction, closer to the first ferromagnetic layer 10. By increasing the insulation on the side closer to the first ferromagnetic layer 10, insulation failure of the domain wall motion element 100 can be more effectively prevented. In addition, by increasing the concentration of the metal or metal nitride at a position away from the first ferromagnetic layer 10, heat can be dissipated to a position away from the first ferromagnetic layer 10.
  • FIG. 6 is a plan view of the first region 61 of the domain wall motion element 100 according to the first embodiment. When viewed from the z direction, the first region 61 extends in the xy plane between the first magnetization fixed layer 40 or the first wiring W1 and the second magnetization fixed layer 50 or the second wiring W2.
  • the first region 61 is connected to, for example, the second wiring W2.
  • the first region 61 may also be connected to the first wiring W1.
  • Most of the heat generated in the domain wall motion element 100 is dissipated via the first wiring W1, the second wiring W2, and the third wiring W3, so the first region 61 being in contact with these wirings increases the efficiency of dissipating heat from the domain wall motion element 100.
  • the first region 61 includes, for example, a second region 62 and a third region 63.
  • the second region 62 is a region that includes the above-mentioned metal or metal nitride.
  • the third region 63 is a region that does not include the above-mentioned metal or metal nitride.
  • the third region 63 has the same structure as the insulating layer 60.
  • the second region 62 and the third region 63 are insulators.
  • the second region 62 may be discontinuous in the x direction. That is, the third region 63 is present between the second regions 62 in the x direction.
  • the second region 62 containing a metal or metal nitride be discontinuous in the x direction, it is possible to suppress a decrease in the breakdown voltage between the first wiring W1 and the second wiring W2.
  • the second region 62 may be continuous in the y direction. By having the second region 62 continuous in the y direction, heat can be dissipated in the y direction.
  • the domain wall motion element 100 may have layers other than those described above.
  • a magnetic layer may be provided on the surface of the second ferromagnetic layer 30 opposite the nonmagnetic layer 20, via a spacer layer.
  • the second ferromagnetic layer 30, the spacer layer, and the magnetic layer form a synthetic antiferromagnetic structure (SAF structure).
  • a base layer may be provided on the surface of the magnetic layer opposite the spacer layer.
  • the magnetization direction of each layer of the domain wall motion element 100 can be confirmed, for example, by measuring the magnetization curve.
  • the magnetization curve can be measured, for example, using MOKE (Magneto Optical Kerr Effect). Measurement using MOKE is a measurement method in which linearly polarized light is incident on the object being measured, and the magneto-optical effect (magnetic Kerr effect) is used to cause the polarization direction to rotate, etc.
  • MOKE Magnetic Magnetic Kerr Effect
  • the domain wall motion element 100 is formed by a process of stacking each layer and a process of processing a part of each layer into a predetermined shape.
  • the layers can be stacked using sputtering, chemical vapor deposition (CVD), electron beam evaporation (EB evaporation), atomic laser deposition, etc.
  • the layers can be processed using photolithography and etching (e.g., Ar etching), etc.
  • the first region 61 can be created by filling the gap between the first magnetization pinned layer 40 and the second magnetization pinned layer 50 with an insulating layer 60, and then adding a metal or metal nitride.
  • the metal or metal nitride may be ion-implanted into the insulating layer 60.
  • a layer of metal or metal nitride may be formed on the insulating layer 60, and these elements may be diffused into the insulating layer 60 by annealing. In this case, the metal or metal nitride layer is removed after annealing.
  • the write operation is performed, for example, by a processor executing an operation program stored in the control unit 6.
  • the pulse application device 3 selects the domain wall motion element 100 to which a pulse is to be applied in accordance with the operating program.
  • the domain wall motion element 100 to which a pulse is applied is an element that stores data.
  • the domain wall motion element 100 to which a pulse is applied is an element that changes the weight in response to learning.
  • the control unit 6 controls which of the multiple domain wall motion elements 100 to apply a pulse to.
  • the control unit 6 turns ON the first switching element SW1 and second switching element SW2 connected to the domain wall motion element 100 to which the pulse is applied, and turns OFF the third switching element SW3.
  • the control unit 6 also turns OFF at least one of the first switching element SW1 and second switching element SW2 connected to the domain wall motion element 100 to which the pulse is not applied.
  • the pulse application device 3 outputs a write pulse to the domain wall motion element 100 according to the operating program.
  • the write pulse is applied between the first magnetization fixed layer 40 and the second magnetization fixed layer 50 along the first ferromagnetic layer 10 of the domain wall motion element 100.
  • the write pulse may be a square wave, a spike wave, or a wave of another waveform.
  • the reading operation is performed, for example, by the processor executing an operation program stored in the control unit 6.
  • the pulse application device 3 selects the domain wall motion element 100 to which the read pulse is to be applied in accordance with the operating program.
  • the domain wall motion element 100 to which the read pulse is applied is an element that reads out data.
  • the application of a read pulse to a specific domain wall motion element 100 corresponds to a multiplication operation of the input and the weight.
  • the read operation is an identification operation of the neural network.
  • the control unit 6 controls which of the multiple domain wall motion elements 100 to apply a pulse to.
  • the control unit 6 turns ON the third switching element SW3 and second switching element SW2 connected to the domain wall motion element 100 to which the pulse is applied, and turns OFF the first switching element SW1.
  • the control unit 6 also turns OFF at least one of the third switching element SW3 and second switching element SW2 connected to the domain wall motion element 100 to which the pulse is not applied.
  • the pulse application device 3 applies a read pulse to a specific domain wall motion element 100 according to the operation program.
  • the read pulse is applied, for example, between the third wiring W3 and the second magnetization fixed layer 50.
  • the voltage of the read pulse is a voltage that obtains a current density less than the critical current density required to move the domain wall DW of the first ferromagnetic layer 10. In other words, the read pulse does not move the domain wall DW.
  • a metal or metal nitride is added to a portion of the insulating layer 60.
  • the metal or metal nitride has a higher thermal conductivity than the main element that constitutes the insulating layer 60. Therefore, the heat generated in the domain wall motion element 100 can be efficiently dissipated to the first wiring W1 and the second wiring W2 via the first region 61 of the insulating layer 60.
  • FIG. 7 is a plan view of a domain wall motion element according to a first modified example.
  • FIG. 5 shows an example in which the first magnetization fixed layer 40 and the second magnetization fixed layer 50 have a rectangular shape in plan view, but the shape of the first magnetization fixed layer 40 and the second magnetization fixed layer 50 is not particularly important.
  • the first magnetization fixed layer 40 and the second magnetization fixed layer 50 may have a circular shape in plan view.
  • the first magnetization fixed layer 40 and the second magnetization fixed layer 50 may have a rectangular, circular, elliptical, or other shape in plan view.
  • FIG. 8 is a plan view of a first region 61 of a domain wall motion element according to a second modified example.
  • the first region 61 shown in FIG. 8 is made of a second region 62 containing the above-mentioned metal or metal nitride.
  • the second region 62 contains a metal or metal nitride, it is an insulator overall, so that even with this configuration, short circuits do not fundamentally occur.
  • FIG. 9 is a cross-sectional view of a domain wall motion element according to a third modified example.
  • the domain wall motion element 101 shown in FIG. 9 differs from the domain wall motion element 100 in that the first magnetization fixed portion is made up of a first magnetization fixed layer 40 and an intermediate layer 41, and the second magnetization fixed portion is made up of a second magnetization fixed layer 50 and an intermediate layer 51.
  • the intermediate layer 41 and the intermediate layer 51 are, for example, Ru, Ir, or Rh.
  • the first magnetization fixed layer 40 and the first magnetization region A1 are magnetically coupled via the intermediate layer 41.
  • the second magnetization fixed layer 50 and the second magnetization region A2 are magnetically coupled via the intermediate layer 51.
  • the first magnetization fixed portion and the second magnetization fixed portion may be made of multiple layers.
  • the first magnetization fixed layer 40 and the second magnetization fixed layer 50 may each be made of multiple layers.
  • FIG. 10 is a cross-sectional view of a domain wall motion element according to a fourth modified example.
  • the domain wall motion element 102 shown in FIG. 10 differs from the domain wall motion element 100 in that the second ferromagnetic layer 30 is located farther from the substrate Sub than the first ferromagnetic layer 10.
  • the domain wall motion element 102 is said to have a top pin structure.
  • the domain wall motion element 100 is said to have a bottom pin structure, in that the second ferromagnetic layer 30 is closer to the substrate Sub than the first ferromagnetic layer 10.
  • the top pin structure shown in the domain wall motion element 102 also provides the same effects as the bottom pin structure.
  • the above first to fourth modified examples also provide the same effects as the domain wall motion element 100 according to the first embodiment.
  • the characteristic configurations of these modified examples may also be combined.

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

This domain wall displacement element comprises: a first ferromagnetic layer having a domain wall inside; a second ferromagnetic layer; a nonmagnetic layer sandwiched between the first ferromagnetic layer and the second ferromagnetic layer; a first magnetization fixed section connected to the first ferromagnetic layer; a second magnetization fixed section connected to the first ferromagnetic layer at a position apart, in a first direction, from the first magnetization fixed section; and an insulating layer sandwiched between the first magnetization fixed section and the second magnetization fixed section in the first direction as viewed from the lamination direction. The insulating layer includes a first region containing an added metal different from a main element forming the insulating layer or an added metal nitride.

Description

磁壁移動素子及び磁気アレイDomain wall motion element and magnetic array
 本発明は、磁壁移動素子及び磁気アレイに関する。 The present invention relates to a domain wall motion element and a magnetic array.
 二つの強磁性層の磁化の相対角の変化に基づく抵抗値変化(磁気抵抗変化)を利用した磁気抵抗効果素子が知られている。例えば、特許文献1に記載の磁壁移動型の磁気抵抗効果素子(以下、磁壁移動素子という)は、磁気抵抗効果素子の一例である。磁壁移動素子は、磁壁の位置によって積層方向の抵抗値が変化し、多値又はアナログにデータを記録できる。 Magnetoresistance effect elements are known that utilize a change in resistance value (magnetoresistance change) based on a change in the relative angle between the magnetizations of two ferromagnetic layers. For example, the domain wall motion type magnetoresistance effect element (hereinafter referred to as domain wall motion element) described in Patent Document 1 is one example of a magnetoresistance effect element. In domain wall motion elements, the resistance value in the stacking direction changes depending on the position of the domain wall, and data can be recorded in multi-value or analog form.
 磁壁移動素子は、例えば特許文献2に記載のように、脳の機能を模倣したニューロモーフィックデバイスに利用することができる。 The magnetic domain wall motion element can be used in neuromorphic devices that mimic the functions of the brain, as described in Patent Document 2, for example.
特許第5441005号公報Patent No. 5441005 特開2020-053660号公報JP 2020-053660 A
 磁壁移動素子は、書き込み電流を印加することで、信号の書き込みを行う。書き込み電流は、磁壁移動素子の発熱の一因となる。磁壁移動素子の発熱は、磁壁移動素子内の磁化の安定性を低下させ、磁壁移動素子の信頼性を低下させる。また磁壁移動素子に過剰な発熱が加わると、磁壁移動素子が破損する場合がある。 The domain wall motion element writes signals by applying a write current. The write current is one of the causes of heat generation in the domain wall motion element. Heat generation in the domain wall motion element reduces the stability of magnetization within the domain wall motion element, and reduces the reliability of the domain wall motion element. Furthermore, if the domain wall motion element is subjected to excessive heat, the domain wall motion element may be damaged.
 本開示は上記問題に鑑みてなされたものであり、効率的に排熱を行うことができる、磁壁移動素子及び磁気アレイを提供することを目的とする。 This disclosure has been made in consideration of the above problems, and aims to provide a domain wall motion element and magnetic array that can efficiently dissipate heat.
 第1の態様に係る磁壁移動素子は、第1強磁性層と、第2強磁性層と、非磁性層と、第1磁化固定部と、第2磁化固定部と、絶縁層と、を備える。第1強磁性層は、内部に磁壁を有する。非磁性層は、第1強磁性層と第2強磁性層に挟まれる。第1磁化固定部は、第1強磁性層に接続されている。第2磁化固定部は、第1磁化固定部と第1方向に離間した位置で、第1強磁性層に接続されている。絶縁層は、積層方向から見て、第1磁化固定部と第2磁化固定部とに第1方向に挟まれている。絶縁層は、絶縁層を構成する主元素とは異なる金属又は金属窒化物が添加された第1領域を含む。 The domain wall motion element according to the first aspect includes a first ferromagnetic layer, a second ferromagnetic layer, a non-magnetic layer, a first magnetization fixed portion, a second magnetization fixed portion, and an insulating layer. The first ferromagnetic layer has a domain wall therein. The non-magnetic layer is sandwiched between the first ferromagnetic layer and the second ferromagnetic layer. The first magnetization fixed portion is connected to the first ferromagnetic layer. The second magnetization fixed portion is connected to the first ferromagnetic layer at a position spaced apart from the first magnetization fixed portion in the first direction. The insulating layer is sandwiched in the first direction between the first magnetization fixed portion and the second magnetization fixed portion when viewed from the stacking direction. The insulating layer includes a first region to which a metal or metal nitride different from the main element constituting the insulating layer is added.
第1実施形態に係る磁気アレイのブロック図である。FIG. 2 is a block diagram of a magnetic array according to the first embodiment. 第1実施形態に係る磁気アレイの集積領域の回路図である。FIG. 2 is a circuit diagram of an integrated region of the magnetic array according to the first embodiment. 第1実施形態に係る磁気アレイの磁壁移動素子の近傍の断面図である。3 is a cross-sectional view of the vicinity of a domain wall motion element of the magnetic array according to the first embodiment. FIG. 第1実施形態に係る磁壁移動素子の断面図である。1 is a cross-sectional view of a domain wall motion element according to a first embodiment. 第1実施形態に係る磁壁移動素子の平面図である。FIG. 2 is a plan view of the domain wall motion element according to the first embodiment. 第1実施形態に係る磁壁移動素子の絶縁層の平面図である。FIG. 2 is a plan view of an insulating layer of the domain wall motion element according to the first embodiment. 第1変形例に係る磁壁移動素子の平面図である。FIG. 13 is a plan view of a domain wall motion element according to a first modified example. 第2変形例に係る磁壁移動素子の絶縁層の平面図である。FIG. 13 is a plan view of an insulating layer of a domain wall motion element according to a second modified example. 第3変形例に係る磁壁移動素子の断面図である。FIG. 11 is a cross-sectional view of a domain wall motion element according to a third modified example. 第4変形例に係る磁壁移動素子の断面図である。FIG. 13 is a cross-sectional view of a domain wall motion element according to a fourth modified example.
 以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。 The present embodiment will now be described in detail with reference to the drawings as appropriate. The drawings used in the following description may show enlarged characteristic parts for the sake of convenience in order to make the features of the present invention easier to understand, and the dimensional ratios of each component may differ from the actual ones. The materials, dimensions, etc. exemplified in the following description are merely examples, and the present invention is not limited to them. Appropriate modifications can be made within the scope of the effects of the present invention.
 まず方向について定義する。x方向及びy方向は、後述する基板Sub(図3参照)の一面と略平行な方向である。x方向は、後述する第1強磁性層が延びる方向である。x方向は、第1方向の一例である。y方向は、x方向と直交する方向である。y方向は、第2方向の一例である。z方向は、後述する基板から磁壁移動素子へ向かう方向である。z方向は、積層方向の一例である。本明細書において、+z方向を「上」、-z方向を「下」として表す場合があるが、これら表現は便宜上のものであり、重力方向を規定するものではない。また本明細書で「x方向に延びる」とは、例えば、x方向、y方向、及びz方向の各寸法のうち最小の寸法よりもx方向の寸法が大きいことを意味する。他の方向に延びる場合も同様である。 First, the directions are defined. The x and y directions are substantially parallel to one surface of the substrate Sub (see FIG. 3), which will be described later. The x direction is the direction in which the first ferromagnetic layer, which will be described later, extends. The x direction is an example of a first direction. The y direction is a direction perpendicular to the x direction. The y direction is an example of a second direction. The z direction is a direction from the substrate, which will be described later, to the domain wall motion element. The z direction is an example of a stacking direction. In this specification, the +z direction may be expressed as "up" and the -z direction as "down", but these expressions are for convenience and do not define the direction of gravity. In this specification, "extending in the x direction" means, for example, that the dimension in the x direction is larger than the smallest dimension among the dimensions in the x direction, y direction, and z direction. The same applies to extending in other directions.
[第1実施形態]
 図1は、第1実施形態にかかる磁気アレイMAのブロック図である。磁気アレイMAは、集積領域1と周辺領域2とを有する。磁気アレイMAは、例えば、磁気メモリ、積和演算器、ニューロモーフィックデバイス、スピンメモリスタ、磁気光学素子に利用できる。
[First embodiment]
1 is a block diagram of a magnetic array MA according to a first embodiment. The magnetic array MA has an integration region 1 and a peripheral region 2. The magnetic array MA can be used for, for example, a magnetic memory, a multiply-and-accumulate calculator, a neuromorphic device, a spin memristor, or a magneto-optical element.
 集積領域1は、複数の磁壁移動素子が集積された領域である。磁気アレイMAをメモリとして用いる場合は、集積領域1にデータが蓄積される。磁気アレイMAをニューロモーフィックデバイスとして用いる場合は、集積領域1で学習及び推論が行われる。 The accumulation region 1 is an area where multiple domain wall motion elements are accumulated. When the magnetic array MA is used as a memory, data is stored in the accumulation region 1. When the magnetic array MA is used as a neuromorphic device, learning and inference are performed in the accumulation region 1.
 周辺領域2は、集積領域1内の磁壁移動素子の動作を制御する制御素子が実装されている領域である。周辺領域2は、例えば、パルス印加装置3、抵抗検出装置4、出力部5を有する。 The peripheral region 2 is an area in which a control element that controls the operation of the domain wall motion element in the integration region 1 is implemented. The peripheral region 2 includes, for example, a pulse application device 3, a resistance detection device 4, and an output section 5.
 パルス印加装置3は、集積領域1内の複数の磁壁移動素子の少なくとも一つにパルスを印加できるように構成されている。パルス印加装置3は、例えば、制御部6と電源7とを有する。 The pulse application device 3 is configured to apply a pulse to at least one of the multiple domain wall motion elements in the accumulation region 1. The pulse application device 3 has, for example, a control unit 6 and a power supply 7.
 制御部6は、例えば、プロセッサとメモリとを有する。プロセッサは、例えば、CPU(Central Processing Unit)である。プロセッサは、メモリに記憶された動作プログラムに基づいて動作する。制御部6は、例えば、パルスを印加する磁壁移動素子のアドレス、所定の磁壁移動素子に印加するパルスの大きさ(電圧、パルス長)等を制御する。制御部6は、この他、クロック、カウンタ、乱数発生器等を有してもよい。クロックは、パルスを印加するタイミングの指標となり、カウンタは、パルスを印加した回数等をカウントする。電源7は、制御部6からの指示に従い、磁壁移動素子に向かってパルスを印加する。 The control unit 6 has, for example, a processor and a memory. The processor is, for example, a CPU (Central Processing Unit). The processor operates based on an operating program stored in the memory. The control unit 6 controls, for example, the address of the domain wall motion element to which a pulse is applied, the magnitude of the pulse (voltage, pulse length) to be applied to a specific domain wall motion element, etc. The control unit 6 may also have a clock, a counter, a random number generator, etc. The clock is an indicator of the timing for applying the pulse, and the counter counts the number of times the pulse is applied, etc. The power supply 7 applies a pulse to the domain wall motion element according to instructions from the control unit 6.
 抵抗検出装置4は、集積領域1内の磁壁移動素子の抵抗値を検出できるように構成されている。抵抗検出装置4は、集積領域1内の磁壁移動素子のそれぞれの抵抗を検出してもよいし、例えば同じ列に属する磁壁移動素子の抵抗の合計を検出してもよい。抵抗検出装置4は、例えは、検出した抵抗値の大きさを比較する比較器を有する。比較器は、例えば、検出した抵抗値同士を比較してもよいし、事前に設定された基準抵抗値と検出した抵抗値とを比較してもよい。 The resistance detection device 4 is configured to detect the resistance value of the domain wall motion elements in the integration region 1. The resistance detection device 4 may detect the resistance of each domain wall motion element in the integration region 1, or may detect the total resistance of domain wall motion elements belonging to the same column, for example. The resistance detection device 4 has, for example, a comparator that compares the magnitude of the detected resistance values. The comparator may, for example, compare the detected resistance values with each other, or may compare the detected resistance value with a preset reference resistance value.
 出力部5は、抵抗検出装置4に接続されている。出力部5は、例えば、プロセッサ、出力コンデンサ、増幅器、コンバータ等を有する。磁気アレイMAをニューロモーフィックデバイスとして用いる場合は、出力部5は、抵抗検出装置4の検出結果を活性化関数に代入する演算を行ってもよい。演算は、例えば、プロセッサで行われる。出力部5は、演算結果を外部に出力する。磁気アレイMAをニューロモーフィックデバイスとして用いる場合は、例えば、演算結果を他の磁気アレイの入力信号として出力する等の動作を行ってもよいし、識別率として外部に出力する等の動作を行ってもよい。また出力部5は、演算結果をパルス印加装置3にフィードバックしてもよい。 The output unit 5 is connected to the resistance detection device 4. The output unit 5 has, for example, a processor, an output capacitor, an amplifier, a converter, etc. When the magnetic array MA is used as a neuromorphic device, the output unit 5 may perform a calculation to substitute the detection result of the resistance detection device 4 into an activation function. The calculation is performed, for example, by a processor. The output unit 5 outputs the calculation result to the outside. When the magnetic array MA is used as a neuromorphic device, for example, the output unit 5 may perform an operation such as outputting the calculation result as an input signal for another magnetic array, or may perform an operation such as outputting the calculation result to the outside as a discrimination rate. The output unit 5 may also feed back the calculation result to the pulse application device 3.
 図2は、第1実施形態に係る集積領域1の回路図である。集積領域1は、複数の磁壁移動素子100と、複数の書き込み配線WLと、複数の共通配線CLと、複数の読出し配線RLと、複数の第1スイッチング素子SW1と、複数の第2スイッチング素子SW2と、を備える。第3スイッチング素子SW3は、例えば、周辺領域2のパルス印加装置3に属してもよい。 FIG. 2 is a circuit diagram of the integrated region 1 according to the first embodiment. The integrated region 1 includes a plurality of domain wall motion elements 100, a plurality of write wirings WL, a plurality of common wirings CL, a plurality of read wirings RL, a plurality of first switching elements SW1, and a plurality of second switching elements SW2. The third switching element SW3 may belong to, for example, the pulse application device 3 in the peripheral region 2.
 複数の磁壁移動素子100は、例えば、行列状に配列する。複数の磁壁移動素子100は、実物の素子が行列状に配列するものに限られず、回路図において行列に配列するものでもよい。 The multiple domain wall motion elements 100 are arranged, for example, in a matrix. The multiple domain wall motion elements 100 are not limited to elements arranged in a matrix in the actual device, but may be arranged in a matrix in a circuit diagram.
 書き込み配線WLのそれぞれは、データの書き込み時に用いられる。書き込み配線WLはそれぞれ、パルス印加装置3と1つ以上の磁壁移動素子100とを電気的に接続する。共通配線CLのそれぞれは、データの書き込み時及び読み出し時の両方に用いる。共通配線CLのそれぞれは、例えば、抵抗検出装置4に接続されている。共通配線CLは、複数の磁壁移動素子100のそれぞれに設けられてもよいし、複数の磁壁移動素子100に亘って設けられてもよい。読出し配線RLのそれぞれは、データの読出し時に用いられる。読出し配線RLはそれぞれ、パルス印加装置3と1つ以上の磁壁移動素子100とを電気的に接続する。 Each of the write wirings WL is used when writing data. Each of the write wirings WL electrically connects the pulse application device 3 to one or more domain wall motion elements 100. Each of the common wirings CL is used when both writing and reading data. Each of the common wirings CL is connected to, for example, a resistance detection device 4. The common wiring CL may be provided for each of the multiple domain wall motion elements 100, or may be provided across the multiple domain wall motion elements 100. Each of the read wirings RL is used when reading data. Each of the read wirings RL electrically connects the pulse application device 3 to one or more domain wall motion elements 100.
 第1スイッチング素子SW1、第2スイッチング素子SW2及び第3スイッチング素子SW3は、電流の流れを制御する素子である。第1スイッチング素子SW1、第2スイッチング素子SW2及び第3スイッチング素子SW3は、例えば、トランジスタ、オボニック閾値スイッチ(OTS:Ovonic Threshold Switch)のように結晶層の相変化を利用した素子、金属絶縁体転移(MIT)スイッチのようにバンド構造の変化を利用した素子、ツェナーダイオード及びアバランシェダイオードのように降伏電圧を利用した素子、原子位置の変化に伴い伝導性が変化する素子である。 The first switching element SW1, the second switching element SW2, and the third switching element SW3 are elements that control the flow of current. The first switching element SW1, the second switching element SW2, and the third switching element SW3 are, for example, elements that utilize a phase change in a crystal layer such as a transistor or an Ovonic Threshold Switch (OTS), elements that utilize a change in band structure such as a Metal-Insulator Transition (MIT) switch, elements that utilize a breakdown voltage such as a Zener diode or an avalanche diode, and elements whose conductivity changes with a change in atomic position.
 第1スイッチング素子SW1、第2スイッチング素子SW2は、例えば、それぞれの磁壁移動素子100に一つずつ接続されている。第1スイッチング素子SW1は、例えば、磁壁移動素子100と書き込み配線WLとの間に接続されている。第2スイッチング素子SW2は、例えば、磁壁移動素子100と共通配線CLとの間に接続されている。第3スイッチング素子SW3は、例えば、複数の磁壁移動素子100に亘って接続されている。第3スイッチング素子SW3は、例えば、読出し配線RLに接続されている。 The first switching element SW1 and the second switching element SW2 are connected, for example, to each domain wall motion element 100. The first switching element SW1 is connected, for example, between the domain wall motion element 100 and the write wiring WL. The second switching element SW2 is connected, for example, between the domain wall motion element 100 and the common wiring CL. The third switching element SW3 is connected, for example, across multiple domain wall motion elements 100. The third switching element SW3 is connected, for example, to the read wiring RL.
 第1スイッチング素子SW1、第2スイッチング素子SW2及び第3スイッチング素子SW3の位置関係は、図2に示す場合に限られない。例えば、第1スイッチング素子SW1は、複数の磁壁移動素子100に亘って接続され、書き込み配線WLの上流に位置してもよい。また例えば、第2スイッチング素子SW2は、複数の磁壁移動素子100に亘って接続され、共通配線CLの上流に位置してもよい。また例えば、第3スイッチング素子SW3は、それぞれの磁壁移動素子100に一つずつ接続されていてもよい。 The positional relationship between the first switching element SW1, the second switching element SW2, and the third switching element SW3 is not limited to that shown in FIG. 2. For example, the first switching element SW1 may be connected across multiple domain wall motion elements 100 and located upstream of the write wiring WL. Also, for example, the second switching element SW2 may be connected across multiple domain wall motion elements 100 and located upstream of the common wiring CL. Also, for example, the third switching element SW3 may be connected to each domain wall motion element 100 one by one.
 図3は、第1実施形態に係る集積領域1の磁壁移動素子100の近傍の断面図である。図3は、図2における一つの磁壁移動素子100を第1強磁性層10のy方向の幅の中心を通るxz平面で切断した断面である。 FIG. 3 is a cross-sectional view of the vicinity of the domain wall motion element 100 in the accumulation region 1 according to the first embodiment. FIG. 3 is a cross-section of one domain wall motion element 100 in FIG. 2 cut along the xz plane passing through the center of the width of the first ferromagnetic layer 10 in the y direction.
 図3に示す第1スイッチング素子SW1及び第2スイッチング素子SW2は、トランジスタTrである。トランジスタTrは、ゲート電極Gと、ゲート絶縁膜GIと、基板Subに形成されたソースS及びドレインDと、を有する。ソースSとドレインDは、電流の流れ方向によって既定されるものであり、いずれも半導体の活性領域である。図3は一例を示しただけであり、ソースSとドレインDの位置関係は反転していてもよい。基板Subは、例えば、半導体基板である。第3スイッチング素子SW3は、読出し配線RLと電気的に接続され、例えば、図3においてy方向にずれた位置にある。 The first switching element SW1 and the second switching element SW2 shown in FIG. 3 are transistors Tr. The transistor Tr has a gate electrode G, a gate insulating film GI, and a source S and a drain D formed on a substrate Sub. The source S and the drain D are determined by the direction of current flow, and are both semiconductor active regions. FIG. 3 shows only one example, and the positional relationship between the source S and the drain D may be reversed. The substrate Sub is, for example, a semiconductor substrate. The third switching element SW3 is electrically connected to the read wiring RL, and is, for example, shifted in the y direction in FIG. 3.
 トランジスタTr、書き込み配線WL、共通配線CL、読出し配線RL及び磁壁移動素子100の間は、z方向に延びるビア配線Vw又はxy面内のいずれかの方向に延びる面内配線IPwで接続されている。ビア配線Vw及び面内配線IPwは、導電性を有する材料を含む。z方向の異なる階層間は、ビア配線Vwを除いて、絶縁層90が形成されている。 The transistor Tr, write wiring WL, common wiring CL, read wiring RL, and domain wall motion element 100 are connected by via wiring Vw extending in the z direction or in-plane wiring IPw extending in any direction within the xy plane. The via wiring Vw and in-plane wiring IPw contain a conductive material. An insulating layer 90 is formed between different layers in the z direction, except for the via wiring Vw.
 絶縁層90は、多層配線の配線間や素子間を絶縁する絶縁層である。磁壁移動素子100とトランジスタTrとは、ビア配線Vwを除いて、絶縁層90によって電気的に分離されている。絶縁層90は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、炭化シリコン(SiC)、窒化クロム、炭窒化シリコン(SiCN)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)等である。 The insulating layer 90 is an insulating layer that insulates between wirings of a multilayer wiring and between elements. The domain wall motion element 100 and the transistor Tr are electrically isolated by the insulating layer 90, except for the via wiring Vw. The insulating layer 90 is, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), silicon carbide (SiC), chromium nitride, silicon carbonitride (SiCN), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO x ), or the like.
 図4は、磁壁移動素子100を第1強磁性層10のy方向の中心を通るxz平面で切断した断面図である。図に示す矢印は、強磁性体の磁化の配向方向の一例である。図5は、磁壁移動素子100をz方向から見た平面図である。 FIG. 4 is a cross-sectional view of the domain wall motion element 100 cut in the xz plane passing through the center of the first ferromagnetic layer 10 in the y direction. The arrows in the figure are an example of the orientation direction of the magnetization of the ferromagnetic material. FIG. 5 is a plan view of the domain wall motion element 100 as seen from the z direction.
 磁壁移動素子100は、例えば、第1強磁性層10と非磁性層20と第2強磁性層30と第1磁化固定層40と第2磁化固定層50と絶縁層60と第1配線W1と第2配線W2と第3配線W3とを備える。集積領域1に含まれる複数の磁壁移動素子のうち少なくとも一つは、図4及び図5に示す磁壁移動素子100である。 The domain wall motion element 100 includes, for example, a first ferromagnetic layer 10, a non-magnetic layer 20, a second ferromagnetic layer 30, a first magnetization fixed layer 40, a second magnetization fixed layer 50, an insulating layer 60, a first wiring W1, a second wiring W2, and a third wiring W3. At least one of the multiple domain wall motion elements included in the integration region 1 is the domain wall motion element 100 shown in Figures 4 and 5.
 第1強磁性層10は、x方向に延びる。第1強磁性層10は、z方向から見ると、x方向の長さがy方向の長さより長い。第1強磁性層10は、内部に2つの磁区を有し、2つの磁区の境界に磁壁DWを有する。第1強磁性層10は、例えば、磁気的な状態の変化により情報を磁気記録可能な層である。第1強磁性層10は、アナログ層、磁気記録層、磁壁移動層とも呼ばれる。 The first ferromagnetic layer 10 extends in the x direction. When viewed from the z direction, the length of the first ferromagnetic layer 10 in the x direction is longer than the length in the y direction. The first ferromagnetic layer 10 has two magnetic domains inside, and a domain wall DW at the boundary between the two magnetic domains. The first ferromagnetic layer 10 is, for example, a layer capable of magnetically recording information by changing the magnetic state. The first ferromagnetic layer 10 is also called an analog layer, a magnetic recording layer, or a domain wall displacement layer.
 第1強磁性層10は、第1磁化領域A1と第2磁化領域A2と第3磁化領域A3を有する。 The first ferromagnetic layer 10 has a first magnetization region A1, a second magnetization region A2, and a third magnetization region A3.
 第1磁化領域A1は、磁化MA1の配向方向が一方向に固定された領域である。磁化が固定されているとは、磁壁移動素子100の通常の動作(想定を超える外力が印加されていない)において、磁化が反転しないことをいう。第1磁化領域A1は、例えば、第1強磁性層10のうちz方向からみて第1磁化固定層40と重なる領域である。第1磁化領域A1の磁化MA1は、例えば、第1磁化固定層40の磁化M40によって固定されている。 The first magnetization region A1 is a region in which the orientation direction of the magnetization M A1 is fixed in one direction. The magnetization being fixed means that the magnetization does not reverse during normal operation of the domain wall motion element 100 (when no external force exceeding the expected value is applied). The first magnetization region A1 is, for example, a region of the first ferromagnetic layer 10 that overlaps with the first magnetization fixed layer 40 when viewed from the z direction. The magnetization M A1 of the first magnetization region A1 is fixed by, for example, the magnetization M 40 of the first magnetization fixed layer 40.
 第2磁化領域A2は、磁化MA2の配向方向が一方向に固定された領域である。第2磁化領域A2の磁化MA2の配向方向は、第1磁化領域A1の磁化MA1の配向方向と異なる。第2磁化領域A2の磁化MA2の配向方向は、例えば、第1磁化領域A1の磁化MA1の配向方向と反対である。第2磁化領域A2は、例えば、第1強磁性層10のうちz方向からみて第2磁化固定層50と重なる領域である。第2磁化領域A2の磁化MA2は、例えば、第2磁化固定層50の磁化M50によって固定されている。 The second magnetization region A2 is a region in which the orientation direction of the magnetization M A2 is fixed in one direction. The orientation direction of the magnetization M A2 of the second magnetization region A2 is different from the orientation direction of the magnetization M A1 of the first magnetization region A1. The orientation direction of the magnetization M A2 of the second magnetization region A2 is, for example, opposite to the orientation direction of the magnetization M A1 of the first magnetization region A1. The second magnetization region A2 is, for example, a region of the first ferromagnetic layer 10 that overlaps with the second magnetization fixed layer 50 when viewed from the z direction. The magnetization M A2 of the second magnetization region A2 is, for example, fixed by the magnetization M 50 of the second magnetization fixed layer 50.
 第3磁化領域A3は、第1強磁性層10の第1磁化領域A1及び第2磁化領域A2以外の領域である。第3磁化領域A3は、例えば、x方向に第1磁化領域A1と第2磁化領域A2とに挟まれる領域である。 The third magnetization region A3 is a region other than the first magnetization region A1 and the second magnetization region A2 of the first ferromagnetic layer 10. The third magnetization region A3 is, for example, a region sandwiched between the first magnetization region A1 and the second magnetization region A2 in the x direction.
 第3磁化領域A3は、磁化の向きが変化し、磁壁DWが移動できる領域である。第3磁化領域A3は、磁壁移動可能領域と称される。第3磁化領域A3は、第1磁区A31と第2磁区A32とを有する。第1磁区A31と第2磁区A32とは、磁化の配向方向が反対である。第1磁区A31と第2磁区A32との境界が磁壁DWである。第1磁区A31の磁化MA31は、例えば、第1磁化領域A1の磁化MA1と同じ方向に配向する。第2磁区A32の磁化MA32は、例えば、隣接する第2磁化領域A2の磁化MA2と同じ方向に配向する。磁壁DWは、原則、第3磁化領域A3内を移動し、第1磁化領域A1及び第2磁化領域A2には侵入しない。 The third magnetized region A3 is a region where the magnetization direction changes and the domain wall DW can move. The third magnetized region A3 is called a domain wall movable region. The third magnetized region A3 has a first magnetic domain A31 and a second magnetic domain A32. The first magnetic domain A31 and the second magnetic domain A32 have magnetization orientation directions opposite to each other. The boundary between the first magnetic domain A31 and the second magnetic domain A32 is the domain wall DW. The magnetization M A31 of the first magnetic domain A31 is oriented in the same direction as the magnetization M A1 of the first magnetized region A1, for example. The magnetization M A32 of the second magnetic domain A32 is oriented in the same direction as the magnetization M A2 of the adjacent second magnetized region A2, for example. In principle, the domain wall DW moves within the third magnetized region A3 and does not invade the first magnetized region A1 and the second magnetized region A2.
 第3磁化領域A3内における第1磁区A31と第2磁区A32との体積の比率が変化すると、磁壁DWが移動する。磁壁DWは、第3磁化領域A3のx方向に書き込み電流を流すことによって移動する。例えば、第3磁化領域A3に+x方向の書き込み電流(例えば、電流パルス)を印加すると、電子は電流と逆の-x方向に流れるため、磁壁DWは-x方向に移動する。第1磁区A31から第2磁区A32に向って電流が流れる場合、第2磁区A32でスピン偏極した電子は、第1磁区A31の磁化MA31を磁化反転させる。第1磁区A31の磁化MA31が反転することで、磁壁DWは-x方向に移動する。 When the volume ratio between the first magnetic domain A31 and the second magnetic domain A32 in the third magnetized region A3 changes, the domain wall DW moves. The domain wall DW moves by applying a write current in the x direction of the third magnetized region A3. For example, when a write current (e.g., a current pulse) in the +x direction is applied to the third magnetized region A3, electrons flow in the -x direction opposite to the current, and the domain wall DW moves in the -x direction. When a current flows from the first magnetic domain A31 to the second magnetic domain A32, the electrons spin-polarized in the second magnetic domain A32 reverse the magnetization M A31 of the first magnetic domain A31. When the magnetization M A31 of the first magnetic domain A31 is reversed, the domain wall DW moves in the -x direction.
 第1強磁性層10は、磁性体により構成される。第1強磁性層10は、強磁性体、フェリ磁性体、又はこれらと電流により磁気状態を変化させることが可能な反強磁性体との組み合わせでもよい。第1強磁性層10は、Co、Ni、Fe、Pt、Pd、Gd、Tb、Mn、Ge、Gaからなる群から選択される少なくとも一つの元素を有することが好ましい。 The first ferromagnetic layer 10 is composed of a magnetic material. The first ferromagnetic layer 10 may be a ferromagnetic material, a ferrimagnetic material, or a combination of these with an antiferromagnetic material whose magnetic state can be changed by a current. The first ferromagnetic layer 10 preferably contains at least one element selected from the group consisting of Co, Ni, Fe, Pt, Pd, Gd, Tb, Mn, Ge, and Ga.
 第1強磁性層10に用いられる材料として、例えば、CoとNiの積層膜、CoとPtの積層膜、CoとPdの積層膜、CoFe1-xB(0≦x≦1)と後述する非磁性層20と同様の材料との積層膜、MnGa系材料、GdCo系材料、TbCo系材料が挙げられる。MnGa系材料、GdCo系材料、TbCo系材料等のフェリ磁性体は飽和磁化が小さく、磁壁DWを移動するために必要な閾値電流が小さくなる。またCoとNiの積層膜、CoとPtの積層膜、CoとPdの積層膜は、保磁力が大きく、磁壁DWの移動速度が遅くなる。反強磁性体は、例えば、MnX(XはSn、Ge、Ga、Pt、Ir等)、CuMnAs、MnAu等である。第1強磁性層10には、後述する第2強磁性層30と同様の材料を適用することもできる。2種以上の積層膜、材料を適用する事もできる。 Examples of materials used for the first ferromagnetic layer 10 include a laminated film of Co and Ni, a laminated film of Co and Pt, a laminated film of Co and Pd, a laminated film of Co x Fe 1-x B (0≦x≦1) and a material similar to the non-magnetic layer 20 described later, MnGa-based materials, GdCo-based materials, and TbCo-based materials. Ferrimagnetic materials such as MnGa-based materials, GdCo-based materials, and TbCo-based materials have small saturation magnetization, and the threshold current required to move the domain wall DW is small. In addition, the laminated film of Co and Ni, the laminated film of Co and Pt, and the laminated film of Co and Pd have large coercive force, and the moving speed of the domain wall DW is slow. Examples of antiferromagnetic materials include Mn 3 X (X is Sn, Ge, Ga, Pt, Ir, etc.), CuMnAs, and Mn 2 Au. The first ferromagnetic layer 10 may be made of the same material as the second ferromagnetic layer 30 described later. A laminate of two or more types of films or materials may also be used.
 非磁性層20は、第1強磁性層10と第2強磁性層30とに挟まれる。非磁性層20は、第1強磁性層10と第2強磁性層30との間の磁気的な結合を阻害する。非磁性層20は、第2強磁性層30の一面に積層される。 The nonmagnetic layer 20 is sandwiched between the first ferromagnetic layer 10 and the second ferromagnetic layer 30. The nonmagnetic layer 20 inhibits magnetic coupling between the first ferromagnetic layer 10 and the second ferromagnetic layer 30. The nonmagnetic layer 20 is stacked on one side of the second ferromagnetic layer 30.
 非磁性層20は、例えば、非磁性の絶縁体、半導体又は金属からなる。非磁性層20は、例えば、非磁性の絶縁体であることが好ましい。非磁性の絶縁体は、例えば、Al、SiO、MgO、MgAl、およびこれらのAl、Si、Mgの一部がZn、Be、Ga、Ti等に置換された材料である。これらの材料は、バンドギャップが大きく、絶縁性に優れる。非磁性の絶縁体は、例えば、Mg又はAlを含む酸化物である。非磁性層20が非磁性の絶縁体からなる場合、非磁性層20はトンネルバリア層である。非磁性の金属は、例えば、Cu、Au、Ag等である。非磁性の半導体は、例えば、Si、Ge、CuInSe、CuGaSe、Cu(In,Ga)Se等である。 The nonmagnetic layer 20 is made of, for example, a nonmagnetic insulator, semiconductor, or metal. The nonmagnetic layer 20 is preferably, for example, a nonmagnetic insulator. The nonmagnetic insulator is, for example, Al 2 O 3 , SiO 2 , MgO, MgAl 2 O 4 , and materials in which a part of Al, Si, and Mg is replaced with Zn, Be, Ga, Ti, or the like. These materials have a large band gap and excellent insulating properties. The nonmagnetic insulator is, for example, an oxide containing Mg or Al. When the nonmagnetic layer 20 is made of a nonmagnetic insulator, the nonmagnetic layer 20 is a tunnel barrier layer. The nonmagnetic metal is, for example, Cu, Au, Ag, or the like. The nonmagnetic semiconductor is, for example, Si, Ge, CuInSe 2 , CuGaSe 2 , Cu(In,Ga)Se 2 , or the like.
 非磁性層20の厚みは、例えば、20Å以上であり、25Å以上でもよい。 The thickness of the nonmagnetic layer 20 is, for example, 20 Å or more, and may be 25 Å or more.
 第2強磁性層30は、第1強磁性層10と共に、非磁性層20を挟む。第2強磁性層30は、少なくとも一部が第3磁化領域A3とz方向に重なる位置にある。第2強磁性層30は、例えば、第1強磁性層10より基板Subの近くにある。 The second ferromagnetic layer 30, together with the first ferromagnetic layer 10, sandwiches the nonmagnetic layer 20. The second ferromagnetic layer 30 is positioned so that at least a portion of it overlaps with the third magnetization region A3 in the z direction. The second ferromagnetic layer 30 is, for example, closer to the substrate Sub than the first ferromagnetic layer 10.
 第2強磁性層30の磁化M30は、第1強磁性層10の第3磁化領域A3の磁化より反転しにくい。第2強磁性層30の磁化M30は、第3磁化領域A3の磁化が反転する程度の外力が印加された際に向きが変化せず、固定されている。第2強磁性層30は、固定層、参照層と言われる場合もある。 The magnetization M30 of the second ferromagnetic layer 30 is more difficult to reverse than the magnetization of the third magnetization region A3 of the first ferromagnetic layer 10. The magnetization M30 of the second ferromagnetic layer 30 is fixed and does not change direction when an external force strong enough to reverse the magnetization of the third magnetization region A3 is applied. The second ferromagnetic layer 30 may also be called a fixed layer or a reference layer.
 第2強磁性層30は、強磁性体を含む。第2強磁性層30は、例えば、第1強磁性層10との間で、コヒーレントトンネル効果を得やすい材料を含む。第2強磁性層30は、例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属、これらの金属を1種以上含む合金、これらの金属とB、C、及びNの少なくとも1種以上の元素とが含まれる合金等を含む。第2強磁性層30は、例えば、Co-Fe、Co-Fe-B、Ni-Feである。また、第2強磁性層30の一部に、CoとNiの積層膜、CoとPtの積層膜、CoとPdの積層膜を用いても良い。 The second ferromagnetic layer 30 includes a ferromagnetic material. The second ferromagnetic layer 30 includes, for example, a material that is easy to obtain a coherent tunnel effect between the first ferromagnetic layer 10 and the second ferromagnetic layer 30. The second ferromagnetic layer 30 includes, for example, a metal selected from the group consisting of Cr, Mn, Co, Fe, and Ni, an alloy containing one or more of these metals, an alloy containing these metals and at least one of the elements B, C, and N, etc. The second ferromagnetic layer 30 is, for example, Co-Fe, Co-Fe-B, or Ni-Fe. Also, a laminated film of Co and Ni, a laminated film of Co and Pt, or a laminated film of Co and Pd may be used as part of the second ferromagnetic layer 30.
 第2強磁性層30は、例えば、ホイスラー合金でもよい。ホイスラー合金はハーフメタルであり、高いスピン分極率を有する。ホイスラー合金は、XYZ又はXYZの化学組成をもつ金属間化合物であり、Xは周期表上でCo、Fe、Ni、あるいはCu族の遷移金属元素または貴金属元素であり、YはMn、V、CrあるいはTi族の遷移金属又はXの元素種であり、ZはIII族からV族の典型元素である。ホイスラー合金として例えば、CoFeSi、CoFeGe、CoFeGa、CoMnSi、CoMn1-aFeAlSi1-b、CoFeGe1-cGa等が挙げられる。 The second ferromagnetic layer 30 may be, for example, a Heusler alloy. The Heusler alloy is a half metal and has a high spin polarization. The Heusler alloy is an intermetallic compound having a chemical composition of XYZ or X 2 YZ, where X is a transition metal element or a noble metal element of the Co, Fe, Ni, or Cu group on the periodic table, Y is a transition metal element or an element type of X of the Mn, V, Cr, or Ti group, and Z is a typical element of groups III to V. Examples of Heusler alloys include Co 2 FeSi, Co 2 FeGe, Co 2 FeGa, Co 2 MnSi, Co 2 Mn 1-a Fe a Al b Si 1-b , and Co 2 FeGe 1-c Ga c .
 第2強磁性層30は、複数の層を有し、シンセティック反強磁性構造(SAF構造)でもよい。シンセティック反強磁性構造は、非磁性のスペーサ層を挟む二つの磁性層からなる。磁性層は、例えば、強磁性体を含み、IrMn、PtMn等の反強磁性体を含んでもよい。スペーサ層は、例えば、Ru、Ir、Rhからなる群から選択される少なくとも一つを含む。 The second ferromagnetic layer 30 may have multiple layers and may be a synthetic antiferromagnetic structure (SAF structure). The synthetic antiferromagnetic structure is made up of two magnetic layers sandwiching a nonmagnetic spacer layer. The magnetic layers include, for example, a ferromagnetic material, and may include an antiferromagnetic material such as IrMn or PtMn. The spacer layer includes, for example, at least one selected from the group consisting of Ru, Ir, and Rh.
 第2強磁性層30及び非磁性層20のそれぞれは、例えば、x方向において、第3磁化領域A3より長い。非磁性層20を挟んで第2強磁性層30と第3磁化領域A3とが向き合う部分が、磁壁移動素子100の抵抗変化を担う。第2強磁性層30及び非磁性層20のx方向の長さが第3領域のx方向の長さより長いと、磁壁移動素子100の抵抗変化幅をより多値に区分しやすくなる。 Each of the second ferromagnetic layer 30 and the non-magnetic layer 20 is, for example, longer in the x direction than the third magnetization region A3. The portion where the second ferromagnetic layer 30 and the third magnetization region A3 face each other with the non-magnetic layer 20 in between is responsible for the resistance change of the domain wall motion element 100. If the length in the x direction of the second ferromagnetic layer 30 and the non-magnetic layer 20 is longer than the length in the x direction of the third region, it becomes easier to divide the resistance change width of the domain wall motion element 100 into multiple values.
 第2強磁性層30は、例えば、x方向において、第1強磁性層10より長い。z方向から見て第2強磁性層30が第1強磁性層10の全体と重畳すると、第1強磁性層10の放熱性が向上する。その結果、第1磁化領域A1の磁化及び第2磁化領域A2の磁化の安定性が高まり、磁壁移動素子100のデータの信頼性が高まる。 The second ferromagnetic layer 30 is, for example, longer than the first ferromagnetic layer 10 in the x direction. When the second ferromagnetic layer 30 overlaps the entire first ferromagnetic layer 10 as viewed in the z direction, the heat dissipation of the first ferromagnetic layer 10 is improved. As a result, the stability of the magnetization of the first magnetization region A1 and the magnetization of the second magnetization region A2 is increased, and the reliability of the data of the domain wall motion element 100 is improved.
 第1磁化固定層40は、第1強磁性層10に接続されている。第1磁化固定層40は、第1磁化固定部の一例である。第1磁化固定層40は、第1強磁性層10の第1磁化領域A1に接続されている。第1磁化固定層40の磁化M40は第1磁化領域A1の磁化を固定する。第1磁化固定層40は、磁壁移動素子100に書き込み電流を印加する際に用いられる書き込み電極である。書き込み電流は、第1磁化固定層40と第2磁化固定層50との間に流れる。 The first magnetization fixed layer 40 is connected to the first ferromagnetic layer 10. The first magnetization fixed layer 40 is an example of a first magnetization fixed portion. The first magnetization fixed layer 40 is connected to the first magnetization region A1 of the first ferromagnetic layer 10. The magnetization M40 of the first magnetization fixed layer 40 fixes the magnetization of the first magnetization region A1. The first magnetization fixed layer 40 is a write electrode used when applying a write current to the domain wall motion element 100. The write current flows between the first magnetization fixed layer 40 and the second magnetization fixed layer 50.
 第1磁化固定層40は、例えば、強磁性体である。第1磁化固定層40は、例えば、第1強磁性層10又は第2強磁性層30と同様の材料を適用できる。 The first magnetization pinned layer 40 is, for example, a ferromagnetic material. The first magnetization pinned layer 40 can be made of, for example, the same material as the first ferromagnetic layer 10 or the second ferromagnetic layer 30.
 第1磁化固定層40は、複数の層を有し、シンセティック反強磁性構造(SAF構造)でもよい。シンセティック反強磁性構造は、非磁性のスペーサ層を挟む二つの磁性層からなる。磁性層は、例えば、強磁性体を含み、IrMn、PtMn等の反強磁性体を含んでもよい。スペーサ層は、例えば、Ru、Ir、Rhからなる群から選択される少なくとも一つを含む。 The first magnetization pinned layer 40 may have multiple layers and may be a synthetic antiferromagnetic structure (SAF structure). The synthetic antiferromagnetic structure is made up of two magnetic layers sandwiching a nonmagnetic spacer layer. The magnetic layers include, for example, a ferromagnetic material, and may include an antiferromagnetic material such as IrMn or PtMn. The spacer layer includes, for example, at least one selected from the group consisting of Ru, Ir, and Rh.
 また第1磁化固定層40は、強磁性体に限られない。第1磁化固定層40が強磁性体ではない場合は、第1磁化固定層40と重なる領域で第1強磁性層10を流れる電流の電流密度が急激に変化することで、磁壁DWの移動が制限され、第1磁化領域A1の磁化が固定される。 Furthermore, the first magnetization pinned layer 40 is not limited to a ferromagnetic material. If the first magnetization pinned layer 40 is not a ferromagnetic material, the current density of the current flowing through the first ferromagnetic layer 10 changes suddenly in the region overlapping with the first magnetization pinned layer 40, thereby restricting the movement of the domain wall DW and pinning the magnetization of the first magnetization region A1.
 第2磁化固定層50は、第1磁化固定層40とx方向に離間した位置で、第1強磁性層10に接続されている。第2磁化固定層50は、第2磁化固定部の一例である。第2磁化固定層50は、第1強磁性層10の第2磁化領域A2に接続されている。第2磁化固定層50の磁化M50は第2磁化領域A2の磁化を固定する。第2磁化固定層50は、磁壁移動素子100に書き込み電流を印加する際、及び、磁壁移動素子100に読出し電流を印加する際に用いられる共通電極である。 The second magnetization fixed layer 50 is connected to the first ferromagnetic layer 10 at a position spaced apart from the first magnetization fixed layer 40 in the x-direction. The second magnetization fixed layer 50 is an example of a second magnetization fixed section. The second magnetization fixed layer 50 is connected to the second magnetization region A2 of the first ferromagnetic layer 10. The magnetization M50 of the second magnetization fixed layer 50 fixes the magnetization of the second magnetization region A2. The second magnetization fixed layer 50 is a common electrode used when applying a write current to the domain wall motion element 100 and when applying a read current to the domain wall motion element 100.
 第2磁化固定層50は、第1磁化固定層40と同様の材料を用いることができる。第2磁化固定層50は、シンセティック反強磁性構造(SAF構造)でもよい。 The second magnetization pinned layer 50 may be made of the same material as the first magnetization pinned layer 40. The second magnetization pinned layer 50 may be a synthetic antiferromagnetic structure (SAF structure).
 第2磁化固定層50の膜厚は、例えば、第1磁化固定層40の膜厚と異なってもよい。第2磁化固定層50の膜厚は、例えば、第1磁化固定層40の膜厚より薄い。第2磁化固定層50の膜厚と第1磁化固定層40の膜厚とが異なると、第2磁化固定層50と第1磁化固定層40の保磁力に差が生じやすい。第2磁化固定層50と第1磁化固定層40の保磁力に差があると、製造時点で、第2磁化固定層50の磁化M50の配向方向と第1磁化固定層40の磁化M40の配向方向とを異なる方向に設定しやすくなる。 The film thickness of the second magnetization pinned layer 50 may be different from that of the first magnetization pinned layer 40, for example. The film thickness of the second magnetization pinned layer 50 is, for example, thinner than that of the first magnetization pinned layer 40. If the film thickness of the second magnetization pinned layer 50 and the film thickness of the first magnetization pinned layer 40 are different, a difference in the coercive force between the second magnetization pinned layer 50 and the first magnetization pinned layer 40 is likely to occur. If there is a difference in the coercive force between the second magnetization pinned layer 50 and the first magnetization pinned layer 40, it becomes easier to set the orientation direction of the magnetization M50 of the second magnetization pinned layer 50 and the orientation direction of the magnetization M40 of the first magnetization pinned layer 40 to different directions at the time of manufacture.
 第1配線W1は、第1磁化固定層40に接続されている。第2配線W2は、第2磁化固定層50に接続されている。第3配線W3は、第2強磁性層30に接続されている。第1配線W1、第2配線W2及び第3配線W3のそれぞれは、導電性を有する材料を含む。第1配線W1、第2配線W2及び第3配線W3のそれぞれは、z方向に延びるビア配線でもよい。 The first wiring W1 is connected to the first magnetization fixed layer 40. The second wiring W2 is connected to the second magnetization fixed layer 50. The third wiring W3 is connected to the second ferromagnetic layer 30. Each of the first wiring W1, the second wiring W2, and the third wiring W3 includes a material having electrical conductivity. Each of the first wiring W1, the second wiring W2, and the third wiring W3 may be a via wiring extending in the z direction.
 絶縁層60は、z方向から見て、第1磁化固定層40と第2磁化固定層50とにx方向に挟まれている。絶縁層60は、絶縁層90の一部である。絶縁層60を構成する主元素は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、炭化シリコン(SiC)、窒化クロム、炭窒化シリコン(SiCN)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)等である。 When viewed from the z direction, the insulating layer 60 is sandwiched in the x direction between the first magnetization fixed layer 40 and the second magnetization fixed layer 50. The insulating layer 60 is a part of the insulating layer 90. The main elements constituting the insulating layer 60 are, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), silicon carbide (SiC), chromium nitride, silicon carbonitride (SiCN), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO x ), etc.
 絶縁層60は、第1領域61を含む。第1領域61は、絶縁層60を構成する材料に、絶縁層60を構成する主元素とは異なる金属又は金属窒化物が添加されたものである。 The insulating layer 60 includes a first region 61. The first region 61 is formed by adding a metal or metal nitride different from the main element constituting the insulating layer 60 to the material constituting the insulating layer 60.
 例えば、絶縁層60がシリコン化合物の場合、絶縁層60を構成する主元素とは異なる金属又は金属窒化物は、Si以外の金属又は金属窒化物である。例えば、絶縁層60が酸化アルミニウムの場合、絶縁層60を構成する主元素とは異なる金属又は金属窒化物は、Al以外の金属又は金属窒化物である。例えば、絶縁層60が酸化ジルコニウムの場合、絶縁層60を構成する主元素とは異なる金属又は金属窒化物は、Zr以外の金属又は金属窒化物である。 For example, if the insulating layer 60 is a silicon compound, the metal or metal nitride different from the main element constituting the insulating layer 60 is a metal or metal nitride other than Si. For example, if the insulating layer 60 is aluminum oxide, the metal or metal nitride different from the main element constituting the insulating layer 60 is a metal or metal nitride other than Al. For example, if the insulating layer 60 is zirconium oxide, the metal or metal nitride different from the main element constituting the insulating layer 60 is a metal or metal nitride other than Zr.
 第1領域61は、金属又は金属窒化物が添加されることで、絶縁層60より排熱性に優れる。第1領域61は、金属又は金属窒化物が添加されていても、全体としては絶縁体である。 The first region 61 has better heat dissipation properties than the insulating layer 60 because a metal or metal nitride is added to it. Even though the first region 61 contains a metal or metal nitride, it is still an insulator overall.
 第1領域61に含まれる金属又は金属窒化物は、例えば、Ti、Ta、Ru、Ni、Cr、Fe、TiN、TaNからなる群から選択されるいずれかである。第1領域61は、2種類以上の金属又は金属窒化物を含んでもよい。第1領域61に2種類以上の金属又は金属窒化物があると、これらの金属又は金属窒化物の拡散を抑制できる。 The metal or metal nitride contained in the first region 61 is, for example, any one selected from the group consisting of Ti, Ta, Ru, Ni, Cr, Fe, TiN, and TaN. The first region 61 may contain two or more types of metals or metal nitrides. If the first region 61 contains two or more types of metals or metal nitrides, the diffusion of these metals or metal nitrides can be suppressed.
 第1領域61における金属又は金属窒化物の濃度は、例えば、0.1atm%以上である。また第1領域61における金属又は金属窒化物の濃度は、例えば、5atm%以下である。 The concentration of the metal or metal nitride in the first region 61 is, for example, 0.1 atm% or more. The concentration of the metal or metal nitride in the first region 61 is, for example, 5 atm% or less.
 第1領域61における金属又は金属窒化物の濃度は、例えば、z方向において、第1強磁性層10に近い方が低くてもよい。第1強磁性層10に近い側の絶縁性を高めることで、磁壁移動素子100の絶縁不良をより防ぐことができる。また第1強磁性層10から離れた位置における金属又は金属窒化物の濃度を高くすることで、熱を第1強磁性層10から離れた位置に逃がすことができる。 The concentration of the metal or metal nitride in the first region 61 may be lower, for example, in the z direction, closer to the first ferromagnetic layer 10. By increasing the insulation on the side closer to the first ferromagnetic layer 10, insulation failure of the domain wall motion element 100 can be more effectively prevented. In addition, by increasing the concentration of the metal or metal nitride at a position away from the first ferromagnetic layer 10, heat can be dissipated to a position away from the first ferromagnetic layer 10.
 図6は、第1実施形態に係る磁壁移動素子100の第1領域61の平面図である。第1領域61は、z方向から見て、第1磁化固定層40又は第1配線W1と第2磁化固定層50又は第2配線W2との間に、xy面内に広がる。 FIG. 6 is a plan view of the first region 61 of the domain wall motion element 100 according to the first embodiment. When viewed from the z direction, the first region 61 extends in the xy plane between the first magnetization fixed layer 40 or the first wiring W1 and the second magnetization fixed layer 50 or the second wiring W2.
 第1領域61は、例えば、第2配線W2に接続されている。第1領域61は、第1配線W1に接続されていてもよい。磁壁移動素子100で生じた熱の多くは、第1配線W1、第2配線W2及び第3配線W3を介して排熱されるため、第1領域61がこれらの配線と接することで磁壁移動素子100からの排熱効率が高まる。 The first region 61 is connected to, for example, the second wiring W2. The first region 61 may also be connected to the first wiring W1. Most of the heat generated in the domain wall motion element 100 is dissipated via the first wiring W1, the second wiring W2, and the third wiring W3, so the first region 61 being in contact with these wirings increases the efficiency of dissipating heat from the domain wall motion element 100.
 第1領域61は、例えば、第2領域62と第3領域63とを含む。第2領域62は、上述の金属又は金属窒化物を含む領域である。第3領域63は、上述の金属又は金属窒化物を含まない領域である。第3領域63は、絶縁層60と同じ構成からなる。第2領域62及び第3領域63は、絶縁体である。 The first region 61 includes, for example, a second region 62 and a third region 63. The second region 62 is a region that includes the above-mentioned metal or metal nitride. The third region 63 is a region that does not include the above-mentioned metal or metal nitride. The third region 63 has the same structure as the insulating layer 60. The second region 62 and the third region 63 are insulators.
 第2領域62は、x方向に不連続でもよい。すなわち、x方向において、第2領域62の間に、第3領域63がある。金属又は金属窒化物を含む第2領域62がx方向に不連続であることで、第1配線W1と第2配線W2との間の破壊耐圧の低下を抑制できる。 The second region 62 may be discontinuous in the x direction. That is, the third region 63 is present between the second regions 62 in the x direction. By having the second region 62 containing a metal or metal nitride be discontinuous in the x direction, it is possible to suppress a decrease in the breakdown voltage between the first wiring W1 and the second wiring W2.
 第2領域62は、y方向に連続していてよい。第2領域62がy方向に連続することで、y方向に熱を逃がすことができる。 The second region 62 may be continuous in the y direction. By having the second region 62 continuous in the y direction, heat can be dissipated in the y direction.
 磁壁移動素子100は、上記の構成以外の層を有してもよい。例えば、第2強磁性層30の非磁性層20と反対側の面に、スペーサ層を介して、磁性層を設けてもよい。第2強磁性層30、スペーサ層、磁性層は、シンセティック反強磁性構造(SAF構造)となる。また、磁性層のスペーサ層と反対側の面に、下地層を設けてもよい。 The domain wall motion element 100 may have layers other than those described above. For example, a magnetic layer may be provided on the surface of the second ferromagnetic layer 30 opposite the nonmagnetic layer 20, via a spacer layer. The second ferromagnetic layer 30, the spacer layer, and the magnetic layer form a synthetic antiferromagnetic structure (SAF structure). Also, a base layer may be provided on the surface of the magnetic layer opposite the spacer layer.
 磁壁移動素子100の各層の磁化の向きは、例えば磁化曲線を測定することにより確認できる。磁化曲線は、例えば、MOKE(Magneto Optical Kerr Effect)を用いて測定できる。MOKEによる測定は、直線偏光を測定対象物に入射させ、その偏光方向の回転等が起こる磁気光学効果(磁気Kerr効果)を用いることにより行う測定方法である。 The magnetization direction of each layer of the domain wall motion element 100 can be confirmed, for example, by measuring the magnetization curve. The magnetization curve can be measured, for example, using MOKE (Magneto Optical Kerr Effect). Measurement using MOKE is a measurement method in which linearly polarized light is incident on the object being measured, and the magneto-optical effect (magnetic Kerr effect) is used to cause the polarization direction to rotate, etc.
 磁壁移動素子100は、各層の積層工程と、各層の一部を所定の形状に加工する加工工程により形成される。各層の積層は、スパッタリング法、化学気相成長(CVD)法、電子ビーム蒸着法(EB蒸着法)、原子レーザデポジッション法等を用いることができる。各層の加工は、フォトリソグラフィーおよびエッチング(例えば、Arエッチング)等を用いて行うことができる。 The domain wall motion element 100 is formed by a process of stacking each layer and a process of processing a part of each layer into a predetermined shape. The layers can be stacked using sputtering, chemical vapor deposition (CVD), electron beam evaporation (EB evaporation), atomic laser deposition, etc. The layers can be processed using photolithography and etching (e.g., Ar etching), etc.
 第1領域61は、第1磁化固定層40と第2磁化固定層50との間を絶縁層60で埋めた後に、金属又は金属窒化物を添加することで作製できる。例えば、絶縁層60に対して金属又は金属窒化物をイオン注入してもよい。また例えば、絶縁層60上に、金属又は金属窒化物の層を成膜し、アニールによりこれらの元素を絶縁層60側に拡散させてもよい。この場合、アニール後に、金属又は金属窒化物の層を除去する。 The first region 61 can be created by filling the gap between the first magnetization pinned layer 40 and the second magnetization pinned layer 50 with an insulating layer 60, and then adding a metal or metal nitride. For example, the metal or metal nitride may be ion-implanted into the insulating layer 60. Alternatively, for example, a layer of metal or metal nitride may be formed on the insulating layer 60, and these elements may be diffused into the insulating layer 60 by annealing. In this case, the metal or metal nitride layer is removed after annealing.
 次いで、磁気アレイMAへの信号の書き込み動作及び磁気アレイMAからの信号の読出し動作を説明する。 Next, the operation of writing a signal to the magnetic array MA and the operation of reading a signal from the magnetic array MA will be explained.
 まず磁気アレイMAへの信号の書き込み動作について説明する。書き込み動作は、例えば、制御部6に格納された動作プログラムをプロセッサが実行することで行われる。 First, the operation of writing a signal to the magnetic array MA will be described. The write operation is performed, for example, by a processor executing an operation program stored in the control unit 6.
 まずパルス印加装置3は、動作プログラムに従い、パルスを印加する磁壁移動素子100を選択する。磁気アレイMAを磁気メモリとして用いる場合、パルスを印加する磁壁移動素子100は、データを記憶させる素子である。磁気アレイMAをニューラルネットワークとして用いる場合、パルスを印加する磁壁移動素子100は、学習に応じて重みを変化させる素子である。 First, the pulse application device 3 selects the domain wall motion element 100 to which a pulse is to be applied in accordance with the operating program. When the magnetic array MA is used as a magnetic memory, the domain wall motion element 100 to which a pulse is applied is an element that stores data. When the magnetic array MA is used as a neural network, the domain wall motion element 100 to which a pulse is applied is an element that changes the weight in response to learning.
 複数の磁壁移動素子100のうち何れの磁壁移動素子100に対してパルスを印加するかは、制御部6が制御する。制御部6は、パルスを印加する磁壁移動素子100に接続された第1スイッチング素子SW1及び第2スイッチング素子SW2をONにし、第3スイッチング素子SW3をOFFにする。またパルスを印加しない磁壁移動素子100に接続された第1スイッチング素子SW1及び第2スイッチング素子SW2の少なくともいずれか一方をOFFにする。 The control unit 6 controls which of the multiple domain wall motion elements 100 to apply a pulse to. The control unit 6 turns ON the first switching element SW1 and second switching element SW2 connected to the domain wall motion element 100 to which the pulse is applied, and turns OFF the third switching element SW3. The control unit 6 also turns OFF at least one of the first switching element SW1 and second switching element SW2 connected to the domain wall motion element 100 to which the pulse is not applied.
 そして、パルス印加装置3は、動作プログラムに従い、磁壁移動素子100に向かって書き込みパルスを出力する。書き込みパルスは、磁壁移動素子100の第1強磁性層10に沿って、第1磁化固定層40と第2磁化固定層50との間に印加される。書き込みパルスは、矩形波でも、スパイク波でも、その他の波形の波でもよい。書き込みパルスの回数、大きさ等を変えることで、磁壁DWの位置が変化し、特定の磁壁移動素子100に信号が書き込まれる。 Then, the pulse application device 3 outputs a write pulse to the domain wall motion element 100 according to the operating program. The write pulse is applied between the first magnetization fixed layer 40 and the second magnetization fixed layer 50 along the first ferromagnetic layer 10 of the domain wall motion element 100. The write pulse may be a square wave, a spike wave, or a wave of another waveform. By changing the number of write pulses, the magnitude, etc., the position of the domain wall DW changes, and a signal is written to a specific domain wall motion element 100.
 次いで、磁気アレイMAからの信号の読出し動作について説明する。読出し動作は、例えば、制御部6に格納された動作プログラムをプロセッサが実行することで行われる。 Next, the operation of reading signals from the magnetic array MA will be described. The reading operation is performed, for example, by the processor executing an operation program stored in the control unit 6.
 まずパルス印加装置3は、動作プログラムに従い、読出しパルスを印加する磁壁移動素子100を選択する。磁気アレイMAを磁気メモリとして用いる場合、読出しパルスを印加する磁壁移動素子100は、データを読み出す素子である。磁気アレイMAをニューラルネットワークとして用いる場合、所定の磁壁移動素子100への読出しパルスの印加は、入力と重みとの積演算に対応する。すなわち、磁気アレイMAをニューラルネットワークとして用いる場合、読出し動作は、ニューラルネットワークの識別演算である。 First, the pulse application device 3 selects the domain wall motion element 100 to which the read pulse is to be applied in accordance with the operating program. When the magnetic array MA is used as a magnetic memory, the domain wall motion element 100 to which the read pulse is applied is an element that reads out data. When the magnetic array MA is used as a neural network, the application of a read pulse to a specific domain wall motion element 100 corresponds to a multiplication operation of the input and the weight. In other words, when the magnetic array MA is used as a neural network, the read operation is an identification operation of the neural network.
 複数の磁壁移動素子100のうち何れの磁壁移動素子100に対してパルスを印加するかは、制御部6が制御する。制御部6は、パルスを印加する磁壁移動素子100に接続された第3スイッチング素子SW3及び第2スイッチング素子SW2をONにし、第1スイッチング素子SW1をOFFにする。またパルスを印加しない磁壁移動素子100に接続された第3スイッチング素子SW3及び第2スイッチング素子SW2の少なくともいずれか一方をOFFにする。 The control unit 6 controls which of the multiple domain wall motion elements 100 to apply a pulse to. The control unit 6 turns ON the third switching element SW3 and second switching element SW2 connected to the domain wall motion element 100 to which the pulse is applied, and turns OFF the first switching element SW1. The control unit 6 also turns OFF at least one of the third switching element SW3 and second switching element SW2 connected to the domain wall motion element 100 to which the pulse is not applied.
 次いで、パルス印加装置3は、動作プログラムに従い、所定の磁壁移動素子100に読出しパルスを印加する。読出しパルスは、例えば、第3配線W3と第2磁化固定層50との間に印加される。読出しパルスの電圧は、第1強磁性層10の磁壁DWを動かすのに必要な臨界電流密度未満の電流密度が得られる電圧である。すなわち、読出しパルスは、磁壁DWを動かさない。 Then, the pulse application device 3 applies a read pulse to a specific domain wall motion element 100 according to the operation program. The read pulse is applied, for example, between the third wiring W3 and the second magnetization fixed layer 50. The voltage of the read pulse is a voltage that obtains a current density less than the critical current density required to move the domain wall DW of the first ferromagnetic layer 10. In other words, the read pulse does not move the domain wall DW.
 抵抗検出装置4は、読出しパルスが印加された磁壁移動素子100の抵抗値を検出する。出力部5は、例えば、演算結果を外部に出力する。このような手順で、特定の磁壁移動素子100から信号を読み出すことができる。 The resistance detection device 4 detects the resistance value of the domain wall motion element 100 to which the read pulse has been applied. The output unit 5, for example, outputs the calculation result to the outside. In this manner, a signal can be read out from a specific domain wall motion element 100.
 本実施形態に係る磁壁移動素子100は、絶縁層60の一部に、金属又は金属窒化物が添加されている。金属又は金属窒化物は、絶縁層60を構成する主元素より熱伝導性が高い。そのため、磁壁移動素子100で生じた熱を、絶縁層60の第1領域61を介して、第1配線W1及び第2配線W2に効率的に逃がすことができる。 In the domain wall motion element 100 according to this embodiment, a metal or metal nitride is added to a portion of the insulating layer 60. The metal or metal nitride has a higher thermal conductivity than the main element that constitutes the insulating layer 60. Therefore, the heat generated in the domain wall motion element 100 can be efficiently dissipated to the first wiring W1 and the second wiring W2 via the first region 61 of the insulating layer 60.
 以上、本発明の好ましい実施の形態について詳述したが、本発明はこの実施形態に限られるものではない。例えば、実施形態の特徴的な構成を組み合わせてもよいし、発明の要旨を変更しない範囲で一部を変更してもよい。 The above describes in detail a preferred embodiment of the present invention, but the present invention is not limited to this embodiment. For example, characteristic configurations of the embodiments may be combined, and parts may be modified without changing the gist of the invention.
 図7は、第1変形例に係る磁壁移動素子の平面図である。図5では、第1磁化固定層40及び第2磁化固定層50の平面視形状が矩形の例を示したが、第1磁化固定層40及び第2磁化固定層50の形状は特に問わない。例えば、図7に示すように第1磁化固定層40及び第2磁化固定層50の平面視形状は円形でもよい。第1磁化固定層40及び第2磁化固定層50の平面視形状は、例えば、矩形、円形、楕円形等である。 FIG. 7 is a plan view of a domain wall motion element according to a first modified example. FIG. 5 shows an example in which the first magnetization fixed layer 40 and the second magnetization fixed layer 50 have a rectangular shape in plan view, but the shape of the first magnetization fixed layer 40 and the second magnetization fixed layer 50 is not particularly important. For example, as shown in FIG. 7, the first magnetization fixed layer 40 and the second magnetization fixed layer 50 may have a circular shape in plan view. The first magnetization fixed layer 40 and the second magnetization fixed layer 50 may have a rectangular, circular, elliptical, or other shape in plan view.
 図8は、第2変形例に係る磁壁移動素子の第1領域61の平面図である。図8に示す第1領域61は、上述の金属又は金属窒化物を含む第2領域62からなる。第2領域62は、金属又は金属窒化物を含むものの全体としては絶縁体であるため、当該構成でも基本的には短絡は生じない。 FIG. 8 is a plan view of a first region 61 of a domain wall motion element according to a second modified example. The first region 61 shown in FIG. 8 is made of a second region 62 containing the above-mentioned metal or metal nitride. Although the second region 62 contains a metal or metal nitride, it is an insulator overall, so that even with this configuration, short circuits do not fundamentally occur.
 図9は、第3変形例に係る磁壁移動素子の断面図である。図9に示す磁壁移動素子101は、第1磁化固定部が第1磁化固定層40と中間層41とからなり、第2磁化固定部が第2磁化固定層50と中間層51とからなる点が、磁壁移動素子100と異なる。 FIG. 9 is a cross-sectional view of a domain wall motion element according to a third modified example. The domain wall motion element 101 shown in FIG. 9 differs from the domain wall motion element 100 in that the first magnetization fixed portion is made up of a first magnetization fixed layer 40 and an intermediate layer 41, and the second magnetization fixed portion is made up of a second magnetization fixed layer 50 and an intermediate layer 51.
 中間層41及び中間層51は、例えば、Ru、Ir、Rhである。第1磁化固定層40と第1磁化領域A1とは、中間層41を介して磁気結合している。第2磁化固定層50と第2磁化領域A2とは、中間層51を介して磁気結合している。図9に示すように、第1磁化固定部及び第2磁化固定部は、複数の層からなってもよい。また第1磁化固定層40及び第2磁化固定層50はそれぞれ、複数の層からなってもよい。 The intermediate layer 41 and the intermediate layer 51 are, for example, Ru, Ir, or Rh. The first magnetization fixed layer 40 and the first magnetization region A1 are magnetically coupled via the intermediate layer 41. The second magnetization fixed layer 50 and the second magnetization region A2 are magnetically coupled via the intermediate layer 51. As shown in FIG. 9, the first magnetization fixed portion and the second magnetization fixed portion may be made of multiple layers. Also, the first magnetization fixed layer 40 and the second magnetization fixed layer 50 may each be made of multiple layers.
 図10は、第4変形例に係る磁壁移動素子の断面図である。図10に示す磁壁移動素子102は、第2強磁性層30が第1強磁性層10より基板Subから離れた位置にある点が、磁壁移動素子100と異なる。磁壁移動素子102は、トップピン構造と言われる。磁壁移動素子100は、第2強磁性層30が第1強磁性層10より基板Subの近くにあり、ボトムピン構造と言われる。磁壁移動素子102に示すようなトップピン構造においても、ボトムピン構造の場合と同様の効果が得られる。 FIG. 10 is a cross-sectional view of a domain wall motion element according to a fourth modified example. The domain wall motion element 102 shown in FIG. 10 differs from the domain wall motion element 100 in that the second ferromagnetic layer 30 is located farther from the substrate Sub than the first ferromagnetic layer 10. The domain wall motion element 102 is said to have a top pin structure. The domain wall motion element 100 is said to have a bottom pin structure, in that the second ferromagnetic layer 30 is closer to the substrate Sub than the first ferromagnetic layer 10. The top pin structure shown in the domain wall motion element 102 also provides the same effects as the bottom pin structure.
 上記の第1変形例から第4変形例においても、第1実施形態に係る磁壁移動素子100と同様の効果が得られる。またこれらの変形例の特徴的な構成を組み合わせてもよい。 The above first to fourth modified examples also provide the same effects as the domain wall motion element 100 according to the first embodiment. The characteristic configurations of these modified examples may also be combined.
 1…集積領域、2…周辺領域、3…パルス印加装置、4…抵抗検出装置、5…出力部、6…制御部、7…電源、10…第1強磁性層、20…非磁性層、30…第2強磁性層、40…第1磁化固定層、50…第2磁化固定層、41,51…中間層、60…絶縁層、61…第1領域、62…第2領域、63…第3領域、90…絶縁層、100,101,102,103…磁壁移動素子、A1…第1磁化領域、A2…第2磁化領域、A3…第3磁化領域、WL…書き込み配線、CL…共通配線、RL…読出し配線、DW…磁壁、MA…磁気アレイ、W1…第1配線、W2…第2配線、W3…第3配線 1...integration region, 2...peripheral region, 3...pulse application device, 4...resistance detection device, 5...output section, 6...control section, 7...power supply, 10...first ferromagnetic layer, 20...non-magnetic layer, 30...second ferromagnetic layer, 40...first magnetization fixed layer, 50...second magnetization fixed layer, 41, 51...intermediate layer, 60...insulating layer, 61...first region, 62...second region, 63...third region, 90...insulating layer, 100, 101, 102, 103...domain wall motion element, A1...first magnetization region, A2...second magnetization region, A3...third magnetization region, WL...write wiring, CL...common wiring, RL...read wiring, DW...domain wall, MA...magnetic array, W1...first wiring, W2...second wiring, W3...third wiring

Claims (9)

  1.  内部に磁壁を有する第1強磁性層と、
     第2強磁性層と、
     前記第1強磁性層と前記第2強磁性層に挟まれる非磁性層と、
     前記第1強磁性層に接続された第1磁化固定部と、
     前記第1磁化固定部と第1方向に離間した位置で、前記第1強磁性層に接続された第2磁化固定部と、
     積層方向から見て、前記第1磁化固定部と前記第2磁化固定部とに前記第1方向に挟まれた絶縁層と、を備え、
     前記絶縁層は、前記絶縁層を構成する主元素とは異なる金属又は金属窒化物が添加された第1領域を含む、磁壁移動素子。
    a first ferromagnetic layer having a magnetic domain wall therein;
    A second ferromagnetic layer;
    a nonmagnetic layer sandwiched between the first ferromagnetic layer and the second ferromagnetic layer;
    a first magnetization fixed unit connected to the first ferromagnetic layer;
    a second magnetization fixed unit connected to the first ferromagnetic layer at a position spaced apart from the first magnetization fixed unit in a first direction;
    an insulating layer sandwiched in the first direction between the first magnetization fixed part and the second magnetization fixed part as viewed from a stacking direction,
    The insulating layer includes a first region to which a metal or a metal nitride different from a main element constituting the insulating layer is added.
  2.  前記第1領域における前記金属又は前記金属窒化物の濃度は、前記積層方向において、前記第1強磁性層に近い方が低い、請求項1に記載の磁壁移動素子。 The domain wall motion element according to claim 1, wherein the concentration of the metal or metal nitride in the first region is lower in the stacking direction closer to the first ferromagnetic layer.
  3.  前記第1領域は、前記金属又は前記金属窒化物を含む第2領域と、前記金属又は前記金属窒化物を含まない第3領域と、を有し、
     前記第2領域は、前記第1方向に不連続である、請求項1に記載の磁壁移動素子。
    the first region has a second region containing the metal or the metal nitride and a third region not containing the metal or the metal nitride,
    The domain wall motion element according to claim 1 , wherein the second region is discontinuous in the first direction.
  4.  前記第1領域は、前記金属又は前記金属窒化物を含む第2領域と、前記金属又は前記金属窒化物を含まない第3領域と、を有し、
     前記第2領域は、基板の一面と略平行な面において前記第1方向と直交する第2方向に連続する、請求項1に記載の磁壁移動素子。
    the first region has a second region containing the metal or the metal nitride and a third region not containing the metal or the metal nitride,
    The domain wall motion element according to claim 1 , wherein the second region is continuous in a second direction perpendicular to the first direction in a plane substantially parallel to one surface of the substrate.
  5.  前記第1磁化固定部に接続された第1配線と、
     前記第2磁化固定部に接続された第2配線と、をさらに備え、
     前記第1領域は、前記第1配線又は前記第2配線に接続されている、請求項1に記載の磁壁移動素子。
    A first wiring connected to the first magnetization fixed portion;
    A second wiring connected to the second magnetization fixed portion,
    The domain wall motion element according to claim 1 , wherein the first region is connected to the first wiring or the second wiring.
  6.  前記第1領域における前記金属又は前記金属窒化物の濃度が0.1atm%以上である、請求項1に記載の磁壁移動素子。 The domain wall motion element of claim 1, wherein the concentration of the metal or metal nitride in the first region is 0.1 atm % or more.
  7.  前記金属又は前記金属窒化物は、Ti、Ta、Ru、Ni、Cr、Fe、TiN、TaNからなる群から選択されるいずれかである、請求項1に記載の磁壁移動素子。 The domain wall motion element according to claim 1, wherein the metal or metal nitride is selected from the group consisting of Ti, Ta, Ru, Ni, Cr, Fe, TiN, and TaN.
  8.  前記第1領域は、2種類以上の前記金属又は前記金属窒化物を含む請求項1に記載の磁壁移動素子。 The domain wall motion element according to claim 1, wherein the first region contains two or more types of the metal or metal nitride.
  9.  請求項1に記載の磁壁移動素子を含む、磁気アレイ。 A magnetic array including the domain wall motion element according to claim 1.
PCT/JP2023/009321 2023-03-10 2023-03-10 Domain wall displacement element and magnetic array WO2024189676A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/009321 WO2024189676A1 (en) 2023-03-10 2023-03-10 Domain wall displacement element and magnetic array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/009321 WO2024189676A1 (en) 2023-03-10 2023-03-10 Domain wall displacement element and magnetic array

Publications (1)

Publication Number Publication Date
WO2024189676A1 true WO2024189676A1 (en) 2024-09-19

Family

ID=92754534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009321 WO2024189676A1 (en) 2023-03-10 2023-03-10 Domain wall displacement element and magnetic array

Country Status (1)

Country Link
WO (1) WO2024189676A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119708A1 (en) * 2006-04-11 2007-10-25 Nec Corporation Magnetic random access memory
JP2019047118A (en) * 2017-09-04 2019-03-22 Tdk株式会社 Spin current magnetization reversing element, magnetoresistance effect element, magnetic memory, and magnetic device
JP2020053647A (en) * 2018-09-28 2020-04-02 Tdk株式会社 Spin orbit torque type magneto-resistive effect element and magnetic memory
JP2020150113A (en) * 2019-03-13 2020-09-17 Tdk株式会社 Domain wall moving element, magnetic recording array, and semiconductor device
WO2022185410A1 (en) * 2021-03-02 2022-09-09 Tdk株式会社 Domain wall displacement element, magnetic array, and method for manufacturing domain wall displacement element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119708A1 (en) * 2006-04-11 2007-10-25 Nec Corporation Magnetic random access memory
JP2019047118A (en) * 2017-09-04 2019-03-22 Tdk株式会社 Spin current magnetization reversing element, magnetoresistance effect element, magnetic memory, and magnetic device
JP2020053647A (en) * 2018-09-28 2020-04-02 Tdk株式会社 Spin orbit torque type magneto-resistive effect element and magnetic memory
JP2020150113A (en) * 2019-03-13 2020-09-17 Tdk株式会社 Domain wall moving element, magnetic recording array, and semiconductor device
WO2022185410A1 (en) * 2021-03-02 2022-09-09 Tdk株式会社 Domain wall displacement element, magnetic array, and method for manufacturing domain wall displacement element

Similar Documents

Publication Publication Date Title
US11963461B2 (en) Magnetic domain wall movement element and magnetic recording array
JP7173311B2 (en) domain wall motion element, magnetic recording array and semiconductor device
CN112599660B (en) Magnetic domain wall moving element and magnetic recording array
WO2021166892A1 (en) Magnetic domain wall moving element and magnetic recording array
JP6819843B1 (en) How to control magnetic recording arrays, neuromorphic devices and magnetic recording arrays
US20220376168A1 (en) Magnetic domain wall movement element and magnetic recording array
WO2024189676A1 (en) Domain wall displacement element and magnetic array
JP7211564B1 (en) Domain wall motion element, magnetic array, and method for manufacturing domain wall motion element
US20220399487A1 (en) Magnetic domain wall movement element and magnetic array
US20220109102A1 (en) Magnetic domain wall movement element and magnetic array
WO2024176297A1 (en) Domain wall displacement element and magnetic array
US20230215480A1 (en) Magnetoresistance effect element and magnetic recording array
JP7470599B2 (en) Wiring layer, domain wall motion element and magnetic array
US20240180044A1 (en) Magnetic domain wall moving element, magnetic array, and neuromorphic device
JP7586745B2 (en) Domain wall motion element and magnetic recording array
JP7512116B2 (en) Magnetic memory
US20240074325A1 (en) Magnetic domain wall moving element and magnetic array
WO2023012896A1 (en) Domain wall movement element and magnetic array
WO2023007609A1 (en) Domain wall displacement element and magnetic array
WO2023170816A1 (en) Magnetic array, control method for magnetic array, and operation program for magnetic array
WO2024176280A1 (en) Integrated device
WO2023067770A1 (en) Magnetic domain wall movement element, magnetic recording array, and magnetic memory
JP6958762B1 (en) Magnetic recording array
WO2024069733A1 (en) Method for manufacturing magnetoresistance effect element, and magnetoresistance effect element
US20220231084A1 (en) Magnetic domain wall moving element and magnetic recording array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23927300

Country of ref document: EP

Kind code of ref document: A1