[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024187472A1 - 用于侧行传输的方法及终端设备 - Google Patents

用于侧行传输的方法及终端设备 Download PDF

Info

Publication number
WO2024187472A1
WO2024187472A1 PCT/CN2023/081981 CN2023081981W WO2024187472A1 WO 2024187472 A1 WO2024187472 A1 WO 2024187472A1 CN 2023081981 W CN2023081981 W CN 2023081981W WO 2024187472 A1 WO2024187472 A1 WO 2024187472A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
time domain
domain resources
determined based
ssb
Prior art date
Application number
PCT/CN2023/081981
Other languages
English (en)
French (fr)
Inventor
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2023/081981 priority Critical patent/WO2024187472A1/zh
Publication of WO2024187472A1 publication Critical patent/WO2024187472A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a method and terminal device for sideline transmission.
  • a bitmap is used with a time slot as the granularity to indicate whether the corresponding time domain resources belong to the resource pool. That is to say, assuming that the number of time slots included in the system frame number (SFN) period is (10240 ⁇ 2 ⁇ ), at this time, the bitmap can be repeated periodically within the SFN period to indicate the time slots belonging to the resource pool within the SFN period. For example, the time slot corresponding to the bit with a value of 1 in the bitmap belongs to the resource pool. On the contrary, the time slot corresponding to the bit with a value of 0 in the bitmap does not belong to the resource pool.
  • SFN system frame number
  • the present application provides a method and terminal device for sideline transmission.
  • the following introduces various aspects involved in the present application.
  • a method for sidelink transmission comprising: a first terminal device determines first information, wherein the first information is used to indicate time domain resources belonging to a resource pool within an SFN cycle; wherein the resource pool transmits PSCCH and/or PSSCH based on a first time unit, the first time unit includes M1 consecutive time slots, and M1 is a positive integer greater than 1.
  • a terminal device which is a first terminal device and includes: a processing unit, used to determine first information, wherein the first information is used to indicate time domain resources belonging to a resource pool within an SFN cycle; wherein the resource pool transmits PSCCH and/or PSSCH based on a first time unit, and the first time unit includes M1 consecutive time slots, and M1 is a positive integer greater than 1.
  • a terminal device comprising a processor, a memory and a communication interface, wherein the memory is used to store one or more computer programs, and the processor is used to call the computer programs in the memory so that the terminal device executes part or all of the steps in the method of the first aspect.
  • an embodiment of the present application provides a communication system, which includes the above-mentioned terminal device.
  • the system may also include other devices that interact with the terminal device in the solution provided by the embodiment of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, which stores a computer program, and the computer program enables a communication device (for example, a terminal device) to execute part or all of the steps in the methods of the above aspects.
  • an embodiment of the present application provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to enable a communication device (e.g., a terminal device) to perform some or all of the steps in the above-mentioned various aspects of the method.
  • the computer program product can be a software installation package.
  • an embodiment of the present application provides a chip comprising a memory and a processor, wherein the processor can call and run a computer program from the memory to implement some or all of the steps described in the methods of the above aspects.
  • the first information can be used to indicate the time domain resources belonging to the resource pool within an SFN cycle.
  • This resource indication method helps to improve the degree of matching with the transmission scheme that transmits PSCCH and/or PSSCH with the first time unit as the granularity.
  • FIG1 is a diagram showing an example of a system architecture of a wireless communication system to which an embodiment of the present application may be applied.
  • FIG. 2 is a diagram showing an example scenario of sideline communication within network coverage.
  • FIG3 is an example diagram of a side communication scenario with partial network coverage.
  • FIG. 4 is a diagram showing an example scenario of sideline communication outside network coverage.
  • FIG. 5 is a diagram showing an example scenario of side communication based on a central control node.
  • FIG. 6 is an exemplary diagram of a sideline communication method based on broadcasting.
  • FIG. 7 is an example diagram of a sideline communication method based on unicast.
  • FIG. 8 is an example diagram of a sideline communication method based on multicast.
  • FIG. 9A is a diagram showing an example of a time slot structure used by the sideline communication system.
  • FIG. 9B is another example diagram of a time slot structure used by the sideline communication system.
  • FIG. 10 is a diagram showing a time slot structure for transmitting a sidelink synchronization signal block (S-SSB). intention.
  • S-SSB sidelink synchronization signal block
  • FIG. 11A is an example diagram of the structure of the first time unit provided in an embodiment of the present application.
  • FIG. 11B is another example diagram of the structure of the first time unit provided in an embodiment of the present application.
  • FIG. 11C is another example diagram of the first time unit provided in an embodiment of the present application.
  • FIG. 11D is another example diagram of the first time unit provided in an embodiment of the present application.
  • FIG. 12A is another example diagram of the first time unit provided in an embodiment of the present application.
  • FIG. 12B is another example diagram of the first time unit provided in an embodiment of the present application.
  • FIG. 12C is another example diagram of the first time unit provided in an embodiment of the present application.
  • FIG. 12D is another example diagram of the first time unit provided in an embodiment of the present application.
  • FIG. 12E is another example diagram of the first time unit provided in an embodiment of the present application.
  • FIG. 12F is another example diagram of the first time unit provided in an embodiment of the present application.
  • FIG. 13A is another example diagram of the first time unit provided in an embodiment of the present application.
  • FIG. 13B is another example diagram of the first time unit provided in an embodiment of the present application.
  • FIG. 13C is another example diagram of the first time unit provided in an embodiment of the present application.
  • FIG. 13D is another example diagram of the first time unit provided in an embodiment of the present application.
  • FIG. 13E is another example diagram of the first time unit provided in an embodiment of the present application.
  • FIG. 13F is another example diagram of the first time unit provided in an embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a method for side transmission according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the wireless communication system 100 may include a network device 110 and a terminal device 120.
  • the network device 110 may be a device that communicates with the terminal device 120.
  • the network device 110 may provide communication coverage for a specific geographical area, and may communicate with the terminal device 120 located in the coverage area.
  • FIG1 exemplarily shows a network device and a terminal device.
  • the wireless communication system 100 may include one or more network devices 110 and/or one or more terminal devices 120.
  • the one or more terminal devices 120 may all be located within the network coverage of the network device 110, or may all be located outside the network coverage of the network device 110, or may be partially located within the coverage of the network device 110 and partially located outside the network coverage of the network device 110, which is not limited in the embodiments of the present application.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) system or new radio (new radio, NR), long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), etc.
  • 5G fifth generation
  • NR new radio
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • future communication systems such as the sixth generation mobile communication system, satellite communication system, etc.
  • the terminal device in the embodiment of the present application may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (MT), remote station, remote terminal equipment, mobile device, user terminal, wireless communication equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to a user, and can be used to connect people, objects and machines, such as a handheld device with wireless connection function, a vehicle-mounted device, etc.
  • the terminal device in the embodiment of the present application can be a mobile phone, a tablet computer, a laptop, a PDA, a mobile internet device (MID), a wearable device, a vehicle, a wireless terminal in industrial control, a wireless terminal in self-driving, a wireless terminal in remote medical surgery, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in smart city, a wireless terminal in smart home, etc.
  • the terminal device can act as a dispatching entity, which provides a sidelink signal between terminal devices in vehicle-to-everything (V2X) or device-to-device communication (D2D), etc.
  • V2X vehicle-to-everything
  • D2D device-to-device communication
  • a cellular phone and a car communicate with each other using a sidelink signal.
  • the cellular phone and the smart home device communicate with each other without relaying the communication signal through a base station.
  • the terminal device can be used to act as a base station.
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may also be referred to as an access network device or a wireless access network device, such as a base station.
  • the network device in the embodiment of the present application may refer to a wireless access network (RAN) node (or device) that connects a terminal device to a wireless network.
  • RAN wireless access network
  • a base station may broadly cover the following: Various names, or replacements with the following names, such as: NodeB, evolved NodeB (eNB), next generation NodeB (gNB), relay station, access point, transmission point (TRP), transmission point (TP), master station MeNB, secondary station SeNB, multi-standard radio (MSR) node, home base station, network controller, access node, wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), remote radio unit (RRU), active antenna unit (AAU), remote radio head (RRH), central unit (CU), distributed unit (DU), positioning node, etc.
  • the base station can be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • the base station can also refer to a communication module, a modem or a chip used to be set in the aforementioned device or apparatus.
  • the base station can also be a mobile switching center and a device that performs the base station function in device-to-device D2D, V2X, machine-to-machine (M2M) communications, a network-side device in a 6G network, and a device that performs the base station function in a future communication system.
  • the base station can support networks with the same or different access technologies. The embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • Base stations can be fixed or mobile.
  • a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move based on the location of the mobile base station.
  • a helicopter or drone can be configured to act as a device that communicates with another base station.
  • the network device in the embodiments of the present application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • the gNB may also include an AAU.
  • the network equipment and terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on the water surface; they can also be deployed on aircraft, balloons and satellites in the air.
  • the embodiments of the present application do not limit the scenarios in which the network equipment and terminal equipment are located.
  • Sidelink communication refers to communication technology based on sidelinks.
  • Sidelink communication can be, for example, device-to-device (D2D) or vehicle-to-everything (V2X) communication.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • communication data is received or sent between terminal devices and network devices, while sidelink communication supports direct communication data transmission between terminal devices.
  • direct communication data transmission between terminal devices can have higher spectrum efficiency and lower transmission latency.
  • the vehicle networking system adopts sidelink communication technology.
  • the side communication can be divided into side communication within the network coverage, side communication with partial network coverage, and side communication outside the network coverage.
  • FIG2 is a diagram showing an example of a sideline communication scenario within network coverage.
  • both terminal devices 120a are within the coverage of the network device 110. Therefore, both terminal devices 120a can receive the configuration signaling of the network device 110 (the configuration signaling in this application can also be replaced by configuration information), and determine the sideline configuration according to the configuration signaling of the network device 110. After both terminal devices 120a perform the sideline configuration, sideline communication can be performed on the sideline link.
  • FIG3 is a diagram showing an example of a sidelink communication scenario with partial network coverage.
  • terminal device 120a performs sidelink communication with terminal device 120b.
  • Terminal device 120a is located within the coverage of network device 110, so terminal device 120a can receive the configuration signaling of network device 110 and determine the sidelink configuration according to the configuration signaling of network device 110.
  • Terminal device 120b is located outside the network coverage and cannot receive the configuration signaling of network device 110.
  • terminal device 120b can determine the sidelink configuration according to the pre-configuration information and/or the information carried in the physical sidelink broadcast channel (PSBCH) sent by terminal device 120a located within the network coverage.
  • PSBCH physical sidelink broadcast channel
  • FIG4 is a diagram showing an example of a sideline communication scenario outside network coverage.
  • both terminal devices 120b are outside network coverage.
  • both terminal devices 120b can determine the sideline configuration according to the preconfiguration information. After both terminal devices 120b perform the sideline configuration, sideline communication can be performed on the sideline link.
  • FIG5 is a diagram showing an example of a sideline communication scenario based on a central control node.
  • multiple terminal devices may constitute a communication group, and the communication group may have a central control node.
  • the central control node may be a terminal device in the communication group (such as terminal device 1 in FIG5 ), which may also be referred to as a cluster head (CH) terminal device.
  • the central control node may be responsible for completing one or more of the following functions: establishing a communication group, joining and leaving of group members of the communication group, coordinating resources within the communication group, allocating sideline transmission resources to other terminal devices, receiving sideline feedback information from other terminal devices, and coordinating resources with other communication groups.
  • Certain standards or protocols such as the 3rd Generation Partnership Project (3GPP), define two modes of sideline communication: a first mode and a second mode.
  • 3GPP 3rd Generation Partnership Project
  • the resources of the terminal device are allocated by the network device.
  • the terminal device can send data on the sidelink according to the resources allocated by the network device.
  • the network device can be a terminal.
  • the device allocates resources for a single transmission, and may also allocate resources for a semi-static transmission to the terminal device.
  • the first mode may be applied to a scenario covered by a network device, such as the scenario shown in FIG2 above. In the scenario shown in FIG2, the terminal device 120a is located within the network coverage of the network device 110, so the network device 110 may allocate resources used in the side transmission process to the terminal device 120a.
  • the terminal device can autonomously select one or more resources from a resource pool (RP). Then, the terminal device can perform side transmission according to the selected resources.
  • RP resource pool
  • the terminal device 120b is located outside the cell coverage. Therefore, the terminal device 120b can autonomously select resources from a preconfigured resource pool for side transmission.
  • the terminal device 120a can also autonomously select one or more resources from a resource pool configured by the network device 110 for side transmission.
  • the receiving terminal can be any terminal device around the transmitting terminal.
  • terminal device 1 is the transmitting terminal
  • the receiving terminal corresponding to the transmitting terminal is any terminal device around terminal device 1, for example, it can be terminal device 2-terminal device 6 in Figure 6.
  • some communication systems also support unicast-based data transmission (hereinafter referred to as unicast transmission) and/or multicast-based data transmission (hereinafter referred to as multicast transmission).
  • unicast transmission hereinafter referred to as unicast transmission
  • multicast transmission hereinafter referred to as multicast transmission.
  • NR-V2X new radio vehicle to everything
  • autonomous driving places higher requirements on data interaction between vehicles.
  • data interaction between vehicles requires higher throughput, lower latency, higher reliability, larger coverage, more flexible resource allocation methods, etc. Therefore, in order to improve the performance of data interaction between vehicles, NR-V2X introduces unicast transmission and multicast transmission.
  • the receiving terminal generally has only one terminal device. Taking Figure 7 as an example, unicast transmission is performed between terminal device 1 and terminal device 2.
  • Terminal device 1 can be a sending terminal
  • terminal device 2 can be a receiving terminal
  • terminal device 1 can be a receiving terminal
  • terminal device 2 can be a sending terminal.
  • the receiving terminal can be a terminal device in a communication group, or the receiving terminal can be a terminal device within a certain transmission distance.
  • terminal device 1 terminal device 2, terminal device 3 and terminal device 4 constitute a communication group. If terminal device 1 sends data, the other terminal devices in the group (terminal device 2 to terminal device 4) can all be receiving terminals.
  • the communication system may define a frame, subframe or time slot structure for sidelink communication.
  • Some sidelink communication systems define multiple time slot structures.
  • the NR-based sidelink communication system (NR SL) defines two time slot structures.
  • One of the two time slot structures does not include a physical sidelink feedback channel (PSFCH), see FIG9A ; the other of the two time slot structures includes PSFCH, see FIG9B .
  • PSFCH physical sidelink feedback channel
  • the PSCCH in the NR SL can start at the second side symbol of the time slot in the time domain, and the PSCCH can occupy 2 or 3 symbols in the time domain (the symbols mentioned here can all refer to orthogonal frequency division multiplexing (OFDM) symbols).
  • the PSCCH can occupy multiple physical resource blocks (PRBs) in the frequency domain.
  • PRBs physical resource blocks
  • the number of PRBs occupied by the PSCCH can be selected from the following values: ⁇ 10, 12 15, 20, 25 ⁇ .
  • the PSSCH in the NR SL can use the second side symbol of the time slot as the starting position in the time domain.
  • the last side symbol in the time slot is used as a guard period (GP), and the remaining symbols can be mapped to PSSCH, where the guard period can also be called a guard symbol.
  • the first side symbol in the time slot can be a repetition of the second side symbol.
  • the terminal device as the receiving end will use the first side symbol as a symbol for automatic gain control (AGC). Therefore, the data on the first side symbol is usually not used for data demodulation.
  • PSSCH can occupy K subchannels in the frequency domain, and each subchannel can include M consecutive PRBs (the values of K and M can be predefined by the protocol, or preconfigured, or configured by the network device, or depend on the implementation of the terminal device).
  • Fig. 9 B shows is the time slot structure including PSFCH, and this Fig. 9 B schematically gives the position of the symbol occupied by PSFCH, PSCCH and PSSCH in a time slot.
  • the main difference between this time slot structure and Fig. 9 A is that the penultimate symbol and the penultimate symbol in the time slot are used to transmit PSFCH, and in addition, a symbol before the symbol used to transmit PSFCH is also used as GP (or protection symbol).As can be seen from the time slot structure shown in Fig.
  • the last symbol is used as GP
  • the penultimate symbol is used for PSFCH transmission
  • the data on the penultimate symbol is the same as the data of the penultimate symbol for PSFCH transmission, that is, the penultimate symbol is used as the symbol for AGC
  • the penultimate symbol has the same effect as the last symbol, and is also used as GP.
  • the first symbol in the time slot is used as AGC
  • the data on this symbol is the same as the data on the second symbol in this time slot
  • PSCCH occupies 3 symbols, and the remaining symbol can be used for PSSCH transmission.
  • the S-SSB in the sidelink communication system (such as NR SL) includes the sidelink synchronization signal and PSBCH, and the sidelink synchronization signal is divided into the sidelink primary synchronization signal (S-PSS) and the sidelink secondary synchronization signal (S-SSS).
  • S-SSB can also be called S-SS/PSBCH block.
  • S-PSS occupies the 2nd and 3rd symbols in a time slot.
  • S-SSS occupies the 4th and 5th symbols in a time slot.
  • the last symbol in a time slot is the GP (or protection symbol), and the remaining symbols are used to transmit PSBCH.
  • S-PSS and S-SSS are continuous in the time domain, so the channel estimation result obtained based on S-PSS can be applied to S-SSS detection, which is beneficial to improve the detection performance of S-SSS.
  • PSBCH occupies 11 consecutive PRBs, that is, 132 subcarriers (each PRB includes 12 subcarriers).
  • the length of S-PSS and S-SSS is 127, so on the symbols where S-PSS and S-SSS are located, subcarriers #0, #1, #129, #130 and #131 are set to zero, as shown in Figure 10.
  • the PSBCH DMRS is included on each symbol occupied by the PSBCH, and is mapped to subcarrier #0, subcarrier #4 and subcarrier #8 in each RB occupied by the PSBCH.
  • FR1 frequency range 1
  • FR2 frequency range 2
  • Table 1 Definition of frequency bands corresponding to FR1 and FR2
  • the frequency of the new frequency band mentioned here can be higher than FR1 and FR2, and can include, for example, the frequency range shown in Table 2 below.
  • FRX is used to represent the new frequency band only to distinguish it from FR1 and FR2, and is not intended to limit the name of the new frequency band.
  • FRX can also be called FR3.
  • FR2 in Table 1 above can be recorded as FR2-1
  • FRX in Table 2 can be recorded as FR2-2.
  • other methods can also be used to identify the new frequency band, and this application does not make specific limitations on this.
  • the FRX band may include both licensed spectrum and unlicensed spectrum.
  • the FRX band may include both shared spectrum and unshared spectrum.
  • the unlicensed spectrum mentioned here is usually a spectrum that can be used for radio equipment communication, which is divided by a country or region, and the unlicensed spectrum is usually considered to be a spectrum shared by communication equipment in different communication systems, that is, communication equipment in different communication systems can use the spectrum as long as they meet the regulatory requirements set by the country or region on the spectrum, without having to apply for exclusive spectrum authorization from the government.
  • some countries or regions have stipulated regulatory requirements that must be met when using unlicensed spectrum.
  • communication equipment follows the "listen before talk (LBT)" principle, that is, before a communication device sends a signal on a channel of an unlicensed spectrum, it needs to first perform channel sensing, and only when the channel sensing result is that the channel is idle, the communication device can send a signal. If the channel sensing result of a communication device on a channel of an unlicensed spectrum is that the channel is busy, the communication device cannot send a signal. For example, to ensure fairness, in one transmission, the duration of a communication device using an unlicensed spectrum channel for signal transmission cannot exceed a certain length of time.
  • LBT listen before talk
  • a communication device To prevent the power of a signal transmitted on an unlicensed spectrum channel from being too high and affecting the transmission of other important signals on the channel, a communication device must comply with the restriction of not exceeding the maximum power spectral density when using an unlicensed spectrum channel for signal transmission.
  • the subcarrier spacing of the FRX band can be larger than the subcarrier spacing of FR2.
  • the candidate subcarrier spacing of the FRX band may include one or more of the following: 120kHz, 240kHz, 480kHz, 960kHz, 1.92MHz, 3.84MHz. Taking the subcarrier spacing of 120kHz, 480kHz and 960kHz as an example, the corresponding parameter set (numerology) under the above candidate subcarrier spacing is shown in Table 3 below.
  • Table 3 Parameter sets corresponding to candidate subcarrier spacing
  • the new frequency band may refer to Alternatively, the new frequency band may refer to a frequency band with a frequency higher than 52.6 GHz, for example, the FRX (or FR2-2) frequency band mentioned above with a frequency range between 52.6 GHz and 71 GHz.
  • FRX or FR2-2
  • FR1 can support subcarrier spacing of 15kHz, 30kHz and 60kHz.
  • FR2-1 can support subcarrier spacing of 60kHz and 120kHz.
  • FRX can support subcarrier spacing of 120kHz and above, such as FRX can support subcarrier spacing of 120kHz, 480kHz and 960kHz.
  • time slot structure corresponding to the following subcarrier spacings: 15kHz, 30kHz, 60kHz and 120kHz.
  • subcarrier spacing is greater than 120kHz, such as when the subcarrier spacing reaches 480kHz and 960kHz, how the time slot structure of the sideline communication system should be designed has not yet been discussed.
  • the first symbol is usually an AGC symbol for the receiving end device to perform AGC adjustment or AGC training; the last symbol is used as a GP, which is usually used for the RX/TX switching or TX/RX switching of the terminal device.
  • the duration corresponding to a symbol is different. For example, when the subcarrier spacing is 15kHz, the duration corresponding to a symbol is about 66.7us. If the duration of 4.69us corresponding to the cyclic prefix (CP) is added, when the subcarrier spacing is 15kHz, the total duration of a symbol is about 71us ⁇ 72us.
  • the total duration of a symbol (the sum of the symbol and CP length) is about 8us ⁇ 9us. Therefore, when the subcarrier spacing is 120kHz, the AGC adjustment time does not exceed 8us ⁇ 9us, and the transceiver switching time or the transceiver switching time of the terminal device is about 7us.
  • the duration corresponding to the switching time in FR1 and FR2 (which may include FR2-1 and FR2-2 mentioned above) may be determined based on Table 4 below.
  • the duration of a symbol will continue to shorten.
  • the duration of a symbol is about 2us to 3us (as shown in Table 3); when the carrier spacing of the sideline system is 960kHz, the duration of a symbol is about 1us (as shown in Table 3).
  • the duration of a symbol may be too short, making it difficult for the terminal device to complete AGC adjustment, transceiver conversion or transceiver conversion in such a short time. Therefore, more symbols are required for AGC adjustment, transceiver conversion (or transceiver conversion).
  • the number of symbols used for sideline data transmission will become relatively small, which will greatly reduce the transmission efficiency of the communication system.
  • an embodiment of the present application proposes a time unit that can be used for side transmission (see Example 1 for details).
  • the time unit may include multiple time slots, which can alleviate the problem caused by the short duration corresponding to the symbol to a certain extent.
  • the first time unit may be a certain type of time unit used for side communication.
  • the side communication process may involve the transmission of one or more of PSSCH, PSCCH, PSFCH and S-SSB.
  • the scheme for side transmission based on the first time unit is first introduced in combination with Example 1.
  • Embodiment 1 A first time unit comprising M1 consecutive time slots
  • the first time unit may include M1 consecutive time slots (M1 is a positive integer greater than 1).
  • the first time unit may also be understood as a time slot structure based on multiple time slots.
  • the first time unit may be referred to as: aggregate slot, slot aggregation, super slot, slot group, or multiple slot or multi-slot.
  • the value of M1 may be determined based on one or more of the following: protocol predefined information; resource pool configuration information; sideline BWP configuration information; or indication information of a terminal device.
  • the terminal device may be a transmitter device of sideline data or a receiver device of sideline data.
  • the M1 time slots included in the first time unit are M1 consecutive physical time slots. Physical time slots are relative to logical time slots. Generally speaking, time slots belonging to a resource pool are called logical time slots, and a system frame number (SFN) period (including 10240ms) includes A time slot is called a physical time slot.
  • SFN system frame number
  • ⁇ SL is a parameter related to the sideline subcarrier spacing, and the value of ⁇ SL can be determined based on Table 5.
  • Continuous time slots in a resource pool may not be continuous physical time slots. If M1 continuous time slots are set as M1 continuous time slots in a resource pool, the middle of the M1 time slots may include time slots belonging to other resource pools. In this way, when the terminal device uses the M1 time slots for transmission, it may need to receive on the time slots belonging to other resource pools, resulting in additional GP overhead for transceiver conversion. Therefore, setting M1 time slots as M1 continuous physical time slots may reduce the GP overhead caused by transceiver conversion.
  • the M1 time slots included in the first time unit are consecutive time slots that can be used for sideline transmission (the time slots in the resource pool are determined from the time slots that can be used for sideline transmission).
  • the first time unit may include PSCCH transmission resources and PSSCH transmission resources.
  • the first time unit may include PSCCH transmission resources, PSSCH transmission resources, and PSFCH transmission resources.
  • the following is an example of the use of each symbol in the first time unit in conjunction with Figures 11 and 12.
  • the first symbol used to transmit PSCCH or PSSCH is located at the A+1th symbol in the first time unit, that is, the first A symbols in the first time unit are AGC symbols, which can be used as AGC adjustment or AGC training, and the last B1 symbols in the first time unit are protection symbols or GP symbols.
  • FIG11A shows an example of a first time unit.
  • the first 4 symbols are used as AGC, and the last 4 symbols are used as GP.
  • the first time unit using the time slot structure shown in FIG11A can be applied to the case where the side subcarrier spacing is 480kHz, for example.
  • FIG11B shows another example of the first time unit.
  • the first 8 symbols are used as AGC, and the last 8 symbols are used as GP.
  • the first time unit using the time slot structure shown in FIG11B can be applicable to the case where the side subcarrier spacing is 480kHz or 960kHz, for example.
  • FIG. 11C shows another example of the first time unit.
  • the first 4 symbols are used as AGC and the last 4 symbols are used as GP.
  • the first time unit also includes a PSFCH transmission resource.
  • the PSFCH transmission resource occupies 5 symbols, one of which is used to transmit side feedback information (such as hybrid automatic repeat request (HARQ) information) or conflict indication information, and the remaining 4 symbols are used as AGC.
  • side feedback information such as hybrid automatic repeat request (HARQ) information
  • HARQ hybrid automatic repeat request
  • 4 symbols used as GP are also included before the symbol corresponding to the PSFCH transmission resource.
  • the first time unit using the time slot structure shown in FIG. 11C can be applicable, for example, to the case where the side subcarrier spacing is 480kHz.
  • Figure 11D shows another example of the first time unit.
  • the first 4 symbols are used as AGC and the last 4 symbols are used as GP.
  • the first time unit also includes PSFCH transmission resources.
  • the PSFCH transmission resource occupies 6 symbols, of which 2 symbols are used to transmit side feedback information (such as HARQ information) or conflict indication information, and the remaining 4 symbols are used as AGC.
  • 4 symbols used as GP are also included before the symbol corresponding to the PSFCH transmission resource.
  • the first time unit using the time slot structure shown in Figure 11D can, for example, be applicable to the case where the side subcarrier spacing is 480kHz.
  • FIG12A shows another example of the first time unit.
  • the first 4 symbols are used as AGC, and the last 4 symbols are used as GP.
  • the first time unit using the time slot structure shown in FIG12A can be applied to the case where the side subcarrier spacing is 480kHz, for example.
  • FIG12B shows another example of the first time unit.
  • the first 8 symbols are used as AGC, and the last 8 symbols are used as GP.
  • the first time unit using the time slot structure shown in FIG12B can be applied to the case where the side subcarrier spacing is 480kHz or 960kHz, for example.
  • FIG12C shows another example of the first time unit.
  • the first 4 symbols are used as AGC
  • the last 4 symbols are used as GP.
  • the first time unit includes a PSFCH transmission resource.
  • the PSFCH transmission resource occupies 5 symbols, one of which is used to transmit side feedback information (such as HARQ information) or conflict indication information, and the remaining 4 symbols are used as AGC.
  • 4 symbols used as GP are also included before the symbol corresponding to the PSFCH transmission resource.
  • the first time unit using the time slot structure shown in FIG12C can, for example, be applicable to the case where the side subcarrier spacing is 480kHz.
  • FIG. 12D shows another example of the first time unit.
  • the first 8 symbols are used as AGC and the last 8 symbols are used as GP.
  • the first time unit includes PSFCH transmission resources.
  • the PSFCH transmission resource occupies 9 symbols, one of which is used to transmit side feedback information (such as HARQ information) or conflict indication information, and the remaining 8 symbols are used as AGC.
  • 8 symbols used as GP are also included before the symbol corresponding to the PSFCH transmission resource.
  • the first time unit using the time slot structure shown in Figure 12D can, for example, be applicable to the case where the side subcarrier spacing is 480kHz or 960kHz.
  • FIG. 12E shows another example of the first time unit.
  • the first 4 symbols are used as AGC
  • the last 4 symbols are used as GP.
  • the first time unit includes PSFCH transmission resources.
  • the PSFCH transmission resource occupies 8 symbols, of which 4 symbols are used to transmit side feedback information (such as HARQ information) or conflict indication information, and the remaining 4 symbols are used as AGC.
  • 4 symbols used as GP are also included before the symbol corresponding to the PSFCH transmission resource.
  • the first time unit using the time slot structure shown in FIG. 12E can be applied to the case where the side subcarrier spacing is 480kHz, for example.
  • FIG. 12E can be understood as a time unit structure containing multiple time slots obtained by proportionally expanding (4 times expanding) the single time slot structure corresponding to the 120kHz subcarrier spacing.
  • FIG12F shows another example of the first time unit.
  • the first 8 symbols are used as AGC and the last 8 symbols are used as GP.
  • the first time unit includes PSFCH transmission resources.
  • the PSFCH transmission resource occupies 16 symbols, of which 8 symbols are used to transmit side feedback information (such as HARQ information) and the remaining 8 symbols are used as AGC.
  • 8 symbols used as GP are also included before the symbol corresponding to the PSFCH transmission resource.
  • the first time unit using the time slot structure shown in FIG12F can be applicable to the case where the side subcarrier spacing is 480kHz or 960kHz, for example.
  • FIG12F can be understood as a time unit structure containing multiple time slots obtained by proportionally expanding (8 times expanding) the single time slot structure corresponding to the 120kHz subcarrier spacing.
  • the first time unit may include transmission resources for the S-SSB.
  • the first symbol used to transmit the S-SSB is located at the A+1th symbol in the first time unit, that is, the first A symbols in the first time unit are AGC symbols, which can be used for AGC adjustment or AGC training, and the last B1 symbols in the first time unit are protection symbols or GP symbols.
  • the remaining symbols in the time slot can be used to transmit S-SSB, that is, the time domain resources that can be used to transmit S-SSB include the 5th symbol of time slot n to the 5th last symbol of time slot n.
  • the first time unit of the time slot structure shown in FIG. 13A can be applicable to the case where the side subcarrier spacing is 480kHz, for example.
  • the remaining symbols in time slot n and time slot n+1 can be used to transmit S-SSB, that is, the time domain resources that can be used to transmit S-SSB include from the 4th symbol of time slot n to the 10th symbol of time slot n+1 (that is, the 4th to last symbol).
  • the first time unit of the time slot structure shown in FIG. 13B can be applicable to the case where the side subcarrier spacing is 480kHz, for example.
  • the remaining symbols in time slot n and time slot n+1 can be used to transmit S-SSB, that is, the time domain resources that can be used to transmit S-SSB include from the 9th symbol of time slot n to the 10th symbol of time slot n+1 (that is, the 5th symbol from the end).
  • the first time unit of the time slot structure shown in FIG. 13C can be applicable to the case where the side subcarrier spacing is 480kHz, for example.
  • the remaining symbols in time slot n to time slot n+1 can be used to transmit S-SSB, that is, the time domain resources that can be used to transmit S-SSB include from the 5th symbol of time slot n to the 5th to last symbol of time slot n+1 (that is, the 10th symbol).
  • the first time unit of the time slot structure shown in FIG. 13D can, for example, be applicable to the case where the side subcarrier spacing is 480kHz.
  • the remaining symbols in time slot n to time slot n+3 can be used to transmit S-SSB, that is, the time domain resources that can be used to transmit S-SSB include from the 5th symbol of time slot n to the 5th to last symbol of time slot n+3 (that is, the 10th symbol).
  • the first time unit of the time slot structure shown in FIG. 13D can, for example, be applicable to the case where the side subcarrier spacing is 480kHz.
  • the remaining symbols in time slot n to time slot n+3 can be used to transmit S-SSB, that is, the time domain resources that can be used to transmit S-SSB include from the 8th symbol of time slot n to the 6th to last symbol (that is, the 9th symbol) of time slot n+3.
  • the first time unit of the time slot structure shown in FIG. 13E can be applicable to the case where the side subcarrier spacing is 480kHz or 960kHz, for example.
  • the S-SSB may be transmitted based on a second time unit, wherein the second time unit may include M2 consecutive time slots, and M2 is an integer greater than or equal to 1.
  • the second time unit may be understood as a type of time unit in side transmission.
  • the scheme for transmitting the S-SSB based on the second time unit is similar to the scheme for transmitting the S-SSB based on the first time unit described above, and reference may be made to the above description.
  • the number of time slots included in the first time unit may be the same as the number of time slots included in the second time unit.
  • the first time unit and the second time unit may be understood as the same type of time unit.
  • the number of time slots included in the first time unit is different from the number of time slots included in the second time unit.
  • the first time unit and the second time unit may be understood as different types of time units. The embodiment of the present application does not limit this.
  • Example 1.1 Protection symbol in the first time unit
  • the protection symbol may also be referred to as a symbol used as a GP.
  • the protection symbol may be used for a terminal device to perform a transceiver conversion or a transceiver conversion.
  • no data may be mapped on the protection symbol.
  • the first time unit may include a first guard symbol.
  • the first guard symbol includes B1 consecutive symbols, and the B1 symbols are the last B1 symbols of the first time unit, and B1 is a positive integer greater than 1.
  • the first time unit may include a first guard symbol.
  • the first guard symbol includes B1 consecutive symbols, and the B1 symbols are the last B1 symbols of the first time unit that can be used for sideline transmission, and B1 is a positive integer greater than 1.
  • the first guard symbol is located in a last time slot of the first time unit.
  • the first time unit may include a second guard symbol.
  • the second guard symbol includes consecutive B2 symbols, where B2 is a positive integer greater than 1.
  • the B2 symbols in the second guard symbol may be located before the time domain resource 1.
  • the B2 symbols may be adjacent to the time domain resource 1, that is, the last symbol of the B2 symbols and the first symbol of the time domain resource 1 are adjacent symbols in the first time unit.
  • the second guard symbol is located in the last time slot and/or the second to last time slot of the first time unit.
  • B1 and B2 have the same value.
  • B1 and B2 are both equal to B, and B is a positive integer greater than 1.
  • B1 and B2 have different values.
  • B1 is greater than B2, or B2 is greater than B1.
  • the value of B is equal to 4. Further, in some implementations, if the value of B is equal to 4, the side subcarrier spacing corresponding to the first time unit is 480 kHz. For example, in the examples of time units shown in FIG. 11A, FIG. 11C, FIG. 11D, FIG. 12A, FIG. 12C, FIG. 12E, FIG. 13A, FIG. 13B, and FIG. 13E, the value of B is 4.
  • the value of B is equal to 8. Further, in some implementations, if the value of B is equal to 8, the side subcarrier spacing corresponding to the first time unit is 480kHz or 960kHz. For example, in the examples of time units shown in Figures 11B, 12B, 12D, 12F, 13C, 13D, and 13F, the value of B is 8.
  • the value of B is determined based on one or more of the following information: protocol predefined information; resource pool configuration information; sideline BWP configuration information; or indication information of a terminal device.
  • the terminal device may be a transmitter device of sideline data or a receiver device of sideline data.
  • the value of B may be determined based on the first indication information.
  • the first indication information may be used to indicate one or more of the following: the value of B; the time domain position of the first symbol that can be used for side transmission in a time slot or a time unit (the time unit mentioned in each embodiment of the present application may refer to a time unit containing M1 consecutive time slots, or a time unit containing M1 consecutive time slots that can be used for side transmission, which will not be repeated in the following text); the length or number of symbols that can be used for side transmission in a time unit; and the number of time slots included in a time unit.
  • the first indication information may be used to directly indicate the value of B.
  • the value of B may be determined based on the value indicated by the first indication information.
  • the first indication information may include information 1 and information 2.
  • Information 1 indicates the time domain position of the first symbol that can be used for side transmission in a time slot or a time unit.
  • Information 2 indicates the length or number of symbols that can be used for side transmission in a time unit.
  • the value of B can be determined based on information 1 and information 2. For example, information 1 indicates that the time domain position of the first symbol that can be used for side transmission in a time unit is symbol 0; information 2 indicates that the number of symbols that can be used for side transmission in a time unit is 24. Based on information 1 and information 2, it can be assumed that the first time unit includes 2 time slots. In the case of normal CP, the first time unit includes 28 symbols, so the number of symbols used as GP is 4, that is, the value of B is 4.
  • the first indication information may include information 3.
  • the information 3 indicates the length or number of symbols that can be used for side transmission in a time unit.
  • the value of B can be determined based on the information 3.
  • the information 3 indicates that the number of symbols that can be used for side transmission in a time unit is 24.
  • the value indicated by the information 3 is greater than the number of symbols included in a time slot and less than the number of symbols included in two time slots. Therefore, it can be assumed that the first time unit includes two time slots, and both time slots can be used for side transmission.
  • two time slots include a total of 28 symbols, so the number of symbols of the GP is 4, that is, the value of B is 4 (in this example, it is assumed that The starting symbol corresponding to the sidelink transmission resource in the first time unit is the first symbol of the first time unit).
  • the first indication information may include information 4 and information 5.
  • the information 4 indicates the length or number of symbols that can be used for side transmission in a time unit.
  • the information 5 indicates the number of time slots included in a time unit.
  • the value of B can be determined based on the information 4 and information 5. For example, information 4 indicates that the number of symbols that can be used for side transmission in a time unit is 24, and information 5 indicates that a time unit includes 2 time slots. In the case of a normal CP, two time slots include a total of 28 symbols, so the number of symbols of GP is 4, that is, the value of B is 4 (in this example, it is assumed that the starting symbol corresponding to the side transmission resource in the first time unit is the first symbol of the first time unit).
  • the first indication information may be included in the resource pool configuration information or the sideline BWP configuration information.
  • the first indication information may be indicated by a terminal device.
  • the terminal device may be a transmitting end device of the sideline data or a receiving end device of the sideline data.
  • the value of B may be determined based on a first sideline subcarrier spacing and a second sideline subcarrier spacing.
  • the first sideline subcarrier spacing and the second sideline subcarrier spacing are different.
  • the first side row subcarrier spacing may be greater than the second side row subcarrier spacing.
  • the first sideline subcarrier spacing is a sideline subcarrier spacing corresponding to a first time unit.
  • the first subcarrier spacing is determined based on protocol predefined information, resource pool configuration information, or sideline BWP configuration information. Taking the first sideline subcarrier spacing determined based on the sideline BWP configuration information as an example, the sideline BWP configuration information can be used to configure the BWP corresponding to the first time unit.
  • the second subcarrier spacing is determined based on protocol predefined information, resource pool configuration information, or sideline BWP configuration information.
  • the second subcarrier spacing may also sometimes be referred to as a reference subcarrier spacing.
  • the first side row subcarrier spacing is 480 kHz or 960 kHz.
  • the second subcarrier spacing is 15 kHz, 30 kHz, 60 kHz or 120 kHz.
  • the first side row subcarrier spacing is represented by ⁇ SL1
  • the second side row subcarrier spacing is represented by ⁇ SL2
  • At least one of the M1 time slots included in the first time unit does not include a guard symbol.
  • the remaining time slots except the last time slot of the M1 time slots included in the first time unit do not include a guard symbol.
  • the first time unit includes 2 time slots, namely, time slot n and time slot n + 1.
  • Time slot n + 1 includes a guard symbol used as a GP, and time slot n does not include a guard symbol used as a GP.
  • the first time unit includes 4 time slots, namely, time slot n, time slot n+1, time slot n+2 and time slot n+3.
  • Time slot n+3 includes a guard symbol used as a GP, and time slots n, n+1, and n+2 do not include a guard symbol used as a GP.
  • the last time slot and/or the second to last time slot of the M1 time slots include a guard symbol. Further, in some implementations, the remaining time slots except the last time slot and/or the second to last time slot of the M1 time slots do not include a guard symbol.
  • Embodiment 1.2 Time-frequency resources of PSCCH in the first time unit
  • the first time unit includes a time domain resource for transmitting a PSCCH.
  • a starting symbol of the time domain resource for transmitting a PSCCH is the A+1th symbol of the first time unit.
  • A is a positive integer greater than 1.
  • the value of A is equal to 4. Further, in some implementations, if the value of A is equal to 4, the side subcarrier spacing corresponding to the first time unit is 480 kHz. For example, in the examples of time units shown in FIG. 11A, FIG. 11C, FIG. 11D, FIG. 12A, FIG. 12C, and FIG. 12E, the value of A is 4.
  • the value of A is equal to 8. Further, in some implementations, if the value of A is equal to 8, the side subcarrier spacing corresponding to the first time unit is 480 kHz or 960 kHz. For example, in the examples of time units shown in FIG. 11B , FIG. 12B , FIG. 12D , and FIG. 12F , the value of A is 8.
  • the value of A is determined based on one or more of the following information: protocol predefined information; resource pool configuration information; sideline BWP configuration information; or indication information of a terminal device.
  • the terminal device may be a transmitter device of sideline data or a receiver device of sideline data.
  • the value of A is determined based on the second indication information.
  • the second indication information may be used to indicate one or more of the following: the value of A; the time domain position of the first symbol that can be used to transmit PSSCH in a time unit; the time domain position of the first symbol that can be used to transmit PSCCH in a time unit; the time domain position of the first symbol used to map PSSCH in a time unit; the time domain position of the first symbol used to map PSCCH in a time unit; the time domain position of the first symbol of PSSCH resource allocation in a time unit; the time domain position of the first symbol of PSCCH resource allocation in a time unit; and the time domain position of the first symbol that can be used for sideline transmission in a time slot or in a time unit.
  • the second indication information directly indicates the value of A.
  • the value of A is determined based on the value indicated by the second indication information.
  • the second indication information indicates the time domain position of the first symbol in a time unit that can be used to transmit PSSCH or PSCCH.
  • the value of A can be determined. For example, if the second indication information indicates that the first symbol position of PSSCH is the fifth symbol in the first time unit, the value of A is 4 (in this example, it is assumed that the starting symbol corresponding to the sideline transmission resource in the first time unit is the first symbol of the first time unit).
  • the second indication information may indicate information 6 and information 7.
  • Information 6 may be used to indicate the time domain position of the first symbol that can be used to transmit PSSCH or PSCCH in a time unit.
  • Information 7 may be used to indicate the time domain position of the first symbol that can be used for sideline transmission in a time slot or in a time unit.
  • the value of A may be determined based on the information 6 and the information 7.
  • the information 6 indicates that the time domain position of the first symbol that can be used to transmit PSSCH is symbol 6
  • the information 7 indicates that the time domain position of the first symbol that can be used for sideline transmission in a time slot is symbol 2. Based on the information 6 and the information 7, the value of A may be determined to be 4.
  • the second indication information may be included in the resource pool configuration information or the sideline BWP configuration information.
  • the second indication information may be indication information of a terminal device.
  • the terminal device may be a transmitting end device of the sideline data or a receiving end device of the sideline data.
  • the value of A is determined based on a third side row subcarrier spacing and a fourth side row subcarrier spacing, where the third side row subcarrier spacing and the fourth side row subcarrier spacing are different.
  • the third side row subcarrier spacing may be greater than the fourth side row subcarrier spacing.
  • the third sideline subcarrier spacing is the sideline subcarrier spacing corresponding to the first time unit.
  • the third sideline subcarrier spacing is determined based on sideline BWP configuration information, where the sideline BWP configuration information is used to configure the BWP corresponding to the first time unit.
  • the third subcarrier spacing is determined based on protocol predefined information, resource pool configuration information, or sidelink BWP configuration information.
  • the third side row subcarrier spacing is 480 kHz or 960 kHz.
  • the fourth side row subcarrier spacing is 15kHz, 30kHz, 60kHz or 120kHz.
  • the third side row subcarrier spacing is equal to the first side row subcarrier spacing mentioned above; and/or, the fourth side row subcarrier spacing is equal to the second side row subcarrier spacing mentioned above.
  • the third side row subcarrier spacing is represented by ⁇ SL3
  • the fourth side row subcarrier spacing is represented by ⁇ SL4
  • the first A symbols of the first time unit (or the first A symbols of the first time unit that are available for sideline transmission) are used as AGC.
  • data in the first A symbols of the first time unit is repeated data of data in the target symbol of the first time unit.
  • the target symbol may include one or more symbols of the remaining symbols in the first time unit except the first A symbols.
  • the target symbol is the A+1th symbol to the 2Ath symbol of the first time unit. That is, the data in the first A symbols of the first time unit is the repeated data of the data in the A+1th symbol to the 2Ath symbol of the first time unit.
  • the data on the 1st symbol of the first time unit is the repeated data of the data on the A+1th symbol of the first time unit; the data on the 2nd symbol of the first time unit is the repeated data of the data on the A+2th symbol of the first time unit; and so on, the data on the Ath symbol of the first time unit is the repeated data of the data on the 2Ath symbol of the first time unit.
  • the target symbol is the A+1th symbol of the first time unit. That is, the data in the first A symbols of the first time unit are all repeated data of the data in the A+1th symbol of the first time unit. It can be seen that in this implementation, the first A symbols of the first time unit and the A+1th symbol transmit the same data.
  • the time domain resource 2 includes P consecutive symbols.
  • the value of P may be a positive integer greater than or equal to 1.
  • the value of P may be 3, for example.
  • the value of P is determined based on one or more of the following: protocol predefined information; resource pool configuration information; sideline BWP configuration information; or indication information of a terminal device.
  • the terminal device may be a transmitter device of sideline data or a receiver device of sideline data.
  • the PSCCH when the PSCCH is transmitted in the first time unit, the PSCCH may occupy Q PRBs in the frequency domain, where Q is a positive integer greater than or equal to 1.
  • the value of Q is determined based on one or more of the following: protocol predefined information; resource pool configuration information; sidelink BWP configuration information; or indication information of a terminal device.
  • the terminal device may be a sending end device of sidelink data, or a The receiving device of sideline data.
  • the PSCCH may be used to schedule the PSSCH, and the frequency domain starting position of the Q PRBs may be the same as the frequency domain starting position of the PSSCH.
  • the PSCCH may be used to schedule the PSSCH, and the Q PRBs are located in the first subchannel corresponding to the transmission resources of the PSSCH.
  • Embodiment 1.3 Time-frequency resources of PSSCH in the first time unit
  • the first time unit includes a time domain resource for transmitting the PSSCH.
  • the starting symbol for transmitting the time domain resource may be the A+1th symbol of the first time unit, where A is a positive integer greater than 1.
  • the first time unit includes time domain resources for transmitting PSSCH.
  • the starting symbol of the time domain resources for transmitting PSSCH may be the A+1th symbol of the first time unit that can be used for sideline transmission, where A is a positive integer greater than 1.
  • a in Example 1.2 may be A1
  • a in Example 1.3 may be A2
  • A1 and A2 may be the same or different.
  • the end symbol of time domain resource 3 is the previous symbol of the symbol corresponding to the first protection symbol.
  • the relevant description of the first protection symbol can be found in the above embodiment 1.1, which will not be described in detail here.
  • the time domain resources of PSSCH include starting from the 5th symbol of time slot n to the 5th last symbol of time slot n+1.
  • the time domain resources of PSSCH include starting from the 9th symbol of time slot n to the 6th symbol of time slot n+1 (that is, the 9th last symbol).
  • the time domain resources of PSSCH include starting from the 5th symbol of time slot n to the 5th last symbol of time slot n+3.
  • the time domain resources of PSSCH include starting from the 9th symbol of time slot n to the 6th symbol of time slot n+3 (that is, the 9th last symbol).
  • the end symbol of time domain resource 3 is the last symbol in the first time unit that can be used to transmit the PSSCH.
  • the end symbol of time domain resource 3 is the previous symbol of the symbol corresponding to the second protection symbol.
  • the time domain resources of PSSCH include from the 5th symbol of time slot n to the 1st symbol of time slot n+1.
  • the time domain resources of PSSCH include from the 5th symbol of time slot n to the 1st symbol of time slot n+3; in Figure 12D, the time domain resources of PSSCH include from the 9th symbol of time slot n to the 3rd symbol of time slot n+2.
  • a bitmap is used with time slots as the granularity to indicate whether the corresponding time domain resources belong to the resource pool. That is to say, assuming that the number of time slots included in the SFN cycle is (10240 ⁇ 2 ⁇ ), at this time, the bitmap can be repeated periodically within the SFN cycle to indicate the time slots belonging to the resource pool within the SFN cycle. For example, the time slot corresponding to the bit with a value of 1 in the bitmap belongs to the resource pool. On the contrary, the time slot corresponding to the bit with a value of 0 in the bitmap does not belong to the resource pool.
  • this scheme of indicating whether the time domain resources belong to the resource pool based on the bitmap with a single time slot as the granularity is not applicable to the above-mentioned side transmission based on the first time unit.
  • an embodiment of the present application provides a solution for indicating whether a time domain resource within an SFN cycle belongs to a resource pool, which helps to match a transmission scheme for side transmission with a first time unit as the granularity.
  • a transmission scheme for side transmission with a first time unit as the granularity.
  • Fig. 14 is a schematic flow chart of a method for sideline transmission according to an embodiment of the present application.
  • the method shown in Fig. 14 may include step S1410.
  • step S1410 the first terminal device determines first information, where the first information is used to indicate time domain resources belonging to a resource pool within an SFN cycle.
  • the first information may include a bitmap, or in other words, the first information may be used to indicate a bitmap. Accordingly, the time domain resources belonging to the resource pool within an SFN cycle may be determined based on the bitmap.
  • the first information may indicate whether the corresponding time domain resource belongs to the resource pool with the first time unit as the granularity, or in other words, one bit in the first information may correspond to a first time unit in the SFN cycle.
  • the target bit in the first information may correspond to the first time unit in the SFN cycle, and accordingly, when the value of the target bit is 1, the first time unit corresponding to the target bit belongs to the resource pool.
  • the first information may also indicate whether the time domain resource in the SFN cycle belongs to the resource pool with the time slot as the granularity.
  • the resource pool may transmit PSCCH and/or PSSCH based on a first time unit, where the first time unit includes M1 consecutive time slots, and M1 is a positive integer greater than 1.
  • the scheme for transmitting PSCCH and/or PSSCH in the first time unit may refer to the introduction to Embodiment 1 above.
  • the side transmission includes transmission of an S-SSB, wherein the transmission of the S-SSB includes a first time unit based on Or the second time unit transmits S-SSB, wherein the scheme of transmitting S-SSB in the first time unit or in the second time unit can be referred to the introduction of Example 1 above.
  • time domain resources are not limited in the embodiments of the present application.
  • the time domain resources may include time slots.
  • the time domain resources may include symbols.
  • the above time domain resources may also include other time domain resource granularities specified in future communication systems.
  • Example 2-1 takes the transmission of S-SSB based on the first time unit and the transmission of S-SSB based on the second time unit as examples, and combines Example 2-1 and Example 2-2 to introduce the scheme for side transmission of the embodiment of the present application.
  • Embodiment 2-1 Transmitting S-SSB based on the first time unit .
  • one or more of the time domain resources that cannot be used for sidelink transmission within the SFN period (also known as the "second time domain resources", with “N nonSL " indicating the number of time domain resources included in the time domain resources), the time domain resources used for transmitting S-SSB (also known as the "first time domain resources”, with “ NSS-SSB " indicating the number of time domain resources included in the time domain resources), and the reserved time domain resources (also known as the "third time domain resources”, with "N reserved " indicating the number of time domain resources included in the time domain resources) do not belong to the resource pool. Therefore, when indicating the time domain resources belonging to the resource pool, the above one or more resources also need to be considered.
  • the time domain resources belonging to the resource pool are determined from the first set, and the first set is determined based on one or more of the following: first time domain resources, second time domain resources, and third time domain resources.
  • reserved time domain resources may be, for example, reserved time units or reserved time slots.
  • the above-mentioned reserved time domain resources may also be reserved time domain symbols, which is not limited in the embodiment of the present application.
  • the N nonSL , N S-SSB and N reserved may be positive integers greater than or equal to 0.
  • one or more of the above-mentioned first time domain resources, second time domain resources, and third time domain resources do not belong to the resource pool. Therefore, when determining the first set, the above-mentioned one or more time domain resources can be excluded from the time domain resources included in an SFN cycle.
  • the number of first time units or the number of time slots included in the first set can be determined based on one or more of the following information: the number of time slots included in an SFN cycle, the number of time slots included in the first time unit, the number of time slots included in the first time domain resources, the number of time slots included in the second time domain resources, and the number of time slots included in the third time domain resources.
  • the number of first time units or the number of time slots included in the first set can be determined based on one or more of the following information: the number of first time units included in an SFN cycle, the number of time slots included in the first time unit, the number of first time units included in the first time domain resources, the number of first time units included in the second time domain resources, and the number of first time units included in the third time domain resources.
  • the number of first time units corresponding to the time domain resources included in one SFN cycle is 10240 ⁇ 2 ⁇ /M1, and the index range is [0,10240 ⁇ 2 ⁇ /M1-1]. If N S-SSB represents the number of first time units corresponding to the first time domain resources, N nonSL represents the number of first time units corresponding to the second time domain resources, and N reserved represents the number of first time units corresponding to the third time domain resources, then the number of first time units included in the first set is 10240 ⁇ 2 ⁇ /M1-N S-SSB -N nonSL -N reserved .
  • the number of first time units included in the first set may be determined based on a first number, the first number being equal to 10240 ⁇ 2 ⁇ /M1-NS -SSB - NnonSL - Nreserved .
  • represents a parameter determined based on the side subcarrier spacing (the value of ⁇ can be, for example, referred to the relevant introduction in Table 5).
  • NS-SS represents a parameter determined based on the number of first time units included in the first time domain resource.
  • NS -SSB may be equal to the number of first time units included in the first time domain resource.
  • NS -SSB may also be obtained by calculating the number of first time units included in the first time domain resource. For example, NS-SSB may be obtained by multiplying the number of first time units included in the first time domain resource by a weight. In other implementations, NS -SSB may also be obtained by calculating the number of time slots included in the first time domain resource.
  • NS -SSB may be obtained by dividing the number of time slots included in the first time domain resource by the number of time slots included in the first time unit (i.e., M1).
  • M1 the number of time slots included in the first time unit
  • N nonSL represents a parameter determined based on the number of first time units included in the second time domain resource.
  • N nonSL may be equal to the number of first time units included in the second time domain resource.
  • N nonSL may also be obtained by calculating the number of first time units included in the second time domain resource. For example, N nonSL may be obtained by multiplying the number of first time units included in the second time domain resource by a weight.
  • N nonSL may also be obtained by calculating the number of time slots included in the second time domain resource. For example, N nonSL may be obtained by dividing the number of time slots included in the second time domain resource by the number of time slots included in the first time unit (i.e., M1 ).
  • M1 the number of time slots included in the first time unit
  • N reserved represents a parameter determined based on the number of first time units included in the third time domain resource.
  • N reserved may be equal to the number of first time units included in the third time domain resource.
  • N reserved may also be obtained by calculating the number of first time units included in the third time domain resource, for example, by multiplying the number of first time units included in the third time domain resource by a weight.
  • N reserved may also be obtained by multiplying the number of first time units included in the third time domain resource by a weight.
  • N reserved can be obtained by dividing the number of time slots included in the third time domain resource by the number of time slots included in the first time unit (ie, M1).
  • M1 the number of time slots included in the first time unit
  • the number of time slots corresponding to the time domain resources included in one SFN cycle is 10240 ⁇ 2 ⁇
  • the index range is [0,10240 ⁇ 2 ⁇ -1]. If N S-SSB represents the number of time slots corresponding to the first time domain resources, N nonSL represents the number of time slots corresponding to the second time domain resources, and N reserved represents the number of time slots corresponding to the third time domain resources, then the number of time slots included in the first set is 10240 ⁇ 2 ⁇ -N S-SSB -N nonSL -N reserved , and the number of first time units included in the first set is (10240 ⁇ 2 ⁇ -N S-SSB -N nonSL -N reserved )/M1.
  • the number of first time units included in the first set may be determined based on a third number, where the third number is equal to (10240 ⁇ 2 ⁇ ⁇ NSSB ⁇ NnonSL ⁇ Nreserved )/M1.
  • N S-SSB represents a parameter determined based on the number of time slots included in the first time domain resource.
  • N S-SSB may be equal to the number of time slots included in the first time domain resource.
  • N S-SSB may also be obtained by calculating the number of time slots included in the first time domain resource. For example, N S-SSB may be obtained by multiplying the number of time slots included in the first time domain resource by a weight. In other implementations, N S-SSB may also be obtained by calculating the number of first time units included in the first time domain resource.
  • N S-SS may be obtained by multiplying the number of first time units included in the first time domain resource by the number of time slots included in the first time unit (i.e., M1).
  • M1 the number of time slots included in the first time unit
  • the embodiment of the present application does not specifically limit the method for calculating N S -SSB .
  • N nonSL represents a parameter determined based on the number of time slots included in the second time domain resource.
  • N nonSL may be equal to the number of time slots included in the second time domain resource.
  • N nonSL may also be obtained by calculating the number of time slots included in the second time domain resource. For example, N nonSL may be obtained by multiplying the number of time slots included in the second time domain resource by a weight.
  • N nonSL may also be obtained by calculating the number of first time units included in the second time domain resource. For example, N nonSL may be obtained by multiplying the number of first time units included in the second time domain resource by the number of time slots included in the first time unit (i.e., M1).
  • M1 the number of time slots included in the first time unit
  • N reserved represents a parameter determined based on the number of time slots included in the third time domain resource.
  • N reserved may be equal to the number of time slots included in the third time domain resource.
  • N reserved may also be obtained by calculating the number of time slots included in the third time domain resource, for example, N reserved may be obtained by multiplying the number of time slots included in the third time domain resource by a weight.
  • N reserved may also be obtained by calculating the number of first time units included in the third time domain resource, for example, N reserved may be obtained by multiplying the number of first time units included in the third time domain resource by the number of time slots included in the first time unit (i.e., M1).
  • M1 the number of time slots included in the first time unit
  • the embodiment of the present application is described by taking the case where the number of first time units included in the first set is determined based on the first number as an example, and the embodiment of the present application is also applicable to the case where the number of first time units included in the first set is determined based on the third number.
  • the first set is used to represent a set of time units that may belong to a resource pool within a SFN cycle.
  • the first set (or, a set of time units that may belong to the resource pool within an SFN cycle) may be expressed as: in, Representing the i-th first time unit in the first set, T max may be determined based on the number of time domain resources remaining after excluding the first time domain resources, the second time domain resources, and the third time domain resources from the time domain resources included in one SFN cycle. For example, T max may be equal to the number of first time units included in one SFN cycle minus the number of first time units corresponding to the first time domain resources, the number of first time units corresponding to the second time domain resources, and the number of first time units corresponding to the third time domain resources.
  • the first time units included in an SFN cycle are re-indexed in ascending order of time unit indexes to obtain a first set after excluding the first time unit corresponding to the first time domain resource, the first time unit corresponding to the second time domain resource, and the first time unit corresponding to the third time domain resource.
  • the above introduces the method for determining the first set in the embodiment of the present application.
  • the following introduces the method for determining the number of first time units included in the third time domain resources in the embodiment of the present application, as well as the method for determining the third time domain resources.
  • the number of first time units included in the third time domain resource is determined based on one or more of: the number of first time units included in the first time domain resource; the number of first time units included in the second time domain resource; and the number of bits corresponding to the first information.
  • the number of first time units included in the third time domain resource is determined based on one or more of the following: the number of first time units or the number of time slots included in an SFN cycle, the number of time slots included in the first time unit, the number of first time units included in the first time domain resource; the number of first time units included in the second time domain resource; and the number of bits corresponding to the first information.
  • the number of bits corresponding to the first information can be understood as the number of bits included in the bit map.
  • the number of first time units included in the third time domain resource is set so that the number of first time units included in an SFN cycle minus the number of first time units included in the first time domain resource N S-SSB , the number of first time units included in the second time domain resource N nonSL , and the number of first time units included in the second time domain resource N reserved , the number of remaining first time units can be divided by the number of bits corresponding to the first information.
  • the third time domain resource is determined from the second set based on one or more of the following: the number of first time units included in the first time domain resource; the number of first time units included in the second time domain resource; the number of first time units included in the third time domain resource.
  • the third time domain resource is determined from the second set based on one or more of the following: the number of first time units or time slots included in an SFN cycle, the number of time slots included in the first time unit, the number of first time units included in the first time domain resource; the number of first time units included in the second time domain resource; the number of first time units included in the third time domain resource.
  • the time units in the above second set are time units corresponding to target time domain resources in the time domain resources included in the SFN cycle, and the target time domain resources are the remaining time domain resources in the time domain resources included in the SFN cycle except the first time domain resources and the second time domain resources.
  • the remaining time domain resources in the time domain resources included in the SFN cycle except the first time domain resources and the second time domain resources are re-indexed in order of index from low to high.
  • the second set can be represented, for example, as
  • the above describes the method for determining the third time domain resources in the embodiment of the present application.
  • the following describes the method for determining the time units belonging to the resource pool from the first set in the embodiment of the present application.
  • the first information is a bit map, and if the value of the k′+1th bit in the bit map is 1, the k+1th time unit in the first set belongs to the resource pool; wherein k′ represents the index of the bit in the bit map, k represents the index of the time unit in the first set, k and k′ are both integers greater than or equal to 0, and k is determined based on k′ and L, or k and k′ have an associated relationship, and L represents the length of the bit map.
  • the above k′ represents the index of the bit in the bitmap.
  • the index of the bit can be numbered starting from 0, and accordingly, the index corresponding to the first bit in the bitmap can be 0.
  • the above k represents the index of the time unit in the first set (for example, the first time unit).
  • the index of the time unit can be numbered starting from 0, and accordingly, the index corresponding to the first time unit in the first set can be 0.
  • the index k′ of the above-mentioned bit map and/or the index k of the time unit in the first set can also be indexed starting from 1. Accordingly, if the value of the k′th bit in the bit map is 1, the kth time unit in the first set belongs to the resource pool, where k and k′ are both integers greater than or equal to 0, and k is determined based on k′ and L, or k and k′ have an associated relationship, and L represents the length of the bit map.
  • the value of k is less than the maximum number of first time units included in the first set.
  • the value range of k can be expressed as: 0 ⁇ k ⁇ 10240 ⁇ 2 ⁇ /M1- NSS-SSB - NnonSL - Nreserved .
  • the set of time units belonging to the resource pool determined from the first set based on the first information is recorded as a third set, and the first time units belonging to the resource pool determined in the above manner are re-indexed in the third set in order from low to high indexes, and the first time units in the third set are represented as The value of i is ⁇ 0, 1, ..., T′ max -1 ⁇ , where T′ max represents the number of first time units included in the third set.
  • the embodiments of the present application do not limit the corresponding relationship between the value of the bit and the time domain resources belonging to the resource pool.
  • the value of the bit if the value of the bit is 1, it can indicate that the corresponding time unit belongs to the resource pool. On the contrary, if the value of the bit is 0, it can indicate that the corresponding time unit does not belong to the resource pool. In other implementations, if the value of the bit is 0, it can indicate that the corresponding time unit belongs to the resource pool. On the contrary, if the value of the bit is 1, it can indicate that the corresponding time unit does not belong to the resource pool.
  • the time unit that can be used to transmit S-SSB, the time unit that can be used to transmit PSCCH/PSSCH, and the time unit indicated by the first information can all be the first time unit.
  • the number of time slots included in the SFN cycle may be an integer multiple of the number of time slots included in the first time unit, or the first terminal device does not expect the number of time slots included in an SFN cycle (for example, 10240 ⁇ 2 ⁇ ) to be divisible by M1, or the first terminal device expects the number of time slots included in an SFN cycle to be an integer multiple of the number of time slots included in the first time unit.
  • the number of time slots included in the SFN cycle may not be an integer multiple of the number of time slots included in the first time unit.
  • Embodiment 2-2 Transmitting S-SSB based on the second time unit.
  • one or more of the time domain resources that cannot be used for sidelink transmission within the SFN cycle also known as “second time domain resources”
  • the time domain resources used to transmit S-SSB also known as “first time domain resources”
  • the reserved time domain resources also known as “third time domain resources”.
  • the time domain resources belonging to the resource pool are determined from a first set, wherein the first set includes a plurality of first time units, the first set is determined based on one or more of: first time domain resources, second time domain resources, and third time domain resources.
  • reserved time domain resources may be, for example, reserved time units or reserved time slots.
  • the above-mentioned reserved time domain resources may also include reserved time domain symbols. The embodiment of the present application does not limit this.
  • the number of time domain resources included in the first time domain resource is expressed as "NS -SSB "
  • the number of time domain resources included in the second time domain resource is expressed as " NnonSL”
  • the number of time domain resources included in the third time domain resource is expressed as " Nreserved ".
  • the granularity of the time domain resources included in the above three time domain resources may be the same or different.
  • the above NnonSL , Ns -SSB and Nreserved may be positive integers greater than or equal to 0.
  • the time domain resources included in the first time domain resources may be based on the granularity of time slots, and accordingly, NS -SSB represents the number of time slots included in the first time domain resources.
  • the time domain resources included in the first time domain resources may be based on the granularity of second time units, and accordingly, NS -SSB represents the number of second time units included in the first time domain resources.
  • the time domain resources included in the first time domain resources may be based on the granularity of first time units, and accordingly, NS -SSB represents the number of first time units included in the first time domain resources.
  • the time domain resources included in the second time domain resources may be based on the granularity of time slots, and accordingly, N nonS represents the number of time slots included in the second time domain resources.
  • the time domain resources included in the second time domain resources may be based on the granularity of second time units, and accordingly, N nonSL represents the number of second time units included in the second time domain resources.
  • the time domain resources included in the second time domain resources may be based on the granularity of first time units, and accordingly, N nonSL represents the number of first time units included in the second time domain resources.
  • the time domain resources included in the third time domain resources may be based on a time slot as a granularity, and accordingly, N reserved indicates the number of time slots included in the third time domain resources.
  • the time domain resources included in the third time domain resources may be based on a second time unit as a granularity, and accordingly, N reserved indicates the number of second time units included in the third time domain resources.
  • the time domain resources included in the third time domain resources may be based on a first time unit as a granularity, and accordingly, N reserved indicates the number of first time units included in the third time domain resources.
  • one or more of the above-mentioned first time domain resources, second time domain resources, and third time domain resources do not belong to the resource pool. Therefore, when determining the first set, the above-mentioned one or more time domain resources can be excluded from the time domain resources included in an SFN cycle.
  • the number of first time units or the number of time slots included in the first set may be determined based on one or more of the following information: the number of time slots included in one SFN cycle, the number of time slots included in the first time unit, the number of time domain resources included in the first time domain resources, the number of time domain resources included in the second time domain resources, and the number of time domain resources included in the third time domain resources.
  • the number of first time units or the number of time slots included in the first set may be determined based on one or more of the following information: the number of time slots included in one SFN cycle, the number of time slots included in the first time unit, the number of time slots included in the first time domain resources, the number of time slots included in the second time domain resources, and the number of time slots included in the third time domain resources.
  • the number of first time units or the number of time slots included in the first set may be determined based on one or more of the following information: the number of first time units included in one SFN cycle, the number of time slots included in the first time unit, the number of second time units included in the first time domain resources, the number of time slots included in the second time unit, the number of time domain resources included in the second time domain resources, and the number of time domain resources included in the third time domain resources.
  • the number of first time units or the number of time slots included in the first set may be determined based on one or more of the following information: the number of first time units included in one SFN cycle, the number of time slots included in the first time unit, the number of second time units included in the first time domain resources, the number of time slots included in the second time unit, the number of time slots included in the second time domain resources, and the number of time slots included in the third time domain resources.
  • the number of first time units corresponding to the time domain resources included in one SFN cycle is 10240 ⁇ 2 ⁇ /M1, and the index range is [0, 10240 ⁇ 2 ⁇ /M1-1]. If N S-SSB represents the number of time slots corresponding to the first time domain resources, N nonSL represents the number of time slots corresponding to the second time domain resources, and N reserved represents the number of first time units corresponding to the third time domain resources, then the number of first time units included in the first set is (10240 ⁇ 2 ⁇ -N S-SSB -N nonSL )/M1-N reserved .
  • the number of first time units corresponding to the time domain resources included in one SFN cycle is 10240 ⁇ 2 ⁇ /M1
  • the index range is [0, 10240 ⁇ 2 ⁇ /M1-1].
  • N S-SSB represents the number of time slots corresponding to the first time domain resources
  • N nonSL represents the number of first time units corresponding to the second time domain resources
  • N reserved represents the number of first time units corresponding to the third time domain resources
  • the number of first time units corresponding to the time domain resources included in one SFN cycle is 10240 ⁇ 2 ⁇ /M1, and the index range is [0, 10240 ⁇ 2 ⁇ /M1-1]. If N S-SSB represents the number of time slots corresponding to the first time domain resources, N nonSL represents the number of time slots corresponding to the second time domain resources, and N reserved represents the number of time slots corresponding to the third time domain resources, then the number of first time units included in the first set is (10240 ⁇ 2 ⁇ -N S-SSB -N nonSL -N reserved )/M1.
  • the number of first time units included in the first set may be determined based on a second number, where the second number is equal to (10240 ⁇ 2 ⁇ ⁇ NSSB ⁇ NnonSL )/M1 ⁇ Nreserved .
  • the number of first time units included in the first set may be determined based on a fourth number, the fourth number being equal to (10240 ⁇ 2 ⁇ ⁇ N S-SS )/M1 ⁇ N nonSL ⁇ N reserved .
  • the number of first time units included in the first set may be determined based on a fifth number, the fifth number being equal to (10240 ⁇ 2 ⁇ ⁇ NSSB ⁇ NnonSL ⁇ Nreserved )/M1.
  • represents a parameter determined based on the side subcarrier spacing (the value of ⁇ can be, for example, referred to the relevant introduction in Table 5).
  • N S-SSB represents a parameter determined based on the number of second time units included in the first time domain resource.
  • N S-SSB may be equal to the number of time slots included in the first time domain resource.
  • the number of time slots included in the first time domain resource may be determined according to the number of second time units included in the first time domain resource.
  • N S-SSB may be equal to the product of the number of second time units included in the first time domain resource and the number of time slots included in the second time unit (i.e., M2).
  • M2 the number of time slots included in the second time unit
  • N nonSL represents a parameter determined based on the number of time domain resources included in the second time domain resource.
  • N nonSL represents a parameter determined based on the number of time slots included in the second time domain resource.
  • N nonSL may be equal to the number of time slots included in the second time domain resource.
  • N nonSL may be equal to the number of first time units included in the second time domain resource.
  • N nonSL may also be obtained by calculating the number of time domain resources included in the second time domain resource.
  • N nonSL may be obtained by multiplying the number of first time units included in the second time domain resource by the number of time slots included in the first time unit (i.e., M1).
  • N nonSL may be obtained by multiplying the number of second time units included in the second time domain resource by the number of time slots included in the second time unit (i.e., M2).
  • M1 the number of first time units included in the second time domain resource
  • N nonSL may be obtained by multiplying the number of second time units included in the second time domain resource by the number of time slots included in the second time unit (i.e., M2).
  • N reserved represents a parameter determined based on the number of time domain resources included in the third time domain resource.
  • N reserved represents a parameter determined based on the number of first time units included in the third time domain resource.
  • N reserved may be equal to the number of first time units included in the third time domain resource.
  • N reserved may be equal to the number of time slots included in the third time domain resource.
  • N reserved may also be obtained by calculating the number of time domain resources included in the third time domain resource. For example, N reserved may be obtained by dividing the number of time slots included in the third time domain resource by the number of time slots included in the first time unit (i.e., M1). The embodiment of the present application does not specifically limit the method of calculating N reserved .
  • the number of time slots corresponding to the time domain resources included in one SFN cycle is 10240 ⁇ 2 ⁇
  • the index range is [0,10240 ⁇ 2 ⁇ -1]. If N S-SSB represents the number of time slots corresponding to the first time domain resources, N nonSL represents the number of time slots corresponding to the second time domain resources, and N reserved represents the number of time slots corresponding to the third time domain resources, then the number of time slots included in the first set is 10240 ⁇ 2 ⁇ -N S-SSB -N nonSL -N reserved , and the number of first time units included in the first set is (10240 ⁇ 2 ⁇ -N S-SSB -N nonSL -N reserved )/M1.
  • the number of time slots corresponding to the time domain resources included in one SFN cycle is 10240 ⁇ 2 ⁇
  • the index range is [0,10240 ⁇ 2 ⁇ -1]. If N S-SSB represents the number of time slots corresponding to the first time domain resources, N nonSL represents the number of first time units corresponding to the second time domain resources, and N reserved represents the number of first time units corresponding to the third time domain resources, then the number of first time units included in the first set is (10240 ⁇ 2 ⁇ -N S-SSB )/M1-N nonSL -N reserved .
  • the number of time slots corresponding to the time domain resources included in one SFN cycle is 10240 ⁇ 2 ⁇
  • the index range is [0,10240 ⁇ 2 ⁇ -1]. If N S-SSB represents the number of time slots corresponding to the first time domain resource, N nonSL represents the number of time slots corresponding to the second time domain resource, and N reserved represents the number of first time units corresponding to the third time domain resource, then the number of first time units included in the first set is (10240 ⁇ 2 ⁇ -N S-SSB -N nonSL )/M1-N reserved .
  • the scheme of the embodiment of the present application is described by taking the number of first time units included in the first set as determined based on the second number as an example, and the scheme of the embodiment of the present application is also applicable to the case where the number of first time units included in the first set is determined based on the fourth number or the fifth number.
  • the first set is used to represent a set of time units that may belong to a resource pool within a SFN cycle.
  • the first set (or, a set of time units that may belong to the resource pool in one SFN cycle) may be expressed as: in, represents the i-th first time unit in the first set, T max may be based on the time domain resources included in one SFN cycle excluding the first time domain resources, the second time domain resources, For example, T max may be equal to the number of time slots included in an SFN cycle minus the number of time slots corresponding to the first time domain resource, the number of time slots corresponding to the second time domain resource, the number of first time units corresponding to the remaining time slots minus the number of first time units corresponding to the third time domain resource.
  • the time slots included in an SFN cycle are excluded from the second time unit corresponding to the first time domain resource (or the time slot corresponding to the first time domain resource) and the time domain resource corresponding to the second time domain resource, and the remaining time slots are divided according to the first time unit, and then the first time unit corresponding to the third time domain resource is subtracted to obtain the remaining first time unit, and the remaining first time units are re-indexed in the ascending order of the index of the first time unit to obtain the above-mentioned first set.
  • the above introduces the method for determining the first set in the embodiment of the present application.
  • the following introduces the method for determining the number of first time units included in the third time domain resources in the embodiment of the present application, as well as the method for determining the third time domain resources.
  • the number of time domain resources included in the third time domain resource is determined based on one or more of the following: the number of time domain resources included in the first time domain resource; the number of time domain resources included in the second time domain resource; and the number of bits corresponding to the first information.
  • the number of time domain resources included in the third time domain resource is determined based on one or more of the following: the number of time slots included in the first time domain resource; the number of time slots included in the second time domain resource; and the number of bits corresponding to the first information.
  • the number of time domain resources included in the third time domain resource is determined based on one or more of the following: the number of first time units or the number of time slots included in an SFN cycle, the number of time slots included in the first time unit, the number of time domain resources included in the first time domain resource; the number of time domain resources included in the second time domain resource; and the number of bits corresponding to the first information.
  • the number of time domain resources included in the third time domain resource is determined based on one or more of the following: the number of first time units or the number of time slots included in an SFN cycle, the number of time slots included in the first time unit, the number of time slots included in the first time domain resource; the number of time slots included in the second time domain resource; and the number of bits corresponding to the first information.
  • the S-SSB can be transmitted based on the second time unit, and accordingly, the number of time domain resources included in the first time domain resource can, for example, include the number of second time units included in the first time domain resource.
  • the number of time domain resources included in the first time domain resource can also, for example, include the number of time slots included in the first time domain resource.
  • the number of time domain resources included in the second time domain resource may include the number of time slots included in the second time domain resource.
  • the number of time domain resources included in the second time domain resource may also include the number of first time units included in the second time domain resource.
  • the number of time domain resources included in the second time domain resource may also include the number of second time units included in the second time domain resource. This embodiment of the application is not limited to this.
  • the number of bits corresponding to the first information can be understood as the number of bits included in the bit map.
  • the number of time domain resources included in the third time domain resources is set so that after the number of time domain resources included in an SFN cycle is subtracted from the number of time domain resources included in the first time domain resources N S-SSB , the number of time domain resources included in the second time domain resources N nonSL , and the number of time domain resources included in the third time domain resources N reserved , the number of first time units corresponding to the remaining time domain resources can be divided by the number of bits corresponding to the first information.
  • the third time domain resource is determined from the second set based on one or more of the following: the number of time domain resources included in the first time domain resource; the number of time domain resources included in the second time domain resource; and the number of time domain resources included in the third time domain resource.
  • the third time domain resource is determined from the second set based on one or more of the following: the number of time slots included in the first time domain resource; the number of time slots included in the second time domain resource; and the number of time slots included in the third time domain resource.
  • the third time domain resource is determined from the second set based on one or more of the following: the number of first time units or time slots included in one SFN cycle, the number of time slots included in the first time unit, the number of time domain resources included in the first time domain resource; the number of time domain resources included in the second time domain resource; the number of time domain resources included in the third time domain resource.
  • the third time domain resource is determined from the second set based on one or more of the following: the number of first time units or time slots included in one SFN cycle, the number of time slots included in the first time unit, the number of time slots included in the first time domain resource; the number of time slots included in the second time domain resource; the number of time slots included in the third time domain resource.
  • the time unit in the second set is the time unit corresponding to the target time domain resource in the time domain resources included in the SFN cycle, and the target time domain resource is the remaining time domain resource in the time domain resources included in the SFN cycle except the first time domain resource and the second time domain resource.
  • the second set can be expressed as
  • the above describes the method for determining the third time domain resource in the embodiment of the present application.
  • the following describes the method for determining the third time domain resource in the embodiment of the present application from the first set.
  • the first information is a bit map, and if the value of the k′+1th bit in the bit map is 1, the k+1th time unit in the first set belongs to the resource pool; wherein k′ represents the index of the bit in the bit map, k represents the index of the time unit in the first set, k and k′ are both integers greater than or equal to 0, and k is determined based on k′ and L, or k and k′ have an associated relationship, and L represents the length of the bit map.
  • the above k′ represents the index of the bit in the bitmap.
  • the index of the bit can be numbered starting from 0, and accordingly, the index corresponding to the first bit in the bitmap can be 0.
  • the above k represents the index of the time unit in the first set (for example, the first time unit).
  • the index of the time unit can be numbered starting from 0, and accordingly, the index corresponding to the first time unit in the first set can be 0.
  • the index k′ of the above-mentioned bit map and/or the index k of the time unit in the first set can also be indexed starting from 1. Accordingly, if the value of the k′th bit in the bit map is 1, the kth time unit in the first set belongs to the resource pool, where k and k′ are both integers greater than or equal to 0, and k is determined based on k′ and L, or k and k′ have an associated relationship, and L represents the length of the bit map.
  • the value of k is less than the maximum number of first time units included in the first set.
  • the value range of k can be expressed as: 0 ⁇ k ⁇ (10240 ⁇ 2 ⁇ -N S-SSB -N nonSL )/M1-N reserved .
  • the set of time units belonging to the resource pool determined from the first set based on the first information is recorded as a third set, and the first time units belonging to the resource pool determined in the above manner are re-indexed in the third set in order from low to high indexes, and the first time units in the third set are represented as The value of i is ⁇ 0, 1, ..., T′ max -1 ⁇ , where T′ max represents the number of first time units included in the third set.
  • the time domain resources between the second time units of two adjacent transmission S-SSBs in the SFN cycle may belong to a resource pool based on the first information indication, wherein, as described above, the first information is indicated with the first time unit as the granularity. Therefore, in order to match the indication method of the first information, in some implementations, the number of time slots included between the second time units of two adjacent transmission S-SSBs in the above SFN cycle is an integer multiple of the number of time slots included in the first time unit.
  • the first terminal device expects that the number of time slots included between the second time units of two adjacent transmission S-SSBs in the SFN cycle is an integer multiple of the number of time slots included in the first time unit, or in other words, the first terminal device does not expect that the number of time slots included between the second time units of two adjacent transmission S-SSBs in the SFN cycle is not an integer multiple of the number of time slots included in the first time unit.
  • the difference between the number of time slots included in the second time units of two adjacent transmission S-SSBs in an SFN cycle and the target number is an integer multiple of the number of time slots included in the first time unit, wherein the target number is the number of time domain resources of the second time domain resources included in the second time units of two adjacent transmission S-SSBs.
  • the number of remaining time slots other than the second time domain resources between the second time units of two adjacent transmission S-SSBs in the SFN cycle is an integer multiple of the number of time slots included in the first time unit, which helps to match the resource indication granularity of the first information.
  • the first terminal device expects the above difference to be an integer multiple of the number of time slots included in the first time unit.
  • the first terminal device does not expect the above difference to not be an integer multiple of the number of time slots included in the first time unit.
  • the number of time slots remaining after subtracting the number of time slots included in the first time domain resource and the number of time slots included in the second time domain resource from the number of time slots included in the SFN cycle is an integer multiple of the number of time slots included in the first time unit, which helps to reduce the number of reserved time domain resources.
  • the first terminal device expects the above-mentioned remaining number of time slots to be an integer multiple of the number of time slots included in the first time unit. In other words, the first terminal device does not expect the above-mentioned remaining number of time slots to be not an integer multiple of the number of time slots included in the first time unit.
  • the remaining time domain resources may belong to the resource pool. Therefore, in order to facilitate the indication of whether the remaining time domain resources belong to the resource pool with the first time unit as the granularity, in some implementations, the number of remaining time slots in the above-mentioned SFN cycle except for the first time domain resources, the second time domain resources and the third time domain resources is an integer multiple of the number of time slots included in the first time unit, or in other words, the first terminal device expects that the number of remaining time slots in the SFN cycle except for the first time domain resources, the second time domain resources and the third time domain resources is an integer multiple of the number of time slots included in the first time unit, or in other words, the first terminal device does not expect that the number of remaining time slots in the SFN cycle except for the first time domain resources, the second time domain resources and the third time domain resources is not an integer
  • the number of time slots included in the SFN cycle minus the number of time slots included in the first time domain resource, the number of time slots included in the second time domain resource, and the number of time slots included in the third time domain resource is the integer of the number of bits corresponding to the first information.
  • the first terminal device expects the remaining number of time slots to be an integer multiple of the number of bits corresponding to the first information, or in other words, the first terminal device does not expect the remaining number of time slots to be not an integer multiple of the number of bits corresponding to the first information.
  • FIG15 is a schematic diagram of a terminal device according to an embodiment of the present application, and the terminal device shown in FIG15 may be the first terminal device mentioned above.
  • the terminal device 1500 shown in FIG15 may include: a processing unit 1510 .
  • Processing unit 1510 is used to determine first information, where the first information is used to indicate time domain resources belonging to a resource pool within an SFN cycle; wherein the resource pool transmits PSCCH and/or PSSCH based on a first time unit, and the first time unit includes M1 consecutive time slots, and M1 is a positive integer greater than 1.
  • the side transmission includes transmission of an S-SSB
  • the transmission of the S-SSB includes transmitting the S-SSB based on the first time unit or the second time unit, wherein the second time unit includes M2 consecutive time slots, and M2 is an integer greater than or equal to 1.
  • the time domain resources belonging to the resource pool are determined from a first set, and the first set is determined based on one or more of the following: a first time domain resource, determined based on the time domain resources used to transmit the S-SSB within the SFN cycle; a second time domain resource, determined based on the time domain resources that cannot be used for side transmission within the SFN cycle; a third time domain resource, determined based on the reserved time domain resources within the SFN cycle; wherein the first set includes multiple first time units.
  • the number of the first time units included in the first set is determined based on a first number, and the first number is equal to 10240 ⁇ 2 ⁇ /M1- NSS-SSB - NnonSL - Nreserved , where NS-SSB represents a parameter determined based on the number of the first time units included in the first time domain resources, NnonSL represents a parameter determined based on the number of the first time units included in the second time domain resources, Nreserved represents a parameter determined based on the number of the first time units included in the third time domain resources, and ⁇ represents a parameter determined based on the sideline subcarrier spacing.
  • the number of the first time units included in the third time domain resource is determined based on one or more of: the number of the first time units included in the first time domain resource; the number of the first time units included in the second time domain resource; and the number of bits corresponding to the first information.
  • the third time domain resource is determined from the second set based on one or more of the following: the number of the first time units included in the first time domain resources; the number of the first time units included in the second time domain resources; the number of the first time units included in the third time domain resources; wherein the time units in the second set are time units corresponding to target time domain resources in the time domain resources included in the SFN cycle, and the target time domain resources are the time domain resources remaining in the time domain resources included in the SFN cycle excluding the first time domain resources and the second time domain resources.
  • the number of time slots included in the SFN cycle is an integer multiple of the number of time slots included in the first time unit.
  • the time domain resources indicated by the first information are determined from a first set, and the first set is determined based on one or more of the following: a first time domain resource, determined based on the time domain resources used for transmitting the S-SSB within the SFN cycle; a second time domain resource, determined based on the time domain resources that cannot be used for sideline transmission within the SFN cycle; a third time domain resource, determined based on the reserved time domain resources within the SFN cycle; wherein the first set includes multiple first time units.
  • the number of the first time units included in the first set is determined based on the second number.
  • the second number is equal to (10240 ⁇ 2 ⁇ -NSS-SSB -NnonSL )/M1- Nreserved
  • NSSB represents a parameter determined based on the number of the second time units included in the first time domain resources
  • NnonSL represents a parameter determined based on the number of time domain resources included in the second time domain resources
  • Nreserved represents a parameter determined based on the number of time domain resources included in the third time domain resources
  • represents a parameter determined based on the sideline subcarrier spacing.
  • the number of time domain resources included in the third time domain resources is determined based on one or more of: the number of time domain resources included in the first time domain resources; the number of time domain resources included in the second time domain resources; and the number of bits corresponding to the first information.
  • the third time domain resource is determined from the second set based on one or more of the following: the number of time domain resources included in the first time domain resources; the number of time domain resources included in the second time domain resources; and the number of time domain resources included in the third time domain resources; wherein the time unit in the second set is the time unit corresponding to the target time domain resource in the time domain resources included in the SFN cycle, and the target time domain resource is the time domain resource remaining in the time domain resources included in the SFN cycle excluding the first time domain resource and the second time domain resource.
  • the number of time slots included between two adjacent second time units for transmitting S-SSBs within the SFN cycle is an integer multiple of the number of time slots included in the first time unit.
  • the number of time slots remaining after subtracting the number of time slots included in the first time domain resource and the number of time slots included in the second time domain resource from the number of time slots included in the SFN cycle is an integer multiple of the number of time slots included in the first time unit.
  • the number of time slots included in the SFN cycle minus the number of time slots included in the first time domain resources, the number of time slots included in the second time domain resources, and the number of time slots included in the third time domain resources is an integer multiple of the number of time slots included in the first time unit.
  • the number of time slots included in the SFN cycle minus the number of time slots included in the first time domain resources, the number of time slots included in the second time domain resources, and the number of time slots included in the third time domain resources is an integer multiple of the number of bits corresponding to the first information.
  • the first information is a bit map, and if the value of the k′+1th bit in the bit map is 1, the k+1th time unit in the first set belongs to the resource pool; wherein k′ represents the index of the bit in the bit map, k represents the index of the time unit in the first set, k and k′ are both integers greater than or equal to 0, and k is determined based on k′ and L, and L represents the length of the bit map.
  • k′ k mod L, where mod represents the remainder operation.
  • the number of time slots that cannot be used for sideline transmission in the SFN cycle is 0.
  • the processing unit 1510 may be a processor 1610.
  • the terminal device 1500 may further include a transceiver 1630 and a memory 1620, as specifically shown in FIG16 .
  • FIG16 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the dotted lines in FIG16 indicate that the unit or module is optional.
  • the device 1600 may be used to implement the method described in the above method embodiment.
  • the device 1600 may be a chip, a terminal device, or a network device.
  • the device 1600 may include one or more processors 1610.
  • the processor 1610 may support the device 1600 to implement the method described in the above method embodiment.
  • the processor 1610 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor may also be other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuits
  • FPGA field programmable gate arrays
  • a general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • the device 1600 may also include one or more memories 1620.
  • the memories 1620 store programs that can be processed by the processor. 1610 executes, so that the processor 1610 executes the method described in the above method embodiment.
  • the memory 1620 can be independent of the processor 1610 or integrated in the processor 1610.
  • the apparatus 1600 may further include a transceiver 1630.
  • the processor 1610 may communicate with other devices or chips through the transceiver 1630.
  • the processor 1610 may transmit and receive data with other devices or chips through the transceiver 1630.
  • the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied to a terminal or network device provided in the present application, and the program enables a computer to execute the method performed by the terminal or network device in each embodiment of the present application.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied to the terminal or network device provided in the embodiment of the present application, and the program enables the computer to execute the method performed by the terminal or network device in each embodiment of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal or network device provided in the embodiment of the present application, and the computer program enables a computer to execute the method executed by the terminal or network device in each embodiment of the present application.
  • the "indication" mentioned can be a direct indication, an indirect indication, or an indication of an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, B can be obtained through C; it can also mean that there is an association relationship between A and B.
  • the term “include” may refer to direct inclusion or indirect inclusion.
  • the term “include” in the embodiments of the present application may be replaced with “indicates” or “is used to determine”.
  • “A includes B” may be replaced with “A indicates B” or "A is used to determine B”.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B can also be determined according to A and/or other information.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or an association relationship between the two, or a relationship of indication and being indicated, configuration and being configured, etc.
  • pre-definition or “pre-configuration” can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, including a terminal device and a network device), and the present application does not limit the specific implementation method.
  • pre-definition can refer to what is defined in the protocol.
  • the “protocol” may refer to a standard protocol in the communication field, for example, it may include an LTE protocol, an NR protocol, and related protocols used in future communication systems, and the present application does not limit this.
  • the term "and/or" is only a description of the association relationship of the associated objects, indicating that there can be three relationships.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website, a computer, a server or a data center via a wired (e.g., coaxial cable) connection.
  • the computer readable storage medium may be any available medium that can be read by a computer or a data storage device such as a server or a data center that includes one or more available media.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a digital video disc (DVD)), or a semiconductor medium (e.g., a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种用于侧行传输的方法及终端设备。该方法包括:第一终端设备确定第一信息,所述第一信息用于指示一个SFN周期内的属于资源池的时域资源;其中,所述资源池基于第一时间单元传输PSCCH和/或PSSCH,所述第一时间单元包含连续的M1个时隙,且M1为大于1的正整数。在本申请实施例中,对于基于第一时间单元传输PSCCH和/或PSSCH的资源池,可以通过第一信息来指示一个SFN周期内的属于资源池的时域资源,这种资源指示方式有助于提高与以第一时间单元为粒度传输PSCCH和/或PSSCH的传输方案的匹配程度。

Description

用于侧行传输的方法及终端设备 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及一种用于侧行传输的方法及终端设备。
背景技术
目前,在确定资源池的时域资源时,是通过比特位图以时隙为粒度,来指示对应的时域资源是否属于资源池。也即是说,假设系统帧号(system frame number,SFN)周期包括的时隙的数量为(10240·2μ)个,此时,可以将比特位图在SFN周期内周期性重复,来指示SFN周期内属于该资源池的时隙。例如,比特位图中取值为1的比特位对应的时隙属于资源池。相反地,比特位图中取值为0的比特位对应的时隙不属于资源池。然而,这种以单个时隙为粒度基于比特位图指示时域资源是否属于资源池的方案,并不适用于基于以连续的多个时隙(又称“第一时间单元”)为粒度进行的侧行传输。
发明内容
本申请提供一种用于侧行传输的方法及终端设备。下面对本申请涉及的各个方面进行介绍。
第一方面,提供了一种用于侧行传输的方法,包括:第一终端设备确定第一信息,所述第一信息用于指示一个SFN周期内的属于资源池的时域资源;其中,所述资源池基于第一时间单元传输PSCCH和/或PSSCH,所述第一时间单元包含连续的M1个时隙,且M1为大于1的正整数。
第二方面,提供了一种终端设备,所述终端设备为第一终端设备,包括:处理单元,用于确定第一信息,所述第一信息用于指示一个SFN周期内的属于资源池的时域资源;其中,所述资源池基于第一时间单元传输PSCCH和/或PSSCH,所述第一时间单元包含连续的M1个时隙,且M1为大于1的正整数。
第三方面,提供一种终端设备,包括处理器、存储器以及通信接口,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序,使得所述终端设备执行第一方面的方法中的部分或全部步骤。
第四方面,本申请实施例提供了一种通信系统,该系统包括上述的终端设备。在另一种可能的设计中,该系统还可以包括本申请实施例提供的方案中与终端设备进行交互的其他设备。
第五方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得通信设备(例如,终端设备)执行上述各个方面的方法中的部分或全部步骤。
第六方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使通信设备(例如,终端设备)执行上述各个方面的方法中的部分或全部步骤。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
第七方面,本申请实施例提供了一种芯片,该芯片包括存储器和处理器,处理器可以从存储器中调用并运行计算机程序,以实现上述各个方面的方法中所描述的部分或全部步骤。
在本申请实施例中,对于基于第一时间单元传输PSCCH和/或PSSCH的资源池,可以通过第一信息来指示一个SFN周期内的属于资源池的时域资源,这种资源指示方式有助于提高与以第一时间单元为粒度传输PSCCH和/或PSSCH的传输方案的匹配程度。
附图说明
图1为可应用本申请实施例的无线通信系统的系统架构示例图。
图2为网络覆盖内的侧行通信的场景示例图。
图3为部分网络覆盖的侧行通信的场景示例图。
图4为网络覆盖外的侧行通信的场景示例图。
图5是基于中央控制节点的侧行通信的场景示例图。
图6为基于广播的侧行通信方式的示例图。
图7为基于单播的侧行通信方式的示例图。
图8为基于组播的侧行通信方式的示例图。
图9A为侧行通信系统使用的时隙结构的一个示例图。
图9B为侧行通信系统使用的时隙结构的另一示例图。
图10是用于传输侧行同步信号块(sidelink synchronization signal block,S-SSB)的时隙结构的示 意图。
图11A是本申请实施例提供的第一时间单元的结构的一个示例图。
图11B是本申请实施例提供的第一时间单元的结构的另一示例图。
图11C是本申请实施例提供的第一时间单元的又一示例图。
图11D是本申请实施例提供的第一时间单元的又一示例图。
图12A是本申请实施例提供的第一时间单元的又一示例图。
图12B是本申请实施例提供的第一时间单元的又一示例图。
图12C是本申请实施例提供的第一时间单元的又一示例图。
图12D是本申请实施例提供的第一时间单元的又一示例图。
图12E是本申请实施例提供的第一时间单元的又一示例图。
图12F是本申请实施例提供的第一时间单元的又一示例图。
图13A是本申请实施例提供的第一时间单元的又一示例图。
图13B是本申请实施例提供的第一时间单元的又一示例图。
图13C是本申请实施例提供的第一时间单元的又一示例图。
图13D是本申请实施例提供的第一时间单元的又一示例图。
图13E是本申请实施例提供的第一时间单元的又一示例图。
图13F是本申请实施例提供的第一时间单元的又一示例图。
图14是本申请实施例的用于侧行传输的方法的示意性流程图。
图15是本申请实施例的终端设备的示意图。
图16是本申请实施例的通信装置的示意性结构图。
具体实施方式
通信系统架构
图1是可应用本申请实施例的无线通信系统100的系统架构示例图。该无线通信系统100可以包括网络设备110和终端设备120。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
图1示例性地示出了一个网络设备和一个终端设备,可选地,该无线通信系统100可以包括一个或多个网络设备110和/或一个或多个终端设备120。针对一个网络设备110,该一个或多个终端设备120可以均位于该网络设备110的网络覆盖范围内,也可以均位于该网络设备110的网络覆盖范围外,也可以一部分位于该网络设备110的覆盖范围内,另一部分位于该网络设备110的网络覆盖范围外,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统,又如卫星通信系统,等等。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile Terminal,MT)、远方站、远程终端设备、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备、车辆、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。例如,终端设备可以充当调度实体,其在车辆外联(vehicle-to-everything,V2X)或设备到设备通信(device-to-device,D2D)等中的终端设备之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。可选地,终端设备可以用于充当基站。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的 各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access piont,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备D2D、V2X、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
不同网络覆盖情况下的侧行通信
侧行通信指的是基于侧行链路的通信技术。侧行通信例如可以是设备到设备(device to device,D2D)或车联网(vehicle to everything,V2X)通信。传统的蜂窝系统中的通信数据在终端设备和网络设备之间进行接收或者发送,而侧行通信支持在终端设备与终端设备之间直接进行通信数据传输。相比于传统的蜂窝通信,终端设备与终端设备直接进行通信数据的传输可以具有更高的频谱效率以及更低的传输时延。例如,车联网系统采用侧行通信技术。
在侧行通信中,根据终端设备所处的网络覆盖的情况,可以将侧行通信分为网络覆盖内的侧行通信,部分网络覆盖的侧行通信,及网络覆盖外的侧行通信。
图2为网络覆盖内的侧行通信的场景示例图。在图2所示的场景中,两个终端设备120a均处于网络设备110的覆盖范围内。因此,两个终端设备120a均可以接收网络设备110的配置信令(本申请中的配置信令也可替换为配置信息),并根据网络设备110的配置信令确定侧行配置。在两个终端设备120a均进行侧行配置之后,即可在侧行链路上进行侧行通信。
图3为部分网络覆盖的侧行通信的场景示例图。在图3所示的场景中,终端设备120a与终端设备120b进行侧行通信。终端设备120a位于网络设备110的覆盖范围内,因此终端设备120a能够接收到网络设备110的配置信令,并根据网络设备110的配置信令确定侧行配置。终端设备120b位于网络覆盖范围外,无法接收网络设备110的配置信令。在这种情况下,终端设备120b可以根据预配置(pre-configuration)信息和/或位于网络覆盖范围内的终端设备120a发送的物理侧行广播信道(physical sidelink broadcast channel,PSBCH)中携带的信息确定侧行配置。在终端设备120a和终端设备120b均进行侧行配置之后,即可在侧行链路上进行侧行通信。
图4为网络覆盖外的侧行通信的场景示例图。在图4所示的场景中,两个终端设备120b均位于网络覆盖范围外。在这种情况下,两个终端设备120b均可以根据预配置信息确定侧行配置。在两个终端设备120b均进行侧行配置之后,即可在侧行链路上进行侧行通信。
基于中央控制节点的侧行通信
图5为基于中央控制节点的侧行通信的场景示例图。在该侧行通信场景中,多个终端设备可以构成一个通信组,且该通信组内具有中央控制节点。该中央控制节点可以为通信组内的一个终端设备(如图5中的终端设备1),该终端设备又可以称为簇头(cluster header,CH)终端设备。该中央控制节点可以负责完成以下功能中的一项或多项:通信组的建立,通信组的组成员的加入和离开,在通信组内进行资源协调,为其他终端设备分配侧行传输资源,接收其他终端设备的侧行反馈信息,以及与其他通信组进行资源协调。
侧行通信的模式
某些标准或协议(如第三代合作伙伴计划(3rd Generation Partnership Project,3GPP))定义了两种侧行通信的模式:第一模式和第二模式。
在第一模式下,终端设备的资源(本申请提及的资源也可称为传输资源,如时频资源)是由网络设备分配的。终端设备可以根据网络设备分配的资源在侧行链路上进行数据的发送。网络设备可以为终端 设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源。该第一模式可以应用于有网络设备覆盖的场景,如前文图2所示的场景。在图2所示的场景中,终端设备120a位于网络设备110的网络覆盖范围内,因此网络设备110可以为终端设备120a分配侧行传输过程中使用的资源。
在第二模式下,终端设备可以自主在资源池(resource pool,RP)中选取一个或多个资源。然后,终端设备可以根据选择出的资源进行侧行传输。例如,在图4所示的场景中,终端设备120b位于小区覆盖范围外。因此,终端设备120b可以在预配置的资源池中自主选取资源进行侧行传输。或者,在图2所示的场景中,终端设备120a也可以在网络设备110配置的资源池中自主选取一个或多个资源进行侧行传输。
侧行通信的数据传输方式
某些侧行通信系统(如长期演进-车联网(long term evolution vehicle to everything,LTE-V2X))支持基于广播的数据传输方式(下文简称广播传输)。对于广播传输,接收端终端可以为发送端终端周围的任意一个终端设备。以图6为例,终端设备1是发送端终端,该发送端终端对应的接收端终端是终端设备1周围的任意一个终端设备,例如可以是图6中的终端设备2-终端设备6。
除了广播传输之外,某些通信系统还支持基于单播的数据传输方式(下文简称单播传输)和/或基于组播的数据传输方式(下文简称组播传输)。例如,新无线-车联网(new radio vehicle to everything,NR-V2X)希望支持自动驾驶。自动驾驶对车辆之间的数据交互提出了更高的要求。例如,车辆之间的数据交互需要更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配方式等。因此,为了提升车辆之间的数据交互性能,NR-V2X引入了单播传输和组播传输。
对于单播传输,接收端终端一般只有一个终端设备。以图7为例,终端设备1和终端设备2之间进行的是单播传输。终端设备1可以为发送端终端,终端设备2可以为接收端终端,或者终端设备1可以为接收端终端,终端设备2可以为发送端终端。
对于组播传输,接收端终端可以是一个通信组内的终端设备,或者,接收端终端可以是在一定传输距离内的终端设备。以图8为例,终端设备1、终端设备2、终端设备3和终端设备4构成一个通信组。如果终端设备1发送数据,则该组内的其他终端设备(终端设备2至终端设备4)均可以是接收端终端。
侧行通信的时隙结构
通信系统可以对侧行通信的帧、子帧或时隙结构进行定义。某些侧行通信系统定义了多种时隙结构。例如,基于NR的侧行通信系统(NR SL)定义了两种时隙结构。该两种时隙结构中的一种时隙结构不包括物理侧行反馈信道(physical sidelink feedback channel,PSFCH),参见图9A;该两种时隙结构中的另一种时隙结构包括PSFCH,参见图9B。
NR SL中的PSCCH可以以时隙的第二个侧行符号为时域上的起始位置,且PSCCH在时域上可以占用2个或3个符号(这里提及的符号均可以指正交频分复用(orthogonal frequency division multiplexing,OFDM)符号)。PSCCH在频域上可以占用多个物理资源块(physical resource block,PRB)。例如,PSCCH占用的PRB的数量可以从以下数值中选择:{10,12 15,20,25}。
为了降低终端设备对PSCCH进行盲检测的复杂度,通常情况下,在一个资源池内,只为PSCCH配置一种符号数量和PRB数量。另外,由于NR SL将子信道(sub-channel)作为PSSCH资源分配的最小粒度,因此PSCCH占用的PRB数量必须小于或等于资源池内的一个子信道所包含的PRB数量。
参见图9A,对于不包括PSFCH的时隙结构,NR SL中的PSSCH可以以该时隙的第二个侧行符号为时域上的起始位置。该时隙中的最后一个侧行符号用作保护间隔(guard period,GP),其余符号均可以映射PSSCH,其中,保护间隔又可以称为保护符号(guard symbol)。该时隙中的第一个侧行符号可以是第二个侧行符号的重复。通常而言,作为接收端的终端设备会将第一个侧行符号作为进行自动增益控制(automatic gain control,AGC)的符号。因此,第一个侧行符号上的数据通常不用于数据解调。PSSCH在频域上可以占据K个子信道,每个子信道可以包括M个连续的PRB(K和M的取值可以协议预定义,或预配置,或由网络设备配置,或取决于终端设备实现)。
图9B示出的是包括PSFCH的时隙结构,该图9B示意性地给出了在一个时隙中PSFCH、PSCCH、和PSSCH所占的符号的位置。该时隙结构与图9A的主要区别在于时隙中的倒数第二个符号和倒数第三个符号用于传输PSFCH,此外,在用于传输PSFCH的符号之前的一个符号也用作GP(或保护符号)。从图9B所示的时隙结构可以看出,在一个时隙中,最后一个符号用作GP,倒数第二个符号用于PSFCH传输,倒数第三个符号上的数据和用于PSFCH传输的倒数第二个符号的数据相同,即倒数第三个符号作为进行AGC的符号,倒数第四个符号和最后一个符号的作用相同,也用作GP。此外,时隙中的第一个符号用作AGC,该符号上的数据和该时隙中第二个符号上的数据相同,PSCCH占据3个符号,剩余的符号可用于PSSCH传输。
PSBCH及PSBCH的DMRS结构
侧行通信系统(如NR SL)中的S-SSB包括侧行同步信号和PSBCH,而侧行同步信号又分为侧行主同步信号(sidelink primary synchronization signal,S-PSS)和侧行辅同步信号(sidelink secondary synchronizatio signal,S-SSS),S-SSB又可称为S-SS/PSBCH块。
在时域上,S-PSS占据一个时隙中的第2个、第3个符号。S-SSS占据一个时隙中的第4个、第5个符号。一个时隙中的最后一个符号为GP(或保护符号),其余符号用于传输PSBCH。S-PSS和S-SSS在时域上是连续的,这样可以将基于S-PSS获取的信道估计结果应用于S-SSS检测,从而有利于提高S-SSS的检测性能。
在频域上,PSBCH占用11个连续的PRB,即132个子载波(每个PRB包括12个子载波)。S-PSS和S-SSS的长度为127,因此,在S-PSS和S-SSS所在的符号上,子载波#0,#1,#129,#130和#131置为零,如图10所示。
在PSBCH占用的每个符号上均包括PSBCH DMRS,并且该PSBCH DMRS映射到每个PSBCH所占用的RB中的子载波#0、子载波#4和子载波#8。
通信系统的新频段(高频)
某些通信系统(如NR系统)的研究目前主要考虑如下两个频段:频率范围1(frequency range 1,FR1)和频率范围2(frequency range 2,FR2)。FR1和FR2包括的频段如下面的表1所示。
表1:FR1和FR2对应频段的定义
随着通信系统(如NR系统)的演进,新频段(通常称为高频)上的技术也开始被研究。这里提及的新频段的频率可以高于FR1和FR2,例如可以包括如下面的表2所示的频率范围。
表2:新频段的一种可能的定义方式
这里采用FRX表示该新频段,仅是为了与FR1和FR2进行区分,并不是为了对新频段的名称进行限定。例如,也可以将FRX称为FR3。又如,可以将上述表1中的FR2记为FR2-1,将表2中的FRX记为FR2-2。当然,除了上面列举的两种方式之外,还可以采用其他方式标识该新频段,本申请对此不作具体限定。
FRX频段中可以包括授权频谱,也包括非授权频谱。或者说,FRX频段中可以包括共享频谱,也包括非共享频谱。这里提及的非授权频谱通常是由国家或地区划分的可用于无线电设备通信的频谱,且该非授权频谱通常被认为是由不同通信系统中的通信设备所共享的频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。为了让使用非授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用非授权频谱必须满足的法规要求。例如,通信设备遵循“先听后说(listen before talk,LBT)”原则,即通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送。如果通信设备在非授权频谱的信道上的信道侦听结果为信道忙,则该通信设备不能进行信号发送。又如,为了保证公平性,在一次传输中,通信设备使用非授权频谱的信道进行信号传输的时长不能超过一定时间长度。又如,为了避免在非授权频谱的信道上传输的信号的功率太大,影响该信道上的其他重要信号的传输,通信设备使用非授权频谱的信道进行信号传输时需要遵循不超过最大功率谱密度的限制。
FRX频段的子载波间隔可以比FR2的子载波间隔更大。目前,FRX频段的候选子载波间隔可以包括以下中的一种或多种:120kHz、240kHz、480kHz、960kHz、1.92MHz、3.84MHz。以子载波间隔为120kHz,480kHz以及960kHz为例,上述候选子载波间隔下对应的参数集(numerology)如下表3所示。
表3:候选子载波间隔对应的参数集
为了提升侧行通信系统的传输速率,可以考虑在侧行通信系统中引入新频段。该新频段可以是指毫 米波频段。或者,该新频段可以是指频率高于52.6GHz的频段,例如可以是前文提到的频段范围在52.6GHz-71GHz之间的FRX(或FR2-2)频段。
不同的频率范围内支持的子载波间隔可能是不同的。例如,FR1可以支持15kHz、30kHz和60kHz的子载波间隔。FR2-1可以支持60kHz和120kHz的子载波间隔。FRX可以支持120kHz及120kHz以上的子载波间隔,如FRX可以支持120kHz、480kHz和960kHz的子载波间隔。
相关技术定义了如下子载波间隔对应的时隙结构:15kHz、30kHz、60kHz和120kHz。但是,当子载波间隔大于120kHz时,如当子载波间隔达到480kHz和960kHz时,侧行通信系统的时隙结构应当如何设计,目前还未讨论。
针对上述问题,一种可能的时隙结构设计方案是继续沿用图9A和图9B所示的时隙结构。但是,仔细研究会发现,如果继续沿用图9A和图9B所示的时隙结构,会导致通信过程难以实现,具体原因论述如下。
如图9A或图9B所示,在用于侧行通信的一个时隙中,第一个符号通常为AGC符号,供接收端设备进行AGC调整(adjustment)或AGC训练(training);最后一个符号用作GP,通常用于终端设备的收发转换(RX/TX switching)或发收转换(TX/RX switching)。当子载波间隔不同时,一个符号对应的时长不同。例如,当子载波间隔为15kHz时,一个符号对应的时长约为66.7us。如果加上循环前缀(cyclic prefix,CP)对应的4.69us的时长,当子载波间隔为15kHz时,一个符号的总时长约为71us~72us。又如,当子载波间隔为120kHz时,一个符号的总时长(符号和CP长度之和)约为8us~9us。因此,当子载波间隔为120kHz时,AGC调整时间不超过8us~9us,终端设备的收发转换时间或发收转换时间约为7us。
FR1和FR2(可以包括前文提到的FR2-1和FR2-2)中的转换时间对应的时长可以基于下面的表4确定。
表4:收发转换时间和发收转换时间
表4中的数值表示时间单位(time unit)的数量。一个时间单位Tc对应的时长可以采用下式确定:Tc=1/(Δfmax·Nf),其中,Δfmax=480·103Hz,Nf=4096。
当子载波间隔大于120kHz时,一个符号对应的时长会继续缩短。例如,当侧行系统的子载波间隔为480kHz时,一个符号的时长约为2us~3us(如表3所示);当侧行系统的载波间隔为960kHz时,一个符号的时长约为1us(如表3所示)。由此可见,随着频率的增加,一个符号对应的时长可能太短,导致终端设备很难在这么短的时间内完成AGC调整,收发转换或发收转换。因此,需要更多的符号用于AGC调整、收发转换(或发收转换)。但是,如果多个符号用作AGC或GP,用于侧行数据传输的符号数量会变得比较少,从而会大大降低通信系统的传输效率。
针对上述问题,本申请实施例提出一种可用于侧行传输的时间单元(详见实施例1),该时间单元可以包括多个时隙,从而可以在一定程度缓解符号对应的时长过短所带来的问题。为了方便描述,后文主要站在第一时间单元的角度进行介绍。该第一时间单元可以是用于侧行通信的某一类时间单元。侧行通信过程可能会涉及PSSCH、PSCCH、PSFCH以及S-SSB中的一种或多种的传输,为了便于理解,先结合实施例1介绍基于第一时间单元进行侧行传输的方案。
实施例1:包含连续的M1个时隙的第一时间单元
该第一时间单元可以包括连续的M1个时隙(M1为大于1的正整数)。该第一时间单元也可以理解为一种基于多时隙的时隙结构。在一些实现方式中,可以将该第一时间单元称为:聚合时隙(aggregate slot)、时隙聚合(slot aggregation)、超级时隙(super slot)、时隙组(slot group)或者多时隙(multiple slot或multi-slot)。
在一些实现方式中,M1的取值可以基于以下中的一种或多种确定:协议预定义信息;资源池配置信息;侧行BWP配置信息;或者终端设备的指示信息。该终端设备可以是侧行数据的发送端设备,也可以是侧行数据的接收端设备。
在一些实现方式中,第一时间单元包括的M1个时隙为连续的M1个物理时隙。物理时隙是相对于逻辑时隙而言的。通常来说,属于资源池的时隙称为逻辑时隙,而一个系统帧号(system frame number,SFN)周期(包括10240ms)中包括的个时隙称为物理时隙。μSL是与侧行子载波间隔相关的参数,μSL的取值可以基于表5确定。
表5

资源池内连续的时隙可能并非是连续的物理时隙。如果将连续的M1个时隙设置为资源池中连续的M1个时隙,则该M1个时隙的中间有可能包括属于其他资源池的时隙。这样一来,终端设备在利用该M1个时隙进行传输时,有可能需要在属于其他资源池的时隙上进行接收,从而导致额外的GP开销用于收发转换。因此,将M1个时隙设置为连续的M1个物理时隙,有可能会降低收发转换带来的GP开销。
在一些实现方式中,第一时间单元包括的M1个时隙为连续的可用于侧行传输的时隙(资源池中的时隙是从可用于侧行传输的时隙中确定的)。
在一些实现方式中,第一时间单元可以包括PSCCH传输资源和PSSCH传输资源。或者,第一时间单元可以包括PSCCH传输资源,PSSCH传输资源以及PSFCH传输资源。下面结合图11和图12,对第一时间单元中的各个符号的用途进行举例说明。在图11和图12所示的第一时间单元中,第一个用于传输PSCCH或PSSCH的符号位于第一时间单元中的第A+1个符号,即第一时间单元中的前A个符号为AGC符号,可以用作AGC调整或AGC训练,第一时间单元中的最后B1个符号为保护符号或GP符号。
图11A示出了第一时间单元的一个示例。在图11A中,第一时间单元包括2个时隙(图11A中的时隙n和时隙n+1),即M1=2。在该2个时隙中,前4个符号用作AGC,最后4个符号用作GP。采用图11A所示的时隙结构的第一时间单元例如可以适用于侧行子载波间隔为480kHz的情况。
图11B示出了第一时间单元的另一示例。图11B中,第一时间单元包括2个时隙(图11B中的时隙n和时隙n+1),即M1=2。在该2个时隙中,前8个符号用作AGC,最后8个符号用作GP。采用图11B所示的时隙结构的第一时间单元例如可以适用于侧行子载波间隔为480kHz或960kHz的情况。
图11C示出了第一时间单元的又一示例。在图11C中,第一时间单元包括2个时隙(图11C中的时隙n和时隙n+1),即M1=2。在该2个时隙中,前4个符号用作AGC,最后4个符号用作GP。该第一时间单元还包括PSFCH传输资源。该PSFCH传输资源占据5个符号,其中一个符号用于传输侧行反馈信息(如混合自动重传请求(hybrid automatic repeat reQuest,HARQ)信息)或冲突指示信息,其余4个符号用作AGC。此外,在PSFCH传输资源对应的符号之前还包括用作GP的4个符号。采用图11C所示的时隙结构的第一时间单元例如可以适用于侧行子载波间隔为480kHz的情况。
图11D示出了第一时间单元的又一示例。在图11D中,第一时间单元包括2个时隙(图11D中的时隙n和时隙n+1),即M1=2。在该2个时隙中,前4个符号用作AGC,最后4个符号用作GP。该第一时间单元中还包括PSFCH传输资源。该PSFCH传输资源占据6个符号,其中2个符号用于传输侧行反馈信息(如HARQ信息)或冲突指示信息,其余4个符号用作AGC。此外,在PSFCH传输资源对应的符号之前还包括用作GP的4个符号。采用图11D所示的时隙结构的第一时间单元例如可以适用于侧行子载波间隔为480kHz的情况。
图12A示出了第一时间单元的又一示例。在图12A中,第一时间单元包括4个时隙(即图12A中的时隙n,时隙n+1,时隙n+2以及时隙n+3),即M1=4。在该4个时隙中,前4个符号用作AGC,最后4个符号用作GP。采用图12A所示的时隙结构的第一时间单元例如可以适用于侧行子载波间隔为480kHz的情况。
图12B示出了第一时间单元的又一示例。在图12B中,第一时间单元包括4个时隙(即图12A中的时隙n,时隙n+1,时隙n+2以及时隙n+3),即M1=4。在该4个时隙中,前8个符号用作AGC,最后8个符号用作GP。采用图12B所示的时隙结构的第一时间单元例如可以适用于侧行子载波间隔为480kHz或960kHz的情况。
图12C示出了第一时间单元的又一示例。在图12C中,第一时间单元包括4个时隙(即图12C中的时隙n,时隙n+1,时隙n+2以及时隙n+3),即M1=4。在该4个时隙中,前4个符号用作AGC,最后4个符号用作GP。该第一时间单元中包括PSFCH传输资源。该PSFCH传输资源占据5个符号,其中一个符号用于传输侧行反馈信息(如HARQ信息)或冲突指示信息,其余4个符号用作AGC。此外,在PSFCH传输资源对应的符号之前还包括用作GP的4个符号。采用图12C所示的时隙结构的第一时间单元例如可以适用于侧行子载波间隔为480kHz的情况。
图12D示出了第一时间单元的又一示例。在图12D中,第一时间单元包括4个时隙(即图12D中 的时隙n,时隙n+1,时隙n+2以及时隙n+3),即M1=4。在该4个时隙中,前8个符号用作AGC,最后8个符号用作GP。该第一时间单元中包括PSFCH传输资源。该PSFCH传输资源占据9个符号,其中一个符号用于传输侧行反馈信息(如HARQ信息)或冲突指示信息,其余8个符号用作AGC。此外,在PSFCH传输资源对应的符号之前还包括用作GP的8个符号。采用图12D所示的时隙结构的第一时间单元例如可以适用于侧行子载波间隔为480kHz或960kHz的情况。
图12E示出了第一时间单元的又一示例。在图12E中,第一时间单元包括4个时隙(即图12E中的时隙n,时隙n+1,时隙n+2以及时隙n+3),即M1=4。在该4个时隙中,前4个符号用作AGC,最后4个符号用作GP。该第一时间单元中包括PSFCH传输资源。该PSFCH传输资源占据8个符号,其中4个符号用于传输侧行反馈信息(如HARQ信息)或冲突指示信息,其余4个符号用作AGC。此外,在PSFCH传输资源对应的符号之前还包括用作GP的4个符号。采用图12E所示的时隙结构的第一时间单元例如可以适用于侧行子载波间隔为480kHz的情况。图12E可以理解为对120kHz子载波间隔对应的单时隙结构进行等比例扩展(4倍扩展)之后得到的包含多时隙的时间单元结构。
图12F示出了第一时间单元的又一示例。在图12F中,第一时间单元包括8个时隙(即图12F中的时隙n至时隙n+7),即M1=8。在该8个时隙中,前8个符号用作AGC,最后8个符号用作GP。该第一时间单元中包括PSFCH传输资源。该PSFCH传输资源占据16个符号,其中8个符号用于传输侧行反馈信息(如HARQ信息),其余8个符号用作AGC。此外,在PSFCH传输资源对应的符号之前还包括用作GP的8个符号。采用图12F所示的时隙结构的第一时间单元例如可以适用于侧行子载波间隔为480kHz或960kHz的情况。图12F可以理解为对120kHz子载波间隔对应的单时隙结构进行等比例扩展(8倍扩展)之后得到的包含多时隙的时间单元结构。
在一些实现方式中,第一时间单元可以包括S-SSB的传输资源。下面结合图13,对第一时间单元中的各个符号的用途进行举例说明。在图13所示的第一时间单元中,第一个用于传输S-SSB的符号位于第一时间单元中的第A+1个符号,即第一时间单元中的前A个符号为AGC符号,可以用作AGC调整或AGC训练,第一时间单元中的最后B1个符号为保护符号或GP符号。
参见图13A所示,第一时间单元包括1个时隙,即M=1,该时隙中的前4个符号用作AGC,即A=4。该时隙中的后4个符号用作保护间隔,即B=4。该时隙中的其余符号可用于传输S-SSB,也即是说,可用于传输S-SSB的时域资源包括从时隙n的第5个符号开始至时隙n的倒数第5个符号为止。图13A所示的时隙结构的第一时间单元例如可以适用于侧行子载波间隔为480kHz的情况。
参见图13B所示,第一时间单元包括2个时隙:时隙n以及时隙n+1,即M=2。在时隙n中前4个符号用作AGC,即A=4。在时隙n+1中,后4个符号用作保护间隔,即B=4。时隙n以及时隙n+1中的其余符号可用于传输S-SSB,也即是说,可用于传输S-SSB的时域资源包括从时隙n的第4个符号开始至时隙n+1的第10个符号(也就是倒数第4个符号)为止。图13B所示的时隙结构的第一时间单元例如可以适用于侧行子载波间隔为480kHz的情况。
参见图13C所示,第一时间单元包括2个时隙:时隙n以及时隙n+1,即M=2。在时隙n中的前8个符号用作AGC,即A=8。在时隙n+1中,后8个符号用作保护间隔,即B=4。时隙n以及时隙n+1中的其余符号可用于传输S-SSB,也即是说,可用于传输S-SSB的时域资源包括从时隙n的第9个符号开始至时隙n+1的第10个符号(也即是倒数第5个符号)为止。图13C所示的时隙结构的第一时间单元例如可以适用于侧行子载波间隔为480kHz的情况。
参见图13D所示,第一时间单元包括2个时隙:时隙n~时隙n+1,即M=2。在时隙n中前8个符号用作AGC,即A=8。在时隙n+1中后8个符号用作保护间隔,即B=8。在时隙n~时隙n+1中的其余符号可用于传输S-SSB,也即是说,可用于传输S-SSB的时域资源包括从时隙n的第5个符号开始至时隙n+1的倒数第5个符号(也就是第10个符号)为止。图13D所示的时隙结构的第一时间单元例如可以适用于侧行子载波间隔为480kHz的情况。
参见图13E所示,第一时间单元包括4个时隙:时隙n~时隙n+3,即M=4。在时隙n中前4个符号用作AGC,即A=4。在时隙n+3中后4个符号用作保护间隔,即B=4。在时隙n~时隙n+3中的其余符号可用于传输S-SSB,也即是说,可用于传输S-SSB的时域资源包括从时隙n的第5个符号开始至时隙n+3的倒数第5个符号(也就是第10个符号)为止。图13D所示的时隙结构的第一时间单元例如可以适用于侧行子载波间隔为480kHz的情况。
参见图13F所示,第一时间单元包括4个时隙:时隙n~时隙n+3,即M=4。在时隙n中前8个符号用作AGC,即A=8。在时隙n+3中后8个符号用作保护间隔,即B=8。在时隙n~时隙n+3中的其余符号可用于传输S-SSB,也即是说,可用于传输S-SSB的时域资源包括从时隙n的第8个符号开始至时隙n+3的倒数第6个符号(也就是第9个符号)为止。图13E所示的时隙结构的第一时间单元例如可以适用于侧行子载波间隔为480kHz或960kHz的情况。
在另一些实现方式,可以基于第二时间单元传输S-SSB,其中,第二时间单元可以包括连续的M2个时隙,且M2为大于或等于1的整数。其中,第二时间单元可以理解为侧行传输中的一类时间单元。其中,基于第二时间单元传输传输S-SSB的方案与前文介绍的基于第一时间单元传输S-SSB的方案类似,可以参见上文的介绍。
需要说明的是,在本申请实施例中,第一时间单元包含的时隙数量与第二时间单元的时隙数量可以相同,此时,第一时间单元与第二时间单元可以理解为同一类时间单元。当然,在一些实现方式中,第一时间单元包含的时隙数量与第二时间单元包含的时隙数量不同,此时,第一时间单元与第二时间单元可以理解为不同类型的时间单元。本申请实施例对此不作限定。
实施例1.1:第一时间单元中的保护符号
保护符号也可称为用作GP的符号。在一些实现方式中,保护符号可用于终端设备进行收发转换或发收转换。在一些实现方式中,保护符号上可以不映射任何数据。
在一些实现方式中,第一时间单元可以包括第一保护符号。第一保护符号包括连续的B1个符号,且B1个符号为第一时间单元的最后B1个符号,B1为大于1的正整数。
在一些实现方式中,第一时间单元可以包括第一保护符号。第一保护符号包括连续的B1个符号,且B1个符号为第一时间单元的最后B1个可用于侧行传输的符号,B1为大于1的正整数。
在一些实现方式中,第一保护符号位于第一时间单元的最后一个时隙中。
在一些实现方式中,如果第一时间单元包括用于传输PSFCH的时域资源1,则第一时间单元可以包括第二保护符号。第二保护符号包括连续的B2个符号,B2为大于1的正整数。第二保护符号内的B2个符号可以位于时域资源1之前。该B2个符号可以与时域资源1相邻,也就是说,该B2个符号的最后一个符号与时域资源1的第一个符号为第一时间单元中的相邻符号。
在一些实现方式中,第二保护符号位于第一时间单元的最后一个时隙和/或倒数第二个时隙中。
在一些实现方式中,B1与B2的取值相同。例如,B1与B2均等于B,B为大于1的正整数。在另一些实现方式中,B1与B2的取值不同。例如,B1大于B2,或者,B2大于B1。
下面对B的取值的确定方式进行详细描述。应理解,B的取值的确定方式可以适用于前文提到的B1,也可以适用于前文提到的B2。
在一些实现方式中,B的取值等于4。进一步地,在一些实现方式中,如果B的取值等于4,则第一时间单元对应的侧行子载波间隔为480kHz。例如,在图11A、图11C、图11D、图12A、图12C、图12E、图13A、图13B、图13E所示的时间单元的示例中,B的取值为4。
在一些实现方式中,B的取值等于8。进一步地,在一些实现方式中,如果B的取值等于8,则第一时间单元对应的侧行子载波间隔为480kHz或960kHz。例如,在图11B、图12B、图12D、图12F、图13C、图13D、图13F所示的时间单元的示例中,B的取值为8。
在一些实现方式中,B的取值基于以下信息中的一种或多种确定:协议预定义信息;资源池配置信息;侧行BWP配置信息;或者终端设备的指示信息。该终端设备可以是侧行数据的发送端设备,也可以是侧行数据的接收端设备。
在一些实现方式中,B的取值可以基于第一指示信息确定。该第一指示信息可用于指示以下中的一种或多种:B的取值;一个时隙中或一个时间单元(本申请各个实施例提及的时间单元均可以指包含连续的M1个时隙的时间单元,或包含连续的M1个可用于侧行传输的时隙的时间单元,后文不再赘述)中的可用于侧行传输的第一个符号的时域位置;一个时间单元中的可用于侧行传输的符号的长度或数量;以及一个时间单元包括的时隙的数量。
作为一个示例,第一指示信息可用于直接指示B的取值。或者,B的取值可以基于第一指示信息指示的值确定。
作为另一示例,第一指示信息可以包括信息1和信息2。信息1指示一个时隙中或一个时间单元中的可用于侧行传输的第一个符号的时域位置。信息2指示一个时间单元中的可用于侧行传输的符号的长度或数量。根据信息1和信息2即可确定B的取值。例如,信息1指示一个时间单元中的可用于侧行传输的第一个符号的时域位置为符号0;信息2指示一个时间单元中的可用于侧行传输的符号的数量为24。根据信息1和信息2,可以假设第一时间单元包括2个时隙,在正常CP的情况下,第一时间单元包括28个符号,因此用作GP的符号数量为4,即B的取值为4。
作为又一示例,第一指示信息可以包括信息3。该信息3指示一个时间单元中的可用于侧行传输的符号的长度或数量。根据该信息3即可确定B的取值。例如,信息3指示一个时间单元中的可用于侧行传输的符号的数量为24。该信息3指示的取值大于一个时隙包括的符号数量,小于两个时隙包括的符号数量,因此可以假设第一时间单元包括两个时隙,且该两个时隙均可用于侧行传输。在正常CP的情况下,两个时隙一共包括28个符号,因此GP的符号数量为4,即B的取值为4(在该示例中,假设 第一时间单元中的侧行传输资源对应的起始符号为第一时间单元的第一个符号)。
作为又一示例,第一指示信息可以包括信息4和信息5。该信息4指示一个时间单元中的可用于侧行传输的符号的长度或数量。该信息5指示一个时间单元包括的时隙的数量。根据该信息4和信息5即可确定B的取值。例如,信息4指示一个时间单元中的可用于侧行传输的符号的数量是24,信息5指示一个时间单元包括2个时隙。在正常CP的情况下,两个时隙一共包括28个符号,因此GP的符号数量为4,即B的取值为4(在该示例中,假设第一时间单元中的侧行传输资源对应的起始符号为第一时间单元的第一个符号)。
在一些实现方式中,上述第一指示信息可以包含在资源池配置信息或侧行BWP配置信息中。或者,该第一指示信息可以由终端设备指示。该终端设备可以是侧行数据的发送端设备,也可以是侧行数据的接收端设备。
在一些实现方式中,B的取值可以基于第一侧行子载波间隔和第二侧行子载波间隔确定。该第一侧行子载波间隔和第二侧行子载波间隔不同。
在一些实现方式中,该第一侧行子载波间隔可以大于该第二侧行子载波间隔。
在一些实现方式中,该第一侧行子载波间隔为第一时间单元对应的侧行子载波间隔。
在一些实现方式中,该第一子载波间隔基于协议预定义信息、资源池配置信息或侧行BWP配置信息确定。以第一侧行子载波间隔基于侧行BWP配置信息确定为例,则该侧行BWP配置信息可用于配置第一时间单元所对应的BWP。
在一些实现方式中,该第二子载波间隔基于协议预定义信息、资源池配置信息或侧行BWP配置信息确定。该第二子载波间隔有时也可称为参考子载波间隔。
在一些实现方式中,该第一侧行子载波间隔为480kHz或960kHz。
在一些实现方式中,该第二子载波间隔为15kHz、30kHz,60kHz或120kHz。
例如,第一侧行子载波间隔采用μSL1表示,第二侧行子载波间隔采用μSL2表示,且B满足:假设μSL1=5,μSL2=3,即第一侧行子载波间隔为480kHz的子载波间隔,第二侧行子载波间隔为120kHz的子载波间隔,在这种情况下,B=4。假设μSL1=6,μSL2=3,即第一侧行子载波间隔为960kHz子载波间隔,第二侧行子载波间隔为120kHz的子载波间隔,在这种情况下,B=8。
在一些实现方式中,第一时间单元包含的M1个时隙中的至少一个时隙不包括保护符号。作为一种实现方式,第一时间单元包含的M1个时隙中的除最后一个时隙之外的剩余时隙不包括保护符号。
例如,在图11A和图11B中,第一时间单元包括2个时隙,即时隙n和时隙n+1。时隙n+1包括用作GP的保护符号,时隙n不包括用作GP的保护符号。
又如,在图12A和图12B中,第一时间单元包括4个时隙,即时隙n、时隙n+1、时隙n+2和时隙n+3。时隙n+3包括用作GP的保护符号,时隙n、n+1、n+2不包括用作GP的保护符号。
在一些实现方式中,如果第一时间单元包括用于传输PSFCH的时域资源,则该M1个时隙中的最后一个时隙和/或倒数第二个时隙包括保护符号。进一步地,在一些实现方式中,除该M1个时隙中的最后一个时隙和/或倒数第二个时隙之外的剩余时隙不包括保护符号。
实施例1.2:第一时间单元中的PSCCH的时频资源
在一些实现方式中,第一时间单元包括用于传输PSCCH的时域资源。用于传输PSCCH的时域资源的起始符号为第一时间单元的第A+1个符号。A为大于1的正整数。
在一些实现方式中,A的取值等于4。进一步地,在一些实现方式中,如果A的取值等于4,则第一时间单元对应的侧行子载波间隔为480kHz。例如,在图11A、图11C、图11D、图12A、图12C、图12E所示的时间单元的示例中,A的取值为4。
在一些实现方式中,A的取值等于8。进一步地,在一些实现方式中,如果A的取值等于8,则第一时间单元对应的侧行子载波间隔为480kHz或960kHz。例如,在图11B、图12B、图12D、图12F所示的时间单元的示例中,A的取值为8。
在一些实现方式中,A的取值基于以下信息中的一种或多种确定:协议预定义信息;资源池配置信息;侧行BWP配置信息;或者终端设备的指示信息。该终端设备可以是侧行数据的发送端设备,也可以是侧行数据的接收端设备。
在一些实现方式中,A的取值基于第二指示信息确定。例如,第二指示信息可用于指示以下中的一种或多种:A的取值;一个时间单元中的可用于传输PSSCH的第一个符号的时域位置;一个时间单元中的可用于传输PSCCH的第一个符号的时域位置;一个时间单元中用于映射PSSCH的第一个符号的时域位置;一个时间单元中用于映射PSCCH的第一个符号的时域位置;一个时间单元中PSSCH资源分配的第一个符号的时域位置;一个时间单元中PSCCH资源分配的第一个符号的时域位置;以及一个时隙中或一个时间单元中的可用于侧行传输的第一个符号的时域位置。
作为一个示例,该第二指示信息直接指示A的取值。或者,A的取值基于第二指示信息指示的取值确定。
作为另一示例,该第二指示信息指示一个时间单元中的可用于传输PSSCH或PSCCH的第一个符号的时域位置。根据该第二指示信息,即可确定A的取值。例如,该第二指示信息指示PSSCH的第一个符号位置为第一时间单元中的第5个符号,则A的取值为4(在该示例中,假设第一时间单元中的侧行传输资源对应的起始符号为第一时间单元的第一个符号)。
作为又一示例,该第二指示信息可以指示信息6和信息7。信息6可用于指示一个时间单元中的可用于传输PSSCH或PSCCH的第一个符号的时域位置。信息7可用于指示一个时隙中或一个时间单元中的可用于侧行传输的第一个符号的时域位置。根据该信息6和该信息7即可确定A的取值。例如,该信息6指示可用于传输PSSCH的第一个符号的时域位置为符号6,该信息7指示一个时隙中可用于侧行传输的第一个符号的时域位置为符号2。根据该信息6和信息7,可以确定A的取值为4。
在一些实现方式中,第二指示信息可以包含在资源池配置信息或侧行BWP配置信息中。或者,该第二指示信息可以为终端设备的指示信息。该终端设备可以是侧行数据的发送端设备,也可以是侧行数据的接收端设备。
在一些实现方式中,A的取值基于第三侧行子载波间隔和第四侧行子载波间隔确定。该第三侧行子载波间隔和第四侧行子载波间隔不同。
在一些实现方式中,该第三侧行子载波间隔可以大于该第四侧行子载波间隔。
在一些实现方式中,该第三侧行子载波间隔为第一时间单元对应的侧行子载波间隔。
在一些实现方式中,该第三侧行子载波间隔基于侧行BWP配置信息确定,该侧行BWP配置信息用于配置第一时间单元所对应的BWP。
在一些实现方式中,该第三子载波间隔基于协议预定义信息、资源池配置信息或侧行BWP配置信息确定。
在一些实现方式中,该第三侧行子载波间隔为480kHz或960kHz。
在一些实现方式中,该第四侧行子载波间隔为15kHz、30kHz,60kHz或120kHz。
在一些实现方式中,该第三侧行子载波间隔等于前文提到的第一侧行子载波间隔;和/或,该第四侧行子载波间隔等于前文提到的第二侧行子载波间隔。
例如,第三侧行子载波间隔采用μSL3表示,第四侧行子载波间隔采用μSL4表示,且A满足:假设μSL=5,μSL=3,即第三侧行子载波间隔为480kHz的子载波间隔,第四侧行子载波间隔为120kHz的子载波间隔,在这种情况下,A=4。假设μSL3=6,μSL=3,即第三侧行子载波间隔为960kHz子载波间隔,第四侧行子载波间隔为120kHz的子载波间隔,在这种情况下,A=8。
在一些实现方式中,第一时间单元的前A个符号(或第一时间单元的前A个可用于侧行传输的符号)用作AGC。
在一些实现方式中,第一时间单元的前A个符号(或第一时间单元的前A个可用于侧行传输的符号)中的数据为第一时间单元的目标符号中的数据的重复数据。该目标符号可以包括第一时间单元中的除前A个符号之外的剩余符号中的一个或多个符号。
在一些实现方式中,该目标符号为第一时间单元的第A+1个符号至第2A个符号。也就是说,第一时间单元的前A个符号中的数据为该第一时间单元的第A+1个符号至第2A个符号中的数据的重复数据。例如,第一时间单元的第1个符号上的数据是第一时间单元的第A+1个符号上数据的重复数据;第一时间单元的第2个符号上的数据是第一时间单元的第A+2个符号上数据的重复数据;以此类推,第一时间单元的第A个符号上的数据是第一时间单元的第2A个符号上数据的重复数据。
在一些实现方式中,该目标符号为第一时间单元的第A+1个符号。也就是说,第一时间单元的前A个符号中的数据均为该第一时间单元的第A+1个符号中的数据的重复数据。由此可见,在该实现方式中,第一时间单元的前A个符号和第A+1个符号传输相同的数据。
在一些实现方式中,该时域资源2包括连续的P个符号。P的取值可以为大于或等于1的正整数。P的取值例如可以为3。
在一些实现方式中,P的取值基于以下中的一种或多种确定:协议预定义信息;资源池配置信息;侧行BWP配置信息;或者终端设备的指示信息。该终端设备可以是侧行数据的发送端设备,也可以是侧行数据的接收端设备。
在一些实现方式中,在第一时间单元传输PSCCH的情况下,该PSCCH在频域上可以占用Q个PRB,Q为大于或等于1的正整数。
在一些实现方式中,Q的取值基于以下中的一种或多种确定:协议预定义信息;资源池配置信息;侧行BWP配置信息;或者终端设备的指示信息。该终端设备可以是侧行数据的发送端设备,也可以是 侧行数据的接收端设备。
在一些实现方式中,PSCCH可用于调度PSSCH,该Q个PRB的频域起始位置可以与该PSSCH的频域起始位置相同。
在一些实现方式中,PSCCH可用于调度PSSCH,该Q个PRB位于该PSSCH的传输资源对应的第一个子信道中。
实施例1.3:第一时间单元中的PSSCH的时频资源
在一些实现方式中,第一时间单元包括用于传输PSSCH的时域资源。用于传输时域资源的起始符号可以为第一时间单元的第A+1个符号,A为大于1的正整数。
在一些实现方式中,第一时间单元包括用于传输PSSCH的时域资源。用于传输PSSCH的时域资源的起始符号可以为第一时间单元的第A+1个可用于侧行传输的符号,A为大于1的正整数。
A的取值的确定方式可以参见实施例1.2的描述,为了避免重复,此处不再详述。或者,在一些实施例中,实施例1.2中的A可以为A1,实施例1.3中的A可以为A2,A1和A2可以相同,也可以不同。
在一些实现方式中,如果第一时间单元不包括PSFCH传输资源,则时域资源3的结束符号为第一保护符号对应的符号的前一符号。该第一保护符号的相关描述可以参见前文中的实施例1.1,此处不再详述。例如,图11A中,PSSCH的时域资源包括从时隙n的第5个符号开始至时隙n+1的倒数第5个符号为止。图11B中,PSSCH的时域资源包括从时隙n的第9个符号开始至时隙n+1的第6个符号(也就是倒数第9个符号)为止。图12A中,PSSCH的时域资源包括从时隙n的第5个符号开始至时隙n+3的倒数第5个符号为止。图12B中,PSSCH的时域资源包括从时隙n的第9个符号开始至时隙n+3的第6个符号(也就是倒数第9个符号)为止。
在一些实现方式中,时域资源3的结束符号为第一时间单元中的最后一个可用于传输PSSCH的符号。
在一些实现方式中,如果第一时间单元包括PSFCH传输资源,则时域资源3的结束符号为第二保护符号对应的符号的前一符号。该第二保护符号的相关描述可以参见前文中的实施例1.1,此处不再详述。例如,图11C中,PSSCH的时域资源包括从时隙n的第5个符号开始至时隙n+1的第1个符号为止。图12C中,PSSCH的时域资源包括从时隙n的第5个符号开始至时隙n+3的第1个符号为止;图12D中,PSSCH的时域资源包括从时隙n的第9个符号开始至时隙n+2的第3个符号为止。
实施例2
如相关技术中介绍,目前在确定资源池的时域资源时,是通过比特位图以时隙为粒度,来指示对应的时域资源是否属于资源池。也即是说,假设SFN周期包括的时隙的数量为(10240·2μ)个,此时,可以将比特位图在SFN周期内周期性重复,来指示SFN周期内属于该资源池的时隙。例如,比特位图中取值为1的比特位对应的时隙属于资源池。相反地,比特位图中取值为0的比特位对应的时隙不属于资源池。然而,这种以单个时隙为粒度基于比特位图指示时域资源是否属于资源池的方案,并不适用于上述基于第一时间单元进行的侧行传输。
因此,针对上述问题,本申请实施例提供了一种用于指示一个SFN周期内的时域资源是否属于资源池的方案,有助于与以第一时间单元为粒度进行侧行传输的传输方案匹配。为了便于理解,下文结合图14介绍本申请实施例的用于侧行传输的方法。
图14是本申请实施例的用于侧行传输的方法的示意性流程图。图14所示的方法可以包括步骤S1410。
在步骤S1410中,第一终端设备确定第一信息,其中,第一信息用于指示一个SFN周期内的属于资源池的时域资源。
在一些实现方式中,第一信息可以包括比特位图,或者说,第一信息可以用于指示比特位图。相应地,可以基于比特位图确定对一个SFN周期内的属于资源池的时域资源。
在一些实现方式中,第一信息可以以第一时间单元为粒度指示对应的时域资源是否属于资源池,或者说,第一信息中的1个比特可以对应SFN周期内的一个第一时间单元。例如,第一信息中的目标比特位可以对应SFN周期内的第一时间单元,相应地,目标比特位的取值为1时,目标比特位对应的第一时间单元属于资源池。当然,在本申请实施例中,第一信息也可以以时隙为粒度指示SFN周期内的时域资源是否属于资源池。
在一些实现方式中,上述资源池可以基于第一时间单元传输PSCCH和/或PSSCH,第一时间单元包含连续的M1个时隙,且M1为大于1的正整数。其中,以第一时间单元传输PSCCH和/或PSSCH的方案可以参见上文关于实施例1的介绍。
在一些实现方式中,上述侧行传输包括S-SSB的传输,其中,S-SSB的传输包括基于第一时间单元 或第二时间单元传输S-SSB,其中,以第一时间单元或者以第二时间单元传输S-SSB的方案可以参见上文关于实施例1的介绍。
需要说明的是,在本申请实施例对时域资源不作限定,例如,时域资源可以包括时隙。又例如,时域资源可以包括符号,当然,上述时域资源还可以包括未来通信系统中规定的其他时域资源粒度。
为了便于理解,下文分别以基于第一时间单元传输S-SSB,以及基于第二时间单元传输S-SSB为例,结合实施例2-1以及实施例2-2介绍本申请实施例的用于侧行传输的方案。
实施例2-1:基于第一时间单元传输S-SSB
在一些场景中,SFN周期内不能用于侧行传输的时域资源(又称“第二时域资源”,用“NnonSL”表示该时域资源包括的时域资源的数量),用于传输S-SSB的时域资源(又称“第一时域资源”,用“NS-SSB”表示该时域资源包括的时域资源的数量)以及预留的时域资源(又称“第三时域资源”,用“Nreserved”表示该时域资源包括的时域资源的数量)中的一种或多种不属于资源池,因此,在指示属于资源池的时域资源时,还需要考虑上述一种或多种资源。
换句话说,假设第一集合包括多个第一时间单元,相应地,属于资源池的时域资源从第一集合中确定,则第一集合基于以下中的一种或多种确定:第一时域资源、第二时域资源、以及第三时域资源。
在一些实现方式中,如果一个时隙中的可用于侧行传输的第一个符号为一个时隙中的第一个符号,则SFN周期内的不能用于侧行传输的时隙的数量的取值为0,即NnonSL=0。
需要说明的是,上述预留的时域资源例如可以是预留的时间单元,或者预留时隙(reserved slot)。当然,在本申请实施例中,上述预留的时域资源还可以是预留的时域符号,本申请实施例对此不作限定。
另外,在本申请实施例中,上述NnonSL、NS-SSB以及Nreserved可以为大于或等于0的正整数。
如上文介绍,上述第一时域资源、第二时域资源、以及第三时域资源中的一种或多种资源不属于资源池,因此,在确定第一集合时可以将上述一种或多种时域资源从一个SFN周期包括的时域资源中排除。
在一些实现方式中,第一集合中包括的第一时间单元的数量或时隙数量可以基于以下信息中的一种或多种确定:一个SFN周期包括的时隙数量,第一时间单元包括的时隙数量,第一时域资源包括的时隙数量,第二时域资源包括的时隙数量,第三时域资源包括的时隙数量。
在又一些实现方式中,第一集合中包括的第一时间单元的数量或时隙数量可以基于以下信息中的一种或多种确定:一个SFN周期包括的第一时间单元的数量,第一时间单元包括的时隙数量,第一时域资源包括的第一时间单元的数量,第二时域资源包括的第一时间单元的数量,第三时域资源包括的第一时间单元的数量。
在一些实现方式中,一个SFN周期包括的时域资源对应的第一时间单元的数量为10240×2μ/M1,索引范围为[0,10240×2μ/M1-1]。若NS-SSB表示第一时域资源对应的第一时间单元的数量,NnonSL表示第二时域资源对应的第一时间单元的数量,Nreserved表示第三时域资源对应的第一时间单元的数量,则第一集合中包括的第一时间单元的数量为10240×2μ/M1-NS-SSB-NnonSL-Nreserved
在一些实现方式中,第一集合中包括的第一时间单元的数量可以基于第一数量确定,第一数量等于10240×2μ/M1-NS-SSB-NnonSL-Nreserved
上述μ表示基于侧行子载波间隔确定的参数(μ的取值例如可以参考表5的相关介绍)。
上述NS-SS表示基于第一时域资源包括的第一时间单元的数量确定的参数。在一些实现方式中,NS-SSB可以等于第一时域资源包括的第一时间单元的数量。在另一些实现方式中,NS-SSB还可以是通过对第一时域资源包括的第一时间单元的数量进行计算得到的,例如,可以通过对第一时域资源包括的第一时间单元的数量乘以一个权值得到NS-SSB。在另一些实现方式中,NS-SSB还可以是通过对第一时域资源包括的时隙数量进行计算得到的,例如,可以通过对第一时域资源包括的时隙数量除以第一时间单元包括的时隙数量(即M1)得到NS-SSB。本申请实施例对计算NS-SSB的方式不作具体限定。
上述NnonSL表示基于第二时域资源包括的第一时间单元的数量确定的参数。在一些实现方式中,NnonSL可以等于第二时域资源包括的第一时间单元的数量。在另一些实现方式中,NnonSL还可以是通过对第二时域资源包括的第一时间单元的数量进行计算得到的,例如,可以通过对第二时域资源包括的第一时间单元的数量乘以一个权值得到NnonSL。在另一些实现方式中,NnonSL还可以是通过对第二时域资源包括的时隙数量进行计算得到的,例如,可以通过对第二时域资源包括的时隙数量除以第一时间单元包括的时隙数量(即M1)得到NnonSL。本申请实施例对计算NnonSL的方式不作具体限定。
上述Nreserved表示基于第三时域资源包括的第一时间单元的数量确定的参数。在一些实现方式中,Nreserved可以等于第三时域资源包括的第一时间单元的数量。在另一些实现方式中,Nreserved还可以是通过对第三时域资源包括的第一时间单元的数量进行计算得到的,例如,可以通过对第三时域资源包括的第一时间单元的数量乘以一个权值得到Nreserved。在另一些实现方式中,Nreserved还可以是通过对第 三时域资源包括的时隙数量进行计算得到的,例如,可以通过对第三时域资源包括的时隙数量除以第一时间单元包括的时隙数量(即M1)得到Nreserved。本申请实施例对计算Nreserved的方式不作具体限定。
在一些实现方式中,一个SFN周期包括的时域资源对应的时隙数量为10240×2μ,索引范围为[0,10240×2μ-1]。若NS-SSB表示第一时域资源对应的时隙数量,NnonSL表示第二时域资源对应的时隙数量,Nreserved表示第三时域资源对应的时隙数量,则第一集合中包括的时隙数量为10240×2μ-NS-SSB-NnonSL-Nreserved,第一集合中包括的第一时间单元的数量为(10240×2μ-NS-SSB-NnonSL-Nreserved)/M1。
在又一些实现方式中,第一集合中包括的第一时间单元的数量可以基于第三数量确定,第三数量等于(10240×2μ-NS-SSB-NnonSL-Nreserved)/M1。
上述μ表示基于侧行子载波间隔确定的参数(μ的取值例如可以参考表5的相关介绍)。
上述NS-SSB表示基于第一时域资源包括的时隙的数量确定的参数。在一些实现方式中,NS-SSB可以等于第一时域资源包括的时隙数量。在另一些实现方式中,NS-SSB还可以是通过对第一时域资源包括的时隙数量进行计算得到的,例如,可以通过对第一时域资源包括的时隙数量乘以一个权值得到NS-SSB。在另一些实现方式中,NS-SSB还可以是通过对第一时域资源包括的第一时间单元的数量进行计算得到的,例如,可以通过对第一时域资源包括的第一时间单元的数量乘以第一时间单元包括的时隙数量(即M1)得到NS-SS。本申请实施例对计算NS-SSB的方式不作具体限定。
上述NnonSL表示基于第二时域资源包括的时隙数量确定的参数。在一些实现方式中,NnonSL可以等于第二时域资源包括的时隙数量。在另一些实现方式中,NnonSL还可以是通过对第二时域资源包括的时隙数量进行计算得到的,例如,可以通过对第二时域资源包括的时隙数量乘以一个权值得到NnonSL。在另一些实现方式中,NnonSL还可以是通过对第二时域资源包括的第一时间单元的数量进行计算得到的,例如,可以通过对第二时域资源包括的第一时间单元的数量乘以第一时间单元包括的时隙数量(即M1)得到NnonSL。本申请实施例对计算NnonSL的方式不作具体限定。
上述Nreserved表示基于第三时域资源包括的时隙数量确定的参数。在一些实现方式中,Nreserved可以等于第三时域资源包括的时隙数量。在另一些实现方式中,Nreserved还可以是通过对第三时域资源包括的时隙数量进行计算得到的,例如,可以通过对第三时域资源包括的时隙数量乘以一个权值得到Nreserved。在另一些实现方式中,Nreserved还可以是通过对第三时域资源包括的第一时间单元的数量进行计算得到的,例如,可以通过对第三时域资源包括的第一时间单元的数量乘以第一时间单元包括的时隙数量(即M1)得到Nreserved。本申请实施例对计算Nreserved的方式不作具体限定。
需要说明的是,本申请实施例中以第一集合中包括的第一时间单元的数量基于第一数量确定为例进行说明,本申请实施例同样适用于第一集合中包括的第一时间单元的数量基于第三数量确定的情况。
在一些实现方式中,第一集合用于表示一个SFN周期内可能属于资源池的时间单元集合。
在一些实现方式中,,第一集合(或者说,一个SFN周期内可能属于资源池的时间单元集合)可以表示为:其中,表示第一集合中的第i个第一时间单元,Tmax可以是基于一个SFN周期内包括的时域资源排除第一时域资源、第二时域资源、以及第三时域资源之后剩余的时域资源的数量确定的。例如,Tmax可以是等于一个SFN周期包括的第一时间单元的数量减去第一时域资源对应的第一时间单元的数量、第二时域资源对应的第一时间单元的数量、以及第三时域资源对应的第一时间单元的数量之后剩余的第一时间单元的数量。
在一些实现方式中,将一个SFN周期包括的第一时间单元排除第一时域资源对应的第一时间单元、第二时域资源对应的第一时间单元、以及第三时域资源对应的第一时间单元之后剩余的第一时间单元按照时间单元索引递增的顺序重新进行索引得到第一集合。
上文介绍了本申请实施例中第一集合的确定方式,下文介绍本申请实施例中第三时域资源包括的第一时间单元的数量的确定方式,以及第三时域资源的确定方式。
在一些实现方式中,上述第三时域资源包括的第一时间单元的数量基于以下中的一种或多种确定:第一时域资源包括的第一时间单元的数量;第二时域资源包括的第一时间单元的数量;以及第一信息对应的比特数量。
在另一些实现方式中,上述第三时域资源包括的第一时间单元的数量基于以下中的一种或多种确定:一个SFN周期包括的第一时间单元的数量或时隙数量,第一时间单元包括的时隙数量,第一时域资源包括的第一时间单元的数量;第二时域资源包括的第一时间单元的数量;以及第一信息对应的比特数量。
以第一信息用于指示比特位图为例,上述第一信息对应的比特数量,可以理解为是比特位图包括的比特数量。
在一些实现方式中,第三时域资源包括的第一时间单元的数量满足:Nreserved=(10240×2μ/M1- NS-SSB-NnonSL)mod L,其中,L表示第一信息对应的比特数量,其余参数可以参见上文的介绍。也即是说,第三时域资源包括的第一时间单元的数量的设置使得一个SFN周期中包括的第一时间单元的数量减去第一时域资源包括的第一时间单元的数量NS-SSB、第二时域资源包括的第一时间单元的数量NnonSL以及第二时域资源包括的第一时间单元的数量Nreserved后,的剩余的第一时间单元的数量能够被第一信息对应的比特数量整除。
在一些实现方式中,上述第三时域资源基于以下中的一种或多种从第二集合中确定:第一时域资源包括的第一时间单元的数量;第二时域资源包括的第一时间单元的数量;第三时域资源包括的第一时间单元的数量。
在一些实现方式中,上述第三时域资源基于以下中的一种或多种从第二集合中确定:一个SFN周期包括的第一时间单元的数量或时隙数量,第一时间单元包括的时隙数量,第一时域资源包括的第一时间单元的数量;第二时域资源包括的第一时间单元的数量;第三时域资源包括的第一时间单元的数量。
上述第二集合中的时间单元为SFN周期包含的时域资源中的目标时域资源对应的时间单元,目标时域资源为SFN周期包含的时域资源中的除第一时域资源和第二时域资源之后剩余的时域资源。
在一些实现方式中,将SFN周期包含的时域资源中的除第一时域资源和第二时域资源之后剩余的时域资源按照索引从低到高的顺序重新进行索引。第二集合例如可以表示为
在一些实现方式中,第三时域资源包括第二集合中的第r个时间单元,其中,r为整数,0≤r<10240×2μ/M1-NS-SSB-NnonSL,且其中,表示向下取整操作,m=0,1,…,Nreserved-1,其他相关参数可以参见上文的介绍,为了简洁,在此不再赘述。
上文介绍了本申请实施例中第三时域资源的确定方式,下文介绍本申请实施例中从第一集合中确定属于资源池的时间单元的方法。
在一些实现方式中,第一信息为比特位图,如果比特位图中的第k′+1个比特的取值为1,则第一集合中的第k+1个时间单元属于资源池;其中,k′表示比特位图中的比特位的索引,k表示第一集合中的时间单元的索引,k和k′均为大于或等于0的整数,且k基于k′与L确定,或者k和k′具有关联关系,L表示比特位图的长度。
需要说明的是,上述k′表示比特位图中的比特位的索引,在一些场景中,比特位的索引可以从0开始编号,相应地,比特位图中的第1个比特对应的索引可以为0。另外,上述k表示第一集合中的时间单元(例如,第一时间单元)的索引,在一些场景中,时间单元的索引可以从0开始编号,相应地,第一集合中的第1个时间单元对应的索引可以为0。
当然,在本申请实施例中,上述比特位图的索引k′和/或第一集合中时间单元的索引k也可以从1开始索引,相应地,如果比特位图中的第k′个比特的取值为1,则第一集合中的第k个时间单元属于资源池,其中,k和k′均为大于或等于0的整数,且k基于k′与L确定,或者k和k′具有关联关系,L表示比特位图的长度。
本申请实施例对k的确定方式(或者说,对k和k′的关联关系)不作限定,例如,k可以通过公式k′=k mod L确定,其中,mod表示求余运算。
需要说明的是,上述k的取值小于第一集合中包含的第一时间单元的数量最大值。例如,k的取值范围可以表示为:0≤k<10240×2μ/M1-NS-SSB-NnonSL-Nreserved
在一些实现方式中,第一集合中的第一时间单元 满足如下条件时属于资源池:如果bk′=1,k′=k mod L,则第一时间单元属于资源池,其中,bk′表示第一信息对应的比特位图中的第k′+1个比特。
在一些实现方式中,将基于第一信息从第一集合中确定的属于资源池的时间单元的集合记为第三集合,将通过上述方式确定的属于资源池中的第一时间单元在第三集合中按照索引从低到高的顺序重新进行顺序索引,第三集合中的第一时间单元表示为i的取值为{0,1,…,T′max-1},T′max表示第三集合中包括的第一时间单元的数量。
另外,还需要说明的是,本申请实施例对比特位的取值与时域资源属于资源池之间的对应关系不作限定。在一些实现方式中,若比特位的取值为1,可以表示对应的时间单元属于资源池,相反地,若比特位的取值为0,可以表示对应的时间单元不属于资源池。在另一些实现方式中,若比特位的取值为0,可以表示对应的时间单元属于资源池,相反地,若比特位的取值为1,可以表示对应的时间单元不属于资源池。
如上文的介绍可知,在本申请实施例中,可用于传输S-SSB的时间单元、可用于传输PSCCH/PSSCH的时间单元以及第一信息指示的时间单元均可以为第一时间单元。相应地,为了提高SFN周期内时隙 的利用率,在一些实现方式中,SFN周期内包括的时隙数量可以为第一时间单元包括的时隙数量的整数倍,或者说,第一终端设备不期望一个SFN周期内包括的时隙数量(例如,10240×2μ)不能被M1整除,又或者说,第一终端设备期望一个SFN周期内包括的时隙数量为第一时间单元包括的时隙数量的整数倍。当然,在本申请实施例中,SFN周期内包括的时隙数量可以不为第一时间单元包括的时隙数量的整数倍。
实施例2-2:基于第二时间单元传输S-SSB。
在一些场景中,SFN周期内不能用于侧行传输的时域资源(又称“第二时域资源”),用于传输S-SSB的时域资源(又称“第一时域资源”)以及预留的时域资源(又称“第三时域资源”)中的一种或多种不属于资源池,因此,在指示属于资源池的时域资源时,还需要考虑上述一种或多种资源。
换句话说,假设属于资源池的时域资源从第一集合中确定,其中,第一集合包括多个第一时间单元,则第一集合基于以下中的一种或多种确定:第一时域资源、第二时域资源、以及第三时域资源。
在一些实现方式中,如果一个时隙中的可用于侧行传输的第一个符号为一个时隙中的第一个符号,则SFN周期内的不能用于侧行传输的时隙的数量的取值为0,即NnonSL=0。
需要说明的是,上述预留的时域资源例如可以是预留的时间单元,或者预留时隙。当然,在本申请实施例中,上述预留的时域资源还可以包括预留的时域符号。本申请实施例对此不作限定。
为了便于介绍,下文将第一时域资源包括的时域资源的数量表示为“NS-SSB”,将第二时域资源包括的时域资源的数量表示为“NnonSL”,将第三时域资源包括的时域资源的数量表示为“Nreserved”。需要说明的是,在本申请实施例中,上述三种时域资源所包含的时域资源的粒度可以相同也可以不同。另外,在本申请实施例中,上述NnonSL、NS-SSB以及Nreserved可以为大于或等于0的正整数。
例如,第一时域资源包括的时域资源可以以时隙为粒度,相应地,NS-SSB表示第一时域资源包括的时隙的数量。当然,第一时域资源包括的时域资源可以以第二时间单元为粒度,相应地,NS-SSB表示第一时域资源包括的第二时间单元的数量。第一时域资源包括的时域资源可以以第一时间单元为粒度,相应地,NS-SSB表示第一时域资源包括的第一时间单元的数量。
又例如,第二时域资源包括的时域资源可以以时隙为粒度,相应地,NnonS表示第二时域资源包括的时隙的数量。当然,第二时域资源包括的时域资源可以以第二时间单元为粒度,相应地,NnonSL表示第二时域资源包括的第二时间单元的数量。第二时域资源包括的时域资源可以以第一时间单元为粒度,相应地,NnonSL表示第二时域资源包括的第一时间单元的数量。
又例如,第三时域资源包括的时域资源可以以时隙为粒度,相应地,Nreserved表示第三时域资源包括的时隙的数量。当然,第三时域资源包括的时域资源可以以第二时间单元为粒度,相应地,Nreserved表示第三时域资源包括的第二时间单元的数量。第三时域资源包括的时域资源可以以第一时间单元为粒度,相应地,Nreserved表示第三时域资源包括的第一时间单元的数量。
如上文介绍,上述第一时域资源、第二时域资源、以及第三时域资源中的一种或多种资源不属于资源池,因此,在确定第一集合时可以将上述一种或多种时域资源从一个SFN周期包括的时域资源中排除。
在一些实现方式中,第一集合中包括的第一时间单元的数量或时隙数量可以基于以下信息中的一种或多种确定:一个SFN周期包括的时隙数量,第一时间单元包括的时隙数量,第一时域资源包括的时域资源的数量,第二时域资源包括的时域资源的数量,第三时域资源包括的时域资源的数量。例如,第一集合中包括的第一时间单元的数量或时隙数量可以基于以下信息中的一种或多种确定:一个SFN周期包括的时隙数量,第一时间单元包括的时隙数量,第一时域资源包括的时隙数量,第二时域资源包括的时隙数量,第三时域资源包括的时隙数量。
在又一些实现方式中,第一集合中包括的第一时间单元的数量或时隙数量可以基于以下信息中的一种或多种确定:一个SFN周期包括的第一时间单元的数量,第一时间单元包括的时隙的数量,第一时域资源包括的第二时间单元的数量,第二时间单元包括的时隙的数量,第二时域资源包括的时域资源的数量,第三时域资源包括的时域资源的数量。例如,第一集合中包括的第一时间单元的数量或时隙数量可以基于以下信息中的一种或多种确定:一个SFN周期包括的第一时间单元的数量,第一时间单元包括的时隙的数量,第一时域资源包括的第二时间单元的数量,第二时间单元包括的时隙的数量,第二时域资源包括的时隙数量,第三时域资源包括的时隙数量。
在一些实现方式中,一个SFN周期包括的时域资源对应的第一时间单元的数量为10240×2μ/M1,索引范围为[0,10240×2μ/M1-1]。若NS-SSB表示第一时域资源对应的时隙的数量,NnonSL表示第二时域资源对应的时隙的数量,Nreserved表示第三时域资源对应的第一时间单元的数量,则第一集合中包括的第一时间单元的数量为(10240×2μ-NS-SSB-NnonSL)/M1-Nreserved
在一些实现方式中,一个SFN周期包括的时域资源对应的第一时间单元的数量为10240×2μ/M1, 索引范围为[0,10240×2μ/M1-1]。若NS-SSB表示第一时域资源对应的时隙的数量,NnonSL表示第二时域资源对应的第一时间单元的数量,Nreserved表示第三时域资源对应的第一时间单元的数量,则第一集合中包括的第一时间单元的数量为(10240×2μ-NS-SSB)/M1-NnonSL-Nreserved
在一些实现方式中,一个SFN周期包括的时域资源对应的第一时间单元的数量为10240×2μ/M1,索引范围为[0,10240×2μ/M1-1]。若NS-SSB表示第一时域资源对应的时隙的数量,NnonSL表示第二时域资源对应的时隙的数量,Nreserved表示第三时域资源对应的时隙的数量,则第一集合中包括的第一时间单元的数量为(10240×2μ-NS-SSB-NnonSL-Nreserved)/M1。
在一些实现方式中,第一集合中包括的第一时间单元的数量可以基于第二数量确定,第二数量等于(10240×2μ-NS-SSB-NnonSL)/M1-Nreserved
在一些实现方式中,第一集合中包括的第一时间单元的数量可以基于第四数量确定,第四数量等于(10240×2μ-NS-SS)/M1-NnonSL-Nreserved
在一些实现方式中,第一集合中包括的第一时间单元的数量可以基于第五数量确定,第五数量等于(10240×2μ-NS-SSB-NnonSL-Nreserved)/M1。
上述μ表示基于侧行子载波间隔确定的参数(μ的取值例如可以参考表5的相关介绍)。
上述NS-SSB表示基于第一时域资源包括的第二时间单元的数量确定的参数。在一些实现方式中,NS-SSB可以等于第一时域资源包括的时隙的数量。在一些实现方式中,第一时域资源包括的时隙的数量可以根据第一时域资源包括的第二时间单元的数量确定,例如,NS-SSB可以等于第一时域资源包括的第二时间单元的数量与第二时间单元包括的时隙的数量(即M2)的乘积。本申请实施例对计算NS-SSB的方式不作具体限定。
上述NnonSL表示基于第二时域资源包括的时域资源的数量确定的参数,以时域资源为时隙为例,NnonSL表示基于第二时域资源包括的时隙的数量确定的参数。在一些实现方式中,NnonSL可以等于第二时域资源包括的时隙的数量。在一些实现方式中,NnonSL可以等于第二时域资源包括的第一时间单元的数量。当然,在本申请实施例中,NnonSL还可以是通过对第二时域资源包括的时域资源的数量进行计算得到的,例如,可以通过对第二时域资源包括的第一时间单元的数量乘以第一时间单元包括的时隙数量(即M1)得到NnonSL。又例如,可以通过对第二时域资源包括的第二时间单元的数量乘以第二时间单元包括的时隙数量(即M2)得到NnonSL。本申请实施例对计算NnonSL的方式不作具体限定。
上述Nreserved表示基于第三时域资源包括的时域资源的数量确定的参数。以时域资源为第一时间单元为例,Nreserved表示基于第三时域资源包括的第一时间单元的数量确定的参数。在一些实现方式中,Nreserved可以等于第三时域资源包括的第一时间单元的数量。在一些实现方式中,Nreserved可以等于第三时域资源包括的时隙数量。当然,在本申请实施例中,Nreserved还可以是通过对第三时域资源包括的时域资源的数量进行计算得到的,例如,可以通过对第三时域资源包括的时隙的数量除以第一时间单元包括的时隙数量(即M1)得到Nreserved。本申请实施例对计算Nreserved的方式不作具体限定。
在一些实现方式中,一个SFN周期包括的时域资源对应的时隙数量为10240×2μ,索引范围为[0,10240×2μ-1]。若NS-SSB表示第一时域资源对应的时隙数量,NnonSL表示第二时域资源对应的时隙数量,Nreserved表示第三时域资源对应的时隙数量,则第一集合中包括的时隙数量为10240×2μ-NS-SSB-NnonSL-Nreserved,第一集合中包括的第一时间单元的数量为(10240×2μ-NS-SSB-NnonSL-Nreserved)/M1。
在一些实现方式中,一个SFN周期包括的时域资源对应的时隙数量为10240×2μ,索引范围为[0,10240×2μ-1]。若NS-SSB表示第一时域资源对应的时隙数量,NnonSL表示第二时域资源对应的第一时间单元的数量,Nreserved表示第三时域资源对应的第一时间单元的数量,则第一集合中包括的第一时间单元的数量为(10240×2μ-NS-SSB)/M1-NnonSL-Nreserved
在一些实现方式中,一个SFN周期包括的时域资源对应的时隙数量为10240×2μ,索引范围为[0,10240×2μ-1]。若NS-SSB表示第一时域资源对应的时隙数量,NnonSL表示第二时域资源对应的时隙数量,Nreserved表示第三时域资源对应的第一时间单元的数量,则第一集合中包括的第一时间单元的数量为(10240×2μ-NS-SSB-NnonSL)/M1-Nreserved。需要说明的是,本申请实施例的方案以第一集合中包括的第一时间单元的数量基于第二数量确定为例进行说明,本申请实施例的方案同样适用于第一集合中包括的第一时间单元的数量基于第四数量或第五数量确定的情况。
在一些实现方式中,第一集合用于表示一个SFN周期内可能属于资源池的时间单元集合。
在一些实现方式中,第一集合(或者说,一个SFN周期内可能属于资源池的时间单元集合)可以表示为:其中,表示第一集合中的第i个第一时间单元,Tmax可以是基于一个SFN周期包括的时域资源排除第一时域资源、第二时域资源、 以及第三时域资源之后剩余的时域资源的数量确定的。例如,Tmax可以是等于一个SFN周期包括的时隙的数量减第一时域资源对应的时隙的数量、第二时域资源对应的时隙的数量之后的剩余时隙对应的第一时间单元的数量再减去第三时域资源对应的第一时间单元的数量。
在一些实现方式中,将一个SFN周期包括的时隙排除第一时域资源对应的第二时间单元(或者第一时域资源对应的时隙)、第二时域资源对应的时域资源之后剩余的时隙,按照第一时间单元划分之后,再减去第三时域资源对应的第一时间单元得到剩余的第一时间单元之后,将剩余的第一时间单元按照第一时间单元的索引递增的顺序重新进行索引得到上述第一集合。
上文介绍了本申请实施例中第一集合的确定方式,下文介绍本申请实施例中第三时域资源包括的第一时间单元的数量的确定方式,以及第三时域资源的确定方式。
在一些实现方式中,第三时域资源包括的时域资源的数量基于以下中的一种或多种确定:第一时域资源包括的时域资源的数量;第二时域资源包括的时域资源的数量;以及第一信息对应的比特数量。例如,第三时域资源包括的时域资源的数量基于以下中的一种或多种确定:第一时域资源包括的时隙数量;第二时域资源包括的时隙数量;以及第一信息对应的比特数量。在另一些实现方式中,上述第三时域资源包括的时域资源的数量基于以下中的一种或多种确定:一个SFN周期包括的第一时间单元的数量或时隙数量,第一时间单元包括的时隙数量,第一时域资源包括的时域资源的数量;第二时域资源包括的时域资源的数量;以及第一信息对应的比特数量。例如,上述第三时域资源包括的时域资源的数量基于以下中的一种或多种确定:一个SFN周期包括的第一时间单元的数量或时隙数量,第一时间单元包括的时隙数量,第一时域资源包括的时隙数量;第二时域资源包括的时隙数量;以及第一信息对应的比特数量。
如上文介绍,在本申请实例中,可以基于第二时间单元传输S-SSB,相应地,第一时域资源包括的时域资源的数量例如可以包括第一时域资源包括的第二时间单元的数量。当然,在本申请实施例中,第一时域资源包括的时域资源的数量例如还可以包括第一时域资源包括的时隙的数量。
在一些实现方式中,第二时域资源包括的时域资源的数量,可以包括第二时域资源包括的时隙的数量。或者,第二时域资源包括的时域资源的数量还可以包括第二时域资源包括的第一时间单元的数量。或者,第二时域资源包括的时域资源的数量还可以包括第二时域资源包括的第二时间单元的数量。本申请实施例对此不作限定。
以第一信息用于指示比特位图为例,上述第一信息对应的比特数量,可以理解为是比特位图包括的比特数量。
在一些实现方式中,第三时域资源包括的时域资源的数量满足:Nreserved=(10240×2μ-NS-S-NnonSL)/M1 mod L,其中,L表示第一信息对应的比特数量,其余参数可以参见上文的介绍。也即是说,第三时域资源包括的时域资源的数量的设置使得一个SFN周期包括的时域资源的数量减去第一时域资源包括的时域资源的数量NS-SSB、第二时域资源包括的时域资源的数量NnonSL、以及第三时域资源包括的时域资源的数量Nreserved后,剩余的时域资源对应的第一时间单元的数量能够被第一信息对应的比特数量整除。
在一些实现方式中,第三时域资源基于以下一种或多种从第二集合中确定:第一时域资源包括的时域资源的数量;第二时域资源包括的时域资源的数量;以及第三时域资源包括的时域资源的数量。例如,第三时域资源基于以下一种或多种从第二集合中确定:第一时域资源包括的时隙数量;第二时域资源包括的时隙数量;以及第三时域资源包括的时隙数量。
在一些实现方式中,上述第三时域资源基于以下中的一种或多种从第二集合中确定:一个SFN周期包括的第一时间单元的数量或时隙数量,第一时间单元包括的时隙数量,第一时域资源包括的时域资源的数量;第二时域资源包括的时域资源的数量;第三时域资源包括的时域资源的数量。例如,上述第三时域资源基于以下中的一种或多种从第二集合中确定:一个SFN周期包括的第一时间单元的数量或时隙数量,第一时间单元包括的时隙数量,第一时域资源包括的时隙数量;第二时域资源包括的时隙数量;第三时域资源包括的时隙数量。
上述第二集合中的时间单元为SFN周期包含的时域资源中的目标时域资源对应的时间单元,目标时域资源为SFN周期包含的时域资源中的除第一时域资源和第二时域资源之后剩余的时域资源。在一些实现方式中,第二集合可以表示为
在一些实现方式中,第三时域资源为第二集合中的第r个时间单元,其中,r为整数,0≤r<(10240×2μ-NS-SSB-NnonSL)/M1,且其中,表示向下取整操作,m=0,1,…,Nreserved-1,其他相关参数可以参见上文的介绍,为了简洁,在此不再赘述。
上文介绍了本申请实施例中第三时域资源的确定方式,下文介绍本申请实施例中从第一集合中指 示属于资源池的时间单元的方法。
在一些实现方式中,第一信息为比特位图,如果比特位图中的第k′+1个比特的取值为1,则第一集合中的第k+1个时间单元属于资源池;其中,k′表示比特位图中的比特位的索引,k表示第一集合中的时间单元的索引,k和k′均为大于或等于0的整数,且k基于k′与L确定,或者k和k′具有关联关系,L表示比特位图的长度。
需要说明的是,上述k′表示比特位图中的比特位的索引,在一些场景中,比特位的索引可以从0开始编号,相应地,比特位图中的第1个比特对应的索引可以为0。另外,上述k表示第一集合中的时间单元(例如,第一时间单元)的索引,在一些场景中,时间单元的索引可以从0开始编号,相应地,第一集合中的第1个时间单元对应的索引可以为0。
当然,在本申请实施例中,上述比特位图的索引k′和/或第一集合中时间单元的索引k也可以从1开始索引,相应地,如果比特位图中的第k′个比特的取值为1,则第一集合中的第k个时间单元属于资源池,其中,k和k′均为大于或等于0的整数,且k基于k′与L确定,或者k和k′具有关联关系,L表示比特位图的长度。
本申请实施例对k的确定方式(或者说,对k和k′的关联关系)不作限定,例如,k可以通过公式k′=k mod L确定,其中,mod表示求余运算。
需要说明的是,上述k的取值小于第一集合中包含的第一时间单元的数量最大值。例如,k的取值范围可以表示为:0≤k<(10240×2μ-NS-SSB-NnonSL)/M1-Nreserved
在一些实现方式中,第一集合中的第一时间单元 满足如下条件时属于资源池:如果bk′=1,k′=k mod L,则第一时间单元属于资源池,其中,bk′表示第一信息对应的比特位图中的第k′+1个比特。
在一些实现方式中,将基于第一信息从第一集合中确定的属于资源池的时间单元的集合记为第三集合,将通过上述方式确定的属于资源池中的第一时间单元在第三集合中按照索引从低到高的顺序重新进行顺序索引,第三集合中的第一时间单元表示为i的取值为{0,1,…,T′max-1},T′max表示第三集合中包括的第一时间单元的数量。
在一些场景中,在SFN周期内相邻的两个传输S-SSB的第二时间单元之间的时域资源可以基于第一信息指示是否属于资源池,其中,如前文介绍第一信息以第一时间单元为粒度指示,因此,为了匹配第一信息的指示方式,在一些实现方式中,上述SFN周期内相邻的两个传输S-SSB的第二时间单元之间包括的时隙数量为第一时间单元包括的时隙数量的整数倍。或者说,第一终端设备期望SFN周期内相邻的两个传输S-SSB的第二时间单元之间包括的时隙数量为第一时间单元包括的时隙数量的整数倍,又或者说,第一终端设备不期望SFN周期内相邻的两个传输S-SSB的第二时间单元之间包括的时隙数量不为第一时间单元包括的时隙数量的整数倍。
在一些实现方式中,一个SFN周期内相邻的两个传输S-SSB的第二时间单元之间包括的时隙数量与目标数量的差值为第一时间单元包括的时隙数量的整数倍,其中,目标数量为相邻的两个传输S-SSB的第二时间单元之间包括的第二时域资源的时域资源数量。也即是说,SFN周期内相邻的两个传输S-SSB的第二时间单元之间除了第二时域资源之外的剩余时隙的数量为第一时间单元包括的时隙数量的整数倍,有助于匹配第一信息的资源指示粒度。或者说,第一终端设备期望上述差值为第一时间单元包括的时隙数量的整数倍。又或者说,第一终端设备不期望上述差值不为第一时间单元包括的时隙数量的整数倍。
在一些实现方式中,SFN周期内包括的时隙数减去第一时域资源包括的时隙数量以及第二时域资源包括的时隙数量后剩余的时隙数量为第一时间单元包括的时隙数量的整数倍,有助于减少预留的时域资源的数量。或者说,第一终端设备期望上述剩余的时隙数量为第一时间单元包括的时隙数量的整数倍。又或者说,第一终端设备不期望上述剩余的时隙数量不为第一时间单元包括的时隙数量的整数倍。
如上文关于实施例2.1以及实施例2.2的方案中,一个SFN周期内除了第一时域资源、第二时域资源以及第三时域资源之外,剩余的时域资源才可能属于资源池,因此,为了便于以第一时间单元为粒度指示剩余的时域资源是否属于资源池,在一些实现方式中,上述SFN周期内除了第一时域资源、第二时域资源以及第三时域资源之外的剩余的时隙数量为第一时间单元包括的时隙数量的整数倍,或者说,第一终端设备期望SFN周期内除了第一时域资源、第二时域资源以及第三时域资源之外的剩余的时隙数量为第一时间单元包括的时隙数量的整数倍,又或者说,第一终端设备不期望SFN周期内除了第一时域资源、第二时域资源以及第三时域资源之外的剩余的时隙数量不为第一时间单元包括的时隙数量的整数倍。
在一些实现方式中,SFN周期内包括的时隙数量减去第一时域资源包括的时隙数量、第二时域资源包括的时隙数量以及第三时域资源包括的时隙数量后剩余的时隙数量为第一信息对应的比特数量的整 数倍,有助于匹配第一信息的指示方式。或者说,第一终端设备期望上述剩余的时隙数量为第一信息对应的比特数量的整数倍,又或者说,第一终端设备不期望上述剩余的时隙数量不为第一信息对应的比特数量的整数倍。
上文结合图1至图14,详细描述了本申请的方法实施例,下面结合图15至图16,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图15是本申请实施例的终端设备的示意图,图15所示的终端设备可以为前文的第一终端设备。图15所示的终端设备1500可以包括:处理单元1510。
处理单元1510,用于确定第一信息,所述第一信息用于指示一个SFN周期内的属于资源池的时域资源;其中,所述资源池基于第一时间单元传输PSCCH和/或PSSCH,所述第一时间单元包含连续的M1个时隙,且M1为大于1的正整数。
在一种可能的实现方式中,所述侧行传输包括S-SSB的传输,所述S-SSB的传输包括基于所述第一时间单元或第二时间单元传输所述S-SSB,其中,所述第二时间单元包括连续的M2个时隙,且M2为大于或等于1的整数。
在一种可能的实现方式中,若所述S-SSB的传输包括基于所述第一时间单元传输所述S-SSB,则所述属于资源池的时域资源从第一集合中确定,且所述第一集合基于以下中的一种或多种确定:第一时域资源,基于所述SFN周期内的用于传输S-SSB的时域资源确定;第二时域资源,基于所述SFN周期内的不能用于侧行传输的时域资源确定;第三时域资源,基于所述SFN周期内的预留的时域资源确定;其中,所述第一集合中包括多个所述第一时间单元。
在一种可能的实现方式中,所述第一集合中包括的所述第一时间单元的数量基于第一数量确定,所述第一数量等于10240×2μ/M1-NS-SSB-NnonSL-Nreserved,NS-SSB表示基于所述第一时域资源包括的所述第一时间单元的数量确定的参数,NnonSL表示基于所述第二时域资源包括的所述第一时间单元的数量确定的参数,Nreserved表示基于所述第三时域资源包括的所述第一时间单元的数量确定的参数,μ表示基于侧行子载波间隔确定的参数。
在一种可能的实现方式中,所述第三时域资源包括的所述第一时间单元的数量基于以下中的一种或多种确定:所述第一时域资源包括的所述第一时间单元的数量;所述第二时域资源包括的所述第一时间单元的数量;以及所述第一信息对应的比特数量。
在一种可能的实现方式中,所述第三时域资源包括的所述第一时间单元的数量满足:Nreserved=(10240×2μ/M1-NS-SSB-NnonSL)mod L;其中,NS-SSB表示基于所述第一时域资源包括的所述第一时间单元的数量确定的参数,NnonSL表示基于所述第二时域资源包括的所述第一时间单元的数量确定的参数,Nreserved表示所述第三时域资源包括的所述第一时间单元的数量,L表示所述第一信息对应的比特数量,μ表示基于侧行子载波间隔确定的参数。
在一种可能的实现方式中,所述第三时域资源基于以下中的一种或多种从第二集合中确定:所述第一时域资源包括的所述第一时间单元的数量;所述第二时域资源包括的所述第一时间单元的数量;所述第三时域资源包括的所述第一时间单元的数量;其中,所述第二集合中的时间单元为所述SFN周期包含的时域资源中的目标时域资源对应的时间单元,所述目标时域资源为所述SFN周期包含的时域资源中的除所述第一时域资源和所述第二时域资源之后剩余的时域资源。
在一种可能的实现方式中,所述第三时域资源包括所述第二集合中的第r个时间单元;其中,r为整数,0≤r<10240×2μ/M1-NS-SSB-NnonSL,且 表示向下取整操作,m=0,1,…,Nreserved-1,NS-SS表示基于所述第一时域资源包括的所述第一时间单元的数量确定的参数,NnonSL表示基于所述第二时域资源包括的所述第一时间单元的数量确定的参数,Nreserved表示基于所述第三时域资源包括的所述第一时间单元的数量确定的参数,μ表示基于侧行子载波间隔确定的参数。
在一种可能的实现方式中,所述SFN周期内包括的时隙数量为所述第一时间单元包括的时隙数量的整数倍。
在一种可能的实现方式中,若所述S-SSB的传输包括基于所述第二时间单元传输所述S-SSB,则所述第一信息指示的时域资源从第一集合中确定,且所述第一集合基于以下中的一种或多种确定:第一时域资源,基于所述SFN周期内的用于传输S-SSB的时域资源确定;第二时域资源,基于所述SFN周期内的不能用于侧行传输的时域资源确定;第三时域资源,基于所述SFN周期内的预留的时域资源确定;其中,所述第一集合中包括多个所述第一时间单元。
在一种可能的实现方式中,所述第一集合中包括的所述第一时间单元的数量基于第二数量确定,所 述第二数量等于(10240×2μ-NS-SSB-NnonSL)/M1-Nreserved,NS-SSB表示基于所述第一时域资源包括的所述第二时间单元的数量确定的参数,NnonSL表示基于所述第二时域资源包括的时域资源的数量确定的参数,Nreserved表示基于所述第三时域资源包括的时域资源的数量确定的参数,μ表示基于侧行子载波间隔确定的参数。
在一种可能的实现方式中,所述第三时域资源包括的时域资源的数量基于以下中的一种或多种确定:所述第一时域资源包括的时域资源的数量;所述第二时域资源包括的时域资源的数量;以及所述第一信息对应的比特数量。
在一种可能的实现方式中,所述第三时域资源包括的所述时域资源的数量满足:Nreserved=(10240×2μ-NS-SSB-NnonSL)/M1 mod L;其中,NS-SSB表示基于所述第一时域资源包括的时域资源的数量确定的参数,NnonSL表示基于所述第二时域资源包括的时域资源的数量确定的参数,Nresereed表示所述第三时域资源包括的时域资源的数量,L表示所述第一信息对应的比特数量,μ表示基于侧行子载波间隔确定的参数。
在一种可能的实现方式中,所述第三时域资源基于以下一种或多种从第二集合中确定:所述第一时域资源包括的时域资源的数量;所述第二时域资源包括的时域资源的数量;以及所述第三时域资源包括的时域资源的数量;其中,所述第二集合中的时间单元为所述SFN周期包含的时域资源中的目标时域资源对应的时间单元,所述目标时域资源为所述SFN周期包含的时域资源中的除所述第一时域资源和所述第二时域资源之后剩余的时域资源。
在一种可能的实现方式中,所述第三时域资源为所述第二集合中的第r个时间单元;其中,r为整数,0≤r<(10240×2μ-NS-SSB-NnonSL)/M1,且 表示向下取整操作,m=0,1,…,Nreserved-1,NS-SSB表示基于所述第一时域资源包括的时域资源的数量确定的参数,NnonSL表示基于所述第二时域资源包括的时域资源的数量确定的参数,Nreserved表示基于所述第三时域资源包括的时域资源的数量确定的参数,μ表示基于侧行子载波间隔确定的参数。
在一种可能的实现方式中,在所述SFN周期内相邻的两个传输S-SSB的第二时间单元之间包括的时隙数量为所述第一时间单元包括的时隙数量的整数倍。
在一种可能的实现方式中,所述SFN周期内包括的时隙数减去所述第一时域资源包括的时隙数量以及所述第二时域资源包括的时隙数量后剩余的时隙数量为所述第一时间单元包括的时隙数量的整数倍。
在一种可能的实现方式中,所述SFN周期内包括的时隙数量减去所述第一时域资源包括的时隙数量、所述第二时域资源包括的时隙数量以及所述第三时域资源包括的时隙数量后剩余的时隙数量为所述第一时间单元包括的时隙数量的整数倍。
在一种可能的实现方式中,所述SFN周期内包括的时隙数量减去所述第一时域资源包括的时隙数量、所述第二时域资源包括的时隙数量以及所述第三时域资源包括的时隙数量后剩余的时隙数量为所述第一信息对应的比特数量的整数倍。
在一种可能的实现方式中,所述第一信息为比特位图,如果所述比特位图中的第k′+1个比特的取值为1,则所述第一集合中的第k+1个时间单元属于所述资源池;其中,k′表示所述比特位图中的比特位的索引,k表示所述第一集合中的时间单元的索引,k和k′均为大于或等于0的整数,且k基于k′与L确定,L表示所述比特位图的长度。
在一种可能的实现方式中,k′=k mod L,mod表示求余运算。
在一种可能的实现方式中,如果一个时隙中的可用于侧行传输的第一个符号为所述一个时隙中的第一个符号,则所述SFN周期内的不能用于侧行传输的时隙的数量的取值为0。
在可选的实施例中,所述处理单元1510可以为处理器1610。终端设备1500还可以包括收发器1630和存储器1620,具体如图16所示。
图16是本申请实施例的通信装置的示意性结构图。图16中的虚线表示该单元或模块为可选的。该装置1600可用于实现上述方法实施例中描述的方法。装置1600可以是芯片、终端设备或网络设备。
装置1600可以包括一个或多个处理器1610。该处理器1610可支持装置1600实现前文方法实施例所描述的方法。该处理器1610可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置1600还可以包括一个或多个存储器1620。存储器1620上存储有程序,该程序可以被处理器 1610执行,使得处理器1610执行前文方法实施例所描述的方法。存储器1620可以独立于处理器1610也可以集成在处理器1610中。
装置1600还可以包括收发器1630。处理器1610可以通过收发器1630与其他设备或芯片进行通信。例如,处理器1610可以通过收发器1630与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
应理解,本申请中术语“系统”和“网络”可以被可互换使用。另外,本申请使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本申请的实施例中,提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
本申请的实施例,提到的“包括”可以指直接包括,也可以指间接包括。可选地,可以将本申请实施例中提到的“包括”替换为“指示”或“用于确定”。例如,A包括B,可以替换为A指示B,或A用于确定B。
在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电 缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (50)

  1. 一种用于侧行传输的方法,其特征在于,包括:
    第一终端设备确定第一信息,所述第一信息用于指示一个SFN周期内的属于资源池的时域资源;
    其中,所述资源池基于第一时间单元传输PSCCH和/或PSSCH,所述第一时间单元包含连续的M1个时隙,且M1为大于1的正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述侧行传输包括S-SSB的传输,所述S-SSB的传输包括基于所述第一时间单元或第二时间单元传输所述S-SSB,其中,所述第二时间单元包括连续的M2个时隙,且M2为大于或等于1的整数。
  3. 根据权利要求2所述的方法,其特征在于,若所述S-SSB的传输包括基于所述第一时间单元传输所述S-SSB,则所述属于资源池的时域资源从第一集合中确定,且所述第一集合基于以下中的一种或多种确定:
    第一时域资源,基于所述SFN周期内的用于传输S-SSB的时域资源确定;
    第二时域资源,基于所述SFN周期内的不能用于侧行传输的时域资源确定;
    第三时域资源,基于所述SFN周期内的预留的时域资源确定;
    其中,所述第一集合中包括多个所述第一时间单元。
  4. 根据权利要求3所述的方法,其特征在于,所述第一集合中包括的所述第一时间单元的数量基于第一数量确定,所述第一数量等于10240×2μ/M1-NS-SSB-NnonSL-Nreserved,NS-SSB表示基于所述第一时域资源包括的所述第一时间单元的数量确定的参数,NnonSL表示基于所述第二时域资源包括的所述第一时间单元的数量确定的参数,Nreserved表示基于所述第三时域资源包括的所述第一时间单元的数量确定的参数,μ表示基于侧行子载波间隔确定的参数。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第三时域资源包括的所述第一时间单元的数量基于以下中的一种或多种确定:
    所述第一时域资源包括的所述第一时间单元的数量;
    所述第二时域资源包括的所述第一时间单元的数量;以及
    所述第一信息对应的比特数量。
  6. 根据权利要求5所述的方法,其特征在于,所述第三时域资源包括的所述第一时间单元的数量满足:
    Nreserved=(10240×2μ/M1-NS-SSB-NnonSL)mod L;
    其中,NS-SSB表示基于所述第一时域资源包括的所述第一时间单元的数量确定的参数,NnonSL表示基于所述第二时域资源包括的所述第一时间单元的数量确定的参数,Nreserved表示所述第三时域资源包括的所述第一时间单元的数量,L表示所述第一信息对应的比特数量,μ表示基于侧行子载波间隔确定的参数。
  7. 根据权利要求3-6中任一项所述的方法,其特征在于,所述第三时域资源基于以下中的一种或多种从第二集合中确定:
    所述第一时域资源包括的所述第一时间单元的数量;
    所述第二时域资源包括的所述第一时间单元的数量;
    所述第三时域资源包括的所述第一时间单元的数量;
    其中,所述第二集合中的时间单元为所述SFN周期包含的时域资源中的目标时域资源对应的时间单元,所述目标时域资源为所述SFN周期包含的时域资源中的除所述第一时域资源和所述第二时域资源之后剩余的时域资源。
  8. 根据权利要求7所述的方法,其特征在于,所述第三时域资源包括所述第二集合中的第r个时间单元;
    其中,r为整数,0≤r<10240×2μ/M1-NS-SSB-NnonSL,且 表示向下取整操作,m=0,1,…,Nreserved-1,NS-SSB表示基于所述第一时域资源包括的所述第一时间单元的数量确定的参数,NnonSL表示基于所述第二时域资源包括的所述第一时间单元的数量确定的参数,Nreserved表示基于所述第三时域资源包括的所述第一时间单元的数量确定的参数,μ表示基于侧行子载波间隔确定的参数。
  9. 根据权利要求3-8中任一项所述的方法,其特征在于,所述SFN周期内包括的时隙数量为所述第一时间单元包括的时隙数量的整数倍。
  10. 根据权利要求2所述的方法,其特征在于,若所述S-SSB的传输包括基于所述第二时间单元传输所述S-SSB,则所述第一信息指示的时域资源从第一集合中确定,且所述第一集合基于以下中的一 种或多种确定:
    第一时域资源,基于所述SFN周期内的用于传输S-SSB的时域资源确定;
    第二时域资源,基于所述SFN周期内的不能用于侧行传输的时域资源确定;
    第三时域资源,基于所述SFN周期内的预留的时域资源确定;
    其中,所述第一集合中包括多个所述第一时间单元。
  11. 根据权利要求10所述的方法,其特征在于,所述第一集合中包括的所述第一时间单元的数量基于第二数量确定,所述第二数量等于(10240×2μ-NS-SSB-NnonSL)/M1-Nreserved,NS-SSB表示基于所述第一时域资源包括的所述第二时间单元的数量确定的参数,NnonSL表示基于所述第二时域资源包括的时域资源的数量确定的参数,Nreserved表示基于所述第三时域资源包括的时域资源的数量确定的参数,μ表示基于侧行子载波间隔确定的参数。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第三时域资源包括的时域资源的数量基于以下中的一种或多种确定:
    所述第一时域资源包括的时域资源的数量;
    所述第二时域资源包括的时域资源的数量;以及
    所述第一信息对应的比特数量。
  13. 根据权利要求12所述的方法,其特征在于,所述第三时域资源包括的所述时域资源的数量满足:
    Nreserved=(10240×2μ-NS-SSB-NnonSL)/M1 mod L;
    其中,NS-SSB表示基于所述第一时域资源包括的时域资源的数量确定的参数,NnonSL表示基于所述第二时域资源包括的时域资源的数量确定的参数,Nreserved表示所述第三时域资源包括的时域资源的数量,L表示所述第一信息对应的比特数量,μ表示基于侧行子载波间隔确定的参数。
  14. 根据权利要求10-13中任一项所述的方法,其特征在于,所述第三时域资源基于以下一种或多种从第二集合中确定:
    所述第一时域资源包括的时域资源的数量;
    所述第二时域资源包括的时域资源的数量;以及
    所述第三时域资源包括的时域资源的数量;
    其中,所述第二集合中的时间单元为所述SFN周期包含的时域资源中的目标时域资源对应的时间单元,所述目标时域资源为所述SFN周期包含的时域资源中的除所述第一时域资源和所述第二时域资源之后剩余的时域资源。
  15. 根据权利要求14所述的方法,其特征在于,所述第三时域资源为所述第二集合中的第r个时间单元;
    其中,r为整数,0≤r<(10240×2μ-NS-SSB-NnonSL)/M1,且 表示向下取整操作,m=0,1,…,Nreserved-1,NS-SSB表示基于所述第一时域资源包括的时域资源的数量确定的参数,NnonSL表示基于所述第二时域资源包括的时域资源的数量确定的参数,Nreserved表示基于所述第三时域资源包括的时域资源的数量确定的参数,μ表示基于侧行子载波间隔确定的参数。
  16. 根据权利要求10-15中任一项所述的方法,其特征在于,在所述SFN周期内相邻的两个传输S-SSB的第二时间单元之间包括的时隙数量为所述第一时间单元包括的时隙数量的整数倍。
  17. 根据权利要求10-16中任一项所述的方法,其特征在于,所述SFN周期内包括的时隙数减去所述第一时域资源包括的时隙数量以及所述第二时域资源包括的时隙数量后剩余的时隙数量为所述第一时间单元包括的时隙数量的整数倍。
  18. 根据权利要求3-16中任一项所述的方法,其特征在于,所述SFN周期内包括的时隙数量减去所述第一时域资源包括的时隙数量、所述第二时域资源包括的时隙数量以及所述第三时域资源包括的时隙数量后剩余的时隙数量为所述第一时间单元包括的时隙数量的整数倍。
  19. 根据权利要求3-18中任一项所述的方法,其特征在于,所述SFN周期内包括的时隙数量减去所述第一时域资源包括的时隙数量、所述第二时域资源包括的时隙数量以及所述第三时域资源包括的时隙数量后剩余的时隙数量为所述第一信息对应的比特数量的整数倍。
  20. 根据权利要求3-19中任一项所述的方法,其特征在于,所述第一信息为比特位图,如果所述比特位图中的第k′+1个比特的取值为1,则所述第一集合中的第k+1个时间单元属于所述资源池;其中,k′表示所述比特位图中的比特位的索引,k表示所述第一集合中的时间单元的索引,k和k′均为大于或等于0的整数,且k基于k′与L确定,L表示所述比特位图的长度。
  21. 根据权利要求20所述的方法,其特征在于,k′=k mod L,mod表示求余运算。
  22. 根据权利要求3-21中任一项所述的方法,其特征在于,如果一个时隙中的可用于侧行传输的第一个符号为所述一个时隙中的第一个符号,则所述SFN周期内的不能用于侧行传输的时隙的数量的取值为0。
  23. 一种终端设备,其特征在于,所述终端设备为第一终端设备,包括:
    处理单元,用于确定第一信息,所述第一信息用于指示一个SFN周期内的属于资源池的时域资源;
    其中,所述资源池基于第一时间单元传输PSCCH和/或PSSCH,所述第一时间单元包含连续的M1个时隙,且M1为大于1的正整数。
  24. 根据权利要求23所述的终端设备,其特征在于,所述侧行传输包括S-SSB的传输,所述S-SSB的传输包括基于所述第一时间单元或第二时间单元传输所述S-SSB,其中,所述第二时间单元包括连续的M2个时隙,且M2为大于或等于1的整数。
  25. 根据权利要求24所述的终端设备,其特征在于,若所述S-SSB的传输包括基于所述第一时间单元传输所述S-SSB,则所述属于资源池的时域资源从第一集合中确定,且所述第一集合基于以下中的一种或多种确定:
    第一时域资源,基于所述SFN周期内的用于传输S-SSB的时域资源确定;
    第二时域资源,基于所述SFN周期内的不能用于侧行传输的时域资源确定;
    第三时域资源,基于所述SFN周期内的预留的时域资源确定;
    其中,所述第一集合中包括多个所述第一时间单元。
  26. 根据权利要求25所述的终端设备,其特征在于,所述第一集合中包括的所述第一时间单元的数量基于第一数量确定,所述第一数量等于10240×2μ/M1-NS-SSB-NnonSL-Nreserved,NS-SSB表示基于所述第一时域资源包括的所述第一时间单元的数量确定的参数,NnonSL表示基于所述第二时域资源包括的所述第一时间单元的数量确定的参数,Nreserved表示基于所述第三时域资源包括的所述第一时间单元的数量确定的参数,μ表示基于侧行子载波间隔确定的参数。
  27. 根据权利要求25或26所述的终端设备,其特征在于,所述第三时域资源包括的所述第一时间单元的数量基于以下中的一种或多种确定:
    所述第一时域资源包括的所述第一时间单元的数量;
    所述第二时域资源包括的所述第一时间单元的数量;以及
    所述第一信息对应的比特数量。
  28. 根据权利要求27所述的终端设备,其特征在于,所述第三时域资源包括的所述第一时间单元的数量满足:
    Nreserved=(10240×2μ/M1-NS-SSB-NnonSL)mod L;
    其中,NS-SSB表示基于所述第一时域资源包括的所述第一时间单元的数量确定的参数,NnonSL表示基于所述第二时域资源包括的所述第一时间单元的数量确定的参数,Nreserved表示所述第三时域资源包括的所述第一时间单元的数量,L表示所述第一信息对应的比特数量,μ表示基于侧行子载波间隔确定的参数。
  29. 根据权利要求25-28中任一项所述的终端设备,其特征在于,所述第三时域资源基于以下中的一种或多种从第二集合中确定:
    所述第一时域资源包括的所述第一时间单元的数量;
    所述第二时域资源包括的所述第一时间单元的数量;
    所述第三时域资源包括的所述第一时间单元的数量;
    其中,所述第二集合中的时间单元为所述SFN周期包含的时域资源中的目标时域资源对应的时间单元,所述目标时域资源为所述SFN周期包含的时域资源中的除所述第一时域资源和所述第二时域资源之后剩余的时域资源。
  30. 根据权利要求29所述的终端设备,其特征在于,所述第三时域资源包括所述第二集合中的第r个时间单元;
    其中,r为整数,0≤r<10240×2μ/M1-NS-SSB-NnonSL,且NS-SSB表示基于所述第一时域资源包括的所述第一时间单元的数量确定的参数,NnonSL表示基于所述第二时域资源包括的所述第一时间单元的数量确定的参数,Nreserved表示基于所述第三时域资源包括的所述第一时间单元的数量确定的参数,μ表示基于侧行子载波间隔确定的参数。
  31. 根据权利要求25-30中任一项所述的终端设备,其特征在于,所述SFN周期内包括的时隙数量为所述第一时间单元包括的时隙数量的整数倍。
  32. 根据权利要求24所述的终端设备,其特征在于,若所述S-SSB的传输包括基于所述第二时间 单元传输所述S-SSB,则所述第一信息指示的时域资源从第一集合中确定,且所述第一集合基于以下中的一种或多种确定:
    第一时域资源,基于所述SFN周期内的用于传输S-SSB的时域资源确定;
    第二时域资源,基于所述SFN周期内的不能用于侧行传输的时域资源确定;
    第三时域资源,基于所述SFN周期内的预留的时域资源确定;
    其中,所述第一集合中包括多个所述第一时间单元。
  33. 根据权利要求32所述的终端设备,其特征在于,所述第一集合中包括的所述第一时间单元的数量基于第二数量确定,所述第二数量等于(10240×2μ-NS-SSB-NnonSL)/M1-Nreserved,NS-SSB表示基于所述第一时域资源包括的所述第二时间单元的数量确定的参数,NnonSL表示基于所述第二时域资源包括的时域资源的数量确定的参数,Nreserved表示基于所述第三时域资源包括的时域资源的数量确定的参数,μ表示基于侧行子载波间隔确定的参数。
  34. 根据权利要求32或33所述的终端设备,其特征在于,所述第三时域资源包括的时域资源的数量基于以下中的一种或多种确定:
    所述第一时域资源包括的时域资源的数量;
    所述第二时域资源包括的时域资源的数量;以及
    所述第一信息对应的比特数量。
  35. 根据权利要求34所述的终端设备,其特征在于,所述第三时域资源包括的所述时域资源的数量满足:
    Nreserved=(10240×2μ-NS-SSB-NnonSL)/M1 mod L;
    其中,NS-SSB表示基于所述第一时域资源包括的时域资源的数量确定的参数,NnonSL表示基于所述第二时域资源包括的时域资源的数量确定的参数,Nreserved表示所述第三时域资源包括的时域资源的数量,L表示所述第一信息对应的比特数量,μ表示基于侧行子载波间隔确定的参数。
  36. 根据权利要求32-35中任一项所述的终端设备,其特征在于,所述第三时域资源基于以下一种或多种从第二集合中确定:
    所述第一时域资源包括的时域资源的数量;
    所述第二时域资源包括的时域资源的数量;以及
    所述第三时域资源包括的时域资源的数量;
    其中,所述第二集合中的时间单元为所述SFN周期包含的时域资源中的目标时域资源对应的时间单元,所述目标时域资源为所述SFN周期包含的时域资源中的除所述第一时域资源和所述第二时域资源之后剩余的时域资源。
  37. 根据权利要求36所述的终端设备,其特征在于,所述第三时域资源为所述第二集合中的第r个时间单元;
    其中,r为整数,0≤r<(10240×2μ-NS-SSB-NnonSL)/M1,且NS-SSB表示基于所述第一时域资源包括的时域资源的数量确定的参数,NnonSL表示基于所述第二时域资源包括的时域资源的数量确定的参数,Nreserved表示基于所述第三时域资源包括的时域资源的数量确定的参数,μ表示基于侧行子载波间隔确定的参数。
  38. 根据权利要求32-37中任一项所述的终端设备,其特征在于,在所述SFN周期内相邻的两个传输S-SSB的第二时间单元之间包括的时隙数量为所述第一时间单元包括的时隙数量的整数倍。
  39. 根据权利要求32-38中任一项所述的终端设备,其特征在于,所述SFN周期内包括的时隙数减去所述第一时域资源包括的时隙数量以及所述第二时域资源包括的时隙数量后剩余的时隙数量为所述第一时间单元包括的时隙数量的整数倍。
  40. 根据权利要求25-38中任一项所述的终端设备,其特征在于,所述SFN周期内包括的时隙数量减去所述第一时域资源包括的时隙数量、所述第二时域资源包括的时隙数量以及所述第三时域资源包括的时隙数量后剩余的时隙数量为所述第一时间单元包括的时隙数量的整数倍。
  41. 根据权利要求25-40中任一项所述的终端设备,其特征在于,所述SFN周期内包括的时隙数量减去所述第一时域资源包括的时隙数量、所述第二时域资源包括的时隙数量以及所述第三时域资源包括的时隙数量后剩余的时隙数量为所述第一信息对应的比特数量的整数倍。
  42. 根据权利要求25-41中任一项所述的终端设备,其特征在于,所述第一信息为比特位图,如果所述比特位图中的第k′+1个比特的取值为1,则所述第一集合中的第k+1个时间单元属于所述资源池;其中,k′表示所述比特位图中的比特位的索引,k表示所述第一集合中的时间单元的索引,k和k′均为大于或等于0的整数,且k基于k′与L确定,L表示所述比特位图的长度。
  43. 根据权利要求42所述的终端设备,其特征在于,k′=k mod L,mod表示求余运算。
  44. 根据权利要求25-43中任一项所述的终端设备,其特征在于,如果一个时隙中的可用于侧行传输的第一个符号为所述一个时隙中的第一个符号,则所述SFN周期内的不能用于侧行传输的时隙的数量的取值为0。
  45. 一种终端设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述终端设备执行如权利要求1-22中任一项所述的方法。
  46. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以使所述装置执行如权利要求1-22中任一项所述的方法。
  47. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-22中任一项所述的方法。
  48. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-22中任一项所述的方法。
  49. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-22中任一项所述的方法。
  50. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-22中任一项所述的方法。
PCT/CN2023/081981 2023-03-16 2023-03-16 用于侧行传输的方法及终端设备 WO2024187472A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/081981 WO2024187472A1 (zh) 2023-03-16 2023-03-16 用于侧行传输的方法及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/081981 WO2024187472A1 (zh) 2023-03-16 2023-03-16 用于侧行传输的方法及终端设备

Publications (1)

Publication Number Publication Date
WO2024187472A1 true WO2024187472A1 (zh) 2024-09-19

Family

ID=92754124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081981 WO2024187472A1 (zh) 2023-03-16 2023-03-16 用于侧行传输的方法及终端设备

Country Status (1)

Country Link
WO (1) WO2024187472A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113473613A (zh) * 2020-03-31 2021-10-01 夏普株式会社 由用户设备执行的方法以及用户设备
WO2021226858A1 (zh) * 2020-05-13 2021-11-18 Oppo广东移动通信有限公司 传输资源的确定方法和终端设备
KR20220122494A (ko) * 2021-02-26 2022-09-02 한국전자통신연구원 통신 시스템에서 초기 접속 위한 방법 및 장치
WO2023279390A1 (zh) * 2021-07-09 2023-01-12 Oppo广东移动通信有限公司 一种资源指示方法及装置、终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113473613A (zh) * 2020-03-31 2021-10-01 夏普株式会社 由用户设备执行的方法以及用户设备
WO2021226858A1 (zh) * 2020-05-13 2021-11-18 Oppo广东移动通信有限公司 传输资源的确定方法和终端设备
KR20220122494A (ko) * 2021-02-26 2022-09-02 한국전자통신연구원 통신 시스템에서 초기 접속 위한 방법 및 장치
WO2023279390A1 (zh) * 2021-07-09 2023-01-12 Oppo广东移动通信有限公司 一种资源指示方法及装置、终端设备

Similar Documents

Publication Publication Date Title
WO2020063130A1 (zh) 一种资源确定方法及装置
WO2021032021A1 (zh) 一种通信方法及装置
US10536936B2 (en) Control information transmission method and apparatus for use in mobile communication system
EP4391673A1 (en) Channel access method, and device and storage medium
WO2022222106A1 (zh) 传输物理侧行反馈信道psfch的方法和终端设备
WO2024055235A1 (zh) 用于侧行通信的方法、第一设备以及终端设备
WO2023023903A1 (zh) 无线通信方法、第一设备和第二设备
WO2024187472A1 (zh) 用于侧行传输的方法及终端设备
WO2023108417A1 (zh) 通信方法及终端设备
WO2022141629A1 (zh) 资源确定方法、第一终端设备和第二终端设备
WO2021237751A1 (zh) 数据传输方法、终端设备和网络设备
WO2024212249A1 (zh) 侧行通信的方法及装置
WO2024065762A1 (zh) 无线通信的方法及终端设备
WO2024065420A1 (zh) 用于侧行通信的方法及终端设备
WO2024138595A1 (zh) 用于侧行传输的方法和终端设备
WO2024092670A1 (zh) 侧行传输方法及终端设备
WO2024092758A1 (zh) 用于无线通信的方法及终端设备
WO2023205954A1 (zh) 侧行通信方法、终端设备及网络设备
WO2024183076A1 (zh) 侧行传输方法及终端设备
WO2024031233A1 (zh) 通信方法及终端设备
WO2024197654A1 (zh) 通信方法及通信装置
WO2024138609A1 (zh) 通信方法及通信装置
WO2024055241A1 (zh) 通信方法、终端设备以及网络设备
WO2024092702A1 (zh) 通信方法、终端设备以及网络设备
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23926824

Country of ref document: EP

Kind code of ref document: A1