[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024185105A1 - 内燃機関の可変バルブ診断方法および装置 - Google Patents

内燃機関の可変バルブ診断方法および装置 Download PDF

Info

Publication number
WO2024185105A1
WO2024185105A1 PCT/JP2023/008942 JP2023008942W WO2024185105A1 WO 2024185105 A1 WO2024185105 A1 WO 2024185105A1 JP 2023008942 W JP2023008942 W JP 2023008942W WO 2024185105 A1 WO2024185105 A1 WO 2024185105A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable valve
cooling water
internal combustion
combustion engine
supplied
Prior art date
Application number
PCT/JP2023/008942
Other languages
English (en)
French (fr)
Inventor
雅英 小林
裕也 石井
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2023/008942 priority Critical patent/WO2024185105A1/ja
Publication of WO2024185105A1 publication Critical patent/WO2024185105A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to fault diagnosis of variable valves included in the cooling water system of an internal combustion engine, and more specifically, to technology for avoiding misdiagnosis due to fluctuations in the cooling water temperature.
  • Patent Document 1 describes how, in a fault diagnosis in which the actual water temperature detected by a sensor is compared with an estimated water temperature to diagnose a thermostat fault, the diagnosis is prohibited for a predetermined time after the electric cooling water pump starts operating, thereby preventing misdiagnosis due to the movement of the cooling water.
  • variable valve that adjusts the flow of coolant to multiple devices is sometimes installed in the cooling water system of an internal combustion engine.
  • variable valves there are various types of devices through which coolant flowed before the variable valve was activated and devices through which coolant flowed after activation, and if the diagnostic inhibition time is constant, there is a risk of misdiagnosis.
  • the present invention provides a variable valve diagnosis method for an internal combustion engine that includes a water jacket, a water pump, and a variable valve that adjusts the flow of cooling water to a plurality of devices, the method diagnosing the variable valve by comparing an actual water temperature with an estimated water temperature, and temporarily prohibiting the diagnosis after the variable valve is operated, the method comprising: The diagnosis inhibition time is set according to a combination of a device to which cooling water was supplied before the variable valve was operated and a device to which cooling water is supplied after the variable valve is operated.
  • FIG. 2 is a circuit diagram of a cooling water system according to an embodiment.
  • FIG. 1 is an explanatory diagram illustrating a schematic configuration of a rotary type variable valve.
  • FIG. 2 is a functional block diagram of a diagnostic device according to an embodiment.
  • 6 is a flowchart showing a process flow leading up to the start of diagnosis.
  • 4 is a time chart showing the behavior associated with the operation of the variable valve.
  • FIG. 1 shows the circuit configuration of a cooling water circulation system of an internal combustion engine for a vehicle according to one embodiment.
  • the internal combustion engine may be a gasoline engine or a diesel engine, and is provided with a water jacket 1 through which cooling water flows over both the cylinder block and the cylinder head.
  • a water pump 2 is provided which is mechanically driven by, for example, the output of the internal combustion engine.
  • An electric water pump may also be used.
  • a variable valve 7 is provided to adjust or switch the flow of cooling water to the three flow paths 4, 5, and 6.
  • the variable valve 7 is composed of an electric rotary valve.
  • Flow path 4 is provided with a heater (heater core) 8 for the air conditioning system as a first heat exchange device.
  • Flow path 5 is provided with an oil cooler 9 as a second heat exchange device that exchanges heat between the lubricating oil of the internal combustion engine and the cooling water.
  • Flow path 6 is provided with a radiator 10 as a third heat exchange device that is disposed at the front end of the vehicle and exchanges heat between the outside air and the cooling water. In terms of the cooling water capacity of these three heat exchange devices, the radiator 10 has the largest capacity, and the oil cooler 9 has the smallest capacity.
  • the three flow paths 4, 5, and 6 merge into one flow path at the inlet 11 of the water pump 2, and are configured so that the cooling water returns from the inlet 11 to the water pump 2.
  • a water temperature sensor 12 that detects the coolant temperature is disposed at the outlet of the water jacket 1. Note that in the present invention, the location of the water temperature sensor 12 is not necessarily limited to the outlet of the water jacket 1, but may be located on the inlet side of the water jacket 1 or upstream of the water pump 2.
  • the operating position of the rotary variable valve 7 is controlled by the controller 13.
  • various signals necessary for controlling the flow of cooling water are input to the controller 13.
  • the controller 13 also performs a fault diagnosis of the variable valve 7 by comparing the actual water temperature with the estimated water temperature. Any suitable known method can be used for this fault diagnosis.
  • FIG. 2 is an explanatory diagram showing a schematic configuration of a rotary type variable valve 7.
  • the variable valve 7 comprises a substantially cylindrical housing 21 with a cylindrical surface 21a on its inner circumference, a disk-shaped or columnar valve body 22 rotatably housed within the cylindrical surface 21a of the housing 21, and a motor (i.e., actuator) (not shown) that moves the valve body 22 in the rotational direction to change its angular position.
  • the flow path 3 on the outlet side of the water jacket 1 is connected to the end face of the housing 21 (not shown in FIG. 2) and guides cooling water into the housing 21.
  • Ports 4A, 5A, and 6A which are the ends of the flow paths 4, 5, and 6, are opened on the cylindrical surface 21a of the housing 21.
  • Port 4A which guides cooling water to the heater 8, and port 5A, which guides cooling water to the oil cooler 9, are located approximately 90° apart from each other.
  • the valve body 22 has a half-moon-shaped cutout 24 for the heater/oil cooler, and it is possible to introduce cooling water into one or both of ports 4A and 5A through this cutout 24.
  • Port 6A which guides cooling water to the radiator 10, is located 180° away from port 4A for the heater 8 in terms of phase, and it is possible to introduce cooling water through a radiator cutout 25, which occupies a relatively small angular range provided in the valve body 22.
  • the cutout 24 for the heater/oil cooler and the cutout 25 for the radiator are located at different axial positions and are not connected to each other.
  • Port 6A, which guides cooling water to radiator 10 is located in the axial position corresponding to radiator cutout 25 and does not communicate with heater/oil cooler cutout 24.
  • variable valve 7 of this embodiment can take the eight forms listed below depending on the angular position (rotational position) of the valve body 22. Note that “open” means that the corresponding port is open and cooling water is introduced. Flow paths not listed below as “open” are closed.
  • First state A state in which no fluid flows through any of the flow paths 4, 5, and 6 (a so-called zero flow state)
  • Second state All flow paths open
  • Third state Heater flow path 4 open (opening degree varies depending on water temperature)
  • Fourth state oil cooler flow passage 5 open (opening degree varies depending on water temperature), heater flow passage 4 fully open
  • Fifth state oil cooler flow passage 5 fully open, radiator flow passage 6 open (opening degree varies depending on water temperature)
  • Sixth state oil cooler flow passage 5 fully open, heater flow passage 4 slightly open, radiator flow passage 6 fully open
  • Seventh state oil cooler flow passage 5 fully open, heater flow passage 4 fully open, radiator flow passage 6 open (opening degree varies depending on water temperature)
  • Eighth state Oil cooler passage 5 open (opening degree varies depending on water temperature)
  • the above "varies the opening degree depending on the water temperature” means that the opening degree of the port is adjusted by slightly changing the angular position of the variable valve 7 according to the cooling water temperature.
  • cooling water is supplied to multiple heat exchange devices in parallel.
  • the valve body 22 of the variable valve 7 can operate in both the clockwise and counterclockwise directions in FIG. 2. For example, after a cold start of the internal combustion engine, the angular position of the valve body 22 changes in the clockwise direction as the coolant temperature rises, and the flow path can be changed from "first state ⁇ third state ⁇ fourth state ⁇ seventh state.”
  • the flow path can be changed from "first state ⁇ eighth state ⁇ fifth state" by changing the angular position of the valve body 22 in the counterclockwise direction as the coolant temperature rises. Even when the outside air temperature is high, when the defroster is in use, coolant can be supplied to the heater 8 by changing from "fifth state ⁇ sixth state".
  • the second state is a state in which all ports are fully open, for example, due to a drop in cooling water pressure.
  • the coolant in the heat exchange device through which the coolant had not flowed is pushed out and returns to the vicinity of the water temperature sensor 12 via the water pump 2.
  • the state in which the coolant was not supplied to the radiator 10 changes to the state in which the coolant is supplied to the radiator 10 due to an increase in the coolant temperature
  • the relatively low-temperature coolant in the radiator 10 is pushed out and returns to the water pump 2. This causes the temperature detected by the water temperature sensor 12 to temporarily fluctuate, which may result in an erroneous diagnosis of a fault based on a comparison between the actual temperature (detected temperature) and the estimated temperature.
  • an appropriate delay time TD is provided between the operation of the variable valve 7 and the time when the fault diagnosis is permitted.
  • This delay time TD is set according to the combination of the heat exchange device (including the zero-flow state) to which the coolant was supplied before the operation of the variable valve 7 and the heat exchange device to which the coolant is supplied after the operation of the variable valve 7.
  • a delay time TD is predefined to be applied to each of a number of combinations of state changes that can occur with the operation of the variable valve 7.
  • Table 1 lists the delay times TD in order of length, from the shortest delay time TD1 to the longest delay time TD9. That is, "TD1 ⁇ TD2 ⁇ >TD3 ⁇ TD4 ⁇ TD5 ⁇ TD6 ⁇ TD7 ⁇ TD8 ⁇ TD9".
  • the right column of Table 1 lists representative state changes corresponding to each delay time TD.
  • FIG. 3 shows a functional block diagram of a diagnostic device of one embodiment configured by the controller 13.
  • MCV in the figure means the variable valve 7.
  • the diagnostic device of one embodiment includes an MCV transition instruction detection unit 31 that detects whether there is an instruction to change the angular position of the variable valve 7 based on the target angle of the variable valve 7, a pre-MCV transition state calculation unit 32 that determines the state of the flow path before the angular position of the variable valve 7 is changed based on the actual angle of the variable valve 7, a post-MCV transition state calculation unit 33 that determines the state of the flow path after the angular position of the variable valve 7 is changed based on the actual angle after operation, a delay time selection unit 34 that selects a delay time TD based on these pre-transition states and post-transition states, an elapsed time determination unit 35 that determines whether this delay time TD has elapsed, and a diagnosis unit 36 that diagnoses the variable valve 7.
  • the diagnosis unit 36 starts diagnosing the variable valve 7
  • step 5 a delay time TD corresponding to the state change due to the operation of the variable valve 7 (in other words, the combination of the flow path before the operation and the flow path after the operation) is selected.
  • step 6 it is determined whether the elapsed time is equal to or greater than the delay time TD, and the process waits until the delay time TD has elapsed. When the delay time TD has elapsed, the process proceeds to step 7, where the diagnosis is permitted.
  • the target angle changes in steps in response to the request, but the actual angle of the variable valve 7, whose valve body 22 is driven by the motor, changes gradually as shown in (b).
  • a timer begins counting the elapsed time CT. Diagnosis is prohibited until this elapsed time CT reaches the delay time TD set in accordance with the combination of state changes.
  • the diagnosis permission flag shown in (d) turns ON and diagnosis is permitted. Note that diagnosis is performed even before the change in flow path.
  • the coolant temperature temporarily drops when the flow path is changed, but by prohibiting diagnosis during the delay time TD, erroneous diagnosis due to this temporary drop in coolant temperature is suppressed. Fluctuations in coolant temperature caused by such changes in flow path differ depending on the combination of the flow path before and after the change.
  • the optimal delay times TD1 to TD9 are selected according to the combination of the flow path before and after the change, so that erroneous diagnosis can be suppressed while ensuring diagnostic time.
  • the delay time TD is preset in stages from TD1 to TD9, and any one of the delay times TD1 to TD9 is selectively applied, simplifying the control.
  • the present invention is not limited to the above embodiment and various modifications are possible.
  • an electric rotary valve is used as the variable valve, but the present invention can also be applied when other types of variable valves are used.
  • the device may also include a tank-shaped device that is not intended for heat exchange.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

内燃機関の冷却水系統において、電動ロータリバルブからなる可変バルブ(7)によって、ヒータ(8)、オイルクーラ(9)、ラジエータ(10)、への冷却水の供給が調整される。コントローラ(13)は、水温センサ(12)が検出する実水温と推定水温とを比較することで可変バルブ(7)の故障診断を行う。可変バルブ(7)が作動して流路が変更されると水温が一時的に変動するので、誤診断を抑制するために、診断が一時的に禁止される。変更前の流路と変更後の流路の組み合わせに対応して、最適なディレイ時間(TD1~TD9)が選択される。

Description

内燃機関の可変バルブ診断方法および装置
 この発明は、内燃機関の冷却水系統に含まれる可変バルブの故障診断に関し、より詳しくは、冷却水温度の変動による誤診断を回避するための技術に関する。
 特許文献1には、センサが検出した実水温と推定水温とを比較してサーモスタットの故障を診断する故障診断において、電動冷却水ポンプの作動を開始した後、所定時間の間は、診断を禁止し、冷却水の移動に伴う誤診断を防止することが記載されている。
 内燃機関の冷却水系統に、サーモスタットに代えて、複数のデバイスに対する冷却水の流れを調整する可変バルブが設けられることがある。このような可変バルブでは、可変バルブの作動前に冷却水が流れていたデバイスや作動後に冷却水が流れ込むデバイスとして種々の態様があり、診断の禁止時間が一定であると、誤診断が生じるおそれがある。
特開2007-056722号公報
 この発明は、ウォータジャケットと、ウォータポンプと、複数のデバイスに対する冷却水の流れを調整する可変バルブと、を備え、実水温と推定水温とを比較して上記可変バルブの診断を行うとともに、この診断を上記可変バルブの作動後に一時的に禁止する内燃機関の可変バルブ診断方法において、
 上記可変バルブの作動前に冷却水が供給されていたデバイスと作動後に冷却水が供給されるデバイスとの組み合わせに応じて、診断の禁止時間を設定する。
 このように各々の組み合わせに応じて禁止時間を設定することで、誤診断がより確実に排除される。
一実施例の冷却水系統の回路図。 ロータリ型可変バルブの構成を模式的に示した説明図。 一実施例の診断装置の機能ブロック図。 診断開始に至るまでの処理の流れを示したフローチャート。 可変バルブの作動に伴う挙動を示したタイムチャート。
 以下、この発明の一実施例を図面に基づいて詳細に説明する。図1は、一実施例の車両用内燃機関の冷却水循環系統の回路構成を示している。なお、本発明において「冷却水」の語は「水」に限られず、いわゆるクーラントや液相冷媒を広く包含する。内燃機関は、ガソリンエンジンであってもディーゼルエンジンであってもよく、シリンダブロックとシリンダヘッドの双方に亘って冷却水が流れるウォータジャケット1を備えている。内燃機関のウォータジャケット1の入口部には、例えば内燃機関の出力によって機械的に駆動されるウォータポンプ2が設けられている。なお、電動式ウォータポンプを用いてもよい。
 ウォータジャケット1の出口側の流路3には、3つの流路4,5,6に冷却水の流れを調整ないし切り換える可変バルブ7が設けられている。可変バルブ7は、電動ロータリバルブから構成されている。流路4は、第1の熱交換デバイスとして空調装置用のヒータ(ヒータコア)8を備えている。流路5は、第2の熱交換デバイスとして内燃機関の潤滑油と冷却水との間で熱交換を行うオイルクーラ9を備えている。流路6は、第3の熱交換デバイスとして、車両の前端部に配置されて外気と冷却水との熱交換を行うラジエータ10を備えている。これら3つの熱交換デバイスの冷却水の容量としては、ラジエータ10が最も大であり、オイルクーラ9が最も小さい。
 3つの流路4,5,6は、ウォータポンプ2のインレット部11において1つの流路となるように互いに合流しており、インレット部11からウォータポンプ2へと冷却水が戻るように構成されている。
 上記ウォータジャケット1の出口部には、冷却水温度を検出する水温センサ12が配置されている。なお、本発明においては、水温センサ12の位置は必ずしもウォータジャケット1の出口部には限定されず、ウォータジャケット1の入口側やウォータポンプ2の上流側にあってもよい。
 ロータリ型可変バルブ7の作動位置は、コントローラ13によって制御される。コントローラ13には、水温センサ12の検出信号のほか、冷却水の流れの制御に必要な種々の信号が入力される。また、コントローラ13は、実水温と推定水温とを比較することで可変バルブ7の故障診断を行う。この故障診断には、公知の適当な手法を用いることができる。
 図2は、ロータリ型可変バルブ7の構成を模式的に示した説明図である。可変バルブ7は、内周に円筒面21aを備える略円筒形のハウジング21と、このハウジング21の円筒面21a内に回転可能に収容された円盤状ないし円柱状の弁体22と、この弁体22を回転方向に動かして角度位置を変更する図示しないモータ(つまりアクチュエータ)と、を備えている。ウォータジャケット1の出口側の流路3は、ハウジング21の端面に接続されており(図2には示されていない)、ハウジング21の内部に冷却水を導いている。
 ハウジング21の円筒面21aには、流路4,5,6の端部となるポート4A,5A,6Aが開口している。ヒータ8へ冷却水を導くポート4Aとオイルクーラ9へ冷却水を導くポート5Aは、互いにほぼ90°離れた位置にある。弁体22は、ヒータ/オイルクーラ用の半月形の切欠部24を備えており、この切欠部24を介してポート4Aおよびポート5Aの一方もしくは双方へ冷却水を導入することが可能である。ラジエータ10へ冷却水を導くポート6Aは、位相としてはヒータ8用のポート4Aから180°離れた位置にあり、弁体22に設けられた比較的小さな角度範囲を占めるラジエータ用切欠部25を介して冷却水を導入することが可能である。ヒータ/オイルクーラ用の切欠部24とラジエータ用の切欠部25とは、軸方向に異なる位置にあり、互いに連通していない。ラジエータ10へ冷却水を導くポート6Aは、ラジエータ用切欠部25に対応した軸方向位置にあり、ヒータ/オイルクーラ用の切欠部24とは連通しない。
 このような実施例の可変バルブ7は、弁体22の角度位置(回転位置)に応じて、下記に列挙した8通りの態様を取り得る。なお、「開」とは対応するポートが開いていて冷却水が導入される状態を意味する。下記に「開」と記載されていない流路は閉じている。
 第1状態:流路4,5,6のいずれにも流れない状態(いわゆるゼロフロー状態)
 第2状態:全流路開
 第3状態:ヒータ用流路4開(水温により開度変動)
 第4状態:オイルクーラ用流路5開(水温により開度変動)、ヒータ用流路4全開
 第5状態:オイルクーラ用流路5全開、ラジエータ用流路6開(水温により開度変動)
 第6状態:オイルクーラ用流路5全開、ヒータ用流路4微小開、ラジエータ用流路6全開
 第7状態:オイルクーラ用流路5全開、ヒータ用流路4全開、ラジエータ用流路6開(水温により開度変動)
 第8状態:オイルクーラ用流路5開(水温により開度変動)
 上記の「水温により開度変動」とは、冷却水温度に応じて可変バルブ7の角度位置が僅かに変化することでポートの開度が調整されることを意味している。第4~第7状態では、複数の熱交換デバイスに並行して冷却水が供給される。
 可変バルブ7の弁体22は、図2の時計回り方向にも反時計回り方向にも作動し得る。例えば、内燃機関の冷機始動後、冷却水温度が上昇するに伴って弁体22の角度位置が時計回り方向に変化していくことで、「第1状態→第3状態→第4状態→第7状態」のように流路を変化させていくことができる。
 また、空調装置用のヒータ8の熱量が不要な高外気温時には、冷却水温度の上昇に伴って弁体22の角度位置を反時計回り方向に変化させていくことで、「第1状態→第8状態→第5状態」のように流路を変化させていくことができる。なお、高外気温であってもデフロスタ使用時には、「第5状態→第6状態」のように変化させることでヒータ8への冷却水の供給がなされる。
 第2状態の「全流路開」は、例えば冷却水圧力の低下のために、全てのポートを全開とする態様である。
 可変バルブ7が作動(換言すれば角度位置の変更)して冷却水が供給される流路が変化すると、それまで冷却水が流れていなかった熱交換デバイス内の冷却水が押し出され、ウォータポンプ2を介して水温センサ12付近へと戻る。例えば、冷却水温度の上昇によって、ラジエータ10に冷却水が供給されていなかった状態からラジエータ10へ冷却水が供給される状態へと変化すると、ラジエータ10内にあった相対的に低温の冷却水が押し出されてウォータポンプ2へと戻る。これにより水温センサ12の検出温度が一時的に変動し、実温度(検出温度)と推定温度との比較による故障診断に誤診断が生じ得る。そのため、可変バルブ7が作動した後、故障診断が許可されるまでの間に、適当なディレイ時間TDが与えられる。そして、このディレイ時間TDは、可変バルブ7の作動前に冷却水が供給されていた熱交換デバイス(ゼロフロー状態を含む)と作動後に冷却水が供給される熱交換デバイスとの組み合わせに応じて設定される。
 好ましい一実施例においては、下記の表1に示すように、可変バルブ7の作動に伴って生じ得る状態変化の複数の組み合わせに対して、それぞれ適用されるディレイ時間TDが予め定められている。表1は、最小のディレイ時間TD1から最大のディレイ時間TD9までディレイ時間TDの長さの順にまとめたものである。すなわち、「TD1<TD2<>TD3<TD4<TD5<TD6<TD7<TD8<TD9」である。表1の右欄には、各ディレイ時間TDに対応する代表的な状態変化を記載してある。
Figure JPOXMLDOC01-appb-T000001
 基本的には、可変バルブ7の作動前に冷却水が供給されていた1つあるいは複数の熱交換デバイスの総容量に対して、作動後に冷却水が供給される1つあるいは複数の熱交換デバイスの総容量が大きく増加するほど、ディレイ時間TDが長く与えられる。
 図3は、コントローラ13によって構成される一実施例の診断装置の機能ブロック図を示している。なお、図中の「MCV」は可変バルブ7を意味している。図示するように、一実施例の診断装置は、可変バルブ7の目標角度に基づき可変バルブ7の角度位置変更の指示があるかどうかを検出するMCV移行指示検出部31と、可変バルブ7の実角度に基づき、可変バルブ7の角度位置変更前の流路の状態を求めるMCV移行前状態演算部32と、作動後の実角度に基づき、可変バルブ7の角度位置変更後の流路の状態を求めるMCV移行後状態演算部33と、これらの移行前状態と移行後状態とに基づきディレイ時間TDを選択するディレイ時間選択部34と、このディレイ時間TDが経過したかどうかを判定する経過時間判定部35と、可変バルブ7の診断を行う診断部36と、を備えている。診断部36は、ディレイ時間TDの経過に伴って経過時間判定部35が出力する診断許可信号により可変バルブ7の診断を開始する。
 図4は、コントローラ13が実行する診断開始までの処理の流れを示したフローチャートである。ステップ1では、可変バルブ7の角度位置変更の指示があるかどうかを判定する。NOであればステップ5へ進む。角度位置変更の指示があればステップ2へ進み、可変バルブ7の角度位置変更前の流路の状態を記憶する。次に、ステップ3において、実際に流路の変更が完了したかどうかを判定し、流路の変更が完了するまで待機する。流路の変更(換言すれば可変バルブ7の作動)が完了したらステップ4へ進み、経過時間をカウントしているタイマをリセットする。換言すれば経過時間のカウントを開始する。次にステップ5において、表1に示したように、可変バルブ7の作動による状態変化(換言すれば作動前の流路と作動後の流路の組み合わせ)に対応したディレイ時間TDを選択する。次にステップ6において、経過時間がディレイ時間TD以上となったか判定し、ディレイ時間TDが経過するまで待機する。ディレイ時間TDが経過したらステップ7へ進み、診断を許可する。
 図5は、可変バルブ7の作動に伴う挙動を示したタイムチャートであり、(a)可変バルブ目標角度、(b)可変バルブ実角度、(c)冷却水温度、(d)移行後経過時間、(e)診断許可フラグ、の変化をそれぞれ示している。
 (a)に示すように目標角度は要求に応じてステップ的に変化するが、モータによって弁体22が駆動される可変バルブ7の実角度は、(b)に示すように徐々に変化する形となる。時間t1において実角度が目標角度に達して流路の変更が完了すると、タイマによって経過時間CTのカウントが開始される。この経過時間CTが、状態変化の組み合わせに対応して設定されるディレイ時間TDに達するまでの間は、診断が禁止される。経過時間がディレイ時間TDに達したら(d)に示す診断許可フラグがONとなり、診断が許可される。なお、流路の変更前も診断は行われている。
 (c)に示すように、冷却水温度は、流路が変更されることで一時的に低下するが、ディレイ時間TDの間、診断を禁止することで、この一時的な冷却水温度の低下による誤診断が抑制される。このような流路の変更に伴う冷却水温度の変動は、変更前の流路と変更後の流路との組み合わせによって異なる。上記実施例では、変更前の流路と変更後の流路との組み合わせに対応して最適なディレイ時間TD1~TD9が選択されるので、診断時間を確保しつつ誤診断の抑制が図れる。
 上記実施例では、ディレイ時間TDがTD1~TD9のように予め段階的に定められており、いずれかのディレイ時間TD1~TD9を選択的に適用するので、制御が単純となる。
 以上、この発明の一実施例を詳細に説明したが、この発明は、上記実施例に限定されるものではなく、種々の変更が可能である。例えば上記実施例では可変バルブとして電動ロータリバルブを用いているが、この発明は、他の形式の可変バルブを利用する場合にも適用が可能である。また、デバイスとしては、熱交換を意図しない例えばタンク状のデバイス等も含み得る。

Claims (7)

  1.  ウォータジャケットと、ウォータポンプと、複数のデバイスに対する冷却水の流れを調整する可変バルブと、を備え、実水温と推定水温とを比較して上記可変バルブの診断を行うとともに、この診断を上記可変バルブの作動後に一時的に禁止する内燃機関の可変バルブ診断方法において、
     上記可変バルブの作動前に冷却水が供給されていたデバイスと作動後に冷却水が供給されるデバイスとの組み合わせに応じて、診断の禁止時間を設定する、
     内燃機関の可変バルブ診断方法。
  2.  上記可変バルブは、どのデバイスにも冷却水が供給されないゼロフロー状態を有し、
     ゼロフロー状態から上記可変デバイスが作動したときの上記禁止時間を、作動後に冷却水が供給されるデバイスに応じて設定する、
     請求項1に記載の内燃機関の可変バルブ診断方法。
  3.  作動前に冷却水が供給されていた1つあるいは複数のデバイスの総容量に対して、作動後に冷却水が供給される1つあるいは複数のデバイスの総容量が大きく増加するほど禁止時間を長く設定する、
     請求項1に記載の内燃機関の可変バルブ診断方法。
  4.  上記デバイスは、ラジエータ、オイルクーラ、ヒータ、を含む熱交換デバイスからなる、
     請求項1に記載の内燃機関の可変バルブ診断方法。
  5.  上記可変バルブは、電動ロータリバルブからなる、
     請求項1に記載の内燃機関の可変バルブ診断方法。
  6.  複数のデバイスに並行して冷却水が供給される態様を含む生じ得る複数の組み合わせに対して、それぞれ適用される禁止時間が予め定められている、
     請求項1に記載の内燃機関の可変バルブ診断方法。
  7.  ウォータジャケットと、
     ウォータポンプと、
     複数のデバイスに対する冷却水の流れを調整する可変バルブと、
     を備えた内燃機関において、実水温と推定水温とを比較して上記可変バルブの診断を行うとともに、この診断を上記可変バルブの作動後に一時的に禁止する内燃機関の可変バルブ診断装置であって、
     上記可変バルブの作動前に冷却水が供給されていたデバイスと作動後に冷却水が供給されるデバイスとの組み合わせに応じて、診断の禁止時間を設定する、
     内燃機関の可変バルブ診断装置。
PCT/JP2023/008942 2023-03-09 2023-03-09 内燃機関の可変バルブ診断方法および装置 WO2024185105A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/008942 WO2024185105A1 (ja) 2023-03-09 2023-03-09 内燃機関の可変バルブ診断方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/008942 WO2024185105A1 (ja) 2023-03-09 2023-03-09 内燃機関の可変バルブ診断方法および装置

Publications (1)

Publication Number Publication Date
WO2024185105A1 true WO2024185105A1 (ja) 2024-09-12

Family

ID=92674485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008942 WO2024185105A1 (ja) 2023-03-09 2023-03-09 内燃機関の可変バルブ診断方法および装置

Country Status (1)

Country Link
WO (1) WO2024185105A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227337A (ja) * 2002-02-01 2003-08-15 Hitachi Ltd 冷却系の温度推定装置
JP2007056722A (ja) * 2005-08-23 2007-03-08 Toyota Motor Corp 内燃機関冷却装置の故障検出システム
JP2008111414A (ja) * 2006-10-31 2008-05-15 Nissan Motor Co Ltd エンジン冷却系の故障診断装置
JP2013194716A (ja) * 2012-03-22 2013-09-30 Toyota Motor Corp エンジンの冷却制御装置
JP2015222047A (ja) * 2014-05-23 2015-12-10 トヨタ自動車株式会社 エンジン冷却装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227337A (ja) * 2002-02-01 2003-08-15 Hitachi Ltd 冷却系の温度推定装置
JP2007056722A (ja) * 2005-08-23 2007-03-08 Toyota Motor Corp 内燃機関冷却装置の故障検出システム
JP2008111414A (ja) * 2006-10-31 2008-05-15 Nissan Motor Co Ltd エンジン冷却系の故障診断装置
JP2013194716A (ja) * 2012-03-22 2013-09-30 Toyota Motor Corp エンジンの冷却制御装置
JP2015222047A (ja) * 2014-05-23 2015-12-10 トヨタ自動車株式会社 エンジン冷却装置

Similar Documents

Publication Publication Date Title
US10287968B2 (en) Engine cooling system
EP2634388B1 (en) Cooling water control valve apparatus
US6668764B1 (en) Cooling system for a diesel engine
US10036302B2 (en) Cooling device for internal combustion engine
US9758017B2 (en) Refrigerant circulation system
GB2514273B (en) Valve with integrated motor bypass fail safe
US8430068B2 (en) Cooling system having inlet control and outlet regulation
EP3260679B1 (en) Engine system with diagnostic apparatus of a coolant control valve and diagnostic method
WO2018225337A1 (ja) 内燃機関の冷却装置及び冷却方法
EP3569838B1 (en) Failure diagnosis method of coolant temperature sensor for vehicle
WO2024185105A1 (ja) 内燃機関の可変バルブ診断方法および装置
JP4059057B2 (ja) 液冷式熱機関の冷却装置
US20160047292A1 (en) System and method for diagnosing a fault in a partitioned coolant valve
JP6413835B2 (ja) 内燃機関の冷却装置
KR102075137B1 (ko) 차량용 냉각시스템 제어방법
JP2016151215A (ja) 内燃機関の冷却装置
JP7488134B2 (ja) 冷却システム
JP2018080608A (ja) 冷却システム
JP2015059453A (ja) エンジン冷却液循環システム
JP2016151218A (ja) 内燃機関の冷却装置
JP2006200512A (ja) 内燃機関の温度調整装置
JPWO2018225305A1 (ja) エンジン冷却システム
JP2018155145A (ja) 機関冷却システムの異常診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23926315

Country of ref document: EP

Kind code of ref document: A1