[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024185063A1 - Stator and rotary electrical machine - Google Patents

Stator and rotary electrical machine Download PDF

Info

Publication number
WO2024185063A1
WO2024185063A1 PCT/JP2023/008761 JP2023008761W WO2024185063A1 WO 2024185063 A1 WO2024185063 A1 WO 2024185063A1 JP 2023008761 W JP2023008761 W JP 2023008761W WO 2024185063 A1 WO2024185063 A1 WO 2024185063A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
stator
straight
slot
portions
Prior art date
Application number
PCT/JP2023/008761
Other languages
French (fr)
Japanese (ja)
Inventor
正克 松原
佑将 松岡
大介 森
直哉 佐々木
大翔 田中
Original Assignee
株式会社 東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社 東芝
Priority to PCT/JP2023/008761 priority Critical patent/WO2024185063A1/en
Publication of WO2024185063A1 publication Critical patent/WO2024185063A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present invention relates to a stator and a rotating electric machine.
  • stator windings In electric motors and generators used in EVs (electric vehicles) and PEVs (plug-in electric vehicles), large currents flow through the stator windings, so rectangular wire with a large cross-sectional area is used as the conductor for the stator windings.
  • the conventional method is to form the stator winding using multiple coil segments.
  • the coil segment is composed of a pair of straight sections that are housed in the stator slots and a connecting section that connects them.
  • the number of rectangular conductors arranged radially in each stator slot must be an even number, and cannot be an odd number.
  • the number of coil turns is one of the important parameters when adjusting the electromagnetic performance of the stator winding. For this reason, there was a need for a method that would allow the number of coil turns to be an odd number, even when coil segments are used.
  • the object of the present invention is to provide a stator and rotating electric machine that can obtain a stator winding with an odd number of turns with a simple configuration, even when using coil segments made of rectangular wire.
  • the stator is a stator comprising: a cylindrical stator core with multiple stator slots formed in the circumferential direction on its inner surface; multiple coil segments each having a straight section with a rectangular cross section accommodated in two different stator slots and a connecting section with a rectangular cross section connecting the two straight sections outside a first axial end of the stator core; and a stator winding for each phase, each having multiple jumper sections connecting the multiple coil segments in series outside a second axial end of the stator core, wherein the multiple straight sections form N layers (N is an even number equal to or greater than 4) in the radial direction in each of the multiple stator slots, and two adjacent layers are connected in parallel to the layers adjacent to them.
  • N is an even number equal to or greater than 4
  • FIG. 1 is a vertical cross-sectional view illustrating an example of a rotating electric machine according to a first embodiment.
  • 1 is a cross-sectional view showing an example of a rotor of a rotating electric machine according to a first embodiment
  • FIG. 2 is a partial cross-sectional view showing the state of a straight portion in a stator slot of the stator according to the first embodiment.
  • FIG. 11 is a connection diagram showing a connection state between straight portions of each layer in each slot of a stator winding in a conventional example for comparison with the first embodiment.
  • FIG. 4 is a connection diagram showing a connection state between straight portions of each layer in each slot of a stator winding of the stator according to the first embodiment.
  • FIG. 2 is a connection diagram of a stator winding of a stator according to the first embodiment.
  • FIG. 11 is a connection diagram showing a connection state between straight portions of each layer in each slot of a stator winding in a conventional example for comparison with the second embodiment.
  • FIG. 11 is a connection diagram showing a connection state between straight portions of each layer in each slot of a stator winding of a stator according to a second embodiment.
  • FIG. 11 is a connection diagram of a stator winding of a stator according to a second embodiment.
  • FIG. 1 is a vertical cross-sectional view illustrating an example of a rotating electric machine according to a first embodiment.
  • FIG. 1 is a vertical cross-sectional view showing an example of a rotating electric machine 1 having a stator 100 according to an embodiment.
  • the rotating electric machine 1 comprises a rotor 10, a bearing 21, a bearing bracket 22, a frame 23, and a stator 100.
  • the rotor 10 has a rotor shaft 11 extending in the direction of the rotation axis CL, a rotor core 12 attached radially outside the rotor shaft 11, permanent magnets 13 embedded in the rotor core 12, and closure plates 14 provided on both axial ends of the rotor core 12 to prevent the permanent magnets 13 from protruding.
  • the rotor shaft 11 is rotatably supported by bearings 21 on both axial sides. Each bearing 21 is supported stationary by a bearing bracket 22.
  • the stator 100 has a stator core 110 arranged radially outside the rotor core 12 with a gap between them, and a stator winding 120 partially housed within a stator slot 111 (Fig. 2) formed in the stator core 110 and wound around stator teeth 112 (Fig. 2).
  • the stator 100 is housed within a frame 23 arranged to surround the radial outside and is supported stationary by the frame 23.
  • the stator winding 120 has multiple coil segments 130 and multiple transition sections 125 that connect them.
  • the coil segment 130 has two straight sections 131 that are respectively housed in two different stator slots 111, and a connection section 132 that connects these two straight sections 131 axially outside the first end 110a of the stator core 110.
  • Each straight section 131 is respectively housed in the stator slot 111, and both ends of the straight section 131 protrude axially outside the first end 110a and second end 110b of the stator core 110.
  • the crossover portion 125 connects the straight portions 131 of the coil segments 130 that protrude axially outward from the second end portion 110b.
  • FIG. 2 is a cross-sectional view showing an example of the rotor 10 of the rotating electric machine 1 according to the first embodiment.
  • the rotor 10 shown in FIG. 2 has two permanent magnets 13 housed in the rotor core 12 at each magnetic pole. Note that the rotor 10 shown in FIG. 2 is an example, and the stator 100 and rotating electric machine 1 according to this embodiment can also be applied to rotors of other types.
  • FIG. 3 is a partial cross-sectional view showing the state of the straight portion 131 in the stator slot 111 of the stator 100 according to the first embodiment.
  • stator slots 111 are axial through grooves spaced apart from one another in the circumferential direction and extending in the axial direction.
  • the stator slots 111 are also formed so as to be adjacent to one another in the circumferential direction, thereby forming stator teeth 112.
  • each stator slot 111 multiple flat conductors with rectangular cross sections, which are the straight sections 131 of the coil segments 130, are stacked radially while being electrically insulated from each other.
  • the stator winding 120 is formed by the coil segments 130 and the jumper sections 125, the number N of stacked straight sections 131 in each stator slot 111 is an even number.
  • the first layer conductor 131a, the second layer conductor 131b, the third layer conductor 131c, the fourth layer conductor 131d, the fifth layer conductor 131e, and the sixth layer conductor 131f are arranged in this order from the outside to the inside in the radial direction. That is, in this case, the number of layers N is 6.
  • the radial thickness t0 of the first layer conductor 131a, the second layer conductor 131b, the third layer conductor 131c, and the fourth layer conductor 131d is substantially the same.
  • the radial thickness t1 of the fifth layer conductor 131e and the sixth layer conductor 131f which correspond to the parallel portion 135 (FIG. 6) described below, is substantially half of t0.
  • the thickness of not only the straight portion 131 but also the connection portion 132 and the transition portion 125 is half of t0.
  • substantially the same means that the dimensions are the same in terms of design and match within the range of manufacturing error
  • substantially one-half means that the dimensions are one-half of t0 in terms of design and one-half within the range of manufacturing error.
  • manufacturing error includes errors in processing, assembly, measurement, etc.
  • FIG. 4 is a connection diagram showing the connection state between the straight portions 131 of each layer in each slot of the stator winding in a conventional example for comparison with the first embodiment.
  • the horizontal direction of the squares shown in FIG. 4 indicates the number of the stator slot 111 as written in the top row.
  • the vertical direction indicates the first to sixth layers from top to bottom.
  • the symbols written in each square indicate the number of the straight portion 131 of the coil segment 130 of each layer in each stator slot 111.
  • the solid lines connecting the straight portions 131 indicate the jumper portion 125.
  • the dashed lines connecting the straight portions 131 indicate the connection portion 132.
  • the dashed lines indicate the winding conductor 121 arranged on the axial outside of the first end 110a of the stator core 110
  • the solid lines indicate the winding conductor 121 arranged on the axial outside of the second end 110b of the stator core 110.
  • the straight portion 131 indicated by 1u in the first layer of the 48th slot is connected to a lead wire 141 that connects to the outside of the stator winding on the axial outside of the first end 110a of the stator core 110.
  • the straight portion 131 indicated by 96u in the first layer of the 7th slot is connected to a neutral line 142 on the axial outside of the first end 110a of the stator core 110.
  • the straight portion 131 indicated by 1u is represented as the straight portion 1u
  • the straight portion 131 indicated by 96u is represented as the straight portion 96u.
  • the U-phase coil segment 130 is shown, and the U-phase coil segment 130 is connected in series from the straight section 1u connected to the lead wire 141 to the straight section 96u connected to the neutral line 142 by the connection section 132 and the crossover section 125.
  • the numbers 1u, 96u, etc. indicate the order in which the straight sections 131 are connected.
  • FIG. 5 is a connection diagram showing the connection state between the straight portions 131 of each layer in each slot of the stator winding of the stator according to the first embodiment.
  • the example shown in Figure 5 is for a 3-phase, 8-pole rotor with 2 slots per phase per pole, for a total of 48. Therefore, in the case of full-pitch winding, the slot spacing is 6.
  • the first to third layers are connected in the same way as in the conventional example.
  • the fourth to sixth layers differ from the conventional example shown in Figure 4. The differences are explained below.
  • the straight portion 64u of the fourth layer of the 43rd slot is connected only to the straight portion 65u of the fifth layer of the first slot by the transition portion 125.
  • the straight portion 81u of the fourth layer of the first slot is connected only to the straight portion 80u of the fifth layer of the seventh slot.
  • the straight portion 32u of the fourth layer of the 43rd slot is connected to both the straight portion 33u of the fifth layer of the 48th slot and the straight portion 33u of the sixth layer of the 48th slot by the jumper portion 125. That is, the straight portion 32u of the fourth layer branches into two straight portions 33u whose radial thickness is half that of the fifth and sixth layers. Also, the straight portion 49u of the fourth layer of the first slot is connected to both the straight portion 48u of the fifth layer of the seventh slot and the straight portion 48u of the sixth layer of the 43rd slot. That is, the two straight portions 48u whose radial thickness is half that of the fifth and sixth layers are integrated with the straight portion 49u of the fourth layer.
  • the first portion 135a (FIG. 6) from the straight portion 33u of the fifth layer of the 48th slot to the straight portion 48u of the sixth layer of the 43rd slot, and the second portion 135b (FIG. 6) from the straight portion 33u of the sixth layer of the 48th slot to the straight portion 48u of the fifth layer of the seventh slot are parallel portions 135 (FIG. 6) that are electrically parallel to each other.
  • first portion 135a from the straight portion 33u in the fifth layer of the 48th slot to the straight portion 48u in the sixth layer of the 43rd slot is connected in a direction in which the slot number increases
  • second portion 135b from the straight portion 33u in the sixth layer of the 48th slot to the straight portion 48u in the fifth layer of the 7th slot is connected in a direction in which the slot number decreases.
  • the first portion 135a and the second portion 135b are connected in opposite directions.
  • FIG. 6 is a connection diagram of the stator winding 120 of the stator 100 according to the first embodiment.
  • One straight section 32u branches into two straight sections 33u, and then the two straight sections 48u are integrated into one straight section 49u.
  • the two parallel sections, i.e., straight section 33u to straight section 48u, are arranged in the fifth and sixth layers.
  • the fifth and sixth layers have parallel parts arranged and are connected to the fourth layer, but this is not limiting. It is sufficient to arrange parallel parts in two of three adjacent layers. That is, for n ⁇ 3, among the n layer, (n-1) layer, and (n-2) layer, the n layer and the (n-1) layer may be connected to the (n-2) layer as parallel parts, or the (n-1) layer and the (n-2) layer may be connected to the n layer as parallel parts.
  • stator winding 120 using flat rectangular conductors stacked in a number of layers N, two adjacent layers are made into parallel portions 135 that are electrically parallel to each other, thereby achieving an electrically odd number of turns.
  • the current density of each conductor can be made approximately the same.
  • FIG. 7 is a connection diagram showing a connection state between straight portions of each layer in each slot of a stator winding in a conventional example for comparison with the second embodiment.
  • the straight portion 131 indicated by 1u in the first layer of the first slot is connected to a lead wire 141 that connects to the outside of the stator winding on the axial outside of the first end 110a of the stator core 110. Also, the straight portion 131 indicated by 96u in the first layer of the 42nd slot is connected to a neutral line 142 on the axial outside of the first end 110a of the stator core 110.
  • the U-phase coil segment 130 shown in FIG. 7 is connected in series from the straight section 1u connected to the lead wire 141 to the straight section 96u connected to the neutral line 142 by the connection section 132 and the jumper section 125.
  • the transition section 125 shown by the solid line is a full-pitch winding
  • the connection section 132 shown by the dashed line is not a full-pitch winding, but rather has a mixture of longer and shorter pitches.
  • FIG. 8 is a connection diagram showing the connection state between the straight sections of each layer in each slot of the stator winding of the stator according to the second embodiment.
  • the example shown in Figure 8 is for a 3-phase, 8-pole rotor with 2 slots per phase per pole, for a total of 48. Therefore, in the case of full-pitch winding, the slot spacing is 6.
  • the first to third layers are connected in the same way as in the conventional example.
  • the fourth to sixth layers differ from the conventional example shown in Figure 7. The differences are explained below.
  • the straight line portion 16u in the fourth layer of the 43rd slot is connected only to the 17u in the fifth layer of the 1st slot by the jumper portion 125.
  • the straight line portion 33u in the fourth layer of the 37th slot is connected only to the 32u in the fifth layer of the 43rd slot by the jumper portion 125.
  • the straight line portion 60u in the fourth layer of the 18th slot is connected only to the 61u in the third layer of the 24th slot by the jumper portion 125.
  • the straight line portion 85u in the fourth layer of the 12th slot is connected only to the 86u in the third layer of the 7th slot by the jumper portion 125.
  • the straight portion 16u of the fourth layer of the 43rd slot is connected to both the straight portion 17u of the fifth layer of the 48th slot and the straight portion 17u of the fifth layer of the first slot by a transition portion 125.
  • the straight portion 16u of the fourth layer branches into two straight portions 17u with a radial thickness that is half that of the fifth layer.
  • the straight portion 25u of the fourth layer of the 37th slot is connected to both the straight portion 24u of the fifth layer of the 42nd slot and the straight portion 24u of the fifth layer of the 43rd slot by the transition portion 125.
  • the two straight portions 24u of the fifth layer which have a radial thickness that is half, are integrated with the straight portion 25u of the fourth layer.
  • the straight portion 56u of the fourth layer of the 18th slot is connected to both the straight portion 57u of the fifth layer of the 24th slot and the straight portion 57u of the fifth layer of the 25th slot by a transition portion 125.
  • the straight portion 56u of the fourth layer branches into two straight portions 57u with a radial thickness that is half that of the fifth layer.
  • the straight portion 65u of the fourth layer of the 12th slot is connected to both the straight portion 64u of the fifth layer of the 18th slot and the straight portion 64u of the fifth layer of the 19th slot by the transition portion 125.
  • the two straight portions 64u of the fifth layer which have a radial thickness that is half, are integrated with the straight portion 65u of the fourth layer.
  • the first portion 136a (FIG. 9) from the straight portion 17u of the fifth layer of the 48th slot to the straight portion 24u of the fifth layer of the 42nd slot, and the second portion 136b (FIG. 9) from the straight portion 17u of the fifth layer of the 1st slot to the straight portion 24u of the fifth layer of the 43rd slot are parallel portions 136 (FIG. 9) that are electrically parallel to each other.
  • the first portion 137a (FIG. 9) from the straight portion 57u of the fifth layer of the 24th slot to the straight portion 64u of the fifth layer of the 18th slot, and the second portion 137b (FIG. 9) from the straight portion 57u of the fifth layer of the 25th slot to the straight portion 64u of the fifth layer of the 19th slot are parallel portions 137 (FIG. 9) that are electrically parallel to each other.
  • first portion 136a and the second portion 136b are connected in the opposite directions.
  • first portion 137a and the second portion 137b are also connected in the opposite directions.
  • FIG. 9 is a connection diagram of the stator windings of the stator according to the second embodiment.
  • one straight portion 16u branches into two straight portions 17u, and then the two straight portions 24u are integrated into one straight portion 25u.
  • one straight portion 56u branches into two straight portions 57u, and then the two straight portions 64u are integrated into one straight portion 65u.
  • the straight portions in the two parallel portions 136 and 137 are arranged in the fifth and sixth layers.
  • parallel portions are arranged on the fifth and sixth layers and connected to the fourth layer, but this is not limiting.
  • parallel portions may be arranged on two adjacent layers out of three adjacent layers.
  • stator winding 120 using flat rectangular conductors stacked in a number of layers N, two adjacent layers are made into parallel portions 135 that are electrically parallel to each other, so that an odd number of turns can be achieved electrically, as in the first embodiment.
  • the current density of each conductor can be made approximately the same, and further, as illustrated in this embodiment, by making the parallel portion 135, in which the thickness t1 of the rectangular conductor is half the thickness t0 of the rectangular conductor of the other layers, the innermost layer and the layer outside it, it is possible to reduce eddy current loss due to magnetic flux linking the layer conductors, which is the same as the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

A stator according to an embodiment of the present invention comprises: a stator iron core in which are formed a plurality of stator slots; and a stator winding which, for each phase, is provided with a plurality of coil segments and a plurality of crossover parts, said plurality of coil segments each having rectilinear parts which use a rectangular conductor and which are respectively accommodated in two differing stator slots, and a connection part which uses a rectangular conductor and which connects two rectilinear parts outward of a first end part of the stator iron core in the axial direction, said plurality of crossover parts connecting the plurality of coil segments in series outward of a second end part of the stator iron core in the axial direction. The plurality of rectilinear parts form, in each of the plurality of stator slots and in the radial direction, N layers (where N is an even number of four or more). Series portions that are respectively formed by a first layer and a second layer which are adjacent to each other form parallel portions (135) with each other, and connection is made with a third layer adjacent to the second layer or the first layer.

Description

固定子および回転電機Stator and rotating motor
 本発明は、固定子および回転電機に関する。 The present invention relates to a stator and a rotating electric machine.
 EV(電気自動車)、PEV(プラグイン電気自動車)などに用いられる電動機および発電機では、固定子巻線に大電流を流すことから、固定子巻線の導体として、断面積の大きな平角線が用いられる。 In electric motors and generators used in EVs (electric vehicles) and PEVs (plug-in electric vehicles), large currents flow through the stator windings, so rectangular wire with a large cross-sectional area is used as the conductor for the stator windings.
 平角線を用いる場合、従来、複数のコイルセグメントを用いて固定子巻線を形成する方法が採られている。ここで、コイルセグメントは、固定子スロットに収納される1対の直線部とこれらを接続する接続部とから構成される。 When using rectangular wire, the conventional method is to form the stator winding using multiple coil segments. Here, the coil segment is composed of a pair of straight sections that are housed in the stator slots and a connecting section that connects them.
国際公開第2021/250790号International Publication No. 2021/250790 特許第6156268号公報Patent No. 6156268 実開昭59-132373号公報Utility Model Publication No. 59-132373
 このコイルセグメントを用いる場合、それぞれの固定子スロット内において、径方向に並んで配置される平角導体の本数は偶数となり、これを奇数とすることはできない。 When using this coil segment, the number of rectangular conductors arranged radially in each stator slot must be an even number, and cannot be an odd number.
 一方、固定子巻線の電磁気的性能の調整上、コイルのターン数は重要なパラメータの一つである。このため、コイルセグメントを用いる場合にあっても、コイルのターン数を奇数とすることが可能な方法が望まれていた。 On the other hand, the number of coil turns is one of the important parameters when adjusting the electromagnetic performance of the stator winding. For this reason, there was a need for a method that would allow the number of coil turns to be an odd number, even when coil segments are used.
 本発明の目的は、平角線のコイルセグメントを用いる場合にあっても、簡易な構成によって奇数ターンの固定子巻線を得ることができる固定子および回転電機を提供することである。 The object of the present invention is to provide a stator and rotating electric machine that can obtain a stator winding with an odd number of turns with a simple configuration, even when using coil segments made of rectangular wire.
 上述の目的を達成するため、本発明の実施形態に係る固定子は、円筒状で内周面に周方向に複数の固定子スロットが形成された固定子鉄心と、互いに異なる2つの前記固定子スロットにそれぞれ収容される矩形断面の直線部と前記固定子鉄心の軸方向の第1の端部の外側において2つの前記直線部を接続する矩形断面の接続部とをそれぞれが有する複数のコイルセグメント、ならびに、前記固定子鉄心の軸方向の第2の端部の外側において、複数の前記コイルセグメントを直列に接続する複数の渡り部とを相ごとに具備する固定子巻線と、を備える固定子であって、複数の前記直線部は、複数の前記固定子スロットのそれぞれにおいて、径方向にN個(Nは4以上の偶数)層を形成しており、互いに隣接する2つの層が互いに並列にこれらに隣接する層と接続されている、ことを特徴とする。 In order to achieve the above-mentioned object, the stator according to an embodiment of the present invention is a stator comprising: a cylindrical stator core with multiple stator slots formed in the circumferential direction on its inner surface; multiple coil segments each having a straight section with a rectangular cross section accommodated in two different stator slots and a connecting section with a rectangular cross section connecting the two straight sections outside a first axial end of the stator core; and a stator winding for each phase, each having multiple jumper sections connecting the multiple coil segments in series outside a second axial end of the stator core, wherein the multiple straight sections form N layers (N is an even number equal to or greater than 4) in the radial direction in each of the multiple stator slots, and two adjacent layers are connected in parallel to the layers adjacent to them.
第1の実施形態に係る回転電機の例を示す縦断面図である。1 is a vertical cross-sectional view illustrating an example of a rotating electric machine according to a first embodiment. 第1の実施形態に係る回転電機の回転子の例を示す横断面図である。1 is a cross-sectional view showing an example of a rotor of a rotating electric machine according to a first embodiment; 第1の実施形態に係る固定子の固定子スロット内の直線部の状態を示す部分横断面図である。FIG. 2 is a partial cross-sectional view showing the state of a straight portion in a stator slot of the stator according to the first embodiment. 第1の実施形態との比較のための、従来例における固定子巻線の各スロット内の各層の直線部間の接続状態を示す接続図である。FIG. 11 is a connection diagram showing a connection state between straight portions of each layer in each slot of a stator winding in a conventional example for comparison with the first embodiment. 第1の実施形態に係る固定子の固定子巻線の各スロット内の各層の直線部間の接続状態を示す接続図である。FIG. 4 is a connection diagram showing a connection state between straight portions of each layer in each slot of a stator winding of the stator according to the first embodiment. 第1の実施形態に係る固定子の固定子巻線の結線図である。FIG. 2 is a connection diagram of a stator winding of a stator according to the first embodiment. 第2の実施形態との比較のための、従来例における固定子巻線の各スロット内の各層の直線部間の接続状態を示す接続図である。FIG. 11 is a connection diagram showing a connection state between straight portions of each layer in each slot of a stator winding in a conventional example for comparison with the second embodiment. 第2の実施形態に係る固定子の固定子巻線の各スロット内の各層の直線部間の接続状態を示す接続図である。FIG. 11 is a connection diagram showing a connection state between straight portions of each layer in each slot of a stator winding of a stator according to a second embodiment. 第2の実施形態に係る固定子の固定子巻線の結線図である。FIG. 11 is a connection diagram of a stator winding of a stator according to a second embodiment.
 以下、図面を参照して、本発明の実施形態に係る固定子および回転電機について説明する。ここで、互いに同一または類似の部分には、共通の符号を付して、重複説明は省略する。 Below, a stator and a rotating electric machine according to an embodiment of the present invention will be described with reference to the drawings. Here, identical or similar parts are given common reference numerals and duplicated explanations will be omitted.
 [第1の実施形態]
 図1は、第1の実施形態に係る回転電機の例を示す縦断面図である。
[First embodiment]
FIG. 1 is a vertical cross-sectional view illustrating an example of a rotating electric machine according to a first embodiment.
 図1は、実施形態に係る固定子100を有する回転電機1の例を示す縦断面図である。 FIG. 1 is a vertical cross-sectional view showing an example of a rotating electric machine 1 having a stator 100 according to an embodiment.
 回転電機1は、回転子10、軸受21、軸受ブラケット22、フレーム23、および固定子100を備える。 The rotating electric machine 1 comprises a rotor 10, a bearing 21, a bearing bracket 22, a frame 23, and a stator 100.
 回転子10は、回転軸CLの方向に延びたロータシャフト11、ロータシャフト11の径方向外側に取り付けられた回転子鉄心12、回転子鉄心12中に埋め込まれた永久磁石13、および回転子鉄心12の軸方向の両端に設けられて永久磁石13の突出を防止する閉止板14を有する。ロータシャフト11は、軸方向の両側をそれぞれ軸受21により回転可能に支持されている。また、それぞれの軸受21は、軸受ブラケット22により静止支持されている。 The rotor 10 has a rotor shaft 11 extending in the direction of the rotation axis CL, a rotor core 12 attached radially outside the rotor shaft 11, permanent magnets 13 embedded in the rotor core 12, and closure plates 14 provided on both axial ends of the rotor core 12 to prevent the permanent magnets 13 from protruding. The rotor shaft 11 is rotatably supported by bearings 21 on both axial sides. Each bearing 21 is supported stationary by a bearing bracket 22.
 固定子100は、回転子鉄心12の径方向外側にギャップを介して配された固定子鉄心110、固定子鉄心110に形成された固定子スロット111(図2)内に一部を収納され固定子ティース112(図2)を巻回する固定子巻線120を有する。 The stator 100 has a stator core 110 arranged radially outside the rotor core 12 with a gap between them, and a stator winding 120 partially housed within a stator slot 111 (Fig. 2) formed in the stator core 110 and wound around stator teeth 112 (Fig. 2).
 固定子100は、径方向外側を囲むように配されたフレーム23内に収納され、フレーム23により静止支持されている。 The stator 100 is housed within a frame 23 arranged to surround the radial outside and is supported stationary by the frame 23.
 固定子巻線120は、複数のコイルセグメント130と、これらを接続する複数の渡り部125を有する。 The stator winding 120 has multiple coil segments 130 and multiple transition sections 125 that connect them.
 ここで、コイルセグメント130は、互いに異なる2つの固定子スロット111内にそれぞれ収納される2つの直線部131と、固定子鉄心110の第1の端部110aの軸方向外側でこれら2つの直線部131を接続する接続部132を有する。なお、それぞれの直線部131は、固定子スロット111内にそれぞれ収納されるとともに、直線部131の両端は、固定子鉄心110の第1の端部110aおよび第2の端部110bの軸方向外側に突出している。 Here, the coil segment 130 has two straight sections 131 that are respectively housed in two different stator slots 111, and a connection section 132 that connects these two straight sections 131 axially outside the first end 110a of the stator core 110. Each straight section 131 is respectively housed in the stator slot 111, and both ends of the straight section 131 protrude axially outside the first end 110a and second end 110b of the stator core 110.
 第2の端部110bの軸方向外側に突出しているコイルセグメント130の直線部131同士を渡り部125が接続する。 The crossover portion 125 connects the straight portions 131 of the coil segments 130 that protrude axially outward from the second end portion 110b.
 図2は、第1の実施形態に係る回転電機1の回転子10の例を示す横断面図である。 FIG. 2 is a cross-sectional view showing an example of the rotor 10 of the rotating electric machine 1 according to the first embodiment.
 図2で示す回転子10は、各磁極において、2つの永久磁石13が、回転子鉄心12内に収納されている。なお、図2で示した回転子10は例示であり、本実施形態による固定子100および回転電機1は、他の形式の回転子であっても適用可能である。 The rotor 10 shown in FIG. 2 has two permanent magnets 13 housed in the rotor core 12 at each magnetic pole. Note that the rotor 10 shown in FIG. 2 is an example, and the stator 100 and rotating electric machine 1 according to this embodiment can also be applied to rotors of other types.
 図3は、第1の実施形態に係る固定子100の固定子スロット111内の直線部131の状態を示す部分横断面図である。 FIG. 3 is a partial cross-sectional view showing the state of the straight portion 131 in the stator slot 111 of the stator 100 according to the first embodiment.
 固定子鉄心110の径方向の内周面には、周方向に互いに間隔を置いて軸方向に延びた軸方向の貫通溝である複数の固定子スロット111が形成されている。また、周方向に互いに隣接するように固定子スロット111が形成されることによりそれぞれ固定子ティース112が形成されている。 The radial inner surface of the stator core 110 is formed with a number of stator slots 111, which are axial through grooves spaced apart from one another in the circumferential direction and extending in the axial direction. The stator slots 111 are also formed so as to be adjacent to one another in the circumferential direction, thereby forming stator teeth 112.
 それぞれの固定子スロット111には、コイルセグメント130の直線部131である断面が矩形の複数の平角導体が、互いに電気的に絶縁された状態で、径方向に積層されている。コイルセグメント130と渡り部125で固定子巻線120を構成する場合は、各固定子スロット111に積層される直線部131の積層数Nは偶数となる。 In each stator slot 111, multiple flat conductors with rectangular cross sections, which are the straight sections 131 of the coil segments 130, are stacked radially while being electrically insulated from each other. When the stator winding 120 is formed by the coil segments 130 and the jumper sections 125, the number N of stacked straight sections 131 in each stator slot 111 is an even number.
 すなわち、図3に示す例では、それぞれの固定子スロット111には、径方向の外側から内側に、第1層導体131a、第2層導体131b、第3層導体131c、第4層導体131d、第5層導体131e、および第6層導体131fの順に配されている。すなわち、この場合は、積層数Nは6である。以下では、固定子スロット111によらずに、直線部131であるこれらの平角導体を、その層の順に従って、第n層導体(n=1~N)と呼ぶ。図2に示す例では、第1層導体131a、第2層導体131b、第3層導体131c、第4層導体131d、第5層導体131e、および第6層導体131fとなる。 In other words, in the example shown in FIG. 3, in each stator slot 111, the first layer conductor 131a, the second layer conductor 131b, the third layer conductor 131c, the fourth layer conductor 131d, the fifth layer conductor 131e, and the sixth layer conductor 131f are arranged in this order from the outside to the inside in the radial direction. That is, in this case, the number of layers N is 6. Hereinafter, regardless of the stator slot 111, these rectangular conductors that are the straight portions 131 will be referred to as the nth layer conductor (n=1 to N) according to the order of the layers. In the example shown in FIG. 2, they are the first layer conductor 131a, the second layer conductor 131b, the third layer conductor 131c, the fourth layer conductor 131d, the fifth layer conductor 131e, and the sixth layer conductor 131f.
 第1層導体131a、第2層導体131b、第3層導体131cおよび第4層導体131dの径方向の厚みt0は、実質的に同じである。一方、後述する並列部分135(図6)に相当する第5層導体131eおよび第6層導体131fの径方向の厚みt1は、実質的に、t0の2分の1である。また、並列部分135の範囲では、直線部131だけではなく、接続部132および渡り部125の厚みもt0の2分の1である。 The radial thickness t0 of the first layer conductor 131a, the second layer conductor 131b, the third layer conductor 131c, and the fourth layer conductor 131d is substantially the same. On the other hand, the radial thickness t1 of the fifth layer conductor 131e and the sixth layer conductor 131f, which correspond to the parallel portion 135 (FIG. 6) described below, is substantially half of t0. Furthermore, within the range of the parallel portion 135, the thickness of not only the straight portion 131 but also the connection portion 132 and the transition portion 125 is half of t0.
 ここで、「実質的に同じ」、設計上は、同じ寸法であり、製作誤差の範囲で一致することを意味し、「実質的に2分の1」も、設計上は、t0の2分の1であり製作誤差の範囲で2分の1となることを意味するものとする。ここで、製作誤差とは、加工、組み立て、測定等での誤差を含むものとする。 Here, "substantially the same" means that the dimensions are the same in terms of design and match within the range of manufacturing error, and "substantially one-half" means that the dimensions are one-half of t0 in terms of design and one-half within the range of manufacturing error. Here, manufacturing error includes errors in processing, assembly, measurement, etc.
 本実施形態の特徴を分かりやすくするために、まず、従来の接続例を説明する。 To make it easier to understand the features of this embodiment, we will first explain a conventional connection example.
 図4は、第1の実施形態との比較のための、従来例における固定子巻線の各スロット内の各層の直線部131間の接続状態を示す接続図である。図4で示すマス目の横方向は、最上行に記載したように、固定子スロット111の番号を示している。また、縦方向は、上から下に向かって、1層目ないし6層目を示す。また、各マス目に記載された符号は、各固定子スロット111内の各層のコイルセグメント130の直線部131の番号を示す。また、直線部131同士を接続する実線は、渡り部125を示す。また、直線部131同士を接続する破線は、接続部132を示す。言い換えれば、破線は固定子鉄心110の第1の端部110aの軸方向の外側、実線は固定子鉄心110の第2の端部110bの軸方向の外側に配された巻線導体121を示す。なお、後述する図5、図7および図8においても同様である。 4 is a connection diagram showing the connection state between the straight portions 131 of each layer in each slot of the stator winding in a conventional example for comparison with the first embodiment. The horizontal direction of the squares shown in FIG. 4 indicates the number of the stator slot 111 as written in the top row. The vertical direction indicates the first to sixth layers from top to bottom. The symbols written in each square indicate the number of the straight portion 131 of the coil segment 130 of each layer in each stator slot 111. The solid lines connecting the straight portions 131 indicate the jumper portion 125. The dashed lines connecting the straight portions 131 indicate the connection portion 132. In other words, the dashed lines indicate the winding conductor 121 arranged on the axial outside of the first end 110a of the stator core 110, and the solid lines indicate the winding conductor 121 arranged on the axial outside of the second end 110b of the stator core 110. The same applies to FIGS. 5, 7, and 8 described later.
 第48スロットの第1層の1uで示す直線部131は、固定子鉄心110の第1の端部110aの軸方向の外側で固定子巻線の外部と接続するリード線141に接続されている。また、第7スロットの第1層の96uで示す直線部131は、固定子鉄心110の第1の端部110aの軸方向の外側で中性点線142に接続されている。なお、説明の便宜上、たとえば、1uで示す直線部131を直線部1u、96uで示す直線部131を直線部96uのように表わす。 The straight portion 131 indicated by 1u in the first layer of the 48th slot is connected to a lead wire 141 that connects to the outside of the stator winding on the axial outside of the first end 110a of the stator core 110. The straight portion 131 indicated by 96u in the first layer of the 7th slot is connected to a neutral line 142 on the axial outside of the first end 110a of the stator core 110. For ease of explanation, the straight portion 131 indicated by 1u is represented as the straight portion 1u, and the straight portion 131 indicated by 96u is represented as the straight portion 96u.
 図4では、U相のコイルセグメント130を示しており、U相のコイルセグメント130は、リード線141に接続されている直線部1uから中性点線142に接続されている直線部96uまで、接続部132および渡り部125によって直列に接続されている。1u、96u等の番号は、各直線部131が接続されている順序を示している。 In FIG. 4, the U-phase coil segment 130 is shown, and the U-phase coil segment 130 is connected in series from the straight section 1u connected to the lead wire 141 to the straight section 96u connected to the neutral line 142 by the connection section 132 and the crossover section 125. The numbers 1u, 96u, etc. indicate the order in which the straight sections 131 are connected.
 図4では、3相、8極、毎極毎相のスロット数が2で総数が48となる場合を例にとって説明している。したがって、全節巻の場合は、6スロット間隔となる。 In Figure 4, an example is shown for a 3-phase, 8-pole rotor with 2 slots per phase per pole, for a total of 48. Therefore, in the case of full-pitch winding, the slot spacing is 6.
 従来例では、たとえば、直線部5u(第24スロット)から直線部6u(第30スロット)までが6スロットとなっている。このように、図4では、実線で示す渡り部125、破線で示す接続部132のいずれにおいても、6スロット間隔すなわち、全節巻となっている。 In the conventional example, for example, there are six slots from straight section 5u (slot no. 24) to straight section 6u (slot no. 30). Thus, in FIG. 4, there are six slots between the jumper section 125 shown by the solid line and the connection section 132 shown by the dashed line, i.e., a full pitch winding.
 以上、U相について説明したが、V相の直線部131については、スロット番号を2つずつ増加させた位置に、またW相の直線部131については、スロット番号を4つずつ増加させて配置される。 The above is an explanation of the U-phase, but the straight sections 131 of the V-phase are positioned at positions where the slot number is increased by two, and the straight sections 131 of the W-phase are positioned at positions where the slot number is increased by four.
 図5は、第1の実施形態に係る固定子の固定子巻線の各スロット内の各層の直線部131間の接続状態を示す接続図である。 FIG. 5 is a connection diagram showing the connection state between the straight portions 131 of each layer in each slot of the stator winding of the stator according to the first embodiment.
 従来との対比のために、図5で示す場合も、3相、8極、毎極毎相のスロット数が2で総数が48となる場合を例にとって説明している。したがって、全節巻の場合は、6スロット間隔となる。 For comparison with the conventional method, the example shown in Figure 5 is for a 3-phase, 8-pole rotor with 2 slots per phase per pole, for a total of 48. Therefore, in the case of full-pitch winding, the slot spacing is 6.
 図5に示すように、第1層目から第3層目までは、従来と同様の接続となっている。第4層目から第6層目については、図4に示す従来例と異なる部分がある。以下では、異なる部分について説明する。 As shown in Figure 5, the first to third layers are connected in the same way as in the conventional example. The fourth to sixth layers differ from the conventional example shown in Figure 4. The differences are explained below.
 図4に示す従来例では、第43スロットの第4層目の直線部64uは、渡り部125により、第1スロットの第5層目の65uのみに接続されている。第1スロットの第4層目の直線部81uは第7スロットの第5層目の80uのみに接続されている。 In the conventional example shown in FIG. 4, the straight portion 64u of the fourth layer of the 43rd slot is connected only to the straight portion 65u of the fifth layer of the first slot by the transition portion 125. The straight portion 81u of the fourth layer of the first slot is connected only to the straight portion 80u of the fifth layer of the seventh slot.
 一方、図5に示す本実施形態では、第43スロットの第4層目の直線部32uは、渡り部125により、第48スロットの第5層目の直線部33uと第48スロットの第6層目の直線部33uの両者と接続されている。すなわち、第4層目の直線部32uは、第5層目および第6層目の径方向の厚みが2分の1の2つの直線部33uに分岐している。また、第1スロットの第4層目の直線部49uは、第7スロットの第5層目の直線部48uと第43スロットの第6層目の直線部48uの両者と接続されている。すなわち、第5層目および第6層目の径方向の厚みが2分の1の2つの直線部48uは、第4層目の直線部49uに一体化している。したがって、第48スロットの第5層目の直線部33uから第43スロットの第6層目の直線部48uまでの第1の部分135a(図6)と、第48スロットの第6層目の直線部33uから第7スロットの第5層目の直線部48uまでの第2の部分135b(図6)は、互いに電気的に並列な並列部分135(図6)である。 On the other hand, in the present embodiment shown in FIG. 5, the straight portion 32u of the fourth layer of the 43rd slot is connected to both the straight portion 33u of the fifth layer of the 48th slot and the straight portion 33u of the sixth layer of the 48th slot by the jumper portion 125. That is, the straight portion 32u of the fourth layer branches into two straight portions 33u whose radial thickness is half that of the fifth and sixth layers. Also, the straight portion 49u of the fourth layer of the first slot is connected to both the straight portion 48u of the fifth layer of the seventh slot and the straight portion 48u of the sixth layer of the 43rd slot. That is, the two straight portions 48u whose radial thickness is half that of the fifth and sixth layers are integrated with the straight portion 49u of the fourth layer. Therefore, the first portion 135a (FIG. 6) from the straight portion 33u of the fifth layer of the 48th slot to the straight portion 48u of the sixth layer of the 43rd slot, and the second portion 135b (FIG. 6) from the straight portion 33u of the sixth layer of the 48th slot to the straight portion 48u of the fifth layer of the seventh slot are parallel portions 135 (FIG. 6) that are electrically parallel to each other.
 また、第48スロットの第5層目の直線部33uから第43スロットの第6層目の直線部48uまでの第1の部分135aは、スロット番号が順次、大きくなる方向に接続されているのに対して、第48スロットの第6層目の直線部33uから第7スロットの第5層目の直線部48uまでの第2の部分135bは、スロット番号が順次、小さくなる方向に接続されている。すなわち、第1の部分135aと第2の部分135bとは、互いに逆方向に接続されている。 Furthermore, the first portion 135a from the straight portion 33u in the fifth layer of the 48th slot to the straight portion 48u in the sixth layer of the 43rd slot is connected in a direction in which the slot number increases, whereas the second portion 135b from the straight portion 33u in the sixth layer of the 48th slot to the straight portion 48u in the fifth layer of the 7th slot is connected in a direction in which the slot number decreases. In other words, the first portion 135a and the second portion 135b are connected in opposite directions.
 図6は、第1の実施形態に係る固定子100の固定子巻線120の結線図である。1つの直線部32uから2つの直線部33uに分岐し、その後、2つの直線部48uから1つの直線部49uに一体化する。また、2つの互いに並列な部分、すなわち、直線部33uから直線部48uまでは、第5層および第6層に配されている。 FIG. 6 is a connection diagram of the stator winding 120 of the stator 100 according to the first embodiment. One straight section 32u branches into two straight sections 33u, and then the two straight sections 48u are integrated into one straight section 49u. The two parallel sections, i.e., straight section 33u to straight section 48u, are arranged in the fifth and sixth layers.
 以上では、第5層と第6層に互いに並列な部分が配され、第4層と接続されている場合を例にとって説明したが、これに限定されない。互いに隣接する3つの層のうちの互いに隣接する2つの層に互いに並列な部分を配することでよい。すなわち、n≧3として、n層、(n-1)層、(n-2)層のうち、n層と(n-1)層を並列部分として(n-2)層と接続してもよいし、(n-1)層と(n-2)層を並列部分としてn層と接続してもよい。 The above has been described with an example in which the fifth and sixth layers have parallel parts arranged and are connected to the fourth layer, but this is not limiting. It is sufficient to arrange parallel parts in two of three adjacent layers. That is, for n≧3, among the n layer, (n-1) layer, and (n-2) layer, the n layer and the (n-1) layer may be connected to the (n-2) layer as parallel parts, or the (n-1) layer and the (n-2) layer may be connected to the n layer as parallel parts.
 以上のように、本実施形態では、複数の積層数Nに積層された平角導体を用いた固定子巻線120について、互いに隣接する2つの層を互いに電気的に並列な並列部分135とすることにより、電気的に奇数のターン数を実現することができる。 As described above, in this embodiment, for the stator winding 120 using flat rectangular conductors stacked in a number of layers N, two adjacent layers are made into parallel portions 135 that are electrically parallel to each other, thereby achieving an electrically odd number of turns.
 また、並列部分135の層導体の厚みt1を他の層導体の厚みt0の2分の1とすることにより、各導体の電流密度を互いに同程度とすることができる。 In addition, by making the thickness t1 of the layer conductor of the parallel portion 135 half the thickness t0 of the other layer conductors, the current density of each conductor can be made approximately the same.
 さらに、本実施形態で例示したように、平角導体の厚みt1を他の層の平角導体の厚みt0の2分の1とする並列部分135を、最内層とその外側の層とすることにより、層導体に鎖交する磁束による渦電流損を低減することができる。 Furthermore, as illustrated in this embodiment, by forming parallel portions 135, in which the thickness t1 of the rectangular conductor is half the thickness t0 of the rectangular conductor in the other layers, as the innermost layer and the layer outside it, it is possible to reduce eddy current loss due to magnetic flux linking the layer conductors.
 [第2の実施形態]
 図7は、第2の実施形態との比較のための、従来例における固定子巻線の各スロット内の各層の直線部間の接続状態を示す接続図である。
Second Embodiment
FIG. 7 is a connection diagram showing a connection state between straight portions of each layer in each slot of a stator winding in a conventional example for comparison with the second embodiment.
 図7において、第1スロットの第1層の1uで示す直線部131は、固定子鉄心110の第1の端部110aの軸方向の外側で固定子巻線の外部と接続するリード線141に接続されている。また、第42スロットの第1層の96uで示す直線部131は、固定子鉄心110の第1の端部110aの軸方向の外側で中性点線142に接続されている。 In FIG. 7, the straight portion 131 indicated by 1u in the first layer of the first slot is connected to a lead wire 141 that connects to the outside of the stator winding on the axial outside of the first end 110a of the stator core 110. Also, the straight portion 131 indicated by 96u in the first layer of the 42nd slot is connected to a neutral line 142 on the axial outside of the first end 110a of the stator core 110.
 図7に示すU相のコイルセグメント130は、リード線141に接続されている直線部1uから中性点線142に接続されている直線部96uまで、接続部132および渡り部125によって直列に接続されている。 The U-phase coil segment 130 shown in FIG. 7 is connected in series from the straight section 1u connected to the lead wire 141 to the straight section 96u connected to the neutral line 142 by the connection section 132 and the jumper section 125.
 従来例では、たとえば、第24スロットの第2層の直線部43uと第30スロットの第1層の直線部42uとの間(実線部)は6スロット、第25スロットの第2層の直線部91uと第31スロットの第1層の直線部90uとの間(実線部)も6スロットである。すなわち、全節巻である。 In the conventional example, for example, there are six slots between the straight portion 43u of the second layer of the 24th slot and the straight portion 42u of the first layer of the 30th slot (solid line portion), and there are also six slots between the straight portion 91u of the second layer of the 25th slot and the straight portion 90u of the first layer of the 31st slot (solid line portion). In other words, it is a full-pitch winding.
 一方、たとえば、第25スロットの第1層の直線部5uから第30スロットの第2層の直線部6uまでの間(破線部)が5スロットとなっている。また、第24スロットの第1層の直線部53uから第31スロットの第2層の直線部54uまでの間(破線部)が7スロットとなっている。 On the other hand, for example, there are five slots between the straight line portion 5u of the first layer of the 25th slot and the straight line portion 6u of the second layer of the 30th slot (dashed line portion). Also, there are seven slots between the straight line portion 53u of the first layer of the 24th slot and the straight line portion 54u of the second layer of the 31st slot (dashed line portion).
 このように、図7に示す従来例では、実線で示す渡り部125では全節巻、破線で示す接続部132においては、全節巻ではなく、それより長いものと短いものが混在している。 As such, in the conventional example shown in Figure 7, the transition section 125 shown by the solid line is a full-pitch winding, while the connection section 132 shown by the dashed line is not a full-pitch winding, but rather has a mixture of longer and shorter pitches.
 以上、U相について説明したが、V相の直線部131については、スロット番号を2つずつ増加させた位置に、またW相の直線部131については、スロット番号を4つずつ増加させて配置される。 The above is an explanation of the U-phase, but the straight sections 131 of the V-phase are positioned at positions where the slot number is increased by two, and the straight sections 131 of the W-phase are positioned at positions where the slot number is increased by four.
 図8は、第2の実施形態に係る固定子の固定子巻線の各スロット内の各層の直線部間の接続状態を示す接続図である。 FIG. 8 is a connection diagram showing the connection state between the straight sections of each layer in each slot of the stator winding of the stator according to the second embodiment.
 従来との対比のために、図8で示す場合も、3相、8極、毎極毎相のスロット数が2で総数が48となる場合を例にとって説明している。したがって、全節巻の場合は、6スロット間隔となる。 For comparison with the conventional method, the example shown in Figure 8 is for a 3-phase, 8-pole rotor with 2 slots per phase per pole, for a total of 48. Therefore, in the case of full-pitch winding, the slot spacing is 6.
 図8に示すように、第1層目から第3層目までは、従来と同様の接続となっている。第4層目から第6層目については、図7に示す従来例と異なる部分がある。以下では、異なる部分について説明する。 As shown in Figure 8, the first to third layers are connected in the same way as in the conventional example. The fourth to sixth layers differ from the conventional example shown in Figure 7. The differences are explained below.
 図7に示す従来例では、第43スロットの第4層目の直線部16uは、渡り部125により、第1スロットの第5層目の17uのみに接続されている。第37スロットの第4層目の直線部33uは、渡り部125により、第43スロットの第5層目の32uのみに接続されている。第18スロットの第4層目の直線部60uは、渡り部125により、第24スロットの第3層目の61uのみに接続されている。また、第12スロットの第4層目の直線部85uは、渡り部125により、第7スロットの第3層目の86uのみに接続されている。 In the conventional example shown in FIG. 7, the straight line portion 16u in the fourth layer of the 43rd slot is connected only to the 17u in the fifth layer of the 1st slot by the jumper portion 125. The straight line portion 33u in the fourth layer of the 37th slot is connected only to the 32u in the fifth layer of the 43rd slot by the jumper portion 125. The straight line portion 60u in the fourth layer of the 18th slot is connected only to the 61u in the third layer of the 24th slot by the jumper portion 125. In addition, the straight line portion 85u in the fourth layer of the 12th slot is connected only to the 86u in the third layer of the 7th slot by the jumper portion 125.
 一方、図8に示す本実施形態で、同じ個所は、以下のようになっている。 On the other hand, in this embodiment shown in Figure 8, the same parts are as follows:
 本実施形態での第43スロットの第4層目の直線部16uは、渡り部125により第48スロットの第5層目の直線部17uと第1スロットの第5層目の直線部17uの両者と接続されている。すなわち、第4層目の直線部16uは、第5層目の径方向の厚みが2分の1の2つの直線部17uに分岐している。 In this embodiment, the straight portion 16u of the fourth layer of the 43rd slot is connected to both the straight portion 17u of the fifth layer of the 48th slot and the straight portion 17u of the fifth layer of the first slot by a transition portion 125. In other words, the straight portion 16u of the fourth layer branches into two straight portions 17u with a radial thickness that is half that of the fifth layer.
 第37スロットの第4層目の直線部25uは、渡り部125により、また、第42スロットの第5層目の直線部24uと第43スロットの第5層目の直線部24uの両者と接続されている。すなわち、第5層目の径方向の厚みが2分の1の2つの直線部24uは、第4層目の直線部25uに一体化している。 The straight portion 25u of the fourth layer of the 37th slot is connected to both the straight portion 24u of the fifth layer of the 42nd slot and the straight portion 24u of the fifth layer of the 43rd slot by the transition portion 125. In other words, the two straight portions 24u of the fifth layer, which have a radial thickness that is half, are integrated with the straight portion 25u of the fourth layer.
 第18スロットの第4層目の直線部56uは、渡り部125により第24スロットの第5層目の直線部57uと第25スロットの第5層目の直線部57uの両者と接続されている。すなわち、第4層目の直線部56uは、第5層目の径方向の厚みが2分の1の2つの直線部57uに分岐している。 The straight portion 56u of the fourth layer of the 18th slot is connected to both the straight portion 57u of the fifth layer of the 24th slot and the straight portion 57u of the fifth layer of the 25th slot by a transition portion 125. In other words, the straight portion 56u of the fourth layer branches into two straight portions 57u with a radial thickness that is half that of the fifth layer.
 第12スロットの第4層目の直線部65uは、渡り部125により、また、第18スロットの第5層目の直線部64uと第19スロットの第5層目の直線部64uの両者と接続されている。すなわち、第5層目の径方向の厚みが2分の1の2つの直線部64uは、第4層目の直線部65uに一体化している。 The straight portion 65u of the fourth layer of the 12th slot is connected to both the straight portion 64u of the fifth layer of the 18th slot and the straight portion 64u of the fifth layer of the 19th slot by the transition portion 125. In other words, the two straight portions 64u of the fifth layer, which have a radial thickness that is half, are integrated with the straight portion 65u of the fourth layer.
 以上説明した構成において、第48スロットの第5層目の直線部17uから第42スロットの第5層目の直線部24uまでの第1の部分136a(図9)と、第1スロットの第5層目の直線部17uから第43スロットの第5層目の直線部24uまでの第2の部分136b(図9)は、互いに電気的に並列な並列部分136(図9)である。また、第24スロットの第5層目の直線部57uから第18スロットの第5層目の直線部64uまでの第1の部分137a(図9)と、第25スロットの第5層目の直線部57uから第19スロットの第5層目の直線部64uまでの第2の部分137b(図9)は、互いに電気的に並列な並列部分137(図9)である。 In the configuration described above, the first portion 136a (FIG. 9) from the straight portion 17u of the fifth layer of the 48th slot to the straight portion 24u of the fifth layer of the 42nd slot, and the second portion 136b (FIG. 9) from the straight portion 17u of the fifth layer of the 1st slot to the straight portion 24u of the fifth layer of the 43rd slot are parallel portions 136 (FIG. 9) that are electrically parallel to each other. Also, the first portion 137a (FIG. 9) from the straight portion 57u of the fifth layer of the 24th slot to the straight portion 64u of the fifth layer of the 18th slot, and the second portion 137b (FIG. 9) from the straight portion 57u of the fifth layer of the 25th slot to the straight portion 64u of the fifth layer of the 19th slot are parallel portions 137 (FIG. 9) that are electrically parallel to each other.
 また、並列部分136において、第1の部分136aと第2の部分136bとは、互いに逆方向に接続されている。並列部分137においても、第1の部分137aと第2の部分137bとは、互いに逆方向に接続されている。 Furthermore, in the parallel portion 136, the first portion 136a and the second portion 136b are connected in the opposite directions. In the parallel portion 137, the first portion 137a and the second portion 137b are also connected in the opposite directions.
 図9は、第2の実施形態に係る固定子の固定子巻線の結線図である。並列部分136においては、1つの直線部16uから2つの直線部17uに分岐し、その後、2つの直線部24uから1つの直線部25uに一体化する。また、並列部分137においては、1つの直線部56uから2つの直線部57uに分岐し、その後、2つの直線部64uから1つの直線部65uに一体化する。さらに、また、2つの互いに並列部分136、137における各直線部は、第5層および第6層に配されている。 FIG. 9 is a connection diagram of the stator windings of the stator according to the second embodiment. In the parallel portion 136, one straight portion 16u branches into two straight portions 17u, and then the two straight portions 24u are integrated into one straight portion 25u. In the parallel portion 137, one straight portion 56u branches into two straight portions 57u, and then the two straight portions 64u are integrated into one straight portion 65u. Furthermore, the straight portions in the two parallel portions 136 and 137 are arranged in the fifth and sixth layers.
 以上では、第5層と第6層に互いに並列な部分が配され、第4層と接続されている場合を例にとって説明したが、これに限定されない。第1の実施形態で説明したのと同様に、互いに隣接する3つの層のうちの互いに隣接する2つの層に互いに並列な部分を配することでよい。 The above describes an example in which parallel portions are arranged on the fifth and sixth layers and connected to the fourth layer, but this is not limiting. As described in the first embodiment, parallel portions may be arranged on two adjacent layers out of three adjacent layers.
 以上のように、本実施形態では、複数の積層数Nに積層された平角導体を用いた固定子巻線120について、互いに隣接する2つの層を互いに電気的に並列な並列部分135とすることにより、第1の実施形態と同様に、電気的に奇数のターン数を実現することができる。 As described above, in this embodiment, for the stator winding 120 using flat rectangular conductors stacked in a number of layers N, two adjacent layers are made into parallel portions 135 that are electrically parallel to each other, so that an odd number of turns can be achieved electrically, as in the first embodiment.
 また、並列部分135の層導体の厚みt1を他の層導体の厚みt0の2分の1とすることにより、各導体の電流密度を互いに同程度とすることができる点、さらに、本実施形態で例示したように、平角導体の厚みt1を他の層の平角導体の厚みt0の2分の1とする並列部分135を、最内層とその外側の層とすることにより、層導体に鎖交する磁束による渦電流損を低減することができる点についても、第1の実施形態と同様である。 Also, by making the thickness t1 of the layer conductor of the parallel portion 135 half the thickness t0 of the other layer conductors, the current density of each conductor can be made approximately the same, and further, as illustrated in this embodiment, by making the parallel portion 135, in which the thickness t1 of the rectangular conductor is half the thickness t0 of the rectangular conductor of the other layers, the innermost layer and the layer outside it, it is possible to reduce eddy current loss due to magnetic flux linking the layer conductors, which is the same as the first embodiment.
 このように、図7に示す、実線で示す渡り部125では全節巻、破線で示す接続部132においては、全節巻ではなく、それより長いものと短いものが混在しているような従来例についても、第1の実施形態と同様の効果を生ずる実施形態が実現できる。 In this way, even in the conventional example shown in Figure 7, where the transition section 125 shown by the solid line is a full-pitch winding and the connection section 132 shown by the dashed line is not a full-pitch winding but has a mixture of longer and shorter pitches, an embodiment that produces the same effect as the first embodiment can be realized.
 以上、説明した実施形態によれば、平角線のコイルセグメントを用いる場合にあっても、簡易な構成によって奇数ターンの固定子巻線を得られる固定子および回転電機を提供することができる。 According to the embodiment described above, it is possible to provide a stator and a rotating electric machine that can obtain a stator winding with an odd number of turns using a simple configuration, even when coil segments made of rectangular wire are used.
 [その他の実施形態]
 以上、本発明の実施形態を説明したが、実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。また、各実施形態の特徴を組み合わせてもよい。さらに実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
[Other embodiments]
Although the embodiments of the present invention have been described above, the embodiments are presented as examples and are not intended to limit the scope of the invention. In addition, the features of each embodiment may be combined. Furthermore, the embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the gist of the invention. The embodiments and their modifications are included in the scope of the invention and its equivalents as described in the claims, as well as in the scope and gist of the invention.
 1…回転電機、10…回転子、11…ロータシャフト、12…回転子鉄心、13…永久磁石、14…閉止板、21…軸受、22…軸受ブラケット、23…フレーム、100…固定子、110…固定子鉄心、111…固定子スロット、120…固定子巻線、125…渡り部、130…コイルセグメント、131…直線部、132…接続部、135…並列部分、135a…第1の部分、135b…第2の部分、136…並列部分、136a…第1の部分、136b…第2の部分、137…並列部分、137a…第1の部分、137b…第2の部分、141…リード線、142…中性点線 1...rotating electric machine, 10...rotor, 11...rotor shaft, 12...rotor core, 13...permanent magnet, 14...closure plate, 21...bearing, 22...bearing bracket, 23...frame, 100...stator, 110...stator core, 111...stator slot, 120...stator winding, 125...bridge section, 130...coil segment, 131...straight section, 132...connection section, 135...parallel section, 135a...first section, 135b...second section, 136...parallel section, 136a...first section, 136b...second section, 137...parallel section, 137a...first section, 137b...second section, 141...lead wire, 142...neutral wire

Claims (4)

  1.  円筒状で内周面に周方向に複数の固定子スロットが形成された固定子鉄心と、
     互いに異なる2つの前記固定子スロットにそれぞれ収容される平角導体を用いた直線部と前記固定子鉄心の軸方向の第1の端部の外側において2つの前記直線部を接続する平角導体を用いた接続部とをそれぞれが有する複数のコイルセグメント、ならびに、前記固定子鉄心の軸方向の第2の端部の外側において、複数の前記コイルセグメントを直列に接続する複数の渡り部とを相ごとに具備する固定子巻線と、
     を備える固定子であって、
     複数の前記直線部は、複数の前記固定子スロットのそれぞれにおいて、径方向にN個(Nは4以上の偶数)層を形成しており、
     互いに隣接する第1の層および第2の層のそれぞれに形成された直列部分は、互いに並列部分を形成し、前記第1の層または前記第2の層に隣接する第3の層と接続されている、
     ことを特徴とする固定子。
    A cylindrical stator core having a plurality of stator slots formed in a circumferential direction on an inner peripheral surface thereof;
    a stator winding including, for each phase, a plurality of coil segments, each of which has a straight portion using a rectangular conductor that is accommodated in each of the two stator slots that are different from each other and a connection portion using a rectangular conductor that connects the two straight portions on the outside of a first axial end of the stator core, and a plurality of jumper portions that connect the plurality of coil segments in series on the outside of a second axial end of the stator core;
    A stator comprising:
    The straight portions form N layers (N is an even number equal to or greater than 3) in a radial direction in each of the stator slots,
    The series portions formed in the first layer and the second layer adjacent to each other form parallel portions, and are connected to a third layer adjacent to the first layer or the second layer.
    A stator characterized by:
  2.  前記第1の層および前記第2の層は、前記固定子スロットのそれぞれにおける径方向外側からの順番で、第(N-1)層および第N層であり、
     前記第1の層は、第(N-1)層である、
     ことを特徴とする請求項1に記載の固定子。
    The first layer and the second layer are, in order from the outermost radial direction in each of the stator slots, an (N-1)th layer and an Nth layer,
    The first layer is the (N-1)th layer;
    2. The stator according to claim 1 .
  3.  前記第1の層および前記第2の層に配された前記直線部およびこれらを接続する前記接続部の前記平角導体の径方向の厚みは、前記第3の層に配された前記直線部の前記平角導体の径方向の厚みに対して実質的に2分の1である、ことを特徴とする請求項1に記載の固定子。 The stator of claim 1, characterized in that the radial thickness of the rectangular conductors of the straight sections arranged in the first layer and the second layer and the connecting section connecting them is substantially half the radial thickness of the rectangular conductors of the straight sections arranged in the third layer.
  4.  回転軸方向に延びたロータシャフトと、前記ロータシャフトに取り付けられて永久磁石を内蔵する回転子鉄心とを有する回転子と、
     請求項1ないし請求項3のいずれか一項に記載の固定子と、
     を備える回転電機。
    a rotor having a rotor shaft extending in a direction of a rotation axis and a rotor core attached to the rotor shaft and incorporating a permanent magnet;
    A stator according to any one of claims 1 to 3;
    A rotating electric machine comprising:
PCT/JP2023/008761 2023-03-08 2023-03-08 Stator and rotary electrical machine WO2024185063A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/008761 WO2024185063A1 (en) 2023-03-08 2023-03-08 Stator and rotary electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/008761 WO2024185063A1 (en) 2023-03-08 2023-03-08 Stator and rotary electrical machine

Publications (1)

Publication Number Publication Date
WO2024185063A1 true WO2024185063A1 (en) 2024-09-12

Family

ID=92674325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008761 WO2024185063A1 (en) 2023-03-08 2023-03-08 Stator and rotary electrical machine

Country Status (1)

Country Link
WO (1) WO2024185063A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949254A (en) * 1974-02-25 1976-04-06 Westinghouse Electric Corporation Winding for dynamoelectric machine
JP2000092766A (en) * 1998-09-07 2000-03-31 Denso Corp Stator of ac generator for vehicle
JP2002058189A (en) * 2000-08-10 2002-02-22 Mitsubishi Electric Corp Rotating electric machine
JP2005312278A (en) * 2004-04-26 2005-11-04 Denso Corp Concentrated winding stator coil of rotary electric machine
JP2005312277A (en) * 2004-04-26 2005-11-04 Denso Corp Concentrated winding stator coil of rotary electric machine
JP2016012981A (en) * 2014-06-27 2016-01-21 株式会社デンソー Stator for rotary electric machine
JP2017093097A (en) * 2015-11-06 2017-05-25 株式会社デンソー Rotary electric machine
JP2022006576A (en) * 2020-06-24 2022-01-13 株式会社Subaru Stator
JP2022074588A (en) * 2020-11-04 2022-05-18 株式会社デンソー Rotary electric machine
JP7186927B2 (en) * 2020-06-09 2022-12-09 株式会社東芝 Rotating electric machine stator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949254A (en) * 1974-02-25 1976-04-06 Westinghouse Electric Corporation Winding for dynamoelectric machine
JP2000092766A (en) * 1998-09-07 2000-03-31 Denso Corp Stator of ac generator for vehicle
JP2002058189A (en) * 2000-08-10 2002-02-22 Mitsubishi Electric Corp Rotating electric machine
JP2005312278A (en) * 2004-04-26 2005-11-04 Denso Corp Concentrated winding stator coil of rotary electric machine
JP2005312277A (en) * 2004-04-26 2005-11-04 Denso Corp Concentrated winding stator coil of rotary electric machine
JP2016012981A (en) * 2014-06-27 2016-01-21 株式会社デンソー Stator for rotary electric machine
JP2017093097A (en) * 2015-11-06 2017-05-25 株式会社デンソー Rotary electric machine
JP7186927B2 (en) * 2020-06-09 2022-12-09 株式会社東芝 Rotating electric machine stator
JP2022006576A (en) * 2020-06-24 2022-01-13 株式会社Subaru Stator
JP2022074588A (en) * 2020-11-04 2022-05-18 株式会社デンソー Rotary electric machine

Similar Documents

Publication Publication Date Title
US7408281B2 (en) Stator and brushless motor
EP1971014B1 (en) Armature laminations
KR100488408B1 (en) Vehicle ac generator having vibration-resistant stator
US10666104B2 (en) Rotating electrical machine
US5057731A (en) Simplified spindle motor for disc drive
JP6539141B2 (en) Stator of rotating electric machine and rotating electric machine
JP6132156B2 (en) Rotating electric machine
WO2021240989A1 (en) Stator for rotary electric machine
JP5072502B2 (en) Rotating motor
WO2024185063A1 (en) Stator and rotary electrical machine
JP4931742B2 (en) Rotating machine
JP6682956B2 (en) MOTOR DEVICE AND METHOD OF MANUFACTURING MOTOR DEVICE
CN214543854U (en) Motor stator winding, stator and motor
CN219247551U (en) Stator assembly and motor
CN112467898A (en) Motor stator and motor
CN112583168A (en) Motor stator winding, stator and motor
JP6498775B2 (en) Stator and rotating electric machine
JP3494729B2 (en) Three-phase armature winding
CN111478485A (en) Motor stator and motor
CN216819543U (en) Stator and motor
JP7552907B2 (en) Stator for rotating electric machine and method for manufacturing the same
CN215772693U (en) Motor stator and motor
CN220368527U (en) Stator structure and motor with same
CN218888246U (en) Flat wire motor stator and motor
CN215870942U (en) Stator and motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23926276

Country of ref document: EP

Kind code of ref document: A1