[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024181854A1 - Shape memory polymer with improved degradability and method for preparing same - Google Patents

Shape memory polymer with improved degradability and method for preparing same Download PDF

Info

Publication number
WO2024181854A1
WO2024181854A1 PCT/KR2024/095451 KR2024095451W WO2024181854A1 WO 2024181854 A1 WO2024181854 A1 WO 2024181854A1 KR 2024095451 W KR2024095451 W KR 2024095451W WO 2024181854 A1 WO2024181854 A1 WO 2024181854A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape memory
memory polymer
copolymer
silane
treated
Prior art date
Application number
PCT/KR2024/095451
Other languages
French (fr)
Korean (ko)
Inventor
이강석
이규배
박수지
김혜선
김성진
이선우
강미란
Original Assignee
주식회사 티엠디랩
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티엠디랩, 연세대학교 산학협력단 filed Critical 주식회사 티엠디랩
Publication of WO2024181854A1 publication Critical patent/WO2024181854A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/16Materials with shape-memory or superelastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2280/00Compositions for creating shape memory

Definitions

  • the present invention relates to a shape memory polymer with improved degradability and a method for producing the same, and more specifically, to a shape memory polymer synthesized by inducing a chemical bond between a copolymer of a lactone monomer and glycidyl methacrylate and a silane-treated inorganic particle so as to maintain shape memory characteristics while significantly improving short-term degradability, and a method for producing the same.
  • Synthetic polymers have advantages over natural polymers, such as superior mechanical properties, easy functionalization, high elastic strain, and low price, and are thus attracting attention as useful materials that can replace natural polymers.
  • polycaprolactone poly( ⁇ -caprolactone), PCL
  • SMP shape-memory polymer
  • PCL-co-PGMA polycaprolactone-polymethacrylate copolymers
  • GMA ⁇ -caprolactone monomer and glycidyl methacrylate
  • the copolymers prepared in this way have various melting points depending on the adjustment of the introduction amounts of ⁇ -caprolactone and glycidyl methacrylate, and have shape memory properties with a high deformation recovery rate in the body temperature range, so that they have the advantage of being usefully utilized in physiological and medical application devices.
  • tissue engineering is a technology that aims to replace or restore our bodies damaged by accidents or diseases by creating and transplanting biosubstitutes.
  • Biomaterials used in tissue engineering must have excellent biocompatibility, be non-toxic, and have mechanical, physical properties, and molding processability that can be adjusted to suit the purpose and use, and biodegradability must also be considered.
  • non-degradable ones can cause problems such as corrosion and strictures with long-term use, so biodegradability is particularly important for implantable medical devices.
  • degradability can be controlled, there is an advantage in that various medical devices can be manufactured to suit the area to which the medical device is applied.
  • scaffolds for tissue engineering which serve as a support for cells to support and grow, must have a large surface area and porosity, and must be able to control biodegradability.
  • the inventors of the present invention have made efforts to develop a polymer that can be decomposed in a living body in a short period of time while maintaining shape memory properties suitable as a physiological medical application device with a high deformation recovery rate in a body temperature range, and as a result, were able to develop a polymer complex in which inorganic particles surface-treated with silane and a copolymer containing a lactone monomer and glycidyl methacrylate are cross-linked, and completed the present invention by confirming that the polymer complex can be effectively decomposed in a living body in a short period of time while being provided with minimally invasive properties due to shape memory properties.
  • the present invention aims to provide a shape memory polymer synthesized to improve short-term resolution, a method for producing the same, and a use thereof.
  • the present invention provides a shape memory polymer in which an inorganic particle surface-treated with silane and a copolymer including a lactone monomer and glycidyl methacrylate are crosslinked.
  • the inorganic particles surface-treated with silane may be inorganic particles of gelatin, collagen, chitosan, alginate, cellulose or hydroxyapatite surface-treated with silane.
  • the silane may be mercaptopropyl trimethoxy silane (3-Mercaptopropyl trimethoxy silane) or trimethoxysilylpropyl acrylate (3-Trimethoxysilylpropyl acrylate).
  • the copolymer is a copolymer
  • R 1 , R 2 and R 3 are independently hydrogen (H) or an alkyl group having 1 to 6 carbon atoms,
  • n and n are integers from 1 to 20, independently of each other,
  • A, B 1 and B 2 are independently oxygen (O) or sulfur (S),
  • x and y represent the mole % of repeating units
  • x+y is 100, and x is between 80 and 95;
  • x is an integer between 1 and 20,
  • n represent the mole % of repeating units
  • n+n 100, and m is between 80 and 96;
  • x and y are integers from 1 to 20, independently of each other,
  • n represent the mole % of repeating units
  • n+n 100 and m is 70 to 99; may be a copolymer.
  • the shape memory polymer may have a shape restoring ability of 50% or more at 30 to 60°C.
  • the shape memory polymer may have a resolution improved by at least twice compared to the copolymer.
  • the present invention also provides a method for producing the shape memory polymer, comprising the following steps:
  • the particles surface-treated with silane may be inorganic particles of chitosan, alginate, cellulose or hydroxyapatite surface-treated with silane.
  • the inorganic particles surface-treated with the silane can be mixed in an amount of 1 to 20 wt% relative to the copolymer.
  • the crosslinking agent may be at least one selected from the group consisting of potassium persulfate, ammonium persulfate, benzoyl peroxide, diauryl peroxide, dicumyl peroxide, hydrogen peroxide, azobisisobutuyronitrile, Irgacure, Darocure, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), diphenyl(2,4,6-Trimethylbenzoyl)phosphine (TPO), and ethyl(2,4,6-trimethylbenzoyl)phenylphosphinate (TPO-L).
  • LAP lithium phenyl-2,4,6-trimethylbenzoylphosphinate
  • TPO diphenyl(2,4,6-Trimethylbenzoyl)phosphine
  • TPO-L ethyl(2,4,6-trimethylbenzoyl)phenylphosphinate
  • the crosslinking agent can be mixed in an amount of 0.1 to 5.0 wt% relative to the copolymer.
  • the crosslinking may be thermal crosslinking or photocrosslinking.
  • the crosslinking is thermal crosslinking, and may be crosslinked by applying a pressure of 1 to 20 MPa at 100 to 160°C for 10 to 30 minutes.
  • the crosslinking is photocrosslinking, and may be crosslinked by irradiating UV at an intensity of 100 to 500 mW/ cm2 for 100 to 1000 seconds.
  • the present invention also relates to a medical material comprising the shape memory polymer.
  • the medical material may be a material for vascular or non-vascular transplantation.
  • the medical material may be a material for tissue depression reconstruction selected from the group consisting of the nose, sinuses, chin, face, craniofacial area, cheekbone, forehead, and skin.
  • the medical material may be a material for transplantation into a bone cavity or a cartilage damaged area.
  • the present invention also provides a scaffold for tissue engineering comprising the shape memory polymer.
  • the shape memory polymer according to the present invention has a low melting temperature, so that it maintains shape memory properties in a body temperature range, while exhibiting higher dispersibility than physical bonding through chemical bonding between inorganic particles surface-treated with silane and a copolymer including a lactone monomer and glycidyl methacrylate, thereby having advantages of enhanced mechanical properties and improved degradability compared to the parent copolymer.
  • it has an advantage of being able to control degradability because the crystallinity of the polymer chain can be controlled when inserted into the body.
  • the shape memory polymer according to the present invention can be degraded in a short period of time in the body, so that it has the advantage of being usable as a medical material for manufacturing various medical devices for in vivo tissue regeneration.
  • Figure 1 shows the results of measuring the Raman spectrum to confirm the structure of silane-treated Hydroxyapatite.
  • Figure 2 shows the results of analyzing the reproducibility of shape memory characteristics of one embodiment of the present invention and a comparative example using a dynamic mechanical analyzer (DMA).
  • DMA dynamic mechanical analyzer
  • Figure 3 shows a cross-sectional image of a porous scaffold manufactured using one embodiment of the present invention.
  • Figure 4 shows the results of confirming the shape restoring ability of a porous scaffold manufactured using one embodiment of the present invention.
  • Figure 5 shows the results of comparing (a) the elastic modulus and (b) the compressive strength of one embodiment of the present invention and a comparative example, measured using a universal testing machine (UTM).
  • UPM universal testing machine
  • Figure 6 is a result showing the in vitro decomposition behavior over time of one embodiment of the present invention and a comparative example.
  • Figure 7 shows the results of confirming the in vivo decomposition behavior over time using H&E staining after transplanting an embodiment of the present invention and a comparative example into a rat.
  • Figure 8 is a result of comparing the new tissue formation areas of one embodiment of the present invention and a comparative example based on the H&E staining results of Figure 7.
  • the present invention relates to a shape memory polymer crosslinked with an inorganic particle surface-treated with silane and a copolymer containing a lactone monomer and glycidyl methacrylate.
  • a “shape memory polymer (SMP)” means a polymer that has the property of returning to its original shape when an object is made to have a certain shape under specific conditions and the shape is subsequently changed by an external impact, when the object is made to have the same initial conditions (temperature, light, pH, humidity, etc.).
  • the shape memory polymer according to the present invention maintains the shape memory characteristics of a copolymer containing a lactone monomer and glycidyl methacrylate, while significantly improving short-term decomposition performance due to the effect (crystallization change) of inorganic particles surface-treated with silane.
  • the feature that the shape memory polymer according to the present invention maintains shape memory characteristics while significantly improving short-term decomposition performance is because the inorganic particles surface-treated with silane and the copolymer containing a lactone monomer and glycidyl methacrylate form a cross-linking bond, i.e., a chemical bond, rather than a simple complexation (mixing or physical dispersion).
  • the shape memory polymer according to the present invention is a copolymer comprising an inorganic particle surface-treated with silane and a lactone monomer and glycidyl methacrylate, which is crosslinked and has an effect of decomposing by nearly 50% within 7 days.
  • the shape memory polymer according to the present invention has the characteristics of increasing the elastic modulus and compressive strength compared to the copolymer containing the lactone monomer and glycidyl methacrylate by crosslinking the inorganic particles surface-treated with silane and the copolymer containing the lactone monomer and glycidyl methacrylate, while the inorganic particles are uniformly distributed within the polymer matrix and the external force is evenly distributed.
  • the inorganic particles surface-treated with silane used in the present invention may be, but are not limited to, inorganic particles of gelatin, collagen, chitosan, alginate, cellulose or hydroxyapatite surface-treated with silane.
  • the silane may be mercaptopropyl trimethoxy silane or trimethoxysilylpropyl acrylate, but is not limited thereto.
  • the inorganic particles when the inorganic particles are surface-treated with silane, the mixing ability with various organic substances is improved due to the functional groups at the terminals.
  • the role of the inorganic particles as a nucleating agent increases compared to physical complexation, so that the crystal structure of the polymer can be controlled, and through this, the degradability characteristics can be controlled.
  • the inorganic particles surface-treated with silane may be micro-sized inorganic particles or nano-sized inorganic particles, and preferably have a particle size of 1 nm to 300 ⁇ m. Among these, it is more preferable to use nano inorganic particles to enhance the mixing property with the copolymer and to achieve nano-dispersion.
  • the shape memory polymer in the present invention is a copolymer [(PCL-co-PGMA)] in which an ⁇ -caprolactone monomer and a glycidyl methacrylate monomer are polymerized, and is crosslinked with an inorganic particle surface-treated with the silane.
  • the arrangement order of the ⁇ -caprolactone monomer and the glycidyl methacrylate monomer is not particularly limited, and may be arranged alternately, randomly, or in blocks.
  • a hydroxyl group or the like may be bonded to the terminal of the copolymer.
  • a copolymer having a hydroxyl group bonded to the terminal like this can be produced by polymerization using an initiator having a hydroxyl group bonded to the terminal.
  • the copolymer comprising a lactone monomer and glycidyl methacrylate used in the present invention may be a 2-arm copolymer, and the 2-arm copolymer may be represented by the following chemical formula (1):
  • R 1 , R 2 and R 3 are independently hydrogen (H) or an alkyl group having 1 to 6 carbon atoms,
  • n and n are integers from 1 to 20, independently of each other,
  • A, B 1 and B 2 are independently oxygen (O) or sulfur (S),
  • x and y represent the mole % of repeating units
  • x+y is 100, and x is between 80 and 95.
  • the 2-arm copolymer has the chemical formula (1).
  • R 1 , R 2 and R 3 are independently hydrogen (H) or a methyl group (CH3-),
  • n are independently integers from 3 to 12,
  • A, B 1 and B 2 are all oxygen (O),
  • x and y represent the mole % of repeating units
  • x+y 100, where x can be between 88 and 94.
  • R 1 , R 2 and R 3 are independently hydrogen (H),
  • n are independently integers from 5 to 6
  • A, B 1 and B 2 are independently oxygen (O),
  • x and y represent the mole % of repeating units
  • x+y 100, where x is between 88 and 94.
  • n and n are integers from 1 to 20, independently of each other,
  • x and y represent the mole % of repeating units
  • x+y is 100, and x is between 80 and 95.
  • x and y represent mole % of repeating units, x+y is 100, and x can be 80 to 95, or 88 to 94.
  • the 2-arm copolymer according to the present invention may be a 2-arm PCL-PGMA copolymer of ⁇ -caprolactone monomer and glycidyl methacrylate.
  • the 2-arm copolymer is described in detail in Korean Patent No. 10-1906472 and Korean Patent No. 10-2355542, which are incorporated herein by reference in their entireties.
  • the copolymer comprising a lactone monomer and glycidyl methacrylate used in the present invention may be a 4-arm copolymer, and the 4-arm copolymer may be represented by the following chemical formula (2):
  • x is an integer between 1 and 20,
  • n represent the mole % of repeating units
  • n 100, and m is between 80 and 96.
  • x may be an integer from 2 to 10.
  • x may be an integer from 2 to 9, an integer from 2 to 8, an integer from 2 to 7, an integer from 2 to 6, an integer from 2 to 5, an integer from 3 to 10, an integer from 3 to 9, an integer from 3 to 8, an integer from 3 to 7, an integer from 3 to 6, an integer from 3 to 5, an integer from 4 to 10, an integer from 4 to 9, an integer from 4 to 8, an integer from 4 to 7, an integer from 4 to 6, an integer from 4 to 5, an integer from 5 to 10, an integer from 5 to 9, an integer from 5 to 8, an integer from 5 to 7, or an integer from 5 to 6.
  • a compound in which x in the chemical formula (2) is 5 may be used, but is not limited thereto.
  • m and n represent mole % of repeating units, m+n is 100, and m can be 70 to 99, 85 to 96, 88 to 96, 90 to 96, 92 to 96, or 94 to 96.
  • mole % means the ratio of repeating units of m and n, and specifically, it can mean mole fraction.
  • it can mean the mole fraction of repeating units of PCL and PGMA in PCL-co-PGMA.
  • the 4-arm copolymer according to the present invention may be a 4-arm PCL-PGMA copolymer of an ⁇ -caprolactone monomer and glycidyl methacrylate.
  • the 4-arm PCL-PGMA may include a central carbon having four carbon-carbon bonding arms.
  • the copolymer comprising a lactone monomer and glycidyl methacrylate used in the present invention may be a 6-arm copolymer, and the 6-arm copolymer may be represented by the following chemical formula (3):
  • x and y are integers from 1 to 20, independently of each other,
  • n represent the mole % of repeating units
  • n 100, and m is between 70 and 99.
  • m and n represent the molar % of repeating units, m+n is 100, and m can be 70 to 99, 85 to 96, 88 to 96, 90 to 96, 92 to 96, or 94 to 96.
  • mole % means the ratio of repeating units of m and n, and specifically, it can mean mole fraction.
  • it can mean the mole fraction of repeating units of PCL and PGMA in PCL-co-PGMA.
  • the compound of the above chemical formula (3) can control the shape restoration temperature, etc. depending on the amount of ⁇ -caprolactone monomer and glycidyl methacrylate monomer constituting it.
  • x and y are each independently an integer from 1 to 20, which can be controlled by the carbon number of the lactone series monomer and the initiator in the step of synthesizing the compound of the chemical formula (3).
  • x when epsilon caprolactone ( ⁇ -CL) is used, x can be 3, and when dipentaerythritol is used, y can be 1.
  • the number of x can be controlled by using monomers such as ⁇ -acetolactone, ⁇ -propiolactone, ⁇ -butyrolactone, and ⁇ -valerolactone instead of epsilon caprolactone ( ⁇ -CL), and the number of y can be controlled by using an initiator such as 6 arm PEG instead of dipentaerythritol.
  • x and y can be easily controlled by a person skilled in the art.
  • the compound of the chemical formula (3) of the present invention can be prepared by reacting an ⁇ -acetolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone or ⁇ -caprolactone monomer with an acrylic monomer containing a glycidyl group and an initiator.
  • the compound of the chemical formula (3) of the present invention can be prepared by a ring-opening polymerization reaction of dipentaerythritol, caprolactone, and glycidyl methacrylate.
  • the reactivity can be improved by adding a catalyst or by adding a polymerization inhibitor together with or simultaneously with the initiator during the initial reaction when the polymerization conversion is almost zero, thereby inhibiting the reaction between the temperature-sensitive glycidyl methacrylate groups.
  • the compound of the chemical formula (3) of the present invention can be prepared by including a step of reacting dipentaerythritol, caprolactone, and glycidyl methacrylate.
  • the reaction can be characterized by being a ring-opening polymerization reaction.
  • the reaction can be characterized by reacting in the presence of a catalyst selected from the group consisting of 1,5,7-triazabicyclo(4.4.0)dec-5-ene, tin(II) (2-ethylhexanoate), trimethylopropane tris(3-mercaptopropionate), and zinc succinate, but is not limited thereto.
  • 1,5,7-Triazabicyclo(4.4.0)dec-5-ene as a catalyst, which can shorten the synthesis time of the compound, as a substance for inducing simultaneous ring-opening polymerization of two monomers (CL, GMA).
  • an initiator and/or polymerization inhibitor can be added during the initial reaction, i.e., before adding glycidyl methacrylate, to inhibit the reaction between methacrylate groups.
  • the polymerization inhibitor plays a role in suppressing the exothermic reaction that occurs locally in the latter half of the polymerization and eliminating unreacted residual radicals to terminate the reaction.
  • the above initiator may be characterized as being dipentaerythritol, and specifically, the present invention may be characterized in that a six-arm polycaprolactone-polyglycidyl methacrylate (6-arm PCL-PGMA) copolymer is synthesized by the initial addition of the above initiator.
  • 6-arm PCL-PGMA six-arm polycaprolactone-polyglycidyl methacrylate
  • the polymerization inhibitor may be at least one selected from the group consisting of hydroquinone, hydroquinone monomethyl ether, p-benzoquinone, and phenothiazine, but is not limited thereto.
  • the polymerization inhibitor may be hydroquinone.
  • the method for producing a compound of chemical formula (3) may be characterized by reacting dipentaerythritol, caprolactone, and glycidyl methacrylate at 80 to 140°C, preferably 100 to 130°C, for example, at about 110°C.
  • the polymerization mechanism of the compound of chemical formula (3) can be expressed as follows.
  • the above cross-linking reaction may be characterized as a photocross-linking reaction or a thermal cross-linking reaction, but is not limited thereto.
  • the compound of chemical formula (3) may have a structure of a copolymer in which an ⁇ -caprolactone monomer and an acrylic monomer containing a glycidyl group are polymerized.
  • the compound of chemical formula (3) may have a structure of a copolymer [PCL-co-PGMA)] in which an ⁇ -caprolactone monomer (CL; caplolactone) and a glycidyl methacrylate (GMA) monomer are polymerized.
  • the arrangement order of the ⁇ -caprolactone monomer and the glycidyl methacrylate monomer is not particularly limited and may be arranged alternately, randomly, or in blocks.
  • a hydroxyl group or the like may be bonded to the terminal of the copolymer.
  • a copolymer having a hydroxyl group bonded to the terminal like this can be produced by polymerization using an initiator having a hydroxyl group bonded to the terminal.
  • the glycidyl group included in the glycidyl methacrylate monomer may be a crosslinkable functional group, and may be a photocrosslinkable functional group or a thermally crosslinkable functional group.
  • the copolymer may have shape memory properties by crosslinking.
  • the shape memory polymer according to the present invention may be characterized in that the inorganic particles surface-treated with silane are contained in an amount of about 1 to about 20 wt% relative to the copolymer. In one embodiment, the inorganic particles surface-treated with silane are contained in an amount of about 3 to about 18 wt% relative to the copolymer. In another embodiment, the inorganic particles surface-treated with silane are contained in an amount of about 1 to about 15 wt% relative to the copolymer. In yet another embodiment, the inorganic particles surface-treated with silane are contained in an amount of about 5 to about 15 wt% relative to the copolymer.
  • the inorganic particles surface-treated with silane are contained in an amount of about 10 to about 20 wt% relative to the copolymer. In yet another embodiment, the inorganic particles surface-treated with silane are contained in an amount of about 10 to about 15 wt% relative to the copolymer. For example, the inorganic particles surface-treated with silane may be contained in an amount of about 15 wt% relative to the copolymer.
  • the shape memory polymer has a shape restoring force (or shape restoring ability) of 50% or more, preferably, at a temperature of 30 to 60°C, or at any range of temperatures within the temperature of 30 to 60°C, for example, at a temperature of 35 to 55°C, or at any temperature within the temperature of 30 to 60°C, for example, at about 35°C, about 36°C, about 37°C, about 38°C, about 39°C, about 40°C, about 41°C, about 42°C, about 43°C, about 44°C, about 45°C, about 46°C, about 47°C, about 48°C, about 49°C, about 50°C, about 51°C, about 52°C, about 53°C, about 54°C, about 55°C, about 56°C, about 57°C, about 58°C, about 59°C, or about 60°C.
  • a shape restoring force or shape restoring ability
  • it may be about 55% or more, about 60% or more, about 65% or more, about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more, about 95% or more, or about 100%, but is not limited thereto.
  • the shape memory polymer may have a resolution improved by about 2 times or more, for example, about 2.1 times or more, about 2.2 times or more, about 2.3 times or more, about 2.4 times or more, about 2.5 times or more, about 2.6 times or more, about 2.7 times or more, about 2.8 times or more, about 2.9 times or more, about 3.0 times or more, about 3.1 times or more, about 3.2 times or more, about 3.3 times or more, about 3.4 times or more, or about 3.5 times or more, compared to a polycaprolactone-polyglycidyl methacrylate copolymer.
  • the shape memory polymer can exhibit a resolution of about 40% or more, about 45% or more, about 50% or more, about 55% or more, or about 60% or more within 7 days under biomimetic conditions.
  • the 6-arm copolymer according to the present invention may be a 6-arm PCL-PGMA copolymer of an ⁇ -caprolactone monomer and glycidyl methacrylate.
  • 6-arm copolymer is described in detail in Korean Patent No. 10-2516991, which is incorporated herein by reference in its entirety.
  • the present invention relates to a method for producing a shape memory polymer, comprising the following steps:
  • the inorganic particles surface-treated with the silane may be mixed in an amount of about 1 to about 20 wt% relative to the copolymer, and in one embodiment, the inorganic particles surface-treated with the silane may be mixed in an amount of about 3 to about 18 wt% relative to the copolymer, in another embodiment, the inorganic particles surface-treated with the silane may be mixed in an amount of about 1 to about 15 wt% relative to the copolymer, in yet another embodiment, the inorganic particles surface-treated with the silane may be mixed in an amount of about 5 to about 15 wt% relative to the copolymer, in yet another embodiment, the inorganic particles surface-treated with the silane may be mixed in an amount of about 10 to about 20 wt% relative to the copolymer, in yet another embodiment, the inorganic particles surface-treated with the silane may be mixed in an amount of about 10 to about 15 wt% relative to the copolymer, for example, the inorganic particles surface-
  • the crosslinking agent may be at least one selected from the group consisting of potassium persulfate, ammonium persulfate, benzoyl peroxide, diauryl peroxide, dicumyl peroxide, hydrogen peroxide, azobisisobutuyronitrile, Irgacure, Darocure, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), diphenyl(2,4,6-Trimethylbenzoyl)phosphine (TPO), and ethyl(2,4,6-trimethylbenzoyl)phenylphosphinate (TPO-L).
  • LAP lithium phenyl-2,4,6-trimethylbenzoylphosphinate
  • TPO diphenyl(2,4,6-Trimethylbenzoyl)phosphine
  • TPO-L ethyl(2,4,6-trimethylbenzoyl)phenylphosphinate
  • the crosslinking agent may be mixed in an amount of about 0.1 to about 5.0 wt% relative to the copolymer.
  • the crosslinking agent may be added in an amount of about 0.2 to about 2.0 wt%, preferably about 0.5 wt% relative to the copolymer.
  • the crosslinking may be thermal crosslinking or photocrosslinking.
  • the crosslinking is thermal crosslinking, and may be crosslinked by applying a pressure of about 1 to about 20 MPa at about 100 to about 160°C for about 10 to about 30 minutes.
  • the crosslinking may be crosslinking by applying a pressure of about 1 to about 20 MPa for about 10 to about 30 minutes at a temperature of about 100 to about 160°C, and preferably crosslinking by applying a pressure of about 5 to about 15 MPa for about 10 to about 30 minutes at about 120 to about 150°C, but is not limited thereto.
  • the crosslinking is photocrosslinking, and may be crosslinked by irradiating UV at an intensity of about 100 to about 500 mW/ cm2 for about 100 to about 1000 seconds.
  • the crosslinking may be performed by irradiating UV of about 360 to about 370 nm at an intensity of about 100 to about 500 mW/ cm2 for about 100 to about 1000 seconds, and preferably, by irradiating UV of about 365 nm at an intensity of about 200 to about 300 mW/ cm2 for about 200 to about 500 seconds, but is not limited thereto.
  • the shape memory polymer according to the present invention can be applied to all products requiring a synthetic polymer with shape memory properties and improved degradability.
  • the present invention relates to a medical material comprising the shape memory polymer.
  • the medical material may be a material for vascular or non-vascular transplantation, i.e., a material for manufacturing a device or insert for transplantation into a blood vessel or non-vascular vessel.
  • the medical material may be a material for reconstructing a tissue depression selected from the group consisting of the nose, the paranasal sinuses, the chin, the facial region, the craniofacial region, the cheekbone, the forehead, and skin, that is, a material for manufacturing an apparatus or an insert for transplanting one or more tissues selected from the group consisting of the nose, the paranasal sinuses, the chin, the facial region, the craniofacial region, the cheekbone, the forehead, and skin to a depressed portion.
  • the medical material may be a material for implantation into a bone cavity or a cartilage damage site, that is, a material for manufacturing a device or insert for implantation into a bone cavity or a cartilage damage site.
  • the present invention relates to a scaffold for tissue engineering comprising the shape memory polymer.
  • a tissue engineering scaffold including the above shape memory polymer can have the characteristic of acting as a prototype of a tissue due to its shape memory properties and supporting cell attachment, proliferation, division, and creation of new tissue, and can have the characteristic of controlling the decomposition rate by controlling the crosslinking ratio of the copolymer and the inorganic particles.
  • a scaffold for tissue engineering comprising a shape memory polymer according to the present invention has excellent biocompatibility and cytocompatibility as well as improved biodegradability, and can be utilized as a porous artificial graft material for, for example, autologous bone replacement.
  • the present invention relates to the use of the shape memory polymer as a medical material.
  • the present invention relates to the use of the shape memory polymer in the manufacture of medical materials, medical devices or medical implants.
  • the present invention relates to a surgical or surgical method including a step of applying a medical device or implant made of a medical material including the shape memory polymer to a subject (e.g., a human or a mammal) in need thereof.
  • a subject e.g., a human or a mammal
  • Example 1 Shape memory polymer containing 5 phr of hydroxyapatite (HAp)
  • a magnetic bar was placed in a 3-neck round bottom flask, 6 g of hydroxyapatite (Skyspring nanomaterials) was added, 100 ml of ethanol was added, and stirred. After 6 ml of 3-Mercaptopropyltrimethoxy silane (TCI) was added, the flask inlet was blocked, and stirred at 70°C for 48 hours. Afterwards, centrifugation was performed at 5000 rpm for 3 minutes using a centrifuge (Eppendorf), and then washing. The final reactant was then dried in a vacuum to obtain silane-treated nanoparticles.
  • TCI 3-Mercaptopropyltrimethoxy silane
  • a 3-neck round bottom flask was placed with a magnetic bar, and 1,6-hexanediol (initiator, 0.5 mmol, Sigma Aldrich) and hydroquinone (inhibitor, HQ, 1 mmol, Sigma Aldrich) were added.
  • the flask inlet was blocked, vacuumed for 10 minutes, and then nitrogen was purged at a rate of 50 cc/min.
  • Purified ⁇ -caprolactone ( ⁇ -CL, 94 mmol, Sigma Aldrich) was injected into the flask using a 20G syringe needle. Mixing was performed at 110°C and 180 rpm for 10 minutes.
  • Glycidyl methacrylate (monomer, GMA, 6 mmol, Sigma Aldrich) was injected using a 20G syringe needle. After 10 min of injection of glycidyl methacrylate, 1,5,7-Triazabicyclo(4.4.0)dec-5-ene (TBD, catalyst, 1 mmol, Sigma Aldrich) dissolved in 1 mL of acetonitrile (ACN, Sigma Aldrich) was injected using a 20G syringe needle (1 mmolTBD/1 mL ACN). Then, the flask was reacted at 110°C for 6 h.
  • TBD 1,5,7-Triazabicyclo(4.4.0)dec-5-ene
  • ACN acetonitrile
  • the final reactant was dissolved in 15 mL of chloroform (Daejung chemicals & metals Co., LTD., Korea) and precipitated in 400 mL of cold ethyl ether (Daejung chemicals & metals CO., LTD., Korea) at 4°C. The obtained sediment was filtered and then vacuum dried.
  • HD(1,6-hexanediol) was used as an initiator
  • TBD(1,5,7-Triazabicyclo(4.4.0)dec-5-ene) was used as a catalyst
  • HQ(hydroquinone) was used as an inhibitor
  • CL( ⁇ -caprolactone) and GMA(glycidyl methacrylate) were used as monomers.
  • a 2-arm PCL-PGMA copolymer was dissolved in NMP (Sigma aldrich) at a 1:1 (w:v) ratio, and then silane-treated hydroxyapatite nanoparticles and a crosslinker, Irgacure2959, were additionally dissolved.
  • the mixed solution was applied to a constant mold of the desired shape, and then irradiated with UV (365 nm) at an intensity of 265 mW/cm 2 for 300 s to obtain a crosslinked sample.
  • Silane-treated Hydroxyapatite was prepared as described in Example 1-1, and 2 arm 94PCL-06PGMA was prepared as described in Example 1-2.
  • the crosslinking agent Irgacure2959 was additionally dissolved in the solution in which the 2-arm 94PCL-06PGMA copolymer manufactured in Example 1-2 was dissolved. At this time, the crosslinking agent Irgacure2959 was dissolved in an amount of 0.5 wt% based on each 2-arm PCL-PGMA copolymer. After sufficiently mixing, the mixed solution was applied to a constant mold of a desired shape, and then irradiated with UV (365 nm) at 265 mW/cm 2 intensity for 300 seconds to obtain a crosslinked sample.
  • UV 365 nm
  • Example 1 Example 2, and Comparative Example, melting points were measured within a temperature range of -70°C to 150°C using differential scanning calorimetry (DSC, Netzsch) according to the manufacturer's instructions.
  • Example 1 In order to compare the shape recovery ability of Example 1, Example 2, and Comparative Example, each sample was stretched by 50 to 60%. After exposing the stretched sample to a temperature of 40 to 45°C, the shape recovery ability (%) was confirmed according to Equation (1).
  • Example 1 As shown in Table 6, Example 1, Example 2, and Comparative Example all exhibited a shape restoring ability of 80% or more. As expected from the thermal properties, the Example also confirmed shape memory properties in the body temperature range like the Comparative Example, and through this, it was found that the shape memory polymer can be utilized in the body temperature range even when hydroxyapatite is added.
  • Example 2 and Comparative Example 1 was measured using a dynamic mechanical analyzer (DMA, TA instrument). To this end, the sample was heated to 50°C, stretched by 4 to 6%, cooled to -10°C, and fixed. After that, when the temperature was raised to 50°C again, it was checked four times whether it returned to its original shape.
  • DMA dynamic mechanical analyzer
  • Example 2 and Comparative Example 1 maintained shape memory characteristics reproducibly in four repeated tests.
  • Example 2 was manufactured in the form of a porous scaffold so that it could be inserted into the body.
  • Example 2 To manufacture a porous scaffold, 2 g of alginate beads (Samchun) and 5 mg of Irgacure2959 (Sigma aldrich), a crosslinking agent, were evenly dispersed in 1 ml of NMP, and then Example 2 was added and mixed. Example 2 was evenly mixed with the alginate beads, placed into a certain mold, and irradiated with UV (365 nm) at 265 mW/cm 2 intensity for 300 seconds to obtain a sample. Thereafter, the alginate beads were removed using a 0.1 M ethylene-diamine-tetra-acetic acid solution (EDTA, Sigma aldrich), to manufacture a scaffold with a porous structure.
  • EDTA ethylene-diamine-tetra-acetic acid solution
  • a porous scaffold having a porous structure with a size of several micrometers to 100 micrometers could be manufactured from Example 2 (Fig. 3).
  • the sample was compressed by 30% and exposed to 40 to 45°C, and then the shape recovery ability (%) was confirmed according to Equation (1).
  • Example 2 To compare the mechanical properties of Example 2 and Comparative Example 1, the elastic modulus and compressive strength of each sample were measured using a universal testing machine (UTM, Instron) according to the manufacturer's instructions.
  • UPM universal testing machine
  • the example according to the present invention showed a higher decomposition behavior than the comparative example in all time periods, and in particular, it was confirmed that more than about 45% was decomposed within 8 days (Fig. 6).
  • a porous scaffold was implanted subcutaneously into the flank of 6-week-old BALB/C mice (Orient Bio) and its in vivo degradation behavior was confirmed for 60 days. The experiment was conducted with 5 mice per group.
  • mice were anesthetized by intraperitoneal injection of Zoletil ® 50 (injection amount: 20 mg/kg).
  • the mouse skin of the area to be transplanted was shaved and disinfected with 70% alcohol.
  • the skin was incised to a size of 1 cm, and the porous scaffold prepared by dissecting the skin and muscle was transplanted subcutaneously into the mouse.
  • the resected skin area was sutured with 6-0 silk suture and disinfected with povidone-iodine (Korea Pharma Co., Ltd.).
  • the scaffold transplantation process was performed in a sterile environment.
  • the nuclei and extracellular matrix of cells that had migrated into the porous scaffold were stained using H&E staining, and the correlation between the degree of scaffold degradation and the degree of tissue regeneration was confirmed.
  • the transplanted scaffold and surrounding tissues were collected and fixed in 10% formalin (Tech&Innovation) for 48 hours.
  • the fixed tissue samples were then dehydrated in distilled water for 30 minutes, treated with ethanol, and made into paraffin blocks.
  • the paraffin blocks were sectioned into 7 ⁇ m thick sections, and the nuclei and extracellular matrix were stained with hematoxylin solution (Sigma aldrich) and eosin solution (Sigma aldrich), respectively.
  • the samples were mounted and observed under an optical microscope.
  • Example 2 when Example 2 was transplanted, the extracellular matrix area was stained more darkly compared to when the comparative example was transplanted, which means that tissues can grow more quickly in the area where Example 2 was transplanted as the decomposition of Example 2 progresses more quickly (Fig. 7).
  • the area of the darkly dyed part was compared with that immediately after transplantation, in the case of the comparative example, the area of the darkly dyed part increased by an average of 8.7% after 60 days compared to that immediately after transplantation, and in the case of the example 2, the area of the darkly dyed part increased by an average of 33.7% after 60 days compared to that immediately after transplantation (Fig. 8).
  • the decomposition ability it was found that in the case of the comparative example, decomposition occurred about 3.8 times faster.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Vascular Medicine (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a shape memory polymer with improved degradability and a method for preparing same and, more specifically, to: a shape memory polymer which is synthesized by inducing chemical bonding between a copolymer, which comprises a lactone monomer and glycidyl methacrylate, and silane-treated inorganic particles, so as to maintain shape memory properties and, at the same time, exhibit significantly improved short-term degradability; and a method for preparing same. The shape memory polymer according to the present invention maintains shape memory properties within the body temperature range due to having a low melting temperature, and due to the chemical bonding between inorganic particles that are surface-treated with silane and a copolymer comprising a lactone monomer and glycidyl methacrylate, exhibits higher dispersibility as compared to physical bonding, and thus has the advantages of enhanced mechanical properties and improved degradability, compared to the parent copolymer. In addition, the shape memory polymer has the advantage of having controllable degradability since the crystallinity of the polymer chain can be controlled, when inserted into the body. In particular, the shape memory polymer according to the present invention can be degraded in vivo within a short period of time, and thus has the advantage of being usable as a medical material for manufacturing various medical devices for in vivo tissue regeneration.

Description

분해성이 향상된 형상기억고분자 및 이의 제조방법 Shape memory polymer with improved degradability and method for producing the same
본 발명은 분해성이 향상된 형상기억고분자 및 이의 제조방법에 관한 것으로, 더 상세하게는 락톤 단량체와 글리시딜메타크릴레이트의 공중합체와 실란 처리된 무기입자의 화학결합을 유도하여 형상기억특성을 유지하는 동시에 단기간 분해능이 현저히 향상되도록 합성된 형상기억고분자 및 이의 제조방법에 관한 것이다. The present invention relates to a shape memory polymer with improved degradability and a method for producing the same, and more specifically, to a shape memory polymer synthesized by inducing a chemical bond between a copolymer of a lactone monomer and glycidyl methacrylate and a silane-treated inorganic particle so as to maintain shape memory characteristics while significantly improving short-term degradability, and a method for producing the same.
합성고분자는 천연고분자보다 기계적 물성이 우수하고 기능기 부여가 용이하며 높은 탄성변형율과 낮은 가격 등의 장점이 있어, 천연 고분자를 대체할 수 있는 유용한 소재로 각광받고 있다. Synthetic polymers have advantages over natural polymers, such as superior mechanical properties, easy functionalization, high elastic strain, and low price, and are thus attracting attention as useful materials that can replace natural polymers.
그 중에서도 폴리카프로락톤(poly(ε-caprolactone), PCL)은 생체적합하며, 형상기억고분자(SMP) 형태로 광가교 및 화학적 변형을 할 수 있는 생체 의학 어플리케이션을 위한 미국 FDA 승인을 받은 생분해성 고분자로 안정성을 확보한 소재이다. 폴리카프로락톤이 생체적합성을 가지고 있는 소재이나 체내삽입시 최소침습성이 없어 환자의 불편감 해소에는 문제점이 있다.Among them, polycaprolactone (poly(ε-caprolactone), PCL) is a biocompatible, shape-memory polymer (SMP) type biodegradable polymer that has been approved by the US FDA for biomedical applications and is a stable material. Although polycaprolactone is a biocompatible material, it is not minimally invasive when inserted into the body, so there is a problem in relieving patient discomfort.
이에, 본 발명자들은 ε-카프로락톤 단량체와 글리시딜 메타크릴레이트 (GMA)를 중합한 다양한 형태의 폴리카프로락톤-폴리메타크릴레이트 공중합체[PCL-co-PGMA)]를 개발한 바 있으며(대한민국 등록특허 제10-1906472호, 대한민국 등록특허 제10-2355542호, 대한민국 공개특허 제10-2021-0158356호), 이와 같이 제조된 공중합체는 ε-카프로락톤과 글리시딜 메타크릴레이트의 도입량 조절에 따라 다양한 융점을 가지며, 체온 범위에서 높은 변형회복율을 가지는 형상기억특성을 가지고 있어, 생리의학 응용기구에 유용하게 활용될 수 있는 장점이 있었다. Herein, the inventors of the present invention have developed various types of polycaprolactone-polymethacrylate copolymers [PCL-co-PGMA) by polymerizing ε-caprolactone monomer and glycidyl methacrylate (GMA) (Korean Patent No. 10-1906472, Korean Patent No. 10-2355542, Korean Patent Publication No. 10-2021-0158356), and the copolymers prepared in this way have various melting points depending on the adjustment of the introduction amounts of ε-caprolactone and glycidyl methacrylate, and have shape memory properties with a high deformation recovery rate in the body temperature range, so that they have the advantage of being usefully utilized in physiological and medical application devices.
한편, 조직공학은 생체대용품을 만들어 이식함으로써 사고나 질병에 의해 결손된 우리 몸을 대체 또는 복원하는 것을 목적으로 하는 기술로, 조직공학에 사용되는 생체재료는 생체적합성이 우수하고, 독성이 없으며, 기계적, 물리적 성질 및 성형가공성이 사용 목적 및 용도에 알맞게 조절 가능하여야 할 뿐만 아니라 생분해성도 함께 고려되어야 한다. Meanwhile, tissue engineering is a technology that aims to replace or restore our bodies damaged by accidents or diseases by creating and transplanting biosubstitutes. Biomaterials used in tissue engineering must have excellent biocompatibility, be non-toxic, and have mechanical, physical properties, and molding processability that can be adjusted to suit the purpose and use, and biodegradability must also be considered.
체내 삽입 의료기기 중 비분해성의 경우 장기 사용에 따른 부식, 협착 등의 문제점이 발생할 수 있어, 체내 삽입형 의료기기에서는 생분해성이 특히 중요하다. 또한, 분해성의 조절이 가능할 경우 의료기기가 적용되는 부위에 부합하도록 다양한 의료기기를 제작할 수 있는 장점이 있다. 특히, 세포가 지지하며 자랄 수 있는 지지체 역할을 하는 조직공학용 스캐폴드는 큰 표면적의 부피와 다공성을 가져야 하며, 생분해성을 조절할 수 있어야 한다. Among implantable medical devices, non-degradable ones can cause problems such as corrosion and strictures with long-term use, so biodegradability is particularly important for implantable medical devices. In addition, if degradability can be controlled, there is an advantage in that various medical devices can be manufactured to suit the area to which the medical device is applied. In particular, scaffolds for tissue engineering, which serve as a support for cells to support and grow, must have a large surface area and porosity, and must be able to control biodegradability.
이에, 본 발명자들은 체온 범위에서 높은 변형회복율을 가지는 생리의학 응용기구로 적합한 형상기억특성을 그대로 유지하면서도 생체 내에서 단기간에 분해 가능한 고분자를 개발하고자 예의 노력한 결과, 실란으로 표면 처리된 무기입자와 락톤 단량체와 글리시딜메타크릴레이트를 포함하는 공중합체가 가교되어 있는 고분자 복합체를 개발할 수 있었고, 상기 고분자 복합체는 형상기억특성으로 인한 최소 침습적 특성이 부여되는 동시에 생체 내에서 단기간 내 효과적으로 분해될 수 있음을 확인함으로써 본 발명을 완성하였다. Accordingly, the inventors of the present invention have made efforts to develop a polymer that can be decomposed in a living body in a short period of time while maintaining shape memory properties suitable as a physiological medical application device with a high deformation recovery rate in a body temperature range, and as a result, were able to develop a polymer complex in which inorganic particles surface-treated with silane and a copolymer containing a lactone monomer and glycidyl methacrylate are cross-linked, and completed the present invention by confirming that the polymer complex can be effectively decomposed in a living body in a short period of time while being provided with minimally invasive properties due to shape memory properties.
본 발명은 단기간 분해능이 향상되도록 합성된 형상기억고분자, 이의 제조방법 및 이의 용도를 제공하는 것을 목적으로 한다. The present invention aims to provide a shape memory polymer synthesized to improve short-term resolution, a method for producing the same, and a use thereof.
상기 목적을 달성하기 위하여, 본 발명은 실란으로 표면 처리된 무기입자와 락톤 단량체 및 글리시딜메타크릴레이트를 포함하는 공중합체가 가교된 형상기억고분자를 제공한다. To achieve the above purpose, the present invention provides a shape memory polymer in which an inorganic particle surface-treated with silane and a copolymer including a lactone monomer and glycidyl methacrylate are crosslinked.
본 발명에 있어서, 상기 실란으로 표면 처리된 무기입자는 실란으로 표면 처리된 젤라틴, 콜라겐, 키토산, 알지네이트, 셀롤로오스 또는 하이드록시아파타이트 무기입자일 수 있다. In the present invention, the inorganic particles surface-treated with silane may be inorganic particles of gelatin, collagen, chitosan, alginate, cellulose or hydroxyapatite surface-treated with silane.
본 발명에 있어서, 상기 실란은 머캅토프로필 트리메톡시실란(3-Mercaptopropyl trimethoxy silane) 또는 트리메톡시실릴프로필 아크릴레이트(3-Trimethoxysilylpropyl acrylate)일 수 있다. In the present invention, the silane may be mercaptopropyl trimethoxy silane (3-Mercaptopropyl trimethoxy silane) or trimethoxysilylpropyl acrylate (3-Trimethoxysilylpropyl acrylate).
본 발명에 있어서, 상기 공중합체는 In the present invention, the copolymer is
하기 화학식 (1)로 나타낸 화합물:A compound represented by the following chemical formula (1):
화학식 (1)Chemical formula (1)
Figure PCTKR2024095451-appb-img-000001
Figure PCTKR2024095451-appb-img-000001
상기 화학식 (1)에서,In the above chemical formula (1),
R1, R2 및 R3은 서로 독립적으로 수소(H) 또는 탄소수 1 내지 6의 알킬기이고,R 1 , R 2 and R 3 are independently hydrogen (H) or an alkyl group having 1 to 6 carbon atoms,
m 및 n는 서로 독립적으로 1 내지 20의 정수이며,m and n are integers from 1 to 20, independently of each other,
A, B1 및 B2는 서로 독립적으로 산소(O) 또는 황(S)이고,A, B 1 and B 2 are independently oxygen (O) or sulfur (S),
x 및 y는 반복 단위의 몰%를 나타내고,x and y represent the mole % of repeating units,
x+y는 100이며, x는 80 내지 95이다;x+y is 100, and x is between 80 and 95;
하기 화학식 (2)로 나타낸 화합물:A compound represented by the following chemical formula (2):
화학식 (2)Chemical formula (2)
Figure PCTKR2024095451-appb-img-000002
Figure PCTKR2024095451-appb-img-000002
상기 화학식 (2)에서,In the above chemical formula (2),
x는 1 내지 20의 정수이며,x is an integer between 1 and 20,
m 및 n은 반복 단위의 몰%를 나타내고,m and n represent the mole % of repeating units,
m+n은 100이고, m은 80 내지 96이다; 또는 m+n is 100, and m is between 80 and 96; or
하기 화학식 (3)으로 나타낸 화합물:A compound represented by the following chemical formula (3):
화학식 (3)Chemical formula (3)
Figure PCTKR2024095451-appb-img-000003
Figure PCTKR2024095451-appb-img-000003
상기 화학식 (3)에서, In the above chemical formula (3),
x 및 y는 서로 독립적으로 1 내지 20의 정수이고,x and y are integers from 1 to 20, independently of each other,
m 및 n은 반복 단위의 몰%를 나타내며,m and n represent the mole % of repeating units,
m+n은 100이고, m은 70 내지 99인;공중합체일 수 있다. m+n is 100 and m is 70 to 99; may be a copolymer.
본 발명에 있어서, 상기 형상기억고분자는 30 내지 60℃에서 형상복원능이 50% 이상일 수 있다. In the present invention, the shape memory polymer may have a shape restoring ability of 50% or more at 30 to 60°C.
본 발명에 있어서, 상기 형상기억고분자는 상기 공중합체에 비해 분해능이 2배 이상 개선된 것일 수 있다. In the present invention, the shape memory polymer may have a resolution improved by at least twice compared to the copolymer.
본 발명은 또한, 다음 단계를 포함하는 상기 형상기억고분자 제조방법의 제조방법을 제공한다:The present invention also provides a method for producing the shape memory polymer, comprising the following steps:
(a) 실란으로 표면 처리된 무기입자, 락톤 단량체 및 글리시딜메타크릴레이트를 포함하는 공중합체 및 가교제를 혼합하는 단계; 및(a) a step of mixing a copolymer comprising inorganic particles surface-treated with silane, a lactone monomer and glycidyl methacrylate, and a crosslinking agent; and
(b) 상기 혼합물을 가교하는 단계.(b) a step of cross-linking the mixture.
본 발명에 있어서, 상기 실란으로 표면 처리된 입자는 실란으로 표면 처리된 키토산, 알지네이트, 셀롤로오스 또는 하이드록시아파타이트 무기입자일 수 있다.In the present invention, the particles surface-treated with silane may be inorganic particles of chitosan, alginate, cellulose or hydroxyapatite surface-treated with silane.
본 발명에 있어서, 상기 실란으로 표면 처리된 무기입자는 상기 공중합체 대비 1 내지 20 중량%로 혼합할 수 있다. In the present invention, the inorganic particles surface-treated with the silane can be mixed in an amount of 1 to 20 wt% relative to the copolymer.
본 발명에 있어서, 상기 가교제는 과황산칼륨 (Potassium persulfate), 과황산암모늄 (Ammonium persulfate), 과산화 벤조일(Benzoyl peroxide), 다이아우릴 퍼옥사이드(Diauryl peroxide), 다이큐밀 퍼옥사이드 (Dicumyl peroxide), 과산화수소(Hydrogen peroxide), 아조비스이소부티로니트릴 (Azobisisobutuyronitrile), 이르가큐어(Irgacure), 다로큐어(Darocure), LAP(Lithium phenyl-2,4,6-trimethylbenzoylphosphinate), TPO(Diphenyl(2,4,6-Trimethylbenzoyl)Phosphine), TPO-L(Ethyl(2,4,6-trimethylbenzoyl)phenylphosphinate)로 구성된 군에서 선택되는 하나 이상일 수 있다. In the present invention, the crosslinking agent may be at least one selected from the group consisting of potassium persulfate, ammonium persulfate, benzoyl peroxide, diauryl peroxide, dicumyl peroxide, hydrogen peroxide, azobisisobutuyronitrile, Irgacure, Darocure, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), diphenyl(2,4,6-Trimethylbenzoyl)phosphine (TPO), and ethyl(2,4,6-trimethylbenzoyl)phenylphosphinate (TPO-L).
본 발명에 있어서, 상기 가교제는 상기 공중합체 대비 0.1 내지 5.0 중량%로 혼합할 수 있다. In the present invention, the crosslinking agent can be mixed in an amount of 0.1 to 5.0 wt% relative to the copolymer.
본 발명에 있어서, 상기 가교는 열가교 또는 광가교일 수 있다. In the present invention, the crosslinking may be thermal crosslinking or photocrosslinking.
본 발명에 있어서, 상기 가교는 열가교이고, 100 내지 160℃에서 10분 내지 30분 동안 1 내지 20 MPa의 압력을 가하여 가교하는 것일 수 있다. In the present invention, the crosslinking is thermal crosslinking, and may be crosslinked by applying a pressure of 1 to 20 MPa at 100 to 160°C for 10 to 30 minutes.
본 발명에 있어서, 상기 가교는 광가교이고, UV를 100 내지 500 mW/cm2 세기로 100 내지 1000초 조사하여 가교하는 것일 수 있다. In the present invention, the crosslinking is photocrosslinking, and may be crosslinked by irradiating UV at an intensity of 100 to 500 mW/ cm2 for 100 to 1000 seconds.
본 발명은 또한, 상기 형상기억고분자를 포함하는 의료용 소재에 관한 것이다.The present invention also relates to a medical material comprising the shape memory polymer.
본 발명에 있어서, 상기 의료용 소재는 혈관 또는 비혈관 이식용 소재일 수 있다. In the present invention, the medical material may be a material for vascular or non-vascular transplantation.
본 발명에 있어서, 상기 의료용 소재는 코, 부비, 턱, 안면부, 두개 안면, 광대, 이마 및 피부로 구성된 군에서 선택되는 어느 하나 이상의 조직 함몰 재건용 소재일 수 있다. In the present invention, the medical material may be a material for tissue depression reconstruction selected from the group consisting of the nose, sinuses, chin, face, craniofacial area, cheekbone, forehead, and skin.
본 발명에 있어서, 상기 의료용 소재는 골강 내 또는 연골 손상 부위 이식용 소재일수 있다. In the present invention, the medical material may be a material for transplantation into a bone cavity or a cartilage damaged area.
본 발명은 또한, 상기 형상기억고분자를 포함하는 조직공학용 스캐폴드를 제공한다.The present invention also provides a scaffold for tissue engineering comprising the shape memory polymer.
본 발명에 따른 형상기억고분자는 용융온도가 낮아 체온범위에서 형상기억 특성을 유지하면서도, 실란으로 표면 처리된 무기입자와 락톤 단량체 및 글리시딜메타크릴레이트를 포함하는 공중합체 간의 화학적 결합으로 물리적 결합에 비해 더 높은 분산성 나타내어 모체가 되는 공중합체와 비교하여 기계적 물성이 강화되고 분해성이 개선된 장점이 있다. 또한, 체내 삽입시 고분자 사슬의 결정성을 제어할 수 있어 분해성을 조절할 수 있는 장점이 있다. 특히, 본 발명에 따른 형상기억고분자는 생체 내에서 단기간 분해가 가능한 바, 생체 내 조직재생을 위한 다양한 의료기구를 제작하는 의료용 소재로 활용 가능한 장점이 있다. The shape memory polymer according to the present invention has a low melting temperature, so that it maintains shape memory properties in a body temperature range, while exhibiting higher dispersibility than physical bonding through chemical bonding between inorganic particles surface-treated with silane and a copolymer including a lactone monomer and glycidyl methacrylate, thereby having advantages of enhanced mechanical properties and improved degradability compared to the parent copolymer. In addition, it has an advantage of being able to control degradability because the crystallinity of the polymer chain can be controlled when inserted into the body. In particular, the shape memory polymer according to the present invention can be degraded in a short period of time in the body, so that it has the advantage of being usable as a medical material for manufacturing various medical devices for in vivo tissue regeneration.
도 1은 실란 처리된 Hydroxyapatite의 구조를 확인하기 위하여 Raman spectrum을 측정한 결과이다. Figure 1 shows the results of measuring the Raman spectrum to confirm the structure of silane-treated Hydroxyapatite.
도 2는 본 발명의 일실시예와 비교예의 형상기억특성의 반복재현성을 동적기계적 측정장비(Dynamic Mechanical Aanalyzer, DMA)를 이용하여 측정하여 분석한 결과이다. Figure 2 shows the results of analyzing the reproducibility of shape memory characteristics of one embodiment of the present invention and a comparative example using a dynamic mechanical analyzer (DMA).
도 3은 본 발명의 일실시예를 이용하여 제조된 다공구조 스캐폴드의 단면 이미지를 보여준다. Figure 3 shows a cross-sectional image of a porous scaffold manufactured using one embodiment of the present invention.
도 4는 본 발명의 일실시예를 이용하여 제조된 다공구조 스캐폴드의 형상복원능을 확인한 결과이다.Figure 4 shows the results of confirming the shape restoring ability of a porous scaffold manufactured using one embodiment of the present invention.
도 5는 본 발명의 일실시예와 비교예의 (a) 탄성계수와 (b) 압축강도를 만능시험기(Universal Testing Machine, UTM)로 측정하여 비교한 결과이다. Figure 5 shows the results of comparing (a) the elastic modulus and (b) the compressive strength of one embodiment of the present invention and a comparative example, measured using a universal testing machine (UTM).
도 6은 본 발명의 일실시예와 비교예의 시간 경과에 따른 In vitro 분해 거동을 보여주는 결과이다. Figure 6 is a result showing the in vitro decomposition behavior over time of one embodiment of the present invention and a comparative example.
도 7은 본 발명의 일실시예와 비교예를 rat에 이식한 후 시간 경과에 따른 In vivo 분해 거동을 H&E 염색으로 확인한 결과이다.Figure 7 shows the results of confirming the in vivo decomposition behavior over time using H&E staining after transplanting an embodiment of the present invention and a comparative example into a rat.
도 8은 도 7의 H&E 염색 결과를 기초로, 본 발명의 일실시예와 비교예의 신생 조직 형성 영역을 비교한 결과이다. Figure 8 is a result of comparing the new tissue formation areas of one embodiment of the present invention and a comparative example based on the H&E staining results of Figure 7.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법 및 이하에 기술하는 실험 방법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein and the experimental methods described below are well known and commonly used in the art.
본 발명에 사용된 용어 "약 (about)"은 대략, 가량, 대충, 또는 일정 정도의 의미로 해석될 수 있다. "약" 이라는 용어가 숫자 범위와 함께 사용되는 경우, 지정된 숫자 값의 위아래로 경계를 확장하여 해당 범위를 수정하여 해석한다. 일반적으로, 용어 "약"은 10%의 분산에 의해 명시된 값의 위와 아래의 수치 값을 수정하기 위해 본 발명에서 사용된다.The term "about" as used herein can be interpreted to mean approximately, roughly, roughly, or to a certain extent. When the term "about" is used with a numerical range, it is interpreted to modify that range by extending the boundaries above and below the specified numerical value. Generally, the term "about" is used herein to modify a numerical value above and below a specified value by a variance of 10%.
형상기억고분자shape memory polymer
본 발명은 실란으로 표면 처리된 무기입자와 락톤 단량체 및 글리시딜메타크릴레이트를 포함하는 공중합체가 가교된 형상기억고분자에 관한 것이다.The present invention relates to a shape memory polymer crosslinked with an inorganic particle surface-treated with silane and a copolymer containing a lactone monomer and glycidyl methacrylate.
본 발명에서 "형상기억고분자(SMP, shape memory polymer)" 란, 특정 조건에서 어떤 물체를 일정한 모양을 가지도록 만들어 놓으면, 그 이후 외부적 충격에 의해 모양이 달라졌다 하더라도 그 물체를 처음과 동일한 조건(온도, 빛, pH, 습도 등)으로 만들어 주면 다시 원래의 모양으로 되돌아가는 성질을 가진 고분자를 의미한다. In the present invention, a "shape memory polymer (SMP)" means a polymer that has the property of returning to its original shape when an object is made to have a certain shape under specific conditions and the shape is subsequently changed by an external impact, when the object is made to have the same initial conditions (temperature, light, pH, humidity, etc.).
본 발명에 따른 형상기억고분자는 락톤 단량체 및 글리시딜메타크릴레이트를 포함하는 공중합체의 형상기억특성은 유지하면서도 실란으로 표면 처리된 무기입자의 효과(결정성 변화)로 인하여 단기간 분해성능은 현저히 개선하였다. The shape memory polymer according to the present invention maintains the shape memory characteristics of a copolymer containing a lactone monomer and glycidyl methacrylate, while significantly improving short-term decomposition performance due to the effect (crystallization change) of inorganic particles surface-treated with silane.
즉, 본 발명에 따른 형상기억고분자가 형상기억특성을 유지하는 동시에 단기간 분해성능이 현저한 개선되는 특징은 실란으로 표면 처리된 무기입자와 락톤 단량체 및 글리시딜메타크릴레이트를 포함하는 공중합체가 단순한 복합화(혼합이나 물리적 분산)가 아닌 가교 결합, 즉, 화학적 결합을 형성하기 때문이다. That is, the feature that the shape memory polymer according to the present invention maintains shape memory characteristics while significantly improving short-term decomposition performance is because the inorganic particles surface-treated with silane and the copolymer containing a lactone monomer and glycidyl methacrylate form a cross-linking bond, i.e., a chemical bond, rather than a simple complexation (mixing or physical dispersion).
본 발명에 따른 형상기억고분자는 실란으로 표면 처리된 무기입자와 락톤 단량체 및 글리시딜메타크릴레이트를 포함하는 공중합체가 가교되어, 7일 내 50% 가까이 분해되는 효과를 갖는다. The shape memory polymer according to the present invention is a copolymer comprising an inorganic particle surface-treated with silane and a lactone monomer and glycidyl methacrylate, which is crosslinked and has an effect of decomposing by nearly 50% within 7 days.
또한, 본 발명에 따른 형상기억고분자는 실란으로 표면 처리된 무기입자와 락톤 단량체 및 글리시딜메타크릴레이트를 포함하는 공중합체가 가교되면서, 무기입자가 고분자 매트릭스 내에 균일하게 분포하면서 외력을 고르게 분산시켜 락톤 단량체 및 글리시딜메타크릴레이트를 포함하는 공중합체에 비해 탄성계수와 압축강도가 증가되는 특징을 갖는다. In addition, the shape memory polymer according to the present invention has the characteristics of increasing the elastic modulus and compressive strength compared to the copolymer containing the lactone monomer and glycidyl methacrylate by crosslinking the inorganic particles surface-treated with silane and the copolymer containing the lactone monomer and glycidyl methacrylate, while the inorganic particles are uniformly distributed within the polymer matrix and the external force is evenly distributed.
본 발명에서 사용되는 실란으로 표면 처리된 무기입자는 실란으로 표면 처리된 젤라틴, 콜라겐, 키토산, 알지네이트, 셀롤로오스 또는 하이드록시아파타이트 무기입자일 수 있으나, 이에 한정되지는 않는다. The inorganic particles surface-treated with silane used in the present invention may be, but are not limited to, inorganic particles of gelatin, collagen, chitosan, alginate, cellulose or hydroxyapatite surface-treated with silane.
본 발명에 있어서, 상기 실란은 머캅토프로필 트리메톡시실란(3-Mercaptopropyl trimethoxy silane) 또는 트리메톡시실릴프로필 아크릴레이트(3-Trimethoxysilylpropyl acrylate)일 수 있으나, 이에 한정되지는 않는다. In the present invention, the silane may be mercaptopropyl trimethoxy silane or trimethoxysilylpropyl acrylate, but is not limited thereto.
본 발명에서 무기입자를 실란으로 표면 처리하는 경우, 말단의 기능성 그룹으로 인하여 다양한 유기 물질과의 혼합능이 향상된다. 또한, 이러한 표면처리된 무기입자와 생체적합성 고분자간의 화학결합을 유도할 경우 물리적인 복합화에 비하여 무기입자의 기핵제로의 역할이 증가하여 고분자의 결정구조를 제어할 수 있으며, 이를 통하여 분해성의 특성을 제어할 있다.In the present invention, when the inorganic particles are surface-treated with silane, the mixing ability with various organic substances is improved due to the functional groups at the terminals. In addition, when a chemical bond is induced between the surface-treated inorganic particles and a biocompatible polymer, the role of the inorganic particles as a nucleating agent increases compared to physical complexation, so that the crystal structure of the polymer can be controlled, and through this, the degradability characteristics can be controlled.
본 발명에 따른 형상기억고분자를 제조하는데 있어서, 락톤 단량체 및 글리시딜메타크릴레이트를 포함하는 공중합체와의 효과적인 가교를 위해서는 실란으로 표면 처리된 무기입자는 마이크로 크기의 무기입자 또는 나노 크기의 무기입자일 수 있으며, 1 nm 내지 300um의 입자크기를 가지는 것이 바람직하다. 이 중에서도 상기 공중합체와의 혼합성을 강화시키고, 나노 분산화를 위해서는 나노 무기입자를 사용하는 것이 더 바람직하다. In manufacturing the shape memory polymer according to the present invention, for effective crosslinking with a copolymer including a lactone monomer and glycidyl methacrylate, the inorganic particles surface-treated with silane may be micro-sized inorganic particles or nano-sized inorganic particles, and preferably have a particle size of 1 nm to 300 μm. Among these, it is more preferable to use nano inorganic particles to enhance the mixing property with the copolymer and to achieve nano-dispersion.
일 양태로서, 본 발명에서 형상기억고분자는 ε-카프로락톤 단량체와 글리시딜 메타크릴레이트 단량체가 중합된 공중합체[(PCL-co-PGMA)]와 상기 실란으로 표면 처리된 무기입자와 가교되어 있다. In one embodiment, the shape memory polymer in the present invention is a copolymer [(PCL-co-PGMA)] in which an ε-caprolactone monomer and a glycidyl methacrylate monomer are polymerized, and is crosslinked with an inorganic particle surface-treated with the silane.
상기 공중합체에서 ε-카프로락톤 단량체와 글리시딜 메타크릴레이트 단량체의 배열순서는 특별히 제한되지 않고, 교호, 랜덤 또는 블록으로 배열될 수 있다.In the above copolymer, the arrangement order of the ε-caprolactone monomer and the glycidyl methacrylate monomer is not particularly limited, and may be arranged alternately, randomly, or in blocks.
또한, 공중합체의 말단에는 히드록시기 등이 결합되어 있을 수 있다. 이와 같이 말단에 히드록시기가 결합되어 있는 공중합체는 말단에 히드록시기가 결합되어 있는 개시제 등을 사용하여 중합함으로써 제조할 수 있다.In addition, a hydroxyl group or the like may be bonded to the terminal of the copolymer. A copolymer having a hydroxyl group bonded to the terminal like this can be produced by polymerization using an initiator having a hydroxyl group bonded to the terminal.
1. 2 arm 공중합체1. 2 arm copolymer
일 양태로써, 본 발명에서 사용되는 락톤 단량체 및 글리시딜메타크릴레이트를 포함하는 공중합체는 2 arm 공중합체일 수 있고, 상기 2 arm 공중합체는 하기 화학식 (1)로 표시될 수 있다:In one embodiment, the copolymer comprising a lactone monomer and glycidyl methacrylate used in the present invention may be a 2-arm copolymer, and the 2-arm copolymer may be represented by the following chemical formula (1):
화학식 (1)Chemical formula (1)
Figure PCTKR2024095451-appb-img-000004
Figure PCTKR2024095451-appb-img-000004
상기 화학식 (1)에서,In the above chemical formula (1),
R1, R2 및 R3은 서로 독립적으로 수소(H) 또는 탄소수 1 내지 6의 알킬기이고,R 1 , R 2 and R 3 are independently hydrogen (H) or an alkyl group having 1 to 6 carbon atoms,
m 및 n는 서로 독립적으로 1 내지 20의 정수이며,m and n are integers from 1 to 20, independently of each other,
A, B1 및 B2는 서로 독립적으로 산소(O) 또는 황(S)이고,A, B 1 and B 2 are independently oxygen (O) or sulfur (S),
x 및 y는 반복 단위의 몰%를 나타내고,x and y represent the mole % of repeating units,
x+y는 100이며, x는 80 내지 95이다.x+y is 100, and x is between 80 and 95.
구체적으로, 2 arm 공중합체는 화학식 (1)에서, Specifically, the 2-arm copolymer has the chemical formula (1).
R1, R2 및 R3은 서로 독립적으로 수소(H) 또는 메틸기(CH3-)이고,R 1 , R 2 and R 3 are independently hydrogen (H) or a methyl group (CH3-),
m 및 n는 서로 독립적으로 3 내지 12의 정수이며,m and n are independently integers from 3 to 12,
A, B1 및 B2는 모두 산소(O)이고,A, B 1 and B 2 are all oxygen (O),
x 및 y는 반복 단위의 몰%를 나타내고,x and y represent the mole % of repeating units,
x+y=100이며, x는 88 내지 94일 수 있다. x+y=100, where x can be between 88 and 94.
보다 구체적으로, More specifically,
R1, R2 및 R3은 서로 독립적으로 수소(H)이고,R 1 , R 2 and R 3 are independently hydrogen (H),
m 및 n는 서로 독립적으로 5 내지 6의 정수이며,m and n are independently integers from 5 to 6,
A, B1 및 B2는 서로 독립적으로 산소(O)이고,A, B 1 and B 2 are independently oxygen (O),
x 및 y는 반복 단위의 몰%를 나타내고,x and y represent the mole % of repeating units,
x+y=100이며, x는 88 내지 94이다.x+y=100, where x is between 88 and 94.
상기 화학식 (1)은 하기 화학식 (1')으로 나타낼 수 있다:The above chemical formula (1) can be represented by the following chemical formula (1'):
화학식 (1')Chemical formula (1')
Figure PCTKR2024095451-appb-img-000005
Figure PCTKR2024095451-appb-img-000005
상기 화학식 (1')에서In the above chemical formula (1')
m 및 n는 서로 독립적으로 1 내지 20의 정수이며,m and n are integers from 1 to 20, independently of each other,
x 및 y는 반복 단위의 몰%를 나타내고,x and y represent the mole % of repeating units,
x+y는 100이며, x는 80 내지 95이다.x+y is 100, and x is between 80 and 95.
상기 화학식 (1) 또는 (1')에서 x 및 y는 반복 단위의 몰%를 나타내고, x+y는 100이며, x는 80 내지 95, 또는 88 내지 94일 수 있다.In the chemical formula (1) or (1'), x and y represent mole % of repeating units, x+y is 100, and x can be 80 to 95, or 88 to 94.
일 구체예로써, 본 발명에 따른 2 arm 공중합체는 ε-카프로락톤 단량체와 글리시딜 메타크릴레이트의 공중합체로서 2 arm PCL-PGMA 일 수 있다. As a specific example, the 2-arm copolymer according to the present invention may be a 2-arm PCL-PGMA copolymer of ε-caprolactone monomer and glycidyl methacrylate.
본 발명에 있어서, 2 arm 공중합체는 대한민국 등록특허 제10-1906472호 및 대한민국 등록특허 제10-2355542호에 상세히 기재되어 있으며, 대한민국 등록특허 제10-1906472호 및 대한민국 등록특허 제10-2355542호는 전문이 본 발명에 참조로서 통합된다. In the present invention, the 2-arm copolymer is described in detail in Korean Patent No. 10-1906472 and Korean Patent No. 10-2355542, which are incorporated herein by reference in their entireties.
2. 4 arm 공중합체2. 4 arm copolymer
다른 양태로서, 본 발명에서 사용되는 락톤 단량체 및 글리시딜메타크릴레이트를 포함하는 공중합체는 4 arm 공중합체 일 수 있고, 상기 4 arm 공중합체는 다음 화학식 (2)로 표시될 수 있다:In another embodiment, the copolymer comprising a lactone monomer and glycidyl methacrylate used in the present invention may be a 4-arm copolymer, and the 4-arm copolymer may be represented by the following chemical formula (2):
Figure PCTKR2024095451-appb-img-000006
Figure PCTKR2024095451-appb-img-000006
상기 화학식 (2)에서,In the above chemical formula (2),
x는 1 내지 20의 정수이며,x is an integer between 1 and 20,
m 및 n은 반복 단위의 몰%를 나타내고,m and n represent the mole % of repeating units,
m+n은 100이고, m은 80 내지 96이다.m+n is 100, and m is between 80 and 96.
본 발명 화학식 (2)에서 x는 2 내지 10의 정수일 수 있다. 다른 구체예에서, x는 2 내지 9의 정수, 2 내지 8의 정수, 2 내지 7의 정수, 2 내지 6의 정수, 2 내지 5의 정수, 3 내지 10의 정수, 3 내지 9의 정수, 3 내지 8의 정수, 3 내지 7의 정수, 3 내지 6의 정수, 3 내지 5의 정수, 4 내지 10의 정수, 4 내지 9의 정수, 4 내지 8의 정수, 4 내지 7의 정수, 4 내지 6의 정수, 4 내지 5의 정수, 5 내지 10의 정수, 5 내지 9의 정수, 5 내지 8의 정수, 5 내지 7의 정수, 또는 5 내지 6의 정수일 수 있다. 가장 구체적으로 화학식 (2)에서의 x는 5인 화합물을 이용할 수 있으나, 이에 제한되는 것은 아니다.In the chemical formula (2) of the present invention, x may be an integer from 2 to 10. In other specific examples, x may be an integer from 2 to 9, an integer from 2 to 8, an integer from 2 to 7, an integer from 2 to 6, an integer from 2 to 5, an integer from 3 to 10, an integer from 3 to 9, an integer from 3 to 8, an integer from 3 to 7, an integer from 3 to 6, an integer from 3 to 5, an integer from 4 to 10, an integer from 4 to 9, an integer from 4 to 8, an integer from 4 to 7, an integer from 4 to 6, an integer from 4 to 5, an integer from 5 to 10, an integer from 5 to 9, an integer from 5 to 8, an integer from 5 to 7, or an integer from 5 to 6. Most specifically, a compound in which x in the chemical formula (2) is 5 may be used, but is not limited thereto.
보다 구체적으로, 상기 화학식 (2)에서 m 및 n은 반복 단위의 몰%를 나타내고, m+n는 100이며, m은 70 내지 99, 85 내지 96, 88 내지 96, 90 내지 96, 92 내지 96, 또는 94 내지 96 일 수 있다.More specifically, in the chemical formula (2), m and n represent mole % of repeating units, m+n is 100, and m can be 70 to 99, 85 to 96, 88 to 96, 90 to 96, 92 to 96, or 94 to 96.
여기서, 몰%라 함은 m 및 n의 반복 단위의 비율을 의미하는 것으로, 구체적으로, 몰분율(ratio)를 의미할 수 있다. 일 예로, PCL-co-PGMA에서 PCL 과 PGMA의 반복 단위의 몰분율을 의미할 수 있다. Here, mole % means the ratio of repeating units of m and n, and specifically, it can mean mole fraction. For example, it can mean the mole fraction of repeating units of PCL and PGMA in PCL-co-PGMA.
일 구체예로써, 본 발명에 따른 4 arm 공중합체는 ε-카프로락톤 단량체와 글리시딜 메타크릴레이트의 공중합체로서 4 arm PCL-PGMA일 수 있다. 상기 4 arm PCL-PGMA는 네 개의 탄소-탄소 결합팔을 갖는 중심 탄소를 포함할 수 있다.As a specific example, the 4-arm copolymer according to the present invention may be a 4-arm PCL-PGMA copolymer of an ε-caprolactone monomer and glycidyl methacrylate. The 4-arm PCL-PGMA may include a central carbon having four carbon-carbon bonding arms.
본 발명에 있어서, 4 arm 공중합체는 대한민국 공개특허 제10-2021-0158356호에 상세히 기재되어 있으며, 대한민국 공개특허 제10-2021-0158356호는 전문이 본 발명에 참조로서 통합된다. In the present invention, the 4-arm copolymer is described in detail in Korean Patent Publication No. 10-2021-0158356, which is incorporated herein by reference in its entirety.
3. 6 arm 공중합체3. 6 arm copolymer
다른 양태로서, 본 발명에서 사용되는 락톤 단량체 및 글리시딜메타크릴레이트를 포함하는 공중합체는 6 arm 공중합체 일 수 있고, 상기 6 arm 공중합체는 다음 화학식 (3)으로 표시될 수 있다:In another embodiment, the copolymer comprising a lactone monomer and glycidyl methacrylate used in the present invention may be a 6-arm copolymer, and the 6-arm copolymer may be represented by the following chemical formula (3):
화학식 (3)Chemical formula (3)
Figure PCTKR2024095451-appb-img-000007
Figure PCTKR2024095451-appb-img-000007
상기 화학식 (3)에서, In the above chemical formula (3),
x 및 y는 서로 독립적으로 1 내지 20의 정수이고,x and y are integers from 1 to 20, independently of each other,
m 및 n은 반복 단위의 몰%를 나타내며,m and n represent the mole % of repeating units,
m+n은 100이고, m은 70 내지 99이다.m+n is 100, and m is between 70 and 99.
보다 구체적으로, 상기 화학식 (3)에서 m 및 n은 반복 단위의 몰%를 나타내고, m+n는 100이며, m은 70 내지 99, 85 내지 96, 88 내지 96, 90 내지 96, 92 내지 96, 또는 94 내지 96 일 수 있다.More specifically, in the chemical formula (3), m and n represent the molar % of repeating units, m+n is 100, and m can be 70 to 99, 85 to 96, 88 to 96, 90 to 96, 92 to 96, or 94 to 96.
여기서, 몰%라 함은 m 및 n의 반복 단위의 비율을 의미하는 것으로, 구체적으로, 몰분율(ratio)를 의미할 수 있다. 일 예로, PCL-co-PGMA에서 PCL 과 PGMA의 반복 단위의 몰분율을 의미할 수 있다. Here, mole % means the ratio of repeating units of m and n, and specifically, it can mean mole fraction. For example, it can mean the mole fraction of repeating units of PCL and PGMA in PCL-co-PGMA.
상기 화학식 (3)의 화합물은 이를 구성하는 ε-카프로락톤 단량체와 글리시딜 메타크릴레이트 단량체량에 따라 형상 복원 온도 등을 조절할 수 있다.The compound of the above chemical formula (3) can control the shape restoration temperature, etc. depending on the amount of ε-caprolactone monomer and glycidyl methacrylate monomer constituting it.
보다 구체적으로, 상기 화학식 (3)에서 x 및 y는 서로 독립적으로 1 내지 20의 정수이며, 이는 화학식 (3)의 화합물을 합성하는 단계의 락톤 계열 단량체와 개시제의 탄소 수로 조절될 수 있다.More specifically, in the chemical formula (3), x and y are each independently an integer from 1 to 20, which can be controlled by the carbon number of the lactone series monomer and the initiator in the step of synthesizing the compound of the chemical formula (3).
예컨대, 입실론 카프로락톤(ε-CL)을 사용하는 경우 x는 3일 수 있으며, 다이펜타에리쓰리톨(dipentaerythritol)을 사용하는 경우 y는 1일 수 있다. 또한, 입실론 카프로락톤(ε-CL)을 대체하여 α-acetolactone, β-propiolactone, γ-butyrolactone, δ-valerolactone 등의 단량체를 사용하여 x의 숫자가 조절될 수 있으며 다이펜타에리쓰리톨(dipentaerythritol)를 대체하여 6 arm PEG 등의 개시제를 사용하여 y의 숫자가 조절될 수 있다. 본 발명에서 x, y는 본 기술분야의 통상의 기술자가 용이하게 조절할 수 있다.For example, when epsilon caprolactone (ε-CL) is used, x can be 3, and when dipentaerythritol is used, y can be 1. In addition, the number of x can be controlled by using monomers such as α-acetolactone, β-propiolactone, γ-butyrolactone, and δ-valerolactone instead of epsilon caprolactone (ε-CL), and the number of y can be controlled by using an initiator such as 6 arm PEG instead of dipentaerythritol. In the present invention, x and y can be easily controlled by a person skilled in the art.
본 발명 화학식 (3)의 화합물은 α-acetolactone, β-propiolactone, γ-butyrolactone, δ-valerolactone 또는 ε-caprolactone 단량체를 글리시딜기를 포함하는 아크릴 단량체 및 개시제와 함께 반응시켜 제조될 수 있다. The compound of the chemical formula (3) of the present invention can be prepared by reacting an α-acetolactone, β-propiolactone, γ-butyrolactone, δ-valerolactone or ε-caprolactone monomer with an acrylic monomer containing a glycidyl group and an initiator.
예컨대, 본 발명 화학식 (3)의 화합물은 다이펜타에리쓰리톨(dipentaerythritol), 카프로락톤(caprolactone) 및 글리시딜 메타크릴레이트(glycidyl methacrylate)를 개환중합 반응시켜 제조될 수 있다. For example, the compound of the chemical formula (3) of the present invention can be prepared by a ring-opening polymerization reaction of dipentaerythritol, caprolactone, and glycidyl methacrylate.
이 경우, 촉매를 첨가하거나, 중합 전환율이 거의 없는 초기 반응 시 개시제와 함께 또는 동시에 중합억제제를 첨가하여 온도에 민감한 글리시딜 메타크릴레이트 그룹 간의 반응을 억제시킴으로서 반응성을 향상시킬 수 있다. In this case, the reactivity can be improved by adding a catalyst or by adding a polymerization inhibitor together with or simultaneously with the initiator during the initial reaction when the polymerization conversion is almost zero, thereby inhibiting the reaction between the temperature-sensitive glycidyl methacrylate groups.
본 발명 화학식 (3)의 화합물은 다이펜타에리쓰리톨(dipentaerythritol), 카프로락톤(caprolactone) 및 글리시딜 메타크릴레이트(glycidyl methacrylate)를 반응시키는 단계를 포함하여 제조될 수 있다. 상기 반응은 개환중합 반응인 것을 특징으로 할 수 있다. 상기 반응은 1,5,7-트리아자바이사이클로(4.4.0)데크-5-엔(1,5,7-Triazabicyclo(4.4.0)dec-5-ene), 주석(II)(2-에칠헥사노에이트)(tin(II) (2-ethylhexanoate)), 트리메틸로프로판 트리스(3-머캅토프로피오네이트)(trimethylopropane tris(3-mercaptopropionate)) 및 숙신산 아연(Zinc succinate)으로 구성된 군에서 선택되는 촉매의 존재 하에 반응시키는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다. The compound of the chemical formula (3) of the present invention can be prepared by including a step of reacting dipentaerythritol, caprolactone, and glycidyl methacrylate. The reaction can be characterized by being a ring-opening polymerization reaction. The reaction can be characterized by reacting in the presence of a catalyst selected from the group consisting of 1,5,7-triazabicyclo(4.4.0)dec-5-ene, tin(II) (2-ethylhexanoate), trimethylopropane tris(3-mercaptopropionate), and zinc succinate, but is not limited thereto.
특히, 두 단량체(CL, GMA)의 동시 개환중합을 유도하기 위한 물질로, 상기 화합물의 합성시간을 단축시킬 수 있는 1,5,7-트리아자바이사이클로(4.4.0)데크-5-엔(1,5,7-Triazabicyclo(4.4.0)dec-5-ene)을 촉매로 사용하는 것이 바람직하다.In particular, it is preferable to use 1,5,7-Triazabicyclo(4.4.0)dec-5-ene as a catalyst, which can shorten the synthesis time of the compound, as a substance for inducing simultaneous ring-opening polymerization of two monomers (CL, GMA).
본 발명에서는, 초기 반응 시, 즉, 글리시딜 메타크릴레이트를 투입하기 전 개시제 및/또는 중합 억제제를 투입하여 메타크릴레이트 그룹 간의 반응을 억제시킬 수 있다. In the present invention, an initiator and/or polymerization inhibitor can be added during the initial reaction, i.e., before adding glycidyl methacrylate, to inhibit the reaction between methacrylate groups.
이에 더하여, 중합 억제제는 중합 후반 국부적으로 발생하는 발열 반응의 억제와 미반응 잔류 라디칼을 제거하여 반응을 종결시키는 역할을 한다.In addition, the polymerization inhibitor plays a role in suppressing the exothermic reaction that occurs locally in the latter half of the polymerization and eliminating unreacted residual radicals to terminate the reaction.
이와 같이 개시제와 중합 억제제를 단량체인 카프로락톤(caprolactone) 및 글리시딜 메타크릴레이트(glycidyl methacrylate)와 약 110℃에서 약 6 시간 동안 반응시키면 단량체에 있는 고리 구조가 열리며 6개의 팔을 가지는 폴리카프로락톤-폴리글리시딜메타아크릴레이트(6 arm PCL-PGMA) 공중합체가 합성되게 된다. When the initiator and polymerization inhibitor are reacted with the monomers caprolactone and glycidyl methacrylate at about 110°C for about 6 hours, the ring structure in the monomers opens and a polycaprolactone-polyglycidyl methacrylate (6 arm PCL-PGMA) copolymer with six arms is synthesized.
상기 개시제는 다이펜타에리쓰리톨(dipentaerythritol)인 것을 특징으로 할 수 있으며, 구체적으로 본 발명은 상기 개시제의 초기 첨가에 의해 6개의 팔을 가지는 폴리카프로락톤-폴리글리시딜메타아크릴레이트(6-arm PCL-PGMA) 공중합체가 합성되는 것을 특징으로 할 수 있다. The above initiator may be characterized as being dipentaerythritol, and specifically, the present invention may be characterized in that a six-arm polycaprolactone-polyglycidyl methacrylate (6-arm PCL-PGMA) copolymer is synthesized by the initial addition of the above initiator.
상기 중합 억제제는 하이드로퀴논, 하이드로퀴논모노메틸 에테르(hydroquinone monomethyl ether), 파라-벤조퀴논(p-benzoquinone) 및 페노티아진(phenothiazine)으로 구성된 군으로부터 선택되는 1종 이상을 사용할 수 있으나, 이에 한정되지는 않는다. 바람직하게는 상기 중합 억제제는 하이드로퀴논(hydroquinone) 일 수 있다. The polymerization inhibitor may be at least one selected from the group consisting of hydroquinone, hydroquinone monomethyl ether, p-benzoquinone, and phenothiazine, but is not limited thereto. Preferably, the polymerization inhibitor may be hydroquinone.
화학식 (3)의 화합물 제조방법은 다이펜타에리쓰리톨(dipentaerythritol), 카프로락톤(caprolactone) 및 글리시딜 메타크릴레이트(glycidyl methacrylate)를 80 내지 140℃, 바람직하게는 100 내지 130℃, 예컨대, 약 110℃에서 반응시키는 것을 특징으로 할 수 있다. The method for producing a compound of chemical formula (3) may be characterized by reacting dipentaerythritol, caprolactone, and glycidyl methacrylate at 80 to 140°C, preferably 100 to 130°C, for example, at about 110°C.
이 경우, 100℃ 미만에서 본 발명 화학식 (3)의 화합물 합성이 진행되는 경우, 촉매반응이 진행되지 않을 수 있으며, 130℃을 초과한 온도에서 본 발명 화합물 합성이 진행되면 촉매반응 속도가 떨어지는 문제가 발생할 수 있다.In this case, if the synthesis of the compound of the chemical formula (3) of the present invention proceeds at a temperature below 100°C, the catalytic reaction may not proceed, and if the synthesis of the compound of the present invention proceeds at a temperature exceeding 130°C, the problem of a decrease in the catalytic reaction rate may occur.
바람직한 일 양태로서, 화학식 (3)의 화합물의 중합 메커니즘은 다음과 같이 표현될 수 있다.As a preferred embodiment, the polymerization mechanism of the compound of chemical formula (3) can be expressed as follows.
[반응식 1] [Reaction Formula 1]
Figure PCTKR2024095451-appb-img-000008
Figure PCTKR2024095451-appb-img-000008
상기 가교 반응은 광가교 또는 열가교 반응인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다. The above cross-linking reaction may be characterized as a photocross-linking reaction or a thermal cross-linking reaction, but is not limited thereto.
화학식 (3)의 화합물은 ε-카프로락톤 단량체와 글리시딜기를 포함하는 아크릴 단량체가 중합된 공중합체의 구조를 가질 수 있다. 예를 들어, 상기 화학식 (3)의 화합물은 ε-카프로락톤 단량체(CL; caplolactone)와 글리시딜 메타크릴레이트 (GMA) 단량체를 중합한 공중합체[PCL-co-PGMA)]의 구조를 가질 수 있다.The compound of chemical formula (3) may have a structure of a copolymer in which an ε-caprolactone monomer and an acrylic monomer containing a glycidyl group are polymerized. For example, the compound of chemical formula (3) may have a structure of a copolymer [PCL-co-PGMA)] in which an ε-caprolactone monomer (CL; caplolactone) and a glycidyl methacrylate (GMA) monomer are polymerized.
화학식 (3)의 화합물에서 ε-카프로락톤 단량체와 글리시딜 메타크릴레이트 단량체는 배열순서는 특별히 제한되지 않고, 교호, 랜덤 또는 블록으로 배열될 수 있다.In the compound of chemical formula (3), the arrangement order of the ε-caprolactone monomer and the glycidyl methacrylate monomer is not particularly limited and may be arranged alternately, randomly, or in blocks.
또한, 공중합체의 말단에는 히드록시기 등이 결합되어 있을 수 있다. 이와 같이 말단에 히드록시기가 결합되어 있는 공중합체는 말단에 히드록시기가 결합되어 있는 개시제 등을 사용하여 중합함으로써 제조할 수 있다.In addition, a hydroxyl group or the like may be bonded to the terminal of the copolymer. A copolymer having a hydroxyl group bonded to the terminal like this can be produced by polymerization using an initiator having a hydroxyl group bonded to the terminal.
한편, 글리시딜 메타크릴레이트 단량체에 포함되는 글리시딜기는 가교성 관능기일 수 있으며, 광가교성 관능기 또는 열가교성 관능기일 수 있다. 또한, 상기 공중합체는 가교에 의해 형상 기억 특성을 가질 수 있다. Meanwhile, the glycidyl group included in the glycidyl methacrylate monomer may be a crosslinkable functional group, and may be a photocrosslinkable functional group or a thermally crosslinkable functional group. In addition, the copolymer may have shape memory properties by crosslinking.
본 발명에 따른 형상기억고분자 내 상기 실란으로 표면 처리된 무기입자는 상기 공중합체 대비 약 1 내지 약 20 중량%로 포함되는 것을 특징으로 할 수 있으며, 일 양태로서, 상기 실란으로 표면 처리된 무기입자는 상기 공중합체 대비 약 3 내지 약 18 중량%, 다른 양태로서, 상기 실란으로 표면 처리된 무기입자는 상기 공중합체 대비 약 1 내지 약 15 중량%, 또 다른 양태로서, 상기 실란으로 표면 처리된 무기입자는 상기 공중합체 대비 약 5 내지 약 15 중량%, 또 다른 양태로서, 상기 실란으로 표면 처리된 무기입자는 상기 공중합체 대비 약 10 내지 약 20 중량%, 또 다른 양태로서, 상기 실란으로 표면 처리된 무기입자는 상기 공중합체 대비 약 10 내지 약 15 중량%, 예컨대, 상기 실란으로 표면 처리된 무기입자는 상기 공중합체 대비 약 15 중량%로 포함될 수 있다. The shape memory polymer according to the present invention may be characterized in that the inorganic particles surface-treated with silane are contained in an amount of about 1 to about 20 wt% relative to the copolymer. In one embodiment, the inorganic particles surface-treated with silane are contained in an amount of about 3 to about 18 wt% relative to the copolymer. In another embodiment, the inorganic particles surface-treated with silane are contained in an amount of about 1 to about 15 wt% relative to the copolymer. In yet another embodiment, the inorganic particles surface-treated with silane are contained in an amount of about 5 to about 15 wt% relative to the copolymer. In yet another embodiment, the inorganic particles surface-treated with silane are contained in an amount of about 10 to about 20 wt% relative to the copolymer. In yet another embodiment, the inorganic particles surface-treated with silane are contained in an amount of about 10 to about 15 wt% relative to the copolymer. For example, the inorganic particles surface-treated with silane may be contained in an amount of about 15 wt% relative to the copolymer.
상기 실란으로 표면 처리된 무기입자와 상기 공중합체가 상기한 중량비 범위를 벗어나는 경우, 상기 공중합체와 상기 실란으로 표면 처리된 무기입자의 가교가 원활히 일어나지 않는다. When the weight ratio of the inorganic particles surface-treated with the above silane and the copolymer is outside the above-mentioned range, crosslinking of the copolymer and the inorganic particles surface-treated with the silane does not occur smoothly.
본 발명에서, 상기 형상기억고분자는 30 내지 60℃의 온도, 또는 30 내지 60℃의 온도 내의 임의의 범위의 온도, 예컨대, 35 내지 55℃의 온도에서, 또는 30 내지 60℃의 온도 내의 임의의 온도, 예컨대, 약 35℃, 약 36℃, 약 37℃, 약 38℃, 약 39℃, 약 40℃, 약 41℃, 약 42℃, 약 43℃, 약 44℃, 약 45℃, 약 46℃, 약 47℃, 약 48℃, 약 49℃, 약 50℃, 약 51℃, 약 52℃, 약 53℃, 약 54℃, 약 55℃, 약 56℃, 약 57℃, 약 58℃, 약 59℃ 또는 약 60℃에서 형상 복원력(또는 형상 복원능)이 50% 이상, 바람직하게는 예컨대, 약 55% 이상, 약 60% 이상, 약 65% 이상, 약 70% 이상, 약 75% 이상, 약 80% 이상, 약 85% 이상, 약 90% 이상, 약 95% 이상, 약 100% 일 수 있으나, 이에 한정되지는 않는다. In the present invention, the shape memory polymer has a shape restoring force (or shape restoring ability) of 50% or more, preferably, at a temperature of 30 to 60°C, or at any range of temperatures within the temperature of 30 to 60°C, for example, at a temperature of 35 to 55°C, or at any temperature within the temperature of 30 to 60°C, for example, at about 35°C, about 36°C, about 37°C, about 38°C, about 39°C, about 40°C, about 41°C, about 42°C, about 43°C, about 44°C, about 45°C, about 46°C, about 47°C, about 48°C, about 49°C, about 50°C, about 51°C, about 52°C, about 53°C, about 54°C, about 55°C, about 56°C, about 57°C, about 58°C, about 59°C, or about 60°C. For example, it may be about 55% or more, about 60% or more, about 65% or more, about 70% or more, about 75% or more, about 80% or more, about 85% or more, about 90% or more, about 95% or more, or about 100%, but is not limited thereto.
본 발명에 있어서, 상기 형상기억고분자는 폴리카프로락톤-폴리글리시딜메타크릴레이트 공중합체에 비해 분해능이 약 2배 이상, 예컨대, 약 2.1배 이상, 약 2.2배 이상, 약 2.3배 이상, 약 2.4배 이상, 약 2.5배 이상, 약 2.6배 이상, 약 2.7배 이상, 약 2.8배 이상, 약 2.9배 이상, 약 3.0배 이상, 약 3.1배 이상, 약 3.2배 이상, 약 3.3배 이상, 약 3.4배 이상 또는 약 3.5배 이상 개선된 것일 수 있다.In the present invention, the shape memory polymer may have a resolution improved by about 2 times or more, for example, about 2.1 times or more, about 2.2 times or more, about 2.3 times or more, about 2.4 times or more, about 2.5 times or more, about 2.6 times or more, about 2.7 times or more, about 2.8 times or more, about 2.9 times or more, about 3.0 times or more, about 3.1 times or more, about 3.2 times or more, about 3.3 times or more, about 3.4 times or more, or about 3.5 times or more, compared to a polycaprolactone-polyglycidyl methacrylate copolymer.
본 발명에 있어서, 상기 형상기억고분자는 생체 모사 조건에서 7일 이내에 약 40% 이상, 약 45% 이상, 약 50% 이상, 약 55% 이상 또는 약 60% 이상의 분해능을 나타낼 수 있다. In the present invention, the shape memory polymer can exhibit a resolution of about 40% or more, about 45% or more, about 50% or more, about 55% or more, or about 60% or more within 7 days under biomimetic conditions.
일 구체예로써, 본 발명에 따른 6 arm 공중합체는 ε-카프로락톤 단량체와 글리시딜 메타크릴레이트의 공중합체로서 6 arm PCL-PGMA일 수 있다. As a specific example, the 6-arm copolymer according to the present invention may be a 6-arm PCL-PGMA copolymer of an ε-caprolactone monomer and glycidyl methacrylate.
본 발명에 있어서, 6 arm 공중합체는 대한민국 등록특허 제 10-2516991 호에 상세히 기재되어 있으며, 대한민국 등록특허 제 10-2516991 호는 전문이 본 발명에 참조로서 통합된다. In the present invention, the 6-arm copolymer is described in detail in Korean Patent No. 10-2516991, which is incorporated herein by reference in its entirety.
제조방법Manufacturing method
다른 관점에서, 본 발명은 다음 단계를 포함하는 상기 형상기억고분자 제조방법에 관한 것이다:In another aspect, the present invention relates to a method for producing a shape memory polymer, comprising the following steps:
(a) 실란으로 표면 처리된 무기입자, 락톤 단량체 및 글리시딜메타크릴레이트를 포함하는 공중합체 및 가교제를 혼합하는 단계; 및(a) a step of mixing a copolymer comprising inorganic particles surface-treated with silane, a lactone monomer and glycidyl methacrylate, and a crosslinking agent; and
(b) 상기 혼합물을 가교하는 단계.(b) a step of cross-linking the mixture.
본 발명에 있어서, 상기 실란으로 표면 처리된 무기입자는 상기 공중합체 대비 약 1 내지 약 20 중량%로 혼합하는 것일 수 있으며, 일 양태로서, 상기 실란으로 표면 처리된 무기입자는 상기 공중합체 대비 약 3 내지 약 18 중량%, 다른 양태로서, 상기 실란으로 표면 처리된 무기입자는 상기 공중합체 대비 약 1 내지 약 15 중량%, 또 다른 양태로서, 상기 실란으로 표면 처리된 무기입자는 상기 공중합체 대비 약 5 내지 약 15 중량%, 또 다른 양태로서, 상기 실란으로 표면 처리된 무기입자는 상기 공중합체 대비 약 10 내지 약 20 중량%, 상기 공중합체 대비 약 10 내지 약 20 중량%, 또 다른 양태로서, 상기 실란으로 표면 처리된 무기입자는 상기 공중합체 대비 약 10 내지 약 15 중량%, 예컨대, 상기 실란으로 표면 처리된 무기입자는 상기 공중합체 대비 약 15 중량%로 혼합하는 것일 수 있다. In the present invention, the inorganic particles surface-treated with the silane may be mixed in an amount of about 1 to about 20 wt% relative to the copolymer, and in one embodiment, the inorganic particles surface-treated with the silane may be mixed in an amount of about 3 to about 18 wt% relative to the copolymer, in another embodiment, the inorganic particles surface-treated with the silane may be mixed in an amount of about 1 to about 15 wt% relative to the copolymer, in yet another embodiment, the inorganic particles surface-treated with the silane may be mixed in an amount of about 5 to about 15 wt% relative to the copolymer, in yet another embodiment, the inorganic particles surface-treated with the silane may be mixed in an amount of about 10 to about 20 wt% relative to the copolymer, in yet another embodiment, the inorganic particles surface-treated with the silane may be mixed in an amount of about 10 to about 15 wt% relative to the copolymer, for example, the inorganic particles surface-treated with the silane may be mixed in an amount of about 15 wt% relative to the copolymer.
본 발명에 있어서, 상기 가교제는 과황산칼륨 (Potassium persulfate), 과황산암모늄 (Ammonium persulfate), 과산화 벤조일(Benzoyl peroxide), 다이아우릴 퍼옥사이드(Diauryl peroxide), 다이큐밀 퍼옥사이드 (Dicumyl peroxide), 과산화수소(Hydrogen peroxide), 아조비스이소부티로니트릴 (Azobisisobutuyronitrile), 이르가큐어(Irgacure), 다로큐어(Darocure), LAP(Lithium phenyl-2,4,6-trimethylbenzoylphosphinate), TPO(Diphenyl(2,4,6-Trimethylbenzoyl)Phosphine), TPO-L(Ethyl(2,4,6-trimethylbenzoyl)phenylphosphinate)로 구성된 군에서 선택되는 하나 이상일 수 있다. In the present invention, the crosslinking agent may be at least one selected from the group consisting of potassium persulfate, ammonium persulfate, benzoyl peroxide, diauryl peroxide, dicumyl peroxide, hydrogen peroxide, azobisisobutuyronitrile, Irgacure, Darocure, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), diphenyl(2,4,6-Trimethylbenzoyl)phosphine (TPO), and ethyl(2,4,6-trimethylbenzoyl)phenylphosphinate (TPO-L).
본 발명에 있어서, 상기 가교제는 상기 공중합체 대비 약 0.1 내지 약 5.0 중량%로 혼합하는 것일 수 있다. 예컨대, 상기 가교제는 상기 공중합체 대비 약 0.2 내지 약 2.0 중량%, 바람직하게는 약 0.5 중량%로 첨가할 수 있다.In the present invention, the crosslinking agent may be mixed in an amount of about 0.1 to about 5.0 wt% relative to the copolymer. For example, the crosslinking agent may be added in an amount of about 0.2 to about 2.0 wt%, preferably about 0.5 wt% relative to the copolymer.
본 발명에 있어서, 상기 가교는 열가교 또는 광가교일 수 있다. In the present invention, the crosslinking may be thermal crosslinking or photocrosslinking.
본 발명에 있어서, 상기 가교는 열가교이고, 약 100 내지 약 160℃에서 약 10분 내지 약 30분 동안 약 1 내지 약 20 MPa의 압력을 가하여 가교하는 것일 수 있다. In the present invention, the crosslinking is thermal crosslinking, and may be crosslinked by applying a pressure of about 1 to about 20 MPa at about 100 to about 160°C for about 10 to about 30 minutes.
일 양태로서, 상기 가교는 약 100 내지 약 160℃에서 약 10분 내지 약 30분 동안 약 1 내지 약 20 MPa의 압력을 가하여 가교하는 가교시키는 것일 수 있고, 바람직하게는 약 120 내지 약 150℃에서 약 10분 내지 약 30분 동안 약 5 내지 약 15 MPa의 압력을 가하여 가교하는 가교시키는 것일 수 있으나, 이에 한정되지는 않는다. In one embodiment, the crosslinking may be crosslinking by applying a pressure of about 1 to about 20 MPa for about 10 to about 30 minutes at a temperature of about 100 to about 160°C, and preferably crosslinking by applying a pressure of about 5 to about 15 MPa for about 10 to about 30 minutes at about 120 to about 150°C, but is not limited thereto.
본 발명에 있어서, 상기 가교는 광가교이고, UV를 약 100 내지 약 500 mW/cm2 세기로 약 100 내지 약 1000초 조사하여 가교하는 것일 수 있다. In the present invention, the crosslinking is photocrosslinking, and may be crosslinked by irradiating UV at an intensity of about 100 to about 500 mW/ cm2 for about 100 to about 1000 seconds.
일 양태로서, 상기 가교는 약 360 내지 약 370nm의 UV를 약 100 내지 약 500 mW/cm2 세기로 약 100 내지 약 1000초 조사하여 가교시키는 것일 수 있고, 바람직하게는 약 365nm UV를 약 200 내지 약 300 mW/cm2 세기로 약 200 내지 약 500초간 조사하여 가교시키는 것일 수 있으나, 이에 한정되지는 않는다. In one embodiment, the crosslinking may be performed by irradiating UV of about 360 to about 370 nm at an intensity of about 100 to about 500 mW/ cm2 for about 100 to about 1000 seconds, and preferably, by irradiating UV of about 365 nm at an intensity of about 200 to about 300 mW/ cm2 for about 200 to about 500 seconds, but is not limited thereto.
용도use
본 발명에 따른 형상기억고분자는 형상기억특성을 가지고 분해성이 향상된 합성고분자가 요구되는 모든 물품에 적용이 가능하다. The shape memory polymer according to the present invention can be applied to all products requiring a synthetic polymer with shape memory properties and improved degradability.
따라서, 본 발명은 또 다른 관점에서, 본 발명은 상기 형상기억고분자를 포함하는 의료용 소재에 관한 것이다.Therefore, from another aspect, the present invention relates to a medical material comprising the shape memory polymer.
일 양태로서, 상기 의료용 소재는 혈관 또는 비혈관 이식용 소재, 즉, 혈관 또는 비혈관에 이식하기 위한 기구나 삽입물 등을 제조하기 위한 소재일 수 있다. In one embodiment, the medical material may be a material for vascular or non-vascular transplantation, i.e., a material for manufacturing a device or insert for transplantation into a blood vessel or non-vascular vessel.
다른 양태로서, 상기 의료용 소재는 코, 부비, 턱, 안면부, 두개 안면, 광대, 이마 및 피부로 구성된 군에서 선택되는 어느 하나 이상의 조직 함몰 재건용 소재, 즉, 코, 부비, 턱, 안면부, 두개 안면, 광대, 이마 및 피부로 구성된 군에서 선택되는 어느 하나 이상의 조직이 함몰된 부분에 이식하기 위한 기구나 삽입물 등을 제조하기 위한 소재일 수 있다. In another aspect, the medical material may be a material for reconstructing a tissue depression selected from the group consisting of the nose, the paranasal sinuses, the chin, the facial region, the craniofacial region, the cheekbone, the forehead, and skin, that is, a material for manufacturing an apparatus or an insert for transplanting one or more tissues selected from the group consisting of the nose, the paranasal sinuses, the chin, the facial region, the craniofacial region, the cheekbone, the forehead, and skin to a depressed portion.
또 다른 양태로서, 상기 의료용 소재는 골강 내 또는 연골 손상 부위 이식용 소재, 즉, 골강 내 또는 연골 손상 부위에 이식하기 위한 기구나 삽입물 등을 제조하기 위한 소재일 수 있다. In another aspect, the medical material may be a material for implantation into a bone cavity or a cartilage damage site, that is, a material for manufacturing a device or insert for implantation into a bone cavity or a cartilage damage site.
본 발명은 또 다른 관점에서, 상기 형상기억고분자를 포함하는 조직공학용 스캐폴드에 관한 것이다.In another aspect, the present invention relates to a scaffold for tissue engineering comprising the shape memory polymer.
상기 형상기억고분자를 포함하는 조직공학용 스캐폴드는 형상기억특성으로 조직의 원형 역할을 하며 세포의 부착, 증식, 분열 및 신조직의 생성을 지원하고, 상기 공중합체와 상기 무기입자의 가교 비율을 조절함으로써 분해속도를 조절 가능한 특징을 가질 수 있다. A tissue engineering scaffold including the above shape memory polymer can have the characteristic of acting as a prototype of a tissue due to its shape memory properties and supporting cell attachment, proliferation, division, and creation of new tissue, and can have the characteristic of controlling the decomposition rate by controlling the crosslinking ratio of the copolymer and the inorganic particles.
본 발명에 따른 형상기억고분자를 포함하는 조직공학용 스캐폴드는 우수한 생체적합성, 세포적합성 뿐만 아니라 생분해성이 향상되어, 예컨대 자가골 대체를 위한 다공성 인공 이식재로 활용될 수 있다. A scaffold for tissue engineering comprising a shape memory polymer according to the present invention has excellent biocompatibility and cytocompatibility as well as improved biodegradability, and can be utilized as a porous artificial graft material for, for example, autologous bone replacement.
본 발명은 또 다른 관점에서, 상기 형상기억고분자의 의료용 소재로서의 용도에 관한 것이다. From another perspective, the present invention relates to the use of the shape memory polymer as a medical material.
본 발명은 또 다른 관점에서, 의료용 소재, 의료기구 또는 의료용 삽입물의 제조에 있어서, 상기 형상기억고분자의 용도에 관한 것이다.In another aspect, the present invention relates to the use of the shape memory polymer in the manufacture of medical materials, medical devices or medical implants.
본 발명은 또 다른 관점에서, 상기 형상기억고분자를 포함하는 의료용 소재로 제작된 의료기구나 삽입물을 이를 필요로 하는 대상체(예컨대, 인간이나 포유 동물)에 적용하는 단계를 포함하는, 수술 또는 시술방법에 관한 것이다.In another aspect, the present invention relates to a surgical or surgical method including a step of applying a medical device or implant made of a medical material including the shape memory polymer to a subject (e.g., a human or a mammal) in need thereof.
실시예 Example
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. It will be apparent to those skilled in the art that these examples are intended only to illustrate the present invention, and the scope of the present invention is not to be construed as being limited by these examples.
실시예 1. Hydroxyapatite(HAp)가 5phr 포함된 형상기억고분자Example 1. Shape memory polymer containing 5 phr of hydroxyapatite (HAp)
1-1. 실란 처리된 Hydroxyapatite 나노입자 제조1-1. Preparation of silane-treated Hydroxyapatite nanoparticles
3목 원형바닥 플라스크(3-neck round bottom flask)에 마그네틱바를 넣고 hydroxyapatite(Skyspring nanomaterials) 6g을 넣은 후 에탄올 100ml을 첨가하여 교반하였다. 이후 3-Mercaptopropyltrimethoxy silane(TCI)을 6ml 첨가한 후 상기 플라스크 입구를 막고 70℃ 온도에서 48시간 교반 하였다. 이후 원심분리기(Eppendorf)를 이용하여 5000rpm에서 3분간 원심 분리 후 세척하였다. 이후 최종반응물을 진공에서 건조시켜 실란 처리된 나노입자를 수득하였다. A magnetic bar was placed in a 3-neck round bottom flask, 6 g of hydroxyapatite (Skyspring nanomaterials) was added, 100 ml of ethanol was added, and stirred. After 6 ml of 3-Mercaptopropyltrimethoxy silane (TCI) was added, the flask inlet was blocked, and stirred at 70°C for 48 hours. Afterwards, centrifugation was performed at 5000 rpm for 3 minutes using a centrifuge (Eppendorf), and then washing. The final reactant was then dried in a vacuum to obtain silane-treated nanoparticles.
Figure PCTKR2024095451-appb-img-000009
Figure PCTKR2024095451-appb-img-000009
실란 처리된 Hydroxyapatite의 구조를 확인하기 위하여 Raman spectrum(Horriba, LabRam Aramis)을 제조사의 지침에 따라 측정하였다. 실란 처리되지 않은 순수한 Hydroxyapatite와 실란 처리된 Hydroxyapatite의 Raman spectrum을 비교한 결과, 실란 처리된 Hydroxyapatite에서 2600cm-1 부근의 thiol group에 해당되는 peak가 관찰되었다 (도 1). 이를 통해 Hydroxyapatite 나노입자 표면에 실란 처리가 되었음을 확인하였다.To confirm the structure of silane-treated Hydroxyapatite, Raman spectrum (Horriba, LabRam Aramis) was measured according to the manufacturer's instructions. The Raman spectra of pure Hydroxyapatite without silane treatment and silane-treated Hydroxyapatite were compared, and a peak corresponding to thiol group around 2600 cm -1 was observed in the silane-treated Hydroxyapatite (Fig. 1). This confirmed that silane treatment was performed on the surface of Hydroxyapatite nanoparticles.
1-2. 2 arm 94PCL-06PGMA 제조1-2. 2 arm 94PCL-06PGMA manufacturing
3목 원형바닥 플라스크(3-neck round bottom flask)에 마그네틱바를 넣고 1,6-헥산디올(1,6-hexanediol) (initiator, 0.5 mmol, Sigma Aldrich)과 하이드로퀴논(hydroquinone)(inhibitor, HQ, 1 mmol, Sigma Aldrich)을 넣었다. 상기 플라스크 입구를 막고 10분 동안 진공을 건 후 50 cc/min의 속도로 질소 퍼징(purging)을 하였다. 정제된 ε-카프로락톤(ε-CL, 94 mmol, Sigma Aldrich)을 상기 플라스크에 20G 시린지 니들로 주입하였다. 110℃에서 180 rpm으로 10분 동안 혼합하였다. 글리시딜 메타크릴레이트(Glycidyl methacrylate)(monomer, GMA, 6mmol, Sigma Aldrich)를 20G 시린지 니들로 주입하였다. 글리시딜 메타크릴레이트 주입 10분 후 1 mL 아세토나이트릴(acetonitrile)(ACN, Sigma Aldrich)에 녹인 1,5,7-트리아자바이사이클로(4.4.0)데크-5-엔(1,5,7-Triazabicyclo(4.4.0)dec-5-ene)(TBD, catalyst, 1 mmol, Sigma Aldrich)을 20G 시린지 니들로 주입하였다(1 mmolTBD/1 mL ACN). 그 뒤, 플라스크를 6시간 동안 110℃에서 반응시켰다. 최종 반응물을 15 mL 클로로포름(Chloroform)(Daejung chemicals & maetals Co., LTD., Korea)에 녹인 후 4℃의 400 mL 콜드 에틸에테르(cold ethyl ether)(Daejung chemicals & metals CO., LTD., Korea)에 침전시켰다. 얻어진 침전물을 필터링하여 거른 후 진공 건조시켰다.A 3-neck round bottom flask was placed with a magnetic bar, and 1,6-hexanediol (initiator, 0.5 mmol, Sigma Aldrich) and hydroquinone (inhibitor, HQ, 1 mmol, Sigma Aldrich) were added. The flask inlet was blocked, vacuumed for 10 minutes, and then nitrogen was purged at a rate of 50 cc/min. Purified ε-caprolactone (ε-CL, 94 mmol, Sigma Aldrich) was injected into the flask using a 20G syringe needle. Mixing was performed at 110°C and 180 rpm for 10 minutes. Glycidyl methacrylate (monomer, GMA, 6 mmol, Sigma Aldrich) was injected using a 20G syringe needle. After 10 min of injection of glycidyl methacrylate, 1,5,7-Triazabicyclo(4.4.0)dec-5-ene (TBD, catalyst, 1 mmol, Sigma Aldrich) dissolved in 1 mL of acetonitrile (ACN, Sigma Aldrich) was injected using a 20G syringe needle (1 mmolTBD/1 mL ACN). Then, the flask was reacted at 110°C for 6 h. The final reactant was dissolved in 15 mL of chloroform (Daejung chemicals & metals Co., LTD., Korea) and precipitated in 400 mL of cold ethyl ether (Daejung chemicals & metals CO., LTD., Korea) at 4°C. The obtained sediment was filtered and then vacuum dried.
HD(1,6-hexanediol)은 개시제(initiator)로 사용되었으며 TBD(1,5,7-Triazabicyclo(4.4.0)dec-5-ene)는 촉매 (catalyst), HQ(hydroquinone)는 억제제(inhibitor), CL(ε-caprolactone)과 GMA(glycidyl methacrylate)은 단량체(monomer)로 사용되었다.HD(1,6-hexanediol) was used as an initiator, TBD(1,5,7-Triazabicyclo(4.4.0)dec-5-ene) was used as a catalyst, HQ(hydroquinone) was used as an inhibitor, and CL(ε-caprolactone) and GMA(glycidyl methacrylate) were used as monomers.
Figure PCTKR2024095451-appb-img-000010
Figure PCTKR2024095451-appb-img-000010
1-3. Hydroxyapatite 나노입자가 포함된 형상기억고분자 제조1-3. Preparation of shape memory polymer containing hydroxyapatite nanoparticles
Hydroxyapatite 나노입자가 포함된 형상기억고분자를 제조하기 위하여 2 arm PCL-PGMA 공중합체를 NMP(Sigma aldrich)에 1 : 1 (w : v) 비율로 녹인 후 실란 처리된 Hydroxyapatite 나노입자와 가교제인 Irgacure2959를 추가적으로 용해시켰다. 이때 실린 처리된 Hydroxyapatite 나노입자와 가교제인 Irgacure2959는 2 arm PCL-PGMA 공중합체 대비 각각 5 중량%, 0.5 중량%를 용해시켰다. 이를 충분히 혼합하고, 원하는 형상의 일정한 틀에 혼합 용액을 도포한 후, 265 mW/cm2 세기의 UV(365nm)를 300초간 조사하여 가교된 샘플을 수득하였다.To prepare shape memory polymers containing hydroxyapatite nanoparticles, a 2-arm PCL-PGMA copolymer was dissolved in NMP (Sigma aldrich) at a 1:1 (w:v) ratio, and then silane-treated hydroxyapatite nanoparticles and a crosslinker, Irgacure2959, were additionally dissolved. The silane-treated hydroxyapatite nanoparticles and the crosslinker, Irgacure2959, were dissolved in an amount of 5 wt% and 0.5 wt%, respectively, based on the amount of the 2-arm PCL-PGMA copolymer. After sufficient mixing, the mixed solution was applied to a constant mold of the desired shape, and then irradiated with UV (365 nm) at an intensity of 265 mW/cm 2 for 300 s to obtain a crosslinked sample.
Figure PCTKR2024095451-appb-img-000011
Figure PCTKR2024095451-appb-img-000011
실시예 2.Example 2. Hydroxyapatite(HAp)가 15phr 포함된 형상기억고분자Shape memory polymer containing 15 phr of hydroxyapatite (HAp)
실시예 1-1에 기재된 바와 같이 실란 처리된 Hydroxyapatite를 제조하고, 실시예 1-2에 기재된 바와 같이 2 arm 94PCL-06PGMA를 제조하였다. Silane-treated Hydroxyapatite was prepared as described in Example 1-1, and 2 arm 94PCL-06PGMA was prepared as described in Example 1-2.
실린 처리된 Hydroxyapatite의 첨가량만 달리하여(표 4 참조), 실시예 1-3과 동일한 방법으로 가교된 샘플을 준비하였다. Cross-linked samples were prepared in the same manner as in Example 1-3, only varying the amount of added hydroxyapatite (see Table 4).
Figure PCTKR2024095451-appb-img-000012
Figure PCTKR2024095451-appb-img-000012
비교예. 폴리카프로락톤-폴리글리시딜메타아크릴레이트 형상기억고분자Comparative example. Polycaprolactone-polyglycidyl methacrylate shape memory polymer
비교예는 실시예 1-2에서 제조된 2 arm 94PCL-06PGMA 공중합체가 녹아있는 용액 가교제인 Irgacure2959를 추가적으로 용해시켰다. 이때 가교제인 Irgacure2959는 2 arm PCL-PGMA 공중합체 대비 각각 0.5 중량%를 용해시켰다. 이를 충분히 혼합하고, 원하는 형상의 일정한 틀에 혼합 용액을 도포한 후, 265 mW/cm2 세기의 UV(365nm)를 300초간 조사하여 가교된 샘플을 수득하였다.In a comparative example, the crosslinking agent Irgacure2959 was additionally dissolved in the solution in which the 2-arm 94PCL-06PGMA copolymer manufactured in Example 1-2 was dissolved. At this time, the crosslinking agent Irgacure2959 was dissolved in an amount of 0.5 wt% based on each 2-arm PCL-PGMA copolymer. After sufficiently mixing, the mixed solution was applied to a constant mold of a desired shape, and then irradiated with UV (365 nm) at 265 mW/cm 2 intensity for 300 seconds to obtain a crosslinked sample.
실험예 1. 용융 온도 분석Experimental Example 1. Melting Temperature Analysis
실시예 1, 실시예 2 및 비교예의 열적 특성을 확인하고자 시차주사열량계(Differential Scanning Calorimetry, DSC, Netzsch)를 이용하여, 제조사의 지침에 따라 -70℃부터 150℃의 온도범위 내에서 용융점을 측정하였다. To confirm the thermal properties of Example 1, Example 2, and Comparative Example, melting points were measured within a temperature range of -70°C to 150°C using differential scanning calorimetry (DSC, Netzsch) according to the manufacturer's instructions.
그 결과는 표 5에서와 같으며, 실시예는 모두 비교예와 유사하게 35 내지 37℃ 근처의 온도에서 피크가 관찰되었다. 이와 같은 결과로보터, 나노입자인 hydroxyapatite가 첨가되어도 고분자의 열적 특성에 큰 영향을 주지 않고, 체온 범위에서 형상기억특성을 유지할 수 있음을 기대할 수 있었다.The results are as shown in Table 5, and all examples showed peaks at temperatures around 35 to 37°C, similar to the comparative examples. From these results, it was expected that the addition of nanoparticles of hydroxyapatite would not significantly affect the thermal properties of the polymer and that the shape memory properties could be maintained in the body temperature range.
Figure PCTKR2024095451-appb-img-000013
Figure PCTKR2024095451-appb-img-000013
실험예 2. 형상 기억 거동 분석Experimental Example 2. Analysis of Shape Memory Behavior
2-1. 형상복원능2-1. Shape Restoration Ability
실시예 1, 실시예 2 및 비교예의 형상복원능을 비교하고자 각 샘플을 50 내지 60% 신장시켰다. 신장된 샘플을 40 내지 45℃ 온도에 노출시킨 후, 식 (1)에 따라 형상복원능(%)을 확인하였다.In order to compare the shape recovery ability of Example 1, Example 2, and Comparative Example, each sample was stretched by 50 to 60%. After exposing the stretched sample to a temperature of 40 to 45°C, the shape recovery ability (%) was confirmed according to Equation (1).
Figure PCTKR2024095451-appb-img-000014
Figure PCTKR2024095451-appb-img-000014
그 결과, 표 6에서와 같이, 실시예 1, 실시예 2 및 비교예의 경우 모두 80% 이상의 형상 복원능을 나타내었다. 열적 특성에서 예상된 바와 같이 실시예 또한 비교예와 같이 체온범위에서의 형상기억특성이 확인되었으며, 이를 통해 형상기억고분자는 hydroxyapatite가 첨가되어도 체온범위에서 활용 가능함을 알 수 있었다. As a result, as shown in Table 6, Example 1, Example 2, and Comparative Example all exhibited a shape restoring ability of 80% or more. As expected from the thermal properties, the Example also confirmed shape memory properties in the body temperature range like the Comparative Example, and through this, it was found that the shape memory polymer can be utilized in the body temperature range even when hydroxyapatite is added.
Figure PCTKR2024095451-appb-img-000015
Figure PCTKR2024095451-appb-img-000015
2-2. 반복재현능2-2. Repeatability
한편, 실시예 2와 비교예 1의 형상기억거동을 동적기계적 측정장비(Dynamic Mechanical Aanalyzer, DMA, TA instrument)를 이용하여 측정하였다. 이를 위하여 샘플을 50℃로 승온 후 4 내지 6% 신장시키고 -10℃로 냉각 및 고정하였다. 그 후 다시 50℃까지 승온하였을때 다시 원형으로 돌아오는지 여부를 4회 반복하여 확인하였다. Meanwhile, the shape memory behavior of Example 2 and Comparative Example 1 was measured using a dynamic mechanical analyzer (DMA, TA instrument). To this end, the sample was heated to 50°C, stretched by 4 to 6%, cooled to -10°C, and fixed. After that, when the temperature was raised to 50°C again, it was checked four times whether it returned to its original shape.
그 결과, 도 2에서와 같이 실시예 2와 비교예 1 모두 4회 반복시험에서 재현성 있게 형상기억특성을 유지하는 것을 확인하였다. As a result, as shown in Fig. 2, it was confirmed that both Example 2 and Comparative Example 1 maintained shape memory characteristics reproducibly in four repeated tests.
2-3. 다공성 스캐폴드 제조 후 형상기억특성2-3. Shape memory properties after manufacturing porous scaffolds
실시예 2를 체내 삽입 가능하도록 다공성 scaffold 형태로 제조하였다. Example 2 was manufactured in the form of a porous scaffold so that it could be inserted into the body.
다공성 스캐폴드 제조를 위하여 alginate bead 2g(Samchun)과 가교제인 Irgacure2959(Sigma aldrich) 5mg를 NMP 1ml에 고르게 분산시킨 후, 실시예 2를 첨가하여 섞어주었다. 실시예 2를 Alginate bead와 고르게 섞어 일정한 틀에 넣은 후 265 mW/cm2 세기의 UV(365nm)를 300초간 조사하여 샘플을 수득하였다. 이 후 0.1M 에틸렌디아민테트라아세트산 용액(Ethylene-diamine-tetra-acetic acid, EDTA, Sigma aldrich)을 이용하여 alginate bead를 제거하여 다공구조를 가지는 scaffold를 제조하였다. To manufacture a porous scaffold, 2 g of alginate beads (Samchun) and 5 mg of Irgacure2959 (Sigma aldrich), a crosslinking agent, were evenly dispersed in 1 ml of NMP, and then Example 2 was added and mixed. Example 2 was evenly mixed with the alginate beads, placed into a certain mold, and irradiated with UV (365 nm) at 265 mW/cm 2 intensity for 300 seconds to obtain a sample. Thereafter, the alginate beads were removed using a 0.1 M ethylene-diamine-tetra-acetic acid solution (EDTA, Sigma aldrich), to manufacture a scaffold with a porous structure.
그 결과, 실시예 2로부터 수 마이크로 내지 100 마이크로 크기의 다공 구조를 가지는 다공성 스캐폴드를 제조할 수 있었다 (도 3). As a result, a porous scaffold having a porous structure with a size of several micrometers to 100 micrometers could be manufactured from Example 2 (Fig. 3).
한편, 제조된 스캐폴드의 형상기억 거동을 확인하기 위하여 샘플을 30% 압축한 후 40 내지 45℃에 노출시킨 후 식 (1)에 따라 형상복원능(%)을 확인하였다.Meanwhile, to confirm the shape memory behavior of the manufactured scaffold, the sample was compressed by 30% and exposed to 40 to 45°C, and then the shape recovery ability (%) was confirmed according to Equation (1).
그 결과, 다공성 스캐폴드도 형상이 80% 이상 복원되는 것을 확인하였다 (도 4).As a result, it was confirmed that the shape of the porous scaffold was restored by more than 80% (Fig. 4).
실험예 3. 기계적 강도 분석Experimental Example 3. Mechanical Strength Analysis
실시예 2와 비교예 1의 기계적 물성을 비교하기 위하여, 만능시험기(Universal Testing Machine, UTM, Instron)를 이용하여 제조사 지침에 따라 각 샘플의 탄성계수와 압축강도를 측정하였다. To compare the mechanical properties of Example 2 and Comparative Example 1, the elastic modulus and compressive strength of each sample were measured using a universal testing machine (UTM, Instron) according to the manufacturer's instructions.
그 결과, hydroxyapatite 나노입자가 포함되었을 때 탄성계수와 압축강도 모두 증가하는 것으로 확인되었다(도 5). hydroxyapatite 나노입자가 포함된 실시예 2의 경우, 비교예와 비교하여 탄성계수는 34% 증가하였으며, 압축강도는 69% 증가하였다. 이는 나노입자가 고분자 매트릭스내에 균일하게 분산되어 외력을 고르게 분산시키기 때문인 것으로 해석된다. As a result, it was confirmed that both the elastic modulus and the compressive strength increased when hydroxyapatite nanoparticles were included (Fig. 5). In the case of Example 2 containing hydroxyapatite nanoparticles, the elastic modulus increased by 34% and the compressive strength increased by 69% compared to the comparative example. This is interpreted as being because the nanoparticles are uniformly dispersed within the polymer matrix, thereby evenly distributing the external force.
실험예 4. 분해 거동 분석 Experimental Example 4. Analysis of Decomposition Behavior
4-1. In vitro 분해 거동4-1. In vitro degradation behavior
질병이나 상처 등으로 염증이 발생하면 락테이트(lactate) 등이 생성되어, 체내 산성도가 낮아진다. In vitro 실험에서는 이러한 체내 환경을 모사하고자 pH 6의 1N 염산 완충액(1N Hydrochloric acid solution, Samchun)을 제조하여 실시예 2와 비교예를 담지하고, 37℃에서 시간 경과에 따른 분해 양상을 관찰하였다. When inflammation occurs due to disease or injury, lactate, etc. is produced, lowering the acidity of the body. In vitro experiments were conducted to simulate this body environment by preparing a 1N hydrochloric acid buffer solution (1N hydrochloric acid solution, Samchun) with a pH of 6. Example 2 and a comparative example were included, and the decomposition pattern over time was observed at 37°C.
그 결과, 본 발명에 따른 실시예에서는 전 시간대에서 비교예 대비 높은 분해 거동을 나타내었으며, 특히 8일내 약 45% 이상이 분해되는 것으로 확인되었다(도 6). As a result, the example according to the present invention showed a higher decomposition behavior than the comparative example in all time periods, and in particular, it was confirmed that more than about 45% was decomposed within 8 days (Fig. 6).
4-2. In vivo 분해 거동 4-2. In vivo degradation behavior
6 주령 BALB/C 마우스(오리엔트 바이오) 옆구리 피하 부위에 다공성 스캐폴드를 이식하여 60일간의 in vivo 분해 거동을 확인하였다. 실험은 그룹 당 5마리로 진행하였다. A porous scaffold was implanted subcutaneously into the flank of 6-week-old BALB/C mice (Orient Bio) and its in vivo degradation behavior was confirmed for 60 days. The experiment was conducted with 5 mice per group.
구체적으로, 마우스의 복강 내 Zoletil®50을 주입하여 마취시켰다(주입량: 20mg/kg). 이식하고자 하는 부위의 마우스 피부를 제모하고 70% 알코올로 소독하였다. 1cm 크기로 피부를 절제하고 피부와 근육 사이를 박리하여 준비된 다공성 스캐폴드를 마우스 피하에 이식하였다. 이식 후 절제된 피부 부위를 6-0 silk 봉합사로 봉합해 준 후 포비돈요오드((주)한국파마)로 소독하였다. 스캐폴드 이식 과정은 멸균된 환경에서 진행하였다.Specifically, mice were anesthetized by intraperitoneal injection of Zoletil ® 50 (injection amount: 20 mg/kg). The mouse skin of the area to be transplanted was shaved and disinfected with 70% alcohol. The skin was incised to a size of 1 cm, and the porous scaffold prepared by dissecting the skin and muscle was transplanted subcutaneously into the mouse. After transplantation, the resected skin area was sutured with 6-0 silk suture and disinfected with povidone-iodine (Korea Pharma Co., Ltd.). The scaffold transplantation process was performed in a sterile environment.
스캐폴드 이식 60일 경과 후 H&E 염색을 통하여 다공구조의 스캐폴드 내부로 이동한 세포들의 핵과 세포외 기질을 염색하고, 스캐폴드 분해 정도와 조직 재생 정도의 상관 관계를 확인하였다. 60 days after scaffold implantation, the nuclei and extracellular matrix of cells that had migrated into the porous scaffold were stained using H&E staining, and the correlation between the degree of scaffold degradation and the degree of tissue regeneration was confirmed.
H&E 염색을 위하여, 이식한 스캐폴드 및 주변 조직을 채취하여 10% 포르말린(Tech&Innovation)에 48시간 고정시켰다. 그 후 고정된 조직 샘플을 증류수로 30분간 탈수, 에탄올 처리 후 파라핀 블록으로 제작하였다. 파라핀 블록을 7μm 두께로 절편한 후 Hematoxylin 용액(Sigma aldrich)과 Eosin 용액(Sigma aldrich)을 이용하여 핵과 세포외 기질을 각각 염색하였다. 샘플을 마운팅하고 광학 현미경으로 관찰하였다.For H&E staining, the transplanted scaffold and surrounding tissues were collected and fixed in 10% formalin (Tech&Innovation) for 48 hours. The fixed tissue samples were then dehydrated in distilled water for 30 minutes, treated with ethanol, and made into paraffin blocks. The paraffin blocks were sectioned into 7 μm thick sections, and the nuclei and extracellular matrix were stained with hematoxylin solution (Sigma aldrich) and eosin solution (Sigma aldrich), respectively. The samples were mounted and observed under an optical microscope.
그 결과, 실시예 2를 이식한 경우 비교예를 이식한 경우와 비교하여, 세포외 기질 영역이 더 짙게 염색되었는데, 이는 실시예 2의 분해가 빠르게 진행됨에 따라 실시예 2를 이식한 부분에 조직이 더 빠르게 차들어 올 수 있음을 의미한다(도 7). As a result, when Example 2 was transplanted, the extracellular matrix area was stained more darkly compared to when the comparative example was transplanted, which means that tissues can grow more quickly in the area where Example 2 was transplanted as the decomposition of Example 2 progresses more quickly (Fig. 7).
이와 같이 짙게 염색된 부분의 면적을 이식 직후와 비교하였을 때, 비교예의 경우 짙게 염색된 부분의 면적이 이식 직후와 비교하여 60일 경과 후 평균 8.7% 증가하였고, 실시예 2의 경우 짙게 염색된 부분의 면적이 이식 직후와 비교하여 60일 경과 후 평균 33.7% 증가하였다 (도 8). 이처럼 in vivo 조건에서 동일한 기간 동안 분해능을 비교한 결과, 실시예 2의 경우 비교예 대비 약 3.8배 빠르게 분해되는 것을 알 수 있었다. When the area of the darkly dyed part was compared with that immediately after transplantation, in the case of the comparative example, the area of the darkly dyed part increased by an average of 8.7% after 60 days compared to that immediately after transplantation, and in the case of the example 2, the area of the darkly dyed part increased by an average of 33.7% after 60 days compared to that immediately after transplantation (Fig. 8). As a result of comparing the decomposition ability over the same period under in vivo conditions, it was found that in the case of the comparative example, decomposition occurred about 3.8 times faster.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the specific parts of the present invention have been described in detail above, it will be apparent to those skilled in the art that such specific descriptions are merely preferred embodiments and that the scope of the present invention is not limited thereby. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.
[이 발명을 지원한 국가연구개발사업][National Research and Development Project that Supported This Invention]
[과제고유번호] 1711174400 [Task ID] 1711174400
[과제번호] RS-2020-KD0000152 [Task Number] RS-2020-KD0000152
[부처명] 다부처(과학기술정보통신부, 산업통상자원부, 보건복지부, 식품의약품안전처) [Ministry Name] Multi-Ministry (Ministry of Science and ICT, Ministry of Trade, Industry and Energy, Ministry of Health and Welfare, Ministry of Food and Drug Safety)
[과제관리(전문)기관명] (재단)범부처전주기의료기기연구개발사업단 [Project Management (Specialized) Agency Name] (Foundation) Inter-Ministry Full Cycle Medical Device Research and Development Project Group
[연구사업명] 범부처전주기의료기기연구개발사업(R&D)(과기정통부, 복지부, 산업부) [Research Project Name] Inter-Ministry Full-cycle Medical Device Research and Development Project (R&D) (Ministry of Science and ICT, Ministry of Health and Welfare, Ministry of Trade, Industry and Energy)
[연구과제명] 외과 이식술의 성공률 개선을 위한 혈관 문합부 보조용 체 온 감응형 의료기기 개발 [Research Project Name] Development of a body temperature-sensitive medical device to assist vascular anastomoses to improve the success rate of surgical transplantation
[기여율] 1/1 [Contribution rate] 1/1
[과제수행기관명] 주식회사 티엠디랩 [Name of the organization performing the project] TMD Lab Co., Ltd.
[연구기간] 2020.09.01 ~ 2023.12.31[Research Period] 2020.09.01 ~ 2023.12.31

Claims (19)

  1. 실란으로 표면 처리된 무기입자와 락톤 단량체 및 글리시딜메타크릴레이트를 포함하는 공중합체가 가교된 형상기억고분자. A shape memory polymer cross-linked with a copolymer comprising an inorganic particle surface-treated with silane and a lactone monomer and glycidyl methacrylate.
  2. 제1항에 있어서, 상기 실란으로 표면 처리된 무기입자는 실란으로 표면 처리된 젤라틴, 콜라겐, 키토산, 알지네이트, 셀롤로오스 또는 하이드록시아파타이트 무기입자인, 형상기억고분자. In the first paragraph, the inorganic particles surface-treated with silane are shape memory polymers that are inorganic particles of gelatin, collagen, chitosan, alginate, cellulose or hydroxyapatite surface-treated with silane.
  3. 제1항에 있어서, 상기 실란은 머캅토프로필 트리메톡시실란(3-Mercaptopropyl trimethoxy silane) 또는 트리메톡시실릴프로필 아크릴레이트(3-Trimethoxysilylpropyl acrylate)인, 형상기억고분자.A shape memory polymer in claim 1, wherein the silane is mercaptopropyl trimethoxy silane (3-Mercaptopropyl trimethoxy silane) or trimethoxysilylpropyl acrylate (3-Trimethoxysilylpropyl acrylate).
  4. 제1항에 있어서, 상기 공중합체는 In the first paragraph, the copolymer
    하기 화학식 (1)로 나타낸 화합물:A compound represented by the following chemical formula (1):
    화학식 (1)Chemical formula (1)
    Figure PCTKR2024095451-appb-img-000016
    Figure PCTKR2024095451-appb-img-000016
    상기 화학식 (1)에서,In the above chemical formula (1),
    R1, R2 및 R3은 서로 독립적으로 수소(H) 또는 탄소수 1 내지 6의 알킬기이고,R1, R2 and R3 are independently hydrogen (H) or an alkyl group having 1 to 6 carbon atoms,
    m 및 n는 서로 독립적으로 1 내지 20의 정수이며,m and n are integers from 1 to 20, independently of each other,
    A, B1 및 B2는 서로 독립적으로 산소(O) 또는 황(S)이고,A, B1 and B2 are independently oxygen (O) or sulfur (S),
    x 및 y는 반복 단위의 몰%를 나타내고,x and y represent the mole % of repeating units,
    x+y는 100이며, x는 80 내지 95이다;x+y is 100, and x is between 80 and 95;
    하기 화학식 (2)로 나타낸 화합물:A compound represented by the following chemical formula (2):
    화학식 (2)Chemical formula (2)
    Figure PCTKR2024095451-appb-img-000017
    Figure PCTKR2024095451-appb-img-000017
    상기 화학식 (2)에서,In the above chemical formula (2),
    x는 1 내지 20의 정수이며,x is an integer between 1 and 20,
    m 및 n은 반복 단위의 몰%를 나타내고,m and n represent the mole % of repeating units,
    m+n은 100이고, m은 80 내지 96이다; 또는 m+n is 100, and m is between 80 and 96; or
    하기 화학식 (3)으로 나타낸 화합물:A compound represented by the following chemical formula (3):
    화학식 (3)Chemical formula (3)
    Figure PCTKR2024095451-appb-img-000018
    Figure PCTKR2024095451-appb-img-000018
    상기 화학식 (3)에서, In the above chemical formula (3),
    x 및 y는 서로 독립적으로 1 내지 20의 정수이고,x and y are integers from 1 to 20, independently of each other,
    m 및 n은 반복 단위의 몰%를 나타내며,m and n represent the mole % of repeating units,
    m+n은 100이고, m은 70 내지 99인;공중합체를 포함하는, 형상기억고분자. A shape memory polymer, comprising a copolymer, wherein m+n is 100 and m is 70 to 99.
  5. 제1항에 있어서, 상기 형상기억고분자는 30 내지 60℃에서 형상복원능이 50% 이상인, 형상기억고분자.In the first paragraph, the shape memory polymer is a shape memory polymer having a shape restoring ability of 50% or more at 30 to 60°C.
  6. 제1항에 있어서, 상기 형상기억고분자는 상기 공중합체에 비해 분해능이 2배 이상 개선된, 형상기억고분자.In the first paragraph, the shape memory polymer is a shape memory polymer having a resolution improved by at least twice compared to the copolymer.
  7. 다음 단계를 포함하는 제1항의 형상기억고분자 제조방법:A method for manufacturing a shape memory polymer according to claim 1, comprising the following steps:
    (a) 실란으로 표면 처리된 무기입자, 락톤 단량체 및 글리시딜메타크릴레이트를 포함하는 공중합체 및 가교제를 혼합하는 단계; 및(a) a step of mixing a copolymer comprising inorganic particles surface-treated with silane, a lactone monomer and glycidyl methacrylate, and a crosslinking agent; and
    (b) 상기 혼합물을 가교하는 단계.(b) a step of cross-linking the mixture.
  8. 제7항에 있어서, 상기 실란으로 표면 처리된 입자는 실란으로 표면 처리된 키토산, 알지네이트, 셀롤로오스 또는 하이드록시아파타이트 입자인, 형상기억고분자 제조방법.A method for producing a shape memory polymer in claim 7, wherein the particles surface-treated with silane are chitosan, alginate, cellulose or hydroxyapatite particles surface-treated with silane.
  9. 제7항에 있어서, 상기 실란으로 표면 처리된 무기입자는 상기 공중합체 대비 1 내지 20 중량%로 혼합하는, 형상기억고분자 제조방법.A method for producing a shape memory polymer, wherein in claim 7, the inorganic particles surface-treated with silane are mixed in an amount of 1 to 20 wt% relative to the copolymer.
  10. 제7항에 있어서, 상기 가교제는 과황산칼륨 (Potassium persulfate), 과황산암모늄 (Ammonium persulfate), 과산화 벤조일(Benzoyl peroxide), 다이아우릴 퍼옥사이드(Diauryl peroxide), 다이큐밀 퍼옥사이드 (Dicumyl peroxide), 과산화수소(Hydrogen peroxide), 아조비스이소부티로니트릴 (Azobisisobutuyronitrile), 이르가큐어(Irgacure), 다로큐어(Darocure), LAP(Lithium phenyl-2,4,6-trimethylbenzoylphosphinate), TPO(Diphenyl(2,4,6-Trimethylbenzoyl)Phosphine), TPO-L(Ethyl(2,4,6-trimethylbenzoyl)phenylphosphinate)로 구성된 군에서 선택되는 하나 이상인, 형상기억고분자 제조방법. A method for producing a shape memory polymer in claim 7, wherein the crosslinking agent is at least one selected from the group consisting of potassium persulfate, ammonium persulfate, benzoyl peroxide, diauryl peroxide, dicumyl peroxide, hydrogen peroxide, azobisisobutuyronitrile, Irgacure, Darocure, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), diphenyl(2,4,6-Trimethylbenzoyl)phosphine (TPO), and ethyl(2,4,6-trimethylbenzoyl)phenylphosphinate (TPO-L).
  11. 제7항에 있어서, 상기 가교제는 상기 공중합체 대비 0.1 내지 5.0 중량%로 혼합하는, 형상기억고분자 제조방법.A method for producing a shape memory polymer, wherein in claim 7, the crosslinking agent is mixed in an amount of 0.1 to 5.0 wt% relative to the copolymer.
  12. 제7항에 있어서, 상기 가교는 열가교 또는 광가교인, 형상기억고분자 제조방법.A method for producing a shape memory polymer, wherein in claim 7, the crosslinking is thermal crosslinking or photocrosslinking.
  13. 제12항에 있어서, 상기 가교는 열가교이고, 100 내지 160℃에서 10분 내지 30분 동안 1 내지 20 MPa의 압력을 가하여 가교하는, 형상기억고분자 제조방법.A method for producing a shape memory polymer, wherein the crosslinking in claim 12 is thermal crosslinking, and crosslinking is performed by applying a pressure of 1 to 20 MPa at 100 to 160°C for 10 to 30 minutes.
  14. 제12항에 있어서, 상기 가교는 광가교이고, UV를 100 내지 500 mW/cm2 세기로 100 내지 1000초 조사하여 가교하는, 형상기억고분자 제조방법. A method for producing a shape memory polymer, wherein in claim 12, the crosslinking is photocrosslinking, and crosslinking is performed by irradiating UV at an intensity of 100 to 500 mW/cm 2 for 100 to 1000 seconds.
  15. 제 1항 내지 제6항 중 어느 한 항의 형상기억고분자를 포함하는 의료용 소재.A medical material comprising a shape memory polymer according to any one of claims 1 to 6.
  16. 제15항에 있어서, 상기 의료용 소재는 혈관 또는 비혈관 이식용 소재인, 의료용 소재. In claim 15, the medical material is a material for vascular or non-vascular transplantation.
  17. 제15항에 있어서, 상기 의료용 소재는 코, 부비, 턱, 안면부, 두개 안면, 광대, 이마 및 피부로 구성된 군에서 선택되는 어느 하나 이상의 조직 함몰 재건용 소재인, 의료용 소재.In claim 15, the medical material is a material for reconstructing a tissue depression selected from the group consisting of the nose, sinuses, chin, face, craniofacial area, cheekbone, forehead, and skin.
  18. 제15항에 있어서, 상기 의료용 소재는 골강 내 또는 연골 손상 부위 이식용 소재인, 의료용 소재.In claim 15, the medical material is a material for transplantation into a bone cavity or a cartilage damaged area.
  19. 제1항 내지 제6항 중 어느 한 항의 형상기억고분자를 포함하는 조직공학용 스캐폴드. A scaffold for tissue engineering comprising a shape memory polymer according to any one of claims 1 to 6.
PCT/KR2024/095451 2023-02-27 2024-02-26 Shape memory polymer with improved degradability and method for preparing same WO2024181854A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020230025537A KR20240132572A (en) 2023-02-27 2023-02-27 Shape memory polymer with improved degradability and manufacturing method thereof
KR10-2023-0025537 2023-02-27

Publications (1)

Publication Number Publication Date
WO2024181854A1 true WO2024181854A1 (en) 2024-09-06

Family

ID=92590703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2024/095451 WO2024181854A1 (en) 2023-02-27 2024-02-26 Shape memory polymer with improved degradability and method for preparing same

Country Status (2)

Country Link
KR (1) KR20240132572A (en)
WO (1) WO2024181854A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101906472B1 (en) * 2017-04-04 2018-10-10 연세대학교 산학협력단 A photo-crosslinkable shape memory polymer and manufacturing method thereof
KR20200038198A (en) * 2018-10-02 2020-04-10 연세대학교 산학협력단 A Substrate for blood vessel anastomosis including shape memory polymers
KR20200038102A (en) * 2018-10-02 2020-04-10 주식회사 티엠디랩 Substrate for inseting a nasolacrimal duct including shape memory polymers
KR20220118841A (en) * 2021-02-19 2022-08-26 주식회사 퓨처바이오웍스 Shape memory polymer and manufacturing method thereof, and the use of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101906472B1 (en) * 2017-04-04 2018-10-10 연세대학교 산학협력단 A photo-crosslinkable shape memory polymer and manufacturing method thereof
KR20200038198A (en) * 2018-10-02 2020-04-10 연세대학교 산학협력단 A Substrate for blood vessel anastomosis including shape memory polymers
KR20200038102A (en) * 2018-10-02 2020-04-10 주식회사 티엠디랩 Substrate for inseting a nasolacrimal duct including shape memory polymers
KR20220118841A (en) * 2021-02-19 2022-08-26 주식회사 퓨처바이오웍스 Shape memory polymer and manufacturing method thereof, and the use of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TIAN GUANGMING, ZHU GUANGMING, XU SHUOGUI, REN TIANNING: "A novel shape memory poly(ɛ-caprolactone)/hydroxyapatite nanoparticle networks for potential biomedical applications", JOURNAL OF SOLID STATE CHEMISTRY, ORLANDO, FL, US, vol. 272, 1 April 2019 (2019-04-01), US , pages 78 - 86, XP093204511, ISSN: 0022-4596, DOI: 10.1016/j.jssc.2019.01.029 *

Also Published As

Publication number Publication date
KR20240132572A (en) 2024-09-04

Similar Documents

Publication Publication Date Title
WO2018186575A1 (en) Photo-cross-linkable shape-memory polymer and preparation method therefor
WO2020071806A1 (en) Vascular anastomotic member comprising shape-memory polymer
WO2023096334A1 (en) Shape-memory polymer comprising 6-arm structure compound, and use thereof
WO2016159734A1 (en) Bleed-free injection needle coated with crosslinked chitosan having introduced catechol group and oxidized catechol group
WO2013180458A1 (en) Crosslinked hydrogel for drug delivery, and method for preparing the hydrogel
WO2011028031A2 (en) In situ-forming hydrogel for tissue adhesives and biomedical use thereof
WO2012099293A1 (en) Radiation cross-linked collagen gel, and preparation method and usage method thereof
WO2020071732A1 (en) Nasolacrimal duct insertion member comprising shape memory polymer
WO2024181854A1 (en) Shape memory polymer with improved degradability and method for preparing same
WO2016043547A1 (en) Tissue repair composition and preparation method therefor
WO2019074314A1 (en) Hydrogel comprising cross-linked product of graft copolymer and method for preparing same
WO2017014431A1 (en) Preparation method of microparticles comprising biodegradable polymer
WO2022154645A1 (en) Biocompatible hydrogel comprising component containing hyaluronic acid, polyethylene glycol and silicone
WO2022010252A1 (en) Alkylene-oxide-added polyol composition, polyurethane using same, and hot-melt adhesive comprising same
Yang et al. Poly (ε-caprolactone)-based copolymers bearing pendant cyclic ketals and reactive acrylates for the fabrication of photocrosslinked elastomers
WO2020116999A1 (en) Crosslinked hyaluronic acid, hyaluronic acid hydrogel, and method for producing crosslinked hyaluronic acid and hyaluronic acid hydrogel
WO2024172476A1 (en) Biocompatible polymer capable of crosslinking, having improved elasticity and elongation, and shape memory properties, and preparation method and use thereof
WO2024205140A1 (en) Shape memory polymer comprising 8-arm structured compound and use thereof
WO2021015588A1 (en) Biocompatible hydrogel comprising hyaluronic acid and polyethylene glycol
WO2021107298A1 (en) Temperature-sensitive hydrogel composition having changed reversible sol-gel transition property and use thereof
WO2011004936A1 (en) Method for producing bioactive cellulose membrane from skin horny layer of ascidiacea and bioactive cellulose membrane obtained thereby
WO2022108264A1 (en) Photo-cross-linking copolymerized hyaluronic acid sponge and preparation method therefor
WO2024167073A1 (en) Shape-memory polymer having self-expansion and biofilm-reduction properties, and use thereof as medical material
WO2022019733A1 (en) Graft copolymer of amphoteric compound and anionic compound and preparation method therefor
WO2021246764A1 (en) Method of preparing polymeric microparticles, polymeric microparticles, and medical composition, cosmetic composition, medical article, and cosmetic article each comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24764252

Country of ref document: EP

Kind code of ref document: A1