WO2024180644A1 - 画像処理装置、画像処理方法、及び、記録媒体 - Google Patents
画像処理装置、画像処理方法、及び、記録媒体 Download PDFInfo
- Publication number
- WO2024180644A1 WO2024180644A1 PCT/JP2023/007208 JP2023007208W WO2024180644A1 WO 2024180644 A1 WO2024180644 A1 WO 2024180644A1 JP 2023007208 W JP2023007208 W JP 2023007208W WO 2024180644 A1 WO2024180644 A1 WO 2024180644A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- size
- lesion candidate
- resizing
- lesion
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 118
- 238000003672 processing method Methods 0.000 title claims description 4
- 230000003902 lesion Effects 0.000 claims abstract description 120
- 238000000034 method Methods 0.000 claims abstract description 79
- 230000008569 process Effects 0.000 claims abstract description 66
- 238000011946 reduction process Methods 0.000 claims description 6
- 239000002131 composite material Substances 0.000 description 19
- 238000001514 detection method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000015654 memory Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000003936 working memory Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/045—Control thereof
Definitions
- This disclosure relates to image processing technology applied to endoscopic images.
- Patent Document 1 discloses a technology for generating one frame of image data by performing signal processing such as color interpolation, color separation, color balance adjustment, gamma correction, and image enhancement processing on one frame of image signals input from an electronic endoscope.
- Patent Document 1 also discloses a technology for generating display image data by performing image cropping, electronic enlargement, and mask processing on one frame of image data.
- Patent Document 1 has the problem that when processing is performed to change the state of elements that represent the characteristics of a lesion, such as two-dimensional shape and surface pattern, from their original state (the state of the original image), the accuracy of diagnosing the lesion may decrease.
- Patent Document 1 poses a problem corresponding to the aforementioned issue that the accuracy of diagnosing lesion candidates contained in endoscopic images may decrease.
- One objective of the present disclosure is to provide an image processing device that can improve the diagnostic accuracy of lesion candidates contained in endoscopic images.
- the image processing device has an image acquisition means for acquiring a lesion candidate image including lesion candidates detected from an endoscopic image, a resizing means for performing a resizing process for resizing the size of the lesion candidate image according to a target size while maintaining the aspect ratio of the lesion candidate image, and a padding means for performing a padding process for matching the size of the resized image obtained by the resizing process to the target size.
- an image processing method includes acquiring a lesion candidate image including lesion candidates detected from an endoscopic image, performing a resizing process to resize the lesion candidate image in accordance with a target size while maintaining the aspect ratio of the lesion candidate image, and performing a padding process to match the size of the resized image obtained by the resizing process to the target size.
- the recording medium records a program that causes a computer to execute a process of acquiring a lesion candidate image including lesion candidates detected from an endoscopic image, a resizing process of resizing the size of the lesion candidate image according to a target size while maintaining the aspect ratio of the lesion candidate image, and a padding process of matching the size of the resized image obtained by the resizing process to the target size.
- This disclosure makes it possible to improve the accuracy of diagnosing lesion candidates contained in endoscopic images.
- FIG. 1 is a block diagram showing a hardware configuration of an image processing apparatus according to a first embodiment.
- FIG. 1 is a block diagram showing the functional configuration of an image processing apparatus according to a first embodiment.
- 3A and 3B are views showing examples of endoscopic images to be processed by the image processing apparatus according to the first embodiment.
- 1 is a view showing an overview of processing performed by an image processing apparatus according to a first embodiment;
- 4 is a flowchart showing an example of processing performed in the image processing device according to the first embodiment.
- FIG. 11 is a block diagram showing the functional configuration of an image processing apparatus according to a second embodiment.
- 10 is a flowchart for explaining a process performed in an image processing device according to a second embodiment.
- Fig. 1 is a block diagram showing the hardware configuration of an image processing device according to the first embodiment.
- the image processing device 100 has an interface (IF) 111, a processor 112, a memory 113, a recording medium 114, and a database (DB) 115.
- IF interface
- DB database
- IF111 inputs and outputs data to and from external devices.
- an endoscopic image obtained by photographing a subject inside a body cavity with an endoscope is input to the image processing device 100 through IF111.
- the description will be given assuming that an endoscopic image having R (red), G (green), and B (blue) color components is input to the image processing device 100.
- the processor 112 is a computer such as a CPU (Central Processing Unit), and controls the entire image processing device 100 by executing a program prepared in advance. Specifically, the processor 112 performs, for example, processing related to the detection of lesion candidates such as tumors contained in an endoscopic image, and processing related to the acquisition of lesion candidate images containing the lesion candidates.
- CPU Central Processing Unit
- Memory 113 is composed of ROM (Read Only Memory), RAM (Random Access Memory), etc. Memory 113 is also used as working memory while various processes are being executed by processor 112.
- the recording medium 114 is a non-volatile, non-temporary recording medium such as a disk-shaped recording medium or semiconductor memory, and is configured to be detachable from the image processing device 100.
- the recording medium 114 records various programs executed by the processor 112. When the image processing device 100 executes various processes, the programs recorded on the recording medium 114 are loaded into the memory 113 and executed by the processor 112.
- DB115 stores, for example, endoscopic images input via IF111 and processing results obtained by processing by processor 112.
- FIG. 2 is a block diagram showing the functional configuration of the image processing device according to the first embodiment.
- the image processing device 100 has a lesion candidate detection unit 11, a brightness adjustment unit 12, a super-resolution processing unit 13, and a size adjustment unit 14.
- the lesion candidate detection unit 11 functions as an image acquisition unit.
- the lesion candidate detection unit 11 detects lesion candidates such as tumors contained in the endoscopic image input to the image processing device 100.
- the detection of lesion candidates may be performed by image processing of the endoscopic image, or may be performed by a user visually checking the endoscopic image.
- the lesion candidate detection unit 11 acquires a lesion candidate image including lesion candidates detected from the endoscopic image, and outputs the acquired lesion candidate image to the brightness adjustment unit 12.
- FIG. 3 is a diagram showing an example of an endoscopic image processed by the image processing device according to the first embodiment.
- the brightness adjustment unit 12 functions as a brightness adjustment means.
- the brightness adjustment unit 12 generates a plurality of lesion candidate images having different brightnesses based on the brightness of the lesion candidate images output from the lesion candidate detection unit 11.
- the brightness adjustment unit 12 obtains a composite image by synthesizing the plurality of lesion candidate images generated as described above, and outputs the obtained composite image to the super-resolution processing unit 13.
- the brightness modification unit 12 converts the R, G, and B component values of each pixel of the lesion candidate image LGA output from the lesion candidate detection unit 11 into an H (hue), S (saturation), and V (luminance) component value.
- the brightness modification unit 12 also performs arithmetic processing such as adding or subtracting a predetermined value (e.g., 10) to the V component value obtained by the above-mentioned conversion for each pixel of the lesion candidate image LGA to obtain multiple V component values that are different from each other.
- the brightness modification unit 12 also generates a lesion candidate image HGA that has the H and S component values obtained by the above-mentioned conversion and the V component value obtained by the above-mentioned arithmetic processing.
- the brightness modification unit 12 also generates multiple lesion candidate images HGA that correspond to each of the multiple V component values obtained by the above-mentioned arithmetic processing.
- the brightness adjustment unit 12 obtains a composite image CGA by synthesizing multiple lesion candidate images HGA using a method related to HDR (High Dynamic Range) synthesis, and outputs the obtained composite image CGA to the super-resolution processing unit 13.
- HDR High Dynamic Range
- the method for HDR synthesis may be, for example, the method disclosed in Tom Mertens, et. al, "Exposure Fusion: A Simple and Practical Alternative to High Dynamic Range Photography," Computer Graphics Forum, vol. 28, no. 1, pp. 161-171, Mar. 2009.
- the brightness adjustment unit 12 may acquire a composite image using the method described below instead of the method described in the specific example above, and output the acquired composite image to the super-resolution processing unit 13.
- the brightness adjustment unit 12 detects the gamma characteristic (gamma curve) in the lesion candidate image LGA output from the lesion candidate detection unit 11.
- the brightness adjustment unit 12 also performs arithmetic processing such as adding or subtracting a predetermined value to the gamma value in the gamma characteristic detected as described above, thereby obtaining multiple gamma values that are different from each other.
- the brightness adjustment unit 12 also generates the lesion candidate image HGB by applying the gamma value obtained by the above-mentioned arithmetic processing to the gamma characteristic of the lesion candidate image LGA.
- the brightness adjustment unit 12 also generates multiple lesion candidate images HGB corresponding to each of the multiple gamma values obtained by the above-mentioned arithmetic processing.
- the brightness adjustment unit 12 also obtains a composite image CGB by combining the multiple lesion candidate images HGB using a method related to HDR combination, and outputs the obtained composite image CGB to the super-resolution processing unit 13.
- the brightness adjustment unit 12 can adjust the brightness of the lesion candidate image.
- the super-resolution processing unit 13 functions as a super-resolution processing means.
- the super-resolution processing unit 13 also performs super-resolution processing to enlarge the size of the composite image output from the brightness adjustment unit 12 to a size larger than the size of the final output image output from the image processing device 100.
- the super-resolution processing unit 13 performs super-resolution processing to increase the resolution of the composite image output from the brightness adjustment unit 12 to a resolution higher than the resolution of the final output image output from the image processing device 100.
- the super-resolution processing unit 13 also outputs the enlarged image obtained by applying the above-mentioned super-resolution processing to the composite image to the size adjustment unit 14.
- the super-resolution processing unit 13 can obtain the enlarged image EGA by, for example, performing super-resolution processing using a Lanczos filter on the composite image CGA (or CGB) output from the brightness adjustment unit 12.
- the super-resolution processing unit 13 can obtain the enlarged image EGA by, for example, performing super-resolution processing using a Lanczos filter on the composite image CGA (or CGB) output from the brightness adjustment unit 12.
- the super-resolution processing unit 13 may set the enlargement ratio in the super-resolution processing to any ratio, so long as the size of the composite image is enlarged to a size larger than the size of the final output image.
- the size of the final output image is an example of a target size in this embodiment, and it is desirable to set it to a size appropriate for the use of the image.
- the super-resolution processing unit 13 can perform super-resolution processing to enlarge the size of the brightness-adjusted lesion candidate image to a size larger than the target size.
- the size adjustment unit 14 functions as a resizing means and a padding means.
- the size adjustment unit 14 also performs a resizing process to reduce the size of the enlarged image output from the super-resolution processing unit 13 in accordance with the size of the final output image while maintaining the aspect ratio of the enlarged image.
- the size adjustment unit 14 also performs a padding process to make the size of the resized image obtained by performing the above-mentioned resizing process on the enlarged image match the size of the final output image.
- the size adjustment unit 14 also outputs the image obtained by performing the above-mentioned padding process on the resized image to the outside as the final output image.
- FIG. 4 is a diagram showing an overview of the processing performed by the image processing device according to the first embodiment.
- the size adjustment unit 14 obtains the vertical length SH and horizontal length SW of the final output image SGA.
- the size adjustment unit 14 also obtains the length EX of the relatively larger of the vertical length EH and horizontal length EW of the enlarged image EGA.
- the size adjustment unit 14 obtains the resized image RGA by reducing the enlarged image EGA so that the length EX matches the length SH while maintaining the aspect ratio of the enlarged image EGA. Also, for example, when the length SW is greater than the length SH, the size adjustment unit 14 obtains the resized image RGA by reducing the enlarged image EGA so that the length EX matches the length SW while maintaining the aspect ratio of the enlarged image EGA. Also, for example, when the length SW and the length SH are equal, the size adjustment unit 14 obtains the resized image RGA by reducing the enlarged image EGA so that the length EX matches the length SW or the length SH while maintaining the aspect ratio of the enlarged image EGA.
- the size adjustment unit 14 obtains an R intermediate value MVR corresponding to the intermediate value of the R component value of each pixel included in the enlarged image EGA, a G intermediate value MVG corresponding to the intermediate value of the G component value of each pixel, and a B intermediate value MVB corresponding to the intermediate value of the B component value of each pixel.
- the size adjustment unit 14 also generates a monochrome image MGA that has the same size (lengths SH and SW) as the size of the final output image SGA and corresponds to an image whose entire area is colored with the colors represented by the R intermediate value MVR, the G intermediate value MVG, and the B intermediate value MVB (see FIG. 4).
- the size adjustment unit 14 also obtains a background image BGA that has the same size (lengths SH and SW) as the size of the final output image SGA by adding a noise image ZGA that represents irregular noise within a predetermined amplitude range to the monochrome image MGA generated as described above (see FIG. 4).
- the noise image ZGA has the same size (lengths SH and SW) as the size of the final output image SGA.
- the aforementioned predetermined amplitude is set to, for example, an amplitude that is sufficiently small relative to the dynamic range of the color component values of each pixel in the enlarged image EGA.
- the aforementioned predetermined amplitude is set to 20.
- the R intermediate value MVR of a pixel in the single-color image MGA is 220
- the R component value of that pixel in the background image BGA can be set to any value between 200 and 240.
- the size adjustment unit 14 obtains the final output image SGA by superimposing the resized image RGA on the central portion of the background image BGA (see FIG. 4).
- the size adjustment unit 14 uses the background image BGA to perform padding processing to make the size of the resized image RGA match the size of the final output image SGA.
- the size adjustment unit 14 performs padding processing to fill the blank areas on the left and right of the resized image RGA with the background image BGA.
- the size adjustment unit 14 may perform padding processing to fill the blank areas on the top and bottom of the resized image RGA with the background image BGA based on the size of the final output image SGA and the size of the resized image RGA.
- the size adjustment unit 14 performs the above-mentioned padding process on the resized image RGA to obtain the final output image SGA, which is then output to the outside of the image processing device 100.
- the super-resolution processing unit 13 may output the composite image as is to the size adjustment unit 14.
- the size adjustment unit 14 may perform resizing and padding on the composite image output from the super-resolution processing unit 13 instead of the enlarged image.
- the above-described process makes it possible to obtain, as the final output image SGA, an image in which the two-dimensional shape and surface pattern of the lesion candidate LC contained in the endoscopic image NGA is maintained. Furthermore, the above-described process makes it possible to obtain, as the final output image SGA, an image containing the lesion candidate LC with higher image quality than that in the endoscopic image NGA.
- the size adjustment unit 14 can perform a resizing process to resize the size of the lesion candidate image according to the target size while maintaining the aspect ratio of the lesion candidate image. Also, as described above, the size adjustment unit 14 can perform a padding process to match the size of the resized image obtained by the resizing process to the target size. Also, as described above, the size adjustment unit 14 can perform a resizing process on the lesion candidate image whose brightness has been adjusted. Also, as described above, the size adjustment unit 14 can perform a reduction process, as the resizing process, to reduce the size of the lesion candidate image on which the super-resolution process has been performed to the maximum size that fits within the target size.
- the size adjustment unit 14 can perform a padding process to superimpose the resized image obtained by the reduction process on the center part of a background image having the same size as the target size. Also, as described above, the size adjustment unit 14 can generate a monochrome image whose entire area is colored with a color represented by the intermediate value of the color component values of each pixel included in the lesion candidate image on which the super-resolution process has been performed, and can obtain an image to which noise has been added to the monochrome image as the background image.
- FIG. 5 is a flowchart showing an example of processing performed in the image processing device according to the first embodiment.
- the image processing device 100 detects lesion candidates contained in the endoscopic image and obtains a lesion candidate image containing the detected lesion candidates (step S11).
- the image processing device 100 generates multiple lesion candidate images having different brightnesses based on the brightness of the lesion candidate images obtained in step S11 (step S12).
- the image processing device 100 processes the multiple lesion candidate images obtained in step S12 as follows: A composite image is obtained by compositing using a technique related to HDR compositing (step S13).
- the image processing device 100 performs super-resolution processing on the composite image obtained in step S13 to enlarge the image to a size larger than the size of the final output image, thereby obtaining an enlarged image (step S14).
- the image processing device 100 performs a resizing process to reduce the size of the enlarged image obtained in step S14 according to the size of the final output image while maintaining the aspect ratio of the enlarged image, thereby obtaining a resized image (step S15).
- the image processing device 100 obtains a background image by adding a monochrome image generated based on the color component values of each pixel of the enlarged image obtained in step S14 to a noise image representing irregular noise within a predetermined amplitude range (step S16).
- the monochrome image, noise image, and background image have the same size as the size of the final output image.
- the entire monochrome image is colored with a color corresponding to the median value of the color component values of each pixel in the enlarged image obtained in step S14.
- the image processing device 100 obtains the final output image by superimposing the resized image obtained in step S15 on the central part of the background image obtained in step S16 (step S17).
- a resized image can be obtained in which elements such as a two-dimensional shape and surface pattern that represent the characteristics of the lesion candidate are maintained.
- a padding process can be performed using a background image that has a similar color to the resized image but does not have the characteristics of a lesion candidate, and the size of the resized image can be matched to the size of the final output image. Therefore, according to this embodiment, for example, by using the final output image obtained through the padding process described above as training data, a machine learning model for diagnosing lesion candidates can be suitably trained.
- FIG. 6 is a block diagram showing the functional configuration of an image processing apparatus according to the second embodiment.
- the image processing device 500 has the same hardware configuration as the image processing device 100.
- the image processing device 500 also has an image acquisition unit 511, a resizing unit 512, and a padding unit 513.
- FIG. 7 is a flowchart for explaining the processing performed in the image processing device according to the second embodiment.
- the image acquisition means 511 acquires a lesion candidate image including lesion candidates detected from the endoscopic image (step S51).
- the resizing means 512 performs a resizing process to resize the lesion candidate image according to the target size while maintaining the aspect ratio of the lesion candidate image (step S52).
- the padding means 513 performs padding processing to match the size of the resized image obtained by the resizing processing to the target size (step S53).
- An image processing device comprising:
- the method further includes a brightness adjustment means for adjusting the brightness of the lesion candidate image, 2.
- the method further includes a super-resolution processing unit that performs a super-resolution process to enlarge the size of the lesion candidate image whose brightness has been adjusted to a size larger than the target size,
- the image processing device of claim 2 wherein the resizing means performs a reduction process as the resizing process, to reduce a size of the lesion candidate image, on which the super-resolution process has been performed, to a maximum size that fits within the target size.
- (Appendix 6) Obtaining a lesion candidate image including lesion candidates detected from the endoscopic image; performing a resizing process for resizing the size of the lesion candidate image according to a target size while maintaining an aspect ratio of the lesion candidate image;
- the image processing method includes a padding process for matching the size of the resized image obtained by the resizing process to the target size.
- Appendix 7 A process of acquiring a lesion candidate image including lesion candidates detected from an endoscopic image; a resizing process for resizing the size of the lesion candidate image according to a target size while maintaining an aspect ratio of the lesion candidate image; a padding process for matching the size of the resized image obtained by the resizing process to the target size.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
- Endoscopes (AREA)
Abstract
画像処理装置において、画像取得手段は、内視鏡画像から検出された病変候補を含む病変候補画像を取得する。リサイズ手段は、病変候補画像のアスペクト比を維持しつつ、病変候補画像のサイズを目標サイズに応じてリサイズするリサイズ処理を行う。パディング手段は、リサイズ処理により得られたリサイズ画像のサイズを目標サイズに一致させるパディング処理を行う。
Description
本開示は、内視鏡画像に対して適用される画像処理の技術に係る。
内視鏡画像または当該内視鏡画像に対応する信号等に対して処理を行う技術が従来提案されている。
具体的には、例えば、特許文献1には、電子内視鏡から入力された1フレーム分の画像信号に対し、色補間、色分離、色バランス調整、ガンマ補正、及び、画像強調処理等の信号処理を行うことにより、1フレーム分の画像データを生成する技術が開示されている。また、特許文献1には、1フレーム分の画像データに対し、画像切り出し処理、電子拡大処理、及び、マスク処理を施すことにより、表示用画像データを生成する技術が開示されている。
しかし、特許文献1に開示された技術によれば、例えば、2次元形状及び表面模様等のような、病変の特徴を表す要素の状態を本来の状態(原画像の状態)から変化させる処理が行われた場合において、当該病変の診断精度が低下し得る、という問題点がある。
すなわち、特許文献1に開示された技術によれば、内視鏡画像に含まれる病変候補の診断精度が低下するおそれがある、という前述の問題点に応じた課題が生じている。
本開示の1つの目的は、内視鏡画像に含まれる病変候補の診断精度を向上させることが可能な画像処理装置を提供することにある。
本開示の一つの観点では、画像処理装置は、内視鏡画像から検出された病変候補を含む病変候補画像を取得する画像取得手段と、前記病変候補画像のアスペクト比を維持しつつ、前記病変候補画像のサイズを目標サイズに応じてリサイズするリサイズ処理を行うリサイズ手段と、前記リサイズ処理により得られたリサイズ画像のサイズを前記目標サイズに一致させるパディング処理を行うパディング手段と、を有する。
本開示の他の観点では、画像処理方法は、内視鏡画像から検出された病変候補を含む病変候補画像を取得し、前記病変候補画像のアスペクト比を維持しつつ、前記病変候補画像のサイズを目標サイズに応じてリサイズするリサイズ処理を行い、前記リサイズ処理により得られたリサイズ画像のサイズを前記目標サイズに一致させるパディング処理を行う。
本開示のさらに他の観点では、記録媒体は、内視鏡画像から検出された病変候補を含む病変候補画像を取得する処理と、前記病変候補画像のアスペクト比を維持しつつ、前記病変候補画像のサイズを目標サイズに応じてリサイズするリサイズ処理と、前記リサイズ処理により得られたリサイズ画像のサイズを前記目標サイズに一致させるパディング処理と、をコンピュータに実行させるプログラムを記録する。
本開示によれば、内視鏡画像に含まれる病変候補の診断精度を向上させることができる。
以下、図面を参照して、本開示の好適な実施形態について説明する。
<第1実施形態>
[ハードウェア構成]
図1は、第1実施形態に係る画像処理装置のハードウェア構成を示すブロック図である。画像処理装置100は、図1に示すように、インターフェース(IF)111と、プロセッサ112と、メモリ113と、記録媒体114と、データベース(DB)115と、を有している。
[ハードウェア構成]
図1は、第1実施形態に係る画像処理装置のハードウェア構成を示すブロック図である。画像処理装置100は、図1に示すように、インターフェース(IF)111と、プロセッサ112と、メモリ113と、記録媒体114と、データベース(DB)115と、を有している。
IF111は、外部装置との間でデータの入出力を行う。例えば、体腔内の被写体を内視鏡で撮影することにより得られた内視鏡画像がIF111を通じて画像処理装置100に入力される。なお、本実施形態においては、特に言及のない限り、R(赤)、G(緑)及びB(青)の色成分を有する内視鏡画像が画像処理装置100に入力されるものとして説明を行う。
プロセッサ112は、CPU(Central Processing Unit)などのコンピュータであり、予め用意されたプログラムを実行することにより、画像処理装置100の全体を制御する。具体的には、プロセッサ112は、例えば、内視鏡画像に含まれる腫瘍等の病変候補の検出に係る処理、及び、当該病変候補を含む病変候補画像の取得に係る処理等を行う。
メモリ113は、ROM(Read Only Memory)、RAM(Random Access Memory)などにより構成される。メモリ113は、プロセッサ112による各種の処理の実行中に作業メモリとしても使用される。
記録媒体114は、ディスク状記録媒体、半導体メモリなどの不揮発性で非一時的な記録媒体であり、画像処理装置100に対して着脱可能に構成される。記録媒体114は、プロセッサ112が実行する各種のプログラムを記録している。画像処理装置100が各種の処理を実行する際には、記録媒体114に記録されているプログラムがメモリ113にロードされ、プロセッサ112により実行される。
DB115には、例えば、IF111を通じて入力された内視鏡画像、及び、プロセッサ112の処理により得られた処理結果等が格納される。
[機能構成]
図2は、第1実施形態に係る画像処理装置の機能構成を示すブロック図である。画像処理装置100は、図2に示すように、病変候補検出部11と、明るさ修整部12と、超解像処理部13と、サイズ調整部14と、を有している。
図2は、第1実施形態に係る画像処理装置の機能構成を示すブロック図である。画像処理装置100は、図2に示すように、病変候補検出部11と、明るさ修整部12と、超解像処理部13と、サイズ調整部14と、を有している。
病変候補検出部11は、画像取得手段としての機能を有している。また、病変候補検出部11は、画像処理装置100に入力された内視鏡画像に含まれる腫瘍等の病変候補を検出する。病変候補の検出は、内視鏡画像に対する画像処理により行われるものであってもよく、または、内視鏡画像を目視で確認するユーザにより行われるものであってもよい。また、病変候補検出部11は、内視鏡画像から検出した病変候補を含む病変候補画像を取得し、当該取得した病変候補画像を明るさ修整部12へ出力する。
具体的には、病変候補検出部11は、例えば、図3に示すような内視鏡画像NGAが画像処理装置100に入力された場合に、当該内視鏡画像NGAに含まれる病変候補LCを検出する。また、病変候補検出部11は、内視鏡画像NGAから検出した病変候補LCを含む矩形領域RAを抽出し、当該矩形領域RAに対応する画像を病変候補画像LGAとして取得する。そして、病変候補検出部11は、病変候補画像LGAを明るさ修整部12へ出力する。図3は、第1実施形態に係る画像処理装置により処理される内視鏡画像の例を示す図である。
明るさ修整部12は、明るさ修整手段としての機能を有している。また、明るさ修整部12は、病変候補検出部11から出力される病変候補画像の明度に基づき、互いに異なる明度を有する複数の病変候補画像を生成する。また、明るさ修整部12は、前述のように生成した複数の病変候補画像を合成することにより合成画像を取得し、当該取得した合成画像を超解像処理部13へ出力する。
ここで、明るさ修整部12の機能の具体例について説明する。
明るさ修整部12は、病変候補検出部11から出力される病変候補画像LGAの画素各々におけるR成分値、G成分値及びB成分値を、H(色相)成分値、S(彩度)成分値及びV(明度)成分値に変換する。また、明るさ修整部12は、病変候補画像LGAの画素各々について、前述の変換により得られたV成分値に対して所定値(例えば10)を加算するまたは減算する等の演算処理を行うことにより、互いに異なる複数のV成分値を取得する。また、明るさ修整部12は、前述の変換により得られたH成分値及びS成分値と、前述の演算処理により得られたV成分値と、を有する病変候補画像HGAを生成する。また、明るさ修整部12は、前述の演算処理により得られた複数のV成分値各々に対応する複数の病変候補画像HGAを生成する。また、明るさ修整部12は、HDR(High Dynamic Range)合成に係る手法を用いて複数の病変候補画像HGAを合成することにより合成画像CGAを取得し、当該取得した合成画像CGAを超解像処理部13へ出力する。
本具体例においては、HDR合成に係る手法として、例えば、Tom Mertens, et.al,“Exposure Fusion: A Simple and Practical Alternative to High Dynamic Range Photography,” Computer Graphics Forum, vol. 28, no. 1, pp. 161-171, Mar. 2009に開示されている手法を用いることができる。また、本具体例においては、HDR合成に係る手法として、内視鏡画像NGAの露出に係る情報が無い状態であっても実施可能な手法を用いることが望ましい。
なお、本実施形態によれば、明るさ修整部12は、以上の具体例に述べた方法の代わりに、以下に述べるような方法で合成画像を取得し、当該取得した合成画像を超解像処理部13へ出力するものであってもよい。
明るさ修整部12は、病変候補検出部11から出力される病変候補画像LGAにおけるガンマ特性(ガンマカーブ)を検出する。また、明るさ修整部12は、前述のように検出したガンマ特性におけるガンマ値に対して所定値を加算するまたは減算する等の演算処理を行うことにより、互いに異なる複数のガンマ値を取得する。また、明るさ修整部12は、前述の演算処理により得られたガンマ値を病変候補画像LGAのガンマ特性に対して適用することにより、病変候補画像HGBを生成する。また、明るさ修整部12は、前述の演算処理により得られた複数のガンマ値各々に対応する複数の病変候補画像HGBを生成する。また、明るさ修整部12は、HDR合成に係る手法を用いて複数の病変候補画像HGBを合成することにより合成画像CGBを取得し、当該取得した合成画像CGBを超解像処理部13へ出力する。
以上に述べたように、明るさ修整部12は、病変候補画像の明るさを修整することができる。
超解像処理部13は、超解像処理手段としての機能を有している。また、超解像処理部13は、明るさ修整部12から出力される合成画像のサイズを、画像処理装置100から出力される最終的な出力画像のサイズよりも大きなサイズに拡大する超解像処理を行う。換言すると、超解像処理部13は、明るさ修整部12から出力される合成画像の解像度を、画像処理装置100から出力される最終的な出力画像の解像度よりも高い解像度に上げる超解像処理を行う。また、超解像処理部13は、前述の超解像処理を合成画像に対して施すことにより得られた拡大画像をサイズ調整部14へ出力する。
具体的には、超解像処理部13は、例えば、明るさ修整部12から出力される合成画像CGA(またはCGB)に対し、Lanczosフィルタを用いた超解像処理を施すことにより、拡大画像EGAを取得することができる。または、超解像処理部13は、例えば、明るさ修整部12から出力される合成画像CGA(またはCGB)に対し、Bee Lim, et.al,“Enhanced Deep Residual Networks for Single Image Super-Resolution”, 2nd NTIRE: New Trends in Image Restoration and Enhancement workshop and challenge on image super-resolution in conjunction with CVPR 2017に開示されている手法に基づく超解像処理を施すことにより、拡大画像EGAを取得することができる。
なお、超解像処理部13は、合成画像のサイズを最終的な出力画像のサイズよりも大きなサイズに拡大する限りにおいては、超解像処理における拡大倍率を任意の倍率に設定してもよい。また、最終的な出力画像のサイズは、本実施形態における目標サイズの一例であり、画像の用途に適したサイズとして設定されることが望ましい。
以上に述べたように、超解像処理部13は、明るさが修整された病変候補画像のサイズを目標サイズよりも大きなサイズに拡大する超解像処理を行うことができる。
サイズ調整部14は、リサイズ手段及びパディング手段としての機能を有している。また、サイズ調整部14は、超解像処理部13から出力される拡大画像のアスペクト比を維持しつつ、当該拡大画像のサイズを最終的な出力画像のサイズに応じて縮小するリサイズ処理を行う。また、サイズ調整部14は、前述のリサイズ処理を拡大画像に対して施すことにより得られたリサイズ画像のサイズを最終的な出力画像のサイズに一致させるパディング処理を行う。また、サイズ調整部14は、前述のパディング処理をリサイズ画像に対して施すことによりにより得られた画像を最終的な出力画像として外部へ出力する。
ここで、サイズ調整部14の機能の具体例について、図4を適宜参照しつつ説明する。なお、図4においては、図示の便宜上、拡大画像EGAに含まれる病変候補LC等の一部の要素を省略している。また、以下の具体例の説明においては、「長さ」を「画素数」と読み替えてもよい。図4は、第1実施形態に係る画像処理装置により行われる処理の概要を示す図である。
サイズ調整部14は、最終的な出力画像SGAにおける垂直方向の長さSH及び水平方向の長さSWを取得する。また、サイズ調整部14は、拡大画像EGAにおける垂直方向の長さEH及び水平方向の長さEWのうち、相対的に大きな一の方向の長さEXを取得する。また、サイズ調整部14は、長さSHと、長さSWと、長さEXと、に基づき、拡大画像EGAのアスペクト比を維持しつつ、最終的な出力画像SGAの内部に収まる最大のサイズまで当該拡大画像EGAのサイズを縮小することにより、リサイズ画像RGAを取得する(図4参照)。なお、図4は、EH=EXかつSH=SWの場合の例を表している。
具体的には、サイズ調整部14は、例えば、長さSHが長さSWよりも大きい場合には、拡大画像EGAのアスペクト比を維持しつつ、長さEXが当該長さSHに一致するように当該拡大画像EGAを縮小することにより、リサイズ画像RGAを取得する。また、サイズ調整部14は、例えば、長さSWが長さSHよりも大きい場合には、拡大画像EGAのアスペクト比を維持しつつ、長さEXが当該長さSWに一致するように当該拡大画像EGAを縮小することにより、リサイズ画像RGAを取得する。また、サイズ調整部14は、例えば、長さSWと長さSHとが等しい場合には、拡大画像EGAのアスペクト比を維持しつつ、長さEXが当該長さSWまたは当該長さSHに一致するように当該拡大画像EGAを縮小することにより、リサイズ画像RGAを取得する。
以上に述べた処理によれば、サイズ調整部14は、例えば、SW=SH=400、EH=800、かつ、EW=600の場合には、垂直方向の長さ=400かつ水平方向の長さ=300のリサイズ画像RGAを取得することができる。
サイズ調整部14は、拡大画像EGAに含まれる各画素のR成分値の中間値に相当するR中間値MVRと、当該各画素のG成分値の中間値に相当するG中間値MVGと、当該各画素のB成分値の中間値に相当するB中間値MVBと、を取得する。また、サイズ調整部14は、最終的な出力画像SGAのサイズと同一のサイズ(長さSH及びSW)を有するとともに、R中間値MVR、G中間値MVG及びB中間値MVBにより表される色で全域を着色した画像に相当する単色画像MGAを生成する(図4参照)。また、サイズ調整部14は、前述のように生成した単色画像MGAに対し、所定の振幅の範囲内における不規則なノイズを表すノイズ画像ZGAを加算することにより、最終的な出力画像SGAのサイズと同一のサイズ(長さSH及びSW)を有する背景画像BGAを取得する(図4参照)。ノイズ画像ZGAは、最終的な出力画像SGAのサイズと同一のサイズ(長さSH及びSW)を有している。また、前述の所定の振幅は、例えば、拡大画像EGAにおける各画素の色成分値のダイナミックレンジに対して十分に小さい振幅に設定されていることが望ましい。具体的には、例えば、拡大画像EGAにおける各画素の色成分値が0~255の範囲内に属する場合には、前述の所定の振幅が20に設定されていることが望ましい。そして、例えば、前述の所定の振幅が20に設定され、かつ、単色画像MGAにおける一の画素のR中間値MVRが220である場合には、背景画像BGAにおける当該一の画素のR成分値を200~240のいずれかの値に設定することができる。
サイズ調整部14は、リサイズ画像RGAを背景画像BGAの中央部分に重畳することにより、最終的な出力画像SGAを取得する(図4参照)。換言すると、サイズ調整部14は、背景画像BGAを用い、リサイズ画像RGAのサイズを最終的な出力画像SGAのサイズに一致させるパディング処理を行う。図4に示した例によれば、サイズ調整部14は、リサイズ画像RGAの左右に存在する余白部分を背景画像BGAで埋めるようなパディング処理を行っている。また、本実施形態によれば、サイズ調整部14は、最終的な出力画像SGAのサイズと、リサイズ画像RGAのサイズと、に基づき、当該リサイズ画像RGAの上下方向に存在する余白部分を背景画像BGAで埋めるようなパディング処理を行うものであってもよい。
サイズ調整部14は、前述のパディング処理をリサイズ画像RGAに対して行うことにより得られた最終的な出力画像SGAを画像処理装置100の外部へ出力する。
なお、本実施形態によれば、超解像処理部13は、例えば、明るさ修整部12から出力される合成画像のサイズが最終的な出力画像のサイズよりも大きい場合に、当該合成画像をそのままサイズ調整部14へ出力するようにしてもよい。このような場合においては、サイズ調整部14が、拡大画像の代わりに、超解像処理部13から出力される合成画像に対してリサイズ処理及びパディング処理を行うようにすればよい。
以上に述べた処理によれば、最終的な出力画像SGAとして、内視鏡画像NGAに含まれる病変候補LCの2次元形状及び表面模様が維持された画像を取得することができる。また、以上に述べた処理によれば、最終的な出力画像SGAとして、内視鏡画像NGAにおける画質よりも高画質な病変候補LCを含む画像を取得することができる。
以上に述べたように、サイズ調整部14は、病変候補画像のアスペクト比を維持しつつ、当該病変候補画像のサイズを目標サイズに応じてリサイズするリサイズ処理を行うことができる。また、以上に述べたように、サイズ調整部14は、リサイズ処理により得られたリサイズ画像のサイズを目標サイズに一致させるパディング処理を行うことができる。また、以上に述べたように、サイズ調整部14は、明るさが修整された病変候補画像に対してリサイズ処理を行うことができる。また、以上に述べたように、サイズ調整部14は、リサイズ処理として、超解像処理が行われた病変候補画像のサイズを目標サイズに収まる最大のサイズまで縮小する縮小処理を行うことができる。また、以上に述べたように、サイズ調整部14は、パディング処理として、縮小処理により得られたリサイズ画像を、目標サイズと同一のサイズを有する背景画像の中央部分に重畳する処理を行うことができる。また、以上に述べたように、サイズ調整部14は、超解像処理が行われた病変候補画像に含まれる各画素の色成分値の中間値により表される色で全域を着色した単色画像を生成し、当該単色画像に対してノイズを加えた画像を背景画像として取得することができる。
[処理フロー]
続いて、第1実施形態に係る画像処理装置において行われる処理の流れについて説明する。図5は、第1実施形態に係る画像処理装置において行われる処理の一例を示すフローチャートである。
続いて、第1実施形態に係る画像処理装置において行われる処理の流れについて説明する。図5は、第1実施形態に係る画像処理装置において行われる処理の一例を示すフローチャートである。
まず、画像処理装置100は、内視鏡画像に含まれる病変候補を検出し、当該検出した病変候補を含む病変候補画像を取得する(ステップS11)。
次に、画像処理装置100は、ステップS11により得られた病変候補画像の明度に基づき、互いに異なる明度を有する複数の病変候補画像を生成する(ステップS12)。
続いて、画像処理装置100は、ステップS12により得られた複数の病変候補画像を、
HDR合成に係る手法を用いて合成することにより、合成画像を取得する(ステップS13)。
HDR合成に係る手法を用いて合成することにより、合成画像を取得する(ステップS13)。
続いて、画像処理装置100は、ステップS13により得られた合成画像に対し、最終的な出力画像のサイズよりも大きなサイズに拡大する超解像処理を施すことにより、拡大画像を取得する(ステップS14)。
続いて、画像処理装置100は、ステップS14により得られた拡大画像のアスペクト比を維持しつつ、当該拡大画像のサイズを最終的な出力画像のサイズに応じて縮小するリサイズ処理を行うことにより、リサイズ画像を取得する(ステップS15)。
続いて、画像処理装置100は、ステップS14により得られた拡大画像の各画素の色成分値に基づいて生成した単色画像と、所定の振幅の範囲内における不規則なノイズを表すノイズ画像と、を加算することにより、背景画像を取得する(ステップS16)。前述の単色画像、ノイズ画像及び背景画像は、最終的な出力画像のサイズと同一のサイズを有している。また、前述の単色画像の全域は、ステップS14により得られた拡大画像における各画素の色成分値の中間値に相当する色で着色されている。
続いて、画像処理装置100は、ステップS15により得られたリサイズ画像を、ステップS16により得られた背景画像の中央部分に重畳することにより、最終的な出力画像を取得する(ステップS17)。
以上に述べたように、本実施形態によれば、最終的な出力画像として、内視鏡画像に含まれる病変候補の特徴を表す2次元形状及び表面模様等の要素を維持しつつ、当該病変候補の詳細を把握可能な画像を得ることができる。そのため、本実施形態によれば、内視鏡画像に含まれる病変候補の診断精度を向上させることができる。
以上に述べたように、本実施形態によれば、内視鏡画像から検出された病変候補を含む病変候補画像に対して超解像処理及びリサイズ処理を行うことにより、当該病変候補の特徴を表す2次元形状及び表面模様等の要素が維持されたリサイズ画像を得ることができる。また、以上に述べたように、本実施形態によれば、リサイズ画像の色と類似の色を有する一方で、病変候補としての特徴を有しない背景画像を用い、当該リサイズ画像のサイズを最終的な出力画像のサイズに一致させるパディング処理を行うことができる。そのため、本実施形態によれば、例えば、前述のパディング処理を経て得られた最終的な出力画像を学習データとして用いることにより、病変候補の診断用の機械学習モデルを好適に学習させることができる。
<第2実施形態>
図6は、第2実施形態に係る画像処理装置の機能構成を示すブロック図である。
図6は、第2実施形態に係る画像処理装置の機能構成を示すブロック図である。
本実施形態に係る画像処理装置500は、画像処理装置100と同様のハードウェア構成を有している。また、画像処理装置500は、画像取得手段511と、リサイズ手段512と、パディング手段513と、を有している。
図7は、第2実施形態に係る画像処理装置において行われる処理を説明するためのフローチャートである。
画像取得手段511は、内視鏡画像から検出された病変候補を含む病変候補画像を取得する(ステップS51)。
リサイズ手段512は、病変候補画像のアスペクト比を維持しつつ、当該病変候補画像のサイズを目標サイズに応じてリサイズするリサイズ処理を行う(ステップS52)。
パディング手段513は、リサイズ処理により得られたリサイズ画像のサイズを目標サイズに一致させるパディング処理を行う(ステップS53)。
本実施形態によれば、内視鏡画像に含まれる病変候補の診断精度を向上させることができる。
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
内視鏡画像から検出された病変候補を含む病変候補画像を取得する画像取得手段と、
前記病変候補画像のアスペクト比を維持しつつ、前記病変候補画像のサイズを目標サイズに応じてリサイズするリサイズ処理を行うリサイズ手段と、
前記リサイズ処理により得られたリサイズ画像のサイズを前記目標サイズに一致させるパディング処理を行うパディング手段と、
を有する画像処理装置。
内視鏡画像から検出された病変候補を含む病変候補画像を取得する画像取得手段と、
前記病変候補画像のアスペクト比を維持しつつ、前記病変候補画像のサイズを目標サイズに応じてリサイズするリサイズ処理を行うリサイズ手段と、
前記リサイズ処理により得られたリサイズ画像のサイズを前記目標サイズに一致させるパディング処理を行うパディング手段と、
を有する画像処理装置。
(付記2)
前記病変候補画像の明るさを修整する明るさ修整手段をさらに有し、
前記リサイズ手段は、前記明るさが修整された前記病変候補画像に対して前記リサイズ処理を行う付記1の画像処理装置。
前記病変候補画像の明るさを修整する明るさ修整手段をさらに有し、
前記リサイズ手段は、前記明るさが修整された前記病変候補画像に対して前記リサイズ処理を行う付記1の画像処理装置。
(付記3)
前記明るさが修整された前記病変候補画像のサイズを前記目標サイズよりも大きなサイズに拡大する超解像処理を行う超解像処理手段をさらに有し、
前記リサイズ手段は、前記リサイズ処理として、前記超解像処理が行われた前記病変候補画像のサイズを前記目標サイズに収まる最大のサイズまで縮小する縮小処理を行う付記2の画像処理装置。
前記明るさが修整された前記病変候補画像のサイズを前記目標サイズよりも大きなサイズに拡大する超解像処理を行う超解像処理手段をさらに有し、
前記リサイズ手段は、前記リサイズ処理として、前記超解像処理が行われた前記病変候補画像のサイズを前記目標サイズに収まる最大のサイズまで縮小する縮小処理を行う付記2の画像処理装置。
(付記4)
前記パディング手段は、前記パディング処理として、前記縮小処理により得られた前記リサイズ画像を、前記目標サイズと同一のサイズを有する背景画像の中央部分に重畳する処理を行う付記3の画像処理装置。
前記パディング手段は、前記パディング処理として、前記縮小処理により得られた前記リサイズ画像を、前記目標サイズと同一のサイズを有する背景画像の中央部分に重畳する処理を行う付記3の画像処理装置。
(付記5)
前記パディング手段は、前記超解像処理が行われた前記病変候補画像に含まれる各画素の色成分値の中間値により表される色で全域を着色した単色画像を生成し、当該単色画像に対してノイズを加えた画像を前記背景画像として取得する付記4の画像処理装置。
前記パディング手段は、前記超解像処理が行われた前記病変候補画像に含まれる各画素の色成分値の中間値により表される色で全域を着色した単色画像を生成し、当該単色画像に対してノイズを加えた画像を前記背景画像として取得する付記4の画像処理装置。
(付記6)
内視鏡画像から検出された病変候補を含む病変候補画像を取得し、
前記病変候補画像のアスペクト比を維持しつつ、前記病変候補画像のサイズを目標サイズに応じてリサイズするリサイズ処理を行い、
前記リサイズ処理により得られたリサイズ画像のサイズを前記目標サイズに一致させるパディング処理を行う画像処理方法。
内視鏡画像から検出された病変候補を含む病変候補画像を取得し、
前記病変候補画像のアスペクト比を維持しつつ、前記病変候補画像のサイズを目標サイズに応じてリサイズするリサイズ処理を行い、
前記リサイズ処理により得られたリサイズ画像のサイズを前記目標サイズに一致させるパディング処理を行う画像処理方法。
(付記7)
内視鏡画像から検出された病変候補を含む病変候補画像を取得する処理と、
前記病変候補画像のアスペクト比を維持しつつ、前記病変候補画像のサイズを目標サイズに応じてリサイズするリサイズ処理と、
前記リサイズ処理により得られたリサイズ画像のサイズを前記目標サイズに一致させるパディング処理と、をコンピュータに実行させるプログラムを記録した記録媒体。
内視鏡画像から検出された病変候補を含む病変候補画像を取得する処理と、
前記病変候補画像のアスペクト比を維持しつつ、前記病変候補画像のサイズを目標サイズに応じてリサイズするリサイズ処理と、
前記リサイズ処理により得られたリサイズ画像のサイズを前記目標サイズに一致させるパディング処理と、をコンピュータに実行させるプログラムを記録した記録媒体。
以上、実施形態を参照して本開示を説明したが、本開示は上記実施形態及び実施例に限定されるものではない。本開示の構成や詳細には、本開示のスコープ内で当業者が理解し得る様々な変更をすることができる。
11 病変候補検出部
12 明るさ修整部
13 超解像処理部
14 サイズ調整部
100 画像処理装置
12 明るさ修整部
13 超解像処理部
14 サイズ調整部
100 画像処理装置
Claims (7)
- 内視鏡画像から検出された病変候補を含む病変候補画像を取得する画像取得手段と、
前記病変候補画像のアスペクト比を維持しつつ、前記病変候補画像のサイズを目標サイズに応じてリサイズするリサイズ処理を行うリサイズ手段と、
前記リサイズ処理により得られたリサイズ画像のサイズを前記目標サイズに一致させるパディング処理を行うパディング手段と、
を有する画像処理装置。 - 前記病変候補画像の明るさを修整する明るさ修整手段をさらに有し、
前記リサイズ手段は、前記明るさが修整された前記病変候補画像に対して前記リサイズ処理を行う請求項1に記載の画像処理装置。 - 前記明るさが修整された前記病変候補画像のサイズを前記目標サイズよりも大きなサイズに拡大する超解像処理を行う超解像処理手段をさらに有し、
前記リサイズ手段は、前記リサイズ処理として、前記超解像処理が行われた前記病変候補画像のサイズを前記目標サイズに収まる最大のサイズまで縮小する縮小処理を行う請求項2に記載の画像処理装置。 - 前記パディング手段は、前記パディング処理として、前記縮小処理により得られた前記リサイズ画像を、前記目標サイズと同一のサイズを有する背景画像の中央部分に重畳する処理を行う請求項3に記載の画像処理装置。
- 前記パディング手段は、前記超解像処理が行われた前記病変候補画像に含まれる各画素の色成分値の中間値により表される色で全域を着色した単色画像を生成し、当該単色画像に対してノイズを加えた画像を前記背景画像として取得する請求項4に記載の画像処理装置。
- 内視鏡画像から検出された病変候補を含む病変候補画像を取得し、
前記病変候補画像のアスペクト比を維持しつつ、前記病変候補画像のサイズを目標サイズに応じてリサイズするリサイズ処理を行い、
前記リサイズ処理により得られたリサイズ画像のサイズを前記目標サイズに一致させるパディング処理を行う画像処理方法。 - 内視鏡画像から検出された病変候補を含む病変候補画像を取得する処理と、
前記病変候補画像のアスペクト比を維持しつつ、前記病変候補画像のサイズを目標サイズに応じてリサイズするリサイズ処理と、
前記リサイズ処理により得られたリサイズ画像のサイズを前記目標サイズに一致させるパディング処理と、をコンピュータに実行させるプログラムを記録した記録媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/007208 WO2024180644A1 (ja) | 2023-02-28 | 2023-02-28 | 画像処理装置、画像処理方法、及び、記録媒体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/007208 WO2024180644A1 (ja) | 2023-02-28 | 2023-02-28 | 画像処理装置、画像処理方法、及び、記録媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024180644A1 true WO2024180644A1 (ja) | 2024-09-06 |
Family
ID=92589518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/007208 WO2024180644A1 (ja) | 2023-02-28 | 2023-02-28 | 画像処理装置、画像処理方法、及び、記録媒体 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024180644A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018159461A1 (ja) * | 2017-03-03 | 2018-09-07 | 富士フイルム株式会社 | 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法 |
WO2018211709A1 (ja) * | 2017-05-19 | 2018-11-22 | オリンパス株式会社 | ブレ補正装置、内視鏡装置及びブレ補正方法 |
JP2020036773A (ja) * | 2018-09-05 | 2020-03-12 | コニカミノルタ株式会社 | 画像処理装置、画像処理方法及びプログラム |
WO2020054566A1 (ja) * | 2018-09-11 | 2020-03-19 | ソニー株式会社 | 医療用観察システム、医療用観察装置及び医療用観察方法 |
-
2023
- 2023-02-28 WO PCT/JP2023/007208 patent/WO2024180644A1/ja unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018159461A1 (ja) * | 2017-03-03 | 2018-09-07 | 富士フイルム株式会社 | 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法 |
WO2018211709A1 (ja) * | 2017-05-19 | 2018-11-22 | オリンパス株式会社 | ブレ補正装置、内視鏡装置及びブレ補正方法 |
JP2020036773A (ja) * | 2018-09-05 | 2020-03-12 | コニカミノルタ株式会社 | 画像処理装置、画像処理方法及びプログラム |
WO2020054566A1 (ja) * | 2018-09-11 | 2020-03-19 | ソニー株式会社 | 医療用観察システム、医療用観察装置及び医療用観察方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9020257B2 (en) | Transforming a digital image from a low dynamic range (LDR) image to a high dynamic range (HDR) image | |
JP3668014B2 (ja) | 画像処理方法及び装置 | |
JP3880553B2 (ja) | 画像処理方法および装置 | |
KR101267404B1 (ko) | 화상 처리 장치, 화상 처리 방법, 및 기록 매체 | |
US8687883B2 (en) | Method and a device for merging a plurality of digital pictures | |
US20140119595A1 (en) | Methods and apparatus for registering and warping image stacks | |
JP2004030670A (ja) | デジタル画像の色調特徴の強調方法 | |
Klein et al. | Simulating low-cost cameras for augmented reality compositing | |
US8369654B2 (en) | Developing apparatus, developing method and computer program for developing processing for an undeveloped image | |
US7130485B2 (en) | Enhancing the tonal and color characteristics of digital images using expansive and compressive tone scale functions | |
Kao | High dynamic range imaging by fusing multiple raw images and tone reproduction | |
CN109478316A (zh) | 实时自适应阴影和高光增强 | |
Meylan et al. | Color image enhancement using a Retinex-based adaptive filter | |
JP3779927B2 (ja) | 電子的に取得した画像の色彩度を修正する方法及び装置 | |
JP7296745B2 (ja) | 画像処理装置、画像処理方法、及びプログラム | |
US7387386B2 (en) | Ophthalmologic image processing apparatus | |
WO2024180644A1 (ja) | 画像処理装置、画像処理方法、及び、記録媒体 | |
CN109104601A (zh) | 检测装置、图像处理装置、检测方法以及图像处理方法 | |
Johnson | Cares and concerns of CIE TC8-08: spatial appearance modeling and HDR rendering | |
JP2006115445A (ja) | 画像処理装置、画像処理プログラム、電子カメラ、および画像処理方法 | |
JP7507554B2 (ja) | 画像処理装置、撮像装置、画像処理方法、及びプログラム | |
US7437016B2 (en) | Image enhancement | |
JP3789911B2 (ja) | 画像処理装置および顔画像処理装置 | |
JP2006114006A (ja) | 階調変換装置、プログラム、電子カメラ、およびその方法 | |
TWI235608B (en) | Method and apparatus for transforming a high dynamic range image into a low dynamic range image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23925201 Country of ref document: EP Kind code of ref document: A1 |