[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024180583A1 - Nanoparticles, light emitting element, and display device - Google Patents

Nanoparticles, light emitting element, and display device Download PDF

Info

Publication number
WO2024180583A1
WO2024180583A1 PCT/JP2023/006972 JP2023006972W WO2024180583A1 WO 2024180583 A1 WO2024180583 A1 WO 2024180583A1 JP 2023006972 W JP2023006972 W JP 2023006972W WO 2024180583 A1 WO2024180583 A1 WO 2024180583A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
nanoparticles
emitting element
layer
emitting
Prior art date
Application number
PCT/JP2023/006972
Other languages
French (fr)
Japanese (ja)
Inventor
久幸 内海
峻之 中
誠 野添
Original Assignee
シャープディスプレイテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープディスプレイテクノロジー株式会社 filed Critical シャープディスプレイテクノロジー株式会社
Priority to PCT/JP2023/006972 priority Critical patent/WO2024180583A1/en
Publication of WO2024180583A1 publication Critical patent/WO2024180583A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • This disclosure relates to nanoparticles, a light-emitting device that includes the nanoparticles in a functional layer, and a display device that includes the light-emitting device.
  • Patent Document 1 discloses an example in which nanoparticles are used as a material for functional layers, including a charge transport layer, of a light-emitting element.
  • a method of forming the film by applying a solution in which the nanoparticles are dispersed is considered.
  • the nanoparticles according to one embodiment of the present disclosure are nanoparticles used in the functional layer of a light-emitting element, contain nickel oxide, and have an absorption peak at a wave number corresponding to nitrate ions in an infrared absorption spectrum obtained by infrared spectroscopy.
  • a light-emitting element includes an anode, a cathode, and a functional layer located between the anode and the cathode and including at least a light-emitting layer, and at least one of the functional layers includes nickel oxide and nanoparticles whose infrared absorption spectrum obtained by infrared spectroscopy has an absorption peak at a wave number corresponding to nitrate ions.
  • nanoparticles with reduced aggregation in solution and light-emitting devices equipped with functional layers containing the nanoparticles.
  • FIG. 1 is a schematic side cross-sectional view of a display device according to an embodiment.
  • 1 is a schematic plan view of a display device according to an embodiment.
  • FIG. 2 is a schematic plan view of the display device 1 according to this embodiment.
  • the display device 1 is a device that can be used, for example, as a display for a television or a smartphone.
  • the display device 1 comprises a display unit DA and a frame unit NA formed on the outer periphery of the display unit DA.
  • the display device 1 performs display on the display unit DA by controlling light emission from each of a number of light-emitting elements (described below) formed in the display unit DA.
  • Drivers and the like for driving each of the multiple light-emitting elements of the display unit DA may be formed in the frame unit NA.
  • FIG. 1 is a schematic side cross-sectional view of the display device 1 according to this embodiment, and is a cross-sectional view taken along line I-I in FIG. 2.
  • FIG. 1 is a diagram showing a cross section passing through red sub-pixel SPR, green sub-pixel SPG, and blue sub-pixel SPB, which will be described later, in a plan view of the display device 1 according to this embodiment.
  • the direction from the substrate 2 to the cathode 36, which will be described later, of the display device 1 may be referred to as "upper", and the opposite direction may be referred to as "lower”.
  • the display device 1 includes a substrate 2.
  • the substrate 2 is formed at a position overlapping the display section DA and the frame section NA in a plan view of the display device 1, in other words, formed across the display section DA and the frame section NA.
  • the upper surface of the substrate 2 may be substantially parallel to the display surface of the display device 1, in other words, the plan view of the substrate 2 may be substantially the same as the plan view of the display device 1.
  • the substrate 2 may be a rigid substrate such as a glass substrate, or may be a flexible substrate including a film substrate including a PET film. In the latter case, the display device 1 may be a flexible device.
  • the display device 1 includes a red subpixel SPR, a green subpixel SPG, and a blue subpixel SPB at a position overlapping the display section DA in a planar view of the substrate 2.
  • Red light-emitting elements 3R, green light-emitting elements 3G, and blue light-emitting elements 3B, which will be described later, are formed in the red subpixel SPR, green subpixel SPG, and blue subpixel SPB, respectively.
  • the substrate 2 may include a pixel circuit (not shown) including transistors and the like that are connected to the anodes 31, which will be described later, of each of the light-emitting elements described above.
  • the substrate 2 may also include a driver (not shown) that drives each pixel circuit at a position overlapping the frame section NA in a planar view.
  • the substrate 2 may be manufactured by forming circuits such as transistors and drivers on a glass substrate. Alternatively, the glass substrate may then be peeled off and replaced with a film substrate or the like to form the substrate 2 into a flexible substrate. In addition, in the manufacturing process of the display device 1, a plurality of light-emitting elements 3 (described below) may be formed on a large glass substrate, and then the glass substrate may be cut into a plurality of substrates 2 to manufacture a plurality of display devices 1.
  • the display device 1 includes a light-emitting element 3.
  • the light-emitting element 3 includes an anode 31 and a cathode 36 in this order on a substrate 2. Furthermore, the light-emitting element 3 includes, as functional layers located between the anode 31 and the cathode 36, a hole injection layer 32, a hole transport layer 33, a light-emitting layer 34, and an electron transport layer 35, in this order from the substrate 2 side.
  • the light-emitting element 3 may include, in this order from the substrate 2 side, a cathode, an electron transport layer, a light-emitting layer, a hole transport layer, a hole injection layer, and an anode. Furthermore, the light-emitting element 3 may further include an electron injection layer as a functional layer between the electron transport layer 35 and the cathode 36.
  • the display device 1 further includes a bank BK on the substrate 2.
  • the bank BK includes an insulating resin material, such as polyimide.
  • the bank BK divides the anode 31 and the light-emitting layer 34 of the light-emitting element 3 into red subpixels SPR, green subpixels SPG, and blue subpixels SPB in a plan view of the substrate 2.
  • the light-emitting layer 34 is particularly divided by the bank BK into a red light-emitting layer 34R of the red subpixel SPR, a green light-emitting layer 34G of the green subpixel SPG, and a blue light-emitting layer 34B of the blue subpixel SPB.
  • the anode 31 is divided for each subpixel as described above, it may have the same configuration regardless of the subpixels formed.
  • the hole injection layer 32, the hole transport layer 33, the electron transport layer 35, and the cathode 36 are formed in common to the multiple sub-pixels described above.
  • the hole injection layer 32, the hole transport layer 33, the electron transport layer 35, and the cathode 36 may also be partitioned for each sub-pixel by the bank BK.
  • the light-emitting element 3 includes a red light-emitting element 3R located in the red sub-pixel SPR, a green light-emitting element 3G located in the green sub-pixel SPG, and a blue light-emitting element 3B located in the blue sub-pixel SPB. Therefore, the red light-emitting element 3R, the green light-emitting element 3G, and the blue light-emitting element 3B are partially separated from each other by the bank BK.
  • the red light-emitting element 3R includes an anode 31, a hole injection layer 32, a hole transport layer 33, a red light-emitting layer 34R, an electron transport layer 35, and a cathode 36 formed at a position overlapping with the red subpixel SPR in a planar view of the substrate 2.
  • the green light-emitting element 3G includes an anode 31, a hole injection layer 32, a hole transport layer 33, a green light-emitting layer 34G, an electron transport layer 35, and a cathode 36 formed at a position overlapping with the green subpixel SPG in a planar view of the substrate 2.
  • the blue light-emitting element 3B includes an anode 31, a hole injection layer 32, a hole transport layer 33, a blue light-emitting layer 34B, an electron transport layer 35, and a cathode 36 formed at a position overlapping with the blue subpixel SPB in a planar view of the substrate 2.
  • the bank BK may be formed in a position that covers the end of each anode 31.
  • the bank BK may have an opening in a part that overlaps with each anode 31 in a plan view of the substrate 2.
  • the bank BK can reduce the effect of electric field concentration at the end of the anode 31 in each light-emitting element on the injection of holes from the anode 31 to the light-emitting layer 34.
  • At least one of the anode 31 and the cathode 36 is a transparent electrode that transmits visible light.
  • a transparent electrode for example, an oxide conductor such as ITO, InZnO, SnO 2 , or FTO, or a semi-transparent metal thin film containing a metal such as Mg or Ag or an alloy thereof may be used.
  • the anode 31 or the cathode 36 may be a reflective electrode.
  • the reflective electrode may contain a metal material with a high reflectance of visible light, and the metal material may be, for example, Al, Ag, Cu, or Au alone or an alloy thereof.
  • the anode 31 is a reflective electrode
  • the cathode 36 is a transparent electrode
  • the display device 1 is a top-emission type device in which light from the light-emitting element 3 is extracted from the side opposite the substrate 2.
  • the anodes 31 are partitioned into sub-pixels by the banks BK as described above. Each anode 31 is electrically connected to a corresponding pixel circuit. Meanwhile, the cathode 36 is formed in common to a plurality of sub-pixels, and a substantially constant voltage is applied to it. Therefore, the display device 1 drives each light-emitting element individually by controlling the voltage applied to each anode 31 via each pixel circuit using a driver. When the anode 31 in each light-emitting element is driven, holes are generated from the anode 31 and electrons are generated from the cathode 36.
  • the anode 31 and the cathode 36 may each be formed by depositing a thin film of the above-mentioned material by a sputtering method, a vapor deposition method, or the like.
  • the anode 31 may be formed so as to be electrically connected to the pixel circuit of the substrate 2, and may be patterned for each subpixel.
  • the hole injection layer 32 is a layer that injects holes generated in the anode 31 into the light emitting layer 34.
  • the hole injection layer 32 contains at least one nanoparticle 4 as a hole transport material.
  • the nanoparticle 4 contains nickel oxide (NiO) and further contains nitrate ions (NO 3 ⁇ ).
  • the chemical formulas are representative examples. In this disclosure, the composition ratios described in the chemical formulas do not necessarily have to be stoichiometric, in which the composition of the actual compound is exactly as shown in the chemical formula.
  • An FT-IR is a spectrometer that measures the infrared absorption spectrum of a sample by irradiating the sample with infrared light and measuring the transmitted or reflected infrared light.
  • the wave number (wavelength) of infrared light absorbed by a substance when infrared light is irradiated onto the substance varies depending on the functional groups or ions contained in the substance.
  • the functional groups or ions contained in the sample can be identified, and thus at least a portion of the composition of the sample can be identified.
  • the infrared absorption spectrum obtained by infrared spectroscopy using FT-IR with the nanoparticles 4 according to this embodiment as a sample has an absorption peak at a wave number corresponding to nitrate ions.
  • the absorption spectrum obtained by analysis using FT-IR with the nanoparticles 4 according to this embodiment as a sample has an absorption peak at a wave number of about 1400 cm ⁇ 1 .
  • ⁇ Light-emitting element: hole injection layer: nanoparticle synthesis method> A method for synthesizing the nanoparticles 4 according to this embodiment will be described below.
  • a precursor aqueous solution is prepared.
  • Ni(NO 3 ) 2.6H 2 O nickel nitrate hexahydrate
  • 20 mL of pure water are mixed and stirred to prepare the precursor aqueous solution.
  • an alkaline aqueous solution is added to the obtained precursor aqueous solution.
  • a 10 mol/L aqueous solution of sodium hydroxide is added to the precursor aqueous solution until the pH becomes 9 to 11, for example 10.
  • a precipitate for example a green precipitate, is obtained.
  • the resulting precipitate is washed.
  • the washing process of adding pure water to the precipitate, centrifuging it, and then removing the supernatant is repeated three times.
  • the washed precipitate is dried.
  • the washed precipitate is dried at 60°C to 100°C, for example, 80°C.
  • a powder for example, a green powder, is obtained.
  • the obtained powder is fired.
  • the obtained powder is fired at 250°C to 300°C for 2 hours to 6 hours, for example, at 270°C for 2 hours.
  • a powder of black nanoparticles 4 is obtained.
  • the hole injection layer according to this embodiment may be formed by film formation by a coating method or the like using a solution containing the nanoparticles 4 obtained by the above synthesis process.
  • the nitrate ions contained in nanoparticles 4 originate from nickel nitrate hexahydrate contained in the precursor aqueous solution. More specifically, it is presumed that the nitrate ions contained in nanoparticles 4 are part of a by-product obtained by the reaction of nickel nitrate hexahydrate with an alkaline aqueous solution.
  • the hole transport layer 33 is a layer that transports holes injected from the anode 31 into the hole injection layer 32 to the light-emitting layer 34 side.
  • the material of the hole transport layer 33 an organic or inorganic hole transport material having hole transport properties that has been conventionally adopted in field injection type light-emitting elements and the like can be used.
  • the hole transport material examples include poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-4-sec-butylphenyl))diphenylamine)] (abbreviated as "TFB”), poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine] (abbreviated as "poly-TPD”), polyvinylcarbazole (abbreviated as "PVK”), and the like.
  • the hole transport material may contain only one type of the above-mentioned materials, or may contain two or more types as appropriate.
  • the electron transport layer 35 is a layer that transports electrons generated in the cathode 36 to the light-emitting layer 34.
  • the electron transport layer 35 can use, as an electron transport material, organic or inorganic materials having electron transport properties that have been conventionally used in field injection type light-emitting elements and the like.
  • the electron transport material may include zinc oxide (ZnO) and magnesium zinc oxide (MgZnO).
  • the electron transport material may include only one type of the above-mentioned materials, or may include two or more types as appropriate.
  • the hole transport layer 33 and the electron transport layer 35 may each be formed by, for example, applying a solution in which the above-mentioned materials are dispersed in a solvent by a spin coating method or the like, and then volatilizing the solvent by baking.
  • the light-emitting layer 34 includes a light-emitting material that emits light when excited by excitons generated by recombination of holes injected from the anode 31 and electrons injected from the cathode 36.
  • the light-emitting layer 34 includes, for example, a plurality of quantum dots 5 as the light-emitting material.
  • Each quantum dot 5 included in the light-emitting layer 34 may have a core/shell structure including a core that emits light by the above-mentioned excitons and a shell formed around the core to protect the core.
  • the light-emitting layer 34 may include an organic or inorganic ligand that coordinates to the quantum dot 5 by forming a coordinate bond with the outermost surface of each quantum dot 5.
  • quantum dot means a dot with a maximum width of 100 nm or less.
  • the shape of the quantum dot 5 may be within a range that satisfies the above maximum width, and is not particularly restricted, and is not limited to a spherical three-dimensional shape (circular cross-sectional shape).
  • the shape of the quantum dot 5 may be, for example, a polygonal cross-sectional shape, a rod-like three-dimensional shape, a branch-like three-dimensional shape, a three-dimensional shape with unevenness on the surface, or a combination of these.
  • the quantum dot 5 is typically made of a semiconductor.
  • the semiconductor may have a certain band gap.
  • the semiconductor may be any material capable of emitting light, and may include at least the materials described below.
  • the semiconductor may emit blue, green, and red light, respectively.
  • the semiconductor may include at least one selected from the group consisting of II-VI compounds, III-V compounds, chalcogenides, and perovskite compounds.
  • the II-VI compounds refer to compounds containing II and VI elements
  • the III-V compounds refer to compounds containing III and V elements.
  • the II elements may include Group 2 and Group 12 elements
  • the III elements may include Group 3 and Group 13 elements
  • the V elements may include Group 5 and Group 15 elements
  • the VI elements may include Group 6 and Group 16 elements.
  • the II-VI compound includes, for example, at least one selected from the group consisting of MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, and HgTe.
  • the III-V compound includes, for example, at least one selected from the group consisting of GaAs, GaP, InN, InAs, InP, and InSb.
  • Chalcogenides are compounds that contain elements from group VI A(16), such as CdS or CdSe. Chalcogenides may also include mixed crystals of these.
  • the perovskite compound has a composition represented by the general formula CsPbX 3 , for example.
  • the constituent element X includes at least one element selected from the group consisting of Cl, Br and I, for example.
  • the numbering of element groups using Roman numerals is based on the old IUPAC (International Union of Pure and Applied Chemistry) system or the old CAS (Chemical Abstracts Service) system, and the numbering of element groups using Arabic numerals is based on the current IUPAC system.
  • the red light-emitting layer 34R includes red quantum dots 5R that emit red light.
  • the green light-emitting layer 34G includes green quantum dots 5G that emit green light.
  • the blue light-emitting layer 34B includes blue quantum dots 5B that emit blue light.
  • the red quantum dots 5R, green quantum dots 5G, and blue quantum dots 5B may each have the same configuration as one another, except for the light-emitting color.
  • blue light is, for example, light having a central emission wavelength in the wavelength band of 380 nm or more and 500 nm or less.
  • Green light is, for example, light having a central emission wavelength in the wavelength band of more than 500 nm and less than 600 nm.
  • Red light is, for example, light having a central emission wavelength in the wavelength band of more than 600 nm and less than 780 nm.
  • the light-emitting layer 34 is not limited to the above-mentioned configuration, so long as it contains a light-emitting material that emits light due to holes from the anode 31 and electrons from the cathode 36.
  • the light-emitting layer 34 may contain an organic light-emitting material including an organic fluorescent material or an organic phosphorescent material.
  • the light-emitting element 3 may be an OLED element (organic EL element), and the display device 1 may be an OLED display.
  • the light-emitting layer 34 may be formed for each subpixel by patterning using a lift-off method. For example, a photosensitive resin is first formed in common for a plurality of subpixels, and a layer of the photosensitive resin is formed only in the subpixels other than the subpixel for which the light-emitting layer 34 is formed by photolithography or the like. Next, a solution in which quantum dots 5 of a certain light-emitting color are dispersed is formed in common for the plurality of subpixels. Next, the photosensitive resin is removed with an appropriate developer, and the layer containing the quantum dots 5 formed on the layer is removed together with the photosensitive resin layer. In this way, a layer containing a specific quantum dot 5 can be formed only in a specific subpixel.
  • the lift-off method is repeatedly performed for each subpixel to form the light-emitting layer 34.
  • the method for forming the light-emitting layer 34 is not limited to the above, and the light-emitting layer 34 may be formed, for example, by applying a solution in which the quantum dots 5 are dispersed by an inkjet method or the like.
  • the light-emitting element 3 can be manufactured by forming, in this order, an anode 31, a hole injection layer 32 containing nanoparticles 4, a hole transport layer 33, a light-emitting layer 34, an electron transport layer 35, and a cathode 36 on a substrate 2.
  • the method for forming each layer of the light-emitting element 3 may be performed by the method described above.
  • the red light-emitting element 3R, the green light-emitting element 3G, and the blue light-emitting element 3B each have the same layered structure except for the light-emitting layer 34, but this is not limited to the above.
  • the red light-emitting element 3R, the green light-emitting element 3G, and the blue light-emitting element 3B may have different layered structures.
  • the display device 1 may include, on the upper layer of the light-emitting element 3, an organic or inorganic sealing layer for sealing the light-emitting element 3, or a capping layer for improving the efficiency of light extraction from the light-emitting element 3.
  • the display device 1 may also include, on the upper layer of the light-emitting element 3, a touch panel unit for causing the display device 1 to function as a touch panel display.
  • the nanoparticles according to each of Examples 1 to 6 described below and the nanoparticles according to the Comparative Example were synthesized.
  • light-emitting devices having the nanoparticles according to each of the Examples and the Comparative Example in the hole injection layer were manufactured, and the characteristics were evaluated as follows.
  • the nanoparticles of Examples 1 to 6 were synthesized according to the synthesis method of nanoparticles 4 described above. In the synthesis process of nanoparticles of Examples 1 to 6, only the total weight of the nanoparticles to be synthesized was different, and the ratio of each material was the same. In particular, in the synthesis process of nanoparticles of Examples 1 to 6, only the weight of the precursor aqueous solution prepared first was different, and the ratio of each material in the precursor aqueous solution was approximately constant regardless of the Example.
  • the nanoparticles of the comparative example are nanoparticles containing nickel oxide that were synthesized by a method different from the synthesis method of nanoparticles 4 described above, in particular, a method that does not use nickel nitrate as a material.
  • infrared spectroscopy was performed using FT-IR on the nanoparticles of each example and comparative example to obtain the infrared absorption spectrum of each nanoparticle.
  • TG-DTA thermogravimetric differential thermal analyzer
  • the TG-DTA is equipped with a furnace for heating the sample and a measuring device for measuring the weight of the sample.
  • a furnace for heating the sample
  • a measuring device for measuring the weight of the sample.
  • the TG-DTA is used to increase the ambient temperature of the sample at a predetermined heating rate, thereby heating the sample and measuring the change in the weight of the sample.
  • Heating a sample may cause some of the material to be released, decomposed, or reduced, resulting in a loss in weight.
  • the ambient temperature at which release, decomposition, or reduction of materials occurs when a sample is heated depends on the type of material being released, decomposed, or reduced, and is roughly constant.
  • the nanoparticles were heated by raising the ambient temperature from room temperature by 10°C per minute.
  • the ambient temperature at which nitrate ions are generally released, decomposed, or reduced from a sample containing nitrate ions is generally 309°C to 411°C. Therefore, if the weight of the nanoparticles decreases while the ambient temperature of the nanoparticles being heated in the analysis using TG-DTA is between 309°C and 411°C, it can be assumed that the nanoparticles contain nitrate ions.
  • the proportion of the weight of the nanoparticles that is reduced while the ambient temperature is between 309°C and 411°C can be estimated by measuring the proportion of the weight of the nanoparticles that is reduced while the ambient temperature is between 309°C and 411°C, based on the weight of the nanoparticles at room temperature.
  • the remaining solution of the aqueous solution was filtered using a filter with a pore size of 0.45 ⁇ m, 10 uL of the filtrate was collected, and the absorption spectrum of the solution was measured after adding 4 mL of pure water. In this measurement, the absorbance for ultraviolet light with a wavelength of 250 nm was also measured.
  • the absorbance of the aqueous solution before filtration to ultraviolet light of a wavelength of 250 nm measured in each Example and Comparative Example is designated as A 1
  • the absorbance of the aqueous solution after filtration to ultraviolet light of a wavelength of 250 nm is designated as A 2.
  • the filtration transmittance which is the transmittance of the nanoparticles through the filtration filter in each Example and Comparative Example, is designated as RF .
  • the filtration transmittance RF was evaluated based on the following formula.
  • nanoparticles when they have low dispersibility in water, they may aggregate in an aqueous solution. When multiple nanoparticles aggregate to form a group, the total particle size of the group is approximately 1/100th of that of the individual nanoparticles. Therefore, the dispersibility of nanoparticles in water can be evaluated by whether or not the nanoparticles in the aqueous solution pass through a filter with a predetermined pore size. When the particles pass through a filtration filter, the nanoparticles can be evaluated as having high dispersibility in an aqueous solution.
  • a nanoparticle size measuring device manufactured by Microtrac-Bell (model number: Nanotrac Wave II-UT151) was used for particle size distribution measurement (median diameter D50 (nm)).
  • Frequency analysis using dynamic light scattering (DLS) was used to analyze the results of particle size distribution measurement.
  • Particle size distribution measurement (median diameter D50 (nm)) was measured using the heterodyne method.
  • the nanoparticles that had passed through the filtration filter were added to pure water to obtain an aqueous solution, and a particle size distribution measurement was performed using a particle size distribution measuring device.
  • the median diameter D50 (nm) of the nanoparticles in each sample was measured.
  • the dispersibility of the nanoparticles in water can be evaluated through the measurement of the particle size distribution of the nanoparticles in the aqueous solution.
  • the particle size of the nanoparticles themselves is approximately the same, it can be evaluated that the smaller the median diameter of the nanoparticles in the aqueous solution, the higher the dispersibility of the nanoparticles in the aqueous solution.
  • the nanoparticles in the comparative example did not pass through the filtration filter, so further evaluations, including particle size distribution measurement, were not performed.
  • the light-emitting devices according to each example were manufactured by forming an anode, a hole injection layer containing the nanoparticles according to each example, a hole transport layer, a light-emitting layer, an electron transport layer, and a cathode on a substrate in this order.
  • the method of forming each layer of the light-emitting device was the same as the method of forming each layer of the light-emitting device 3 according to this embodiment, except that the material used for the hole injection layer was a solution containing the nanoparticles according to each example.
  • the external quantum efficiency (EQE) of the light-emitting devices according to each example manufactured was measured and evaluated under the following conditions.
  • the external quantum efficiency (N ⁇ (exe) ) was evaluated as the number of photons (Np) extracted per unit area of a cell fabricated as a light-emitting element for evaluation relative to the number of carriers (Ne) injected into the cell, as shown in the following formula.
  • Np ⁇ /hc ⁇ P ⁇ 1/S (1/m 2 )
  • Ne I/e ⁇ 1/S (1/m 2 )
  • I current (A)
  • P light intensity (measured light amount (W))
  • S represents the cell area (element area (m 2 ))
  • represents the emission peak wavelength ( m)
  • e represents the elementary electron mass (A ⁇ s)
  • h Planck's constant (J ⁇ s)
  • c represents the speed of light (m ⁇ s ⁇ 1 ).
  • the current (I) was measured using a 2400-type source meter manufactured by Keithley Instruments Inc.
  • the light intensity (P) was measured using a light intensity meter (model number: BM-5A) manufactured by Topcon House Corporation.
  • the cell area was 4 ⁇ 10 ⁇ 6 (m 2 ).
  • the emission peak wavelength ( ⁇ ) was 536 (nm).
  • the Planck constant was 6.626 ⁇ 10 ⁇ 34 J ⁇ s.
  • the elementary electron quantity (e) was 1.602 ⁇ 10 ⁇ 19 A ⁇ s.
  • the speed of light (c) was 2.998 ⁇ 10 8 (m ⁇ s ⁇ 1 ).
  • the column “FT-IR/NO 3 -Presence/ absence” indicates the presence or absence of an absorption peak of a wave number corresponding to nitrate ion in the infrared absorption spectrum obtained by the analysis using FT-IR for the nanoparticles according to each Example and Comparative Example.
  • the column “TG-DTA/Weight reduction rate” indicates the percentage of the weight of the nanoparticles reduced while the ambient temperature was between 309°C and 411°C in the analysis using the above-mentioned TG-DTA, based on the weight of the nanoparticles at room temperature.
  • the column “Filter passage presence/absence” indicates the presence or absence of the nanoparticles according to each Example and Comparative Example passing through the above-mentioned filtration filter.
  • the filtration passage rate RF measured by the above formula is 80% or more, it is indicated as “passed”, when the filtration passage rate RF is less than 80% and 20% or more, it is indicated as “partially passed”, and when the filtration passage rate RF is less than 20%, it is indicated as “not passed”.
  • the column “Particle size distribution measurement/D50 [nm]” shows the median diameter D50 measurement results obtained by particle size distribution measurement for the nanoparticle aqueous solution of each Example in the unit of nm.
  • the column “External quantum efficiency [%]” shows the measurement results, expressed as a percentage, of the external quantum efficiency measured by applying a voltage to the light-emitting element of each Example to cause it to emit light.
  • the infrared absorption spectrum obtained by FT-IR analysis of the nanoparticles according to each example has an absorption peak at a wave number corresponding to nitrate ions.
  • the infrared absorption spectrum obtained by FT-IR analysis of the nanoparticles according to the comparative example did not show this absorption peak.
  • the weight of the nanoparticles decreased by 7.9% to 18.9% based on the weight at room temperature while the ambient temperature was between 309°C and 411°C.
  • the analysis of the nanoparticles according to the Comparative Example using TG-DTA there was almost no decrease in the weight of the nanoparticles while the ambient temperature was between 309°C and 411°C.
  • nanoparticles containing nitrate ions such as the nanoparticles in each Example, have improved dispersibility in aqueous solution compared to nanoparticles not containing nitrate ions, such as the nanoparticles in the Comparative Examples.
  • the nanoparticles are also less likely to aggregate in the functional layer.
  • aggregation of nanoparticles in a functional layer containing nanoparticles as a charge transport material or the like leads to deterioration of the properties of the functional layer. Therefore, the nanoparticles according to each embodiment with improved dispersibility in a solution and reduced aggregation can improve the properties of the functional layer containing the nanoparticles.
  • a light-emitting element including a functional layer containing the nanoparticles according to each embodiment has a functional layer with improved properties, and therefore can improve the light-emitting efficiency or improve the reliability of the functional layer to extend the lifespan.
  • a display device including the light-emitting element can improve display quality or achieve power saving.
  • the median diameter of the nanoparticles according to each of Examples 1 to 5 was 11.12 nm to 29.49 nm, which was below 30 nm.
  • the median diameter of the nanoparticles according to Example 6 was 34.49 nm, which exceeded 30 nm. This indicates that the dispersibility in aqueous solution of the nanoparticles according to each of Examples 1 to 5 is even better than that of the nanoparticles according to Example 6.
  • the weight of nanoparticles 4 may decrease by 8.0% or more based on the weight at room temperature while the ambient temperature is between 309°C and 411°C.
  • the median diameter of nanoparticles 4 in the aqueous solution may be 30 nm or less. In this case, the dispersibility of nanoparticles 4 in the aqueous solution is improved.
  • the external quantum efficiency of the light-emitting devices containing the nanoparticles of Examples 1 to 4 in the hole injection layer was 8.5% to 10.5%, which was 8.0% or higher.
  • the external quantum efficiency of the light-emitting devices containing the nanoparticles of Examples 5 and 6 in the hole injection layer was 5.8% and 4.8%, respectively, which was below 6.0%.
  • the external quantum efficiency of the light-emitting devices according to Examples 1 to 4 exceeded the external quantum efficiency of the light-emitting device according to Example 5. This is believed to be because the proportion of nitrate ions contained in the nanoparticles in the hole injection layer of each of the light-emitting devices according to Examples 1 to 4 was low, reducing the inhibition of hole transport from the anode to the light-emitting layer by the nitrate ions.
  • the external quantum efficiency of the light-emitting devices according to Examples 1 to 4 exceeded the external quantum efficiency of the light-emitting device according to Example 6. This is believed to be because the nitrate ions contained in the nanoparticles according to Examples 1 to 4 increased the dispersibility of the nanoparticles in an aqueous solution, reduced the aggregation of nanoparticles in the hole injection layer, and improved the hole transport properties of the hole injection layer.
  • the weight of the nanoparticles 4 may decrease by 8.0% to 18.0% based on the weight at room temperature while the ambient temperature is between 309°C and 411°C.
  • the external quantum efficiency of the light-emitting element 3 containing the nanoparticles 4 in the hole injection layer 32 can be improved.
  • the light-emitting element 3 contains nanoparticles 4 containing nickel oxide as a material of the hole injection layer 32. Therefore, in the light-emitting element 3, the nitrate ions contained in the nanoparticles 4 reduce the aggregation of the nanoparticles 4 in the hole injection layer 32, while the nickel oxide contained in the nanoparticles 4 improves the efficiency of hole injection into the light-emitting layer 34.
  • the light-emitting element 3 is not limited to a configuration in which the nanoparticles 4 are included as a material of the hole injection layer 32.
  • the nanoparticles 4 may be used in at least one functional layer of the light-emitting element 3, including the hole transport layer 33, the light-emitting layer 34, and the electron transport layer 35. Even in this case, the nanoparticles 4 are unlikely to aggregate in the functional layer, and therefore the characteristics of the functional layer can be improved.
  • the light-emitting layer 34 contains quantum dots 5 as the light-emitting material.
  • quantum dots 5 As the light-emitting material.
  • light-emitting elements that use quantum dots as the light-emitting material of the light-emitting layer have a low hole concentration in the light-emitting layer, and tend to have an excess of electrons in the light-emitting layer.
  • An excess of electrons in the light-emitting layer not only reduces the light-emitting efficiency of the light-emitting element, but also increases the occurrence of the Auger electron generation process in the light-emitting layer, which may reduce the reliability of the light-emitting element.
  • the light-emitting element 3 according to this embodiment which uses quantum dots 5 as the light-emitting material of the light-emitting layer 34, is provided with a hole injection layer 32 containing nanoparticles 4, and thus the light-emitting element 3 more efficiently reduces the excess of electrons in the light-emitting layer 34.
  • the nanoparticles 4 according to this embodiment more efficiently improve the light-emitting efficiency and reliability of the light-emitting element 3.
  • the nanoparticles 4 according to this embodiment may also be used as a material for the functional layer of a light-emitting element that contains a material other than the quantum dots 5 as the light-emitting material of the light-emitting layer, such as an organic fluorescent material or an organic phosphorescent material.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This light emitting element (3) comprises an anode (31), a cathode (36), and function layers (32) positioned between the anode and the cathode. At least one of the function layers includes nanoparticles (4). The nanoparticles contain nickel oxide. Moreover, an infrared absorption spectrum obtained through infrared spectroscopy of the nanoparticles has an absorption peak at a wave number corresponding to nitrate ions.

Description

ナノ粒子、発光素子、表示装置Nanoparticles, Light-emitting devices, Display devices
 本開示は、ナノ粒子、機能層に当該ナノ粒子を含む発光素子、および当該発光素子を備えた表示装置に関する。 This disclosure relates to nanoparticles, a light-emitting device that includes the nanoparticles in a functional layer, and a display device that includes the light-emitting device.
 特許文献1には、発光素子の電荷輸送層等を含む機能層の材料としてナノ粒子を含む例が開示されている。 Patent Document 1 discloses an example in which nanoparticles are used as a material for functional layers, including a charge transport layer, of a light-emitting element.
日本国特開2019-522367号公報Japanese Patent Application Publication No. 2019-522367
 ナノ粒子を材料として含む機能層を成膜する場合、ナノ粒子が分散する溶液の塗布による成膜方法が考えられる。この場合、成膜された機能層の特性を改善するために、当該溶液中におけるナノ粒子の分散性を確保し、当該ナノ粒子の凝集を低減することが求められている。 When forming a functional layer that contains nanoparticles as a material, a method of forming the film by applying a solution in which the nanoparticles are dispersed is considered. In this case, in order to improve the characteristics of the formed functional layer, it is necessary to ensure the dispersibility of the nanoparticles in the solution and reduce the aggregation of the nanoparticles.
 本開示の一態様に係るナノ粒子は、発光素子の機能層に用いられるナノ粒子であって、酸化ニッケルを含み、かつ、赤外分光により得られた赤外吸収スペクトルが硝酸イオンに対応する波数に吸収ピークを有する。 The nanoparticles according to one embodiment of the present disclosure are nanoparticles used in the functional layer of a light-emitting element, contain nickel oxide, and have an absorption peak at a wave number corresponding to nitrate ions in an infrared absorption spectrum obtained by infrared spectroscopy.
 本開示の他の一態様に係る発光素子は、アノードと、カソードと、前記アノードと前記カソードとの間に位置し、少なくとも発光層を含む機能層と、を備え、前記機能層のうち少なくとも一つが、酸化ニッケルを含み、かつ、赤外分光により得られた赤外吸収スペクトルが硝酸イオンに対応する波数に吸収ピークを有するナノ粒子を含む。 A light-emitting element according to another aspect of the present disclosure includes an anode, a cathode, and a functional layer located between the anode and the cathode and including at least a light-emitting layer, and at least one of the functional layers includes nickel oxide and nanoparticles whose infrared absorption spectrum obtained by infrared spectroscopy has an absorption peak at a wave number corresponding to nitrate ions.
 溶液中の凝集が低減したナノ粒子、および当該ナノ粒子を含む機能層を備えた発光素子を実現する。 To realize nanoparticles with reduced aggregation in solution and light-emitting devices equipped with functional layers containing the nanoparticles.
実施形態に係る表示装置の概略側断面図である。1 is a schematic side cross-sectional view of a display device according to an embodiment. 実施形態に係る表示装置の概略平面図である。1 is a schematic plan view of a display device according to an embodiment.
 〔実施形態〕
 <表示装置>
 以下、本開示の実施形態について図面を参照しつつ説明する。なお、各図面において、同様の構成については同一の符号を付してその説明を省略する。
[Embodiment]
<Display Device>
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In each drawing, the same components are denoted by the same reference numerals and the description thereof will be omitted.
 図2は本実施形態に係る表示装置1の概略平面図である。表示装置1は、例えば、テレビまたはスマートフォン等のディスプレイに用いることのできる装置である。表示装置1は、表示部DAと表示部DAの外周に形成された額縁部NAとを備える。表示装置1は、表示部DAに形成された後述する複数の発光素子のそれぞれからの発光を制御することにより、表示部DAにおいて表示を行う。額縁部NAには、表示部DAの複数の発光素子のそれぞれを駆動するためのドライバ等が形成されてもよい。 FIG. 2 is a schematic plan view of the display device 1 according to this embodiment. The display device 1 is a device that can be used, for example, as a display for a television or a smartphone. The display device 1 comprises a display unit DA and a frame unit NA formed on the outer periphery of the display unit DA. The display device 1 performs display on the display unit DA by controlling light emission from each of a number of light-emitting elements (described below) formed in the display unit DA. Drivers and the like for driving each of the multiple light-emitting elements of the display unit DA may be formed in the frame unit NA.
 本実施形態に係る表示装置1の表示部DAの構造について、図1を参照してより詳細に説明する。図1は、本実施形態に係る表示装置1の概略側断面図であり、図2に示すI-I線矢視断面図である。特に図1は、本実施形態に係る表示装置1の平面視において後述する赤色サブ画素SPR、緑色サブ画素SPG、および青色サブ画素SPBを通る断面について示す図である。本開示において、表示装置1の後述する基板2からカソード36へ向かう方向を「上」として記載し、その反対方向を「下」と記載する場合がある。 The structure of the display unit DA of the display device 1 according to this embodiment will be described in more detail with reference to FIG. 1. FIG. 1 is a schematic side cross-sectional view of the display device 1 according to this embodiment, and is a cross-sectional view taken along line I-I in FIG. 2. In particular, FIG. 1 is a diagram showing a cross section passing through red sub-pixel SPR, green sub-pixel SPG, and blue sub-pixel SPB, which will be described later, in a plan view of the display device 1 according to this embodiment. In this disclosure, the direction from the substrate 2 to the cathode 36, which will be described later, of the display device 1 may be referred to as "upper", and the opposite direction may be referred to as "lower".
 <基板>
 図1に示すように、表示装置1は、基板2を備える。基板2は、表示装置1の平面視において、表示部DAと額縁部NAとに重なる位置に形成され、換言すれば、表示部DAと額縁部NAとに渡って形成されている。基板2の上面は表示装置1の表示面と略平行であってもよく、換言すれば、基板2の平面視は表示装置1の平面視と略同一であってもよい。基板2は、ガラス基板等の硬直な基板であってもよく、一方、PETフィルムを含むフィルム基板等を含むフレキシブル基板であってもよい。後者の場合、表示装置1はフレキシブルデバイスであってもよい。
<Substrate>
As shown in Fig. 1, the display device 1 includes a substrate 2. The substrate 2 is formed at a position overlapping the display section DA and the frame section NA in a plan view of the display device 1, in other words, formed across the display section DA and the frame section NA. The upper surface of the substrate 2 may be substantially parallel to the display surface of the display device 1, in other words, the plan view of the substrate 2 may be substantially the same as the plan view of the display device 1. The substrate 2 may be a rigid substrate such as a glass substrate, or may be a flexible substrate including a film substrate including a PET film. In the latter case, the display device 1 may be a flexible device.
 表示装置1は、基板2の平面視において表示部DAと重なる位置に、赤色サブ画素SPR、緑色サブ画素SPG、および青色サブ画素SPBを備える。赤色サブ画素SPR、緑色サブ画素SPG、および青色サブ画素SPBのそれぞれには、後述する赤色発光素子3R、緑色発光素子3G、および青色発光素子3Bが形成される。基板2は、上述した各発光素子の後述するアノード31と接続するトランジスタ等を含む画素回路(不図示)を備えていてもよい。また、基板2は、平面視において額縁部NAと重なる位置に、各画素回路を駆動するドライバ(不図示)を備えていてもよい。 The display device 1 includes a red subpixel SPR, a green subpixel SPG, and a blue subpixel SPB at a position overlapping the display section DA in a planar view of the substrate 2. Red light-emitting elements 3R, green light-emitting elements 3G, and blue light-emitting elements 3B, which will be described later, are formed in the red subpixel SPR, green subpixel SPG, and blue subpixel SPB, respectively. The substrate 2 may include a pixel circuit (not shown) including transistors and the like that are connected to the anodes 31, which will be described later, of each of the light-emitting elements described above. The substrate 2 may also include a driver (not shown) that drives each pixel circuit at a position overlapping the frame section NA in a planar view.
 基板2は、ガラス基板上にトランジスタおよびドライバ等の回路を形成することにより製造されてもよい。あるいは、次いで上記ガラス基板を剥離しフィルム基板等を貼り付ける等の置換により基板2をフレキシブル基板としてもよい。また、表示装置1の製造工程において、大判のガラス基板上に後述する発光素子3を複数形成した後、ガラス基板を複数の基板2に切り出すことにより、複数の表示装置1が製造されてもよい。 The substrate 2 may be manufactured by forming circuits such as transistors and drivers on a glass substrate. Alternatively, the glass substrate may then be peeled off and replaced with a film substrate or the like to form the substrate 2 into a flexible substrate. In addition, in the manufacturing process of the display device 1, a plurality of light-emitting elements 3 (described below) may be formed on a large glass substrate, and then the glass substrate may be cut into a plurality of substrates 2 to manufacture a plurality of display devices 1.
 <発光素子:概要>
 表示装置1は、発光素子3を備える。発光素子3は、基板2上に、アノード31とカソード36とをこの順に備える。さらに、発光素子3は、アノード31とカソード36との間に位置する機能層として、基板2側から順に、正孔注入層32、正孔輸送層33、発光層34、および電子輸送層35を備える。なお、本実施形態においてはこれに限られず、発光素子3は、基板2側から順に、カソード、電子輸送層、発光層、正孔輸送層、正孔注入層、およびアノードを備えてもよい。また、発光素子3は、電子輸送層35とカソード36との間に、機能層として電子注入層をさらに備えていてもよい。
<Light Emitting Device: Overview>
The display device 1 includes a light-emitting element 3. The light-emitting element 3 includes an anode 31 and a cathode 36 in this order on a substrate 2. Furthermore, the light-emitting element 3 includes, as functional layers located between the anode 31 and the cathode 36, a hole injection layer 32, a hole transport layer 33, a light-emitting layer 34, and an electron transport layer 35, in this order from the substrate 2 side. Note that this embodiment is not limited to this, and the light-emitting element 3 may include, in this order from the substrate 2 side, a cathode, an electron transport layer, a light-emitting layer, a hole transport layer, a hole injection layer, and an anode. Furthermore, the light-emitting element 3 may further include an electron injection layer as a functional layer between the electron transport layer 35 and the cathode 36.
 さらに、表示装置1は、基板2上にバンクBKを備える。バンクBKは、例えば、ポリイミド等を含む絶縁性の樹脂材料を含む。バンクBKにより、発光素子3のアノード31、および発光層34のそれぞれは、基板2の平面視において、赤色サブ画素SPR、緑色サブ画素SPG、および青色サブ画素SPBに区画される。本実施形態において、特に、発光層34は、バンクBKにより、赤色サブ画素SPRの赤色発光層34R、緑色サブ画素SPGの緑色発光層34G、および青色サブ画素SPBの青色発光層34Bに区画される。一方、アノード31は、上述の通りサブ画素ごとに区画されるものの、形成されるサブ画素によらず同一の構成を有してもよい。 The display device 1 further includes a bank BK on the substrate 2. The bank BK includes an insulating resin material, such as polyimide. The bank BK divides the anode 31 and the light-emitting layer 34 of the light-emitting element 3 into red subpixels SPR, green subpixels SPG, and blue subpixels SPB in a plan view of the substrate 2. In this embodiment, the light-emitting layer 34 is particularly divided by the bank BK into a red light-emitting layer 34R of the red subpixel SPR, a green light-emitting layer 34G of the green subpixel SPG, and a blue light-emitting layer 34B of the blue subpixel SPB. On the other hand, although the anode 31 is divided for each subpixel as described above, it may have the same configuration regardless of the subpixels formed.
 本実施形態においては、正孔注入層32、正孔輸送層33、電子輸送層35、およびカソード36は、上述した複数のサブ画素に対し共通に形成されている。ただし、正孔注入層32、正孔輸送層33、電子輸送層35、およびカソード36についても、バンクBKによってサブ画素ごとに区画されてもよい。 In this embodiment, the hole injection layer 32, the hole transport layer 33, the electron transport layer 35, and the cathode 36 are formed in common to the multiple sub-pixels described above. However, the hole injection layer 32, the hole transport layer 33, the electron transport layer 35, and the cathode 36 may also be partitioned for each sub-pixel by the bank BK.
 本実施形態において、発光素子3は、赤色サブ画素SPRに位置する赤色発光素子3R、緑色サブ画素SPGに位置する緑色発光素子3G、および青色サブ画素SPBに位置する青色発光素子3Bを含む。このため、赤色発光素子3R、緑色発光素子3G、および青色発光素子3Bは、一部が互いにバンクBKによって区画される。 In this embodiment, the light-emitting element 3 includes a red light-emitting element 3R located in the red sub-pixel SPR, a green light-emitting element 3G located in the green sub-pixel SPG, and a blue light-emitting element 3B located in the blue sub-pixel SPB. Therefore, the red light-emitting element 3R, the green light-emitting element 3G, and the blue light-emitting element 3B are partially separated from each other by the bank BK.
 特に、赤色発光素子3Rは基板2の平面視において赤色サブ画素SPRと重なる位置に形成された、アノード31、正孔注入層32、正孔輸送層33、赤色発光層34R、電子輸送層35、およびカソード36を備える。緑色発光素子3Gは基板2の平面視において緑色サブ画素SPGと重なる位置に形成された、アノード31、正孔注入層32、正孔輸送層33、緑色発光層34G、電子輸送層35、およびカソード36を備える。青色発光素子3Bは基板2の平面視において青色サブ画素SPBと重なる位置に形成された、アノード31、正孔注入層32、正孔輸送層33、青色発光層34B、電子輸送層35、およびカソード36を備える。 In particular, the red light-emitting element 3R includes an anode 31, a hole injection layer 32, a hole transport layer 33, a red light-emitting layer 34R, an electron transport layer 35, and a cathode 36 formed at a position overlapping with the red subpixel SPR in a planar view of the substrate 2. The green light-emitting element 3G includes an anode 31, a hole injection layer 32, a hole transport layer 33, a green light-emitting layer 34G, an electron transport layer 35, and a cathode 36 formed at a position overlapping with the green subpixel SPG in a planar view of the substrate 2. The blue light-emitting element 3B includes an anode 31, a hole injection layer 32, a hole transport layer 33, a blue light-emitting layer 34B, an electron transport layer 35, and a cathode 36 formed at a position overlapping with the blue subpixel SPB in a planar view of the substrate 2.
 なお、バンクBKは、各アノード31の端部を覆う位置に形成されていてもよい。換言すれば、バンクBKは、基板2の平面視において、各アノード31と重なる部分の一部に開口を有してもよい。この場合、バンクBKは、各発光素子におけるアノード31の端部における電界集中がアノード31から発光層34への正孔の注入に与える影響を低減できる。 The bank BK may be formed in a position that covers the end of each anode 31. In other words, the bank BK may have an opening in a part that overlaps with each anode 31 in a plan view of the substrate 2. In this case, the bank BK can reduce the effect of electric field concentration at the end of the anode 31 in each light-emitting element on the injection of holes from the anode 31 to the light-emitting layer 34.
 <発光素子:アノードおよびカソード>
 アノード31とカソード36との少なくとも何れか一方は、可視光を透過する透明電極である。透明電極としては、例えば、ITO、InZnO、SnO、またはFTO等の酸化物導電体の他、Mg、Ag等の金属またはこれらの合金を含む反透光性の金属薄膜等が用いられてもよい。また、アノード31またはカソード36のいずれか一方は反射電極であってもよい。反射電極は、可視光の反射率の高い金属材料を含んでいてもよく、当該金属材料は、例えば、Al、Ag、Cu、またはAuの単独またはこれらの合金であってもよい。
<Light-emitting element: anode and cathode>
At least one of the anode 31 and the cathode 36 is a transparent electrode that transmits visible light. As the transparent electrode, for example, an oxide conductor such as ITO, InZnO, SnO 2 , or FTO, or a semi-transparent metal thin film containing a metal such as Mg or Ag or an alloy thereof may be used. In addition, either the anode 31 or the cathode 36 may be a reflective electrode. The reflective electrode may contain a metal material with a high reflectance of visible light, and the metal material may be, for example, Al, Ag, Cu, or Au alone or an alloy thereof.
 本実施形態において、アノード31は反射電極であり、カソード36は透明電極である。この場合、表示装置1は、発光素子3からの光を基板2と反対の側から取り出すトップエミッション型のデバイスである。 In this embodiment, the anode 31 is a reflective electrode, and the cathode 36 is a transparent electrode. In this case, the display device 1 is a top-emission type device in which light from the light-emitting element 3 is extracted from the side opposite the substrate 2.
 例えば、アノード31は上述の通りバンクBKによってサブ画素ごとに区画される。また、各アノード31は各画素回路に電気的に接続する。一方、カソード36は複数のサブ画素に対し共通に形成され、略一定の電圧が印加される。したがって、表示装置1は、ドライバによって各画素回路を介し各アノード31への印加電圧を制御することにより、各発光素子を個々に駆動する。各発光素子においてアノード31が駆動されることにより、アノード31からは正孔が、カソード36からは電子が、それぞれ生成される。 For example, the anodes 31 are partitioned into sub-pixels by the banks BK as described above. Each anode 31 is electrically connected to a corresponding pixel circuit. Meanwhile, the cathode 36 is formed in common to a plurality of sub-pixels, and a substantially constant voltage is applied to it. Therefore, the display device 1 drives each light-emitting element individually by controlling the voltage applied to each anode 31 via each pixel circuit using a driver. When the anode 31 in each light-emitting element is driven, holes are generated from the anode 31 and electrons are generated from the cathode 36.
 アノード31およびカソード36のそれぞれは、スパッタ法、蒸着法等によって上述した材料の薄膜を成膜することにより形成してもよい。特に、アノード31は、基板2の画素回路と電気的に接続するように形成されてもよく、サブ画素ごとにパターニングされてもよい。 The anode 31 and the cathode 36 may each be formed by depositing a thin film of the above-mentioned material by a sputtering method, a vapor deposition method, or the like. In particular, the anode 31 may be formed so as to be electrically connected to the pixel circuit of the substrate 2, and may be patterned for each subpixel.
 <発光素子:正孔注入層:ナノ粒子>
 正孔注入層32は、アノード31において生成された正孔を発光層34側に注入する層である。本実施形態に係る正孔注入層32は正孔輸送材料として少なくとも一つのナノ粒子4を含む。ナノ粒子4は、酸化ニッケル(NiO)を含み、さらに、硝酸イオン(NO )を含む。なお、本開示において、化学式は代表的な例示である。また、本開示において、化学式に記載の組成比は、必ずしも実際の化合物の組成が化学式どおりになっているストイキオメトリでなくてもよい。
<Light-emitting element: hole injection layer: nanoparticles>
The hole injection layer 32 is a layer that injects holes generated in the anode 31 into the light emitting layer 34. The hole injection layer 32 according to this embodiment contains at least one nanoparticle 4 as a hole transport material. The nanoparticle 4 contains nickel oxide (NiO) and further contains nitrate ions (NO 3 ). In this disclosure, the chemical formulas are representative examples. In this disclosure, the composition ratios described in the chemical formulas do not necessarily have to be stoichiometric, in which the composition of the actual compound is exactly as shown in the chemical formula.
 本実施形態に係るナノ粒子4のより具体的な構成は、FT-IR(フーリエ変換赤外分光光度計)を用いた分析により説明される。FT-IRは、サンプルに赤外線を照射し、透過または反射した赤外光を測定することにより、当該サンプルの赤外吸収スペクトルを計測する分光測定器である。一般に、物質に赤外線を照射した場合に当該物質に吸収される赤外光の波数(波長)は、物質が有する官能基またはイオン等によって異なる。このため、FT-IRを用いた分析によって計測された赤外吸収スペクトルに含まれる吸収ピークの波数を特定することにより、サンプルが有する官能基またはイオン等が特定でき、ひいてはサンプルの少なくとも一部の組成を特定できる。 A more specific configuration of the nanoparticles 4 according to this embodiment is explained by analysis using an FT-IR (Fourier transform infrared spectrophotometer). An FT-IR is a spectrometer that measures the infrared absorption spectrum of a sample by irradiating the sample with infrared light and measuring the transmitted or reflected infrared light. In general, the wave number (wavelength) of infrared light absorbed by a substance when infrared light is irradiated onto the substance varies depending on the functional groups or ions contained in the substance. Therefore, by identifying the wave number of the absorption peak contained in the infrared absorption spectrum measured by analysis using an FT-IR, the functional groups or ions contained in the sample can be identified, and thus at least a portion of the composition of the sample can be identified.
 本実施形態に係るナノ粒子4をサンプルとしFT-IRを用いた赤外分光により得られた赤外吸収スペクトルは、硝酸イオンに対応する波数に吸収ピークを有する。例えば、本実施形態に係るナノ粒子4をサンプルとしたFT-IRを用いた分析にて得られた吸収スペクトルは、波数1400cm-1付近に吸収ピークを有する。 The infrared absorption spectrum obtained by infrared spectroscopy using FT-IR with the nanoparticles 4 according to this embodiment as a sample has an absorption peak at a wave number corresponding to nitrate ions. For example, the absorption spectrum obtained by analysis using FT-IR with the nanoparticles 4 according to this embodiment as a sample has an absorption peak at a wave number of about 1400 cm −1 .
 <発光素子:正孔注入層:ナノ粒子の合成方法>
 本実施形態に係るナノ粒子4の合成方法について以下に説明する。ナノ粒子4の合成方法においては、はじめに、前駆体水溶液を作製する。例えば、硝酸ニッケル六水和物(Ni(NO・6HO)0.05mmolと純水20mLとを混合して攪拌することにより、前駆体水溶液を作製する。
<Light-emitting element: hole injection layer: nanoparticle synthesis method>
A method for synthesizing the nanoparticles 4 according to this embodiment will be described below. In the method for synthesizing the nanoparticles 4, first, a precursor aqueous solution is prepared. For example, 0.05 mmol of nickel nitrate hexahydrate (Ni(NO 3 ) 2.6H 2 O) and 20 mL of pure water are mixed and stirred to prepare the precursor aqueous solution.
 次いで、得られた前駆体水溶液に、アルカリ水溶液を添加する。例えば、前駆体水溶液に10mol/L水酸化ナトリウム水溶液をpHが9~11、例えば10になるまで添加する。この結果、沈殿物、例えば緑色を呈する沈殿物が得られる。 Then, an alkaline aqueous solution is added to the obtained precursor aqueous solution. For example, a 10 mol/L aqueous solution of sodium hydroxide is added to the precursor aqueous solution until the pH becomes 9 to 11, for example 10. As a result, a precipitate, for example a green precipitate, is obtained.
 次いで、得られた沈殿物を洗浄する。例えば、沈殿物に純水を添加し、遠心分離し、その後上澄みを取り除く洗浄工程を3回繰り返す。 Then, the resulting precipitate is washed. For example, the washing process of adding pure water to the precipitate, centrifuging it, and then removing the supernatant is repeated three times.
 次いで、洗浄後の沈殿物を乾燥させる。例えば、洗浄後の沈殿物を、60℃から100℃、例えば80℃にて乾燥させる。この結果、粉体、例えば緑色を呈する粉体が得られる。 Then, the washed precipitate is dried. For example, the washed precipitate is dried at 60°C to 100°C, for example, 80°C. As a result, a powder, for example, a green powder, is obtained.
 次いで、得られた粉体を焼成する。例えば、得られた粉体を250℃から300℃にて2時間から6時間、例えば270℃にて2時間焼成する。この結果、黒色のナノ粒子4の粉体が得られる。本実施形態に係る正孔注入層は、上記合成工程によって得られたナノ粒子4を含む溶液を用いた塗布法等による成膜によって形成されてもよい。 Then, the obtained powder is fired. For example, the obtained powder is fired at 250°C to 300°C for 2 hours to 6 hours, for example, at 270°C for 2 hours. As a result, a powder of black nanoparticles 4 is obtained. The hole injection layer according to this embodiment may be formed by film formation by a coating method or the like using a solution containing the nanoparticles 4 obtained by the above synthesis process.
 ナノ粒子4の合成工程を鑑みると、ナノ粒子4が含む硝酸イオンは、前駆体水溶液に含まれる硝酸ニッケル六水和物に起因するものであると推測される。より具体的には、ナノ粒子4が含む硝酸イオンは、硝酸ニッケル六水和物とアルカリ水溶液との反応によって得られた副生成物の一部と推測される。 In consideration of the synthesis process of nanoparticles 4, it is presumed that the nitrate ions contained in nanoparticles 4 originate from nickel nitrate hexahydrate contained in the precursor aqueous solution. More specifically, it is presumed that the nitrate ions contained in nanoparticles 4 are part of a by-product obtained by the reaction of nickel nitrate hexahydrate with an alkaline aqueous solution.
 <発光素子:正孔輸送層および電子輸送層>
 発光素子3の各層の説明に戻ると、正孔輸送層33は、アノード31から正孔注入層32に注入された正孔を発光層34側に輸送する層である。正孔輸送層33の材料には、電界注入型の発光素子等において、従来から採用されている、正孔輸送性を有する有機または無機の正孔輸送材料を使用することができる。正孔輸送材料としては、例えば、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-4-sec-ブチルフェニル))ジフェニルアミン)](略称「TFB」)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン](略称「poly-TPD」)、ポリビニルカルバゾール(略称「PVK」)等が挙げられる。正孔輸送材料は、上述した材料について、一種類のみを含んでもよく、適宜二種類以上を含んでもよい。
<Light-emitting element: hole transport layer and electron transport layer>
Returning to the description of each layer of the light-emitting element 3, the hole transport layer 33 is a layer that transports holes injected from the anode 31 into the hole injection layer 32 to the light-emitting layer 34 side. As the material of the hole transport layer 33, an organic or inorganic hole transport material having hole transport properties that has been conventionally adopted in field injection type light-emitting elements and the like can be used. Examples of the hole transport material include poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-4-sec-butylphenyl))diphenylamine)] (abbreviated as "TFB"), poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine] (abbreviated as "poly-TPD"), polyvinylcarbazole (abbreviated as "PVK"), and the like. The hole transport material may contain only one type of the above-mentioned materials, or may contain two or more types as appropriate.
 電子輸送層35は、カソード36において生成された電子を発光層34へと輸送する層である。電子輸送層35は、電子輸送材料として、電界注入型の発光素子等において、従来から採用されている、電子輸送性を有する有機または無機の材料を使用することができる。電子輸送材料は、酸化亜鉛(ZnO)、酸化マグネシウム亜鉛(MgZnO)を含んでもよい。電子輸送材料は、上述した材料について、一種類のみを含んでもよく、適宜二種類以上を含んでもよい。 The electron transport layer 35 is a layer that transports electrons generated in the cathode 36 to the light-emitting layer 34. The electron transport layer 35 can use, as an electron transport material, organic or inorganic materials having electron transport properties that have been conventionally used in field injection type light-emitting elements and the like. The electron transport material may include zinc oxide (ZnO) and magnesium zinc oxide (MgZnO). The electron transport material may include only one type of the above-mentioned materials, or may include two or more types as appropriate.
 正孔輸送層33および電子輸送層35のそれぞれは、例えば、上述した材料を溶媒に分散させた溶液をスピンコート法等にて塗布した後、焼成によって溶媒を揮発させることにより成膜してもよい。 The hole transport layer 33 and the electron transport layer 35 may each be formed by, for example, applying a solution in which the above-mentioned materials are dispersed in a solvent by a spin coating method or the like, and then volatilizing the solvent by baking.
 <発光素子:発光層>
 発光層34は、アノード31から注入された正孔とカソード36から注入された電子との再結合によって生じる励起子によって励起され発光する発光材料を備える。発光層34は、例えば、発光材料として量子ドット5を複数含む。発光層34が備える各量子ドット5は、上述した励起子によって発光するコアと、当該コアの周囲に形成されコアを保護するシェルと、を含むコア/シェル構造を有してもよい。また、本実施形態において、発光層34は、各量子ドット5の最外周面と配位結合を形成することにより、当該量子ドット5に配位する、有機または無機のリガンドを含んでもよい。
<Light-emitting element: light-emitting layer>
The light-emitting layer 34 includes a light-emitting material that emits light when excited by excitons generated by recombination of holes injected from the anode 31 and electrons injected from the cathode 36. The light-emitting layer 34 includes, for example, a plurality of quantum dots 5 as the light-emitting material. Each quantum dot 5 included in the light-emitting layer 34 may have a core/shell structure including a core that emits light by the above-mentioned excitons and a shell formed around the core to protect the core. In this embodiment, the light-emitting layer 34 may include an organic or inorganic ligand that coordinates to the quantum dot 5 by forming a coordinate bond with the outermost surface of each quantum dot 5.
 なお、本開示において、「量子ドット」とは、最大幅が100nm以下のドットを意味する。量子ドット5の形状は、上記最大幅を満たす範囲であればよく、特に制約されず、球状の立体形状(円状の断面形状)に限定されるものではない。量子ドット5の形状は例えば、多角形状の断面形状、棒状の立体形状、枝状の立体形状、表面に凹凸を有する立体形状でもよく、または、それらの組合せでもよい。 In this disclosure, "quantum dot" means a dot with a maximum width of 100 nm or less. The shape of the quantum dot 5 may be within a range that satisfies the above maximum width, and is not particularly restricted, and is not limited to a spherical three-dimensional shape (circular cross-sectional shape). The shape of the quantum dot 5 may be, for example, a polygonal cross-sectional shape, a rod-like three-dimensional shape, a branch-like three-dimensional shape, a three-dimensional shape with unevenness on the surface, or a combination of these.
 量子ドット5は、典型的には半導体から成るとよい。半導体とは、一定のバンドギャップを有するとよい。半導体とは、光を発することができる材料であればよく、また、少なくとも下述する材料を含むとよい。半導体は、青色、緑色および赤色の光をそれぞれ発することができるとよい。半導体は、例えば、II-VI族化合物、III-V族化合物、カルコゲナイドおよびペロブスカイト化合物からなる群より選択される少なくとも1種を含む。なお、II-VI族化合物とはII族元素とVI族元素を含む化合物を意味し、III-V族化合物はIII族元素とV族元素を含む化合物を意味する。また、II族元素とは2族元素および12族元素を含み、III族元素とは3族元素および13族元素を含み、V族元素は5族元素および15族元素を含み、VI族元素は6族元素および16族元素を含み得る。 The quantum dot 5 is typically made of a semiconductor. The semiconductor may have a certain band gap. The semiconductor may be any material capable of emitting light, and may include at least the materials described below. The semiconductor may emit blue, green, and red light, respectively. The semiconductor may include at least one selected from the group consisting of II-VI compounds, III-V compounds, chalcogenides, and perovskite compounds. The II-VI compounds refer to compounds containing II and VI elements, and the III-V compounds refer to compounds containing III and V elements. The II elements may include Group 2 and Group 12 elements, the III elements may include Group 3 and Group 13 elements, the V elements may include Group 5 and Group 15 elements, and the VI elements may include Group 6 and Group 16 elements.
 II-VI族化合物は、例えば、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、BaTe、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、およびHgTeからなる群より選択される少なくとも1種を含む。 The II-VI compound includes, for example, at least one selected from the group consisting of MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, and HgTe.
 III-V族化合物は、例えば、GaAs、GaP、InN、InAs、InP、およびInSbからなる群より選択される少なくとも1種を含む。 The III-V compound includes, for example, at least one selected from the group consisting of GaAs, GaP, InN, InAs, InP, and InSb.
 カルコゲナイドは、VI A(16)族元素を含む化合物であり、例えば、CdS又はCdSeを含む。カルコゲナイドが、これらの混晶を含んでもよい。 Chalcogenides are compounds that contain elements from group VI A(16), such as CdS or CdSe. Chalcogenides may also include mixed crystals of these.
 ペロブスカイト化合物は、例えば、一般式CsPbXで表される組成を有する。構成元素Xは、例えば、Cl、BrおよびIからなる群より選択される少なくとも1種を含む。 The perovskite compound has a composition represented by the general formula CsPbX 3 , for example. The constituent element X includes at least one element selected from the group consisting of Cl, Br and I, for example.
 ここで、ローマ数字を用いた元素の族の番号表記は旧IUPAC(International Union of Pure and Applied Chemistry、国際純正・応用化学連合)方式または旧CAS(Chemical Abstracts Service)方式に基づく表記で、アラビア数字を用いた元素の族の番号表記は現IUPAC方式に基づく表記である。 Here, the numbering of element groups using Roman numerals is based on the old IUPAC (International Union of Pure and Applied Chemistry) system or the old CAS (Chemical Abstracts Service) system, and the numbering of element groups using Arabic numerals is based on the current IUPAC system.
 本実施形態において赤色発光層34Rは、赤色光を発する赤色量子ドット5Rを備える。緑色発光層34Gは、緑色光を発する緑色量子ドット5Gを備える。青色発光層34Bは、青色光を発する青色量子ドット5Bを備える。赤色量子ドット5R、緑色量子ドット5G、および青色量子ドット5Bのそれぞれは、発光色を除き互いに同一の構成を備えてもよい。 In this embodiment, the red light-emitting layer 34R includes red quantum dots 5R that emit red light. The green light-emitting layer 34G includes green quantum dots 5G that emit green light. The blue light-emitting layer 34B includes blue quantum dots 5B that emit blue light. The red quantum dots 5R, green quantum dots 5G, and blue quantum dots 5B may each have the same configuration as one another, except for the light-emitting color.
 このため、表示装置1は、赤色発光素子3R、緑色発光素子3G、および青色発光素子3Bを個々に制御することにより、赤色サブ画素SPRから赤色光、緑色サブ画素SPGから緑色光、青色サブ画素SPBから青色光を個々に取り出す。これにより表示装置1は表示部DAにおいてフルカラー表示を行う。 As a result, the display device 1 individually controls the red light emitting element 3R, the green light emitting element 3G, and the blue light emitting element 3B to extract red light from the red subpixel SPR, green light from the green subpixel SPG, and blue light from the blue subpixel SPB. This allows the display device 1 to perform full color display in the display area DA.
 なお、本開示において、青色光とは、例えば、380nm以上500nm以下の波長帯域に発光中心波長を有する光である。また、緑色光とは、例えば、500nm超600nm以下の波長帯域に発光中心波長を有する光のことである。さらに、赤色光とは、600nm超780nm以下の波長帯域に発光中心波長を有する光のことである。 In this disclosure, blue light is, for example, light having a central emission wavelength in the wavelength band of 380 nm or more and 500 nm or less. Green light is, for example, light having a central emission wavelength in the wavelength band of more than 500 nm and less than 600 nm. Red light is, for example, light having a central emission wavelength in the wavelength band of more than 600 nm and less than 780 nm.
 なお、発光層34は、アノード31からの正孔とカソード36からの電子とによって発光する発光材料を含む限り、上述した構成に限られない。例えば、発光層34は、有機蛍光材料または有機りん光材料を含む、有機の発光材料を備えてもよい。換言すれば、発光素子3はOLED素子(有機EL素子)であってもよく、表示装置1はOLEDディスプレイであってもよい。 Note that the light-emitting layer 34 is not limited to the above-mentioned configuration, so long as it contains a light-emitting material that emits light due to holes from the anode 31 and electrons from the cathode 36. For example, the light-emitting layer 34 may contain an organic light-emitting material including an organic fluorescent material or an organic phosphorescent material. In other words, the light-emitting element 3 may be an OLED element (organic EL element), and the display device 1 may be an OLED display.
 発光層34は、リフトオフ法を用いたパターニングによりサブ画素ごとに形成されてもよい。例えば、はじめに感光性樹脂を複数のサブ画素に対し共通に成膜し、フォトリソグラフィ法等により、発光層34を形成するサブ画素と異なるサブ画素にのみ感光性樹脂の層を形成する。次いで、何れかの発光色の量子ドット5が分散する溶液を複数のサブ画素に対し共通に成膜する。次いで、適切な現像液にて感光性樹脂を除去することにより、感光性樹脂の層と共に当該層上に形成された量子ドット5を含む層を除去する。以上により特定の量子ドット5を含む層を特定のサブ画素にのみ形成することができる。当該リフトオフ法をサブ画素ごとに繰り返し実行することにより発光層34が形成される。ただし、発光層34の形成方法は上記に限定されず、例えば、インクジェット法等による量子ドット5が分散する溶液の塗り分けによって形成されてもよい。 The light-emitting layer 34 may be formed for each subpixel by patterning using a lift-off method. For example, a photosensitive resin is first formed in common for a plurality of subpixels, and a layer of the photosensitive resin is formed only in the subpixels other than the subpixel for which the light-emitting layer 34 is formed by photolithography or the like. Next, a solution in which quantum dots 5 of a certain light-emitting color are dispersed is formed in common for the plurality of subpixels. Next, the photosensitive resin is removed with an appropriate developer, and the layer containing the quantum dots 5 formed on the layer is removed together with the photosensitive resin layer. In this way, a layer containing a specific quantum dot 5 can be formed only in a specific subpixel. The lift-off method is repeatedly performed for each subpixel to form the light-emitting layer 34. However, the method for forming the light-emitting layer 34 is not limited to the above, and the light-emitting layer 34 may be formed, for example, by applying a solution in which the quantum dots 5 are dispersed by an inkjet method or the like.
 <表示装置:補記>
 本実施形態に係る発光素子3は、基板2上に、アノード31、ナノ粒子4を含む正孔注入層32、正孔輸送層33、発光層34、電子輸送層35、およびカソード36をこの順に形成することにより製造できる。発光素子3の各層の形成方法は、上述した方法により実行してもよい。
<Display device: Supplementary note>
The light-emitting element 3 according to this embodiment can be manufactured by forming, in this order, an anode 31, a hole injection layer 32 containing nanoparticles 4, a hole transport layer 33, a light-emitting layer 34, an electron transport layer 35, and a cathode 36 on a substrate 2. The method for forming each layer of the light-emitting element 3 may be performed by the method described above.
 なお、本実施形態においては、赤色発光素子3R、緑色発光素子3G、および青色発光素子3Bのそれぞれが、発光層34を除き同一の積層構造を有する場合について説明したが、これに限られない。本実施形態においては、赤色発光素子3R、緑色発光素子3G、および青色発光素子3Bの少なくとも一つが、ナノ粒子4を含む正孔注入層32を備えていればよい。換言すれば、赤色発光素子3R、緑色発光素子3G、および青色発光素子3Bは互いに異なる積層構造を備えていてもよい。 In this embodiment, the red light-emitting element 3R, the green light-emitting element 3G, and the blue light-emitting element 3B each have the same layered structure except for the light-emitting layer 34, but this is not limited to the above. In this embodiment, it is sufficient that at least one of the red light-emitting element 3R, the green light-emitting element 3G, and the blue light-emitting element 3B has a hole injection layer 32 containing nanoparticles 4. In other words, the red light-emitting element 3R, the green light-emitting element 3G, and the blue light-emitting element 3B may have different layered structures.
 表示装置1は、発光素子3の上層に、発光素子3を封止するための有機または無機の封止層、または、発光素子3からの光の取り出し効率を向上させるためのキャッピングレイヤ等を備えていてもよい。また、表示装置1は、発光素子3の上層に、表示装置1をタッチパネルディスプレイとして機能させるためのタッチパネルユニットを備えていてもよい。 The display device 1 may include, on the upper layer of the light-emitting element 3, an organic or inorganic sealing layer for sealing the light-emitting element 3, or a capping layer for improving the efficiency of light extraction from the light-emitting element 3. The display device 1 may also include, on the upper layer of the light-emitting element 3, a touch panel unit for causing the display device 1 to function as a touch panel display.
 <物性評価:ナノ粒子の合成>
 本実施形態に係るナノ粒子4の物性を評価するために、以下に記載する実施例1から6のそれぞれに係るナノ粒子と比較例に係るナノ粒子とを合成した。さらに、各実施例および比較例に係るナノ粒子を正孔注入層に備えた発光素子を製造し、下記の通り特性を評価した。
<Physical property evaluation: synthesis of nanoparticles>
In order to evaluate the physical properties of the nanoparticles 4 according to this embodiment, the nanoparticles according to each of Examples 1 to 6 described below and the nanoparticles according to the Comparative Example were synthesized. Furthermore, light-emitting devices having the nanoparticles according to each of the Examples and the Comparative Example in the hole injection layer were manufactured, and the characteristics were evaluated as follows.
 実施例1から6のそれぞれに係るナノ粒子は、上述したナノ粒子4の合成方法にしたがって合成した。実施例1から6のそれぞれに係るナノ粒子の合成工程においては、合成するナノ粒子の総重量のみが異なり、各材料の比率等は同一とした。特に、実施例1から6のそれぞれに係るナノ粒子の合成工程においては、はじめに作製する前駆体水溶液の重量のみが異なり、当該前駆体水溶液中の各材料の割合は実施例によらず略一定である。比較例に係るナノ粒子は、上述したナノ粒子4の合成方法と異なる方法、特に、材料に硝酸ニッケルを用いない方法により合成した、酸化ニッケルを含むナノ粒子である。 The nanoparticles of Examples 1 to 6 were synthesized according to the synthesis method of nanoparticles 4 described above. In the synthesis process of nanoparticles of Examples 1 to 6, only the total weight of the nanoparticles to be synthesized was different, and the ratio of each material was the same. In particular, in the synthesis process of nanoparticles of Examples 1 to 6, only the weight of the precursor aqueous solution prepared first was different, and the ratio of each material in the precursor aqueous solution was approximately constant regardless of the Example. The nanoparticles of the comparative example are nanoparticles containing nickel oxide that were synthesized by a method different from the synthesis method of nanoparticles 4 described above, in particular, a method that does not use nickel nitrate as a material.
 <物性評価:ナノ粒子のFT-IRおよびTG-DTAを用いた分析>
 各実施例および比較例に係るナノ粒子の物性を以下の方法により測定した。
<Physical property evaluation: Analysis of nanoparticles using FT-IR and TG-DTA>
The physical properties of the nanoparticles according to each of the examples and comparative examples were measured by the following methods.
 はじめに、各実施例および比較例に係るナノ粒子に対するFT-IRを用いた赤外分光を行い、各ナノ粒子の赤外吸収スペクトルを得た。 First, infrared spectroscopy was performed using FT-IR on the nanoparticles of each example and comparative example to obtain the infrared absorption spectrum of each nanoparticle.
 次いで、各実施例および比較例に係るナノ粒子に対する、TG-DTA(熱重量示差熱分析装置)を用いた分析を行った。以下、TG-DTAを用いた分析について説明する。 Next, the nanoparticles of each example and comparative example were analyzed using a TG-DTA (thermogravimetric differential thermal analyzer). The analysis using TG-DTA is explained below.
 TG-DTAは、サンプルを加熱するための炉と、当該サンプルの重量を測定する測定器と、を備える。ここで例えば、TG-DTAを用いた分析においては、TG-DTAを用いてサンプルの雰囲気温度を所定の昇温率にて増加させることによりサンプルを加熱しつつ、当該サンプルの重量の変化を測定する。 The TG-DTA is equipped with a furnace for heating the sample and a measuring device for measuring the weight of the sample. For example, in an analysis using the TG-DTA, the TG-DTA is used to increase the ambient temperature of the sample at a predetermined heating rate, thereby heating the sample and measuring the change in the weight of the sample.
 サンプルを加熱することにより、当該サンプルにおいては一部の離脱、分解、または還元が発生しサンプルの重量が減少することがある。一般に、サンプルの加熱に伴う材料の離脱、分解、または還元が発生する雰囲気温度は、離脱、分解、または還元する材料の種類に依存し、かつ、おおよそ一定である。 Heating a sample may cause some of the material to be released, decomposed, or reduced, resulting in a loss in weight. In general, the ambient temperature at which release, decomposition, or reduction of materials occurs when a sample is heated depends on the type of material being released, decomposed, or reduced, and is roughly constant.
 このため、TG-DTAを用いた分析により、サンプルの重量が減少した雰囲気温度を測定することにより、当該サンプルに含まれる材料を特定できる。さらに、TG-DTAを用いた分析により、所定の雰囲気温度の範囲において減少したサンプルの重量を測定することにより、サンプルにおける特定の材料の割合を推定することができる。 As a result, by measuring the ambient temperature at which the weight of a sample is reduced through analysis using TG-DTA, it is possible to identify the material contained in the sample. Furthermore, by measuring the weight of a sample that is reduced within a specified range of ambient temperatures through analysis using TG-DTA, it is possible to estimate the proportion of a specific material in the sample.
 各実施例および比較例に係るナノ粒子に対するTG-DTAを用いた分析においては、雰囲気温度を常温から毎分10℃昇温させることによりナノ粒子を加熱した。ここで、TG-DTAを用いた分析において、一般に、硝酸イオンを含むサンプルから当該硝酸イオンが離脱、分解、または還元する雰囲気温度は309℃から411℃である。このため、TG-DTAを用いた分析において加熱するナノ粒子の雰囲気温度が309℃から411℃である間に、当該ナノ粒子の重量が減少した場合、ナノ粒子には硝酸イオンが含まれると推定できる。また、常温におけるナノ粒子の重量を基準として、雰囲気温度が309℃から411℃である間に減少したナノ粒子の重量の割合を測定することにより、ナノ粒子に含まれる硝酸イオンの割合を推定できる。 In the analysis using TG-DTA for the nanoparticles of each of the examples and comparative examples, the nanoparticles were heated by raising the ambient temperature from room temperature by 10°C per minute. In the analysis using TG-DTA, the ambient temperature at which nitrate ions are generally released, decomposed, or reduced from a sample containing nitrate ions is generally 309°C to 411°C. Therefore, if the weight of the nanoparticles decreases while the ambient temperature of the nanoparticles being heated in the analysis using TG-DTA is between 309°C and 411°C, it can be assumed that the nanoparticles contain nitrate ions. In addition, the proportion of the weight of the nanoparticles that is reduced while the ambient temperature is between 309°C and 411°C can be estimated by measuring the proportion of the weight of the nanoparticles that is reduced while the ambient temperature is between 309°C and 411°C, based on the weight of the nanoparticles at room temperature.
 <物性評価:ナノ粒子の分散性評価>
 次いで、各実施例および比較例に係るナノ粒子の分散性を評価した。当該分散性の評価においては、はじめに、各実施例および比較例のそれぞれにおいて、30mgのナノ粒子を純水1mlに添加した水溶液を調製した。次いで、当該水溶液に対し30分間の超音波照射を、45kHzの超音波を照射することにより実施した。
<Physical property evaluation: Evaluation of nanoparticle dispersibility>
Next, the dispersibility of the nanoparticles according to each Example and Comparative Example was evaluated. In the evaluation of the dispersibility, first, an aqueous solution was prepared by adding 30 mg of nanoparticles to 1 ml of pure water for each Example and Comparative Example. Then, the aqueous solution was irradiated with ultrasonic waves of 45 kHz for 30 minutes.
 次いで、各実施例および比較例にかかるナノ粒子の分散性について、以下の条件にて各ナノ粒子のろ過フィルターの通過の有無を測定することにより評価した。  Next, the dispersibility of the nanoparticles in each Example and Comparative Example was evaluated by measuring whether or not each nanoparticle passed through a filtration filter under the following conditions.
 各実施例および比較例において調製した水溶液を10uL採取し、純水4mLを加えた溶液に対し、分光光度計(日立ハイテク株式会社製。型式:U-3900)を用いた吸収スペクトルの測定を行った。特に、当該測定においては、波長250nmの紫外光に対する吸光度を測定した。 10 uL of the aqueous solution prepared in each Example and Comparative Example was taken, and 4 mL of pure water was added to the solution, and the absorption spectrum was measured using a spectrophotometer (Hitachi High-Tech Corporation, Model: U-3900). In particular, the absorbance for ultraviolet light with a wavelength of 250 nm was measured.
 次いで、当該水溶液の残り溶液を孔径0.45μmのろ過フィルターを用いてろ過し、ろ液10uL採取し、純水4mLを加えた溶液の吸収スペクトルを測定した。当該測定においても、波長250nmの紫外光に対する吸光度を測定した。 Then, the remaining solution of the aqueous solution was filtered using a filter with a pore size of 0.45 μm, 10 uL of the filtrate was collected, and the absorption spectrum of the solution was measured after adding 4 mL of pure water. In this measurement, the absorbance for ultraviolet light with a wavelength of 250 nm was also measured.
 各実施例および比較例において測定された、ろ過前の水溶液の波長250nmの紫外光に対する吸光度をA、ろ過後の水溶液の波長250nmの紫外光に対する吸光度をAとする。また、各実施例および比較例におけるナノ粒子の、上記ろ過フィルターの透過率であるろ過透過率をRとした。本実施形態においては、ろ過透過率Rを下記式に基づき評価した。 The absorbance of the aqueous solution before filtration to ultraviolet light of a wavelength of 250 nm measured in each Example and Comparative Example is designated as A 1 , and the absorbance of the aqueous solution after filtration to ultraviolet light of a wavelength of 250 nm is designated as A 2. The filtration transmittance, which is the transmittance of the nanoparticles through the filtration filter in each Example and Comparative Example, is designated as RF . In this embodiment, the filtration transmittance RF was evaluated based on the following formula.
 R=A÷A×100
 一般に、水に対する分散性が低い場合、水溶液中におけるナノ粒子同士の凝集が発生する場合がある。複数のナノ粒子が凝集して一群となった場合、当該一群の総粒径はナノ粒子単体の粒径に対し大きくなる。このため、ナノ粒子の水溶液中のナノ粒子が所定孔径のろ過フィルターを通過するか否かによって、水に対するナノ粒子の分散性を評価できる。特に、上記水溶液中のナノ粒子がろ過フィルターを通過する場合、当該ナノ粒子は水溶液中における分散性が高いと評価できる。
R F = A 2 ÷ A 1 × 100
In general, when nanoparticles have low dispersibility in water, they may aggregate in an aqueous solution. When multiple nanoparticles aggregate to form a group, the total particle size of the group is approximately 1/100th of that of the individual nanoparticles. Therefore, the dispersibility of nanoparticles in water can be evaluated by whether or not the nanoparticles in the aqueous solution pass through a filter with a predetermined pore size. When the particles pass through a filtration filter, the nanoparticles can be evaluated as having high dispersibility in an aqueous solution.
 本実施形態においては、粒度分布測定(メジアン径D50(nm))に、マイクロトラック・ベル社製のナノ粒子径測定装置(型番:「Nanotrac Wave II-UT151」)を用いた。粒度分布測定の測定結果の解析には、動的光散乱法(DLS)による周波数解析法を使用した。粒度分布測定(メジアン径D50(nm))は、ヘテロダイン法にて測定した。 In this embodiment, a nanoparticle size measuring device manufactured by Microtrac-Bell (model number: Nanotrac Wave II-UT151) was used for particle size distribution measurement (median diameter D50 (nm)). Frequency analysis using dynamic light scattering (DLS) was used to analyze the results of particle size distribution measurement. Particle size distribution measurement (median diameter D50 (nm)) was measured using the heterodyne method.
 次いで、ろ過フィルターを通過したナノ粒子を純水に添加した水溶液に対し、粒度分布測定装置を用いた粒度分布測定を行った。当該粒度分布測定においては、各サンプルにおけるナノ粒子のメジアン径D50(nm)を測定した。上述した理由と同一の理由から、上記水溶液中のナノ粒子の粒度分布の測定を通じて、水に対するナノ粒子の分散性を評価できる。特に、ナノ粒子自体の粒径が略同一である場合、上記水溶液中のナノ粒子のメジアン径が小さいほど、当該ナノ粒子は水溶液中における分散性が高いと評価できる。 Then, the nanoparticles that had passed through the filtration filter were added to pure water to obtain an aqueous solution, and a particle size distribution measurement was performed using a particle size distribution measuring device. In this particle size distribution measurement, the median diameter D50 (nm) of the nanoparticles in each sample was measured. For the same reasons as described above, the dispersibility of the nanoparticles in water can be evaluated through the measurement of the particle size distribution of the nanoparticles in the aqueous solution. In particular, when the particle size of the nanoparticles themselves is approximately the same, it can be evaluated that the smaller the median diameter of the nanoparticles in the aqueous solution, the higher the dispersibility of the nanoparticles in the aqueous solution.
 なお、後述するが、比較例に係るナノ粒子はろ過フィルターを通過しなかったため、粒度分布測定を含む以降の評価を行わなかった。 As will be described later, the nanoparticles in the comparative example did not pass through the filtration filter, so further evaluations, including particle size distribution measurement, were not performed.
 <物性評価:発光素子の外部量子効率の評価>
 次いで、粒度分布測定を行った各実施例に係るナノ粒子を用いて、各実施例に係る発光素子を製造した。各実施例に係る発光素子は、基板上に、アノード、各実施例に係るナノ粒子を含む正孔注入層、正孔輸送層、発光層、電子輸送層、およびカソードをこの順に形成することにより製造した。特に、各実施例において、発光素子の各層の形成方法は、正孔注入層に用いる材料を各実施例に係るナノ粒子を含む溶液としたことを除き、本実施形態に係る発光素子3の各層の形成方法と同一の方法とした。次いで、製造された各実施例に係る発光素子の外部量子効率(EQE)の測定を以下の条件にて測定し、評価した。
<Physical property evaluation: Evaluation of external quantum efficiency of light-emitting device>
Next, the nanoparticles according to each example that were subjected to particle size distribution measurement were used to manufacture the light-emitting devices according to each example. The light-emitting devices according to each example were manufactured by forming an anode, a hole injection layer containing the nanoparticles according to each example, a hole transport layer, a light-emitting layer, an electron transport layer, and a cathode on a substrate in this order. In particular, in each example, the method of forming each layer of the light-emitting device was the same as the method of forming each layer of the light-emitting device 3 according to this embodiment, except that the material used for the hole injection layer was a solution containing the nanoparticles according to each example. Next, the external quantum efficiency (EQE) of the light-emitting devices according to each example manufactured was measured and evaluated under the following conditions.
 各実施例において、外部量子効率(Nφ(exe))は、次式に示すように、評価用の発光素子として作製したセルに注入したキャリア数(Ne)に対して、該セルの単位面積当たりから取り出したフォトン数(Np)として評価した。 In each example, the external quantum efficiency (Nφ (exe) ) was evaluated as the number of photons (Np) extracted per unit area of a cell fabricated as a light-emitting element for evaluation relative to the number of carriers (Ne) injected into the cell, as shown in the following formula.
 Np=λ/hc×P×1/S(1/m
 Ne=I/e×1/S(1/m
 Nφ(exe)=Np/Ne×100=(P×λ×e)/(hc×I)×100(%)
 なお、式中、Iは電流(A)を表し、Pは光強度(測定光量(W))を表し、Sはセルの面積(素子面積(m))を表し、λは発光ピーク波長(m)を表し、eは電子素量(A・s)を表し、hはプランク定数(J・s)を表し、cは光速(m・s-1)を表す。
Np=λ/hc×P×1/S (1/m 2 )
Ne=I/e×1/S (1/m 2 )
N φ (exe) = Np/Ne x 100 = (P x λ x e) / (hc x I) x 100 (%)
In the formula, I represents current (A), P represents light intensity (measured light amount (W)), S represents the cell area (element area (m 2 )), and λ represents the emission peak wavelength ( m), e represents the elementary electron mass (A·s), h represents Planck's constant (J·s), and c represents the speed of light (m·s −1 ).
 電流(I)は、ケースレーインスツルメンツ株式会社製の2400型ソースメータにて測定した。光強度(P)は、株式会社トプコンハウス製の光強度計(型番:BM-5A)にて測定した。セルの面積は、4×10-6(m)とした。発光ピーク波長(λ)は536(nm)とした。プランク定数は、6.626×10-34J・sとした。電子素量(e)は、1.602×10-19A・sとした。光速(c)は2.998×10(m・s-1)とした。 The current (I) was measured using a 2400-type source meter manufactured by Keithley Instruments Inc. The light intensity (P) was measured using a light intensity meter (model number: BM-5A) manufactured by Topcon House Corporation. The cell area was 4×10 −6 (m 2 ). The emission peak wavelength (λ) was 536 (nm). The Planck constant was 6.626×10 −34 J·s. The elementary electron quantity (e) was 1.602×10 −19 A·s. The speed of light (c) was 2.998×10 8 (m·s −1 ).
 <物性評価:評価結果>
 以上の物性評価を以下の表1にまとめた。
<Physical property evaluation: Evaluation results>
The above physical property evaluations are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 表1において、『FT-IR/NO 有無』の欄は、各実施例および比較例に係るナノ粒子に対するFT-IRを用いた分析にて得られた赤外吸収スペクトルにおける、硝酸イオンに対応する波数の吸収ピークの有無を表す。『TG-DTA/重量減少率』の欄は、上述したTG-DTAを用いた分析において、雰囲気温度が309℃から411℃である間に減少したナノ粒子の重量の、当該ナノ粒子の常温における重量を基準とした割合を百分率にて示す。『フィルター通過有無』の欄は、各実施例および比較例に係るナノ粒子の上述したろ過フィルターの通過の有無を表す。当該欄において、上記式にて測定されたろ過通過率Rが80%以上である場合を『通過』、ろ過通過率Rが80%未満20%以上である場合を『一部通過』、ろ過通過率Rが20%未満である場合を『通過しなかった』とした。『粒度分布測定/D50[nm]』の欄は、各実施例に係るナノ粒子水溶液に対する粒度分布測定により得られたメジアン径D50の測定結果を単位nmにて表す。『外部量子効率[%]』の欄は、各実施例に係る発光素子に電圧を印加し発光させて測定した外部量子効率の測定結果を百分率にて示す。
Figure JPOXMLDOC01-appb-T000001
In Table 1, the column "FT-IR/NO 3 -Presence/ absence" indicates the presence or absence of an absorption peak of a wave number corresponding to nitrate ion in the infrared absorption spectrum obtained by the analysis using FT-IR for the nanoparticles according to each Example and Comparative Example. The column "TG-DTA/Weight reduction rate" indicates the percentage of the weight of the nanoparticles reduced while the ambient temperature was between 309°C and 411°C in the analysis using the above-mentioned TG-DTA, based on the weight of the nanoparticles at room temperature. The column "Filter passage presence/absence" indicates the presence or absence of the nanoparticles according to each Example and Comparative Example passing through the above-mentioned filtration filter. In this column, when the filtration passage rate RF measured by the above formula is 80% or more, it is indicated as "passed", when the filtration passage rate RF is less than 80% and 20% or more, it is indicated as "partially passed", and when the filtration passage rate RF is less than 20%, it is indicated as "not passed". The column "Particle size distribution measurement/D50 [nm]" shows the median diameter D50 measurement results obtained by particle size distribution measurement for the nanoparticle aqueous solution of each Example in the unit of nm. The column "External quantum efficiency [%]" shows the measurement results, expressed as a percentage, of the external quantum efficiency measured by applying a voltage to the light-emitting element of each Example to cause it to emit light.
 表1に示す通り、各実施例に係るナノ粒子のFT-IRを用いた分析により得られた赤外吸収スペクトルは、硝酸イオンに対応する波数に吸収ピークを有する。一方、比較例に係るナノ粒子のFT-IRを用いた分析により得られた赤外吸収スペクトルには当該吸収ピークが確認されなかった。 As shown in Table 1, the infrared absorption spectrum obtained by FT-IR analysis of the nanoparticles according to each example has an absorption peak at a wave number corresponding to nitrate ions. On the other hand, the infrared absorption spectrum obtained by FT-IR analysis of the nanoparticles according to the comparative example did not show this absorption peak.
 また、各実施例に係るナノ粒子のTG-DTAを用いた分析においては、雰囲気温度が309℃から411℃である間に、常温における重量を基準として7.9%から18.9%ナノ粒子の重量が減少した。一方、比較例に係るナノ粒子のTG-DTAを用いた分析においては、雰囲気温度が309℃から411℃である間におけるナノ粒子の重量の減少はほとんど生じなかった。 Furthermore, in the analysis of the nanoparticles according to each Example using TG-DTA, the weight of the nanoparticles decreased by 7.9% to 18.9% based on the weight at room temperature while the ambient temperature was between 309°C and 411°C. On the other hand, in the analysis of the nanoparticles according to the Comparative Example using TG-DTA, there was almost no decrease in the weight of the nanoparticles while the ambient temperature was between 309°C and 411°C.
 以上の結果から、各実施例に係るナノ粒子には硝酸イオンが含まれ、比較例に係るナノ粒子には硝酸イオンがほとんど含まれていないことがわかる。 These results show that the nanoparticles of each example contain nitrate ions, while the nanoparticles of the comparative example contain almost no nitrate ions.
 表1に示す通り、実施例1から5のそれぞれに係るナノ粒子は上述したろ過フィルターを80%以上通過した。また、実施例6に係るナノ粒子についても、ろ過フィルターを70%以上通過した。一方、比較例に係るナノ粒子は20%未満のみがろ過フィルターを通過した。これは比較例に係るナノ粒子の水溶液中における分散性が低く、ナノ粒子の凝集が発生していることを表す。 As shown in Table 1, 80% or more of the nanoparticles of each of Examples 1 to 5 passed through the above-mentioned filter. Also, 70% or more of the nanoparticles of Example 6 passed through the filter. On the other hand, less than 20% of the nanoparticles of the Comparative Example passed through the filter. This indicates that the nanoparticles of the Comparative Example have low dispersibility in the aqueous solution, resulting in aggregation of the nanoparticles.
 以上の結果から、各実施例に係るナノ粒子のように硝酸イオンが含まれるナノ粒子は、比較例に係るナノ粒子のように硝酸イオンが含まれないナノ粒子と比較して、水溶液中における分散性が向上することがわかる。 These results show that nanoparticles containing nitrate ions, such as the nanoparticles in each Example, have improved dispersibility in aqueous solution compared to nanoparticles not containing nitrate ions, such as the nanoparticles in the Comparative Examples.
 水溶液中における分散性が向上した各実施例に係るナノ粒子を含む溶液から正孔注入層を含む機能層を成膜した場合、当該ナノ粒子は機能層中における凝集についても低減する。一般に、電荷輸送材料等としてナノ粒子を含む機能層において当該ナノ粒子の凝集が発生することは、機能層の特性の悪化につながる。したがって、溶液中における分散性が改善し凝集が低減した各実施例に係るナノ粒子は、当該ナノ粒子を含む機能層の特性を改善し得る。各実施例に係るナノ粒子を含む機能層を備えた発光素子は、特性が改善し得る機能層を備えるために、発光効率が改善し、あるいは、機能層の信頼性を向上して寿命を長期化し得る。当該発光素子を含む表示装置は、表示品位を向上し、あるいは省電化を達成し得る。 When a functional layer including a hole injection layer is formed from a solution containing the nanoparticles according to each embodiment with improved dispersibility in an aqueous solution, the nanoparticles are also less likely to aggregate in the functional layer. In general, aggregation of nanoparticles in a functional layer containing nanoparticles as a charge transport material or the like leads to deterioration of the properties of the functional layer. Therefore, the nanoparticles according to each embodiment with improved dispersibility in a solution and reduced aggregation can improve the properties of the functional layer containing the nanoparticles. A light-emitting element including a functional layer containing the nanoparticles according to each embodiment has a functional layer with improved properties, and therefore can improve the light-emitting efficiency or improve the reliability of the functional layer to extend the lifespan. A display device including the light-emitting element can improve display quality or achieve power saving.
 表1に示す通り、実施例1から5のそれぞれに係るナノ粒子のメジアン径は11.12nmから29.49nmであり、30nm以下であった。一方、実施例6に係るナノ粒子のメジアン径は34.49nmであり、30nmを上回った。これは実施例1から5のそれぞれに係るナノ粒子の水溶液中における分散性が、実施例6に係るナノ粒子の水溶液中における分散性よりさらに向上していることを表す。 As shown in Table 1, the median diameter of the nanoparticles according to each of Examples 1 to 5 was 11.12 nm to 29.49 nm, which was below 30 nm. On the other hand, the median diameter of the nanoparticles according to Example 6 was 34.49 nm, which exceeded 30 nm. This indicates that the dispersibility in aqueous solution of the nanoparticles according to each of Examples 1 to 5 is even better than that of the nanoparticles according to Example 6.
 以上の結果から、ナノ粒子4をサンプルとし上記手法にてTG-DTAを用いた分析を行った場合、ナノ粒子4の重量は、雰囲気温度が309℃から411℃である間に、常温における重量を基準として8.0%以上減少してもよい。また、ナノ粒子4の水溶液中におけるメジアン径は30nm以下であってもよい。この場合、ナノ粒子4の水溶液中における分散性が向上する。 From the above results, when nanoparticles 4 are used as a sample and analyzed using TG-DTA with the above method, the weight of nanoparticles 4 may decrease by 8.0% or more based on the weight at room temperature while the ambient temperature is between 309°C and 411°C. Furthermore, the median diameter of nanoparticles 4 in the aqueous solution may be 30 nm or less. In this case, the dispersibility of nanoparticles 4 in the aqueous solution is improved.
 表1に示す通り、実施例1から4のそれぞれに係るナノ粒子を正孔注入層に含む発光素子の外部量子効率は8.5%から10.5%であり、8.0%以上であった。一方、実施例5および実施例6のそれぞれに係るナノ粒子を正孔注入層に含む発光素子の外部量子効率は5.8%および4.8%であり、6.0%を下回った。 As shown in Table 1, the external quantum efficiency of the light-emitting devices containing the nanoparticles of Examples 1 to 4 in the hole injection layer was 8.5% to 10.5%, which was 8.0% or higher. On the other hand, the external quantum efficiency of the light-emitting devices containing the nanoparticles of Examples 5 and 6 in the hole injection layer was 5.8% and 4.8%, respectively, which was below 6.0%.
 上記の通り、実施例1から4のそれぞれに係る発光素子の外部量子効率は、実施例5に係る発光素子の外部量子効率を上回った。これは実施例1から4のそれぞれに係る発光素子の正孔注入層中のナノ粒子が含む硝酸イオンの割合が低いために、当該硝酸イオンによるアノードから発光層への正孔の輸送の阻害を低減したためと考えられる。 As described above, the external quantum efficiency of the light-emitting devices according to Examples 1 to 4 exceeded the external quantum efficiency of the light-emitting device according to Example 5. This is believed to be because the proportion of nitrate ions contained in the nanoparticles in the hole injection layer of each of the light-emitting devices according to Examples 1 to 4 was low, reducing the inhibition of hole transport from the anode to the light-emitting layer by the nitrate ions.
 一方、実施例1から4のそれぞれに係る発光素子の外部量子効率は、実施例6に係る発光素子の外部量子効率を上回った。これは実施例1から4のそれぞれに係るナノ粒子が含む硝酸イオンが当該ナノ粒子の水溶液中における分散性を高め、正孔注入層においてもナノ粒子の凝集を低減し、正孔注入層の正孔輸送性を改善したためであると考えられる。 On the other hand, the external quantum efficiency of the light-emitting devices according to Examples 1 to 4 exceeded the external quantum efficiency of the light-emitting device according to Example 6. This is believed to be because the nitrate ions contained in the nanoparticles according to Examples 1 to 4 increased the dispersibility of the nanoparticles in an aqueous solution, reduced the aggregation of nanoparticles in the hole injection layer, and improved the hole transport properties of the hole injection layer.
 以上の結果から、ナノ粒子4をサンプルとし上記手法にてTG-DTAを用いた分析を行った場合、ナノ粒子4の重量は、雰囲気温度が309℃から411℃である間に、常温における重量を基準として8.0%以上18.0%以下減少してもよい。この場合、当該ナノ粒子4を正孔注入層32に含む発光素子3の外部量子効率を改善できる。 From the above results, when the nanoparticles 4 are used as a sample and analyzed using TG-DTA by the above method, the weight of the nanoparticles 4 may decrease by 8.0% to 18.0% based on the weight at room temperature while the ambient temperature is between 309°C and 411°C. In this case, the external quantum efficiency of the light-emitting element 3 containing the nanoparticles 4 in the hole injection layer 32 can be improved.
 <補遺>
 本実施形態に係る発光素子3は、酸化ニッケルを含むナノ粒子4を正孔注入層32の材料として含む。このため、発光素子3は、ナノ粒子4が含む硝酸イオンによって正孔注入層32におけるナノ粒子4の凝集を低減しつつ、ナノ粒子4が含む酸化ニッケルによって発光層34への正孔注入の効率を向上させる。
<Addendum>
The light-emitting element 3 according to this embodiment contains nanoparticles 4 containing nickel oxide as a material of the hole injection layer 32. Therefore, in the light-emitting element 3, the nitrate ions contained in the nanoparticles 4 reduce the aggregation of the nanoparticles 4 in the hole injection layer 32, while the nickel oxide contained in the nanoparticles 4 improves the efficiency of hole injection into the light-emitting layer 34.
 しかしながら、本実施形態に係る発光素子3はナノ粒子4を正孔注入層32の材料として含む構成に限られない。例えば、ナノ粒子4は、正孔輸送層33、発光層34、および電子輸送層35を含む、発光素子3の少なくとも一つの機能層に用いられていればよい。この場合においても、ナノ粒子4は機能層中において凝集しにくいため、当該機能層の特性を改善し得る。 However, the light-emitting element 3 according to this embodiment is not limited to a configuration in which the nanoparticles 4 are included as a material of the hole injection layer 32. For example, the nanoparticles 4 may be used in at least one functional layer of the light-emitting element 3, including the hole transport layer 33, the light-emitting layer 34, and the electron transport layer 35. Even in this case, the nanoparticles 4 are unlikely to aggregate in the functional layer, and therefore the characteristics of the functional layer can be improved.
 本実施形態において、発光層34は発光材料として量子ドット5を含む。一般に、発光層の発光材料に量子ドットを用いた発光素子は、発光層における正孔濃度が低く、発光層において電子過多が生じる傾向にある。発光層における電子過多は、発光素子の発光効率を低下させるのみならず、発光層におけるオージェ電子の生成過程の発生を増大させ、発光素子の信頼性を低下させる場合がある。 In this embodiment, the light-emitting layer 34 contains quantum dots 5 as the light-emitting material. In general, light-emitting elements that use quantum dots as the light-emitting material of the light-emitting layer have a low hole concentration in the light-emitting layer, and tend to have an excess of electrons in the light-emitting layer. An excess of electrons in the light-emitting layer not only reduces the light-emitting efficiency of the light-emitting element, but also increases the occurrence of the Auger electron generation process in the light-emitting layer, which may reduce the reliability of the light-emitting element.
 したがって、発光層34の発光材料に量子ドット5を用いた本実施形態に係る発光素子3がナノ粒子4を含む正孔注入層32を備えることにより、発光素子3は発光層34における電子過多をより効率的に低減する。このため、本実施形態に係るナノ粒子4は、発光素子3の発光効率および信頼性をより効率的に向上させる。ただし、本実施形態に係るナノ粒子4は、発光層の発光材料に量子ドット5と異なる材料、例えば有機蛍光材料または有機りん光材料等を含む発光素子の機能層の材料に用いられてもよい。 Therefore, the light-emitting element 3 according to this embodiment, which uses quantum dots 5 as the light-emitting material of the light-emitting layer 34, is provided with a hole injection layer 32 containing nanoparticles 4, and thus the light-emitting element 3 more efficiently reduces the excess of electrons in the light-emitting layer 34. As a result, the nanoparticles 4 according to this embodiment more efficiently improve the light-emitting efficiency and reliability of the light-emitting element 3. However, the nanoparticles 4 according to this embodiment may also be used as a material for the functional layer of a light-emitting element that contains a material other than the quantum dots 5 as the light-emitting material of the light-emitting layer, such as an organic fluorescent material or an organic phosphorescent material.
 本開示は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態にそれぞれ開示された異なる技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 This disclosure is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims. The technical scope of this disclosure also includes embodiments obtained by appropriately combining different technical means disclosed in the respective embodiments. Furthermore, new technical features can be formed by combining the technical means disclosed in the respective embodiments.
 1  表示装置
 2  基板
 3R 赤色発光素子
 3G 緑色発光素子
 3B 青色発光素子
 4  ナノ粒子
 5  量子ドット
 31 アノード
 32 正孔注入層(機能層)
 34 発光層(機能層)
 36 カソード

 
REFERENCE SIGNS LIST 1 Display device 2 Substrate 3R Red light emitting element 3G Green light emitting element 3B Blue light emitting element 4 Nanoparticles 5 Quantum dots 31 Anode 32 Hole injection layer (functional layer)
34 Light-emitting layer (functional layer)
36 Cathode

Claims (9)

  1.  発光素子の機能層に用いられるナノ粒子であって、酸化ニッケルを含み、かつ、赤外分光により得られた赤外吸収スペクトルが硝酸イオンに対応する波数に吸収ピークを有するナノ粒子。 Nanoparticles used in the functional layer of a light-emitting element, which contain nickel oxide and have an infrared absorption spectrum obtained by infrared spectroscopy that has an absorption peak at a wave number corresponding to nitrate ions.
  2.  雰囲気温度を常温から毎分10℃にて昇温することにより加熱した場合に、前記雰囲気温度が309℃から411℃である間に、常温における重量を基準として8.0%以上18.0%以下重量が減少する請求項1に記載のナノ粒子。 The nanoparticles according to claim 1, which lose weight by 8.0% to 18.0% based on the weight at room temperature while the ambient temperature is between 309°C and 411°C when heated by increasing the ambient temperature from room temperature at a rate of 10°C per minute.
  3.  30mgの前記ナノ粒子を純水1mlに添加し合成した水溶液に対し30分間の45kHzの超音波照射を実施した後、前記水溶液を孔径0.45μmのろ過フィルターにてろ過した場合に、80%以上が前記ろ過フィルターを通過する請求項1または2に記載のナノ粒子。 The nanoparticles according to claim 1 or 2, in which 30 mg of the nanoparticles are added to 1 ml of pure water, an aqueous solution is synthesized, and then irradiated with 45 kHz ultrasonic waves for 30 minutes. When the aqueous solution is then filtered through a filter with a pore size of 0.45 μm, 80% or more of the nanoparticles pass through the filter.
  4.  前記ろ過フィルターを通過させた後、純水に添加した水溶液に対する粒度分布測定によって測定されたメジアン径が30nm以下である請求項3に記載のナノ粒子。 The nanoparticles according to claim 3, which have a median diameter of 30 nm or less as measured by particle size distribution measurement of an aqueous solution added to pure water after passing through the filtration filter.
  5.  アノードと、カソードと、前記アノードと前記カソードとの間に位置し、少なくとも発光層を含む機能層と、を備え、
     前記機能層のうち少なくとも一つが、酸化ニッケルを含み、かつ、赤外分光により得られた赤外吸収スペクトルが硝酸イオンに対応する波数に吸収ピークを有するナノ粒子を含む発光素子。
    An anode, a cathode, and a functional layer located between the anode and the cathode, the functional layer including at least a light-emitting layer;
    A light-emitting device, wherein at least one of the functional layers contains nickel oxide and nanoparticles whose infrared absorption spectrum obtained by infrared spectroscopy has an absorption peak at a wave number corresponding to nitrate ions.
  6.  雰囲気温度を常温から毎分10℃にて昇温することにより前記ナノ粒子を加熱した場合に、前記雰囲気温度が309℃から411℃である間に、常温における重量を基準として8.0%以上18.0%以下前記ナノ粒子の重量が減少する請求項5に記載の発光素子。 The light-emitting device according to claim 5, wherein when the nanoparticles are heated by increasing the ambient temperature from room temperature at 10°C per minute, the weight of the nanoparticles decreases by 8.0% to 18.0% based on the weight at room temperature while the ambient temperature is between 309°C and 411°C.
  7.  前記ナノ粒子を含む前記機能層が、前記アノードと前記発光層との間に位置する正孔注入層を含む請求項5または6に記載の発光素子。 The light-emitting element according to claim 5 or 6, wherein the functional layer containing the nanoparticles includes a hole injection layer located between the anode and the light-emitting layer.
  8.  前記発光層が複数の量子ドットを発光材料として含む請求項5から7の何れか1項に記載の発光素子。 The light-emitting element according to any one of claims 5 to 7, wherein the light-emitting layer contains a plurality of quantum dots as a light-emitting material.
  9.  基板を備え、
     前記基板上に、赤色発光素子、緑色発光素子、および青色発光素子を備え、
     前記赤色発光素子、前記緑色発光素子、および前記青色発光素子のうち少なくとも1つが、請求項5から8の何れか1項に記載の発光素子である表示装置。
    A substrate is provided.
    a red light emitting element, a green light emitting element, and a blue light emitting element are provided on the substrate;
    A display device, wherein at least one of the red light emitting element, the green light emitting element, and the blue light emitting element is the light emitting element according to claim 5 .
PCT/JP2023/006972 2023-02-27 2023-02-27 Nanoparticles, light emitting element, and display device WO2024180583A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/006972 WO2024180583A1 (en) 2023-02-27 2023-02-27 Nanoparticles, light emitting element, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/006972 WO2024180583A1 (en) 2023-02-27 2023-02-27 Nanoparticles, light emitting element, and display device

Publications (1)

Publication Number Publication Date
WO2024180583A1 true WO2024180583A1 (en) 2024-09-06

Family

ID=92589281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006972 WO2024180583A1 (en) 2023-02-27 2023-02-27 Nanoparticles, light emitting element, and display device

Country Status (1)

Country Link
WO (1) WO2024180583A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895829A (en) * 2016-04-26 2016-08-24 Tcl集团股份有限公司 Cu:NiO nanoparticle, light emitting diode and preparation methods thereof
JP2019075565A (en) * 2017-10-16 2019-05-16 エルジー ディスプレイ カンパニー リミテッド Light-emitting diode and light-emitting device comprising the same
JP2019522367A (en) * 2016-07-01 2019-08-08 浙江大学 Nickel oxide thin film and method for producing the same, functional material, method for producing thin film structure, and electroluminescent element
US20200321545A1 (en) * 2017-12-29 2020-10-08 Tcl Technology Group Corporation Composite thin film and formation method and application thereof
CN112397661A (en) * 2019-08-19 2021-02-23 Tcl集团股份有限公司 Nano material, preparation method thereof and quantum dot light-emitting diode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895829A (en) * 2016-04-26 2016-08-24 Tcl集团股份有限公司 Cu:NiO nanoparticle, light emitting diode and preparation methods thereof
JP2019522367A (en) * 2016-07-01 2019-08-08 浙江大学 Nickel oxide thin film and method for producing the same, functional material, method for producing thin film structure, and electroluminescent element
JP2019075565A (en) * 2017-10-16 2019-05-16 エルジー ディスプレイ カンパニー リミテッド Light-emitting diode and light-emitting device comprising the same
US20200321545A1 (en) * 2017-12-29 2020-10-08 Tcl Technology Group Corporation Composite thin film and formation method and application thereof
CN112397661A (en) * 2019-08-19 2021-02-23 Tcl集团股份有限公司 Nano material, preparation method thereof and quantum dot light-emitting diode

Similar Documents

Publication Publication Date Title
KR102181060B1 (en) Metal oxide nanoparticles with metal ion surface-treatment, quantum dot-light-emitting devices comprising the same and method for fabricating the same
US9447927B2 (en) Light-emitting device containing flattened anisotropic colloidal semiconductor nanocrystals and processes for manufacturing such devices
US7919342B2 (en) Patterned inorganic LED device
Pan et al. Flexible quantum dot light emitting diodes based on ZnO nanoparticles
JP2010526420A (en) Electroluminescent devices with improved power distribution
JPWO2008029775A1 (en) Color conversion board
US9958137B2 (en) Light-emitting device containing anisotropic flat colloidal semiconductor nanocrystals and methods of manufacture thereof
CN109524442A (en) Organic light-emitting diode display substrate and preparation method thereof, display device
WO2022134310A1 (en) Quantum dot display device and preparation method therefor
WO2009104406A1 (en) Light emitting element and display device using the same
WO2024180583A1 (en) Nanoparticles, light emitting element, and display device
US20240099094A1 (en) Display panel and electronic apparatus including the same
Zhao et al. Single-component electroluminescent white light-emitting diodes based on zinc oxide quantum dots with high color rendition and tunable correlated color temperature
CN116782714A (en) Semiconductor nanoparticle, method of preparing the same, color conversion panel, and electronic device
KR101549357B1 (en) Highly efficient electroluminescent devices utilizing anisotropic metal nanoparticles
Lee et al. 46.1: Invited Paper: Recent Progress of Light‐Emitting Diodes Based on Colloidal Quantum Dots
WO2024214278A1 (en) Light-emitting element, light-emitting device, display device, and method for manufacturing light-emitting element
JP5118504B2 (en) Light emitting element
JP2003187981A (en) Special inorganic film light-emitting device
WO2024069668A1 (en) Display device and method for producing display device
KR102713258B1 (en) Cadmium free quantum dots, and composite and display device including the same
WO2023233481A1 (en) Light-emitting element and manufacturing method therefor, display device, and nickel oxide nano-particle dispersion
US20220285446A1 (en) Display panel and electronic device including the same
CN112802877B (en) Composite quantum dot, quantum dot color film, preparation method of quantum dot color film and quantum dot display device
WO2024062628A1 (en) Light emitting element, display device, and method for producing light emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23925141

Country of ref document: EP

Kind code of ref document: A1