WO2024179464A1 - 供电控制方法、装置、计算机设备和存储介质 - Google Patents
供电控制方法、装置、计算机设备和存储介质 Download PDFInfo
- Publication number
- WO2024179464A1 WO2024179464A1 PCT/CN2024/078800 CN2024078800W WO2024179464A1 WO 2024179464 A1 WO2024179464 A1 WO 2024179464A1 CN 2024078800 W CN2024078800 W CN 2024078800W WO 2024179464 A1 WO2024179464 A1 WO 2024179464A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- energy storage
- storm
- duration
- supply control
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 238000004146 energy storage Methods 0.000 claims abstract description 477
- 238000010248 power generation Methods 0.000 claims description 70
- 238000004590 computer program Methods 0.000 claims description 26
- 230000005611 electricity Effects 0.000 claims description 26
- 238000010586 diagram Methods 0.000 description 13
- 230000009286 beneficial effect Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
Definitions
- the present application relates to the field of new energy technology, and in particular to a power supply control method, device, computer equipment and storage medium.
- the existing power supply control method based on energy storage devices usually uses all the electric energy generated by the energy storage device to power the electrical equipment.
- this power supply control method cannot guarantee the power supply demand in an emergency when the power supply of the power grid is difficult, and there is a problem of low power supply control efficiency.
- the present application provides a power supply control method.
- the method comprises:
- the energy storage unit to be tested includes at least one energy storage device
- the power consumption equipment is powered by the energy storage device in the energy storage unit to be tested or the mains.
- the weather forecast information includes any one of storm warning information or rainy day forecast information; and determining the power supply control mode according to the weather forecast information and the power outage forecast information includes:
- the rainy weather forecast information indicates that the duration of the rainy weather does not exceed the preset duration
- the power outage forecast information indicates that the power outage duration does not exceed the preset power outage duration
- the power supply control mode is determined to be the rainy day mode
- the power supply control mode is determined to be the power outage mode
- the power supply control mode is determined to be the normal mode.
- the power supply control mode is a storm mode;
- the energy storage device includes at least one of a solar panel or an energy storage battery; according to the power supply control mode and the power consumption priority, the power consumption device is powered by the energy storage device in the energy storage unit to be tested or the mains, including:
- the energy storage battery is controlled to stop supplying power, and the electrical equipment is powered by the solar panel in the energy storage unit to be tested or the mains; the battery power of the energy storage battery is detected, and when the battery power is less than the full power, the energy storage battery is charged by the solar panel in the energy storage unit to be tested or the mains until the battery power is fully charged;
- the energy storage battery in the energy storage unit to be tested is used to supply power to the electrical equipment until the storm warning information indicates that the storm level does not exceed the warning storm level.
- the power consumption equipment is powered by the energy storage battery in the energy storage unit to be tested until the storm warning information indicates that the storm level does not exceed the warning storm level, including:
- the power is cut off step by step according to the power priority of the power-consuming equipment, and the battery life after the power outage is determined until the battery life after the power outage is not less than the duration of the storm.
- the power is supplied to the power-consuming equipment that is not cut off through the energy storage battery in the energy storage unit to be tested until the storm warning information indicates that the storm level does not exceed the warning storm level;
- the electrical equipment is powered by the energy storage battery in the energy storage unit to be tested until the storm warning information indicates that the storm level does not exceed the warning storm level.
- the power supply control mode is a rainy day mode
- the energy storage device includes at least one of a solar panel or an energy storage battery; according to the power supply control mode and the power consumption priority, the power consumption device is powered by the energy storage device in the energy storage unit to be tested or the mains, including:
- the energy storage battery in the energy storage unit to be tested supplies power to the electrical equipment until the rainy day forecast information indicates that the rainy day is over and the duration for which the solar panel continuously outputs power exceeds the preset output duration;
- the energy storage battery When the current moment is in the low electricity consumption period, the energy storage battery is charged by the mains, and the electrical equipment is powered by the mains until the rainy day forecast information indicates that the rainy day is over and the solar panel continues to output electricity for a period of time that exceeds the preset output time.
- the power supply control mode is a power outage mode;
- the energy storage device includes at least one of a solar panel or an energy storage battery; according to the power supply control mode and the power consumption priority, the power consumption device is powered by the energy storage device in the energy storage unit to be tested or the mains, including:
- the power generation of the solar panel is determined according to the duration of the power outage and the daily power generation of the solar panel; the real-time battery power of the energy storage battery is obtained, and the full power of the energy storage device is subtracted from the real-time battery power to obtain the full power demand of the energy storage device; during the duration of the power outage, if the power generation of the solar panel is less than the full power demand, the energy storage battery is charged through the mains until the power generation of the solar panel is not less than the full power demand;
- the solar panels or energy storage batteries in the energy storage unit to be tested are used to supply power to the electrical equipment until the power outage forecast information indicates that the power outage is over.
- the power supply control mode is a normal mode; the energy storage device includes at least one of a solar panel or an energy storage battery; according to the power supply control mode and the power consumption priority, the power consumption device is powered by the energy storage device in the energy storage unit to be tested or the mains, including:
- the electrical equipment When the power generation of the solar panel is greater than or equal to the power consumption of the electrical equipment, the electrical equipment is powered by the solar panel in the energy storage unit to be tested;
- the electrical equipment is powered by the solar panel or the energy storage battery in the energy storage unit to be tested;
- the electrical equipment When the power generation of the solar panel is less than the power consumption of the electrical equipment and the preset time period is in the low power consumption period, the electrical equipment is powered by the solar panel in the energy storage unit to be tested and the city power.
- the present application also provides a power supply control device.
- the device comprises:
- the acquisition module is configured to obtain weather forecast information of the area where the energy storage unit to be tested is located in the energy storage system, The power outage forecast information and the power consumption priority of the power-consuming equipment; the energy storage unit to be tested includes at least one energy storage device;
- a determination module configured to determine a power supply control mode according to weather forecast information and power outage forecast information
- the power supply module is configured to supply power to the power-consuming device through the energy storage device in the energy storage unit to be tested or the mains according to the power supply control mode and the power consumption priority.
- the present application further provides a computer device.
- the computer device includes a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
- the energy storage unit to be tested includes at least one energy storage device
- the power consumption equipment is powered by the energy storage device in the energy storage unit to be tested or the mains.
- the present application further provides a computer-readable storage medium.
- the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the following steps are implemented:
- the energy storage unit to be tested includes at least one energy storage device
- the power consumption equipment is powered by the energy storage device in the energy storage unit to be tested or the mains.
- the present application further provides a computer program product.
- the computer program product includes a computer program, and when the computer program is executed by a processor, the following steps are implemented:
- the energy storage unit to be tested includes at least one energy storage device
- the power consumption equipment is powered by the energy storage device in the energy storage unit to be tested or the mains.
- the above-mentioned power supply control method, device, computer equipment, storage medium and computer program product obtain the weather forecast information of the area where the energy storage unit to be tested in the energy storage system is located, the power outage forecast information of the area where the energy storage unit is located, and the power usage priority of the electrical equipment.
- the energy storage unit to be tested includes at least one energy storage device.
- the power supply control mode is determined, and different power supply control modes can be adjusted according to different weather and power outage conditions, thereby improving the efficiency of power supply control; at the same time, different electrical equipment has corresponding power usage priorities.
- the electrical equipment is powered by the energy storage device in the energy storage unit to be tested or the mains, thereby further improving the power supply control efficiency of each energy storage unit to be tested in the energy storage system.
- FIG1 is an application environment diagram of a power supply control method according to an embodiment
- FIG2 is a schematic flow chart of a power supply control method in one embodiment
- FIG3 is a schematic diagram of a sub-process of S204 in one embodiment
- FIG4 is a schematic diagram of a sub-process of S206 in one embodiment
- FIG5 is a schematic diagram of a sub-process of S406 in one embodiment
- FIG6 is a second schematic diagram of a sub-process of S206 in one embodiment
- FIG7 is a schematic diagram of a third sub-process of S206 in one embodiment.
- FIG8 is a schematic diagram of a fourth sub-process of S206 in one embodiment
- FIG9 is a schematic diagram of the overall flow of a power supply control method in one embodiment
- FIG10 is a structural block diagram of a power supply control device in one embodiment
- FIG. 11 is a diagram showing the internal structure of a computer device in one embodiment.
- the power supply control method provided in the embodiment of the present application can be applied in the application environment as shown in FIG1.
- the power supply control method is applied to an energy storage system, the energy storage system includes a computer device 102, an electric device 104 and at least one energy storage unit 106 to be tested, each energy storage unit 106 to be tested includes at least one energy storage device 108, and data is exchanged between the computer device 102, the electric device 104 and at least one energy storage device 108.
- the power supply control method provided in the embodiment of the present application is executed by the computer device 102: obtaining weather forecast information of the area where the energy storage unit 106 to be tested in the energy storage system is located, power outage forecast information of the area where the energy storage unit 106 is located, and the power priority of the electric device 104; the energy storage unit 106 to be tested includes at least one energy storage device 108; according to the weather forecast information and the power outage forecast information, determining the power supply control mode; according to the power supply control mode and the power priority, the electric device 104 is powered by the energy storage device 108 in the energy storage unit 106 to be tested or the mains.
- the computer device 102 may be a terminal or a server, wherein the terminal may be, but is not limited to, various personal computers, laptops, smart phones, tablet computers, IoT devices, and portable wearable devices, and the IoT devices may be smart speakers, smart TVs, smart air conditioners, smart car-mounted devices, etc.
- the portable wearable devices may be smart watches, smart bracelets, head-mounted devices, etc.
- the server may be implemented as an independent server or a server cluster consisting of multiple servers.
- a power supply control method is provided, and the method is applied to the computer device 102 in FIG. 1 as an example for description, including the following steps:
- the energy storage unit to be tested includes at least one energy storage equipment.
- energy storage equipment is a device that collects and stores excess energy that is temporarily unused for a period of time in a certain way in order to rationally utilize energy and improve energy utilization, and then extracts and uses it during peak usage, or transports it to places where energy is scarce for use.
- An energy storage system is a system that includes energy storage equipment.
- the energy storage system includes at least one energy storage unit to be tested, and each energy storage unit to be tested includes at least one energy storage device and at least one electrical device.
- the types of energy storage equipment include at least one of photovoltaic power generation type or energy storage battery type.
- Weather forecast information is used to indicate weather status information of the corresponding area within a preset time period in the future, for example, including the duration of rainy days and the duration of sunny days, etc.
- Power outage forecast information is used to indicate power outage information of the corresponding area within a preset time period in the future, for example, including the duration of the power outage, the start time of the power outage, and the end time of the power outage, etc.
- the computer device obtains weather forecast information of the area where the energy storage unit to be tested is located, power outage forecast information of the area where the energy storage unit to be tested is located, and power usage priority of the electrical equipment in the energy storage unit to be tested from the energy storage system.
- the computer device can also obtain weather forecast information from the meteorological department of the area where the corresponding energy storage unit to be tested is located, and obtain power outage information from the power supply department of the area.
- the power usage priority of the electrical equipment can be a pre-specified power usage order priority. For example, the lighting equipment in the electrical equipment has the highest power usage priority, the refrigeration equipment has the second power usage priority, etc.
- S204 Determine a power supply control mode according to weather forecast information and power outage forecast information.
- the power supply control mode is a method mode in which each energy storage device in the energy storage unit to be tested controls the power supply to the electrical equipment, including a storm mode, a rainy day mode, a power outage mode, and a normal mode.
- the computer device determines the power supply control mode of the energy storage unit to be tested according to the weather forecast information and the corresponding power outage forecast information corresponding to the energy storage unit to be tested.
- the weather forecast information and the power outage forecast information change, and the computer device will update the power supply control mode according to the changed weather forecast information and the changed power outage forecast information, and obtain an updated power supply control mode to adapt to different weather and power outage changes and improve the power supply control efficiency.
- the mains refers to the power supply from the power grid.
- the electric energy in the energy storage device can be charged by the mains, so that when the mains supply is insufficient, the electric energy in the energy storage device can be used to power the power-consuming device.
- the mains is used to power the power-consuming device.
- the computer device supplies power to the power-consuming device through the energy storage device in the energy storage unit to be tested or the mains according to the power supply control mode and power priority, and reasonably plans the power supply of the power-consuming device to ensure that the power supply is sufficient in various
- the power supply to electrical equipment can be maintained regardless of weather conditions or power outages, thus improving the efficiency of power supply control.
- the energy storage unit to be tested includes at least one energy storage device, and the power supply control mode is determined according to the weather forecast information and the power outage forecast information, and different power supply control modes can be adjusted according to different weather and power outage conditions, thereby improving the efficiency of power supply control; at the same time, different power consumption equipment has corresponding power usage priority, and according to the power supply control mode and the power usage priority, the power consumption equipment is powered by the energy storage device in the energy storage unit to be tested or the mains, thereby further improving the power supply control efficiency of each energy storage unit to be tested in the energy storage system.
- the weather forecast information includes any one of storm warning information or rainy day forecast information; determining the power supply control mode according to the weather forecast information and the power outage forecast information includes:
- the rainy day forecast information indicates that the duration of rainy weather does not exceed the preset duration
- the power outage forecast information indicates that the power outage duration does not exceed the preset power outage duration
- the weather forecast information obtained by the computer device includes any one of storm warning information or rainy day forecast information.
- the storm level is used to characterize the intensity of the storm. The higher the storm level, the stronger the storm intensity.
- the storm warning information indicates that the storm level exceeds the warning storm level
- the rainy day forecast information indicates that the duration of the rainy weather does not exceed the preset duration
- the power outage forecast information indicates that the power outage duration does not exceed the preset power outage duration, indicating that a higher level of storm will occur in the area where the energy storage unit to be tested is located within a preset time period in the future, and the rainy weather and power outage will not last long.
- the computer device will determine that the power supply control mode of the energy storage unit to be tested is a storm mode.
- storms are often accompanied by rainy weather or power outages.
- the computer device can determine that the power supply control mode is a storm mode.
- the rainy day forecast information indicates that the duration of rainy weather exceeds the preset duration
- the storm warning information indicates that the storm level does not exceed the warning storm level
- the power outage forecast information indicates that the power outage duration does not exceed the preset power outage duration
- the rainy day forecast information indicates that the duration of rainy weather exceeds the preset duration
- the storm warning information indicates that the storm level does not exceed the warning storm level
- the power outage forecast information indicates that the power outage duration does not exceed the preset power outage duration
- the power outage forecast information indicates that the power outage duration exceeds the preset power outage duration
- the storm warning information indicates that the storm level does not exceed the warning storm level
- the rainy day forecast information indicates that the duration of the rainy weather does not exceed the preset duration
- the computer device can determine that the power supply control mode is the power outage mode.
- the rainy day forecast information indicates that the duration of rainy weather does not exceed the preset duration
- the power outage forecast information indicates that the power outage duration does not exceed the preset power outage duration
- the storm warning information indicates that the storm level does not exceed the warning storm level
- the rainy day forecast information indicates that the duration of rainy weather does not exceed the preset duration
- the power outage forecast information indicates that the power outage duration does not exceed the preset power outage duration
- the power supply control mode is a storm mode;
- the energy storage device includes at least one of a solar panel or an energy storage battery; according to the power supply control mode and the power consumption priority, the power consumption device is powered by the energy storage device in the energy storage unit to be tested or the mains, including:
- the storm warning information includes the storm start time and storm duration.
- the storm start time is used to indicate the time when the storm level exceeds the warning storm level.
- the storm duration is used to indicate the duration of the storm level exceeding the warning storm level.
- the computer device obtains the storm start time and storm duration from the storm warning information.
- the current time refers to the time when the storm warning information is received.
- the current time is earlier than the storm start time, indicating that the storm exceeding the warning storm level has not yet started.
- the computer device controls the energy storage battery to stop supplying power, and the solar panels in the energy storage unit to be tested or the city power supply are used to power the electrical equipment. That is, from the time when the storm warning information is received to the time when the storm starts, the energy storage battery stops supplying power to the electrical equipment, and the solar panels in the energy storage unit to be tested or the city power supply are used to power the electrical equipment.
- Full charge refers to the amount of power when the energy storage battery is fully charged.
- the computer equipment detects the battery power of the energy storage battery. When the battery power is less than the full charge, the energy storage battery is charged through the solar panels or the mains in the energy storage unit to be tested until the battery power of the energy storage battery is fully charged, which can ensure that the energy storage battery is fully charged before the storm begins.
- the power consumption equipment when the current time is equal to the start time of the storm, the power consumption equipment is powered by the energy storage battery in the energy storage unit to be tested according to the battery power of the energy storage battery, the power consumption priority of the power consumption equipment and the duration of the storm, until the storm warning information indicates that the storm level does not exceed the warning storm level.
- the current time is equal to the storm start time, indicating that the storm exceeding the warning storm level has begun.
- the computer device supplies power to the power-consuming device through the energy storage battery in the energy storage unit to be tested according to the battery power of the energy storage battery, the power consumption priority of the power-consuming device, and the duration of the storm, until the storm warning information indicates that the storm level does not exceed the warning storm level. Since the energy storage battery has been fully charged before the storm exceeding the warning storm level begins, the energy storage battery can be used to maintain the power supply to the power-consuming device during the duration of the storm.
- the power supply of the energy storage battery is stopped before the storm begins, and the energy storage battery is fully charged to ensure that after the storm begins, when the solar panels and the city power cannot be used to power the electrical equipment, the electric energy stored in the energy storage battery can maintain the power supply to the electrical equipment.
- the energy storage system can still power the electrical equipment in a storm scenario, thereby improving the power supply control efficiency.
- the power consumption equipment is powered by the energy storage battery in the energy storage unit to be tested until the storm warning information indicates that the storm level does not exceed the warning storm level, including:
- S502 Determine the battery life of the energy storage battery according to the battery power of the energy storage battery.
- the battery life refers to the time that the energy storage battery can supply power.
- the computer device calculates the battery life of the energy storage battery based on the battery power of the energy storage battery.
- the power is cut off step by step according to the power priority of the electrical equipment, and the battery life after the power outage is determined until the battery life after the power outage is not less than the duration of the storm.
- the energy storage battery in the energy storage unit to be tested is used to supply power to the electrical equipment that is not cut off until the storm warning information indicates that the storm level does not exceed the warning storm level.
- the battery life is less than the duration of the storm, indicating that the battery life of the energy storage battery cannot meet the duration of the storm.
- the computer equipment is powered off step by step according to the power priority of the power-consuming equipment, and the battery life after the power outage is determined.
- the power is first cut off from the power-consuming equipment with the lowest priority, and the battery life of the energy storage battery is determined after the power-consuming equipment with the lowest priority is disconnected, and it is judged whether the battery life after the power outage is less than the duration of the storm.
- the power-consuming equipment of the previous priority is disconnected in sequence according to the order of power priority until the battery life after the power outage is not less than the duration of the storm.
- the battery life of the energy storage battery can meet the power demand of the power-consuming equipment that is not powered off.
- the computer equipment supplies power to the power-consuming equipment that is not powered off through the energy storage battery in the energy storage unit to be tested until the storm warning information indicates that the storm level does not exceed the warning storm level.
- This power supply control method can ensure that the energy storage battery can meet the power demand of the power-consuming equipment with higher priority in the storm scenario, thereby improving the power supply control efficiency.
- the electrical equipment when the endurance time is not less than the duration of the storm, the electrical equipment is powered by the energy storage battery in the energy storage unit to be tested until the storm warning information indicates that the storm level does not exceed the warning storm level.
- the battery life is not less than the duration of the storm, indicating that the battery life of the energy storage battery can meet the power demand of the electrical equipment in the energy storage unit to be tested.
- the computer device supplies power to the electrical equipment through the energy storage battery in the energy storage unit to be tested until the storm warning information indicates that the storm level does not exceed the warning storm level.
- sudden power outages and rainy weather are often prone to occur, resulting in the inability to use city power and solar panels.
- Using energy storage batteries with sufficient battery life to charge electrical equipment is conducive to improving power supply control efficiency.
- different power supply control methods are used by determining whether the battery life of the energy storage battery is within the duration of the storm. When the battery life is less than the duration of the storm, the power is cut off step by step according to the power usage priority to ensure that the energy storage battery supplies power to the higher priority power users. When the battery life is not less than the duration of the storm, the energy storage battery is used to power the power users to avoid power outages that cannot use the mains power and rainy days that cannot use solar panels to supply power, thereby improving the power supply control efficiency.
- the power supply control mode is a rainy day mode
- the energy storage device includes at least one of a solar panel or an energy storage battery
- the power consumption device is powered by the energy storage device in the energy storage unit to be tested or the mains, including:
- the energy storage system stores the power consumption of each energy storage device at each historical moment, and the computer device obtains the power consumption of each energy storage device at each historical moment from the energy storage system.
- S604 Determine a peak power consumption time period and a valley power consumption time period according to power consumption at each historical moment.
- the computer device determines the peak power consumption time period and the valley power consumption time period according to the power consumption at each historical moment.
- the peak power consumption time period refers to the time period when the power consumption exceeds the preset peak power consumption
- the valley power consumption time period refers to the time period when the power consumption does not exceed the preset valley power consumption.
- the peak power consumption time period and the valley power consumption time period may also be the peak power consumption time period and the valley power consumption time period of the region where the energy storage unit to be tested is located.
- the computer device obtains the peak power consumption time period and the valley power consumption time period of the region where the energy storage device to be tested is located from the power supply department.
- the power-consuming equipment when the current moment is in the peak power consumption period, the power-consuming equipment is powered by the energy storage battery in the energy storage unit to be tested until the rainy day forecast information indicates that the rainy day is over and the duration for which the solar panel continuously outputs power exceeds a preset output duration.
- the current time refers to any current time in the rainy day mode.
- the computer device obtains the duration of the continuous output of electric energy by the solar panel.
- the duration of the continuous output of electric energy by the solar panel exceeds the preset output duration, indicating that the rainy day is over and the solar cell can continuously output electric energy.
- the computer device supplies power to the power-consuming device through the energy storage battery in the energy storage unit to be tested until the rainy day forecast information indicates that the rainy day is over and the solar panel continues to output power for longer than the preset output time.
- the computer equipment charges the energy storage battery through the mains, and supplies power to the power-consuming equipment through the mains until the rainy day forecast information indicates that the rainy day is over and the duration of the solar panel's continuous output of electricity exceeds the preset output duration. Since the mains electricity price is lower during the off-peak period of electricity consumption, using the mains electricity to supply power to the power-consuming equipment during the off-peak period of electricity consumption is conducive to reducing electricity costs.
- different power supply control methods are used during peak and off-peak periods of power consumption.
- Energy storage batteries are used for power supply during peak periods of power consumption, and mains power is used during off-peak periods of power consumption. This helps reduce electricity costs and improve power supply control efficiency.
- the power supply control mode is a power outage mode
- the energy storage device includes at least one of a solar panel or an energy storage battery
- the power consumption device is powered by the energy storage device in the energy storage unit to be tested or the mains, including:
- the power outage forecast information includes the power outage start time and the power outage duration.
- the computer device obtains the power outage start time and the power outage duration from the power outage forecast information.
- S704 when the current time is earlier than the start time of the power outage, determine the power generation of the solar panel according to the duration of the power outage and the daily power generation of the solar panel; obtain the real-time battery power of the energy storage battery, subtract the real-time battery power from the full power of the energy storage device, and obtain the full power demand of the energy storage device; when the power generation of the solar panel is less than the full power demand during the duration of the power outage, charge the energy storage battery through the city power until the power generation of the solar panel is not less than the full power demand.
- the current time refers to the time when the power outage forecast information is received.
- the current time is earlier than the power outage start time, indicating that the power outage has not yet started.
- the computer device multiplies the duration of the power outage by the daily power generation of the solar panel to obtain the power generation of the solar panel.
- the computer device obtains the real-time battery power of the energy storage battery, subtracts the real-time battery power from the full power of the energy storage device, and obtains the full power demand of the energy storage device.
- the power generation of the solar panel is less than the full power requirement, indicating that the power generation of the solar panel cannot fully charge the energy storage battery during the duration of the power outage.
- the computer equipment charges the energy storage battery through the mains until the power generation of the solar panel is not less than the full power requirement. That is, before the power outage begins, the energy storage battery needs to be fully charged.
- charging with mains power can ensure that the energy storage battery is fully charged when the power outage begins.
- the computer device supplies power to the power-consuming device through the solar panel or energy storage battery in the energy storage unit to be tested until the power outage forecast information indicates that the power outage is over. That is, after the power outage starts, the city power is cut off, and the solar panel or energy storage battery is used to supply power to the power-consuming device.
- the power supply control mode is the power outage mode
- the rainy day forecast information indicates that the duration of rainy weather exceeds the preset duration
- the power-consuming device is powered by the energy storage battery in the energy storage unit to be tested until the power outage forecast information indicates that the power outage is over.
- the mains power is used to fully charge the energy storage battery, ensuring that the energy storage battery is fully charged at the start of the power outage.
- the solar panels and the fully charged energy storage battery are used to power the electrical equipment, which can ensure that the energy storage equipment has sufficient power reserves in the power outage state, meet the power supply needs of the electrical equipment, and improve the power supply control efficiency.
- the power supply control mode is a normal mode; the energy storage device includes at least one of a solar panel or an energy storage battery; according to the power supply control mode and the power priority, the energy storage unit to be tested is Energy storage equipment or mains electricity supplies power to electrical equipment, including:
- the computer device obtains the power consumption of the electrical equipment, the power generation of the solar panel and the battery power of the energy storage battery within a preset time period.
- the power generation of the solar panel is greater than or equal to the power consumption of the electrical equipment, indicating that the power generation capacity of the solar panel can meet the power demand of the electrical equipment.
- the electrical equipment is powered by the solar panel in the energy storage unit to be tested.
- the power generation of the solar panel is less than the power consumption of the power-consuming device, indicating that the power generation capacity of the solar panel cannot meet the power demand of the power-consuming device.
- the computer device supplies power to the power-consuming device through the energy storage battery in the energy storage unit to be tested.
- the computer device supplies power to the power-consuming device through the mains.
- the solar panel by determining the relationship between the power generation of the solar panel and the power consumption of the electrical equipment, and the preset time period being at the peak or valley time period of power consumption, different power supply methods are adopted.
- the solar panel is used for power supply, which is beneficial to reducing the cost of electricity.
- the solar panel and the energy storage battery in the energy storage unit to be tested are used to power the electrical equipment, which is beneficial to reducing the cost of electricity and improving the efficiency of power supply control.
- the solar panel and the city electricity in the energy storage unit to be tested are used to power the electrical equipment, which is beneficial to reducing the cost of electricity and further improving the efficiency of power supply control.
- the energy storage system includes at least one energy storage unit to be tested, and each energy storage unit to be tested includes at least one energy storage device and at least one electrical device.
- the energy storage device is a household energy storage device.
- the energy storage unit to be tested is an energy storage unit composed of household energy storage devices.
- the energy storage device includes at least one of a solar panel or an energy storage battery.
- FIG9 is a schematic diagram of the overall flow of the power supply control method.
- the computer device obtains weather forecast information of the area where the energy storage unit to be tested in the energy storage system is located, power outage forecast information of the area, and power consumption priority of the power consumption equipment.
- the weather forecast information includes any one of storm warning information or rainy day forecast information.
- the computer equipment determines the power supply control mode according to the weather forecast information and the power outage forecast information. Specifically, when the storm warning information indicates that the storm level exceeds the warning storm level, the rainy day forecast information indicates that the duration of the rainy weather does not exceed the preset duration, and the power outage forecast information indicates that the power outage duration does not exceed the preset power outage duration, the power supply control mode is determined to be the storm mode; when the rainy day forecast information indicates that the duration of the rainy weather exceeds the preset duration, the storm warning information indicates that the storm level does not exceed the warning storm level, and the power outage forecast information indicates that the power outage duration does not exceed the preset power outage duration, the power supply control mode is determined to be the rainy day mode; when the power outage forecast information indicates that the power outage duration exceeds the preset power outage duration, the storm warning information indicates that the storm level does not exceed the warning storm level, and the rainy day forecast information indicates that the duration of the rainy weather does not exceed the preset duration, the power supply control
- the computer equipment supplies power to the power-consuming equipment through the energy storage device in the energy storage unit to be tested or the mains according to the power supply control mode and power consumption priority.
- the details are as follows:
- the computer device obtains the storm start time and storm duration from the storm warning information.
- the energy storage battery is controlled to stop supplying power, and the electrical equipment is powered by the solar panels in the energy storage unit to be tested or the mains; the battery power of the energy storage battery is detected.
- the battery power is less than the full power, the energy storage battery is charged by the solar panels in the energy storage unit to be tested or the mains until the battery power is fully charged.
- the electrical equipment When the current time is equal to the storm start time, the electrical equipment is powered by the energy storage battery in the energy storage unit to be tested according to the battery power of the energy storage battery, the power consumption priority of the electrical equipment and the duration of the storm until the storm warning information indicates that the storm level does not exceed the warning storm level.
- the battery life of the energy storage battery is determined according to the battery charge of the energy storage battery.
- the power is cut off step by step according to the power usage priority of the electrical equipment to determine the battery life after the power outage, until the battery life after the power outage is not less than the duration of the storm.
- the energy storage battery in the energy storage unit to be tested is used to supply power to the electrical equipment that has not been cut off until the storm warning information indicates that the storm level does not exceed the warning storm level.
- the energy storage battery in the energy storage unit to be tested is used to supply power to the electrical equipment until the storm warning information indicates that the storm level does not exceed the warning storm level.
- the computer device obtains the power consumption of each energy storage device at each historical moment, and determines the peak power consumption time period and the valley power consumption time period according to the power consumption at each historical moment.
- the power consumption device is powered by the energy storage battery in the energy storage unit to be tested until the rainy day forecast information indicates that the rainy day is over, and the duration of the continuous output of power by the solar panel exceeds the preset output duration.
- the energy storage battery is charged by the mains, and the power consumption device is powered by the mains until the rainy day forecast information indicates that the rainy day is over, and the duration of the continuous output of power by the solar panel exceeds the preset output duration.
- the computer device obtains the power outage start time and the power outage duration from the power outage forecast information.
- the power generation of the solar panel is determined according to the power outage duration and the daily power generation of the solar panel; the real-time battery power of the energy storage battery is obtained, and the full power demand of the energy storage device is obtained by subtracting the real-time battery power from the full power of the energy storage device; when the power generation of the solar panel is less than the full power demand within the power outage duration, the energy storage battery is charged by the AC power until the power generation of the solar panel is not less than the full power demand; when the current time is equal to the power outage start time, power is supplied to the electrical equipment through the solar panel or the energy storage battery in the energy storage unit to be tested until the power outage forecast information indicates that the power outage is over.
- the computer device obtains the power consumption of the electric device, the power generation of the solar panel and the battery power of the energy storage battery within a preset time period.
- the power generation of the solar panel is greater than or equal to the power consumption of the electric device
- the electric device is powered by the solar panel in the energy storage unit to be tested.
- the preset time period is in the peak power consumption time period
- the electric device is powered by the solar panel and the energy storage battery in the energy storage unit to be tested.
- the power generation of the solar panel is less than the power consumption of the electric device and the preset time period is in the low power consumption time period, the electric device is powered by the solar panel and the mains in the energy storage unit to be tested.
- the above-mentioned power supply control method obtains the weather forecast information of the area where the energy storage unit to be tested in the energy storage system is located, the power outage forecast information of the area where the energy storage unit is located, and the power consumption priority of the power consumption equipment.
- the energy storage unit to be tested includes at least one energy storage device. According to the weather forecast information and the power outage forecast information, the power supply control mode is determined, and different power supply control modes can be adjusted according to different weather and power outage conditions, thereby improving the efficiency of power supply control; at the same time, different power consumption equipment has corresponding power consumption priorities.
- the power consumption equipment is powered by the energy storage device in the energy storage unit to be tested or the mains, further improving the power supply control efficiency of each energy storage unit to be tested in the energy storage system.
- it can perform self-learning according to the historical power consumption of each energy storage unit to be tested, and timely reserve power according to weather changes and power supply changes of the power grid to ensure power consumption in an emergency state, making the energy storage system more intelligent and improving the ability of each energy storage unit to be tested to resist power shortages under different weather and power supply conditions of the power grid.
- steps in the flowcharts involved in the above-mentioned embodiments can include multiple steps or multiple stages, and these steps or stages are not necessarily executed at the same time, but can be executed at different times, and the execution order of these steps or stages is not necessarily carried out in sequence, but can be executed in turn or alternately with other steps or at least a part of the steps or stages in other steps.
- the embodiment of the present application also provides a power supply control device configured to implement the power supply control method involved above.
- the implementation solution provided by the device to solve the problem is similar to the implementation solution recorded in the above method, so the specific limitations in one or more power supply control device embodiments provided below can refer to the limitations of the power supply control method above, and will not be repeated here.
- a power supply control device 100 including: an acquisition module 120, a determination module 140 and a power supply module 160, wherein:
- An acquisition module 120 is configured to acquire weather forecast information of the area where the energy storage unit to be tested in the energy storage system is located, power outage forecast information of the area where the energy storage unit is located, and power consumption priority of the power consumption equipment; the energy storage unit to be tested includes at least one energy storage equipment;
- a determination module 140 is configured to determine a power supply control mode according to weather forecast information and power outage forecast information
- the power supply module 160 is configured to supply power to the power-consuming device through the energy storage device in the energy storage unit to be tested or the mains according to the power supply control mode and the power consumption priority.
- the above-mentioned power supply control device obtains weather forecast information of the area where the energy storage unit to be tested in the energy storage system is located, power outage forecast information of the area where the energy storage unit is located, and power usage priority of the electrical equipment.
- the energy storage unit to be tested includes at least one energy storage device.
- the power supply control mode is determined, and different power supply control modes can be adjusted according to different weather and power outage conditions, thereby improving the efficiency of power supply control; at the same time, different electrical equipment has corresponding power usage priorities.
- the electrical equipment is powered by the energy storage device in the energy storage unit to be tested or the mains, thereby further improving the power supply control efficiency of each energy storage unit to be tested in the energy storage system.
- the weather forecast information includes any one of storm warning information or rainy day forecast information; the power supply control mode is determined according to the weather forecast information and the power outage forecast information, and the determination module 140 is further configured to: when the storm warning information indicates that the storm level exceeds the warning storm level, the rainy day forecast information indicates that the duration of the rainy weather does not exceed the preset duration, and the power outage forecast information indicates that the power outage duration does not exceed the preset power outage duration, determine that the power supply control mode is the storm mode; when the rainy day forecast information indicates that the duration of the rainy weather exceeds the preset duration, the storm warning information indicates that the storm level does not exceed the warning storm level, and the power outage forecast When the information indicates that the power outage duration does not exceed the preset power outage duration, the power supply control mode is determined to be the rainy day mode; when the power outage forecast information indicates that the power outage duration exceeds the preset power outage duration, the storm warning information indicates that the storm level does not exceed the warning storm level, and the
- the power supply control mode is a storm mode;
- the energy storage device includes at least one of a solar panel or an energy storage battery; according to the power supply control mode and the power consumption priority, the power consumption device is powered by the energy storage device in the energy storage unit to be tested or the mains, and the power supply module 160 is further configured to: obtain the storm start time and storm duration from the storm warning information; when the current time is earlier than the storm start time, control the energy storage battery to stop power supply, and power the power consumption device through the solar panel or the mains in the energy storage unit to be tested; detect the battery power of the energy storage battery, and when the battery power is less than the full power, charge the energy storage battery through the solar panel or the mains in the energy storage unit to be tested until the battery power is fully charged; when the current time is equal to the storm start time, according to the battery power of the energy storage battery, the power consumption priority of the power consumption device and the storm duration, power the power consumption device through the energy storage battery in the energy storage unit to be tested until the storm warning information indicates that the storm
- the power supply module 160 is further configured to: determine the battery life of the energy storage battery according to the battery power of the energy storage battery; when the battery life is less than the duration of the storm, cut off the power step by step according to the power priority of the power-consuming equipment, determine the battery life after the power cut, until the battery life after the power cut is not less than the duration of the storm, and power the power-consuming equipment that is not cut off by the energy storage battery in the energy storage unit to be tested until the storm warning information indicates that the storm level does not exceed the warning storm level; when the battery life is not less than the duration of the storm, power the power-consuming equipment by the energy storage battery in the energy storage unit to be tested until the storm warning information indicates that the storm level does not exceed the warning storm level;
- the power supply control mode is a rainy day mode
- the energy storage device includes at least one of a solar panel or an energy storage battery
- the power supply module 160 is further configured to: obtain the power consumption of each energy storage device at each historical moment; determine the peak power consumption time period and the valley power consumption time period according to the power consumption at each historical moment; when the current moment is in the peak power consumption time period, the power consumption device is powered by the energy storage battery in the energy storage unit to be tested until the rainy day forecast information indicates that the rainy day is over and the duration for which the solar panel continuously outputs power exceeds the preset output duration; when the current moment is in the valley power consumption time period, the energy storage battery is charged by the mains, and the power consumption device is powered by the mains until the rainy day forecast information indicates that the rainy day is over and the duration for which the solar panel continuously outputs power exceeds the preset output duration; when the current moment is in the valley power consumption time period, the energy storage battery is charged by the mains, and the power consumption device is powered by the mains
- the power supply control mode is a power outage mode;
- the energy storage device includes at least one of a solar panel or an energy storage battery; according to the power supply control mode and the power consumption priority, the power consumption device is powered by the energy storage device in the energy storage unit to be tested or the mains power, and the power supply module 160 is further configured to: obtain the power outage start time and the power outage duration from the power outage forecast information; when the current time is earlier than the power outage start time, determine the power generation of the solar panel according to the power outage duration and the daily power generation of the solar panel; obtain the real-time battery power of the energy storage battery, subtract the real-time battery power from the full power of the energy storage device, and obtain the full power demand of the energy storage device; when the power generation of the solar panel is less than the full power demand within the power outage duration, charge the energy storage battery through the mains until the power generation of the solar panel is not less than the full power demand; when the current time is equal to the power outage start time, power the power consumption device through
- the power supply control mode is a normal mode; the energy storage device includes at least one of a solar panel or an energy storage battery; according to the power supply control mode and the power consumption priority, the power supply device is powered by the energy storage device in the energy storage unit to be tested or the mains, and the power supply module 160 is further configured to: obtain the power consumption of the power device, the power generation of the solar panel, and the battery power of the energy storage battery within a preset time period; when the power generation of the solar panel is greater than or equal to the power consumption of the power device, the power supply device is powered by the solar panel in the energy storage unit to be tested; when the power generation of the solar panel is less than the power consumption of the power device, and the preset time period is in the peak power consumption time period, the power supply device is powered by the solar panel or the energy storage battery in the energy storage unit to be tested; when the power generation of the solar panel is less than the power consumption of the power device, and the preset time period is in the low power consumption time period, the power supply device is powered
- Each module in the above power supply control device can be implemented in whole or in part by software, hardware or a combination thereof.
- Each module can be embedded in or independent of a processor in a computer device in the form of hardware, or can be stored in a memory in a computer device in the form of software, so that the processor can call and execute the operations corresponding to each module.
- a computer device which may be a terminal, and its internal structure diagram may be shown in FIG11.
- the computer device includes a processor, a memory, an input/output interface, a communication interface, a display unit, and an input device.
- the processor, the memory, and the input/output interface are connected via a system bus, and the communication interface, the display unit, and the input device are connected to the system bus via the input/output interface.
- the processor of the computer device is configured to provide computing and control capabilities.
- the memory of the computer device includes a non-volatile storage medium and an internal memory.
- the non-volatile storage medium stores an operating system and a computer program.
- the internal memory provides an environment for the operation of the operating system and the computer program in the non-volatile storage medium.
- the input/output interface of the computer device is configured to communicate between the processor and the external
- the communication interface of the computer device is configured to communicate with an external terminal in a wired or wireless manner, and the wireless manner can be implemented through WIFI, mobile cellular network, NFC (near field communication) or other technologies.
- WIFI wireless fidelity
- NFC near field communication
- FIG. 11 is merely a block diagram of a partial structure related to the scheme of the present application, and does not constitute a limitation on the computer device to which the scheme of the present application is applied.
- the specific computer device may include more or fewer components than shown in the figure, or combine certain components, or have a different arrangement of components.
- a computer device including a memory and a processor, wherein a computer program is stored in the memory, and the processor implements the steps in the above-mentioned method embodiments when executing the computer program.
- a computer-readable storage medium on which a computer program is stored.
- the computer program is executed by a processor, the steps in the above-mentioned method embodiments are implemented.
- a computer program product including a computer program, which implements the steps in the above method embodiments when executed by a processor.
- the user information including but not limited to user device information, user personal information, etc.
- data including but not limited to data configured for analysis, stored data, displayed data, etc.
- the collection, use and processing of relevant data need to comply with relevant laws, regulations and standards of relevant countries and regions.
- any reference to the memory, database or other medium used in the embodiments provided in the present application can include at least one of non-volatile and volatile memory.
- Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive random access memory (ReRAM), magnetoresistive random access memory (MRAM), ferroelectric random access memory (FRAM), phase change memory (PCM), graphene memory, etc.
- Volatile memory can include random access memory (RAM) or external cache memory, etc.
- RAM can be in various forms, such as static random access memory (SRAM) or dynamic random access memory (DRAM).
- SRAM static random access memory
- DRAM dynamic random access memory
- the database involved in each embodiment provided in this application may include at least one of a relational database and a non-relational database.
- Non-relational databases may include distributed databases based on blockchains, etc., but are not limited to this.
- the processor involved in each embodiment provided in this application may be a general-purpose processor, a central processing unit, a graphics processor, a digital signal processor, a programmable logic unit, a data processing logic unit based on quantum computing, etc., but are not limited to this.
- the computer device determines the power supply control mode according to the weather forecast information and power outage forecast information of the area where the energy storage unit to be tested in the energy storage system is located, and then supplies power to the user device through the energy storage device in the energy storage unit to be tested or the mains according to the power supply control mode and power priority.
- the power supply control mode can be adjusted according to different weather and power outage conditions, which improves the power supply control efficiency.
- Different power-consuming devices have corresponding power priorities.
- the user device is powered, which further improves the power supply control efficiency of the energy storage unit to be tested in the energy storage system.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本申请涉及一种供电控制方法、装置、计算机设备和存储介质。所述方法包括:获取储能系统中待测储能单元所在地区的天气预报信息、所在地区的停电预报信息以及用电设备的用电优先级;待测储能单元中包括至少一种储能设备;根据天气预报信息和停电预报信息,确定供电控制模式;根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电。采用本方法能够提高供电控制效率。
Description
相关申请的交叉引用
本申请要求于2023年3月2日提交中国专利局的申请号为2023101873216、名称为“供电控制方法、装置、计算机设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及新能源技术领域,特别是涉及一种供电控制方法、装置、计算机设备和存储介质。
随着家庭储能以及户外储能设备的普及,通过储能设备进行供电控制的需求愈加迫切。
现有的基于储能设备的供电控制方法,通常采用储能设备产生的电能全部用于用电设备的供电,然而这种供电控制方法在电网供电困难的情况下,无法保证紧急状态下的供电需求,存在供电控制效率低的问题。
发明内容
基于此,有必要针对现有的供电控制方法存在供电控制效率低的问题,提供一种能够提高供电控制效率的供电控制方法、装置、计算机设备、计算机可读存储介质和计算机程序产品。
第一方面,本申请提供了一种供电控制方法。所述方法包括:
获取储能系统中待测储能单元所在地区的天气预报信息、所在地区的停电预报信息以及用电设备的用电优先级;待测储能单元中包括至少一种储能设备;
根据天气预报信息和停电预报信息,确定供电控制模式;
根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电。
在其中一个实施例中,天气预报信息包括风暴预警信息或者阴雨天预报信息中的任一种;根据天气预报信息和停电预报信息,确定供电控制模式,包括:
在风暴预警信息指示风暴级别超过预警风暴等级、阴雨天预报信息指示阴雨天气持续时长不超过预设持续时长,且停电预报信息指示停电时长不超过预设停电时长的情况下,确定供电控制模式为风暴模式;
在阴雨天预报信息指示阴雨天气持续时长超过预设持续时长、风暴预警信息指示风暴级别未超过预警风暴等级,且停电预报信息指示停电时长不超过预设停电时长的情况下,确定供电控制模式为阴雨天模式;
在停电预报信息指示停电时长超过预设停电时长、风暴预警信息指示风暴级别未超过预警风暴等级,且阴雨天预报信息指示阴雨天气持续时长不超过预设持续时长的情况下,确定供电控制模式为停电模式;
在风暴预警信息指示风暴级别未超过预警风暴等级、阴雨天预报信息指示阴雨天气持续时长不超过预设持续时长,且停电预报信息指示停电时长不超过预设停电时长的情况下,确定供电控制模式为常规模式。
在其中一个实施例中,供电控制模式为风暴模式;储能设备包括太阳能电池板或者储能电池中的至少一种;根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电,包括:
从风暴预警信息中获取风暴开始时刻和风暴持续时长;
在当前时刻早于风暴开始时刻的情况下,控制储能电池停止供电,并通过待测储能单元中的太阳能电池板或者市电对用电设备进行供电;检测储能电池的电池电量,当电池电量小于满电电量的情况下,通过待测储能单元中的太阳能电池板或者市电对储能电池进行充电,直至电池电量为满电电量;
在当前时刻等于风暴开始时刻的情况下,根据储能电池的电池电量、用电设备的用电
优先级以及风暴持续时长,通过待测储能单元中的储能电池对用电设备进行供电,直到风暴预警信息指示风暴级别不超过预警风暴等级。
在其中一个实施例中,根据储能电池的电池电量、用电设备的用电优先级以及风暴持续时长,通过待测储能单元中的储能电池对用电设备进行供电,直到风暴预警信息指示风暴级别不超过预警风暴等级,包括:
根据储能电池的电池电量,确定储能电池的续航时长;
在续航时长小于风暴持续时长的情况下,按照用电设备的用电优先级逐级断电,确定断电后的续航时长,直至断电后的续航时长不小于风暴持续时长,通过待测储能单元中的储能电池对未断电的用电设备供电,直到风暴预警信息指示风暴级别不超过预警风暴等级;
在续航时长不小于风暴持续时长的情况下,通过待测储能单元中的储能电池对用电设备进行供电,直到风暴预警信息指示风暴级别不超过预警风暴等级。
在其中一个实施例中,供电控制模式为阴雨天模式;储能设备包括太阳能电池板或者储能电池中的至少一种;根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电,包括:
获取各个储能设备在各个历史时刻的用电量;
根据各个历史时刻的用电量,确定用电峰值时间段和用电低谷时间段;
在当前时刻处于用电峰值时间段的情况下,通过待测储能单元中的储能电池对用电设备进行供电,直到阴雨天预报信息指示阴雨天结束,且太阳能电池板持续输出电能的时长超过预设输出时长;
在当前时刻处于用电低谷时间段的情况下,通过市电对储能电池进行充电,并通过市电对用电设备进行供电,直到阴雨天预报信息指示阴雨天结束,且太阳能电池板持续输出电能的时长超过预设输出时长。
在其中一个实施例中,供电控制模式为停电模式;储能设备包括太阳能电池板或者储能电池中的至少一种;根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电,包括:
从停电预报信息中获取停电开始时刻和停电持续时长;
在当前时刻早于停电开始时刻的情况下,根据停电持续时长和太阳能电池板的日发电量,确定太阳能电池板的发电量;获取储能电池的实时电池电量,将储能设备的满电电量减去实时电池电量,得到储能设备的满电需求量;在停电持续时长内,太阳能电池板的发电量小于满电需求量的情况下,通过市电对储能电池进行充电,直到太阳能电池板的发电量不小于满电需求量;
在当前时刻等于停电开始时刻的情况下,通过待测储能单元中的太阳能电池板或者储能电池向用电设备供电,直到停电预报信息指示停电结束。
在其中一个实施例中,供电控制模式为常规模式;储能设备包括太阳能电池板或者储能电池中的至少一种;根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电,包括:
获取预设时间段内用电设备的用电量、太阳能电池板的发电量以及储能电池的电池电量;
在太阳能电池板的发电量大于或者等于用电设备的用电量的情况下,通过待测储能单元中的太阳能电池板,对用电设备进行供电;
在太阳能电池板的发电量小于用电设备的用电量,且预设时间段处于用电峰值时间段的情况下,通过待测储能单元中的太阳能电池板或者储能电池,对用电设备进行供电;
在太阳能电池板的发电量小于用电设备的用电量,且预设时间段处于用电低谷时间段的情况下,通过待测储能单元中的太阳能电池板和市电,对用电设备进行供电。
第二方面,本申请还提供了一种供电控制装置。所述装置包括:
获取模块,配置成获取储能系统中待测储能单元所在地区的天气预报信息、所在地区
的停电预报信息以及用电设备的用电优先级;待测储能单元中包括至少一种储能设备;
确定模块,配置成根据天气预报信息和停电预报信息,确定供电控制模式;
供电模块,配置成根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电。
第三方面,本申请还提供了一种计算机设备。所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取储能系统中待测储能单元所在地区的天气预报信息、所在地区的停电预报信息以及用电设备的用电优先级;待测储能单元中包括至少一种储能设备;
根据天气预报信息和停电预报信息,确定供电控制模式;
根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电。
第四方面,本申请还提供了一种计算机可读存储介质。所述计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
获取储能系统中待测储能单元所在地区的天气预报信息、所在地区的停电预报信息以及用电设备的用电优先级;待测储能单元中包括至少一种储能设备;
根据天气预报信息和停电预报信息,确定供电控制模式;
根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电。
第五方面,本申请还提供了一种计算机程序产品。所述计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现以下步骤:
获取储能系统中待测储能单元所在地区的天气预报信息、所在地区的停电预报信息以及用电设备的用电优先级;待测储能单元中包括至少一种储能设备;
根据天气预报信息和停电预报信息,确定供电控制模式;
根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电。
上述供电控制方法、装置、计算机设备、存储介质和计算机程序产品,通过获取储能系统中待测储能单元所在地区的天气预报信息、所在地区的停电预报信息以及用电设备的用电优先级,待测储能单元中包括至少一种储能设备,根据天气预报信息和停电预报信息,确定供电控制模式,能够根据不同的天气和停电情况,调整不同的供电控制模式,提高了供电控制的效率;同时,不同的用电设备具有对应的用电优先级,根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电,进一步提高了对储能系统中各个待测储能单元的供电控制效率。
图1为一个实施例中供电控制方法的应用环境图;
图2为一个实施例中供电控制方法的流程示意图;
图3为一个实施例中S204的子流程示意图;
图4为一个实施例中S206的子流程示意图一;
图5为一个实施例中S406的子流程示意图;
图6为一个实施例中S206的子流程示意图二;
图7为一个实施例中S206的子流程示意图三;
图8为一个实施例中S206的子流程示意图四;
图9为一个实施例中供电控制方法的总体流程示意图;
图10为一个实施例中供电控制装置的结构框图;
图11为一个实施例中计算机设备的内部结构图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本
申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例提供的供电控制方法,可以应用于如图1所示的应用环境中。其中,供电控制方法应用于储能系统,储能系统包括计算机设备102、用电设备104和至少一个待测储能单元106,每个待测储能单元106中包括至少一种储能设备108,计算机设备102、用电设备104和至少一种储能设备108之间进行数据交互。本申请实施例提供的供电控制方法由计算机设备102执行:获取储能系统中待测储能单元106所在地区的天气预报信息、所在地区的停电预报信息以及用电设备104的用电优先级;待测储能单元106中包括至少一种储能设备108;根据天气预报信息和停电预报信息,确定供电控制模式;根据供电控制模式和用电优先级,通过待测储能单元106中的储能设备108或者市电,对用电设备104进行供电。其中,计算机设备102可以为终端或者服务器,其中,终端可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑、物联网设备和便携式可穿戴设备,物联网设备可为智能音箱、智能电视、智能空调、智能车载设备等。便携式可穿戴设备可为智能手表、智能手环、头戴设备等。服务器可以用独立的服务器或者是多个服务器组成的服务器集群来实现。
在一个实施例中,如图2所示,提供了一种供电控制方法,以该方法应用于图1中的计算机设备102为例进行说明,包括以下步骤:
S202,获取储能系统中待测储能单元所在地区的天气预报信息、所在地区的停电预报信息以及用电设备的用电优先级;待测储能单元中包括至少一种储能设备。
其中,储能设备是为了合理利用能源并提高能量的利用率,把一段时期内暂时不用的多余能量通过某种方式收集并储存起来,在使用高峰时再提取使用,或者运往能量紧缺的地方再使用的设备。储能系统是包括储能设备的系统。储能系统中包括至少一个待测储能单元,每个待测储能单元中包括至少一种储能设备和至少一个用电设备。储能设备的类型包括光伏发电类型或者储能电池类型中的至少一种。
天气预报信息用于指示对应地区在未来预设时长内的天气状态信息,例如,包括阴雨天持续时长以及晴天时长等。停电预报信息是用于指示对应地区在未来预设时长内的停电信息,例如,包括停电时长、停电开始时刻以及停电结束时刻等。计算机设备从储能系统中获取待测储能单元所在地区的天气预报信息、所在地区的停电预报信息以及待测储能单元中用电设备的用电优先级。在一些实施例中,计算机设备还可以从对应的待测储能单元所在地区的气象部门获取天气预报信息,从所在地区的供电部门获取停电信息。用电设备的用电优先级可以是预先指定的用电顺序优先级。例如,用电设备中的照明设备具有最高的用电优先级,制冷设备具有第二用电优先级等。
S204,根据天气预报信息和停电预报信息,确定供电控制模式。
其中,供电控制模式是待测储能单元中各储能设备对用电设备进行供电控制的方法模式,包括风暴模式、阴雨天模式、停电模式以及常规模式。计算机设备根据待测储能单元对应的天气预报信息和对应的停电预报信息,确定该待测储能单元的供电控制模式。在一些实施例中,预设控制时间段内,天气预报信息和停电预报信息发生改变,计算机设备将根据变化后的天气预报信息和变化后的停电预报信息,更新供电控制模式,得到更新后的供电控制模式,以适应不同的天气和停电变化情况,提高供电控制效率。
S206,根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电。
其中,市电指的是来自电网的供电。在一些实施例中,储能设备中的电能可以采用市电对储能设备进行充电,从而在市电供应不足时候采用储能设备中的电能对用电设备进行供电,同时,在储能设备中的电能不足以满足用电设备的用电需求时,采用市电对用电设备进行供电。计算机设备根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电,对用电设备的供电进行合理的供电规划,保证在各种
天气情况和停电情况下均能维持对用电设备的供电,提高了供电控制效率。
上述供电控制方法中,通过获取储能系统中待测储能单元所在地区的天气预报信息、所在地区的停电预报信息以及用电设备的用电优先级,待测储能单元中包括至少一种储能设备,根据天气预报信息和停电预报信息,确定供电控制模式,能够根据不同的天气和停电情况,调整不同的供电控制模式,提高了供电控制的效率;同时,不同的用电设备具有对应的用电优先级,根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电,进一步提高了对储能系统中各个待测储能单元的供电控制效率。
在一个实施例中,如图3所示,天气预报信息包括风暴预警信息或者阴雨天预报信息中的任一种;根据天气预报信息和停电预报信息,确定供电控制模式,包括:
S302,在风暴预警信息指示风暴级别超过预警风暴等级、阴雨天预报信息指示阴雨天气持续时长不超过预设持续时长,且停电预报信息指示停电时长不超过预设停电时长的情况下,确定供电控制模式为风暴模式。
其中,计算机设备获取的天气预报信息中包括风暴预警信息或者阴雨天预报信息中的任一种。风暴级别用于表征风暴强度,风暴级别越高表明风暴强度越强。其中,风暴预警信息指示风暴级别超过预警风暴等级、阴雨天预报信息指示阴雨天气持续时长不超过预设持续时长,且停电预报信息指示停电时长不超过预设停电时长的情况,表明待测储能单元所在地区的在未来预设时间段内将发生较高等级的风暴,阴雨天气和停电持续时间不长,计算机设备将确定待测储能单元的供电控制模式为风暴模式。在一些实施例中,风暴常常伴随着阴雨天气或者停电,在风暴预警信息指示风暴级别超过预警风暴等级的情况下,计算机设备可以确定供电控制模式为风暴模式。
S304,在阴雨天预报信息指示阴雨天气持续时长超过预设持续时长、风暴预警信息指示风暴级别未超过预警风暴等级,且停电预报信息指示停电时长不超过预设停电时长的情况下,确定供电控制模式为阴雨天模式。
其中,在阴雨天预报信息指示阴雨天气持续时长超过预设持续时长、风暴预警信息指示风暴级别未超过预警风暴等级,且停电预报信息指示停电时长不超过预设停电时长的情况下,表明待测储能单元所在地区的在未来预设时间段内将发生较长时间的阴雨天气,风暴等级不高,停电时长不长,计算机设备将确定待测储能单元的供电控制模式为阴雨天模式。
S306,在停电预报信息指示停电时长超过预设停电时长、风暴预警信息指示风暴级别未超过预警风暴等级,且阴雨天预报信息指示阴雨天气持续时长不超过预设持续时长的情况下,确定供电控制模式为停电模式。
其中,在停电预报信息指示停电时长超过预设停电时长、风暴预警信息指示风暴级别未超过预警风暴等级,且阴雨天预报信息指示阴雨天气持续时长不超过预设持续时长的情况下,表明待测储能单元所在地区的在未来预设时间段内将发生较长时间的停电,风暴等级不高,阴雨天气持续时间不长,计算机设备将确定待测储能单元的供电控制模式为停电模式。在一些实施例中,在阴雨天预报信息指示阴雨天气持续时长超过预设持续时长、风暴预警信息指示风暴级别未超过预警风暴等级,且停电预报信息指示停电时长超过预设停电时长的情况下,计算机设备可以确定供电控制模式为停电模式。
S308,在风暴预警信息指示风暴级别未超过预警风暴等级、阴雨天预报信息指示阴雨天气持续时长不超过预设持续时长,且停电预报信息指示停电时长不超过预设停电时长的情况下,确定供电控制模式为常规模式。
其中,在风暴预警信息指示风暴级别未超过预警风暴等级、阴雨天预报信息指示阴雨天气持续时长不超过预设持续时长,且停电预报信息指示停电时长不超过预设停电时长的情况下,表明待测储能单元所在地区的在未来预设时间段内无较长时间的停电和阴雨天气,风暴等级不高,计算机设备确定供电控制模式为常规模式。
本实施例中,通过根据不同的风暴预警信息、阴雨天预报信息以及停电预报信息,确定不同的供电控制模式,有利于根据待测储能单元所在地区的天气和停电情况调整供电控制方法,有利于提高供电控制效率。
在一个实施例中,如图4所示,供电控制模式为风暴模式;储能设备包括太阳能电池板或者储能电池中的至少一种;根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电,包括:
S402,从风暴预警信息中获取风暴开始时刻和风暴持续时长。
其中,风暴预警信息中包括风暴开始时刻和风暴持续时长。风暴开始时刻用于指示风暴等级超过预警风暴等级开始的时刻。风暴持续时长用于指示风暴等级超过预警风暴等级的持续时长。计算机设备从风暴预警信息中获取风暴开始时刻和风暴持续时长。
S404,在当前时刻早于风暴开始时刻的情况下,控制储能电池停止供电,并通过待测储能单元中的太阳能电池板或者市电对用电设备进行供电;检测储能电池的电池电量,当电池电量小于满电电量的情况下,通过待测储能单元中的太阳能电池板或者市电对储能电池进行充电,直至电池电量为满电电量。
其中,当前时刻指的是接收到风暴预警信息的时刻,当前时刻早于风暴开始时刻,表明超过预警风暴等级的风暴还未开始。在当前时刻早于风暴开始时刻的情况下,计算机设备控制储能电池停止供电,并通过待测储能单元中的太阳能电池板或者市电对用电设备进行供电。即从接收到风暴预警信息到风暴开始时刻之前,停止储能电池对用电设备的供电,采用待测储能单元中的太阳能电池板或者市电对用电设备进行供电。
满电电量指的是储能电池充满电时的电量。计算机设备检测储能电池的电池电量,当电池电量小于满电电量的情况下,通过待测储能单元中的太阳能电池板或者市电对储能电池进行充电,直至储能电池的电池电量为满电电量,能够保证储能电池在风暴开始之前为满电状态。
S406,在当前时刻等于风暴开始时刻的情况下,根据储能电池的电池电量、用电设备的用电优先级以及风暴持续时长,通过待测储能单元中的储能电池对用电设备进行供电,直到风暴预警信息指示风暴级别不超过预警风暴等级。
其中,当前时刻等于风暴开始时刻,表明超过预警风暴等级的风暴已开始。计算机设备根据储能电池的电池电量、用电设备的用电优先级以及风暴持续时长,通过待测储能单元中的储能电池对用电设备进行供电,直到风暴预警信息指示风暴级别不超过预警风暴等级。由于在超过预警风暴等级的风暴开始之前,已对储能电池充满电量,在风暴持续时长内采用储能电池能够维持对用电设备的供电。
本实施例中,通过在风暴开始之前,停止储能电池的供电,并对储能电池充满电,用以保证在风暴开始后,无法使用太阳能电池板和市电对用电设备进行供电时,储能电池中存储的电能能够维持对用电设备的供电,储能系统在风暴场景下仍能对用电设备进行供电,提高了供电控制效率。
在一个实施例中,如图5所示,根据储能电池的电池电量、用电设备的用电优先级以及风暴持续时长,通过待测储能单元中的储能电池对用电设备进行供电,直到风暴预警信息指示风暴级别不超过预警风暴等级,包括:
S502,根据储能电池的电池电量,确定储能电池的续航时长。
其中,续航时长指的是储能电池的能够进行供电的时长。计算机设备根据储能电池的电池电量,计算得到储能电池的续航时长。
S504,在续航时长小于风暴持续时长的情况下,按照用电设备的用电优先级逐级断电,确定断电后的续航时长,直至断电后的续航时长不小于风暴持续时长,通过待测储能单元中的储能电池对未断电的用电设备供电,直到风暴预警信息指示风暴级别不超过预警风暴等级。
其中,续航时长小于风暴持续时长,表明储能电池的续航能力无法满足风暴持续时长
内的用电设备供电需求,计算机设备按照用电设备的用电优先级逐级断电,确定断电后的续航时长。具体地,按照用电设备的用电优先级,先从最低优先级的用电设备进行断电,确定断开最低优先级对的用电设备后,储能电池的续航时长,并判断断电后的续航时长是否小于风暴持续时长。在断电后的续航时长仍小于风暴持续时长的情况下,按照用电优先级的顺序依次断开上一优先级的用电设备,直到断电后的续航时长不小于风暴持续时长。储能电池的续航能力能够满足未断电的用电设备的用电需求。计算机设备通过待测储能单元中的储能电池对未断电的用电设备供电,直到风暴预警信息指示风暴级别不超过预警风暴等级。这种供电控制方法能够保证风暴场景下,储能电池能够满足较高优先级的用电设备的用电需求,提高了供电控制效率。
S506,在续航时长不小于风暴持续时长的情况下,通过待测储能单元中的储能电池对用电设备进行供电,直到风暴预警信息指示风暴级别不超过预警风暴等级。
其中,续航时长不小于风暴持续时长,表明储能电池的续航能力能够满足待测储能单元中用电设备的用电需求。在续航时长不小于风暴持续时长的情况下,计算机设备通过待测储能单元中的储能电池对用电设备进行供电,直到风暴预警信息指示风暴级别不超过预警风暴等级。在风暴场景下通常容易出现停电的突发情况以及阴雨天气,导致无法使用市电以及太阳能电池板,采用续航能力充足的储能电池对用电设备充电,有利于提高供电控制效率。
本实施例中,通过确定储能电池的续航时长是否在风暴持续时长内,采用不同的供电控制方法。续航时长小于风暴持续时长时,按照用电优先级逐级断电,保证储能电池对较高优先级的用电设备进行供电。在续航时长不小于风暴持续时长时,采用储能电池对用电设备进行供电,避免停电无法采用市电,阴雨天无法使用太阳能电池板供电的突发状态导致的用电困难,提高了供电控制效率。
在一个实施例中,如图6所示,供电控制模式为阴雨天模式;储能设备包括太阳能电池板或者储能电池中的至少一种;根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电,包括:
S602,获取各个储能设备在各个历史时刻的用电量。
其中,储能系统中保存了各个储能设备在各个历史时刻的用电量。计算机设备从储能系统中获取各个储能设备在各个历史时刻的用电量。
S604,根据各个历史时刻的用电量,确定用电峰值时间段和用电低谷时间段。
其中,计算机设备根据各个历史时刻的用电量,确定用电峰值时间段和用电低谷时间段。用电峰值时间段指的是用电量超过预设峰值电量的时间段,用电低谷时间段指的是用电量不超过预设低谷电量的时间段。
在一些实施例中,用电峰值时间段和用电低谷时间段还可以分别是待测储能单元所在地区的用电峰值时间段以及用电低谷时间段。计算机设备从供电部门获取待测储能设备所在区域的用电峰值时间段和用电低谷时间段。
S606,在当前时刻处于用电峰值时间段的情况下,通过待测储能单元中的储能电池对用电设备进行供电,直到阴雨天预报信息指示阴雨天结束,且太阳能电池板持续输出电能的时长超过预设输出时长。
其中,当前时刻指的是阴雨天模式中的任一当前时刻。计算机设备获取太阳能电池板持续输出电能的时长。太阳能电池板持续输出电能的时长超过预设输出时长,表明阴雨天结束,太阳能电池已经能够持续输出电能量。
在当前时刻处于用电峰值时间段的情况下,计算机设备通过待测储能单元中的储能电池对用电设备进行供电,直到阴雨天预报信息指示阴雨天结束,且太阳能电池板持续输出电能的时长超过预设输出时长。
由于市电价格在用电峰值时间段相较于用电低谷时间段的价格低,而储能电池一般采用用电低谷时间段的市电进行充电,因此,在用电峰值时间段采用储能电池对用电设备进
行供电有利于减少用电成本。
S608,在当前时刻处于用电低谷时间段的情况下,通过市电对储能电池进行充电,并通过市电对用电设备进行供电,直到阴雨天预报信息指示阴雨天结束,且太阳能电池板持续输出电能的时长超过预设输出时长。
其中,在当前时刻处于用电低谷时间段的情况下,计算机设备通过市电对储能电池进行充电,并通过市电对用电设备进行供电,直到阴雨天预报信息指示阴雨天结束,且太阳能电池板持续输出电能的时长超过预设输出时长。由于市电价格在用电低谷时间段较低,在用电低谷时间段采用市电对用电设备进行供电有利于提高减少用电成本。
本实施例中,通过在用电峰值以及低谷时间段采用不同的供电控制方式,用电峰值时间段采用储能电池供电,用电低谷时间段采用市电供电,有利于减少用电成本,提高供电控制效率。
在一个实施例中,如图7所示,供电控制模式为停电模式;储能设备包括太阳能电池板或者储能电池中的至少一种;根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电,包括:
S702,从停电预报信息中获取停电开始时刻和停电持续时长。
其中,停电预报信息中包括停电开始时刻和停电持续时长。计算机设备从停电预报信息中获取停电开始时刻和停电持续时长。
S704,在当前时刻早于停电开始时刻的情况下,根据停电持续时长和太阳能电池板的日发电量,确定太阳能电池板的发电量;获取储能电池的实时电池电量,将储能设备的满电电量减去实时电池电量,得到储能设备的满电需求量;在停电持续时长内,太阳能电池板的发电量小于满电需求量的情况下,通过市电对储能电池进行充电,直到太阳能电池板的发电量不小于满电需求量。
其中,当前时刻指的是接收到停电预报信息的时刻。当前时刻早于停电开始时刻,表明停电还未开始。在当前时刻早于停电开始时刻的情况下,计算机设备将停电持续时长乘以太阳能电池板的日发电量,得到太阳能电池板的发电量。计算机设备获取储能电池的实时电池电量,将储能设备的满电电量减去实时电池电量,得到储能设备的满电需求量。
太阳能电池板的发电量小于满电需求量,表明停电持续时长内,太阳能电池板的发电量无法将储能电池充满。在停电持续时长内,太阳能电池板的发电量小于满电需求量的情况下,计算机设备通过市电对储能电池进行充电,直到太阳能电池板的发电量不小于满电需求量。即在停电开始之前,需要将储能电池充满电,当太阳能电池板的发电量不能满足储能电池的充电需求时,采用市电充电,能够保证停电开始时刻,储能电池是满电状态。
S706,在当前时刻等于停电开始时刻的情况下,通过待测储能单元中的太阳能电池板或者储能电池向用电设备供电,直到停电预报信息指示停电结束。
其中,在当前时刻等于停电开始时刻的情况下,计算机设备通过待测储能单元中的太阳能电池板或者储能电池向用电设备供电,直到停电预报信息指示停电结束。即停电开始之后,市电断电,采用太阳能电池板或者储能电池向用电设备供电。在一些实施例中,在供电控制模式为停电模式,且阴雨天预报信息指示阴雨天气持续时长超过预设持续时长的情况下,通过待测储能单元中的储能电池对用电设备进行供电,直到停电预报信息指示停电结束。
本实施例中,通过在停电开始时刻之前,采用太阳能电池板为储能电池充满电,当太阳能电池板的发电量不够时,采用市电为储能电池充满电,保证在停电开始时刻,储能电池是满电状态。在停电开始时刻,由于市电断电,采用太阳能电池板和充满电的储能电池对用电设备供电,能够保证储能设备在停电状态下有充足的电能储备,保证用电设备的供电需求,提高了供电控制效率。
在一个实施例中,如图8所示,供电控制模式为常规模式;储能设备包括太阳能电池板或者储能电池中的至少一种;根据供电控制模式和用电优先级,通过待测储能单元中的
储能设备或者市电,对用电设备进行供电,包括:
S802,获取预设时间段内用电设备的用电量、太阳能电池板的发电量以及储能电池的电池电量。
其中,计算机设备获取预设时间段内用电设备的用电量、太阳能电池板的发电量以及储能电池的电池电量。
S804,在太阳能电池板的发电量大于或者等于用电设备的用电量的情况下,通过待测储能单元中的太阳能电池板,对用电设备进行供电。
其中,太阳能电池板的发电量大于或者等于用电设备的用电量,表明太阳能电池板的发电能力能够满足用电设备的用电需求。在太阳能电池板的发电量大于或者等于用电设备的用电量的情况下,通过待测储能单元中的太阳能电池板,对用电设备进行供电。
S806,在太阳能电池板的发电量小于用电设备的用电量,且预设时间段处于用电峰值时间段的情况下,通过待测储能单元中的太阳能电池板和储能电池,对用电设备进行供电。
其中,太阳能电池板的发电量小于用电设备的用电量,表明太阳能电池板的发电能力不能满足用电设备的用电需求。在太阳能电池板的发电量小于用电设备的用电量,且预设时间段处于用电峰值时间段的情况下,计算机设备通过待测储能单元中的储能电池,对用电设备进行供电。
S808,在太阳能电池板的发电量小于用电设备的用电量,且预设时间段处于用电低谷时间段的情况下,通过待测储能单元中的太阳能电池板和市电,对用电设备进行供电。
其中,在太阳能电池板的发电量小于用电设备的用电量,且预设时间段处于用电低谷时间段的情况下,计算机设备通过市电,对用电设备进行供电。
本实施例中,通过确定太阳能电池板的发电量与用电设备的用电量之间的关系,以及预设时间段处于用电峰值或者低谷时间段,从而采用不同的供电方法,太阳能电池板的发电量能够满足用电设备的用电量的情况下,采用太阳能电池板供电,有利于减少用电成本。太阳能电池板的发电量不够,且在用电峰值时间段时,由于市电价格较高,采用待测储能单元中的太阳能电池板和储能电池,对用电设备进行供电,有利于减少用电成本,提高供电控制效率。太阳能电池板的发电量不够,且在用电低谷时间段时,由于市电价格较低,采用待测储能单元中的太阳能电池板和市电,对用电设备进行供电,有利于减少用电成本,进一步提高供电控制效率。
为详细说明本方案中供电控制方法及效果,下面以一个最详细实施例进行说明:
储能系统包括至少一个待测储能单元,每个待测储能单元中包括至少一种储能设备和至少一个用电设备。储能设备为家庭式储能设备。待测储能单元为家庭式储能设备构成的储能单元。储能设备包括太阳能电池板或者储能电池中的至少一种。针对储能系统中任一待测储能单元的供电控制场景,如图9所示为供电控制方法的总体流程示意图。
计算机设备获取储能系统中待测储能单元所在地区的天气预报信息、所在地区的停电预报信息以及用电设备的用电优先级。天气预报信息包括风暴预警信息或者阴雨天预报信息中的任一种。
计算机设备根据天气预报信息和停电预报信息,确定供电控制模式。具体地,在风暴预警信息指示风暴级别超过预警风暴等级、阴雨天预报信息指示阴雨天气持续时长不超过预设持续时长,且停电预报信息指示停电时长不超过预设停电时长的情况下,确定供电控制模式为风暴模式;在阴雨天预报信息指示阴雨天气持续时长超过预设持续时长、风暴预警信息指示风暴级别未超过预警风暴等级,且停电预报信息指示停电时长不超过预设停电时长的情况下,确定供电控制模式为阴雨天模式;在停电预报信息指示停电时长超过预设停电时长、风暴预警信息指示风暴级别未超过预警风暴等级,且阴雨天预报信息指示阴雨天气持续时长不超过预设持续时长的情况下,确定供电控制模式为停电模式;在风暴预警信息指示风暴级别未超过预警风暴等级、阴雨天预报信息指示阴雨天气持续时长不超过预设持续时长,且停电预报信息指示停电时长不超过预设停电时长的情况下,确定供电控制
模式为常规模式。
计算机设备根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电。具体如下:
供电控制模式为风暴模式的情况:计算机设备从风暴预警信息中获取风暴开始时刻和风暴持续时长,在当前时刻早于风暴开始时刻的情况下,控制储能电池停止供电,并通过待测储能单元中的太阳能电池板或者市电对用电设备进行供电;检测储能电池的电池电量,当电池电量小于满电电量的情况下,通过待测储能单元中的太阳能电池板或者市电对储能电池进行充电,直至电池电量为满电电量,在当前时刻等于风暴开始时刻的情况下,根据储能电池的电池电量、用电设备的用电优先级以及风暴持续时长,通过待测储能单元中的储能电池对用电设备进行供电,直到风暴预警信息指示风暴级别不超过预警风暴等级。具体地,根据储能电池的电池电量,确定储能电池的续航时长,在续航时长小于风暴持续时长的情况下,按照用电设备的用电优先级逐级断电,确定断电后的续航时长,直至断电后的续航时长不小于风暴持续时长,通过待测储能单元中的储能电池对未断电的用电设备供电,直到风暴预警信息指示风暴级别不超过预警风暴等级,在续航时长不小于风暴持续时长的情况下,通过待测储能单元中的储能电池对用电设备进行供电,直到风暴预警信息指示风暴级别不超过预警风暴等级。
供电控制模式为阴雨天模式的情况:计算机设备获取各个储能设备在各个历史时刻的用电量,根据各个历史时刻的用电量,确定用电峰值时间段和用电低谷时间段。在当前时刻处于用电峰值时间段的情况下,通过待测储能单元中的储能电池对用电设备进行供电,直到阴雨天预报信息指示阴雨天结束,且太阳能电池板持续输出电能的时长超过预设输出时长,在当前时刻处于用电低谷时间段的情况下,通过市电对储能电池进行充电,并通过市电对用电设备进行供电,直到阴雨天预报信息指示阴雨天结束,且太阳能电池板持续输出电能的时长超过预设输出时长。
供电控制模式为停电模式的情况:计算机设备从停电预报信息中获取停电开始时刻和停电持续时长,在当前时刻早于停电开始时刻的情况下,根据停电持续时长和太阳能电池板的日发电量,确定太阳能电池板的发电量;获取储能电池的实时电池电量,将储能设备的满电电量减去实时电池电量,得到储能设备的满电需求量;在停电持续时长内,太阳能电池板的发电量小于满电需求量的情况下,通过市电对储能电池进行充电,直到太阳能电池板的发电量不小于满电需求量;在当前时刻等于停电开始时刻的情况下,通过待测储能单元中的太阳能电池板或者储能电池向用电设备供电,直到停电预报信息指示停电结束。
供电控制模式为常规模式的情况:计算机设备获取预设时间段内用电设备的用电量、太阳能电池板的发电量以及储能电池的电池电量,在太阳能电池板的发电量大于或者等于用电设备的用电量的情况下,通过待测储能单元中的太阳能电池板,对用电设备进行供电,在太阳能电池板的发电量小于用电设备的用电量,且预设时间段处于用电峰值时间段的情况下,通过待测储能单元中的太阳能电池板和储能电池,对用电设备进行供电,在太阳能电池板的发电量小于用电设备的用电量,且预设时间段处于用电低谷时间段的情况下,通过待测储能单元中的太阳能电池板和市电,对用电设备进行供电。
上述供电控制方法,通过获取储能系统中待测储能单元所在地区的天气预报信息、所在地区的停电预报信息以及用电设备的用电优先级,待测储能单元中包括至少一种储能设备,根据天气预报信息和停电预报信息,确定供电控制模式,能够根据不同的天气和停电情况,调整不同的供电控制模式,提高了供电控制的效率;同时,不同的用电设备具有对应的用电优先级,根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电,进一步提高了对储能系统中各个待测储能单元的供电控制效率。同时,能够根据各个待测储能单元中历史用电情况进行自学习,根据天气变化和电网供电变化及时进行电量储备,保证紧急状态下的用电续航,使得储能系统更加智能化,提高了各个待测储能单元在不同天气和电网供电情况下,对抗用电紧缺的能力。
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
基于同样的发明构思,本申请实施例还提供了一种配置成实现上述所涉及的供电控制方法的供电控制装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个供电控制装置实施例中的具体限定可以参见上文中对于供电控制方法的限定,在此不再赘述。
在一个实施例中,如图10所示,提供了一种供电控制装置100,包括:获取模块120、确定模块140和供电模块160,其中:
获取模块120,配置成获取储能系统中待测储能单元所在地区的天气预报信息、所在地区的停电预报信息以及用电设备的用电优先级;待测储能单元中包括至少一种储能设备;
确定模块140,配置成根据天气预报信息和停电预报信息,确定供电控制模式;
供电模块160,配置成根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电。
上述供电控制装置,通过获取储能系统中待测储能单元所在地区的天气预报信息、所在地区的停电预报信息以及用电设备的用电优先级,待测储能单元中包括至少一种储能设备,根据天气预报信息和停电预报信息,确定供电控制模式,能够根据不同的天气和停电情况,调整不同的供电控制模式,提高了供电控制的效率;同时,不同的用电设备具有对应的用电优先级,根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电,进一步提高了对储能系统中各个待测储能单元的供电控制效率。
在一个实施例中,天气预报信息包括风暴预警信息或者阴雨天预报信息中的任一种;根据天气预报信息和停电预报信息,确定供电控制模式,确定模块140还配置成:在风暴预警信息指示风暴级别超过预警风暴等级、阴雨天预报信息指示阴雨天气持续时长不超过预设持续时长,且停电预报信息指示停电时长不超过预设停电时长的情况下,确定供电控制模式为风暴模式;在阴雨天预报信息指示阴雨天气持续时长超过预设持续时长、风暴预警信息指示风暴级别未超过预警风暴等级,且停电预报信息指示停电时长不超过预设停电时长的情况下,确定供电控制模式为阴雨天模式;在停电预报信息指示停电时长超过预设停电时长、风暴预警信息指示风暴级别未超过预警风暴等级,且阴雨天预报信息指示阴雨天气持续时长不超过预设持续时长的情况下,确定供电控制模式为停电模式;在风暴预警信息指示风暴级别未超过预警风暴等级、阴雨天预报信息指示阴雨天气持续时长不超过预设持续时长,且停电预报信息指示停电时长不超过预设停电时长的情况下,确定供电控制模式为常规模式。
在一个实施例中,供电控制模式为风暴模式;储能设备包括太阳能电池板或者储能电池中的至少一种;根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电,供电模块160还配置成:从风暴预警信息中获取风暴开始时刻和风暴持续时长;在当前时刻早于风暴开始时刻的情况下,控制储能电池停止供电,并通过待测储能单元中的太阳能电池板或者市电对用电设备进行供电;检测储能电池的电池电量,当电池电量小于满电电量的情况下,通过待测储能单元中的太阳能电池板或者市电对储能电池进行充电,直至电池电量为满电电量;在当前时刻等于风暴开始时刻的情况下,根据储能电池的电池电量、用电设备的用电优先级以及风暴持续时长,通过待测储能单元中的储能电池对用电设备进行供电,直到风暴预警信息指示风暴级别不超过预警风暴等级。
在一个实施例中,根据储能电池的电池电量、用电设备的用电优先级以及风暴持续时长,通过待测储能单元中的储能电池对用电设备进行供电,直到风暴预警信息指示风暴级别不超过预警风暴等级,供电模块160还配置成:根据储能电池的电池电量,确定储能电池的续航时长;在续航时长小于风暴持续时长的情况下,按照用电设备的用电优先级逐级断电,确定断电后的续航时长,直至断电后的续航时长不小于风暴持续时长,通过待测储能单元中的储能电池对未断电的用电设备供电,直到风暴预警信息指示风暴级别不超过预警风暴等级;在续航时长不小于风暴持续时长的情况下,通过待测储能单元中的储能电池对用电设备进行供电,直到风暴预警信息指示风暴级别不超过预警风暴等级。
在一个实施例中,供电控制模式为阴雨天模式;储能设备包括太阳能电池板或者储能电池中的至少一种;根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电,供电模块160还配置成:获取各个储能设备在各个历史时刻的用电量;根据各个历史时刻的用电量,确定用电峰值时间段和用电低谷时间段;在当前时刻处于用电峰值时间段的情况下,通过待测储能单元中的储能电池对用电设备进行供电,直到阴雨天预报信息指示阴雨天结束,且太阳能电池板持续输出电能的时长超过预设输出时长;在当前时刻处于用电低谷时间段的情况下,通过市电对储能电池进行充电,并通过市电对用电设备进行供电,直到阴雨天预报信息指示阴雨天结束,且太阳能电池板持续输出电能的时长超过预设输出时长。
在一个实施例中,供电控制模式为停电模式;储能设备包括太阳能电池板或者储能电池中的至少一种;根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电,供电模块160还配置成:从停电预报信息中获取停电开始时刻和停电持续时长;在当前时刻早于停电开始时刻的情况下,根据停电持续时长和太阳能电池板的日发电量,确定太阳能电池板的发电量;获取储能电池的实时电池电量,将储能设备的满电电量减去实时电池电量,得到储能设备的满电需求量;在停电持续时长内,太阳能电池板的发电量小于满电需求量的情况下,通过市电对储能电池进行充电,直到太阳能电池板的发电量不小于满电需求量;在当前时刻等于停电开始时刻的情况下,通过待测储能单元中的太阳能电池板或者储能电池向用电设备供电,直到停电预报信息指示停电结束。
在一个实施例中,供电控制模式为常规模式;储能设备包括太阳能电池板或者储能电池中的至少一种;根据供电控制模式和用电优先级,通过待测储能单元中的储能设备或者市电,对用电设备进行供电,供电模块160还配置成:获取预设时间段内用电设备的用电量、太阳能电池板的发电量以及储能电池的电池电量;在太阳能电池板的发电量大于或者等于用电设备的用电量的情况下,通过待测储能单元中的太阳能电池板,对用电设备进行供电;在太阳能电池板的发电量小于用电设备的用电量,且预设时间段处于用电峰值时间段的情况下,通过待测储能单元中的太阳能电池板或者储能电池,对用电设备进行供电;在太阳能电池板的发电量小于用电设备的用电量,且预设时间段处于用电低谷时间段的情况下,通过待测储能单元中的太阳能电池板和市电,对用电设备进行供电。
上述供电控制装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图11所示。该计算机设备包括处理器、存储器、输入/输出接口、通信接口、显示单元和输入装置。其中,处理器、存储器和输入/输出接口通过系统总线连接,通信接口、显示单元和输入装置通过输入/输出接口连接到系统总线。其中,该计算机设备的处理器配置成提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质和内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的输入/输出接口配置成处理器与外部
设备之间交换信息。该计算机设备的通信接口配置成与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、移动蜂窝网络、NFC(近场通信)或其他技术实现。该计算机程序被处理器执行时以实现一种供电控制方法。
本领域技术人员可以理解,图11中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
需要说明的是,本申请所涉及的用户信息(包括但不限于用户设备信息、用户个人信息等)和数据(包括但不限于配置成分析的数据、存储的数据、展示的数据等),均为经用户授权或者经过各方充分授权的信息和数据,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。
采用上述方案,计算机设备通过根据储能系统中待测储能单元所在地区的天气预报信息、停电预报信息,确定供电控制模式,然后根据供电控制模式和用电优先级通过待测储能单元中的储能设备或者市电,对用户设备进行供电。从而能够根据不同的天气和停电情况,调整供电控制模式,提高了供电控制效率,并且不同用电设备具有对应的用电优先级,根据供电控制模式和用电优先级,对用户设备进行供电,进一步提高了对储能系统中待测储能单元的供电控制效率。
Claims (15)
- 一种供电控制方法,其特征在于,所述方法包括:获取储能系统中待测储能单元所在地区的天气预报信息、所在地区的停电预报信息以及用电设备的用电优先级;所述待测储能单元中包括至少一种储能设备;根据所述天气预报信息和所述停电预报信息,确定供电控制模式;根据所述供电控制模式和所述用电优先级,通过所述待测储能单元中的储能设备或者市电,对所述用电设备进行供电。
- 根据权利要求1所述的方法,其特征在于,所述天气预报信息包括风暴预警信息或者阴雨天预报信息中的任一种;所述根据所述天气预报信息和所述停电预报信息,确定供电控制模式,包括:在所述风暴预警信息指示风暴级别超过预警风暴等级、所述阴雨天预报信息指示阴雨天气持续时长不超过预设持续时长,且所述停电预报信息指示停电时长不超过预设停电时长的情况下,确定所述供电控制模式为风暴模式;在所述阴雨天预报信息指示阴雨天气持续时长超过所述预设持续时长、所述风暴预警信息指示所述风暴级别未超过所述预警风暴等级,且所述停电预报信息指示停电时长不超过所述预设停电时长的情况下,确定所述供电控制模式为阴雨天模式;在所述停电预报信息指示停电时长超过所述预设停电时长、所述风暴预警信息指示所述风暴级别未超过所述预警风暴等级,且所述阴雨天预报信息指示阴雨天气持续时长不超过所述预设持续时长的情况下,确定所述供电控制模式为停电模式;在所述风暴预警信息指示所述风暴级别未超过所述预警风暴等级、所述阴雨天预报信息指示阴雨天气持续时长不超过所述预设持续时长,且所述停电预报信息指示停电时长不超过所述预设停电时长的情况下,确定所述供电控制模式为常规模式。
- 根据权利要求1所述的方法,其特征在于,所述天气预报信息包括风暴预警信息或者阴雨天预报信息中的任一种;所述根据所述天气预报信息和所述停电预报信息,确定供电控制模式,包括:在所述风暴预警信息指示风暴级别超过预警风暴等级的情况下,确定所述供电控制模式为风暴模式;在所述停电预报信息指示停电时长超过所述预设停电时长、所述风暴预警信息指示所述风暴级别未超过所述预警风暴等级,且所述阴雨天预报信息指示阴雨天气持续时长超过所述预设持续时长的情况下,确定所述供电控制模式为停电模式。
- 根据权利要求1-3任一项所述的方法,其特征在于,所述供电控制模式为风暴模式;所述储能设备包括太阳能电池板或者储能电池中的至少一种;所述根据所述供电控制模式 和所述用电优先级,通过所述待测储能单元中的储能设备或者市电,对所述用电设备进行供电,包括:从所述风暴预警信息中获取风暴开始时刻和风暴持续时长;在当前时刻早于所述风暴开始时刻的情况下,控制所述储能电池停止供电,并通过所述待测储能单元中的太阳能电池板或者市电对所述用电设备进行供电;检测所述储能电池的电池电量,当所述电池电量小于满电电量的情况下,通过所述待测储能单元中的所述太阳能电池板或者市电对所述储能电池进行充电,直至所述电池电量为所述满电电量;在当前时刻等于所述风暴开始时刻的情况下,根据所述储能电池的电池电量、所述用电设备的用电优先级以及所述风暴持续时长,通过所述待测储能单元中的储能电池对所述用电设备进行供电,直到所述风暴预警信息指示风暴级别不超过预警风暴等级。
- 根据权利要求4所述的方法,其特征在于,所述根据所述储能电池的电池电量、所述用电设备的用电优先级以及所述风暴持续时长,通过所述待测储能单元中的储能电池对所述用电设备进行供电,直到所述风暴预警信息指示风暴级别不超过预警风暴等级,包括:根据所述储能电池的电池电量,确定所述储能电池的续航时长;在所述续航时长小于所述风暴持续时长的情况下,按照所述用电设备的用电优先级逐级断电,确定断电后的续航时长,直至所述断电后的续航时长不小于所述风暴持续时长,通过所述待测储能单元中的储能电池对未断电的用电设备供电,直到所述风暴预警信息指示风暴级别不超过预警风暴等级;在所述续航时长不小于所述风暴持续时长的情况下,通过所述待测储能单元中的储能电池对所述用电设备进行供电,直到所述风暴预警信息指示风暴级别不超过预警风暴等级。
- 根据权利要求1-5任一项所述的方法,其特征在于,所述供电控制模式为阴雨天模式;所述储能设备包括太阳能电池板或者储能电池中的至少一种;所述根据所述供电控制模式和所述用电优先级,通过所述待测储能单元中的储能设备或者市电,对所述用电设备进行供电,包括:获取各个储能设备在各个历史时刻的用电量;根据所述各个历史时刻的用电量,确定用电峰值时间段和用电低谷时间段;在当前时刻处于所述用电峰值时间段的情况下,通过所述待测储能单元中的所述储能电池对所述用电设备进行供电,直到所述阴雨天预报信息指示阴雨天结束,且所述太阳能电池板持续输出电能的时长超过预设输出时长;在当前时刻处于所述用电低谷时间段的情况下,通过所述市电对所述储能电池进行充电,并通过所述市电对所述用电设备进行供电,直到所述阴雨天预报信息指示阴雨天结束,且所述太阳能电池板持续输出电能的时长超过预设输出时长。
- 根据权利要求1-6任一项所述的方法,其特征在于,所述供电控制模式为停电模式;所述储能设备包括太阳能电池板或者储能电池中的至少一种;所述根据所述供电控制模式和所述用电优先级,通过所述待测储能单元中的储能设备或者市电,对所述用电设备进行供电,包括:从所述停电预报信息中获取停电开始时刻和停电持续时长;在当前时刻早于所述停电开始时刻的情况下,根据所述停电持续时长和所述太阳能电池板的日发电量,确定所述太阳能电池板的发电量;获取所述储能电池的实时电池电量,将所述储能设备的满电电量减去所述实时电池电量,得到所述储能设备的满电需求量;在所述停电持续时长内,所述太阳能电池板的发电量小于所述满电需求量的情况下,通过所述市电对所述储能电池进行充电,直到所述太阳能电池板的发电量不小于所述满电需求量;在当前时刻等于所述停电开始时刻的情况下,通过所述待测储能单元中的太阳能电池板或者储能电池向所述用电设备供电,直到所述停电预报信息指示停电结束。
- 根据权利要求7所述的方法,其特征在于,所述根据所述停电持续时长和所述太阳能电池板的日发电量,确定所述太阳能电池板的发电量,包括:将所述停电持续时长乘以所述太阳能电池板的日发电量,得到所述太阳能电池板的发电量。
- 根据权利要求1-8任一项所述的方法,其特征在于,所述供电控制模式为常规模式;所述储能设备包括太阳能电池板或者储能电池中的至少一种;所述根据所述供电控制模式和所述用电优先级,通过所述待测储能单元中的储能设备或者市电,对所述用电设备进行供电,包括:获取预设时间段内用电设备的用电量、所述太阳能电池板的发电量以及所述储能电池的电池电量;在所述太阳能电池板的发电量大于或者等于所述用电设备的用电量的情况下,通过所述待测储能单元中的太阳能电池板,对所述用电设备进行供电;在所述太阳能电池板的发电量小于所述用电设备的用电量,且所述预设时间段处于用电峰值时间段的情况下,通过所述待测储能单元中的太阳能电池板和所述储能电池,对所述用电设备进行供电;在所述太阳能电池板的发电量小于所述用电设备的用电量,且所述预设时间段处于用电低谷时间段的情况下,通过所述待测储能单元中的太阳能电池板和所述市电,对所述用电设备进行供电。
- 根据权利要求9所述的方法,其特征在于,所述在所述太阳能电池板的发电量小于所述用电设备的用电量,且所述预设时间段处于用电峰值时间段的情况下,通过所述待 测储能单元中的太阳能电池板和所述储能电池,对所述用电设备进行供电,包括:在所述太阳能电池板的发电量小于所述用电设备的用电量,且所述预设时间段处于用电峰值时间段的情况下,通过所述待测储能单元中的所述储能电池,对所述用电设备进行供电;所述在所述太阳能电池板的发电量小于所述用电设备的用电量,且所述预设时间段处于用电低谷时间段的情况下,通过所述待测储能单元中的太阳能电池板和所述市电,对所述用电设备进行供电,包括:在所述太阳能电池板的发电量小于所述用电设备的用电量,且所述预设时间段处于用电低谷时间段的情况下,通过所述市电,对所述用电设备进行供电。
- 根据权利要求1-10任一项所述的方法,其特征在于,所述储能设备的类型包括光伏发电类型或者储能电池类型中的至少一种。
- 一种供电控制装置,其特征在于,所述装置包括:获取模块,配置成获取储能系统中待测储能单元所在地区的天气预报信息、所在地区的停电预报信息以及用电设备的用电优先级;所述待测储能单元中包括至少一种储能设备;确定模块,配置成根据所述天气预报信息和所述停电预报信息,确定供电控制模式;供电模块,配置成根据所述供电控制模式和所述用电优先级,通过所述待测储能单元中的储能设备或者市电,对所述用电设备进行供电。
- 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至11中任一项所述的方法的步骤。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至11中任一项所述的方法的步骤。
- 一种储能系统,其特征在于,包括:至少一个待测储能单元和权利要求13所述的计算机设备。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310187321.6 | 2023-03-02 | ||
CN202310187321.6A CN115912360B (zh) | 2023-03-02 | 2023-03-02 | 供电控制方法、装置、计算机设备和存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024179464A1 true WO2024179464A1 (zh) | 2024-09-06 |
Family
ID=86485713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/078800 WO2024179464A1 (zh) | 2023-03-02 | 2024-02-27 | 供电控制方法、装置、计算机设备和存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115912360B (zh) |
WO (1) | WO2024179464A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118822041A (zh) * | 2024-09-13 | 2024-10-22 | 国网浙江省电力有限公司 | 基于需求侧负荷的能源互联模式下耦合网络数值模拟与能流优化方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115912360B (zh) * | 2023-03-02 | 2023-06-30 | 广州疆海科技有限公司 | 供电控制方法、装置、计算机设备和存储介质 |
CN118523393B (zh) * | 2024-07-23 | 2024-11-26 | 瑞诺技术(深圳)有限公司 | 一种分布式储能电源充电接入控制方法和系统 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107516170A (zh) * | 2017-08-30 | 2017-12-26 | 东北大学 | 一种基于设备故障概率和电网运行风险的差异自愈控制方法 |
JP2018074841A (ja) * | 2016-11-02 | 2018-05-10 | 積水化学工業株式会社 | 電力制御システムおよび電力制御方法 |
KR20180050062A (ko) * | 2016-11-04 | 2018-05-14 | 호남대학교 산학협력단 | 기상예보를 이용한 전력수요 예측 및 에너지 저장장치 제어 시스템 |
CN108596783A (zh) * | 2018-04-16 | 2018-09-28 | 珠海格力电器股份有限公司 | 用电设备及其储能管理方法、装置、存储介质及服务器 |
CN110288111A (zh) * | 2018-03-19 | 2019-09-27 | 浙江昱能科技有限公司 | 一种基于天气预测的家庭电能管理的方法及系统 |
CN114221353A (zh) * | 2021-12-06 | 2022-03-22 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 电网调控方法、装置、设备、存储介质和计算机程序产品 |
CN115204713A (zh) * | 2022-07-26 | 2022-10-18 | 国网辽宁省电力有限公司电力科学研究院 | 极端气象灾害下电力系统稳定控制与辅助决策方法和系统 |
CN115912360A (zh) * | 2023-03-02 | 2023-04-04 | 广州疆海科技有限公司 | 供电控制方法、装置、计算机设备和存储介质 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203984006U (zh) * | 2014-06-25 | 2014-12-03 | 许继电气股份有限公司 | 锂电光伏储能并网供电系统 |
CN104638747B (zh) * | 2015-01-27 | 2017-01-11 | 合肥工业大学 | 一种光电互补供电系统的功率优化自动分配方法及系统 |
US10359797B2 (en) * | 2015-04-30 | 2019-07-23 | Solarcity Corporation | Weather tracking in a photovoltaic energy generation system |
JP2021132506A (ja) * | 2020-02-21 | 2021-09-09 | サンヨーホームズ株式会社 | 住宅に配備された蓄電池の充電制御方法 |
CN213125590U (zh) * | 2020-09-23 | 2021-05-04 | 苏州天富利新能源科技有限公司 | 一种户用光伏储能系统 |
CN113964872A (zh) * | 2021-11-25 | 2022-01-21 | 内蒙古民族大学 | 光伏发电储能控制方法及系统 |
CN114597927A (zh) * | 2022-03-18 | 2022-06-07 | 深圳市腾运发电子有限公司 | 一种分布式光伏发电储能方法、装置、电子设备及介质 |
CN115276066A (zh) * | 2022-08-08 | 2022-11-01 | 苏州蜂巢充电技术有限公司 | 一种基于气象信息实时调控的光储能源控制系统 |
-
2023
- 2023-03-02 CN CN202310187321.6A patent/CN115912360B/zh active Active
-
2024
- 2024-02-27 WO PCT/CN2024/078800 patent/WO2024179464A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018074841A (ja) * | 2016-11-02 | 2018-05-10 | 積水化学工業株式会社 | 電力制御システムおよび電力制御方法 |
KR20180050062A (ko) * | 2016-11-04 | 2018-05-14 | 호남대학교 산학협력단 | 기상예보를 이용한 전력수요 예측 및 에너지 저장장치 제어 시스템 |
CN107516170A (zh) * | 2017-08-30 | 2017-12-26 | 东北大学 | 一种基于设备故障概率和电网运行风险的差异自愈控制方法 |
CN110288111A (zh) * | 2018-03-19 | 2019-09-27 | 浙江昱能科技有限公司 | 一种基于天气预测的家庭电能管理的方法及系统 |
CN108596783A (zh) * | 2018-04-16 | 2018-09-28 | 珠海格力电器股份有限公司 | 用电设备及其储能管理方法、装置、存储介质及服务器 |
CN114221353A (zh) * | 2021-12-06 | 2022-03-22 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 电网调控方法、装置、设备、存储介质和计算机程序产品 |
CN115204713A (zh) * | 2022-07-26 | 2022-10-18 | 国网辽宁省电力有限公司电力科学研究院 | 极端气象灾害下电力系统稳定控制与辅助决策方法和系统 |
CN115912360A (zh) * | 2023-03-02 | 2023-04-04 | 广州疆海科技有限公司 | 供电控制方法、装置、计算机设备和存储介质 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118822041A (zh) * | 2024-09-13 | 2024-10-22 | 国网浙江省电力有限公司 | 基于需求侧负荷的能源互联模式下耦合网络数值模拟与能流优化方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115912360B (zh) | 2023-06-30 |
CN115912360A (zh) | 2023-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024179464A1 (zh) | 供电控制方法、装置、计算机设备和存储介质 | |
KR101393767B1 (ko) | 지능적 전력 모니터링 | |
CN110460143A (zh) | Ups中智能能量存储的系统和方法 | |
CN101662244B (zh) | 功耗控制方法和设备 | |
CN202197340U (zh) | 一种手机双电池电量管理系统 | |
CN102307260A (zh) | 一种手机双电池电量管理系统及方法 | |
CN111009898A (zh) | 一种智慧园区多能协同供电方法及其系统、终端设备 | |
CN109829834A (zh) | 一种储能系统配置方法、装置和存储介质 | |
JP2013176182A (ja) | 蓄電池の電力管理装置、電力管理プログラムおよび記録媒体 | |
CN105122583A (zh) | 个人能量系统 | |
CN110308780A (zh) | 电池管理方法、系统、终端设备及存储介质 | |
CN102447273A (zh) | 一种终端的供电方法及终端 | |
CN204740288U (zh) | 多用户表智能电表 | |
CN115940277A (zh) | 能量调度方法、装置、电子设备及可读存储介质 | |
CN117200299B (zh) | 储能电池的功率控制方法、装置及电子设备 | |
WO2025092891A1 (zh) | 能量控制方法、装置、计算机设备和存储介质 | |
CN118611120A (zh) | 储能ems需量控制方法、系统、介质及设备 | |
CN118539484A (zh) | 分布式光伏储能管控方法、系统、终端及存储介质 | |
CN108471476B (zh) | 移动终端反向充电管理方法及移动终端 | |
CN113516306B (zh) | 飞轮储能系统的功率配置方法、装置、介质和电子设备 | |
CN111125637B (zh) | 储能装置的容量数据处理方法、系统及存储介质 | |
US20230394603A1 (en) | Distributed System For Energy Storage And Energy Demand Shifting | |
CN111105161B (zh) | 储能数据处理方法、系统、装置、能源系统及存储介质 | |
CN118539474A (zh) | 负载供电方法、装置、计算机设备、可读存储介质和程序产品 | |
CN115940335A (zh) | 待充电设备的充电方法、装置及充电系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24763145 Country of ref document: EP Kind code of ref document: A1 |