WO2024178841A1 - 光模块 - Google Patents
光模块 Download PDFInfo
- Publication number
- WO2024178841A1 WO2024178841A1 PCT/CN2023/093053 CN2023093053W WO2024178841A1 WO 2024178841 A1 WO2024178841 A1 WO 2024178841A1 CN 2023093053 W CN2023093053 W CN 2023093053W WO 2024178841 A1 WO2024178841 A1 WO 2024178841A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- group
- optical fiber
- storage
- slot
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 454
- 239000013307 optical fiber Substances 0.000 claims abstract description 242
- 238000012545 processing Methods 0.000 claims abstract description 23
- 238000006073 displacement reaction Methods 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 4
- 239000000835 fiber Substances 0.000 description 69
- 238000010586 diagram Methods 0.000 description 29
- 238000000034 method Methods 0.000 description 27
- 230000005540 biological transmission Effects 0.000 description 25
- 230000008569 process Effects 0.000 description 24
- 230000010365 information processing Effects 0.000 description 19
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 15
- 239000010931 gold Substances 0.000 description 15
- 229910052737 gold Inorganic materials 0.000 description 15
- 238000004891 communication Methods 0.000 description 10
- 230000008054 signal transmission Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 4
- 230000002457 bidirectional effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4287—Optical modules with tapping or launching means through the surface of the waveguide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/32—Optical coupling means having lens focusing means positioned between opposed fibre ends
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/381—Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
- G02B6/3825—Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres with an intermediate part, e.g. adapter, receptacle, linking two plugs
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4206—Optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4214—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4215—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4274—Electrical aspects
- G02B6/428—Electrical aspects containing printed circuit boards [PCB]
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4296—Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
Definitions
- the present disclosure relates to the field of optical communication technology, and in particular to an optical module.
- optical communication technology optical modules are tools for realizing the mutual conversion of optical and electrical signals, and are one of the key components in optical communication equipment.
- the transmission rate of optical modules is required to continue to increase.
- Some embodiments of the present disclosure provide an optical module, including a circuit board, a first storage piece, a second storage piece, a first digital signal processing chip, a second digital signal processing chip, a first light emitting component, a first light receiving component, a second light emitting component and a second light receiving component.
- the circuit board is provided with a through hole. One end of the first storage piece is snapped to the circuit board.
- the first storage piece has a snap-in groove, a notch, a snap-in cavity, a hollow area, a fourth storage groove, a fifth storage groove and a sixth storage groove.
- the snap-in groove is located at one end of the first storage piece close to the circuit board and is configured to be snapped to the circuit board.
- the notch is located on the side of the first storage piece so that the second receiving optical fiber is wound from one side of the first storage piece to the other side of the first storage piece.
- the second receiving optical fiber is an optical fiber connecting the optical fiber connector group and the second light receiving component.
- the snap-in cavity is located at one end of the first storage piece away from the circuit board and is configured to snap-in the optical fiber connector group.
- the hollow area is connected to the snap-in cavity so that the second transmitting optical fiber is wound from one side of the first storage piece to the other side of the first storage piece.
- the second transmitting optical fiber is an optical fiber connecting the optical fiber connector group and the second optical emitting component.
- the ninth storage slot one end of which is connected to the upper surface of the circuit board.
- the tenth storage slot one end of which is connected to the other end of the ninth storage slot.
- the eleventh storage slot one end of which is connected to the other end of the tenth storage slot.
- the twelfth storage slot is arranged obliquely with the tenth storage slot, one end of the twelfth storage slot is connected to the eleventh storage slot, and the other end of the twelfth storage slot is connected to the hollowed-out area.
- the third supporting protrusion is located on the eleventh storage slot.
- the thirteenth storage slot is located on the eleventh storage slot and is not connected to the third supporting protrusion.
- the second storage member is clamped at the through hole.
- the first digital signal processing chip and the second digital signal processing chip are both arranged on the upper surface of the circuit board, and the first digital signal processing chip and the second digital signal processing chip are both integrated with a transimpedance amplifier chip.
- the first optical emitting component is arranged on the second storage member, connected to the first digital signal processing chip, and configured to transmit an optical signal.
- the first optical receiving component is located on the upper surface of the circuit board, connected to the first digital signal processing chip, and configured to receive an optical signal.
- the second light emitting component is located on the lower surface of the first storage element, connected to the second digital signal processing chip, and configured to emit light signals.
- the second light receiving component is located on the upper surface of the circuit board, connected to the second digital signal processing chip, and configured to receive light signals.
- FIG1 is a partial structural diagram of an optical communication system provided according to some embodiments of the present disclosure.
- FIG2 is a partial structural diagram of a host computer provided according to some embodiments of the present disclosure.
- FIG3 is a structural diagram of an optical module provided according to some embodiments of the present disclosure.
- FIG4 is an exploded view of an optical module provided according to some embodiments of the present disclosure.
- FIG5 is a top view of an optical module without an upper housing, a lower housing and a clamping member according to some embodiments of the present disclosure
- FIG. 6 is a bottom view of an optical module with an upper housing, a lower housing and a clamping member removed according to some embodiments of the present disclosure
- FIG7 is an exploded view of an optical module with an upper housing, a lower housing and a clamping member removed according to some embodiments of the present disclosure
- FIG. 8 is a cross-sectional view of an optical module with an upper housing, a lower housing and a clamping member removed according to some embodiments of the present disclosure
- FIG9 is an assembly diagram of a first light emitting component and a second storage component according to some embodiments of the present disclosure
- FIG10 is a structural diagram of a second storage member provided according to some embodiments of the present disclosure.
- FIG11 is a light path diagram of a first light emitting component provided according to some embodiments of the present disclosure.
- FIG12 is a light path diagram of a first light emitting component at another viewing angle according to some embodiments of the present disclosure.
- FIG13 is a cross-sectional view of an optical module provided in accordance with some embodiments of the present disclosure without an upper housing, a lower housing and a clamping member at another viewing angle;
- FIG14 is an assembly diagram of a first storage member and a second light emitting component according to some embodiments of the present disclosure
- FIG15 is a structural diagram of a first storage member provided according to some embodiments of the present disclosure.
- FIG16 is a light path diagram of a second light emitting component provided according to some embodiments of the present disclosure.
- FIG17 is an assembly diagram of a first placement member and a second light receiving component according to some embodiments of the present disclosure
- FIG18 is an exploded view of a first placement member and a second light receiving component according to some embodiments of the present disclosure
- FIG19 is a light path diagram of a second light receiving component provided according to some embodiments of the present disclosure.
- FIG. 20 is a light path diagram of a second light receiving component at another viewing angle according to some embodiments of the present disclosure.
- optical communication technology in order to establish information transmission between information processing devices, it is necessary to load information onto light and use the propagation of light to achieve information transmission.
- the light loaded with information is an optical signal.
- the signals that information processing equipment can recognize and process are electrical signals.
- Information processing equipment usually includes optical network units (ONUs), gateways, routers, switches, mobile phones, computers, servers, tablets, televisions, etc.
- information transmission equipment usually includes optical fibers and optical waveguides.
- the optical module can realize the mutual conversion between optical signals and electrical signals between information processing equipment and information transmission equipment.
- at least one of the optical signal input end or the optical signal output end of the optical module is connected to an optical fiber, and at least one of the electrical signal input end or the electrical signal output end of the optical module is connected to an optical network terminal;
- the first optical signal from the optical fiber is transmitted to the optical module, and the optical module converts the first optical signal into a first electrical signal, and transmits the first electrical signal to the optical network terminal;
- the second electrical signal from the optical network terminal is transmitted to the optical module, and the optical module converts the second electrical signal into a second optical signal, and transmits the second optical signal to the optical fiber.
- the information processing device directly connected to the optical module is called the upper computer of the optical module.
- the optical signal input end or the optical signal output end of the optical module can be called an optical port
- the electrical signal input end or the electrical signal output end of the optical module can be called an electrical port.
- FIG1 is a partial structural diagram of an optical communication system provided according to some embodiments of the present disclosure.
- the optical communication system mainly includes a remote information processing device 1000 , a local information processing device 2000 , a host computer 100 , an optical module 200 , an optical fiber 101 and a network cable 103 .
- One end of the optical fiber 101 extends toward the remote information processing device 1000, and the other end of the optical fiber 101 is connected to the optical module 200 through the optical port of the optical module 200.
- the optical signal can be totally reflected in the optical fiber 101, and the propagation of the optical signal in the total reflection direction can almost maintain the original optical power.
- the optical signal undergoes multiple total reflections in the optical fiber 101 to transmit the optical signal from the remote information processing device 1000 to the optical module 200, or to transmit the optical signal from the optical module 200 to the remote information processing device 1000, thereby realizing long-distance, low-power loss information transmission.
- the optical communication system may include one or more optical fibers 101, and the optical fibers 101 are detachably connected or fixedly connected to the optical module 200.
- the host computer 100 is configured to provide data signals to the optical module 200, receive data signals from the optical module 200, or monitor or control the working state of the optical module 200.
- the host computer 100 includes a substantially rectangular housing and an optical module interface 102 disposed on the housing.
- the optical module interface 102 is configured to connect to the optical module 200 so that the host computer 100 and the optical module 200 establish a unidirectional or bidirectional electrical signal connection.
- the host computer 100 also includes an external electrical interface, which can be connected to an electrical signal network.
- the external electrical interface includes a Universal Serial Bus (USB) interface or a network cable interface 104, and the network cable interface 104 is configured to access the network cable 103 so that the host computer 100 establishes a unidirectional or bidirectional electrical signal connection with the network cable 103.
- USB Universal Serial Bus
- One end of the network cable 103 is connected to the local information processing device 2000, and the other end of the network cable 103 is connected to the host computer 100, so as to establish an electrical signal connection between the local information processing device 2000 and the host computer 100 through the network cable 103.
- the third electrical signal emitted by the local information processing device 2000 is transmitted to the host computer 100 through the network cable 103.
- the host computer 100 generates a second electrical signal based on the third electrical signal.
- the second electrical signal from the host computer 100 is transmitted to the optical module 200.
- the optical module 200 converts the second electrical signal into a second optical signal and transmits the second optical signal to the optical fiber 101.
- the second optical signal is transmitted to the remote information processing device 1000 in the optical fiber 101.
- the first optical signal from the remote information processing device 1000 is transmitted through the optical fiber 101.
- the first optical signal from the optical fiber 101 is transmitted to the optical module 200.
- the optical module 200 converts the first optical signal into a first electrical signal.
- the optical module 200 transmits the first electrical signal to the host computer 100.
- the host computer 100 generates a fourth electrical signal based on the first electrical signal and transmits the fourth electrical signal to the local information processing device 2000. It should be noted that the optical module is used to realize the mutual transmission of optical signals and electrical signals.
- the conversion tool in the process of converting the optical signal to the electrical signal, the information does not change, but the encoding
- the host computer 100 also includes an optical line terminal (OLT), an optical network device (ONT), or a data center server.
- OLT optical line terminal
- ONT optical network device
- data center server a data center server
- FIG2 is a partial structural diagram of a host computer provided according to some embodiments of the present disclosure.
- the host computer 100 also includes a PCB circuit board 105 arranged in the housing, a cage 106 arranged on the surface of the PCB circuit board 105, a heat sink 107 arranged on the cage 106, and an electrical connector arranged inside the cage 106.
- the electrical connector is configured to access the electrical port of the optical module 200; the heat sink 107 has a protruding structure such as fins that increase the heat dissipation area.
- the optical module 200 is inserted into the cage 106 of the host computer 100, and the cage 106 fixes the optical module 200.
- the heat generated by the optical module 200 is transferred to the cage 106 and then diffused through the heat sink 107.
- the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106, so that the optical module 200 establishes a bidirectional electrical signal connection with the host computer 100.
- the optical port of the optical module 200 is connected to the optical fiber 101, so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101.
- FIG. 3 is a structural diagram of an optical module provided according to some embodiments of the present disclosure.
- FIG. 4 is an exploded view of an optical module provided according to some embodiments of the present disclosure.
- the optical module 200 includes a shell, a circuit board 300 disposed in the shell, a light emitting component, and a light receiving component.
- the present disclosure is not limited thereto.
- the optical module 200 includes one of the light emitting component and the light receiving component.
- the housing comprises an upper housing 201 and a lower housing 202 .
- the upper housing 201 covers the lower housing 202 to form the housing having two openings 204 and 205 .
- the outer contour of the housing is generally a square body.
- the lower shell 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and arranged perpendicular to the bottom plate 2021; the upper shell 201 includes a cover plate 2011, and the cover plate 2011 covers the two lower side plates 2022 of the lower shell 202 to form the above-mentioned shell.
- the lower shell 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and vertically arranged with the bottom plate 2021;
- the upper shell 201 includes a cover plate 2011 and two upper side plates located on both sides of the cover plate 2011 and vertically arranged with the cover plate 2011, and the two upper side plates are combined with the two lower side plates 2022 to realize that the upper shell 201 covers the lower shell 202.
- the direction of the connection line of the two openings 204 and 205 may be consistent with the length direction of the optical module 200, or inconsistent with the length direction of the optical module 200.
- the opening 204 is located at the end of the optical module 200 (the right end of FIG. 3), and the opening 205 is also located at the end of the optical module 200 (the left end of FIG. 3).
- the opening 204 is located at the end of the optical module 200, and the opening 205 is located at the side of the optical module 200.
- the opening 204 is an electrical port, and the gold finger of the circuit board 300 extends from the electrical port and is inserted into the electrical connector of the host computer 100; the opening 205 is an optical port, which is configured to access the external optical fiber 101 so that the optical fiber 101 connects the optical emitting component and the optical receiving component in the optical module 200.
- the upper housing 201 and the lower housing 202 are combined to facilitate the installation of the circuit board 300, the light emitting component, the light receiving component, etc. into the above housing, and the upper housing 201 and the lower housing 202 can encapsulate and protect the above components.
- the upper housing 201 and the lower housing 202 can encapsulate and protect the above components.
- the upper shell 201 and the lower shell 202 are made of metal materials to facilitate electromagnetic shielding and heat dissipation.
- the optical module 200 further includes an unlocking component 203 located outside its housing.
- the unlocking component 203 is configured to achieve a fixed connection between the optical module 200 and the host computer, or to release the fixed connection between the optical module 200 and the host computer.
- the unlocking component 203 is located on the outside of the two lower side plates 2022 of the lower housing 202, and includes a snap-fit component that matches the cage 106 of the host computer 100.
- the snap-fit component of the unlocking component 203 fixes the optical module 200 in the cage 106;
- the snap-fit component of the unlocking component 203 moves accordingly, thereby changing the connection relationship between the snap-fit component and the host computer, so as to release the fixation of the optical module 200 and the host computer, so that the optical module 200 can be pulled out of the cage 106.
- the circuit board 300 includes circuit traces, electronic components and chips, etc.
- the electronic components and chips are connected according to the circuit design through the circuit traces to realize the functions of power supply, electrical signal transmission and grounding.
- the electronic components may include capacitors, resistors, transistors, and metal-oxide-semiconductor field-effect transistors (MOSFET).
- the chips may include microcontroller units (MCU), laser driver chips, transimpedance amplifiers (TIA), limiting amplifiers (limiting amplifiers), clock and data recovery chips (CDR), power management chips, and digital signal processing (DSP) chips.
- MCU microcontroller units
- TIA transimpedance amplifiers
- limiting amplifiers limiting amplifiers
- CDR clock and data recovery chips
- DSP digital signal processing
- the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the load-bearing function. For example, the rigid circuit board can stably carry the above-mentioned electronic components and chips; the rigid circuit board can also be inserted into the electrical connector in the cage 106 of the host computer 100.
- the circuit board 300 also includes a gold finger formed on the end surface thereof, and the gold finger is composed of a plurality of independent pins.
- the circuit board 300 is inserted into the cage 106, and the gold finger is connected to the electrical connector in the cage 106.
- the gold finger can be provided on the surface of only one side of the circuit board 300 (for example, as shown in FIG.
- the upper surface of the circuit board 300 may also be arranged on the upper and lower surfaces of the circuit board 300 to provide a larger number of pins, so as to adapt to occasions where a large number of pins are required.
- the gold finger is configured to establish an electrical connection with the host computer to achieve power supply, grounding, two-wire synchronous serial (Inter-Integrated Circuit, I2C) signal transmission, data signal transmission, etc.
- I2C Inter-Integrated Circuit
- flexible circuit boards are also used in some optical modules. Flexible circuit boards are generally used in conjunction with rigid circuit boards as a supplement to rigid circuit boards.
- At least one of the light emitting component or the light receiving component is located on a side of the circuit board 300 away from the gold finger.
- the light emitting component and the light receiving component are physically separated from the circuit board 300 and then electrically connected to the circuit board 300 through corresponding flexible circuit boards or electrical connectors.
- At least one of the light emitting component or the light receiving component may be directly disposed on the circuit board 300.
- at least one of the light emitting component or the light receiving component may be disposed on a surface of the circuit board 300 or a side of the circuit board 300.
- the light emitting component includes a first light emitting component 400 configured to emit an optical signal.
- the first light emitting component 400 includes a plurality of laser chips, and the laser chips are used to emit optical signals.
- a single laser chip can be an electroabsorption modulated laser (EML) chip or a high-power distributed feedback laser (DFB) chip.
- EML electroabsorption modulated laser
- DFB distributed feedback laser
- a single laser chip transmits 25G optical signals, or 50G optical signals, or 100G optical signals, or 200G optical signals, or optical signals with other transmission rates.
- a single laser chip transmits a 25G optical signal
- the first optical transmission component 400 including a plurality of laser chips transmits a plurality of *25G optical signals.
- a single laser chip transmits a 50G optical signal
- the first optical transmission component 400 including a plurality of laser chips transmits a plurality of *50G optical signals.
- a single laser chip transmits a 100G optical signal
- the first optical transmission component 400 including a plurality of laser chips transmits a plurality of *100G optical signals.
- a single laser chip transmits a 200G optical signal
- the first optical transmission component 400 including a plurality of laser chips transmits a plurality of *200G optical signals.
- a single laser chip transmits a 100G optical signal
- the first optical transmission component 400 including eight laser chips transmits an 800G optical signal.
- the optical receiving component includes a first optical receiving component 500 and a second optical receiving component 501.
- the first optical receiving component 500 is located on the upper surface of the circuit board 300 and is configured to receive an optical signal.
- the second optical receiving component 501 is located on the upper surface of the circuit board 300 and is configured to receive an optical signal.
- the first light receiving component 500 is located on the upper surface of the circuit board 300 through a first supporting plate
- the second light receiving component 501 is located on the upper surface of the circuit board 300 through a second supporting plate.
- the first optical receiving component 500 and the second optical receiving component 501 each include multiple optical receiving chips, and a single optical receiving chip receives a 25G optical signal, or a 50G optical signal, or a 100G optical signal, or a 200G optical signal, or an optical signal of other transmission rates.
- a single optical receiving chip receives a 25G optical signal
- the first optical receiving component 500 and the second optical receiving component 501 including multiple optical receiving chips each receive multiple *25G optical signals.
- a single optical receiving chip transmits a 50G optical signal
- the first optical receiving component 500 and the second optical receiving component 501 including multiple optical receiving chips each receive multiple *50G optical signals.
- a single optical receiving chip transmits a 100G optical signal
- the first optical receiving component 500 and the second optical receiving component 501 including multiple optical receiving chips each receive multiple *100G optical signals.
- a single optical receiving chip transmits a 200G optical signal
- the first optical receiving component 500 and the second optical receiving component 501 including multiple optical receiving chips each receive multiple *200G optical signals.
- a single optical receiving chip receives a 100G optical signal
- the first optical receiving component 500 and the second optical receiving component 501 including eight optical receiving chips both receive an 800G optical signal.
- a first placement piece 600 is disposed in the housing near the optical port, and one end of the first placement piece 600 facing the circuit board 300 has a snap-in groove, which is configured to snap-in the circuit board 300 .
- the first storage member 600 has not only a snap-in slot for snapping the circuit board 300, but also a storage slot.
- the storage slot is configured to place a first transmitting optical fiber, a first receiving optical fiber, and a second receiving optical fiber.
- the optical fiber between the first optical transmitting component 400 and the optical fiber connector group 800 is the first transmitting optical fiber
- the optical fiber between the first optical receiving component 500 and the optical fiber connector group 800 is the first receiving optical fiber
- the optical fiber between the second optical receiving component 501 and the optical fiber connector group 800 is the second receiving optical fiber.
- the housing further includes a clamping member 700.
- the clamping member 700 is closer to the optical port than the first placement member 600.
- the clamping member 700 has a clamping cavity which is configured to clamp the optical fiber connector set 800 .
- the optical fiber connector group 800 includes multiple first optical fiber connectors and multiple second optical fiber connectors, the first optical fiber connectors are optical fiber connectors connected to the light emitting component, the second optical fiber connectors are optical fiber connectors connected to the light receiving component, the first optical fiber connectors are arranged corresponding to the light emitting component, and the second optical fiber connectors are arranged corresponding to the light receiving component.
- Fig. 5 is a top view of an optical module without an upper housing, a lower housing, and a card connector according to some embodiments of the present disclosure.
- the optical fiber connector set 800 includes 4 first optical fiber connectors and 4 second optical fiber connectors, the 4 second optical fiber connectors are arranged in parallel, the 4 first optical fiber connectors are also arranged in parallel, the 4 second optical fiber connectors and the 4 first optical fiber connectors are stacked, and the 4 second optical fiber connectors are closer to the lower housing than the 4 first optical fiber connectors.
- a first DSP chip 301 and a second DSP chip 302 are disposed on the upper surface of the circuit board 300, and the second DSP chip 302 is closer to the optical port than the first DSP chip 301.
- the first DSP chip 301 and the second DSP chip 302 process 800G electrical signals respectively, so that the transmission rate of the optical module reaches 1.6T.
- the first DSP chip 301 is connected to the first light emitting component 400 and the first light receiving component 500 respectively, and the first DSP chip 301 is integrated with a laser driving chip.
- the host computer transmits the 800G electrical signal to the first DSP chip 301 through the gold finger.
- the first DSP chip 301 processes the 800G electrical signal.
- the laser driver chip sends a driving current according to the processed 800G electrical signal.
- the first optical emitting component 400 receives the driving current and then emits an 800G optical signal.
- the first optical receiving component 500 converts the received 800G optical signal into an 800G electrical signal.
- the first DSP chip 301 processes the 800G electrical signal.
- the processed 800G electrical signal is transmitted to the host computer through the gold finger.
- the first DSP chip processes the 800G electrical signal transmitted through the gold finger, so that the first optical transmitting component transmits an 800G optical signal.
- the first DSP chip processes the 800G electrical signal converted by the first optical receiving component, so that the transmission rate of the optical module reaches 800G.
- Fig. 6 is a bottom view of the optical module without the upper housing, the lower housing and the clamping member according to some embodiments of the present disclosure. As shown in Fig. 6 , in some embodiments, the lower surface of the first storage member 600 is provided with a second light emitting component 401 .
- the second light emitting component 401 includes a plurality of laser chips, and the laser chips are used to emit optical signals.
- a single laser chip can be an electroabsorption modulated laser (EML) chip or a high-power distributed feedback laser (DFB) chip.
- EML electroabsorption modulated laser
- DFB distributed feedback laser
- a single laser chip transmits a 25G optical signal, or a 50G optical signal, or a 100G optical signal, or a 200G optical signal, or an optical signal with other transmission rates.
- a single laser chip transmits a 25G optical signal
- the second optical emitting component 401 including multiple laser chips transmits multiple *25G optical signals.
- a single laser chip transmits a 50G optical signal
- the second optical emitting component 401 including multiple laser chips transmits multiple *50G optical signals.
- a single laser chip transmits a 100G optical signal
- the second optical emitting component 401 including multiple laser chips transmits multiple *100G optical signals.
- a single laser chip transmits a 200G optical signal
- the second optical emitting component 401 including multiple laser chips transmits multiple *200G optical signals.
- the second optical emitting component 401 is close to the first optical fiber connector. If the optical signal is transmitted between the second optical emitting component 401 and the first optical fiber connector in a free optical manner, the optical path needs to be folded back multiple times, resulting in a very complex optical path, an increased number of components, and a complex assembly process. In order to avoid these problems, in some embodiments, the optical signal is transmitted between the second optical emitting component 401 and the first optical fiber connector in an optical fiber coupling manner. The optical signal is transmitted between the second optical emitting component 401 and the first optical fiber connector in an optical fiber coupling manner, which greatly simplifies the optical path, reduces the number of components, and simplifies the assembly process.
- the free optical method refers to the optical signal transmission between the optical emitting component and the optical fiber connector by an optical device
- the optical fiber coupling method refers to the optical signal transmission between the optical emitting component and the optical fiber connector by using an optical fiber.
- Optical fiber coupling is also used between the first light emitting component 400 and the optical fiber connector to realize optical signal transmission.
- the second DSP chip 302 is connected to the second light emitting component 401 and the second light receiving component 501 , respectively, and the second DSP chip 302 is integrated with a laser driving chip.
- the host computer transmits the 800G electrical signal to the second DSP chip 302 through the gold finger.
- the second DSP chip 302 processes the 800G electrical signal.
- the laser driver chip sends a driving current according to the processed 800G electrical signal.
- the second optical emitting component 401 receives the driving current and then emits an 800G optical signal.
- the second optical receiving component 501 converts the received 800G optical signal into an 800G electrical signal.
- the second DSP chip 302 processes the 800G electrical signal.
- the processed 800G electrical signal is transmitted to the host computer through the gold finger.
- the second DSP chip processes the 800G electrical signal transmitted through the gold finger, so that the second optical transmitting component transmits an 800G optical signal.
- the second DSP chip processes the 800G electrical signal converted by the second optical receiving component, so that the transmission rate of the optical module reaches 800G.
- the optical module includes a first DSP chip and a second DSP chip, the first DSP chip is connected to the first optical emitting component and the first optical receiving component respectively, and the second DSP chip is connected to the second optical emitting component and the second optical receiving component respectively, so that the transmission rate of the optical module reaches 1.6T.
- the first DSP chip 301 and the second DSP chip 302 are both integrated with a trans-impedance amplifier (TIA) chip.
- TIA trans-impedance amplifier
- the 800G optical signal is converted into an 800G current signal by the first optical receiving component 500
- the 800G current signal is converted into an 800G voltage signal by the transimpedance amplifier chip
- the 800G voltage signal is processed by the first DSP chip 301, and the processed 800G electrical signal is transmitted to the host computer via the gold finger.
- the 800G optical signal is converted into an 800G current signal by the second optical receiving component 501
- the 800G current signal is converted into an 800G voltage signal by the TIA chip
- the 800G voltage signal is processed by the second DSP chip 302
- the processed 800G electrical signal is transmitted to the host computer via the gold finger.
- the first DSP chip 301 and the second DSP chip 302 are both integrated with TIA chips.
- the power supply circuit for the TIA chip can also supply power to other devices in the first DSP chip 301 and the second DSP chip 302, thereby reducing the power supply circuit inside the DSP chip and effectively reducing power consumption.
- the first optical emitting component 400 and the second optical emitting component 401 both use 100G EML chips as optical emitting chips, the first optical emitting component 400 includes 8 100G EML chips placed in parallel, the second optical emitting component 401 also includes 8 100G EML chips placed in parallel, and the first optical emitting component 400 is closer to the electrical port than the second optical emitting component 401.
- the first optical emitting component 400 and the second optical emitting component 401 are staggered along the direction of the circuit board 300. In some embodiments, the first optical emitting component 400 is closer to the electrical port than the second optical emitting component 401.
- a second placement piece 900 is further disposed in the housing.
- the second placement piece 900 is engaged with a through hole of the circuit board 300 and is configured to place the first light emitting component 400 .
- Fig. 7 is an exploded view of an optical module without an upper housing, a lower housing and a clamping member according to some embodiments of the present disclosure.
- the circuit board 300 has a through hole 303.
- the second storage member 900 is clamped at the through hole 303.
- FIG8 is a cross-sectional view of an optical module provided according to some embodiments of the present disclosure with the upper housing, the lower housing and the clamping member removed.
- FIG9 is an assembly diagram of a first optical emission component and a second storage component provided according to some embodiments of the present disclosure.
- FIG10 is a structural diagram of a second storage component provided according to some embodiments of the present disclosure.
- the first optical emission component 400 includes a first laser chip group 4001, a first collimating lens group 4002, a first displacement prism 4003, a first combiner group 4004, a first focusing lens group 4005 and a first optical fiber adapter group 4006.
- the first collimating lens group 4002 is located between the first laser chip group 4001 and the first displacement prism 4003, the first combiner group 4004 is located between the first displacement prism 4003 and the first focusing lens group 4005, and the first focusing lens group 4005 is located between the first combiner group 4004 and the first optical fiber adapter group 4006.
- the first laser chipset 4001 includes a plurality of laser chips arranged in parallel.
- the first laser chipset 4001 includes 8 laser chips arranged in parallel, and the laser chips are 100G EML chips.
- One 100G EML chip transmits one 100G optical signal according to the driving current, so that the first laser chipset 4001 transmits 8 100G optical signals of different wavelengths, that is, the first laser chipset 4001 transmits 800G optical signals.
- the first collimating lens group 4002 includes a plurality of collimating lenses arranged in parallel.
- the first collimating lens group 4002 includes 8 collimating lenses arranged in parallel, and the collimating lenses are arranged corresponding to the laser chips.
- the 8 100G optical signals of different wavelengths emitted by the first laser chip group 4001 are collimated by the first collimating lens group 4002.
- the first displacement prism 4003 is configured to displace the 8-channel 100G collimated optical signal so that the collimated 8-channel 100G optical signal is incident on the first combiner group 4004 .
- the first combiner group 4004 includes a plurality of combiners arranged in parallel.
- the first combiner group 4004 includes two combiners arranged in parallel, and one combiner is arranged corresponding to four laser chips and four collimating lenses.
- the eight 100G collimated optical signals are combined into two 400G optical signals through the first combiner group 4004.
- the first focusing lens group 4005 includes a plurality of focusing lenses arranged in parallel.
- the first focusing lens group 4005 includes two focusing lenses arranged in parallel.
- the first fiber adapter group 4006 includes a plurality of fiber adapters arranged in parallel.
- the first fiber adapter group 4006 includes two fiber adapters arranged in parallel, and the combiner, focusing lens and fiber adapter are arranged correspondingly.
- the first focusing lens group 4005 focuses the two 400G optical signals to the first fiber adapter group 4006 respectively.
- the upper surface of the second storage member 900 is recessed inward to form a first storage groove 901, a second storage groove 902 and a third storage groove 903, and the first storage groove 901, the second storage groove 902 and the third storage groove 903 are stepped.
- the depression degrees of the second storage groove 902 and the third storage groove 903 decrease successively.
- one end of the first storage slot 901 facing the circuit board 300 is connected to the bottom surface of the circuit board 300 .
- the first laser chip group 4001 is placed in the first placement groove 901 .
- the first laser chip group 4001 and the first collimating lens group 4002 are both placed in the first placement slot 901.
- a semiconductor cooler In order to facilitate the control of the temperature of the first laser chipset 4001, a semiconductor cooler (TEC) needs to be provided below the first laser chipset 4001.
- the first placement groove 901 continues to be recessed inward to form a placement cavity 9011, and the first laser chipset 4001 and the first collimating lens group 4002 are placed in the placement cavity 9011 via the TEC.
- the optical signal collimated by the first collimating lens group 4002 is transmitted along the through hole 303 of the circuit board 300 .
- the first combiner group 4004 is placed in the first placement slot 901 .
- the first combiner group 4004 is placed in the first placement slot 901. Although there is no need to set up a displacement prism, the area of the through hole 303 needs to be enlarged. In order to reduce the area of the through hole 303 of the circuit board 300, in some embodiments, the first combiner group 4004 is placed in the third placement slot 903, and the first displacement prism 4003 is placed in the second placement slot 902. The central axis of the first combiner group 4004 is higher than the central axis of the first collimating lens group 4002.
- the third storage slot 903 also includes a first focusing lens group 4005 and a first optical fiber adapter group 4006 .
- the third storage slot 903 has a first sub-slot 9031, a second sub-slot 9032, and a stopper 9033.
- the first sub-slot 9031 and the second sub-slot 9032 are both formed by the third storage slot 903 being recessed inward.
- the first sub-slot 9031 is closer to the second storage slot 902 than the second sub-slot 9032, and is configured to place the first combiner group 4004.
- the second sub-slot 9032 is more recessed than the first sub-slot 9031, and is configured to place the first optical fiber adapter group 4006.
- Two stoppers 9033 are located on both sides of the first sub-slot 9031, and are configured to limit the first combiner group 4004 within the first sub-slot 9031.
- the lower surface of the second storage member 900 is recessed inward to form a connecting groove 904 , and the connecting groove 904 is connected to the upper surface of the circuit board 300 .
- FIG11 is a light path diagram of the first light emitting component provided according to some embodiments of the present disclosure.
- FIG12 is a light path diagram of the first light emitting component provided according to some embodiments of the present disclosure at another viewing angle.
- the first laser chip group 4001 emits 8 100G optical signals
- the 8 100G optical signals are collimated by the first collimating lens group 4002
- the 8 collimated 100G optical signals are changed in position by the first displacement prism 4003 and then incident on the first combiner group 4004
- the first combiner group 4004 combines the 8 100G optical signals after the change in position into 2 400G optical signals
- the 2 400G optical signals are focused and coupled to the first optical fiber adapter group 4006 by the first focusing lens group 4005.
- FIG. 13 is a cross-sectional view of an optical module provided in accordance with some embodiments of the present disclosure, with the upper housing, the lower housing and the clamping member removed, from another perspective.
- FIG. 14 is an assembly diagram of a first storage member and a second optical emission member provided in accordance with some embodiments of the present disclosure.
- FIG. 15 is a structural diagram of a first storage member provided in accordance with some embodiments of the present disclosure.
- the second optical emission member 401 includes a second laser chip group 4011, a second collimating lens group 4012, a second combiner group 4013, a first reflector group 4014, a second focusing lens group 4015 and a second optical fiber adapter group 4016.
- the second collimating lens group 4012 is located between the second laser chip group 4011 and the second combiner group 4013, the first reflector group 4014 is located between the second combiner group 4013 and the second focusing lens group 4015, and the second focusing lens group 4015 is located between the first reflector group 4014 and the second optical fiber adapter group 4016.
- the second laser chipset 4011 includes a plurality of laser chips arranged in parallel.
- the second laser chipset 4011 includes 8 laser chips arranged in parallel, and the laser chips are 100G EML chips.
- One 100G EML chip emits a 100G optical signal of one wavelength according to the driving current, so that the second laser chipset 4011 emits 8 100G optical signals of different wavelengths.
- the second collimating lens group 4012 includes a plurality of collimating lenses arranged in parallel.
- the second collimating lens group 4012 includes 8 collimating lenses arranged in parallel, and the collimating lenses are arranged corresponding to the laser chips.
- the 8 100G optical signals of different wavelengths emitted by the second laser chip group 4011 are collimated by the second collimating lens group 4012.
- the second combiner group 4013 includes a plurality of combiners arranged in parallel.
- the second combiner group 4013 includes two combiners arranged in parallel, and one combiner is arranged corresponding to four laser chips and four collimating lenses.
- the eight 100G collimated optical signals are combined into two 400G optical signals through the second combiner group 4013.
- the first reflector group 4014 includes a plurality of reflectors arranged in parallel.
- the first reflector group 4014 reflects the two 400G optical signals to the second focusing lens group 4015 respectively.
- the second focusing lens group 4015 includes a plurality of focusing lenses arranged in parallel.
- the second focusing lens group 4015 includes 2 focusing lenses.
- the second fiber adapter group 4016 includes a plurality of fiber adapters arranged in parallel.
- the second fiber adapter group 4016 includes two fiber adapters, and the reflector, focusing lens and fiber adapter are arranged correspondingly.
- the second focusing lens group 4015 focuses the two 400G optical signals to the second fiber adapter group 4016 respectively.
- the second optical emitting component 401 is very close to the optical port and the optical fiber connector group, the second optical fiber adapter group has a certain length, and the space between the second combiner group 4013 of the second optical emitting component 401 and the optical port is not enough to allow the second optical fiber adapter group 4016 to be arranged along the light emitting direction of the second combiner group 4013.
- the second optical fiber adapter group 4016 is placed obliquely along the light emitting direction of the second combiner group 4013.
- the second optical fiber adapter group 4016 is placed obliquely along the light output direction of the second combiner group 4013, and the optical signal output from the second combiner group 4013 cannot be coupled to the second optical fiber adapter group 4016.
- a first reflector group 4014 is disposed at the light output port of the second combiner group 4013. The first reflector group 4014 reflects the optical signal transmitted from the second combiner group 4013 and then outputs it to the second optical fiber adapter group 4016.
- the distance between the second fiber adapter group 4016 and the fiber connector group is still very close, and it is difficult to directly connect the second fiber adapter group 4016 and the fiber connector group through a shorter optical fiber in terms of process implementation. Therefore, the second fiber adapter group 4016 and the fiber connector group are connected through a longer optical fiber coil.
- the second transmitting optical fiber between the second fiber adapter group 4016 and the fiber connector group is coiled with ordinary optical fiber or general bending-insensitive optical fiber, which is easy to damage the second transmitting optical fiber, thereby causing a large light intensity loss.
- the radius of curvature of the second transmitting optical fiber is 2.5 mm. The 2.5 mm optical fiber enables fiber coiling in a very small space and ensures that a large light intensity loss is not introduced due to fiber bending.
- the radius of curvature of the second receiving optical fiber is 2.5 mm.
- the first storage element 600 has a snap-fit groove 601 and a snap-fit cavity 603 .
- the clamping groove 601 is disposed at one end of the first storage member 600 close to the circuit board 300.
- the clamping groove 601 is formed by the end surfaces of the two clamping arms 618 of the first storage member 600 being recessed inwards, and is configured to clamp the circuit board 300.
- the upper surface of the circuit board 300 close to the clamping groove 601 is provided with a second light receiving component 501.
- the snap-in cavity 603 is disposed at one end of the first storage piece 600 away from the circuit board 300.
- the snap-in cavity 603 is formed by the inward recess of the end surface of the first storage piece 600 away from the circuit board 300, and is configured to snap-in the optical fiber connector of the optical fiber connector group 800.
- the first optical fiber connector connected to the light emitting component is closer to the upper shell than the second optical fiber connector connected to the light receiving component.
- the second light emitting component 401 is located on the lower surface of the first storage component 600, and the lower surface of the first storage component 600 is closer to the lower shell. Therefore, the second transmitting optical fiber connecting the second light emitting component 401 and the first optical fiber connector needs to go from the lower surface of the first storage component 600 to the upper surface of the first storage component 600, and then connect to the corresponding first optical fiber connector.
- the second light receiving component 501 is located on the upper surface of the circuit board 300, and the upper surface of the circuit board 300 is closer to the upper shell. Therefore, the second receiving optical fiber connecting the second light receiving component 501 and the second optical fiber connector needs to go from the upper surface of the first storage component 600 to the lower surface of the first storage component 600, and then connect to the corresponding second optical fiber connector.
- the first placement piece 600 has a notch 602 and a hollowed-out area 604.
- the notch 602 is disposed on the side of the first storage element 600, and the notch 602 is formed by the inward depression of the side of the first storage element 600.
- the second receiving optical fiber passes through the notch 602 from the upper surface of the first storage element 600 to the lower surface of the first storage element 600.
- the hollow area 604 is connected to the snap-in cavity 603, and is configured to respectively connect the first transmitting optical fiber, the second transmitting optical fiber, the first receiving optical fiber, and the second receiving optical fiber to the corresponding optical fiber connectors of the optical fiber connector group 800, and is also configured to wrap the second transmitting optical fiber from one side of the first storage piece 600 to the other side of the first storage piece 600.
- the hollow area 604 includes a first sub-hollow area 6041 and a second sub-hollow area 6042, the first sub-hollow area 6041 is not connected to the second sub-hollow area 6042, the first sub-hollow area 6041 is configured to connect the first transmitting optical fiber and the first receiving optical fiber to the optical fiber connector corresponding to the optical fiber connector group 800, and the second sub-hollow area 6042 is configured to bypass the second transmitting optical fiber from one side of the first storage piece 600 to the other side of the first storage piece 600, and is also configured to connect the second transmitting optical fiber and the second receiving optical fiber to the optical fiber connector corresponding to the optical fiber connector group 800.
- the first storage member 600 has a seventh storage slot 609, an eighth storage slot 610, a ninth storage slot 611, a tenth storage slot 612, an eleventh storage slot 613, a third support protrusion 614, a twelfth storage slot 615 and a thirteenth storage slot 616.
- the seventh storage slot 609, the eighth storage slot 610, the ninth storage slot 611, the tenth storage slot 612, the eleventh storage slot 613, the twelfth storage slot 615 and the thirteenth storage slot 616 are all formed by the lower surface of the first storage member 600 being recessed inwardly.
- one end of the seventh storage slot 609 is connected to the notch 602, and the other end of the seventh storage slot 609 is connected to the ninth storage slot 611, and is configured to place the second receiving optical fiber.
- the second receiving optical fiber is wound from the upper surface of the first storage member 600 to the seventh storage slot 609 on the lower surface of the first storage member 600 through the notch 602.
- the lower surface of the first storage member 600 further has a second fiber coiling protrusion 617 .
- the second receiving optical fiber is coiled back and forth along the second fiber coiling protrusion 617 in the seventh storage groove 609 .
- one end of the eighth slot 610 is connected to the notch 602, and the other end of the eighth slot 610 is connected to the twelfth slot 615, which is also configured to place the second receiving optical fiber.
- the end of the eighth slot 610 connected to the notch 602 is more protruding than the end of the eighth slot 610 connected to the twelfth slot 615.
- the ninth placement groove 611 and the seventh placement groove 609 are respectively located on both sides of the lower surface of the first placement member 600, and the ninth placement groove 611 is configured to place the second laser chip group 4011 and the second collimating lens group 4012.
- One end of the ninth placement groove 611 is connected to the upper surface of the circuit board 300, and the other end of the ninth placement groove 611 is connected to the tenth placement groove 612.
- the seventh placement groove 609 is configured to place the second receiving optical fiber
- the ninth placement groove 611 is configured to place the second laser chip group 4011 and the second collimating lens group 4012.
- the ninth placement groove 611 is more recessed relative to the seventh placement groove 609.
- the ninth placement groove 611 is stepped, the low support surface of the ninth placement groove 611 is close to the tenth placement groove 612, the high support surface of the ninth placement groove 611 is close to the circuit board 300, the low support surface of the ninth placement groove 611 is used to place the second laser chipset group 4011 and the second collimating lens group 4012 through the TEC, and the high support surface of the ninth placement groove 611 is connected to the upper surface of the circuit board 300.
- the tenth storage slot 612 is configured to house the second combiner group 4013 .
- the lower support surface of the ninth placement slot 611 is configured to place the second laser chip group 4011 and the second collimating lens group 4012 through TEC, and the tenth placement slot 612 is configured as the second combiner group 4013, so the lower support surface of the ninth placement slot 611 is more concave than the tenth placement slot 612.
- one end of the eleventh placement slot 613 is connected to the tenth placement slot 612 , and the other end of the eleventh placement slot 613 is connected to the twelfth placement slot 615 .
- the eleventh placement slot 613 is configured to place the second focusing lens group 4015 .
- the third supporting protrusion 614 is located on the eleventh placement groove 613 , and the side surface of the third supporting protrusion 614 is configured to place a reflector of the first reflector group 4014 .
- the twelfth placement slot 615 is connected to the second sub-hollowed area 6042, and the twelfth placement slot 615 is configured to place the second optical fiber adapter group 4016. Since the second optical fiber adapter group 4016 is placed obliquely along the light emitting direction of the second combiner group 4013, the twelfth placement slot 615 where the second optical fiber adapter group 4016 is placed is obliquely arranged with the tenth placement slot 612 where the second combiner group 4013 is placed.
- the thirteenth slot 616 is located on the eleventh slot 613, the thirteenth slot 616 is not connected to the third support protrusion 614, and the side of the thirteenth slot 616 is configured to place another reflector of the first reflector group 4014.
- the side of the thirteenth slot 616 refers to the connecting surface of the thirteenth slot 616 and the eleventh slot 613.
- the two optical fiber adapters of the second optical fiber adapter group 4016 placed in the twelfth storage slot 615 are arranged in parallel, and the two combiners of the second combiner group 4013 placed in the tenth storage slot 612 are arranged in parallel.
- the two reflectors of the first reflector group 4014 used to reflect and couple the optical signal emitted by the second combiner group 4013 to the second optical fiber adapter group 4016 are arranged in parallel, and then the side surface of the thirteenth storage slot 616 for placing the reflector is parallel to the side surface of the third support protrusion 614.
- the height dimension of the fiber adapter of the second fiber adapter group 4016 is greater than the height dimension of the focusing lens of the second focusing lens group 4015. If the fiber adapter and the focusing lens are located in the same storage slot, the central axis of the fiber adapter is higher than the central axis of the focusing lens, and only a small amount of the optical signal can be coupled to the fiber adapter after being focused by the focusing lens. In order to improve the coupling efficiency, in some embodiments, the twelfth storage slot 615 for placing the second fiber adapter group 4016 is more recessed relative to the eleventh storage slot 613 for placing the second focusing lens group 4015.
- FIG16 is an optical path diagram of a second optical transmission component provided according to some embodiments of the present disclosure.
- the second laser chip group 4011 transmits 8 100G optical signals
- the 8 100G optical signals are collimated by the second collimating lens group 4012
- the second combiner group 4013 combines the collimated 8 100G optical signals into 2 400G optical signals
- the 2 400G optical signals are reflected to the second focusing lens group 4015 by the first reflector group 4014
- the second focusing lens group 4015 focuses the 2 400G optical signals to the second optical fiber adapter group 4016 respectively.
- FIG. 17 is an assembly diagram of the first placement member and the second light receiving member provided according to some embodiments of the present disclosure.
- FIG. 18 is an exploded diagram of the first placement member and the second light receiving member provided according to some embodiments of the present disclosure.
- the second light receiving member 501 includes a second fiber collimator group 5011, a second wave splitter 5012, a fourth focusing lens group 5013, a third reflector group 5014, and a second light receiving chip group 5015.
- the second wave splitter 5012 is located between the second fiber collimator group 5011 and the fourth focusing lens group 5013
- the third reflector group 5014 is located between the fourth focusing lens group 5013 and the second light receiving chip group 5015.
- the second fiber collimator group 5011 includes 1 fiber collimator, 1 fiber adapter, and 1 collimating lens.
- 1 fiber collimator is configured to collimate the received 400G optical signal
- 1 fiber adapter is configured to receive the 400G optical signal
- 1 collimating lens is configured to collimate the 400G optical signal received by the fiber adapter.
- 1 fiber adapter and 1 collimating lens are combined into 1 fiber collimator, and both the fiber collimator and the fiber collimator are configured to collimate the received 400G optical signal.
- the second fiber collimator group 5011 includes two fiber collimators, and the fiber collimators are configured to collimate the received 400G optical signal.
- the second fiber optic collimator group 5011 includes 2 fiber optic adapters and 2 collimating lenses, 1 fiber optic adapter and 1 collimating lens are set correspondingly, 1 fiber optic adapter and 1 collimating lens are combined into 1 fiber optic collimator, and the fiber optic collimator is configured to collimate the received 400G optical signal.
- the second fiber collimator group 5011 includes one fiber collimator, one fiber adapter and one collimating lens.
- the second optical fiber collimator group 5011 collimates the received 800G optical signals and then injects them into the second splitter 5012.
- the second splitter 5012 splits the 800G optical signal into eight 100G optical signals with different wavelengths.
- the fourth focusing lens group 5013 includes a plurality of focusing lenses arranged in parallel.
- the fourth focusing lens group 5013 includes 8 focusing lenses arranged in parallel, and the fourth focusing lens group 5013 is configured to focus 8 100G optical signals of different wavelengths onto the third reflector group 5014.
- the third reflector group 5014 includes a plurality of reflectors arranged in parallel.
- the third reflector group 5014 includes two reflectors arranged in parallel, and the third reflector group 5014 is configured to reflect the focused 8-channel 100G optical signals of different wavelengths to the second optical receiving chipset 5015.
- the second optical receiving chipset 5015 includes a plurality of optical receiving chips arranged in parallel.
- the second optical receiving chipset 5015 includes 8 optical receiving chips arranged in parallel, and the second optical receiving chipset 5015 is configured to convert 8 100G signals of different wavelengths into 8 100G electrical signals.
- the upper surface of the first storage piece 600 is recessed inward to form a fourth storage groove 605 , a fifth storage groove 606 , and a sixth storage groove 607 .
- one end of the fourth placement groove 605 is connected to the notch 602, and the upper surface of the other end of the fourth placement groove 605 is connected to the lower surface of the circuit board 300, and the fourth placement groove 605 is configured to place the second support plate 304. Since the length of the second support plate 304 is greater than the length of the fourth placement groove 605, the second light receiving component 501 is placed on the circuit board 300 and the fourth placement groove 605 through the second support plate 304.
- the fourth storage slot 605 is stepped, the lower support surface of the fourth storage slot 605 is close to the circuit board 300, the high support surface of the fourth storage slot 605 is close to the notch 602, the low support surface of the fourth storage slot 605 is connected to the lower surface of the circuit board 300, and the high support surface of the fourth storage slot 605 and the upper surface of the circuit board 300 are respectively connected to the lower surface of the second support plate 304.
- the fourth storage slot 605 and the ninth storage slot 611 are respectively located on the upper surface of the first storage member 600 and the lower surface of the first storage member 600, and are also located on both sides of the first storage member 600.
- the fourth storage slot 605 and the ninth storage slot 611 are partially overlapped.
- the overlapping part of the fourth storage slot 605 and the ninth storage slot 611 constitutes a sub-clip slot.
- One end of the circuit board 300 is clipped into the sub-clip slot and the clip slot 601, which increases the connection stability between the circuit board 300 and the first storage member 600 relative to the clipping of one end of the circuit board 300 into the clip slot 601.
- the fifth storage groove 606 and the fourth storage groove 605 are respectively located on both sides of the upper surface of the first storage element 600, and the fifth storage groove 606 is configured to place the first transmitting optical fiber and the first receiving optical fiber.
- the sixth storage slot 607 and the fourth storage slot 605 are both placed on one side of the upper surface of the first storage member 600, the sixth storage slot 607 is farther away from the circuit board 300 than the fourth storage slot 605, and the sixth storage slot 607 is configured to place the second transmitting optical fiber.
- the upper surface of the first storage member 600 further has a first fiber coiling protrusion 608.
- the second transmitting optical fiber is coiled back and forth along the first fiber coiling protrusion 608 in the sixth storage groove 607.
- the first fiber coiling protrusion 608 is shaped like a cylinder.
- the first transmitting optical fiber enters the first sub-hollow area 6041 along the fifth storage groove 606, and the first transmitting optical fiber is then connected to the corresponding first optical fiber connector.
- the first receiving optical fiber enters the first sub-hollow area 6041 along the fifth storage groove 606, and the first receiving optical fiber is then connected to the corresponding second optical fiber connector.
- the second transmitting optical fiber first passes through the hollow area 604 and goes around from the lower surface of the first storage piece 600 to the sixth storage groove 607 on the upper surface of the first storage piece 600.
- the second transmitting optical fiber then goes around the first fiber winding protrusion 608 between the hollow area 604 and the sixth storage groove 607 for several turns and then enters the second sub-hollow area 6042.
- the second transmitting optical fiber is finally connected to the corresponding optical fiber connector.
- the second receiving optical fiber first passes through the notch 602 and goes around from the upper surface of the first storage piece 600 to the seventh storage groove 609 on the lower surface of the first storage piece 600. After the second receiving optical fiber is coiled several times along the notch 602 and the second fiber coiling protrusion 617 of the seventh storage groove 609, one second receiving optical fiber goes along the eighth storage groove 610 into the second sub-hollow area 6042, and one second receiving optical fiber is finally connected to the corresponding optical fiber connector, and another second receiving optical fiber passes over the second light emitting component 401 and enters the second sub-hollow area 6042, and another second receiving optical fiber is finally connected to the corresponding optical fiber connector.
- FIG19 is an optical path diagram of a second optical receiving component provided according to some embodiments of the present disclosure.
- FIG20 is an optical path diagram of a second optical receiving component provided according to some embodiments of the present disclosure at another viewing angle.
- an 800G optical signal is collimated by a second optical fiber collimator group 5011, and the collimated 800G optical signal is divided into 8 100G optical signals by a second splitter 5012, and the 8 100G optical signals are focused by a fourth focusing lens group 5013, and the focused 8 100G optical signals are reflected by a third reflector group 5014 to a second optical receiving chip group 5015, and the second optical receiving chip group 5015 converts the 8 100G optical signals into 8 100G electrical signals.
- the optical path diagram of the first light receiving component may also be shown in FIG. 19 and FIG. 20 .
- the first light receiving component 500 includes a first fiber collimator group, a first wave splitter, a third focusing lens group, a second reflector group and a first light receiving chip group.
- the first wave splitter is located between the first fiber collimator group and the third focusing lens group
- the second reflector group is located between the third focusing lens group and the first light receiving chip group.
- the first fiber collimator set includes 1 fiber collimator, 1 fiber adapter, and 1 collimating lens.
- the first optical fiber collimator group collimates the received 800G optical signals and then injects them into the first splitter.
- the first splitter divides the 800G optical signal into eight 100G optical signals with different wavelengths.
- the third focusing lens group includes a plurality of focusing lenses arranged in parallel.
- the third focusing lens group includes 8 focusing lenses arranged in parallel, and the third focusing lens group is configured to focus 8 100G optical signals of different wavelengths onto the second reflector group.
- the second reflector group includes a plurality of reflectors arranged in parallel.
- the second reflector group includes two reflectors arranged in parallel, and the second reflector group is configured to reflect the focused 8-channel 100G optical signals of different wavelengths to the first optical receiving chipset.
- the first optical receiving chipset includes a plurality of optical receiving chips arranged in parallel.
- the first optical receiving chipset includes 8 optical receiving chips arranged in parallel, and the first optical receiving chipset is configured to convert 8 100G signals of different wavelengths into 8 100G electrical signals.
- the 800G optical signal is collimated by the first optical fiber collimator group, and the collimated 800G optical signal is divided into 8 100G optical signals by the first splitter.
- the 8 100G optical signals are focused by the third focusing lens group, and the focused 8 100G optical signals are reflected to the first optical receiving chip group by the second reflector group.
- the first optical receiving chip group converts the 8 100G optical signals into 8 100G electrical signals.
- the optical module includes a circuit board, a first DSP chip, a second DSP chip, a first placement piece, a first optical transmitting component, a first optical receiving component, a second optical transmitting component, and a second optical receiving component.
- a card connection cavity is provided at one end of the first placement piece away from the circuit board, and an optical fiber connector group is provided in the card connection cavity.
- a card connection groove is provided at one end of the first placement piece facing the circuit board, and the circuit board is carded at the card connection groove.
- the first DSP chip and the second DSP chip are both provided on the upper surface of the circuit board, and are configured to process 800G signals with the second DSP chip.
- the circuit board is provided with a through hole.
- the first optical transmitting component is carded at the through hole through the second placement piece, connected to the first DSP chip, and configured to transmit an 800G optical signal.
- the first optical receiving component is located on the upper surface of the circuit board, connected to the first DSP chip, and configured to receive an 800G optical signal.
- the second optical transmitting component is located on the lower surface of the first placement piece, connected to the second DSP chip, and configured to transmit an 800G optical signal.
- the second optical receiving component is located on the upper surface of the circuit board, connected to the second DSP chip, and configured to receive an 800G optical signal.
- the first DSP chip is connected to the first optical emitting component, so that the first optical emitting component emits an 800G optical signal; the first DSP chip is connected to the first optical receiving component, the first optical receiving component converts the received 800G optical signal into an 800G electrical signal, and the first DSP chip processes the 800G electrical signal, so that the transmission rate of the optical module reaches 800G.
- the second DSP chip is connected to the second optical emitting component, so that the second optical emitting component emits an 800G optical signal; the second DSP chip is connected to the second optical receiving component, the second optical receiving component converts the received 800G optical signal into an 800G electrical signal, and the second DSP chip processes the 800G electrical signal, so that the transmission rate of the optical module reaches 800G.
- the optical module includes a first DSP chip and a second DSP chip, the first DSP chip is connected to the first optical emitting component and the first optical receiving component respectively, and the second DSP chip is connected to the second optical emitting component and the second optical receiving component respectively, so that the transmission rate of the optical module reaches 1.6T.
- the second light emitting component and the second light receiving component are very close to the optical fiber connector group, the second light emitting component and the second light receiving component are connected to the optical fiber connector group by a short optical fiber. There are difficulties in the process of fiber direct connection. Therefore, the second optical emitting component and the second optical receiving component are connected to the optical fiber connector group through a long optical fiber coil.
- the second transmitting optical fiber between the second optical fiber adapter group and the optical fiber connector group is coiled with ordinary optical fiber or general bending-insensitive optical fiber, which is easy to damage the second transmitting optical fiber, thereby causing a large light intensity loss.
- the second transmitting optical fiber and the second receiving optical fiber with a very small curvature radius can realize the coiling in a very small space, and ensure that there is no large light intensity loss due to the bending of the optical fiber.
- the first placement member is provided with a notch and a hollow area. The notch is located on the side of the first placement member so that the second receiving optical fiber can be wound from one side of the first placement member to the other side of the first placement member.
- the hollowed-out area is connected to the snap-in cavity so that the second transmitting optical fiber can be wound from one side of the first storage part to the other side of the first storage part.
- the second transmitting optical fiber is wound along the hollowed-out area from the lower surface of the first storage part to the upper surface of the first storage part, and is connected to the corresponding optical fiber connector.
- the second receiving optical fiber is wound along the notch from the lower surface of the first storage part to the lower surface of the first storage part, and is connected to the corresponding optical fiber connector.
- the radius of curvature of the second transmitting optical fiber and the second receiving optical fiber is extremely small, and the notch and the hollowed-out area on the first storage part realize the connection between the second light emitting component and the second light receiving component and the optical fiber connector group through optical fiber, thereby greatly simplifying the mechanical structure and optical path structure of the second light emitting component and the second light receiving component, greatly improving the assembly efficiency, and improving the optical performance and reliability of the optical module.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
一种光模块(200),包括电路板(300)、第一置物件(600)、第二置物件(900)、第一数字信号处理芯片(301)、第二数字信号处理芯片(302)、第一光发射部件(400)、第一光接收部件(500)、第二光发射部件(401)和第二光接收部件(501)。第一光发射部件(400),位于第二置物件(900)上,和位于电路板(300)上表面的第一光接收部件(500)均与第一数字信号处理芯片(301)连接。第二光发射部件(401),位于第一置物件(600)的下表面,和位于电路板(300)上表面的第二光接收部件(501)均与第二数字信号处理芯片(302)连接。第一置物件(600)设有缺口(602)和挖空区域(604)。第二接收光纤经缺口(602)由第一置物件(600)一面绕至另一面,第二发射光纤经挖空区域(604)由第一置物件(600)一面绕至另一面,实现第二光发射部件(401)和第二光接收部件(501)与光纤连接器组(800)之间通过光纤连接,其中,第二接收光纤为连接光纤连接器组(800)与第二光接收部件(501)的光纤。第二发射光纤为连接光纤连接器组(800)与第二光发射部件(401)的光纤。
Description
本申请要求在2023年2月28日提交中国专利局、申请号为202310182579.7的优先权,其全部内容通过引用结合在本申请中。
本公开涉及光通信技术领域,尤其涉及一种光模块。
随着云计算、移动互联网、视频等新型业务和应用模式的发展,光通信技术的进步变得愈加重要。在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一,并且在光通信技术发展的同时,要求光模块的传输速率不断提高。
发明内容
本公开一些实施例提供了一种光模块,包括电路板、第一置物件、第二置物件、第一数字信号处理芯片、第二数字信号处理芯片、第一光发射部件、第一光接收部件、第二光发射部件和第二光接收部件。电路板设置有通孔。第一置物件一端卡接于电路板。其中,第一置物件具有卡接槽、缺口、卡接腔、挖空区域、第四置物槽、第五置物槽和第六置物槽。卡接槽,位于第一置物件靠近电路板的一端,被配置为卡接于电路板。缺口,位于第一置物件的侧边,以使第二接收光纤由第一置物件的一面绕至第一置物件的另一面。第二接收光纤为连接光纤连接器组与第二光接收部件的光纤。卡接腔,位于第一置物件远离电路板的一端,被配置为卡接光纤连接器组。挖空区域,与卡接腔连通,以使第二发射光纤由第一置物件的一面绕至第一置物件的另一面。第二发射光纤为连接光纤连接器组与第二光发射部件的光纤。第九置物槽,一端与电路板的上表面连接。第十置物槽,一端与第九置物槽的另一端连通。第十一置物槽,一端与第十置物槽的另一端连通。第十二置物槽,与第十置物槽倾斜设置,第十二置物槽的一端与第十一置物槽连通,第十二置物槽的另一端与挖空区域连通。第三支撑凸起,位于第十一置物槽上。第十三置物槽,位于第十一置物槽上,与第三支撑凸起不连接。第二置物件,卡接于通孔处。第一数字信号处理芯片与第二数字信号处理芯片均设置于电路板的上表面,第一数字信号处理芯片与第二数字信号处理芯片均集成有跨阻放大芯片。第一光发射部件,设置于第二置物件上,与第一数字信号处理芯片连接,被配置为发射光信号。第一光接收部件,位于电路板上表面,与第一数字信号处理芯片连接,被配置为接收光信号。第二光发射部件,位于第一置物件的下表面,与第二数字信号处理芯片连接,被配置为发射光信号。第二光接收部件,位于电路板上表面,与第二数字信号处理芯片连接,被配置为接收光信号。
为了更清楚地说明本公开实施例的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并不是对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据本公开一些实施例提供的一种光通信系统的部分结构图;
图2为根据本公开一些实施例提供的一种上位机的局部结构图;
图3为根据本公开一些实施例提供的一种光模块的结构图;
图4为根据本公开一些实施例提供的一种光模块的分解图;
图5为根据本公开一些实施例提供的除去上壳体、下壳体和卡接件的光模块的俯视图;
图6为根据本公开一些实施例提供的除去上壳体、下壳体和卡接件的光模块的仰视图;
图7为根据本公开一些实施例提供的除去上壳体、下壳体和卡接件的光模块的分解图;
图8为根据本公开一些实施例提供的除去上壳体、下壳体和卡接件的光模块的剖视图;
图9为根据本公开一些实施例提供的第一光发射部件与第二置物件的组装图;
图10为根据本公开一些实施例提供的第二置物件的结构图;
图11为根据本公开一些实施例提供的第一光发射部件的光路图;
图12为根据本公开一些实施例提供的第一光发射部件在另一视角下的光路图;
图13为根据本公开一些实施例提供的除去上壳体、下壳体和卡接件的光模块在另一个视角下的剖视图;
图14为根据本公开一些实施例提供的第一置物件与第二光发射部件的组装图;
图15为根据本公开一些实施例提供的第一置物件的结构图;
图16为根据本公开一些实施例提供的第二光发射部件的光路图;
图17为根据本公开一些实施例提供的第一置物件与第二光接收部件的组装图;
图18为根据本公开一些实施例提供的第一置物件与第二光接收部件的分解图;
图19为根据本公开一些实施例提供的第二光接收部件的光路图;
图20为根据本公开一些实施例提供的第二光接收部件在另一个视角下的光路图。
在光通信技术中,为了在信息处理设备之间建立信息传递,需要将信息加载到光上,利用光的传播实现信息的传递。这里,加载有信息的光就是光信号。光信号在信息传输设备中传输时可以减少光功率的损耗,因此可以实现高速度、远距离、低成本的信息传递。信息处理设备能够识别和处理的信号是电信号。信息处理设备通常包括光网络终端(Optical Network Unit,ONU)、网关、路由器、交换机、手机、计算机、服务器、平板电脑、电视机等,信息传输设备通常包括光纤及光波导等。
光模块可以实现信息处理设备与信息传输设备之间的光信号与电信号的相互转换。例如,光模块的光信号输入端或光信号输出端中的至少一个连接有光纤,光模块的电信号输入端或电信号输出端中的至少一个连接有光网络终端;来自光纤的第一光信号传输至光模块,光模块将该第一光信号转换为第一电信号,并将该第一电信号传输至光网络终端;来自光网络终端的第二电信号传输至光模块,光模块将该第二电信号转换为第二光信号,并将该第二光信号传输至光纤。由于多个信息处理设备之间可以通过电信号进行信息传输,因此,需要多个信息处理设备中的至少一个信息处理设备直接与光模块连接,而无需所有的信息处理设备直接与光模块连接。这里,直接连接光模块的信息处理设备被称为光模块的上位机。另外,光模块的光信号输入端或光信号输出端可被称为光口,光模块的电信号输入端或电信号输出端可被称为电口。
图1为根据本公开一些实施例提供的一种光通信系统的部分结构图。如图1所示,光通信系统主要包括远端信息处理设备1000、本地信息处理设备2000、上位机100、光模块200、光纤101以及网线103。
光纤101的一端向远端信息处理设备1000的方向延伸,且光纤101的另一端通过光模块200的光口与光模块200连接。光信号可以在光纤101中全反射,且光信号在全反射方向上的传播几乎可以维持原有光功率,光信号在光纤101中发生多次的全反射,以将来自远端信息处理设备1000的光信号传输至光模块200中,或将来自光模块200的光信号传输至远端信息处理设备1000,从而实现远距离、低功率损耗的信息传递。
光通信系统可以包括一根或多根光纤101,且光纤101与光模块200可拆卸连接,或固定连接。上位机100被配置为向光模块200提供数据信号,或从光模块200接收数据信号,或对光模块200的工作状态进行监测或控制。
上位机100包括大致呈长方体的壳体(housing),以及设置在该壳体上的光模块接口102。光模块接口102被配置为接入光模块200,以使上位机100与光模块200建立单向或双向的电信号连接。
上位机100还包括对外电接口,该对外电接口可以接入电信号网络。例如,该对外电接口包括通用串行总线接口(Universal Serial Bus,USB)或网线接口104,网线接口104被配置为接入网线103,以使上位机100与网线103建立单向或双向的电信号连接。网线103的一端连接本地信息处理设备2000,且网线103的另一端连接上位机100,以通过网线103在本地信息处理设备2000与上位机100之间建立电信号连接。例如,本地信息处理设备2000发出的第三电信号通过网线103传入上位机100,上位机100根据该第三电信号生成第二电信号,来自上位机100的该第二电信号传输至光模块200,光模块200将该第二电信号转换为第二光信号,并将该第二光信号传输至光纤101,该第二光信号在光纤101中传输至远端信息处理设备1000。例如,来自远端信息处理设备1000的第一光信号通过光纤101传播,来自光纤101的第一光信号传输至光模块200,光模块200将该第一光信号转换为第一电信号,光模块200将该第一电信号传输至上位机100,上位机100根据该第一电信号生成第四电信号,并将该第四电信号传入本地信息处理设备2000。需要说明的是,光模块是实现光信号与电信号相互
转换的工具,在上述光信号与电信号的转换过程中,信息并未发生变化,信息的编码和解码方式可以发生变化。
上位机100除了包括光网络终端之外,还包括光线路终端(Optical Line Terminal,OLT)、光网络设备(Optical Network Terminal,ONT)、或数据中心服务器等。
图2为根据本公开一些实施例提供的一种上位机的局部结构图。为了清楚地显示光模块200与上位机100的连接关系,图2仅示出了上位机100的与光模块200相关的结构。如图2所示,上位机100还包括设置于壳体内的PCB电路板105、设置在PCB电路板105的表面的笼子106、设置于笼子106上的散热器107、以及设置于笼子106内部的电连接器。该电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起结构。
光模块200插入上位机100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而使光模块200与上位机100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接。
图3为根据本公开一些实施例提供的一种光模块的结构图。图4为根据本公开一些实施例提供的一种光模块的分解图。如图3和图4所示,光模块200包括壳体(shell)、设置于壳体内的电路板300、光发射部件和光接收部件。但本公开并不局限于此,在一些实施例中,光模块200包括光发射部件和光接收部件之一。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口204和205的上述壳体;壳体的外轮廓一般呈现方形体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,盖板2011盖合在下壳体202的两个下侧板2022上,以形成上述壳体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,以及位于盖板2011两侧、与盖板2011垂直设置的两个上侧板,由两个上侧板与两个下侧板2022结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。例如,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电口,电路板300的金手指从电口伸出,插入上位机100的电连接器中;开口205为光口,被配置为接入外部的光纤101,以使光纤101连接光模块200中的光发射部件与光接收部件。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光发射部件、光接收部件等安装到上述壳体中,由上壳体201、下壳体202可以对上述器件进行封装保护。此外,在装配电路板300、光发射部件与光接收部件等时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化地实施生产。
在一些实施例中,上壳体201及下壳体202采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外部的解锁部件203。解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
例如,解锁部件203位于下壳体202的两个下侧板2022的外侧,包括与上位机100的笼子106匹配的卡合部件。当光模块200插入笼子106中时,由解锁部件203的卡合部件将光模块200固定在笼子106中;拉动解锁部件203时,解锁部件203的卡合部件随之移动,从而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的固定,从而可以将光模块200从笼子106中抽出。
电路板300包括电路走线、电子元件及芯片等,通过电路走线将电子元件和芯片按照电路设计连接,以实现供电、电信号传输及接地等功能。电子元件例如可以包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如可以包括微控制单元(Microcontroller Unit,MCU)、激光驱动芯片、跨阻放大器(Transimpedance Amplifier,TIA)、限幅放大器(limiting amplifier)、时钟数据恢复芯片(Clock and Data Recovery,CDR)、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载上述电子元件和芯片;硬性电路板还可以插入上位机100的笼子106中的电连接器中。
电路板300还包括形成在其端部表面的金手指,金手指由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指与笼子106内的电连接器导通。金手指可以仅设置在电路板300一侧的表面(例如图4所示的
上表面),也可以设置在电路板300上下两侧的表面,以提供更多数量的引脚,从而适应引脚数量需求大的场合。金手指被配置为与上位机建立电连接,以实现供电、接地、二线制同步串行(Inter-Integrated Circuit,I2C)信号传递、数据信号传递等。当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。
光发射部件或光接收部件中的至少一个位于电路板300的远离金手指的一侧。
在一些实施例中,光发射部件及光接收部件分别与电路板300物理分离,然后分别通过相应的柔性电路板或电连接件与电路板300电连接。
在一些实施例中,光发射部件或光接收部件中的至少一个可以直接设置在电路板300上。例如,光发射部件或光接收部件中的至少一个可以设置在电路板300的表面或电路板300的侧边。
在一些实施例中,光发射部件包括第一光发射部件400,第一光发射部件400被配置为发射光信号。
在一些实施例中,第一光发射部件400包括多个激光芯片,激光芯片用于发射光信号。
单个激光芯片可以是电吸收调制激光器(Electroabsorption Modulated Lasers,EML)芯片,也可以是大功率分布式反馈激光器(Distributed Feedback Laser,DFB)芯片。
单个激光芯片发射25G光信号,或者50G光信号,或者100G光信号,或者200G光信号,或者其他传输速率的光信号。
在一些实施例中,单个激光芯片发射25G光信号,包括多个激光芯片的第一光发射部件400发射多个*25G光信号。
在一些实施例中,单个激光芯片发射50G光信号,包括多个激光芯片的第一光发射部件400发射多个*50G光信号。
在一些实施例中,单个激光芯片发射100G光信号,包括多个激光芯片的第一光发射部件400发射多个*100G光信号。
在一些实施例中,单个激光芯片发射200G光信号,包括多个激光芯片的第一光发射部件400发射多个*200G光信号。
示例地,单个激光芯片发射100G光信号,包括8个激光芯片的第一光发射部件400发射800G光信号。
在一些实施例中,光接收部件包括第一光接收部件500和第二光接收部件501。第一光接收部件500位于电路板300的上表面,被配置为接收光信号。第二光接收部件501位于电路板300的上表面,被配置为接收光信号。
在一些实施例中,第一光接收部件500通过第一支撑板位于电路板300的上表面,第二光接收部件501通过第二支撑板位于电路板300的上表面。
在一些实施例中,第一光接收部件500和第二光接收部件501均包括多个光接收芯片,单个光接收芯片接收25G光信号,或者50G光信号,或者100G光信号,或者200G光信号,或者其他传输速率的光信号。
在一些实施例中,单个光接收芯片接收25G光信号,包括多个光接收芯片的第一光接收部件500和第二光接收部件501均接收多个*25G光信号。
在一些实施例中,单个光接收芯片发射50G光信号,包括多个光接收芯片的第一光接收部件500和第二光接收部件501均接收多个*50G光信号。
在一些实施例中,单个光接收芯片发射100G光信号,包括多个光接收芯片的第一光接收部件500和第二光接收部件501均接收多个*100G光信号。
在一些实施例中,单个光接收芯片发射200G光信号,包括多个光接收芯片的第一光接收部件500和第二光接收部件501均接收多个*200G光信号。
示例地,单个光接收芯片接收100G光信号,包括8个光接收芯片的第一光接收部件500和第二光接收部件501均接收800G光信号。
如图4所示,在一些实施例中,壳体内靠近光口处设置有第一置物件600,第一置物件600朝向电路板300的一端具有卡接槽,卡接槽被配置为卡接电路板300。
第一置物件600不仅具有卡接电路板300的卡接槽,还具有置物槽。置物槽被配置为放置第一发射光纤、第一接收光纤和第二接收光纤。其中,第一光发射部件400与光纤连接器组800之间的光纤为第一发射光纤,第一光接收部件500与光纤连接器组800之间的光纤为第一接收光纤,第二光接收部件501与光纤连接器组800之间的光纤为第二接收光纤。
如图4所示,在一些实施例中,壳体内还具有卡接件700。卡接件700相对于第一置物件600更靠近光口,
卡接件700具有卡接腔。卡接腔被配置为卡接光纤连接器组800。
在一些实施例中,光纤连接器组800包括多个第一光纤连接器和多个第二光纤连接器,第一光纤连接器为与光发射部件连接的光纤连接器,第二光纤连接器为与光接收部件连接的光纤连接器,第一光纤连接器与光发射部件对应设置,第二光纤连接器与光接收部件对应设置。
图5为根据本公开一些实施例提供的除去上壳体、下壳体和卡接件的光模块的俯视图。如图4和图5所示,光纤连接器组800包括4个第一光纤连接器和4个第二光纤连接器,4个第二光纤连接器并列设置,4个第一光纤连接器也并列设置,4个第二光纤连接器和4个第一光纤连接器堆叠放置,4个第二光纤连接器相对于4个第一光纤连接器更靠近下壳体。
如图4和图5所示,在一些实施例中,电路板300上表面设置有第一DSP芯片301和第二DSP芯片302,第二DSP芯片302相对于第一DSP芯片301更靠近光口。第一DSP芯片301和第二DSP芯片302分别对800G电信号进行处理,从而使光模块的传输速率达到1.6T。
在一些实施例中,第一DSP芯片301分别与第一光发射部件400及第一光接收部件500连接,第一DSP芯片301集成有激光驱动芯片。
上位机通过金手指将800G电信号传输至第一DSP芯片301,第一DSP芯片301将800G电信号处理,激光驱动芯片根据处理后的800G电信号发出驱动电流,第一光发射部件400接收驱动电流后发射800G光信号。第一光接收部件500将接收到的800G光信号转化为800G电信号,第一DSP芯片301将800G电信号处理,处理后的800G电信号经金手指传输至上位机。
第一DSP芯片处理经金手指传输至的800G电信号,以使第一光发射部件发射800G光信号,第一DSP芯片处理经第一光接收部件转化的800G电信号,以使光模块的传输速率达到800G。
图6为根据本公开一些实施例提供的除去上壳体、下壳体和卡接件的光模块的仰视图。如图6所示,在一些实施例中,第一置物件600的下表面设置有第二光发射部件401。
在一些实施例中,第二光发射部件401包括多个激光芯片,激光芯片用于发射光信号。
单个激光芯片可以是电吸收调制激光器(Electroabsorption Modulated Lasers,EML)芯片,也可以是大功率分布式反馈激光器(Distributed Feedback Laser,DFB)芯片。
单个激光芯片发射25G的光信号,或者50G的光信号,或者100G的光信号,或者200G的光信号,或者其他传输速率的光信号。
在一些实施例中,单个激光芯片发射25G的光信号,包括多个激光芯片的第二光发射部件401发射多个*25G的光信号。
在一些实施例中,单个激光芯片发射50G的光信号,包括多个激光芯片的第二光发射部件401发射多个*50G的光信号。
在一些实施例中,单个激光芯片发射100G的光信号,包括多个激光芯片的第二光发射部件401发射多个*100G的光信号。
在一些实施例中,单个激光芯片发射200G的光信号,包括多个激光芯片的第二光发射部件401发射多个*200G的光信号。
第二光发射部件401离第一光纤连接器的距离较近,若第二光发射部件401与第一光纤连接器之间采用自由光学方式传输光信号,需要对光路做多次折返,导致光路非常复杂,部件数量增多,装配工艺复杂。为了避免这些问题,在一些实施例中,第二光发射部件401与第一光纤连接器之间采用光纤耦合方式传输光信号。第二光发射部件401与第一光纤连接器之间采用光纤耦合方式传输光信号,极大简化了光路,减少了部件数量,简化装配工艺。其中,自由光学方式指的是光发射部件与光纤连接器之间由光学器件实现光信号传输,光纤耦合方式指的是光发射部件与光纤连接器之间利用光纤实现光信号传输。
第一光发射部件400与光纤连接器之间也采用光纤耦合方式实现光信号传输。
如图5和图6所示,在一些实施例中,第二DSP芯片302分别与第二光发射部件401及第二光接收部件501连接,第二DSP芯片302集成有激光驱动芯片。
上位机通过金手指将800G电信号传输至第二DSP芯片302,第二DSP芯片302将800G电信号处理,激光驱动芯片根据处理后的800G电信号发出驱动电流,第二光发射部件401接收驱动电流后发射800G光信号。第二光接收部件501将接收到的800G光信号转化为800G电信号,第二DSP芯片302将800G电信号处理,处理后的800G电信号经金手指传输至上位机。
第二DSP芯片处理经金手指传输至的800G电信号,以使第二光发射部件发射800G光信号,第二DSP芯片处理经第二光接收部件转化的800G电信号,以使光模块的传输速率达到800G。
在一些实施例中,光模块内包括第一DSP芯片和第二DSP芯片,第一DSP芯片分别与第一光发射部件及第一光接收部件连接,第二DSP芯片分别与第二光发射部件及第二光接收部件连接,使得光模块的传输速率达到1.6T。
在一些实施例中,第一DSP芯片301和第二DSP芯片302均集成有跨阻放大器(Trans-Impedance Amplifier,TIA)芯片。
800G光信号经第一光接收部件500转化为800G电流信号后,800G电流信号经跨阻放大器芯片转化为800G电压信号,800G电压信号经第一DSP芯片301处理,处理后的800G电信号经金手指传输至上位机。
800G光信号经第二光接收部件501转化为800G电流信号后,800G电流信号经TIA芯片转化为800G电压信号,800G电压信号经第二DSP芯片302处理,处理后的800G电信号经金手指传输至上位机。
第一DSP芯片301和第二DSP芯片302均集成有TIA芯片,为TIA芯片供电的供电电路也可为第一DSP芯片301和第二DSP芯片302内的其他器件供电,减少了DSP芯片内部的供电电路,有效降低功耗。
如图5和6所示,在一些实施例中,第一光发射部件400和第二光发射部件401均采用100G EML芯片作为光发射芯片,第一光发射部件400包括并列放置的8个100G EML芯片,第二光发射部件401也包括并列放置的8个100G EML芯片,第一光发射部件400相对于第二光发射部件401更靠近电口。
由于8个100G EML芯片并排放置已占用很大空间,无法将16个100G EML芯片放置在同一排。为了使光模块200容纳16个100G EML芯片,第一光发射部件400与第二光发射部件401沿着电路板300的方向错开放置,在一些实施例中,第一光发射部件400相对于第二光发射部件401更靠近电口。
如图6所示,在一些实施例中,壳体内还设置有第二置物件900。第二置物件900卡合于电路板300的通孔处,被配置为放置第一光发射部件400。
图7为根据本公开一些实施例提供的除去上壳体、下壳体和卡接件的光模块的分解图。如图7所示,在一些实施例中,电路板300具有通孔303。第二置物件900卡合于通孔303处。
图8为根据本公开一些实施例提供的除去上壳体、下壳体和卡接件的光模块的剖视图。图9为根据本公开一些实施例提供的第一光发射部件与第二置物件的组装图。图10为根据本公开一些实施例提供的第二置物件的结构图。如图8、图9和图10所示,在一些实施例中,第一光发射部件400包括第一激光芯片组4001、第一准直透镜组4002、第一位移棱镜4003、第一合波器组4004、第一聚焦透镜组4005和第一光纤适配器组4006。第一准直透镜组4002位于第一激光芯片组4001和第一位移棱镜4003之间,第一合波器组4004位于第一位移棱镜4003与第一聚焦透镜组4005之间,第一聚焦透镜组4005位于第一合波器组4004与第一光纤适配器组4006之间。
在一些实施例中,第一激光芯片组4001包括多个并列设置的激光芯片。示例地,第一激光芯片组4001包括8个并列设置的激光芯片,该激光芯片为100G EML芯片。1个100G EML芯片根据驱动电流发射一路100G光信号,以使第一激光芯片组4001发射8路不同波长的100G光信号,即第一激光芯片组4001发射800G光信号。
在一些实施例中,第一准直透镜组4002包括多个并列设置的准直透镜。示例地,第一准直透镜组4002包括8个并列设置的准直透镜,准直透镜与激光芯片对应设置。第一激光芯片组4001发射的8路不同波长的100G光信号经第一准直透镜组4002准直。
第一位移棱镜4003被配置为对8路100G准直光信号进行位移,以使准直后的8路100G光信号入射至第一合波器组4004。
在一些实施例中,第一合波器组4004包括多个并列设置的合波器。示例地,第一合波器组4004包括2个并列设置的合波器,1个合波器与4个激光芯片、4个准直透镜对应设置。8路100G准直光信号经第一合波器组4004合为2路400G光信号。
在一些实施例中,第一聚焦透镜组4005包括多个并列设置的聚焦透镜。示例地,第一聚焦透镜组4005包括2个并列设置的聚焦透镜。
在一些实施例中,第一光纤适配器组4006包括多个并列设置的光纤适配器。示例地,第一光纤适配器组4006包括2个并列设置的光纤适配器,合波器、聚焦透镜和光纤适配器对应设置。第一聚焦透镜组4005将2路400G光信号分别聚焦至第一光纤适配器组4006。
如图8、图9和图10所示,在一些实施例中,第二置物件900的上表面向内凹陷形成第一置物槽901、第二置物槽902和第三置物槽903,第一置物槽901、第二置物槽902和第三置物槽903呈阶梯状,第一置物槽901、
第二置物槽902和第三置物槽903的凹陷程度依次减弱。
在一些实施例中,第一置物槽901朝向电路板300的一端与电路板300的下表面连接。
为了尽量缩短激光芯片与电路板300之间的打线距离,在一些实施例中,第一激光芯片组4001放置于第一置物槽901内。
为了使第一激光芯片组4001发射的光信号尽可能多的耦合至第一准直透镜组4002内,需要将第一激光芯片组4001出光口与第一准直透镜组4002的中心轴线重合,在一些实施例中,第一激光芯片组4001与第一准直透镜组4002均放置于第一置物槽901内。
为了便于控制第一激光芯片组4001的温度,需要在第一激光芯片组4001下方设置有半导体制冷器(Thermoelectric cooler,TEC)。为了尽量缩短激光芯片与电路板300之间的打线距离,在一些实施例中,第一置物槽901继续向内凹陷形成置物腔9011,第一激光芯片组4001和第一准直透镜组4002经TEC放置于置物腔9011内。
第一准直透镜组4002准直后的光信号沿着电路板300的通孔303传输。为了使第一合波器组4004接收到光信号,在一些实施例中,第一合波器组4004放置于第一置物槽901内。
将第一合波器组4004放置于第一置物槽901内,虽然无需再设置位移棱镜,但需要扩大通孔303的面积。为了减少电路板300的通孔303的面积,在一些实施例中,第一合波器组4004放置于第三置物槽903内,第一位移棱镜4003放置于第二置物槽902内。其中,第一合波器组4004的中心轴线高于第一准直透镜组4002的中心轴线。
第三置物槽903内除了设置有第一合波器组4004,还设置有第一聚焦透镜组4005和第一光纤适配器组4006。
在一些实施例中,第三置物槽903具有第一子置物槽9031、第二子置物槽9032和限位块9033。第一子置物槽9031和第二子置物槽9032均由第三置物槽903向内凹陷形成。第一子置物槽9031相对于第二子置物槽9032更靠近第二置物槽902,被配置为放置第一合波器组4004。第二子置物槽9032相对于第一子置物槽9031更凹陷,被配置为放置第一光纤适配器组4006。两个限位块9033位于第一子置物槽9031的两侧,被配置为将第一合波器组4004限定于第一子置物槽9031内。
如图8、图9和图10所示,在一些实施例中,第二置物件900的下表面向内凹陷形成连接槽904,连接槽904与电路板300的上表面连接。
图11为根据本公开一些实施例提供的第一光发射部件的光路图。图12为根据本公开一些实施例提供的第一光发射部件在另一视角下的光路图。如图11和图12所示,在一些实施例中,第一激光芯片组4001发射8路100G光信号,8路100G光信号经第一准直透镜组4002准直,准直后的8路100G光信号经第一位移棱镜4003改变位置后入射至第一合波器组4004,第一合波器组4004将改变位置后的8路100G光信号合为2路400G光信号,2路400G光信号经第一聚焦透镜组4005聚焦耦合至第一光纤适配器组4006。
图13为根据本公开一些实施例提供的除去上壳体、下壳体和卡接件的光模块在另一个视角下的剖视图。图14为根据本公开一些实施例提供的第一置物件与第二光发射部件的组装图。图15为根据本公开一些实施例提供的第一置物件的结构图。如图13、图14和图15所示,在一些实施例中,第二光发射部件401包括第二激光芯片组4011、第二准直透镜组4012、第二合波器组4013、第一反射镜组4014、第二聚焦透镜组4015和第二光纤适配器组4016。第二准直透镜组4012位于第二激光芯片组4011和第二合波器组4013之间,第一反射镜组4014位于第二合波器组4013与第二聚焦透镜组4015之间,第二聚焦透镜组4015位于第一反射镜组4014与第二光纤适配器组4016之间。
在一些实施例中,第二激光芯片组4011包括多个并列设置的激光芯片。示例地,第二激光芯片组4011包括8个并列设置的激光芯片,该激光芯片为100G EML芯片。1个100G EML芯片根据驱动电流发射一个波长的100G光信号,以使第二激光芯片组4011发射8路不同波长的100G光信号。
在一些实施例中,第二准直透镜组4012包括多个并列设置的准直透镜。示例地,第二准直透镜组4012包括8个并列设置的准直透镜,准直透镜与激光芯片对应设置。第二激光芯片组4011发射的8路不同波长的100G光信号经第二准直透镜组4012准直。
在一些实施例中,第二合波器组4013包括多个并列设置的合波器。示例地,第二合波器组4013包括2个并列设置的合波器,1个合波器与4个激光芯片、4个准直透镜对应设置。8路100G准直光信号经第二合波器组4013合为2路400G光信号。
在一些实施例中,第一反射镜组4014包括多个并列设置的反射镜。示例地,第一反射镜组4014包括2个反
射镜,反射镜与合波器对应设置。第一反射镜组4014将2路400G光信号分别反射至第二聚焦透镜组4015。
在一些实施例中,第二聚焦透镜组4015包括多个并列设置的聚焦透镜。示例地,第二聚焦透镜组4015包括2个聚焦透镜。
在一些实施例中,第二光纤适配器组4016包括多个并列设置的光纤适配器。示例地,第二光纤适配器组4016包括2个光纤适配器,反射镜、聚焦透镜和光纤适配器对应设置。第二聚焦透镜组4015将2路400G光信号分别聚焦至第二光纤适配器组4016。
第二光发射部件401离光口及光纤连接器组的距离很近,第二光纤适配器组具有一定长度,第二光发射部件401的第二合波器组4013与光口之间的空间不足以让第二光纤适配器组4016沿着第二合波器组4013的出光方向设置。为了将第二光纤适配器组4016放置于第二合波器组4013与光口之间,在一些实施例中,第二光纤适配器组4016沿着第二合波器组4013的出光方向倾斜放置。
第二光纤适配器组4016沿着第二合波器组4013的出光方向倾斜放置,第二合波器组4013出射的光信号无法耦合至第二光纤适配器组4016。为了使第二合波器组4013出射的光信号耦合至第二光纤适配器组4016,在一些实施例中,在第二合波器组4013的出光口设置第一反射镜组4014。第一反射镜组4014将第二合波器组4013传输至的光信号反射后射出至第二光纤适配器组4016。
但第二光纤适配器组4016距离光纤连接器组的距离还是很近,第二光纤适配器组4016与光纤连接器组之间通过长度较短的光纤直连在工艺实现上存在困难,因此,第二光纤适配器组4016与光纤连接器组之间通过长度较长的光纤盘纤连接。但是第二光纤适配器组4016与光纤连接器组之间的第二发射光纤采用普通光纤或一般弯曲不敏感光纤进行盘纤,容易损坏第二发射光纤,进而造成较大的光强损耗。为了减少盘纤过程中的光强损耗,在一些实施例中,第二发射光纤的曲率半径为2.5mm。2.5mm光纤实现了在非常狭小的空间进行盘纤,并保证不会因为光纤弯曲而引入较大的光强损耗。
同理,在一些实施例中,第二接收光纤的曲率半径为2.5mm。
如图13、图14和图15所示,在一些实施例中,第一置物件600具有卡接槽601和卡接腔603。
在一些实施例中,卡接槽601设置于第一置物件600靠近电路板300的一端。卡接槽601由第一置物件600的两个卡接臂618的端面向内凹陷形成,被配置为卡接电路板300。电路板300靠近卡接槽601的一端的上表面设置有第二光接收部件501。
在一些实施例中,卡接腔603设置于第一置物件600远离电路板300的一端,卡接腔603由第一置物件600远离电路板300的一端的端面向内凹陷形成,被配置为卡接光纤连接器组800的光纤连接器。
与光发射部件连接的第一光纤连接器相对于与光接收部件连接的第二光纤连接器更靠近上壳体,第二光发射部件401位于第一置物件600的下表面,第一置物件600的下表面更靠近下壳体,因此,连接第二光发射部件401与第一光纤连接器的第二发射光纤需要从第一置物件600的下表面绕至第一置物件600的上表面,再连接对应的第一光纤连接器。
第二光接收部件501位于电路板300的上表面,电路板300的上表面更靠近上壳体,因此,连接第二光接收部件501与第二光纤连接器的第二接收光纤需要从第一置物件600的上表面绕至第一置物件600的下表面,再连接对应的第二光纤连接器。
第二发射光纤和第二接收光纤均需要在极狭窄的空间内连接至光纤连接器,第二发射光纤需要从第一置物件600的下表面绕至第一置物件600的上表面,第二接收光纤需要从第一置物件600的上表面绕至第一置物件600的下表面。为了避免第二发射光纤与第二接收光纤相互干涉,在一些实施例中,在第一置物件600具有缺口602和挖空区域604。
在一些实施例中,缺口602设置于第一置物件600的侧边,缺口602由第一置物件600的侧边向内凹陷形成。第二接收光纤经缺口602由第一置物件600的上表面绕至第一置物件600的下表面。
在一些实施例中,挖空区域604与卡接腔603连通,被配置为将第一发射光纤、第二发射光纤、第一接收光纤和第二接收光纤分别连接至光纤连接器组800对应的光纤连接器,还被配置为将第二发射光纤由第一置物件600的一面绕至第一置物件600的另一面。
在一些实施例中,挖空区域604包括第一子挖空区域6041和第二子挖空区域6042,第一子挖空区域6041与第二子挖空区域6042不连通,第一子挖空区域6041被配置为将第一发射光纤和第一接收光纤连接至光纤连接器组800对应的光纤连接器,第二子挖空区域6042被配置为将第二发射光纤由第一置物件600的一面绕至第一置物件600的另一面,还被配置为将第二发射光纤和第二接收光纤连接至光纤连接器组800对应的光纤连接器。
如图13、图14和图15所示,在一些实施例中,第一置物件600具有第七置物槽609、第八置物槽610、第九置物槽611、第十置物槽612、第十一置物槽613、第三支撑凸起614、第十二置物槽615和第十三置物槽616。第七置物槽609、第八置物槽610、第九置物槽611、第十置物槽612、第十一置物槽613、第十二置物槽615和第十三置物槽616均由第一置物件600的下表面向内凹陷形成。
在一些实施例中,第七置物槽609的一端与缺口602连通,第七置物槽609的另一端与第九置物槽611连通,被配置为放置第二接收光纤。第二接收光纤经缺口602由第一置物件600的上表面绕至第一置物件600的下表面的第七置物槽609。
为了便于第二接收光纤盘纤,在一些实施例中,第一置物件600的下表面还具有第二盘纤凸起617。第二接收光纤在第七置物槽609内沿着第二盘纤凸起617来回盘纤。
在一些实施例中,第八置物槽610的一端与缺口602连通,第八置物槽610的另一端与第十二置物槽615连通,也被配置为放置第二接收光纤。为了便于放置第二接收光纤,在一些实施例中,第八置物槽610与缺口602连通的一端相对于第八置物槽610与第十二置物槽615连通的一端更凸出。
在一些实施例中,第九置物槽611与第七置物槽609分别位于第一置物件600的下表面的两侧,第九置物槽611被配置为放置第二激光芯片组4011和第二准直透镜组4012。第九置物槽611的一端与电路板300的上表面连接,第九置物槽611的另一端与第十置物槽612连接。
第七置物槽609被配置为放置第二接收光纤,第九置物槽611被配置为放置第二激光芯片组4011和第二准直透镜组4012。为了避免第二接收光纤与第二激光芯片组4011和第二准直透镜组4012接触碰撞,在一些实施例中,第九置物槽611相对于第七置物槽609更凹陷。
为了便于控制第二激光芯片组4011的温度,需要在第二激光芯片组4011下方设置有TEC。为了尽量缩短激光芯片与电路板300之间的打线距离,在一些实施例中,第九置物槽611呈阶梯状,第九置物槽611的低支撑面靠近第十置物槽612,第九置物槽611的高支撑面靠近电路板300,第九置物槽611的低支撑面通过TEC放置第二激光芯片组4011和第二准直透镜组4012,第九置物槽611的高支撑面与电路板300的上表面连接。
在一些实施例中,第十置物槽612被配置为放置第二合波器组4013。
第九置物槽611的低支撑面被配置为通过TEC放置第二激光芯片组4011和第二准直透镜组4012,第十置物槽612被配置为第二合波器组4013,那么第九置物槽611的低支撑面相对于第十置物槽612更凹陷。
在一些实施例中,第十一置物槽613的一端与第十置物槽612连通,第十一置物槽613的另一端与第十二置物槽615连通,第十一置物槽613被配置为放置第二聚焦透镜组4015。
在一些实施例中,第三支撑凸起614位于第十一置物槽613上,第三支撑凸起614侧面被配置为放置第一反射镜组4014的一个反射镜。
在一些实施例中,第十二置物槽615与第二子挖空区域6042连通,第十二置物槽615被配置为放置第二光纤适配器组4016。由于第二光纤适配器组4016沿着第二合波器组4013的出光方向倾斜放置,那么放置第二光纤适配器组4016的第十二置物槽615与放置第二合波器组4013的第十置物槽612倾斜设置。
在一些实施例中,第十三置物槽616位于第十一置物槽613上,第十三置物槽616与第三支撑凸起614不连通,第十三置物槽616的侧面被配置为放置第一反射镜组4014的另一个反射镜。其中,第十三置物槽616的侧面指的是第十三置物槽616与第十一置物槽613的连接面。
第十二置物槽615内放置的第二光纤适配器组4016的两个光纤适配器平行设置,第十置物槽612内放置的第二合波器组4013的两个合波器平行设置,那么用于将第二合波器组4013发射的光信号反射后耦合至第二光纤适配器组4016的第一反射镜组4014的两个反射镜平行设置,进而放置反射镜的第十三置物槽616的侧面与第三支撑凸起614的侧面相互平行。
第二光纤适配器组4016的光纤适配器的高度尺寸大于第二聚焦透镜组4015的聚焦透镜的高度尺寸,如果光纤适配器与聚焦透镜位于同一置物槽内时,光纤适配器的中心轴线高于聚焦透镜的中心轴线,光信号经聚焦透镜聚焦后只有少数能耦合至光纤适配器。为了提高耦合效率,在一些实施例中,放置第二光纤适配器组4016的第十二置物槽615相对于放置第二聚焦透镜组4015的第十一置物槽613更凹陷。
图16为根据本公开一些实施例提供的第二光发射部件的光路图。如图16所示,在一些实施例中,第二激光芯片组4011发射8路100G光信号,8路100G光信号经第二准直透镜组4012准直,第二合波器组4013将准直后的8路100G光信号合为2路400G光信号,2路400G光信号经第一反射镜组4014反射至第二聚焦透镜组4015,第二聚焦透镜组4015将2路400G光信号分别聚焦至第二光纤适配器组4016。
图17为根据本公开一些实施例提供的第一置物件与第二光接收部件的组装图。图18为根据本公开一些实施例提供的第一置物件与第二光接收部件的分解图。如图17和图18所示,在一些实施例中,第二光接收部件501包括第二光纤准直器组5011、第二分波器5012、第四聚焦透镜组5013、第三反射镜组5014和第二光接收芯片组5015。第二分波器5012位于第二光纤准直器组5011和第四聚焦透镜组5013之间,第三反射镜组5014位于第四聚焦透镜组5013与第二光接收芯片组5015之间。
在一些实施例中,第二光纤准直器组5011包括1个光纤准直器、1个光纤适配器和1个准直透镜。1个光纤准直器被配置为将接收到的400G光信号准直,1个光纤适配器被配置为接收400G光信号,1个准直透镜被配置为将光纤适配器接收到的400G光信号准直。1个光纤适配器和1个准直透镜组合为1个光纤准直件,光纤准直件与光纤准直器均被配置为将接收到的400G光信号准直。
在一些实施例中,第二光纤准直器组5011包括2个光纤准直器,光纤准直器被配置为将接收到的400G光信号准直。
在一些实施例中,第二光纤准直器组5011包括2个光纤适配器和2个准直透镜,1个光纤适配器与1个准直透镜对应设置,1个光纤适配器与1个准直透镜组合为1个光纤准直件,光纤准直件被配置为将接收到的400G光信号准直。
但2个光纤准直器通过有源方式贴合于第二支撑板时,工艺上不容易实现。而将2个光纤适配器和2个准直透镜均通过有源方式贴合于第二支撑板时,工艺上容易实现,但是贴装过程耗时较长,因此,在一些实施例中,第二光纤准直器组5011包括1个光纤准直器、1个光纤适配器和1个准直透镜。
第二光纤准直器组5011将接收到的800G光信号分别准直后射入第二分波器5012。
第二分波器5012将800G光信号分为8路不同波长的100G光信号。
在一些实施例中,第四聚焦透镜组5013包括多个并列设置的聚焦透镜。示例地,第四聚焦透镜组5013包括8个并列设置的聚焦透镜,第四聚焦透镜组5013被配置为将8路不同波长的100G光信号聚焦至第三反射镜组5014。
在一些实施例中,第三反射镜组5014包括多个并列设置的反射镜。示例地,第三反射镜组5014包括2个并列设置的反射镜,第三反射镜组5014被配置为将聚焦后的8路不同波长的100G光信号反射至第二光接收芯片组5015中。
在一些实施例中,第二光接收芯片组5015包括多个并列设置的光接收芯片。示例地,第二光接收芯片组5015包括8个并列设置的光接收芯片,第二光接收芯片组5015被配置为将8路不同波长的100G转化为8路100G电信号。
如图17和图18所示,在一些实施例中,第一置物件600的上表面向内凹陷形成第四置物槽605、第五置物槽606和第六置物槽607。
在一些实施例中,第四置物槽605的一端与缺口602连通,第四置物槽605的另一端的上表面与电路板300的下表面连接,第四置物槽605被配置为放置第二支撑板304。由于第二支撑板304的长度尺寸大于第四置物槽605的长度尺寸,第二光接收部件501通过第二支撑板304放置于电路板300及第四置物槽605上。
在一些实施例中,第四置物槽605呈阶梯状,第四置物槽605的低支撑面靠近电路板300,第四置物槽605的高支撑面靠近缺口602,第四置物槽605的低支撑面与电路板300的下表面连接,第四置物槽605的高支撑面、电路板300的上表面分别与第二支撑板304的下表面连接。
第四置物槽605和第九置物槽611分别位于第一置物件600的上表面和第一置物件600的下表面,也位于第一置物件600的两侧,为了增加电路板300与第一置物件600的连接稳定性,在一些实施例中,第四置物槽605与第九置物槽611存在部分重叠。第四置物槽605与第九置物槽611的重叠部分组成一个子卡接槽。电路板300的一端卡接于子卡接槽与卡接槽601内,相对于电路板300的一端卡接于卡接槽601内,增加了电路板300与第一置物件600的连接稳定性。
在一些实施例中,第五置物槽606与第四置物槽605分别位于第一置物件600的上表面的两侧,第五置物槽606被配置为放置第一发射光纤和第一接收光纤。
在一些实施例中,第六置物槽607与第四置物槽605均置于第一置物件600的上表面的一侧,第六置物槽607相对于第四置物槽605更远离电路板300,第六置物槽607被配置为放置第二发射光纤。
为了便于第二发射光纤盘纤,在一些实施例中,第一置物件600的上表面还具有第一盘纤凸起608。第二发射光纤在第六置物槽607内沿着第一盘纤凸起608来回盘纤。
为了减少盘纤过程对第二发射光纤的损坏,在一些实施例中,第一盘纤凸起608的形状为圆柱体。
第一发射光纤沿着第五置物槽606进入第一子挖空区域6041,第一发射光纤再连接到对应的第一光纤连接器。
第一接收光纤沿着第五置物槽606进入第一子挖空区域6041,第一接收光纤再连接到对应的第二光纤连接器。
第二发射光纤先经挖空区域604由第一置物件600的下表面绕至第一置物件600的上表面的第六置物槽607,第二发射光纤再沿着挖空区域604与第六置物槽607之间的第一盘纤凸起608盘纤几圈后进入第二子挖空区域6042,第二发射光纤最后连接对应的光纤连接器。
第二接收光纤先经缺口602由第一置物件600的上表面绕至第一置物件600的下表面的第七置物槽609,第二接收光纤再沿着缺口602与第七置物槽609的第二盘纤凸起617盘纤几圈后,一根第二接收光纤沿着第八置物槽610进入第二子挖空区域6042,一根第二接收光纤最后连接对应的光纤连接器,另一根第二接收光纤越过第二光发射部件401进入第二子挖空区域6042,另一根第二接收光纤最后连接对应的光纤连接器。
图19为根据本公开一些实施例提供的第二光接收部件的光路图。图20为根据本公开一些实施例提供的第二光接收部件在另一个视角下的光路图。如图19和图20所示,在一些实施例中,800G光信号经第二光纤准直器组5011准直,准直后的800G光信号经第二分波器5012分为8路100G光信号,8路100G光信号经第四聚焦透镜组5013聚焦,聚焦后的8路100G光信号经第三反射镜组5014反射至第二光接收芯片组5015中,第二光接收芯片组5015将8路100G光信号转化为8路100G电信号。
第一光接收部件的光路图也可如图19和图20所示。
如图5、图19和图20所示,在一些实施例中,第一光接收部件500包括第一光纤准直器组、第一分波器、第三聚焦透镜组、第二反射镜组和第一光接收芯片组。第一分波器位于第一光纤准直器组和第三聚焦透镜组之间,第二反射镜组位于第三聚焦透镜组与第一光接收芯片组之间。
在一些实施例中,第一光纤准直器组包括1个光纤准直器、1个光纤适配器和1个准直透镜。
第一光纤准直器组将接收到的800G光信号分别准直后射入第一分波器。
第一分波器将800G光信号分为8路不同波长的100G光信号。
在一些实施例中,第三聚焦透镜组包括多个并列设置的聚焦透镜。示例地,第三聚焦透镜组包括8个并列设置的聚焦透镜,第三聚焦透镜组被配置为将8路不同波长的100G光信号聚焦至第二反射镜组。
在一些实施例中,第二反射镜组包括多个并列设置的反射镜。示例地,第二反射镜组包括2个并列设置的反射镜,第二反射镜组被配置为将聚焦后的8路不同波长的100G光信号反射至第一光接收芯片组中。
在一些实施例中,第一光接收芯片组包括多个并列设置的光接收芯片。示例地,第一光接收芯片组包括8个并列设置的光接收芯片,第一光接收芯片组被配置为将8路不同波长的100G转化为8路100G电信号。
800G光信号经第一光纤准直器组准直,准直后的800G光信号经第一分波器分为8路100G光信号,8路100G光信号经第三聚焦透镜组聚焦,聚焦后的8路100G光信号经第二反射镜组反射至第一光接收芯片组中,第一光接收芯片组将8路100G光信号转化为8路100G电信号。
在一些实施例中,光模块包括电路板、第一DSP芯片、第二DSP芯片、第一置物件、第一光发射部件、第一光接收部件、第二光发射部件和第二光接收部件。第一置物件远离电路板的一端设置有卡接腔,卡接腔内设置有光纤连接器组,第一置物件朝向电路板的一端设置有卡接槽,电路板卡接于卡接槽处。第一DSP芯片,与第二DSP芯片均设置于电路板上表面,与第二DSP芯片均被配置为处理800G信号。电路板设置有通孔。第一光发射部件,通过第二置物件卡接于通孔处,与第一DSP芯片连接,被配置为发射800G光信号。第一光接收部件,位于电路板上表面,与第一DSP芯片连接,被配置为接收800G光信号。第二光发射部件,位于第一置物件的下表面,与第二DSP芯片连接,被配置为发射800G光信号。第二光接收部件,位于电路板上表面,与第二DSP芯片连接,被配置为接收800G光信号。第一DSP芯片与第一光发射部件连接,以使第一光发射部件发射800G光信号;第一DSP芯片与第一光接收部件连接,第一光接收部件将接收到800G光信号转化为800G电信号,第一DSP芯片处理800G电信号,以使光模块的传输速率达到800G。第二DSP芯片与第二光发射部件连接,以使第二光发射部件发射800G光信号;第二DSP芯片与第二光接收部件连接,第二光接收部件将接收到800G光信号转化为800G电信号,第二DSP芯片处理800G电信号,以使光模块的传输速率达到800G。在一些实施例中,光模块包括第一DSP芯片、第二DSP芯片,第一DSP芯片分别与第一光发射部件及第一光接收部件连接,第二DSP芯片分别与第二光发射部件及第二光接收部件连接,使得光模块的传输速率达到1.6T。但由于第二光发射部件及第二光接收部件距离光纤连接器组的距离很近,第二光发射部件和第二光接收部件与光纤连接器组之间通过长度较短的光
纤直连在工艺实现上存在困难,因此,第二光发射部件和第二光接收部件与光纤连接器组之间通过长度较长的光纤盘纤连接。但是第二光纤适配器组与光纤连接器组之间的第二发射光纤采用普通光纤或一般弯曲不敏感光纤进行盘纤,容易损坏第二发射光纤,进而造成较大的光强损耗。曲率半径极小的第二发射光纤和第二接收光纤实现了在非常狭小空间进行盘纤,并保证不会因为光纤弯曲而引入较大的光强损耗。由于第二光发射部件位于第一置物件的下表面,对应第二光发射部件的光纤连接器位于第一置物件的上表面,因此需要在第一置物件上设置一些特殊结构,以使第二发射光纤由第一置物件的下表面绕至第一置物件的上表面,也使第二发射光纤由第一置物件的上表面绕至第一置物件的下表面。第一置物件设置有缺口和挖空区域。缺口,位于第一置物件的侧边,以使第二接收光纤由第一置物件一面绕至第一置物件另一面。挖空区域,与卡接腔连通,以使第二发射光纤由第一置物件一面绕至第一置物件另一面。第二发射光纤沿着挖空区域由第一置物件的下表面绕至第一置物件的上表面,并连接至对应的光纤连接器。第二接收光纤沿着缺口由第一置物件的下表面绕至第一置物件的下表面,并连接至对应的光纤连接器。在一些实施例中,第二发射光纤和第二接收光纤的曲率半径极小,且第一置物件上的缺口和挖空区域,实现了第二光发射部件和第二光接收部件与光纤连接器组之间通过光纤连接,从而极大的简化了第二光发射部件和第二光接收部件的机械结构及光路结构,极大提高了装配效率,改善了光模块的光学性能和可靠性。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。
Claims (7)
- 一种光模块,包括:电路板,具有通孔;第一置物件,一端卡接所述电路板,其中,所述第一置物件具有:卡接槽,位于所述第一置物件靠近所述电路板的一端,且被配置为卡接所述电路板;缺口,位于所述第一置物件的侧边,以使第二接收光纤由第一置物件的一面绕至第一置物件的另一面;其中,所述第二接收光纤为连接光纤连接器组与第二光接收部件的光纤;卡接腔,位于所述第一置物件远离所述电路板的一端,且被配置为卡接光纤连接器组;挖空区域,与所述卡接腔连通,被配置为将第二发射光纤由第一置物件的一面绕至第一置物件的另一面;其中,所述第二发射光纤为连接所述光纤连接器组与第二光发射部件的光纤;第九置物槽,一端与所述电路板的上表面连接;第十置物槽,一端与所述第九置物槽的另一端连通;第十一置物槽,一端与所述第十置物槽的另一端连通;第十二置物槽,与所述第十置物槽倾斜设置,所述第十二置物槽的一端与所述第十一置物槽的另一端连通,所述第十二置物槽的另一端与所述挖空区域连通;第三支撑凸起,位于所述第十一置物槽上;第十三置物槽,位于所述第十一置物槽上,与所述第三支撑凸起不连接;第二置物件,卡接于所述通孔处;第一数字信号处理芯片,与第二数字信号处理芯片均设置于所述电路板的上表面,所述第一数字信号处理芯片集成有跨阻放大器芯片,所述第二数字信号处理芯片也集成有所述跨阻放大器芯片;第一光发射部件,设置于第二置物件上,与所述第一数字信号处理芯片连接,且被配置为发射光信号;第一光接收部件,位于所述电路板的上表面,与所述第一数字信号处理芯片连接,且被配置为接收光信号;所述第二光发射部件,位于所述第一置物件的下表面,与所述第二数字信号处理芯片连接,且被配置为发射光信号;所述第二光接收部件,位于所述电路板的上表面,与所述第二数字信号处理芯片连接,且被配置为接收光信号。
- 根据权利要求1所述的光模块,其中,所述第二发射光纤和所述第二接收光纤的曲率半径均为2.5mm。
- 根据权利要求1所述的光模块,其中,所述第一置物件还具有:第四置物槽,一端与所述缺口连通,另一端与所述电路板连接;第五置物槽,与所述第四置物槽分别位于第一置物件的上表面的两侧,且被配置为放置第一发射光纤和第一接收光纤;其中,所述第一发射光纤为连接所述光纤连接器组与第一光发射部件的光纤,所述第一接收光纤为连接所述光纤连接器组与第一光接收部件的光纤;第六置物槽,与所述第四置物槽均位于第一置物件的上表面的一侧,相对于第四置物槽远离所述电路板,且被配置为放置所述第二发射光纤。
- 根据权利要求1所述的光模块,其中,所述第二置物件具有第一置物槽、第二置物槽、第三置物槽和连接槽;所述第一置物槽,与所述第二置物槽及所述第三置物槽依次连接,所述第一置物槽与所第二置物槽及所述第三置物槽呈阶梯状;所述第三置物槽,具有第一子置物槽、第二子置物槽和限位块;其中,所述第一子置物槽相对于所述第二子 置物槽更靠近所述第二置物槽,所述第一子置物槽相对于所述第二置物槽更凸出,所述限位块位于所述第二子置物槽的两侧;所述连接槽,由所述第二置物件的下表面向内凹陷形成,所述连接槽与所述电路板的上表面连接。
- 根据权利要求4所述的光模块,其中,所述第一光发射部件包括第一激光芯片组、第一准直透镜组、第一位移棱镜、第一合波器组、第一聚焦透镜组和第一光纤适配器组;所述第一激光芯片组,被配置为发射多路100G光信号;所述第一准直透镜组,位于所述第一激光芯片组与所述第一位移棱镜之间,与所述第一激光芯片组均位于所述第一置物槽内,所述第一准直透镜组被配置为将所述第一激光芯片组发射的多路100G光信号准直;所述第一位移棱镜,位于所述第二置物槽内,被配置为改变准直后的8路100G光信号的位移,以使准直后的多路100G光信号入射至所述电路板上的所述第一合波器组;所述第一合波器组,位于所述第一位移棱镜与所述第一聚焦透镜组之间,位于所述第一子置物槽内,被配置为将改变位移后的多路100G光信号分为2路400G光信号;所述第一聚焦透镜组,位于所述第一合波器组与所述第一光纤适配器组之间,被配置为将2路400G光信号聚焦耦合至所述第一光纤适配器组;所述第一光纤适配器组,位于所述第二子置物槽内。
- 根据权利要求3所述的光模块,其中,所述第二光发射部件包括第二激光芯片组、第二准直透镜组、第二合波器组、第一反射镜组、第二聚焦透镜组和第二光纤适配器组;所述第二激光芯片组,被配置为发射多路100G光信号;所述第二准直透镜组,位于所述第二激光芯片组与所述第二合波器组之间,与所述第二激光芯片组均位于所述第九置物槽内,所述第二准直透镜组被配置为将所述第二激光芯片组发射的多路100G光信号准直;所述第二合波器组,位于所述第十置物槽内,所述第二合波器组被配置为将入射至的800G光信号分为2路400G光信号;所述第一反射镜组,位于所述第二合波器组与所述第二聚焦透镜组之间,被配置为将2路400G光信号反射至所述第二聚焦透镜组;其中,所述第一反射镜组的一个反射镜位于所述第三支撑凸起的侧面,所述第一反射镜组的另一个反射镜位于所述第十三置物槽的侧面;所述第二聚焦透镜组,位于所述第一反射镜组与所述第二光纤适配器组之间,位于所述第十一置物槽内,被配置为将2路400G光信号聚焦耦合至所述第二光纤适配器组;所述第二光纤适配器组,位于所述第十二置物槽内。
- 根据权利要求1所述的光模块,其中,所述第二光接收部件,包括第二光纤准直器组、第二分波器、第四聚焦透镜组、第三反射镜组和第二光接收芯片组;所述第二光纤准直器组,被配置为将接收到的800G光信号准直;所述第二分波器,位于所述第二光纤适配器组与所述第四聚焦透镜组之间,被配置为将800G光信号分为多路100G光信号;所述第四聚焦透镜组,被配置为将多路100G光信号聚焦;所述第三反射镜组,位于所述第二光接收芯片组上方,被配置为将聚焦后的多路100G光信号反射至所述第二光接收芯片组;所述第二光接收芯片组,被配置为将800G光信号转化为800G电信号。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310182579.7A CN118567046A (zh) | 2023-02-28 | 2023-02-28 | 一种光模块 |
CN202310182579.7 | 2023-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024178841A1 true WO2024178841A1 (zh) | 2024-09-06 |
Family
ID=92464185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/093053 WO2024178841A1 (zh) | 2023-02-28 | 2023-05-09 | 光模块 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118567046A (zh) |
WO (1) | WO2024178841A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013257461A (ja) * | 2012-06-13 | 2013-12-26 | Japan Oclaro Inc | 光モジュール |
CN109061811A (zh) * | 2018-08-10 | 2018-12-21 | 武汉联特科技有限公司 | 双发双收光模块 |
CN215895035U (zh) * | 2021-08-31 | 2022-02-22 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
CN114624827A (zh) * | 2020-12-14 | 2022-06-14 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
CN115016079A (zh) * | 2022-06-21 | 2022-09-06 | 长芯盛(武汉)科技有限公司 | 一种800g光模块 |
CN218272816U (zh) * | 2022-07-20 | 2023-01-10 | 青岛海信宽带多媒体技术有限公司 | 光模块 |
-
2023
- 2023-02-28 CN CN202310182579.7A patent/CN118567046A/zh active Pending
- 2023-05-09 WO PCT/CN2023/093053 patent/WO2024178841A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013257461A (ja) * | 2012-06-13 | 2013-12-26 | Japan Oclaro Inc | 光モジュール |
CN109061811A (zh) * | 2018-08-10 | 2018-12-21 | 武汉联特科技有限公司 | 双发双收光模块 |
CN114624827A (zh) * | 2020-12-14 | 2022-06-14 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
CN215895035U (zh) * | 2021-08-31 | 2022-02-22 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
CN115016079A (zh) * | 2022-06-21 | 2022-09-06 | 长芯盛(武汉)科技有限公司 | 一种800g光模块 |
CN218272816U (zh) * | 2022-07-20 | 2023-01-10 | 青岛海信宽带多媒体技术有限公司 | 光模块 |
Also Published As
Publication number | Publication date |
---|---|
CN118567046A (zh) | 2024-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN220526047U (zh) | 光模块 | |
CN113625399B (zh) | 一种光模块 | |
CN221883953U (zh) | 一种光模块 | |
WO2024178841A1 (zh) | 光模块 | |
CN116381872A (zh) | 一种光模块 | |
CN116500734A (zh) | 一种光模块 | |
WO2022100278A1 (zh) | 一种光模块 | |
CN219496739U (zh) | 一种光模块 | |
CN219936149U (zh) | 光模块 | |
CN222529541U (zh) | 一种光模块 | |
CN219978568U (zh) | 一种光模块 | |
WO2024192947A1 (zh) | 光模块 | |
CN221406107U (zh) | 一种光模块 | |
CN219799852U (zh) | 一种光模块 | |
CN221883950U (zh) | 一种光模块 | |
CN115016073B (zh) | 一种光模块 | |
WO2024192871A1 (zh) | 一种光模块 | |
CN118671894A (zh) | 一种光模块 | |
CN118688907A (zh) | 一种光模块 | |
CN118033832A (zh) | 一种光模块 | |
CN118946839A (zh) | 光模块 | |
CN119270437A (zh) | 一种光模块 | |
CN118033831A (zh) | 一种光模块 | |
CN118033830A (zh) | 一种光模块 | |
WO2025020357A1 (zh) | 一种光模块 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23924803 Country of ref document: EP Kind code of ref document: A1 |