WO2024177102A1 - Light diffusion device - Google Patents
Light diffusion device Download PDFInfo
- Publication number
- WO2024177102A1 WO2024177102A1 PCT/JP2024/006194 JP2024006194W WO2024177102A1 WO 2024177102 A1 WO2024177102 A1 WO 2024177102A1 JP 2024006194 W JP2024006194 W JP 2024006194W WO 2024177102 A1 WO2024177102 A1 WO 2024177102A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- heat dissipation
- optical fiber
- diffusion device
- dissipation coating
- Prior art date
Links
- 238000009792 diffusion process Methods 0.000 title claims abstract description 61
- 239000013307 optical fiber Substances 0.000 claims abstract description 92
- 230000005540 biological transmission Effects 0.000 claims abstract description 24
- 230000017525 heat dissipation Effects 0.000 claims description 105
- 239000011248 coating agent Substances 0.000 claims description 93
- 238000000576 coating method Methods 0.000 claims description 93
- 229910052751 metal Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 27
- 229920005989 resin Polymers 0.000 claims description 24
- 239000011347 resin Substances 0.000 claims description 24
- 230000002093 peripheral effect Effects 0.000 claims description 15
- 239000000919 ceramic Substances 0.000 claims description 6
- 238000005253 cladding Methods 0.000 abstract description 15
- 239000000463 material Substances 0.000 description 23
- 206010028980 Neoplasm Diseases 0.000 description 11
- 201000011510 cancer Diseases 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 230000020169 heat generation Effects 0.000 description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 description 8
- 229920002050 silicone resin Polymers 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910001000 nickel titanium Inorganic materials 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000004323 axial length Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/067—Radiation therapy using light using laser light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
Definitions
- the present invention relates to a light diffusion device for use in medical equipment.
- a conventional light diffusion device includes an optical fiber consisting of a core located at the center in the radial direction and a cladding located on the outer periphery of the core, and that emits laser light incident on the base end of the optical fiber from the tip end and the outer periphery on the tip side (see, for example, Patent Document 1).
- the optical fiber of the conventional light diffusion device has a light transmission section that transmits the laser light incident on the base end, and a light emission section at the tip side that emits the laser light transmitted through the light transmission section.
- the optical diffusion device is used in photoimmunotherapy, a cancer treatment method, by inserting the tip of an optical fiber into the human body and irradiating laser light onto a drug that has been administered to the human body and has reached the cancer cells.
- One of the objectives of the present invention is to provide a light diffusion device that can suppress heat generation at the light exit section and its vicinity.
- a light diffusing device is a light diffusing device comprising an optical fiber having a core located at a radial center side and a clad located on an outer peripheral side of the core, the light diffusing device causing light incident on a base end of the optical fiber to exit from a tip end side of the optical fiber, the optical fiber has a light transmitting section that transmits light incident from a base end portion toward a tip end portion, and a light emitting section that emits the light transmitted through the light transmitting section from an outer circumferential surface by removing a portion located on the outer circumferential side of the clad at the tip end side, a reflecting element that surrounds an outer peripheral surface of the light emitting portion, leaving a region that serves as a light emitting opening; a heat dissipation coating that contacts the reflecting element at a tip side and covers at least a part of the light transmitting portion; Equipped with.
- the thermal conductivity of the heat dissipation coating may be 80 W/m ⁇ K or more.
- the length of the heat dissipation coating may be equal to or greater than the thermal diffusion length.
- the heat dissipation coating may be metallic.
- the outer circumferential surface of the light emitting portion may be cylindrical.
- a region corresponding to the arc-shaped outer peripheral surface of the optical fiber with a predetermined central angle may be opened in a slit shape to serve as the light exit port.
- the tip of the optical fiber may have an end face that is oblique to a plane perpendicular to the axis of the core.
- the light reflectance of the reflective element may be 1% or more.
- the reflective element may be metal.
- the reflective element and the heat dissipation coating may be integrated.
- the reflective element may be a reflective resin.
- the reflective element may be ceramic.
- the heat dissipation coating may extend to the area in the axial direction where the light emitting portion is located, within the area in the circumferential direction where the reflecting element is located, on the tip side, and may be in radial contact with the reflecting element.
- the heat dissipation coating may be made of separate materials in the axial direction, with a region that covers at least a portion of the light transmission section and a region where the light emission section is present.
- the unevenness of the surface of the reflecting element facing the light emitting portion may be less than the wavelength of the light being used.
- the thermal conductivity of the heat dissipation coating may be 0.2 W/m ⁇ K or more.
- the heat dissipation coating may be tubular.
- FIG. 1 is a schematic diagram of a light diffusing device according to a first embodiment which is an exemplary aspect of the present invention.
- 5 is a longitudinal sectional view of the light exit portion of an optical fiber in the light diffusing device according to the first embodiment and its vicinity, and is a sectional view taken along the CC section in FIGS. 3 and 4.
- FIG. 3 is a cross-sectional view of a portion of a light transmitting portion of an optical fiber in the light diffusing device according to the first embodiment, taken along the line BB in FIG. 2.
- 3 is a cross-sectional view of a portion of a light output portion of an optical fiber in the light diffusing device according to the first embodiment, taken along the line AA in FIG. 2.
- FIGS. 1A-1C are cross-sectional views of optical fibers illustrating variations in cladding removal at the outer surface of the optical fiber.
- 11 is a vertical cross-sectional view of a light exit portion of an optical fiber in a light diffusing device according to a second embodiment and its vicinity.
- FIG. 11 is an enlarged vertical cross-sectional view of a light exit portion of an optical fiber in a light diffusing device according to a second embodiment.
- FIG. 13 is a vertical cross-sectional view of a light exit portion of an optical fiber in a light diffusing device according to a third embodiment and its vicinity.
- FIG. 9 is a cross-sectional view of a portion of a light exit portion of an optical fiber in a light diffusing device according to a third embodiment, taken along the line FF in FIG. 8 .
- 1 is a graph for explaining the maximum height of a profile curve, the curve of the graph being an example of a roughness curve.
- 13A and 13B are schematic diagrams showing modified examples of
- Fig. 1 is a schematic diagram of a light diffusing device 1 according to a first embodiment
- Fig. 2 is a longitudinal sectional view of a light emitting portion of an optical fiber in the light diffusing device 1 and its vicinity
- Fig. 3 is a transverse sectional view of a portion of a light transmitting portion of an optical fiber in the light diffusing device 1
- Fig. 4 is a transverse sectional view of a portion of a light emitting portion of an optical fiber in the light diffusing device 1.
- the base end side of the optical fiber is indicated by an arrow B, and the tip side is indicated by an arrow T.
- FIG. 2 is a cross-sectional view taken along the line CC in FIG. 3 and FIG. 4
- FIG. 3 is a cross-sectional view taken along the line B-B in FIG. 2
- FIG. 4 is a cross-sectional view taken along the line A-A in FIG. 2.
- the light diffusion device 1 of this embodiment is used in photoimmunotherapy, which is one of the cancer treatment methods.
- Photoimmunotherapy is a procedure for treating cancer by administering to the human body a drug consisting of an antibody that binds to cancer cells and a substance that reacts to light, and then irradiating the drug that has bound to the cancer cells with laser light to destroy the cancer cells.
- the light diffusion device 1 is a device that emits light incident on the base end 20BE of the optical fiber 20 from the tip side T, and a laser oscillator 10 is connected to the base end 20BE on the base side B of the optical fiber 20 as a light source for generating laser light.
- the laser oscillator 10 has a semiconductor laser, and generates laser light by passing electricity through the semiconductor laser to cause laser oscillation.
- the laser oscillator 10 generates red laser light having a wavelength of 630 nm or more and 700 nm or less.
- the optical fiber 20 is made of a resin (plastic) member. As shown in Figures 3 to 5, the optical fiber 20 is a single-core optical fiber consisting of a core 21 located in the center in the radial direction and a cladding 22 located on the outer periphery of the core 21. The optical fiber 20 has a relative refractive index difference between the core 21 and the cladding 22 of 2% to 11%.
- the optical fiber 20 has, for example, an outer diameter of 500 ⁇ m, an outer diameter of the core 21 of 480 ⁇ m, and a thickness of the cladding 22 of 10 ⁇ m.
- the outer diameter of the cladding 22 of the optical fiber 20 is 102 ⁇ m or more and 1100 ⁇ m or less.
- the outer diameter of the core 21 of the optical fiber 20 is 100 ⁇ m or more and 1000 ⁇ m or less.
- the thickness of the cladding 22 is 1 ⁇ m or more and 50 ⁇ m or less.
- the optical fiber 20 has a light transmission section 20a that transmits the laser light incident from the base end 20BE toward the tip side T, and a light emission section 20b that causes the laser light transmitted through the light transmission section 20a to exit from the outer circumferential surface by removing a portion located on the outer circumferential side of the cladding 22 within a predetermined range in the extension direction of the tip side T.
- the tube 26 has a thickness of 0.1 mm, an outer diameter of 0.95 mm, and an inner diameter of 0.85 mm, but of course these sizes are not limited to these. It is also possible to use it without covering it with the tube 26 and leaving the heat dissipating coating 25 exposed.
- nylon is used as the material for the tube 26, but there are no particular limitations as long as it is a soft resin, and examples of the material that can be used in addition to nylon include polyvinyl chloride, vinylidene chloride, urethane resin, silicone resin, etc.
- the light emitting portion 20b that is not covered by the tube 26 is formed within a range of, for example, 10 mm to 100 mm, preferably 20 mm to 40 mm, on the tip side T of the optical fiber 20.
- the outer peripheral surface of the light emitting portion 20b has a cylindrical outer peripheral surface shape.
- the light emitting portion 20b is formed by removing a portion of the outer peripheral side of the clad 22 by, for example, blasting or etching, leaving the inner peripheral side in the thickness direction of the clad 22.
- the change in the structure of the optical fiber 20 in the longitudinal direction which is of the order of wavelength, changes the light intensity distribution in the cross section of the optical fiber 20, causing light to leak and laser light to be emitted from the outer peripheral surface.
- the cladding 22 is removed from the entire circumference of the optical fiber 20.
- the cladding 22 may be removed only from the outer surface of a circular arc in a certain region of the optical fiber 20 in the circumferential direction (central angle of 180° in Figure 5). In this case, the laser light is emitted from the outer surface of the region where the cladding 22 has been removed.
- the outer peripheral surface of the light emitting portion 20b is surrounded by a reflecting element 24, leaving only a small area.
- the area a corresponding to the arc-shaped outer peripheral surface of the optical fiber 20 with a predetermined central angle ⁇ is opened in a slit shape, and this opening becomes the light emitting port 23.
- the central angle ⁇ is set to, for example, 45°. There are no particular limitations on this central angle ⁇ , and it may be set appropriately depending on the purpose, desired performance, standards, etc., and is preferably selected from the range of 30° to 350°.
- the reflecting element 24 is a member that reflects light that leaks in a direction (area other than the area a corresponding to the light exit port 23) other than the light exit direction of the light exit section 20b (directions within the range of the central angle ⁇ ) in the circumferential direction, and causes the light to exit from the light exit port 23.
- the reflective element 24 has a light reflectance of 1% or more, preferably 30% or more, more preferably 50% or more, and more preferably 80% or more, and preferably close to 100%.
- the reflective element 24 has a thickness of 0.1 mm, an outer diameter of 0.8 mm, and an inner diameter of 0.6 mm, but of course the dimensions are not limited to these.
- the surface of the reflecting element 24 facing the light emitting portion 20b is as close to a mirror surface as possible in order to efficiently reflect the laser light.
- the unevenness of the surface of the reflecting element 24 facing the light emitting portion 20b is equal to or less than the wavelength of the light being used (laser light transmitted within the optical fiber 20).
- “unevenness” refers to the difference Rz between the peak of the maximum mountain and the bottom of the minimum valley of the unevenness as shown in Figure 10 (maximum height of the contour curve: see JIS B0601). Note that Figure 10 is a graph to explain the maximum height of the contour curve, and the curve in the graph is an example of a roughness curve.
- the reflective element 24 desirably has high thermal conductivity in view of the heat dissipation requirements described below.
- the thermal conductivity is preferably 0.2 W/m ⁇ K or more, more preferably 2 W/m ⁇ K or more, and even more preferably 16 W/m ⁇ K or more.
- the material of the reflective element 24 is not particularly limited as long as it has the desired light reflectance, but a material with high light reflectance is preferable.
- the material of the reflective element 24 include metals such as stainless steel, aluminum, gold, silver, copper, and nickel-titanium (Ni-Ti) alloy, fluororesins such as polytetrafluoroethylene (PTFE), resins containing barium sulfate, and reflective resins such as silicone resin, and ceramics such as alumina.
- the reflective element 24 is preferably made of metal, and is particularly preferably made of stainless steel.
- the reflective element 24 does not have to be manufactured from a single material. For example, a stainless steel cylinder is processed, the inside is mirror-polished, and then coated with a metal having a high reflectance, such as gold or silver, can be given as an example.
- the laser oscillator 10 when the laser oscillator 10 is operated to cause laser light to be incident on the base end 20BE of the optical fiber 20, the laser light is transmitted through the light transmission section 20a and emitted from the light emission section 20b.
- the laser light emitted radially in all directions in the circumferential direction from the light emission section 20b of the optical fiber 20 is partially emitted directly and the rest is reflected by the reflecting element 24 and emitted from the light emission port 23.
- the laser light transmitted through the light transmission section 20a is collected within a certain range in the circumferential direction by the light emission section 20b and is emitted from the side of the optical fiber 20. Therefore, the transmitted laser light can be efficiently irradiated onto the target to be irradiated, such as cancer cells.
- the practitioner is required to appropriately control the intensity and irradiation time of the laser light during treatment so that the temperature near the light emitting portion 20b does not become, for example, 5°C higher than the body temperature of the patient.
- the intensity of the laser light is relatively high; specifically, for example, an output of about 400 mW/cm is desirable.
- the continuous irradiation time of the laser light is a maximum of 5 minutes. Therefore, it is more desirable for the temperature near the light emitting part 20b to be less than 50°C at an output of 400 mW/cm x continuous irradiation time of 5 minutes.
- a heat dissipation coating 25 is provided to suppress heat generation in the light emitting portion 20b and its vicinity.
- the heat dissipation coating 25 is provided at the tip side TE, in contact with the reflecting element 24 and covering a part of the light transmitting portion 20a, so heat from the reflecting element 24 can be released and heat generation in the light emitting portion 20b and its vicinity can be suppressed.
- the heat dissipation coating 25 covers at least a portion of the light transmission section 20a.
- the heat dissipation coating 25 is flexible and tubular, into which the optical fiber 20 is inserted, and the outer periphery is further covered with the tube 26. That is, in the light diffusion device 1 of this embodiment, a certain region on the tip side T of the light transmission section 20a has a three-layer structure consisting of, in order from the center, the optical fiber 20, the heat dissipation coating 25, and the tube 26.
- the heat dissipation coating 25 is in contact with the reflecting element 24 at the tip side T.
- they may be fixed together with a fixing means such as adhesive, screws, or welding, or they may be molded into a shape that allows them to engage with each other and then engaged.
- the heat dissipation coating 25 and the reflective element 24 are molded as a single unit and are physically indistinguishable from each other (integrated), if the part that functions as the reflective element 24 and the part that functions as the heat dissipation coating 25 are separate and the parts that perform each function are connected at some point, the connected part is included in the concept of "contact" in this invention.
- the heat dissipation coating 25 comes into contact with the reflective element 24 and has the function of dissipating heat from the reflective element 24. For this reason, it is desirable for the heat dissipation coating 25 to have high thermal conductivity. Specifically, for example, the thermal conductivity of the heat dissipation coating 25 is preferably 80 W/m ⁇ K or more, more preferably 200 W/m ⁇ K or more, and even more preferably 350 W/m ⁇ K or more. Furthermore, it is desirable for the thermal conductivity of the reflective element 24 to be higher than that of the heat dissipation coating 25. In this embodiment, the heat dissipation coating 25 has a thickness of 0.1 mm, an outer diameter of 0.8 mm, and an inner diameter of 0.6 mm, but of course these sizes are not limited to these.
- the material of the heat dissipation coating 25 may be any material having the above-mentioned thermal conductivity.
- the material may be metals such as stainless steel, aluminum, gold, silver, copper, nickel-titanium (Ni-Ti) alloy, ceramics such as alumina, or resins such as silicone resin and polytetrafluoroethylene (PTFE) resin that have been processed to have heat dissipation properties.
- processing to have heat dissipation properties include processing in which metal particles or ceramic particles with high thermal conductivity (e.g. alumina particles) are dispersed in the material.
- the material of the heat dissipation coating 25 is the same as that of the reflecting element 24.
- the torque coil used to regulate the position (twist) of the optical fiber in the rotational direction may also function as the heat dissipation coating 25.
- the longitudinal region of the light transmitting section 20a covered by the heat dissipation coating 25 depends on the thermal conductivity of the heat dissipation coating 25.
- the thermal conductivity of the heat dissipation coating 25 is about 80 W/m ⁇ K, heat can be efficiently removed if the heat dissipation coating heat is equal to or greater than the thermal diffusion length at which 1/e is reached.
- the thermal conductivity of the heat dissipation coating 25 is 200 W/m ⁇ K or greater, the temperature near the light emitting section 20b can be kept at the desired temperature even if the length is about half the thermal diffusion length.
- the thermal diffusion length ⁇ is a physical property defined as an index of how far temperature can be transmitted.
- the amplitude of a temperature wave emitted from a certain point diffuses while exponentially decaying, and the thermal diffusion length ⁇ is the distance at which the amplitude of the temperature wave becomes 1/e.
- the thermal diffusion length ⁇ is defined as ⁇ ( ⁇ / ⁇ f) (where ⁇ is a physical property called thermal diffusivity).
- the thermal conductivity of the heat dissipation coating 25 is less than 80 W/m ⁇ K, it is preferable for the heat dissipation coating 25 to extend to an area located outside the body during treatment, as this area will come into contact with the outside air temperature and the heat dissipation effect will be enhanced.
- the heat dissipation coating 25 may cover the entire optical transmission section 20a up to the base end BE. More preferably, it is desirable to connect a heat sink for heat dissipation and actively dissipate heat from the heat sink.
- the heat sink for heat dissipation can be connected to the end of the base end side B of the heat dissipation coating 25 or near it, or halfway along the longitudinal direction. By actively releasing heat from the heat sink, the heat dissipation effect can be further improved. Examples of such a heat sink include a metal member with multiple plate-shaped protrusions for heat dissipation, or a metal lump with a volume sufficient to absorb the generated heat.
- the heat sink may be attached midway through the light transmission section 20a of the optical fiber 20, or may be disposed separately from the optical fiber 20.
- the end of the base end side B of the heat dissipation coating 25 or its vicinity, or midway in the longitudinal direction (axial direction) may be connected to the heat sink.
- the heat dissipation coating 25 may be branched off from the light transmission section 20a of the optical fiber 20 and connected to the heat sink.
- the tube 26 is not an essential component, so if there is no particular problem, the heat dissipation coating 25 may be exposed without the tube 26. However, in this embodiment, in order to protect the heat dissipation coating 25 and the optical fiber 20, the entire area of the optical fiber 20 that is located inside the body during treatment is covered in the longitudinal direction.
- the tip 20TE of the optical fiber 20 is left in the cut state, but a cap may be provided on the tip 20TE to prevent leakage of laser light from the tip 20TE and to protect the reflecting element 24 and the tip 20TE of the optical fiber 20.
- a cap may be provided on the tip 20TE to prevent leakage of laser light from the tip 20TE and to protect the reflecting element 24 and the tip 20TE of the optical fiber 20.
- materials for the cap include resins such as polytetrafluoroethylene (PTFE) and metals such as aluminum.
- the outer diameter of the optical fiber 20 in the light transmission section 20a, the inner and outer diameters of the heat dissipation coating 25, and the inner diameter of the tube 26 do not match each other, and there is a difference in diameter between each layer.
- This difference in diameter is a margin to ensure flexibility in the light transmission section 20a of the optical fiber 20 and to absorb tolerances during manufacturing, and is not intended to intentionally create gaps between each layer.
- Fig. 6 is a vertical cross-sectional view of a light output portion of an optical fiber in the light diffusing device 2 according to the second embodiment and its vicinity
- Fig. 7 is an enlarged vertical cross-sectional view of the light output portion. Since the light diffusing device 2 according to the present embodiment has a configuration substantially similar to that of the light diffusing device 1 according to the first embodiment, please refer to Fig. 1 for an outline of the light diffusing device 2.
- the D-D cross section in FIG. 6 is the same as FIG. 4, and the E-E cross section is the same as FIG. 3, so please refer to FIG. 3 and FIG. 4 for these cross sections.
- the light diffusion device 2 according to the second embodiment has the same configuration as the light diffusion device 1 according to the first embodiment, except that the shape of the tip portion 20TE of the optical fiber 20 is unique to this embodiment. Therefore, the members having the same functions as the light diffusion device 1 according to the first embodiment are given the same reference numerals as in FIG. 1 to FIG. 6, and their description will be omitted.
- the tip 20TE of the optical fiber 20 has an end face 20s that is inclined with respect to a plane P perpendicular to the axis 21A of the core 21.
- the angle ⁇ between the plane P and the end face 20s is set to be equal to or greater than the angle at which the laser light transmitted through the optical fiber 20 is totally reflected.
- the laser oscillator 10 when the laser oscillator 10 is operated to cause laser light to be incident on the base end 20BE of the optical fiber 20, the laser light is transmitted through the light transmitting section 20a and emitted from the light emitting section 20b.
- the tip end 20TE of the optical fiber 20 In the light emitting section 20b, the tip end 20TE of the optical fiber 20 has an end face 20s that is inclined with respect to the plane P perpendicular to the axis 21A of the core 21 as described above, and theoretically undergoes total reflection. The totally reflected laser light travels in the direction of the arrow L1 and is emitted from the light emitting port 23.
- the laser light transmitted through the light transmitting section 20a is collected within a certain range in the circumferential direction by the light emitting section 20b, including not only the totally reflected laser light L1 but also the laser light L2 leaking out from the end face 20s, and is emitted from the side of the optical fiber 20. Therefore, the transmitted laser light can be efficiently irradiated onto the target to be irradiated, such as cancer cells.
- the tip side TE also has a heat dissipation coating 25 that contacts the reflecting element 24 and covers part of the light transmission portion 20a, so that heat from the reflecting element 24 can be released and heat generation in and near the light exit portion 20b can be suppressed.
- Fig. 8 is a vertical cross-sectional view of the light output portion of an optical fiber in a light diffusing device 3 according to the third embodiment and its vicinity
- Fig. 9 is a horizontal cross-sectional view of the portion of the light output portion of an optical fiber in the light diffusing device 3.
- Fig. 9 is a cross-sectional view taken along the line F-F in Fig. 8. Since the light diffusing device 3 according to this embodiment has a configuration substantially similar to that of the light diffusing device 1 according to the first embodiment, refer to Fig. 1 for an overview of the light diffusing device 3.
- the cross section G-G in FIG. 8 is the same as that in FIG. 3, so please refer to FIG. 3 for this cross section.
- the light diffusion device 3 according to the third embodiment has the same configuration as the light diffusion device 1 according to the first embodiment, except for the structure in the vicinity of the light emission portion 20b of the optical fiber 20 which is unique to this embodiment. Therefore, the members having the same functions as the light diffusion device 1 according to the first embodiment are given the same reference numerals as in FIGS. 1 to 6, and their description will be omitted.
- a reflective resin is used as the reflective element 27 (hereinafter, referred to as "reflective resin 27").
- the reflective resin 27 include fluororesins such as polytetrafluoroethylene (PTFE), resins containing barium sulfate, silicone resins, etc.
- the heat dissipation coating 25 is composed of separate members in the axial direction, a member (heat dissipation coating main body 25a) for the area covering part of the light transmission section 20a, and a member (heat dissipation metal 25b) for the area where the light emitting section 20b is present.
- the heat dissipation coating main body 25a and the heat dissipation metal 25b are regarded as a single body that constitutes the heat dissipation coating 25, the heat dissipation coating 25 extends to the area where the light emitting section 20b is present in the axial direction 21A, within the range of the area where the reflecting element 24 is present in the circumferential direction, at the tip side TE, and is in radial contact with the reflective resin 27.
- the reflective resin 27 has a larger specific heat than the metallic reflective element 24 in the first and second embodiments, so the heat dissipation effect is ensured by making radial contact with the heat dissipation metal 25b to increase the contact area.
- the configuration of the heat dissipation coating body 25a is the same as the heat dissipation coating 25 in the first and second embodiments.
- the configuration of the heat dissipation metal 25b does not cover the entire circumference of the optical fiber 20, but is located only within the range of the area where the reflective resin (reflective element) 27 exists in the circumferential direction (range b in Figure 9).
- the material for the heat dissipation metal 25b is preferably one with the characteristics described as the material for the heat dissipation coating 25 in the first embodiment, and specific examples are similar. It is preferable that the heat dissipation coating body 25a and the heat dissipation metal 25b are made of the same material.
- heat dissipation metal 25b and the reflective resin 27 there are no particular limitations on the form of contact between the heat dissipation metal 25b and the reflective resin 27, so long as they are in physical contact. To ensure that the heat dissipation metal 25b and the reflective resin 27 are in contact with each other, they may be fixed together with adhesive, screws, welding, or other fixing means, or they may be molded into a shape that allows them to engage with each other and then engaged.
- heat dissipating metal 25b and the heat dissipating coating body 25a there are no particular limitations on the form between the heat dissipating metal 25b and the heat dissipating coating body 25a, as long as they are in physical contact. To ensure that the heat dissipating metal 25b and the heat dissipating coating body 25a are in contact, they may be fixed together with adhesive, screws, welding, or other fixing means, or they may be molded into a shape that allows them to engage with each other and then engaged.
- the heat dissipation metal 25b and the heat dissipation coating body 25a may be molded as a single unit, so that they are physically indistinguishable from each other. In this embodiment, whether they are integrated or separate, the heat dissipation metal 25b and the heat dissipation coating body 25a together constitute the heat dissipation coating 25.
- the laser oscillator 10 when the laser oscillator 10 is operated to cause laser light to be incident on the base end 20BE of the optical fiber 20, the laser light is transmitted through the light transmission section 20a and emitted from the light emission section 20b.
- the laser light emitted radially in all directions in the circumferential direction from the light emission section 20b of the optical fiber 20 is partially reflected directly and the rest is reflected by the reflective resin 27 and emitted from the light emission port 23.
- the laser light transmitted through the light transmission section 20a is collected within a certain range in the circumferential direction by the light emission section 20b and is emitted from the side of the optical fiber 20. Therefore, the transmitted laser light can be efficiently irradiated onto the target to be irradiated, such as cancer cells.
- the heat dissipation metal 25b contacts the reflective resin 27 in the radial direction, making it possible to increase the contact area and achieve a high heat dissipation effect.
- the heat dissipation metal 25b can also dissipate heat from the heat dissipation coating body 25a with which it is in contact, making it possible to suppress heat generation in and around the light emitting portion 20b.
- the configuration of this embodiment is also suitable for the case where ceramics, which has a larger specific heat than metal, is used as the reflecting element 24 .
- the modified examples and the materials of the respective members are similar to those of the first embodiment, and therefore the description thereof will be omitted.
- the shape of the light exit port is exemplified as a slit extending in the axial direction of the optical fiber (in a region corresponding to the arc-shaped outer circumferential surface of the optical fiber with a specified central angle), but is not limited to this.
- multiple perforations may be provided on the exit side surface of the reflecting element, and the perforations may serve as the light exit port.
- the shape of the perforations is also arbitrary, and may be circular, rectangular, or some other shape.
- a long and thin elliptical opening 28 may be provided on the exit side surface of the reflecting element 24' to form a window structure, which may serve as the light exit port 23'.
- FIG. 11 is a schematic diagram showing a modified example of the reflecting element. The shape of the opening of this window structure may also be appropriately selected, such as rectangular or polygonal.
- Specific specifications and conditions of the examples and comparative examples are as follows. Specifications and conditions not described below are as described in the explanation of the first embodiment.
- Test environment temperature Room temperature (22°C) Axial length of light emitting portion 20b: 40 mm Material of heat dissipation coating 25: SUS304 Material of the reflecting element 24: silicone resin, SUS304, aluminum, copper, silver Axial length of the heat dissipation coating 25 and the tube 26: 1 to 1000 mm Total length of optical fiber 20: 1040 mm State of the light emitting portion 20b when heated: held in air Room temperature during testing: 21° C. Wavelength of laser light from laser oscillator 10: 690 nm Laser light intensity of the laser oscillator 10: 550 mW
- the outer surface of the reflecting element 24 was measured with an infrared thermometer while the laser oscillator 10 was operated to cause laser light to enter the base end 20BE of the optical fiber 20 and emit (laser irradiation) from the light emitting portion 20b.
- the laser irradiation was continued for 5 minutes from the start, and the temperature of the outer surface of the reflecting element 24 was monitored.
- the evaluation criteria in Tables 1 to 3 are as follows. ⁇ : The temperature of the light emitting part and its vicinity is less than 40°C. ⁇ : The temperature of the light emitting part and its vicinity is 40°C or higher and lower than 50°C. ⁇ : The temperature of the light emitting part and its vicinity is 50°C or higher.
- thermal insulation coating material is aluminum, copper, or silver
- Example 11 and 12 where the heat dissipation coating was copper (thermal conductivity 386 W/mK), the temperature at the light emitting part and its vicinity was 31.4°C when the length (L3) of the heat dissipation coating was 40 mm for a thermal diffusion length of 106 mm. Furthermore, when the length (L3) of the heat dissipation coating was at the level of 100 mm, which is greater than the diffusion length, the temperature at the light emitting part and its vicinity was 22.0°C (the same temperature as room temperature), confirming a significant effect in suppressing temperature rise.
- Example 14 which was the same as Example 13 but also had a tip cap attached, the temperature at the light-emitting part and its vicinity dropped from 30.4°C to 26.9°C (-3.5°C), confirming a further effect in suppressing temperature rise.
- the light diffusion device of the embodiment which is provided with a metallic heat dissipation coating 25 with heat dissipation properties, was able to reduce the temperature of the light emitting section and its vicinity by 35% or more compared to the comparative example.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
A light diffusion device (1) according to the present invention is provided with an optical fiber (20) that comprises a core disposed on the radially central side and cladding positioned on the outer circumferential side of the core, and emits, from the leading end side (T) of the optical fiber (20), light that entered from the base end of the optical fiber (20). The optical fiber (20) has a light transmission unit (20a) for transmitting the light having entered from the base end toward the leading end (20TE) and has a light emission unit (20b) which has removed therefrom a portion positioned on the outer circumferential side of the cladding at the leading end side T and thereby emits light having transmitted through the light transmission unit (20a) from the outer circumferential surface. The light diffusion device comprises: a reflective element (24) that surrounds the outer circumferential surface of the light emission unit (20b) except for a region serving as a light emission port (23); and a heat-dissipating covering (25) which is in contact with the reflective element (24) at the leading end side (T) and which covers at least a portion of the light transmission unit (20a).
Description
本発明は、医療機器に用いられる光拡散装置に関する。
The present invention relates to a light diffusion device for use in medical equipment.
従来の光拡散装置としては、径方向の中心側に位置するコアと、前記コアの外周側に位置するクラッドと、からなる光ファイバを備え、光ファイバの基端部から入射したレーザ光を、光ファイバの先端部及び先端側の外周面から出射させるものが知られている(例えば、特許文献1参照)。従来の光拡散装置の光ファイバは、基端部から入射したレーザ光を伝送する光伝送部と、先端側において前記光伝送部を伝送されたレーザ光を出射させる光出射部と、を有している。
A conventional light diffusion device is known that includes an optical fiber consisting of a core located at the center in the radial direction and a cladding located on the outer periphery of the core, and that emits laser light incident on the base end of the optical fiber from the tip end and the outer periphery on the tip side (see, for example, Patent Document 1). The optical fiber of the conventional light diffusion device has a light transmission section that transmits the laser light incident on the base end, and a light emission section at the tip side that emits the laser light transmitted through the light transmission section.
光拡散装置は、癌の治療法の1つである光免疫療法において、光ファイバの先端側を人体内に挿入し、人体に投与されて癌細胞に到達した薬剤にレーザ光を照射するために用いられている。
The optical diffusion device is used in photoimmunotherapy, a cancer treatment method, by inserting the tip of an optical fiber into the human body and irradiating laser light onto a drug that has been administered to the human body and has reached the cancer cells.
例えば、転移性肝がんの治療の際、特に小さな腫瘍では、光ファイバの先端にシリンドリカルディフーザを備え、これを患部に刺して、限定照射で極力患部のみを照射したいという要求がある。そのため、光出射部の外周面を、光出射口となる領域を残して囲う反射素子(遮蔽素子)を設ける技術がある。光出射部の外周面から径方向外側に出射した光のうち光出射口となる領域以外の領域に向かう光は、反射素子で反射し光出射口に集められる。そのため、周方向における所定の領域に限定されるので、強い光を患部のみに照射することができる。
For example, when treating metastatic liver cancer, especially for small tumors, there is a demand to provide a cylindrical diffuser at the tip of an optical fiber, insert this into the affected area, and irradiate as little of the affected area as possible with limited irradiation. For this reason, there is a technology that provides a reflective element (shielding element) that surrounds the outer circumferential surface of the light emitting part, leaving only the area that will become the light exit port. Of the light emitted radially outward from the outer circumferential surface of the light emitting part, light that is directed toward areas other than the area that will become the light exit port is reflected by the reflective element and collected at the light exit port. As a result, it is limited to a specific area in the circumferential direction, so strong light can be irradiated only to the affected area.
しかし、反射素子を設けると光出射部及びその近傍において発熱が問題になる。光拡散装置の光出射部の発熱が大きくなると、被施術者である患者が熱を知覚したり、健常細胞に影響を与える懸念があるため、施術者は、施術時に光量や照射時間を抑えるといった対応が必要となる。よって、施術の効率化や容易化、精度向上等の観点から、光出射部及びその近傍における発熱を抑制し得る光拡散装置が望まれる。
However, providing a reflective element causes problems with heat generation at the light output section and its vicinity. If the light output section of the light diffusion device generates too much heat, there is a concern that the patient receiving the treatment may sense the heat or that it may affect healthy cells, so the practitioner must take measures such as reducing the amount of light and the exposure time during treatment. Therefore, from the perspective of making treatment more efficient, easier, and more accurate, there is a need for a light diffusion device that can reduce heat generation at the light output section and its vicinity.
本発明は、光出射部及びその近傍における発熱を抑制し得る光拡散装置を提供することを目的の一つとする。
One of the objectives of the present invention is to provide a light diffusion device that can suppress heat generation at the light exit section and its vicinity.
本発明の一態様である光拡散装置は、径方向の中心側に位置するコアと、前記コアの外周側に位置するクラッドと、からなる光ファイバを備え、前記光ファイバの基端部から入射した光を、前記光ファイバの先端側から出射させる光拡散装置であって、
前記光ファイバは、基端部から入射した光を先端部に向かって伝送する光伝送部と、先端側における前記クラッドの外周側に位置する部分を除去することによって前記光伝送部を伝送された光を外周面から出射させる光出射部と、を有し、
前記光出射部の外周面を、光出射口となる領域を残して囲う反射素子と、
先端側で、前記反射素子に接するとともに、前記光伝送部の少なくとも一部を覆う放熱被覆と、
を備える。 A light diffusing device according to one aspect of the present invention is a light diffusing device comprising an optical fiber having a core located at a radial center side and a clad located on an outer peripheral side of the core, the light diffusing device causing light incident on a base end of the optical fiber to exit from a tip end side of the optical fiber,
the optical fiber has a light transmitting section that transmits light incident from a base end portion toward a tip end portion, and a light emitting section that emits the light transmitted through the light transmitting section from an outer circumferential surface by removing a portion located on the outer circumferential side of the clad at the tip end side,
a reflecting element that surrounds an outer peripheral surface of the light emitting portion, leaving a region that serves as a light emitting opening;
a heat dissipation coating that contacts the reflecting element at a tip side and covers at least a part of the light transmitting portion;
Equipped with.
前記光ファイバは、基端部から入射した光を先端部に向かって伝送する光伝送部と、先端側における前記クラッドの外周側に位置する部分を除去することによって前記光伝送部を伝送された光を外周面から出射させる光出射部と、を有し、
前記光出射部の外周面を、光出射口となる領域を残して囲う反射素子と、
先端側で、前記反射素子に接するとともに、前記光伝送部の少なくとも一部を覆う放熱被覆と、
を備える。 A light diffusing device according to one aspect of the present invention is a light diffusing device comprising an optical fiber having a core located at a radial center side and a clad located on an outer peripheral side of the core, the light diffusing device causing light incident on a base end of the optical fiber to exit from a tip end side of the optical fiber,
the optical fiber has a light transmitting section that transmits light incident from a base end portion toward a tip end portion, and a light emitting section that emits the light transmitted through the light transmitting section from an outer circumferential surface by removing a portion located on the outer circumferential side of the clad at the tip end side,
a reflecting element that surrounds an outer peripheral surface of the light emitting portion, leaving a region that serves as a light emitting opening;
a heat dissipation coating that contacts the reflecting element at a tip side and covers at least a part of the light transmitting portion;
Equipped with.
前記放熱被覆の熱伝導率が80W/m・K以上であってもよい。
The thermal conductivity of the heat dissipation coating may be 80 W/m·K or more.
前記放熱被覆の長さが熱拡散長以上であってもよい。
The length of the heat dissipation coating may be equal to or greater than the thermal diffusion length.
前記放熱被覆が金属であってもよい。
The heat dissipation coating may be metallic.
前記光出射部の外周面が、円柱の外周面形状であってもよい。
The outer circumferential surface of the light emitting portion may be cylindrical.
前記反射素子において、前記光ファイバにおける所定の中心角の円弧状の外周面に対応する領域がスリット状に開口して、前記光出射口となっていてもよい。
In the reflecting element, a region corresponding to the arc-shaped outer peripheral surface of the optical fiber with a predetermined central angle may be opened in a slit shape to serve as the light exit port.
前記光ファイバの先端に、前記コアの軸に垂直の平面に対して斜めの端面を有していてもよい。
The tip of the optical fiber may have an end face that is oblique to a plane perpendicular to the axis of the core.
前記反射素子の光反射率が1%以上であってもよい。
The light reflectance of the reflective element may be 1% or more.
前記反射素子が金属であってもよい。
The reflective element may be metal.
前記反射素子と前記放熱被覆と、が一体化していてもよい。
The reflective element and the heat dissipation coating may be integrated.
前記反射素子が反射性樹脂であってもよい。
The reflective element may be a reflective resin.
前記反射素子がセラミックスであってもよい。
The reflective element may be ceramic.
前記放熱被覆が、先端側で、周方向における前記反射素子が存在する領域の範囲内で、軸方向における前記光出射部が存在する領域まで延伸し、前記反射素子と径方向で接していてもよい。
The heat dissipation coating may extend to the area in the axial direction where the light emitting portion is located, within the area in the circumferential direction where the reflecting element is located, on the tip side, and may be in radial contact with the reflecting element.
前記放熱被覆が、軸方向において、前記光伝送部の少なくとも一部を覆う領域と、前記光出射部が存在する領域とで、別部材で構成されていてもよい。
The heat dissipation coating may be made of separate materials in the axial direction, with a region that covers at least a portion of the light transmission section and a region where the light emission section is present.
前記反射素子における前記光出射部に対向する面の凹凸が、使用する光の波長以下であってもよい。
The unevenness of the surface of the reflecting element facing the light emitting portion may be less than the wavelength of the light being used.
前記放熱被覆の熱伝導率が、0.2W/m・K以上であってもよい。
The thermal conductivity of the heat dissipation coating may be 0.2 W/m·K or more.
前記放熱被覆が管状であってもよい。
The heat dissipation coating may be tubular.
本発明の一態様によれば、光出射部及びその近傍における発熱を抑制し得る光拡散装置を提供することができる。
According to one aspect of the present invention, it is possible to provide a light diffusion device that can suppress heat generation at the light emitting section and its vicinity.
以下、本発明の例示的態様である3つの実施形態にかかる光拡散装置について、図面を参照しながら具体的に説明する。
Below, three exemplary embodiments of the light diffusion device according to the present invention will be described in detail with reference to the drawings.
<第1の実施形態>
図1は第1の実施形態にかかる光拡散装置1の概略図であり、図2は光拡散装置1における光ファイバの光出射部及びその近傍の縦断面図であり、図3は光拡散装置1における光ファイバの光伝送部の部位の横断面図であり、図4は光拡散装置1における光ファイバの光出射部の部位の横断面図である。なお、光ファイバの基端側を矢印B、先端側を矢印Tで示す。 First Embodiment
Fig. 1 is a schematic diagram of a light diffusingdevice 1 according to a first embodiment, Fig. 2 is a longitudinal sectional view of a light emitting portion of an optical fiber in the light diffusing device 1 and its vicinity, Fig. 3 is a transverse sectional view of a portion of a light transmitting portion of an optical fiber in the light diffusing device 1, and Fig. 4 is a transverse sectional view of a portion of a light emitting portion of an optical fiber in the light diffusing device 1. The base end side of the optical fiber is indicated by an arrow B, and the tip side is indicated by an arrow T.
図1は第1の実施形態にかかる光拡散装置1の概略図であり、図2は光拡散装置1における光ファイバの光出射部及びその近傍の縦断面図であり、図3は光拡散装置1における光ファイバの光伝送部の部位の横断面図であり、図4は光拡散装置1における光ファイバの光出射部の部位の横断面図である。なお、光ファイバの基端側を矢印B、先端側を矢印Tで示す。 First Embodiment
Fig. 1 is a schematic diagram of a light diffusing
詳しくは、図2は図3及び図4におけるC-C断面にかかる断面図であり、図3は図2におけるB-B断面にかかる断面図であり、図4は図2におけるA-A断面にかかる断面図である。
In detail, FIG. 2 is a cross-sectional view taken along the line CC in FIG. 3 and FIG. 4, FIG. 3 is a cross-sectional view taken along the line B-B in FIG. 2, and FIG. 4 is a cross-sectional view taken along the line A-A in FIG. 2.
本実施形態の光拡散装置1は、癌の治療方法の1つである光免疫療法に用いられるものである。光免疫療法は、癌細胞に結合する抗体と光に反応する物質とからなる薬剤を人体に投与し、癌細胞に結合した当該薬剤に対してレーザ光を照射して癌細胞を破壊することによって、癌を治療する施術である。
The light diffusion device 1 of this embodiment is used in photoimmunotherapy, which is one of the cancer treatment methods. Photoimmunotherapy is a procedure for treating cancer by administering to the human body a drug consisting of an antibody that binds to cancer cells and a substance that reacts to light, and then irradiating the drug that has bound to the cancer cells with laser light to destroy the cancer cells.
光拡散装置1は、光ファイバ20の基端部20BEから入射した光を先端側Tから出射させる装置であり、光ファイバ20の基端側Bの基端部20BEには、レーザ光を発生させるための光源としてのレーザ発振器10が接続されている。
The light diffusion device 1 is a device that emits light incident on the base end 20BE of the optical fiber 20 from the tip side T, and a laser oscillator 10 is connected to the base end 20BE on the base side B of the optical fiber 20 as a light source for generating laser light.
レーザ発振器10は、半導体レーザを有し、半導体レーザに電気を流すことでレーザ発振を生じさせ、レーザ光を発生させるものである。レーザ発振器10は、630nm以上700nm以下の波長を有する赤色のレーザ光を発生させる。
The laser oscillator 10 has a semiconductor laser, and generates laser light by passing electricity through the semiconductor laser to cause laser oscillation. The laser oscillator 10 generates red laser light having a wavelength of 630 nm or more and 700 nm or less.
光ファイバ20は、樹脂(プラスチック)製の部材からなる。光ファイバ20は、図3~図5に示すように、径方向の中心側に位置するコア21と、コア21の外周側に位置するクラッド22と、からなるシングルコア光ファイバである。光ファイバ20は、コア21とクラッド22との比屈折率差が、2%以上11%以下である。
The optical fiber 20 is made of a resin (plastic) member. As shown in Figures 3 to 5, the optical fiber 20 is a single-core optical fiber consisting of a core 21 located in the center in the radial direction and a cladding 22 located on the outer periphery of the core 21. The optical fiber 20 has a relative refractive index difference between the core 21 and the cladding 22 of 2% to 11%.
光ファイバ20は、例えば、外径が500μmであり、コア21の外径が480μmであり、クラッド22の厚さが10μmである。ここで、光ファイバ20は、クラッド22の外径が、102μm以上1100μm以下であることが好ましい。また、光ファイバ20は、コア21の外径が、100μm以上1000μm以下であることが好ましい。クラッド22は、厚さが1μm以上50μm以下であることが好ましい。
The optical fiber 20 has, for example, an outer diameter of 500 μm, an outer diameter of the core 21 of 480 μm, and a thickness of the cladding 22 of 10 μm. Here, it is preferable that the outer diameter of the cladding 22 of the optical fiber 20 is 102 μm or more and 1100 μm or less. It is also preferable that the outer diameter of the core 21 of the optical fiber 20 is 100 μm or more and 1000 μm or less. It is preferable that the thickness of the cladding 22 is 1 μm or more and 50 μm or less.
光ファイバ20は、図1及び図2に示すように、基端部20BEから入射したレーザ光を先端側Tに向かって伝送する光伝送部20aと、先端側Tの延在方向の所定範囲内のクラッド22の外周側に位置する部分を除去することによって光伝送部20aを伝送されたレーザ光を外周面から出射させる光出射部20bと、を有している。
As shown in Figures 1 and 2, the optical fiber 20 has a light transmission section 20a that transmits the laser light incident from the base end 20BE toward the tip side T, and a light emission section 20b that causes the laser light transmitted through the light transmission section 20a to exit from the outer circumferential surface by removing a portion located on the outer circumferential side of the cladding 22 within a predetermined range in the extension direction of the tip side T.
図2及び図3に示すように、光ファイバ20の先端側Tにおいて、光出射部20bを残して光伝送部20aの一定の領域は、放熱被覆25で覆われ(被覆され)ており、さらにその外周が軟質の樹脂製のチューブ26で被覆されている。本実施形態において、チューブ26は、厚みが0.1mmであり、外径が0.95mmであり、内径が0.85mmであるが、勿論これら大きさに限定されない。また、チューブ26で被覆せずに放熱被覆25を露出させたままで使用しても構わない。
As shown in Figures 2 and 3, at the tip side T of the optical fiber 20, a certain area of the light transmitting section 20a, except for the light emitting section 20b, is covered (coated) with a heat dissipating coating 25, and its outer periphery is further coated with a soft resin tube 26. In this embodiment, the tube 26 has a thickness of 0.1 mm, an outer diameter of 0.95 mm, and an inner diameter of 0.85 mm, but of course these sizes are not limited to these. It is also possible to use it without covering it with the tube 26 and leaving the heat dissipating coating 25 exposed.
チューブ26の材質としては、本実施形態ではナイロンが用いられているが、軟質の樹脂であれば特に制限はなく、ナイロンのほか例えば、塩化ビニル、塩化ビニリデン、ウレタン樹脂、シリコーン樹脂等を挙げることができる。
In this embodiment, nylon is used as the material for the tube 26, but there are no particular limitations as long as it is a soft resin, and examples of the material that can be used in addition to nylon include polyvinyl chloride, vinylidene chloride, urethane resin, silicone resin, etc.
チューブ26で被覆されていない光出射部20bは、光ファイバ20の先端側Tの例えば10mm以上100mm以下の範囲内に形成され、好ましくは20mm以上40mm以下の範囲内に形成される。光出射部20bの外周面は、円柱の外周面形状(シリンドリカル状)になっている。光出射部20bは、クラッド22の厚み方向における内周側を残して、クラッド22の外周側の一部分を例えばブラスト加工、エッチング加工等により除去することで形成される。
The light emitting portion 20b that is not covered by the tube 26 is formed within a range of, for example, 10 mm to 100 mm, preferably 20 mm to 40 mm, on the tip side T of the optical fiber 20. The outer peripheral surface of the light emitting portion 20b has a cylindrical outer peripheral surface shape. The light emitting portion 20b is formed by removing a portion of the outer peripheral side of the clad 22 by, for example, blasting or etching, leaving the inner peripheral side in the thickness direction of the clad 22.
光出射部20bは、クラッド22を除去することによって径方向の大きさが、光伝送部20aの直径Daよりもレーザ光の波長の大きさ以上に小さくなる(即ち、除去されたクラッド22の厚みがレーザ光の波長の大きさの半分以上になる)と、光ファイバ20の長手方向の波長オーダの構造の変化により、光ファイバ20の断面の光強度分布が変化し、光が漏れるようになり、外周面からレーザ光が出射されるようになる。
When the radial size of the light emitting section 20b becomes smaller than the diameter Da of the light transmitting section 20a by more than the wavelength of the laser light due to the removal of the cladding 22 (i.e., the thickness of the removed cladding 22 becomes more than half the wavelength of the laser light), the change in the structure of the optical fiber 20 in the longitudinal direction, which is of the order of wavelength, changes the light intensity distribution in the cross section of the optical fiber 20, causing light to leak and laser light to be emitted from the outer peripheral surface.
本実施形態における光出射部20bにおいて、図4に示す通り、光ファイバ20の全周にわたってクラッド22が除去されている。しかし、図5に示すように、周方向において、光ファイバ20の一定領域(図5においては中心角180°)の円弧の外表面のみクラッド22を除去しても構わない。この場合には、クラッド22が除去された領域の外表面からレーザ光が出射されるようになる。
In the light emitting portion 20b in this embodiment, as shown in Figure 4, the cladding 22 is removed from the entire circumference of the optical fiber 20. However, as shown in Figure 5, the cladding 22 may be removed only from the outer surface of a circular arc in a certain region of the optical fiber 20 in the circumferential direction (central angle of 180° in Figure 5). In this case, the laser light is emitted from the outer surface of the region where the cladding 22 has been removed.
光出射部20bは、図2及び図4に示す通り、その外周面が、一部領域を残して反射素子24で囲われている。詳しくは、図4に示す通り、光ファイバ20における所定の中心角θの円弧状の外周面に対応する領域aがスリット状に開口した状態になっており、当該開口が光出射口23となる。本実施形態において、中心角θは、例えば45°に設定される。この中心角θとしては、特に制限はなく、目的や所望とする性能、規格等に応じて適宜設定すればよく、好適には30°~350°の範囲から選択される。
As shown in Figures 2 and 4, the outer peripheral surface of the light emitting portion 20b is surrounded by a reflecting element 24, leaving only a small area. In detail, as shown in Figure 4, the area a corresponding to the arc-shaped outer peripheral surface of the optical fiber 20 with a predetermined central angle θ is opened in a slit shape, and this opening becomes the light emitting port 23. In this embodiment, the central angle θ is set to, for example, 45°. There are no particular limitations on this central angle θ, and it may be set appropriately depending on the purpose, desired performance, standards, etc., and is preferably selected from the range of 30° to 350°.
反射素子24は、周方向において、光出射部20bの光出射方向(中心角θの範囲の方向)以外の方向(光出射口23に対応する領域a以外の領域)に漏れ出る光を反射して、光出射口23から出射させる部材である。
The reflecting element 24 is a member that reflects light that leaks in a direction (area other than the area a corresponding to the light exit port 23) other than the light exit direction of the light exit section 20b (directions within the range of the central angle θ) in the circumferential direction, and causes the light to exit from the light exit port 23.
反射素子24は、光反射率が1%以上であり、30%以上であることが好ましく、50%以上であることがさらに好ましく、80%以上であることが好ましく、100%に近づけることが望まれる。本実施形態において、反射素子24は、厚みが0.1mmであり、外径が0.8mmであり、内径が0.6mmであるが、勿論これら大きさに限定されない。
The reflective element 24 has a light reflectance of 1% or more, preferably 30% or more, more preferably 50% or more, and more preferably 80% or more, and preferably close to 100%. In this embodiment, the reflective element 24 has a thickness of 0.1 mm, an outer diameter of 0.8 mm, and an inner diameter of 0.6 mm, but of course the dimensions are not limited to these.
反射素子24における光出射部20bに対向する面は、レーザ光を効率的に反射するためにできるだけ鏡面に近いことが望ましい。具体的に、反射素子24における光出射部20bに対向する面の凹凸としては、使用する光(光ファイバ20内で伝送されるレーザ光)の波長以下であることが好ましい。ここで、「凹凸」とは、図10に示すような凹凸の最大の山のピークと最小の谷の底の差(輪郭曲線の最大高さ:JIS B0601参照)Rzを示す。なお、図10は、輪郭曲線の最大高さを説明するためのグラフであり、グラフの曲線は、粗さ曲線の一例である。
It is desirable that the surface of the reflecting element 24 facing the light emitting portion 20b is as close to a mirror surface as possible in order to efficiently reflect the laser light. Specifically, it is preferable that the unevenness of the surface of the reflecting element 24 facing the light emitting portion 20b is equal to or less than the wavelength of the light being used (laser light transmitted within the optical fiber 20). Here, "unevenness" refers to the difference Rz between the peak of the maximum mountain and the bottom of the minimum valley of the unevenness as shown in Figure 10 (maximum height of the contour curve: see JIS B0601). Note that Figure 10 is a graph to explain the maximum height of the contour curve, and the curve in the graph is an example of a roughness curve.
反射素子24としては、後述する放熱性の要求から、熱伝導性が高いことが望ましく、具体的には例えば、熱伝導率が0.2W/m・K以上であることが好ましく、2W/m・K以上であることがより好ましく、16W/m・K以上であることがさらに好ましい。
The reflective element 24 desirably has high thermal conductivity in view of the heat dissipation requirements described below. Specifically, for example, the thermal conductivity is preferably 0.2 W/m·K or more, more preferably 2 W/m·K or more, and even more preferably 16 W/m·K or more.
反射素子24の材質としては、光反射率が所望の高さであれば特に制限はないが、光反射率が高いものが好ましい。反射素子24の材質として、具体的には、ステンレス、アルミニウム、金、銀、銅、ニッケルチタン(Ni-Ti)合金等の金属や、ポリテトラフルオロエチレン(PTFE)などのフッ素樹脂、硫酸バリウム入りの樹脂、シリコーン樹脂等の反射性樹脂、アルミナ等のセラミックスを挙げることができる。これらの中でも、光反射率やコスト、加工性、さらには熱伝導性の観点から、反射素子24は金属製であることが好ましく、特にステンレス製であることが好ましい。また、反射素子24は単一の材料で製造されていなくてもよく、例えばステンレス製の円柱を加工し、内側を鏡面研磨した後、金、銀など高い反射率を有する金属でコーテイングされたものを例示することができる。
The material of the reflective element 24 is not particularly limited as long as it has the desired light reflectance, but a material with high light reflectance is preferable. Specific examples of the material of the reflective element 24 include metals such as stainless steel, aluminum, gold, silver, copper, and nickel-titanium (Ni-Ti) alloy, fluororesins such as polytetrafluoroethylene (PTFE), resins containing barium sulfate, and reflective resins such as silicone resin, and ceramics such as alumina. Among these, from the viewpoints of light reflectance, cost, processability, and thermal conductivity, the reflective element 24 is preferably made of metal, and is particularly preferably made of stainless steel. In addition, the reflective element 24 does not have to be manufactured from a single material. For example, a stainless steel cylinder is processed, the inside is mirror-polished, and then coated with a metal having a high reflectance, such as gold or silver, can be given as an example.
本実施形態にかかる光拡散装置1において、レーザ発振器10を作動させ光ファイバ20の基端部20BEからレーザ光を入射させると、レーザ光は光伝送部20aを伝送され、光出射部20bから出射する。光ファイバ20の光出射部20bから周方向の全方位に放射状に出射したレーザ光は、一部は直接、他は反射素子24で反射して、光出射口23から出射される。即ち、光伝送部20aを伝送されたレーザ光は、光出射部20bで、周方向における一定の範囲内に集められて、光ファイバ20の側方から出射する。そのため、伝送されたレーザ光を、がん細胞などの被照射対象に対して効率的に照射することができる。
In the light diffusion device 1 according to this embodiment, when the laser oscillator 10 is operated to cause laser light to be incident on the base end 20BE of the optical fiber 20, the laser light is transmitted through the light transmission section 20a and emitted from the light emission section 20b. The laser light emitted radially in all directions in the circumferential direction from the light emission section 20b of the optical fiber 20 is partially emitted directly and the rest is reflected by the reflecting element 24 and emitted from the light emission port 23. In other words, the laser light transmitted through the light transmission section 20a is collected within a certain range in the circumferential direction by the light emission section 20b and is emitted from the side of the optical fiber 20. Therefore, the transmitted laser light can be efficiently irradiated onto the target to be irradiated, such as cancer cells.
光出射口23からレーザ光が出射されると、光ファイバ20の光出射部20b近傍において熱が発生し、特に光出射部20bに近接する反射素子24の温度が上がりやすい。そのため、施術者は、光出射部20b近傍の温度を、例えば被施術者の体温から5℃以上高温にならないように、レーザ光の強度や照射時間を適宜制御して施術することが要求される。
When laser light is emitted from the light exit port 23, heat is generated near the light emitting portion 20b of the optical fiber 20, and the temperature of the reflecting element 24, which is particularly close to the light emitting portion 20b, tends to rise. Therefore, the practitioner is required to appropriately control the intensity and irradiation time of the laser light during treatment so that the temperature near the light emitting portion 20b does not become, for example, 5°C higher than the body temperature of the patient.
一方、レーザ光の強度としては、施術による高い効果を実現するため、ある程度高いことが望まれており、具体的には例えば、400mW/cm程度の出力が望まれる。また、レーザ光の連続照射時間としては最大でも5分間である。よって、出力400mW/cm×連続照射時間5分で光出射部20b近傍の温度が50℃未満であることがより望ましい。
On the other hand, in order to achieve a high effect from the treatment, it is desirable for the intensity of the laser light to be relatively high; specifically, for example, an output of about 400 mW/cm is desirable. Furthermore, the continuous irradiation time of the laser light is a maximum of 5 minutes. Therefore, it is more desirable for the temperature near the light emitting part 20b to be less than 50°C at an output of 400 mW/cm x continuous irradiation time of 5 minutes.
そこで、本実施形態においては、光出射部20b及びその近傍における発熱を抑制する目的で、放熱被覆25を設けている。先端側TEで、反射素子24に接するとともに、光伝送部20aの一部を覆う放熱被覆25を備えているため、反射素子24の熱を逃がすことができ、光出射部20b及びその近傍における発熱を抑制することができる。
In this embodiment, therefore, a heat dissipation coating 25 is provided to suppress heat generation in the light emitting portion 20b and its vicinity. The heat dissipation coating 25 is provided at the tip side TE, in contact with the reflecting element 24 and covering a part of the light transmitting portion 20a, so heat from the reflecting element 24 can be released and heat generation in the light emitting portion 20b and its vicinity can be suppressed.
放熱被覆25は、光伝送部20aの少なくとも一部を覆っている。放熱被覆25は、フレキシブルな管状であり、管内に光ファイバ20が挿し込まれ、さらに外周がチューブ26で被覆されている。即ち、本実施形態の光拡散装置1において、光伝送部20aの先端側Tの一定領域は、中心から順に、光ファイバ20、放熱被覆25及びチューブ26の3層構造になっている。
The heat dissipation coating 25 covers at least a portion of the light transmission section 20a. The heat dissipation coating 25 is flexible and tubular, into which the optical fiber 20 is inserted, and the outer periphery is further covered with the tube 26. That is, in the light diffusion device 1 of this embodiment, a certain region on the tip side T of the light transmission section 20a has a three-layer structure consisting of, in order from the center, the optical fiber 20, the heat dissipation coating 25, and the tube 26.
また、放熱被覆25は、先端側Tで、反射素子24に接している。放熱被覆25と反射素子24との接触は、物理的に接していれば特にその態様に制限はない。放熱被覆25と反射素子24との接触を確実ならしめるために、両者間を接着剤やネジ、溶接等の固定手段で固定してもよいし、両者が係合し合う形状に成型した上で係合させてもよい。
The heat dissipation coating 25 is in contact with the reflecting element 24 at the tip side T. There are no particular limitations on the manner of contact between the heat dissipation coating 25 and the reflecting element 24 as long as they are in physical contact. To ensure that the heat dissipation coating 25 and the reflecting element 24 are in contact, they may be fixed together with a fixing means such as adhesive, screws, or welding, or they may be molded into a shape that allows them to engage with each other and then engaged.
さらに、放熱被覆25と反射素子24とを一体で成形し、両者間が物理的には区別できない状態(一体化した状態)になっていたとしても、反射素子24として機能する部位と放熱被覆25として機能する部位とが分かれていて、それぞれの機能を担う部位同士が何れかの箇所で繋がっている場合には、当該繋がっている箇所について、本発明における「接する」の概念に含めることとする。
Furthermore, even if the heat dissipation coating 25 and the reflective element 24 are molded as a single unit and are physically indistinguishable from each other (integrated), if the part that functions as the reflective element 24 and the part that functions as the heat dissipation coating 25 are separate and the parts that perform each function are connected at some point, the connected part is included in the concept of "contact" in this invention.
放熱被覆25は、反射素子24と接触して、反射素子24の熱を逃がす機能を有する。そのため、放熱被覆25は熱伝導性が高いことが望ましく、具体的には例えば、放熱被覆25の熱伝導率が80W/m・K以上であることが好ましく、200W/m・K以上であることがより好ましく、350W/m・K以上であることがさらに好ましい。また、反射素子24と放熱被覆25とでは、反射素子24の熱伝導率の方が高いことが望ましい。本実施形態において、放熱被覆25は、厚みが0.1mmであり、外径が0.8mmであり、内径が0.6mmであるが、勿論これら大きさに限定されない。
The heat dissipation coating 25 comes into contact with the reflective element 24 and has the function of dissipating heat from the reflective element 24. For this reason, it is desirable for the heat dissipation coating 25 to have high thermal conductivity. Specifically, for example, the thermal conductivity of the heat dissipation coating 25 is preferably 80 W/m·K or more, more preferably 200 W/m·K or more, and even more preferably 350 W/m·K or more. Furthermore, it is desirable for the thermal conductivity of the reflective element 24 to be higher than that of the heat dissipation coating 25. In this embodiment, the heat dissipation coating 25 has a thickness of 0.1 mm, an outer diameter of 0.8 mm, and an inner diameter of 0.6 mm, but of course these sizes are not limited to these.
放熱被覆25の材質としては、上述の熱伝導率を有するものであればどのような材質であってもよく、具体的には、ステンレス、アルミニウム、金、銀、銅、ニッケルチタン(Ni-Ti)合金等の金属や、アルミナ等のセラミックス、あるいは、放熱性を有するように加工が施されたシリコーン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂等の樹脂であってもよい。なお、放熱性を有するような加工とは、例えば、材料中に金属の粒子や熱伝導率の高いセラミックス粒子(例えばアルミナ粒子等)を分散含有させる等の加工が挙げられる。放熱被覆25の材質としては、これらの中でも、反射素子24と同じ材質とすることが特に好ましい。また、光ファイバの回転方向の位置(捻れ)を規制するために用いられるトルクコイルに、放熱被覆25としての機能を兼ね備えさせるようにしても構わない。
The material of the heat dissipation coating 25 may be any material having the above-mentioned thermal conductivity. Specifically, the material may be metals such as stainless steel, aluminum, gold, silver, copper, nickel-titanium (Ni-Ti) alloy, ceramics such as alumina, or resins such as silicone resin and polytetrafluoroethylene (PTFE) resin that have been processed to have heat dissipation properties. Examples of processing to have heat dissipation properties include processing in which metal particles or ceramic particles with high thermal conductivity (e.g. alumina particles) are dispersed in the material. Of these, it is particularly preferable that the material of the heat dissipation coating 25 is the same as that of the reflecting element 24. In addition, the torque coil used to regulate the position (twist) of the optical fiber in the rotational direction may also function as the heat dissipation coating 25.
本実施形態において、放熱被覆25が覆う光伝送部20aの長手方向の領域としては、放熱被覆25の熱伝導率によるが、例えば、放熱被覆25の熱伝導率が80W/m・K程度の場合、放熱被覆熱が1/eとなる熱拡散長以上であれば効率的に熱を排除できる。また、例えば、放熱被覆25の熱伝導率が200W/m・K以上の場合、熱拡散長の半分程度の長さでも光出射部20b近傍を所望温度に抑制することができる。
In this embodiment, the longitudinal region of the light transmitting section 20a covered by the heat dissipation coating 25 depends on the thermal conductivity of the heat dissipation coating 25. For example, if the thermal conductivity of the heat dissipation coating 25 is about 80 W/m·K, heat can be efficiently removed if the heat dissipation coating heat is equal to or greater than the thermal diffusion length at which 1/e is reached. Also, for example, if the thermal conductivity of the heat dissipation coating 25 is 200 W/m·K or greater, the temperature near the light emitting section 20b can be kept at the desired temperature even if the length is about half the thermal diffusion length.
ここで熱拡散長μとは、温度がどこまで伝わるかの指標として定義される物性であり、ある点から出た温度波の振幅は指数関数的に減衰しながら拡散して行くが、熱拡散長μとは、温度波の振幅が1/eになる距離をいう。熱拡散長μは、具体的には、√(α/πf)で定義される(式中、αは熱拡散率という物性値)。
Here, the thermal diffusion length μ is a physical property defined as an index of how far temperature can be transmitted. The amplitude of a temperature wave emitted from a certain point diffuses while exponentially decaying, and the thermal diffusion length μ is the distance at which the amplitude of the temperature wave becomes 1/e. Specifically, the thermal diffusion length μ is defined as √(α/πf) (where α is a physical property called thermal diffusivity).
放熱被覆25の熱伝導率が80W/m・K未満の場合には、施術時に体外に位置する領域まで放熱被覆25が延在していることが、当該領域で外気温に触れ放熱効果が高まるため好ましい。逆に、放熱被覆25が光伝送部20aの基端部BEまで全て覆っていても構わない。より好ましくは、放熱用のヒートシンクを接続して、ヒートシンクから熱を積極的に逃がすことが望ましい。
If the thermal conductivity of the heat dissipation coating 25 is less than 80 W/m·K, it is preferable for the heat dissipation coating 25 to extend to an area located outside the body during treatment, as this area will come into contact with the outside air temperature and the heat dissipation effect will be enhanced. Conversely, the heat dissipation coating 25 may cover the entire optical transmission section 20a up to the base end BE. More preferably, it is desirable to connect a heat sink for heat dissipation and actively dissipate heat from the heat sink.
放熱用のヒートシンクは、放熱被覆25の基端側Bの端部またはその近傍、あるいは長手方向の中途に接続することができる。ヒートシンクから熱を積極的に逃がすことにより、放熱効果をより一層高めることができる。かかるヒートシンクとしては、複数の放熱用の板状の突起を備えた金属製の部材や、発生した熱を吸収するのに十分な体積を有する金属の塊などを挙げることができる。
The heat sink for heat dissipation can be connected to the end of the base end side B of the heat dissipation coating 25 or near it, or halfway along the longitudinal direction. By actively releasing heat from the heat sink, the heat dissipation effect can be further improved. Examples of such a heat sink include a metal member with multiple plate-shaped protrusions for heat dissipation, or a metal lump with a volume sufficient to absorb the generated heat.
ヒートシンクは、光ファイバ20における光伝送部20aの中途に取り付けてもよいし、光ファイバ20とは別個に配置しても構わない。ヒートシンクを光ファイバ20における光伝送部20aの中途に取り付けた場合には、放熱被覆25の基端側Bの端部またはその近傍、あるいは長手方向(軸方向)の中途をヒートシンクに接続させればよい。ヒートシンクを光ファイバ20とは別個に配置した場合には、放熱被覆25を光ファイバ20における光伝送部20aから分岐させてヒートシンクに接続させればよい。
The heat sink may be attached midway through the light transmission section 20a of the optical fiber 20, or may be disposed separately from the optical fiber 20. When the heat sink is attached midway through the light transmission section 20a of the optical fiber 20, the end of the base end side B of the heat dissipation coating 25 or its vicinity, or midway in the longitudinal direction (axial direction) may be connected to the heat sink. When the heat sink is disposed separately from the optical fiber 20, the heat dissipation coating 25 may be branched off from the light transmission section 20a of the optical fiber 20 and connected to the heat sink.
チューブ26は、必須の構成ではないため、特に問題なければ、チューブ26無しに放熱被覆25が剥き出しであっても構わない。ただし、本実施形態では、放熱被覆25及び光ファイバ20を保護するため、光ファイバ20の長手方向において、施術時に体内に位置する全領域を被覆している。
The tube 26 is not an essential component, so if there is no particular problem, the heat dissipation coating 25 may be exposed without the tube 26. However, in this embodiment, in order to protect the heat dissipation coating 25 and the optical fiber 20, the entire area of the optical fiber 20 that is located inside the body during treatment is covered in the longitudinal direction.
本実施形態において、光ファイバ20の先端部20TEは、切り出したままの状態になっているが、先端部20TEからのレーザ光の漏れ防止や、反射素子24及び光ファイバ20の先端部20TEを保護するために、先端部20TEにキャップを設けても構わない。キャップの材質としては、例えば、ポリテトラフルオロエチレン(PTFE)等の樹脂やアルミニウム等の金属を挙げることができる。
In this embodiment, the tip 20TE of the optical fiber 20 is left in the cut state, but a cap may be provided on the tip 20TE to prevent leakage of laser light from the tip 20TE and to protect the reflecting element 24 and the tip 20TE of the optical fiber 20. Examples of materials for the cap include resins such as polytetrafluoroethylene (PTFE) and metals such as aluminum.
本実施形態において、光伝送部20aにおける光ファイバ20の外径、放熱被覆25の内径及び外径、並びに、チューブ26の内径は、相互に一致せず、各層間に径の差がある。この径の差は、光ファイバ20の光伝送部20aにおけるフレキシビリティを確保するため、及び、製造時の交差を吸収するための余裕であり、各層間に積極的に隙間を設けるためのものではない。
In this embodiment, the outer diameter of the optical fiber 20 in the light transmission section 20a, the inner and outer diameters of the heat dissipation coating 25, and the inner diameter of the tube 26 do not match each other, and there is a difference in diameter between each layer. This difference in diameter is a margin to ensure flexibility in the light transmission section 20a of the optical fiber 20 and to absorb tolerances during manufacturing, and is not intended to intentionally create gaps between each layer.
例えば、図2~図4では、層間の一部に隙間が描かれているが、長手方向の全領域に亘って隙間が確保されているわけではなく、多くの領域で層間が接触している。一方、図2~図4において、層間が接触しているように描かれている箇所については、逆に一部に隙間が生じている場合がある。
For example, in Figures 2 to 4, gaps are depicted in some areas between the layers, but this does not mean that gaps are maintained over the entire area in the longitudinal direction, and the layers are in contact in many areas. On the other hand, in Figures 2 to 4, in areas where the layers are depicted as being in contact, there may in fact be gaps in some areas.
<第2の実施形態>
図6は、第2の実施形態にかかる光拡散装置2における光ファイバの光出射部及びその近傍の縦断面図であり、図7は、当該光出射部の拡大縦断面図である。本実施形態にかかる光拡散装置2は、第1の実施形態にかかる光拡散装置1とほぼ同様の構成であるため、光拡散装置2の概略については、図1を参照のこと。 Second Embodiment
Fig. 6 is a vertical cross-sectional view of a light output portion of an optical fiber in thelight diffusing device 2 according to the second embodiment and its vicinity, and Fig. 7 is an enlarged vertical cross-sectional view of the light output portion. Since the light diffusing device 2 according to the present embodiment has a configuration substantially similar to that of the light diffusing device 1 according to the first embodiment, please refer to Fig. 1 for an outline of the light diffusing device 2.
図6は、第2の実施形態にかかる光拡散装置2における光ファイバの光出射部及びその近傍の縦断面図であり、図7は、当該光出射部の拡大縦断面図である。本実施形態にかかる光拡散装置2は、第1の実施形態にかかる光拡散装置1とほぼ同様の構成であるため、光拡散装置2の概略については、図1を参照のこと。 Second Embodiment
Fig. 6 is a vertical cross-sectional view of a light output portion of an optical fiber in the
また、図6におけるD-D断面は図4と、E-E断面は図3と、それぞれ同一なので、これら断面は図3乃至図4を参照のこと。なお、第2の実施形態にかかる光拡散装置2は、光ファイバ20の先端部20TEの形状が本実施形態に特有である点を除き、第1の実施形態にかかる光拡散装置1と同様の構成であるため、第1の実施形態にかかる光拡散装置1と同一の機能を備える部材には、図1~図6と同一の符号を付して、その説明を省略する。
In addition, the D-D cross section in FIG. 6 is the same as FIG. 4, and the E-E cross section is the same as FIG. 3, so please refer to FIG. 3 and FIG. 4 for these cross sections. Note that the light diffusion device 2 according to the second embodiment has the same configuration as the light diffusion device 1 according to the first embodiment, except that the shape of the tip portion 20TE of the optical fiber 20 is unique to this embodiment. Therefore, the members having the same functions as the light diffusion device 1 according to the first embodiment are given the same reference numerals as in FIG. 1 to FIG. 6, and their description will be omitted.
図6及び図7に示すように、本実施形態にかかる光拡散装置2では、光ファイバ20の先端部20TEに、コア21の軸21Aに垂直の平面Pに対して斜めの端面20sを有している。このとき、当該平面Pと端面20sとの成す角γは、光ファイバ20で伝送されるレーザ光が全反射する角度以上とされる。具体的には、光ファイバ20のコア21の屈折率ncore、空気の屈折率をnairとすると、γ=arcsin(nair/ncore)となり、ncore=1.465、nair=1.0とすると、γ=43°となる。
As shown in Figures 6 and 7, in the light diffusion device 2 according to this embodiment, the tip 20TE of the optical fiber 20 has an end face 20s that is inclined with respect to a plane P perpendicular to the axis 21A of the core 21. In this case, the angle γ between the plane P and the end face 20s is set to be equal to or greater than the angle at which the laser light transmitted through the optical fiber 20 is totally reflected. Specifically, if the refractive index of the core 21 of the optical fiber 20 is ncore and the refractive index of air is nair, then γ = arcsin(nair/ncore), and if ncore = 1.465 and nair = 1.0, then γ = 43°.
本実施形態にかかる光拡散装置2において、レーザ発振器10を作動させ光ファイバ20の基端部20BEからレーザ光を入射させると、レーザ光は光伝送部20aを伝送され、光出射部20bから出射する。光出射部20bにおいて、光ファイバ20の先端部20TEは、既述の如くコア21の軸21Aに垂直の平面Pに対して斜めの端面20sを有しており、理論上、全反射する。全反射したレーザ光は、矢印L1方向に進み、光出射口23から出射される。
In the light diffusing device 2 according to this embodiment, when the laser oscillator 10 is operated to cause laser light to be incident on the base end 20BE of the optical fiber 20, the laser light is transmitted through the light transmitting section 20a and emitted from the light emitting section 20b. In the light emitting section 20b, the tip end 20TE of the optical fiber 20 has an end face 20s that is inclined with respect to the plane P perpendicular to the axis 21A of the core 21 as described above, and theoretically undergoes total reflection. The totally reflected laser light travels in the direction of the arrow L1 and is emitted from the light emitting port 23.
実際には、レーザ光は、その全てが反射するのではなく、僅かではあるものの端面20sから漏れ出る。端面20sから漏れ出たレーザ光は矢印L2方向に進み、反射素子24で反射する。そして、レーザ光は矢印L3方向に進み、光出射口23から出射される。即ち、光伝送部20aを伝送されたレーザ光は、光出射部20bで、全反射したレーザ光L1は勿論、端面20sから漏れ出たレーザ光L2も、周方向における一定の範囲内に集められて、光ファイバ20の側方から出射する。そのため、伝送されたレーザ光を、がん細胞などの被照射対象に対して効率的に照射することができる。
In reality, not all of the laser light is reflected, but a small amount leaks out from the end face 20s. The laser light leaking out from the end face 20s travels in the direction of the arrow L2 and is reflected by the reflecting element 24. The laser light then travels in the direction of the arrow L3 and is emitted from the light emitting port 23. That is, the laser light transmitted through the light transmitting section 20a is collected within a certain range in the circumferential direction by the light emitting section 20b, including not only the totally reflected laser light L1 but also the laser light L2 leaking out from the end face 20s, and is emitted from the side of the optical fiber 20. Therefore, the transmitted laser light can be efficiently irradiated onto the target to be irradiated, such as cancer cells.
光出射口23からレーザ光が出射されると、第1の実施形態にかかる光拡散装置1と同様、光ファイバ20の光出射部20b近傍において熱が発生し、特に光出射部20bに近接する反射素子24の温度が上がりやすい。しかし、本実施形態においても、先端側TEで、反射素子24に接するとともに、光伝送部20aの一部を覆う放熱被覆25を備えているため、反射素子24の熱を逃がすことができ、光出射部20b及びその近傍における発熱を抑制することができる。
When laser light is emitted from the light exit port 23, heat is generated near the light exit portion 20b of the optical fiber 20, as in the light diffusion device 1 of the first embodiment, and the temperature of the reflecting element 24, which is particularly close to the light exit portion 20b, tends to rise. However, in this embodiment, the tip side TE also has a heat dissipation coating 25 that contacts the reflecting element 24 and covers part of the light transmission portion 20a, so that heat from the reflecting element 24 can be released and heat generation in and near the light exit portion 20b can be suppressed.
その他、変形例や各部材の材質等は、第1の実施形態と同様であるため、説明を省略する。
Other modifications and the materials of each component are the same as in the first embodiment, so explanations will be omitted.
<第3の実施形態>
図8は第3の実施形態にかかる光拡散装置3における光ファイバの光出射部及びその近傍の縦断面図であり、図9は光拡散装置3における光ファイバの光出射部の部位の横断面図である。詳しくは、図9は図8におけるF-F断面にかかる断面図である。本実施形態にかかる光拡散装置3は、第1の実施形態にかかる光拡散装置1とほぼ同様の構成であるため、光拡散装置3の概略については、図1を参照のこと。 Third Embodiment
Fig. 8 is a vertical cross-sectional view of the light output portion of an optical fiber in alight diffusing device 3 according to the third embodiment and its vicinity, and Fig. 9 is a horizontal cross-sectional view of the portion of the light output portion of an optical fiber in the light diffusing device 3. In detail, Fig. 9 is a cross-sectional view taken along the line F-F in Fig. 8. Since the light diffusing device 3 according to this embodiment has a configuration substantially similar to that of the light diffusing device 1 according to the first embodiment, refer to Fig. 1 for an overview of the light diffusing device 3.
図8は第3の実施形態にかかる光拡散装置3における光ファイバの光出射部及びその近傍の縦断面図であり、図9は光拡散装置3における光ファイバの光出射部の部位の横断面図である。詳しくは、図9は図8におけるF-F断面にかかる断面図である。本実施形態にかかる光拡散装置3は、第1の実施形態にかかる光拡散装置1とほぼ同様の構成であるため、光拡散装置3の概略については、図1を参照のこと。 Third Embodiment
Fig. 8 is a vertical cross-sectional view of the light output portion of an optical fiber in a
また、図8におけるG-G断面は図3と同一なので、当該断面は図3を参照のこと。なお、第3の実施形態にかかる光拡散装置3は、光ファイバ20の光出射部20b近傍の構造が本実施形態に特有である点を除き、第1の実施形態にかかる光拡散装置1と同様の構成であるため、第1の実施形態にかかる光拡散装置1と同一の機能を備える部材には、図1~図6と同一の符号を付して、その説明を省略する。
The cross section G-G in FIG. 8 is the same as that in FIG. 3, so please refer to FIG. 3 for this cross section. Note that the light diffusion device 3 according to the third embodiment has the same configuration as the light diffusion device 1 according to the first embodiment, except for the structure in the vicinity of the light emission portion 20b of the optical fiber 20 which is unique to this embodiment. Therefore, the members having the same functions as the light diffusion device 1 according to the first embodiment are given the same reference numerals as in FIGS. 1 to 6, and their description will be omitted.
図8及び図9に示すように、本実施形態にかかる光拡散装置3では、反射素子27として反射性樹脂を用いている(以下、「反射性樹脂27」と表記する。)。反射性樹脂27としては、既述の通り、ポリテトラフルオロエチレン(PTFE)などのフッ素樹脂、硫酸バリウム入りの樹脂、シリコーン樹脂等が挙げられる。
8 and 9, in the light diffusion device 3 according to this embodiment, a reflective resin is used as the reflective element 27 (hereinafter, referred to as "reflective resin 27"). As described above, examples of the reflective resin 27 include fluororesins such as polytetrafluoroethylene (PTFE), resins containing barium sulfate, silicone resins, etc.
また、本実施形態においては、放熱被覆25が、軸21A方向において、光伝送部20aの一部を覆う領域の部材(放熱被覆本体25a)と、光出射部20bが存在する領域の部材(放熱用金属25b)とで、別部材で構成されている。即ち、放熱被覆本体25aと放熱用金属25bを一体として放熱被覆25と捉えると、当該放熱被覆25が、先端側TEで、周方向における反射素子24が存在する領域の範囲内で、軸21A方向における光出射部20bが存在する領域まで延伸し、反射性樹脂27と径方向で接している。
In addition, in this embodiment, the heat dissipation coating 25 is composed of separate members in the axial direction, a member (heat dissipation coating main body 25a) for the area covering part of the light transmission section 20a, and a member (heat dissipation metal 25b) for the area where the light emitting section 20b is present. In other words, if the heat dissipation coating main body 25a and the heat dissipation metal 25b are regarded as a single body that constitutes the heat dissipation coating 25, the heat dissipation coating 25 extends to the area where the light emitting section 20b is present in the axial direction 21A, within the range of the area where the reflecting element 24 is present in the circumferential direction, at the tip side TE, and is in radial contact with the reflective resin 27.
反射性樹脂27は、第1の実施形態や第2の実施形態における金属製の反射素子24に比して、比熱が大きいため、放熱用金属25bと径方向で接触させて接触面積を広くすることで、放熱効果を確保している。
The reflective resin 27 has a larger specific heat than the metallic reflective element 24 in the first and second embodiments, so the heat dissipation effect is ensured by making radial contact with the heat dissipation metal 25b to increase the contact area.
放熱被覆本体25aの構成は、第1の実施形態や第2の実施形態における放熱被覆25と同様である。放熱用金属25bの構成は、光ファイバ20の全周を覆うのではなく、周方向において、反射性樹脂(反射素子)27が存在する領域の範囲(図9中の範囲b)内にのみ位置している。
The configuration of the heat dissipation coating body 25a is the same as the heat dissipation coating 25 in the first and second embodiments. The configuration of the heat dissipation metal 25b does not cover the entire circumference of the optical fiber 20, but is located only within the range of the area where the reflective resin (reflective element) 27 exists in the circumferential direction (range b in Figure 9).
放熱用金属25bの材質としては、第1の実施形態において放熱被覆25の材質として説明した特性のものが好ましく、具体例も同様である。放熱被覆本体25aと放熱用金属25bを同じ材質とすることが好ましい。
The material for the heat dissipation metal 25b is preferably one with the characteristics described as the material for the heat dissipation coating 25 in the first embodiment, and specific examples are similar. It is preferable that the heat dissipation coating body 25a and the heat dissipation metal 25b are made of the same material.
放熱用金属25bと反射性樹脂27との接触は、物理的に接していれば特にその態様に制限はない。放熱用金属25bと反射性樹脂27との接触を確実ならしめるために、両者間を接着剤やネジ、溶接等の固定手段で固定してもよいし、両者が係合し合う形状に成型した上で係合させてもよい。
There are no particular limitations on the form of contact between the heat dissipation metal 25b and the reflective resin 27, so long as they are in physical contact. To ensure that the heat dissipation metal 25b and the reflective resin 27 are in contact with each other, they may be fixed together with adhesive, screws, welding, or other fixing means, or they may be molded into a shape that allows them to engage with each other and then engaged.
放熱用金属25bと放熱被覆本体25aとの間も、物理的に接していれば特にその態様に制限はない。放熱用金属25bと放熱被覆本体25aとの接触を確実ならしめるために、両者間を接着剤やネジ、溶接等の固定手段で固定してもよいし、両者が係合し合う形状に成型した上で係合させてもよい。
There are no particular limitations on the form between the heat dissipating metal 25b and the heat dissipating coating body 25a, as long as they are in physical contact. To ensure that the heat dissipating metal 25b and the heat dissipating coating body 25a are in contact, they may be fixed together with adhesive, screws, welding, or other fixing means, or they may be molded into a shape that allows them to engage with each other and then engaged.
さらに、放熱用金属25bと放熱被覆本体25aとを一体で成形し、両者間が物理的には区別できない状態になっていても構わない。本実施形態においては、一体であっても別体であっても、放熱用金属25b及び放熱被覆本体25aの全体として放熱被覆25を構成する。
Furthermore, the heat dissipation metal 25b and the heat dissipation coating body 25a may be molded as a single unit, so that they are physically indistinguishable from each other. In this embodiment, whether they are integrated or separate, the heat dissipation metal 25b and the heat dissipation coating body 25a together constitute the heat dissipation coating 25.
本実施形態にかかる光拡散装置3において、レーザ発振器10を作動させ光ファイバ20の基端部20BEからレーザ光を入射させると、レーザ光は光伝送部20aを伝送され、光出射部20bから出射する。光ファイバ20の光出射部20bから周方向の全方位に放射状に出射したレーザ光は、一部は直接、他は反射性樹脂27で反射して、光出射口23から出射される。即ち、光伝送部20aを伝送されたレーザ光は、光出射部20bで、周方向における一定の範囲内に集められて、光ファイバ20の側方から出射する。そのため、伝送されたレーザ光を、がん細胞などの被照射対象に対して効率的に照射することができる。
In the light diffusion device 3 according to this embodiment, when the laser oscillator 10 is operated to cause laser light to be incident on the base end 20BE of the optical fiber 20, the laser light is transmitted through the light transmission section 20a and emitted from the light emission section 20b. The laser light emitted radially in all directions in the circumferential direction from the light emission section 20b of the optical fiber 20 is partially reflected directly and the rest is reflected by the reflective resin 27 and emitted from the light emission port 23. In other words, the laser light transmitted through the light transmission section 20a is collected within a certain range in the circumferential direction by the light emission section 20b and is emitted from the side of the optical fiber 20. Therefore, the transmitted laser light can be efficiently irradiated onto the target to be irradiated, such as cancer cells.
光出射口23からレーザ光が出射されると、第1の実施形態にかかる光拡散装置1と同様、光ファイバ20の光出射部20b近傍において熱が発生し、特に光出射部20bに近接する反射性樹脂27の温度が上がりやすい。しかも、反射性樹脂27は、金属に比べて比熱が大きいため、いったん高温になると冷めにくい。
When laser light is emitted from the light exit port 23, heat is generated near the light exit portion 20b of the optical fiber 20, similar to the light diffusion device 1 according to the first embodiment, and the temperature of the reflective resin 27, which is particularly close to the light exit portion 20b, tends to rise. Furthermore, since the reflective resin 27 has a larger specific heat than metal, it is difficult to cool down once it becomes hot.
しかし、本実施形態においては、放熱用金属25bが反射性樹脂27と径方向で接しているため、接触面積を広くすることができ、高い放熱効果を実現している。そして、放熱用金属25bは、接している放熱被覆本体25aからも熱を逃がすことができ、光出射部20b及びその近傍における発熱を抑制することができる。
However, in this embodiment, the heat dissipation metal 25b contacts the reflective resin 27 in the radial direction, making it possible to increase the contact area and achieve a high heat dissipation effect. The heat dissipation metal 25b can also dissipate heat from the heat dissipation coating body 25a with which it is in contact, making it possible to suppress heat generation in and around the light emitting portion 20b.
本実施形態の構成は、金属に比べると比熱の大きいセラミックスを反射素子24として用いた場合にも好適である。
その他、変形例や各部材の材質等は、第1の実施形態と同様であるため、説明を省略する。 The configuration of this embodiment is also suitable for the case where ceramics, which has a larger specific heat than metal, is used as the reflectingelement 24 .
Other than that, the modified examples and the materials of the respective members are similar to those of the first embodiment, and therefore the description thereof will be omitted.
その他、変形例や各部材の材質等は、第1の実施形態と同様であるため、説明を省略する。 The configuration of this embodiment is also suitable for the case where ceramics, which has a larger specific heat than metal, is used as the reflecting
Other than that, the modified examples and the materials of the respective members are similar to those of the first embodiment, and therefore the description thereof will be omitted.
以上説明した実施形態は、本発明の代表的な形態の例を示したに過ぎず、本発明は、当該実施形態に限定されるものではない。即ち、当業者は、従来公知の知見に従い、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。かかる変形によってもなお本発明の光拡散装置の構成を具備する限り、勿論、本発明の範疇に含まれるものである。
The above-described embodiment merely shows a representative example of the present invention, and the present invention is not limited to this embodiment. In other words, a person skilled in the art can implement the present invention by making various modifications in accordance with conventionally known knowledge without departing from the gist of the present invention. As long as such modifications still have the configuration of the light diffusion device of the present invention, they are of course included in the scope of the present invention.
例えば、上記実施形態において、光出射口の形状としては、光ファイバの軸方向に延びる(光ファイバにおける所定の中心角の円弧状の外周面に対応する領域の)スリット状の例を挙げているが、これに限定されない。例えば、反射素子における出射側の面に複数の穿孔を設けて、当該穿孔を光出射口としても構わない。当該穿孔の形状も任意であり、円形でも矩形でもその他の形状でも構わない。
For example, in the above embodiment, the shape of the light exit port is exemplified as a slit extending in the axial direction of the optical fiber (in a region corresponding to the arc-shaped outer circumferential surface of the optical fiber with a specified central angle), but is not limited to this. For example, multiple perforations may be provided on the exit side surface of the reflecting element, and the perforations may serve as the light exit port. The shape of the perforations is also arbitrary, and may be circular, rectangular, or some other shape.
また、例えば、図11に示すように、反射素子24′における出射側の面に細長の楕円形状の開口28を設けて窓構造とし、これを光出射口23′としても構わない。なお、図11は、反射素子の変形例を示す模式図である。この窓構造の開口の形状も矩形や多角形等適宜選択することができる。
Also, for example, as shown in FIG. 11, a long and thin elliptical opening 28 may be provided on the exit side surface of the reflecting element 24' to form a window structure, which may serve as the light exit port 23'. Note that FIG. 11 is a schematic diagram showing a modified example of the reflecting element. The shape of the opening of this window structure may also be appropriately selected, such as rectangular or polygonal.
以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。
図1~図6に示す第1の実施形態と同様の光拡散装置1及びレーザ発振器10を用意した。実施例及び比較例の具体的な仕様及び条件は、以下の通りである。なお、以下に記載のない仕様及び条件は、既述の第1の実施形態の説明の中で記した通りである。 The present invention will be described more specifically below with reference to examples and comparative examples.
Alight diffusing device 1 and a laser oscillator 10 similar to those of the first embodiment shown in Figures 1 to 6 were prepared. Specific specifications and conditions of the examples and comparative examples are as follows. Specifications and conditions not described below are as described in the explanation of the first embodiment.
図1~図6に示す第1の実施形態と同様の光拡散装置1及びレーザ発振器10を用意した。実施例及び比較例の具体的な仕様及び条件は、以下の通りである。なお、以下に記載のない仕様及び条件は、既述の第1の実施形態の説明の中で記した通りである。 The present invention will be described more specifically below with reference to examples and comparative examples.
A
(実施例及び比較例の仕様・条件)
・試験環境温度:室温(22℃)
・光出射部20bの軸方向長さ:40mm
・放熱被覆25の材質:SUS304
・反射素子24の材質:シリコーン樹脂、SUS304、アルミ、銅、銀
・放熱被覆25及びチューブ26の軸方向長さ:1~1000mm
・光ファイバ20の全長:1040mm
・発熱時の光出射部20bの状態:空中保持
・試験時の室温:21℃
・レーザ発振器10のレーザ光の波長:690nm
・レーザ発振器10のレーザ光の強度:550mW (Specifications and conditions of the examples and comparative examples)
Test environment temperature: Room temperature (22°C)
Axial length oflight emitting portion 20b: 40 mm
Material of heat dissipation coating 25: SUS304
Material of the reflecting element 24: silicone resin, SUS304, aluminum, copper, silver Axial length of theheat dissipation coating 25 and the tube 26: 1 to 1000 mm
Total length of optical fiber 20: 1040 mm
State of thelight emitting portion 20b when heated: held in air Room temperature during testing: 21° C.
Wavelength of laser light from laser oscillator 10: 690 nm
Laser light intensity of the laser oscillator 10: 550 mW
・試験環境温度:室温(22℃)
・光出射部20bの軸方向長さ:40mm
・放熱被覆25の材質:SUS304
・反射素子24の材質:シリコーン樹脂、SUS304、アルミ、銅、銀
・放熱被覆25及びチューブ26の軸方向長さ:1~1000mm
・光ファイバ20の全長:1040mm
・発熱時の光出射部20bの状態:空中保持
・試験時の室温:21℃
・レーザ発振器10のレーザ光の波長:690nm
・レーザ発振器10のレーザ光の強度:550mW (Specifications and conditions of the examples and comparative examples)
Test environment temperature: Room temperature (22°C)
Axial length of
Material of heat dissipation coating 25: SUS304
Material of the reflecting element 24: silicone resin, SUS304, aluminum, copper, silver Axial length of the
Total length of optical fiber 20: 1040 mm
State of the
Wavelength of laser light from laser oscillator 10: 690 nm
Laser light intensity of the laser oscillator 10: 550 mW
下記表1~3に示す各条件の実施例及び比較例の光拡散装置について、それぞれ、上記仕様・条件で、反射素子24の外周面を赤外線温度計で測定しつつ、レーザ発振器10を作動させて、光ファイバ20の基端部20BEからレーザ光を入射させ、光出射部20bから出射(レーザ照射)させた。開始から5分間レーザ照射を継続し、反射素子24の外周面の温度をモニタリングした。
For the light diffusion devices of the examples and comparative examples with the conditions shown in Tables 1 to 3 below, under the above specifications and conditions, the outer surface of the reflecting element 24 was measured with an infrared thermometer while the laser oscillator 10 was operated to cause laser light to enter the base end 20BE of the optical fiber 20 and emit (laser irradiation) from the light emitting portion 20b. The laser irradiation was continued for 5 minutes from the start, and the temperature of the outer surface of the reflecting element 24 was monitored.
なお、表1~3中の判定の評価基準は以下の通りである。
◎:光出射部及びその近傍の温度が40℃未満
○:光出射部及びその近傍の温度が40℃以上50℃未満
×:光出射部及びその近傍の温度が50℃以上 The evaluation criteria in Tables 1 to 3 are as follows.
⊚: The temperature of the light emitting part and its vicinity is less than 40°C. ◯: The temperature of the light emitting part and its vicinity is 40°C or higher and lower than 50°C. ×: The temperature of the light emitting part and its vicinity is 50°C or higher.
◎:光出射部及びその近傍の温度が40℃未満
○:光出射部及びその近傍の温度が40℃以上50℃未満
×:光出射部及びその近傍の温度が50℃以上 The evaluation criteria in Tables 1 to 3 are as follows.
⊚: The temperature of the light emitting part and its vicinity is less than 40°C. ◯: The temperature of the light emitting part and its vicinity is 40°C or higher and lower than 50°C. ×: The temperature of the light emitting part and its vicinity is 50°C or higher.
・表1:放熱被覆なし、及び放熱被覆の材質がシリコーン樹脂(放熱性を有するような加工が施されていないもの)の場合
Table 1: Cases where there is no thermally conductive coating, and where the thermally conductive coating is made of silicone resin (not treated to have thermal conductivity)
上記表1に示されるように、放熱被覆材がシリコーン樹脂(熱伝導率0.15W/m・K)である実施例1~4では、放熱被覆の長さ(L3)が1mm、40mm、100mm、1000mmで、光出射部及びその近傍の温度がそれぞれ76.5℃、76.5℃、76.5℃、76.4℃であり、放熱被覆の長さを熱拡散長より十分長くしても光出射部及びその近傍の温度を目標までは抑制できなかった。ただし、これら実施例1~4では、判定としては×であるものの、放熱被覆を設けなかった比較例1に比して温度上昇の抑制効果が確認された。
As shown in Table 1 above, in Examples 1 to 4, where the heat dissipation coating material was silicone resin (thermal conductivity 0.15 W/mK), the lengths (L3) of the heat dissipation coating were 1 mm, 40 mm, 100 mm, and 1000 mm, and the temperatures at the light output section and its vicinity were 76.5°C, 76.5°C, 76.5°C, and 76.4°C, respectively, meaning that even if the length of the heat dissipation coating was made sufficiently longer than the thermal diffusion length, the temperature at the light output section and its vicinity could not be suppressed to the target level. However, in Examples 1 to 4, although the results were judged to be ×, the effect of suppressing temperature rise was confirmed compared to Comparative Example 1, where no heat dissipation coating was provided.
上記表2に示されるように、放熱被覆がSUS304(熱伝導率84W/m・K)である実施例7~8では、放熱被覆の長さ(L3)が熱拡散長以上の水準で、光出射部及びその近傍の温度が50℃を下回り、所望温度未満に温度上昇を抑制できた。なお、放熱被覆の長さ(L3)が熱拡散長未満の水準である実施例5及び6においても、判定としては×であるものの、同条件乃至それ以上の条件である実施例1~4に比して温度上昇の抑制効果が確認された。
As shown in Table 2 above, in Examples 7 to 8, where the heat dissipation coating is made of SUS304 (thermal conductivity 84 W/mK), the temperature at the light emitting section and its vicinity was below 50°C when the length (L3) of the heat dissipation coating was at a level equal to or greater than the thermal diffusion length, and the temperature rise could be suppressed to below the desired temperature. In Examples 5 and 6, where the length (L3) of the heat dissipation coating is at a level less than the thermal diffusion length, the result was judged to be ×, but a suppression effect on the temperature rise was confirmed compared to Examples 1 to 4, which had the same or better conditions.
・表3:放熱被覆の材質がアルミニウム、銅、銀の場合
- Table 3: When the thermal insulation coating material is aluminum, copper, or silver
上記表3に示されるように、放熱被覆がアルミニウム(熱伝導率204W/m・K)K)である実施例9~10では、熱拡散長96mmに対して放熱被覆の長さ(L3)が40mmで光出射部及びその近傍の温度は33.2℃であった。さらに、放熱被覆の長さ(L3)が拡散長以上の100mmの水準では、光出射部及びその近傍の温度が22.0℃(室温と同じ温度)であり、顕著な温度上昇の抑制効果が確認された。
As shown in Table 3 above, in Examples 9-10 where the heat dissipation coating was aluminum (thermal conductivity 204 W/m·K), the temperature at the light output and its vicinity was 33.2°C when the heat dissipation coating length (L3) was 40 mm for a thermal diffusion length of 96 mm. Furthermore, when the heat dissipation coating length (L3) was 100 mm, which is greater than the diffusion length, the temperature at the light output and its vicinity was 22.0°C (the same temperature as room temperature), confirming a significant effect in suppressing temperature rise.
また、放熱被覆が銅(熱伝導率386W/m・K)である実施例11~12では、熱拡散長106mmに対して放熱被覆の長さ(L3)が40mmで光出射部及びその近傍の温度は31.4℃であった。さらに、放熱被覆の長さ(L3)が拡散長以上の100mmの水準では、光出射部及びその近傍の温度が22.0℃(室温と同じ温度)であり、顕著な温度上昇の抑制効果が確認された。
In addition, in Examples 11 and 12, where the heat dissipation coating was copper (thermal conductivity 386 W/mK), the temperature at the light emitting part and its vicinity was 31.4°C when the length (L3) of the heat dissipation coating was 40 mm for a thermal diffusion length of 106 mm. Furthermore, when the length (L3) of the heat dissipation coating was at the level of 100 mm, which is greater than the diffusion length, the temperature at the light emitting part and its vicinity was 22.0°C (the same temperature as room temperature), confirming a significant effect in suppressing temperature rise.
また、放熱被覆が銀(熱伝導率418W/m・K)である実施例13~14では、熱拡散長129mmに対して放熱被覆の長さ(L3)が40mmで光出射部及びその近傍の温度は30.4℃であった。さらに、放熱被覆の長さ(L3)が拡散長以上の100mmの水準では、22.0℃(室温と同じ温度)であり、顕著な温度上昇の抑制効果が確認された。
In addition, in Examples 13-14, where the heat dissipation coating was silver (thermal conductivity 418 W/mK), the temperature at the light emission section and its vicinity was 30.4°C when the heat dissipation coating length (L3) was 40 mm for a thermal diffusion length of 129 mm. Furthermore, when the heat dissipation coating length (L3) was 100 mm, which is greater than the diffusion length, the temperature was 22.0°C (the same temperature as room temperature), confirming a significant effect in suppressing temperature rise.
実施例13の条件に加えて先端キャップを取り付けた実施例14では、光出射部及びその近傍の温度が30.4℃から26.9℃まで温度低下(-3.5℃)しており、さらなる温度上昇の抑制効果が確認された。
In Example 14, which was the same as Example 13 but also had a tip cap attached, the temperature at the light-emitting part and its vicinity dropped from 30.4°C to 26.9°C (-3.5°C), confirming a further effect in suppressing temperature rise.
以上のように、放熱性を有する金属製の放熱被覆25を設けた実施例の光拡散装置では、比較例に対して光出射部及びその近傍の温度を35%以上低減できたことが確認された。
As described above, it was confirmed that the light diffusion device of the embodiment, which is provided with a metallic heat dissipation coating 25 with heat dissipation properties, was able to reduce the temperature of the light emitting section and its vicinity by 35% or more compared to the comparative example.
1,2,3 光拡散装置、
10 レーザ発振器、
20 光ファイバ、
20a 光伝送部、
20b 光出射部、
20BE 基端部、
20TE 先端部、
21 コア、
22 クラッド、
22a 凹凸面、
23,23′ 光出射口、
24,24′ 反射素子、
25 放熱被覆、
25a 放熱被覆本体(放熱被覆)、
25b 放熱用金属(放熱被覆)、
26 チューブ、
27 反射性樹脂(反射素子)、
28 開口 1, 2, 3 Light diffusion device,
10 laser oscillator,
20 optical fiber,
20a optical transmission unit,
20b light emitting portion,
20BE base end,
20TE tip,
21 cores,
22 Clad,
22a uneven surface,
23, 23' light exit port,
24, 24' reflective element;
25 heat dissipation coating,
25a heat dissipating coating body (heat dissipating coating),
25b heat dissipating metal (heat dissipating coating),
26 tubes,
27 Reflective resin (reflective element),
28 Opening
10 レーザ発振器、
20 光ファイバ、
20a 光伝送部、
20b 光出射部、
20BE 基端部、
20TE 先端部、
21 コア、
22 クラッド、
22a 凹凸面、
23,23′ 光出射口、
24,24′ 反射素子、
25 放熱被覆、
25a 放熱被覆本体(放熱被覆)、
25b 放熱用金属(放熱被覆)、
26 チューブ、
27 反射性樹脂(反射素子)、
28 開口 1, 2, 3 Light diffusion device,
10 laser oscillator,
20 optical fiber,
20a optical transmission unit,
20b light emitting portion,
20BE base end,
20TE tip,
21 cores,
22 Clad,
22a uneven surface,
23, 23' light exit port,
24, 24' reflective element;
25 heat dissipation coating,
25a heat dissipating coating body (heat dissipating coating),
25b heat dissipating metal (heat dissipating coating),
26 tubes,
27 Reflective resin (reflective element),
28 Opening
Claims (15)
- 径方向の中心側に位置するコアと、前記コアの外周側に位置するクラッドと、からなる光ファイバを備え、前記光ファイバの基端部から入射した光を、前記光ファイバの先端側から出射させる光拡散装置であって、
前記光ファイバは、基端部から入射した光を先端部に向かって伝送する光伝送部と、先端側における前記クラッドの外周側に位置する部分を除去することによって前記光伝送部を伝送された光を外周面から出射させる光出射部と、を有し、
前記光出射部の外周面を、光出射口となる領域を残して囲う反射素子と、
先端側で、前記反射素子に接するとともに、前記光伝送部の少なくとも一部を覆う放熱被覆と、
を備える、光拡散装置。 A light diffusing device comprising an optical fiber having a core located at a radial center side and a clad located on an outer peripheral side of the core, the light diffusing device diffusing light incident on a base end of the optical fiber being emitted from a tip end side of the optical fiber,
the optical fiber has a light transmitting section that transmits light incident from a base end portion toward a tip end portion, and a light emitting section that emits the light transmitted through the light transmitting section from an outer circumferential surface by removing a portion located on the outer circumferential side of the clad at the tip end side,
a reflecting element that surrounds an outer peripheral surface of the light emitting portion, leaving a region that serves as a light emitting opening;
a heat dissipation coating that contacts the reflecting element at a tip side and covers at least a part of the light transmitting portion;
A light diffusing device comprising: - 前記放熱被覆の熱伝導率が80W/m・K以上である、請求項1記載の光拡散装置。 The light diffusion device of claim 1, wherein the thermal conductivity of the heat dissipation coating is 80 W/m·K or more.
- 前記放熱被覆の長さが熱拡散長以上である、請求項1記載の光拡散装置。 The light diffusion device of claim 1, wherein the length of the heat dissipation coating is equal to or greater than the heat diffusion length.
- 前記放熱被覆が金属である、請求項1に記載の光拡散装置。 The light diffusion device of claim 1, wherein the heat dissipation coating is metal.
- 前記光出射部の外周面が、円柱の外周面形状である、請求項1に記載の光拡散装置。 The light diffusion device according to claim 1, wherein the outer peripheral surface of the light emitting portion has a cylindrical outer peripheral surface shape.
- 前記反射素子において、前記光ファイバにおける所定の中心角の円弧状の外周面に対応する領域がスリット状に開口して、前記光出射口となる、請求項1に記載の光拡散装置。 The light diffusion device according to claim 1, wherein the reflecting element has a slit-shaped opening in an area corresponding to the arc-shaped outer peripheral surface of the optical fiber at a predetermined central angle, forming the light exit port.
- 前記光ファイバの先端に、前記コアの軸に垂直の平面に対して斜めの端面を有する、請求項1に記載の光拡散装置。 The light diffusion device of claim 1, wherein the tip of the optical fiber has an end face that is oblique with respect to a plane perpendicular to the axis of the core.
- 前記反射素子の光反射率が1%以上である、請求項1に記載の光拡散装置。 The light diffusion device of claim 1, wherein the light reflectance of the reflective element is 1% or more.
- 前記反射素子が金属である、請求項1に記載の光拡散装置。 The light diffusion device of claim 1, wherein the reflective element is a metal.
- 前記反射素子と前記放熱被覆と、が一体化している、請求項9に記載の光拡散装置。 The light diffusion device of claim 9, wherein the reflective element and the heat dissipation coating are integrated.
- 前記反射素子が反射性樹脂である、請求項1に記載の光拡散装置。 The light diffusion device of claim 1, wherein the reflective element is a reflective resin.
- 前記反射素子がセラミックスである、請求項1に記載の光拡散装置。 The light diffusion device of claim 1, wherein the reflective element is made of ceramics.
- 前記放熱被覆が、先端側で、周方向における前記反射素子が存在する領域の範囲内で、軸方向における前記光出射部が存在する領域まで延伸し、前記反射素子と径方向で接している、請求項11または12に記載の光拡散装置。 The light diffusion device according to claim 11 or 12, wherein the heat dissipation coating extends to the area in the axial direction where the light emitting portion is located, within the area in the circumferential direction where the reflecting element is located, at the tip side, and is in contact with the reflecting element in the radial direction.
- 前記放熱被覆が、軸方向において、前記光伝送部の少なくとも一部を覆う領域と、前記光出射部が存在する領域とで、別部材で構成されている、請求項13に記載の光拡散装置。 The light diffusion device according to claim 13, wherein the heat dissipation coating is made of separate members in an area in the axial direction that covers at least a portion of the light transmission section and an area in which the light emission section is present.
- 前記反射素子における前記光出射部に対向する面の凹凸が、使用する光の波長以下である、請求項1に記載の光拡散装置。 The light diffusion device according to claim 1, wherein the unevenness of the surface of the reflecting element facing the light emitting portion is equal to or smaller than the wavelength of the light used.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023025403 | 2023-02-21 | ||
JP2023-025403 | 2023-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024177102A1 true WO2024177102A1 (en) | 2024-08-29 |
Family
ID=92501347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/006194 WO2024177102A1 (en) | 2023-02-21 | 2024-02-21 | Light diffusion device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024177102A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5814041A (en) * | 1992-03-20 | 1998-09-29 | The General Hospital Corporation | Laser illuminator |
JP2006253099A (en) * | 2005-02-08 | 2006-09-21 | Nichia Chem Ind Ltd | Light emitting device |
WO2022118559A1 (en) * | 2020-12-01 | 2022-06-09 | 株式会社カネカ | Light emission medical apparatus |
-
2024
- 2024-02-21 WO PCT/JP2024/006194 patent/WO2024177102A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5814041A (en) * | 1992-03-20 | 1998-09-29 | The General Hospital Corporation | Laser illuminator |
JP2006253099A (en) * | 2005-02-08 | 2006-09-21 | Nichia Chem Ind Ltd | Light emitting device |
WO2022118559A1 (en) * | 2020-12-01 | 2022-06-09 | 株式会社カネカ | Light emission medical apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10416366B2 (en) | Light diffusing devices for use in photoimmunotherapy | |
JPH09236707A (en) | Light diffusing device for optical fiber, manufacture and using method of optical fiber and device for diffusing light from optical fiber | |
US5373571A (en) | Fiber optic diffuser tip | |
CA3066354A1 (en) | Light diffusing devices for use in photoimmunotherapy | |
JP2019070807A (en) | Optoelectronic integration device | |
US20090210038A1 (en) | Medical Light Diffusers for High Power Applications and their Manufacture | |
WO2012165347A1 (en) | Light source device | |
JP2008209907A (en) | Thermally robust illumination probe tip | |
JP6751486B2 (en) | Light diffuser for use in photoimmunotherapy | |
CN105709338A (en) | Improved uv application device | |
US12085747B2 (en) | Luminaire having a light guide with cladding | |
WO2024177102A1 (en) | Light diffusion device | |
JP5634866B2 (en) | Fiber optic contact | |
JP2019051023A (en) | Medical light guide | |
JP2005087531A (en) | Laser probe | |
JP7292301B2 (en) | BODY TISSUE TREATMENT DEVICE AND METHOD FOR MANUFACTURING SAME | |
WO2024204739A1 (en) | Catheter, and catheter set and light-diffusing device including catheter | |
WO2024204385A1 (en) | Light diffusion device | |
JP6600751B2 (en) | Light guide member fixing unit, lighting device and endoscope | |
JP2008220435A (en) | Optical irradiation fiber | |
WO2024101289A1 (en) | Light diffusion device | |
JP2018084664A (en) | Optical connector structure | |
JP2006003342A (en) | Light irradiation device and light transmission element | |
WO2024101288A1 (en) | Optical diffusion device | |
JP6192322B2 (en) | Lighting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24760400 Country of ref document: EP Kind code of ref document: A1 |