WO2024177198A1 - Continuous pyrolysis emulsification system for polymer waste - Google Patents
Continuous pyrolysis emulsification system for polymer waste Download PDFInfo
- Publication number
- WO2024177198A1 WO2024177198A1 PCT/KR2023/005898 KR2023005898W WO2024177198A1 WO 2024177198 A1 WO2024177198 A1 WO 2024177198A1 KR 2023005898 W KR2023005898 W KR 2023005898W WO 2024177198 A1 WO2024177198 A1 WO 2024177198A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer waste
- drying
- thermal decomposition
- condenser
- oil
- Prior art date
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 156
- 229920000642 polymer Polymers 0.000 title claims abstract description 134
- 238000000197 pyrolysis Methods 0.000 title claims abstract description 96
- 238000004945 emulsification Methods 0.000 title claims abstract description 43
- 238000001035 drying Methods 0.000 claims description 92
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 81
- 239000007789 gas Substances 0.000 claims description 80
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 71
- 230000002265 prevention Effects 0.000 claims description 49
- 238000003915 air pollution Methods 0.000 claims description 35
- 238000002485 combustion reaction Methods 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 32
- 239000002351 wastewater Substances 0.000 claims description 30
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 21
- 238000010248 power generation Methods 0.000 claims description 20
- 208000028659 discharge Diseases 0.000 claims description 18
- 238000001149 thermolysis Methods 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 239000011148 porous material Substances 0.000 claims description 10
- 239000000567 combustion gas Substances 0.000 claims description 9
- 239000000446 fuel Substances 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 238000007599 discharging Methods 0.000 claims description 8
- 239000002893 slag Substances 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 238000001179 sorption measurement Methods 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 239000002957 persistent organic pollutant Substances 0.000 claims description 6
- 238000004821 distillation Methods 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 239000000243 solution Substances 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 abstract description 19
- 239000004033 plastic Substances 0.000 abstract description 19
- 239000003921 oil Substances 0.000 description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000000155 melt Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000004880 explosion Methods 0.000 description 4
- 239000000295 fuel oil Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000007158 vacuum pyrolysis Methods 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000112 cooling gas Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000010920 waste tyre Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C4/00—Flame traps allowing passage of gas but not of flame or explosion wave
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/75—Multi-step processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/77—Liquid phase processes
- B01D53/78—Liquid phase processes with gas-liquid contact
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/77—Liquid phase processes
- B01D53/79—Injecting reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/04—Disintegrating plastics, e.g. by milling
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/10—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G7/00—Distillation of hydrocarbon oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G73/00—Recovery or refining of mineral waxes, e.g. montan wax
- C10G73/02—Recovery of petroleum waxes from hydrocarbon oils; Dewaxing of hydrocarbon oils
Definitions
- the present invention relates to a continuous pyrolysis emulsification system for polymer waste, and more specifically, to a continuous pyrolysis emulsification system for polymer waste that extracts oil by pyrolyzing polymer waste such as waste plastic in a multi-stage continuous manner under an oxygen-free or diluted oxygen condition.
- polymer wastes including waste synthetic resins, waste plastics, waste rubber, waste vinyl, and waste tires are classified and sorted to be recycled or used as regenerated raw materials.
- waste synthetic resins waste plastics
- waste rubber waste rubber
- waste vinyl waste tires
- waste tires are classified and sorted to be recycled or used as regenerated raw materials.
- most of them are incinerated or landfilled, which not only wastes resources but also causes serious environmental pollution of the air and soil.
- Pyrolysis emulsification of polymer waste is a technology that converts it into liquid fuel through a pyrolysis process that breaks the carbon chains that make up polymer raw materials by applying heat under oxygen-free or low-oxygen conditions, thereby creating low-molecular-weight polymers.
- the resulting fuel oil is mainly used as an industrial alternative fuel or a petrochemical raw material.
- Document 1 discloses a waste plastic and waste vinyl comprehensive emulsifying device characterized by including: a cylindrical heating furnace that is horizontally arranged and rotates by the rotational force provided by a motor, and heats the introduced waste plastic and waste vinyl by stirring them with a solvent by a screw; a separation device that separates gas discharged from the heating furnace into heavy oil gas and diesel gas; a cooling device that cools and liquefies the diesel gas separated by the separation device; a gas storage unit that stores and liquefies the cooling gas and diesel oil cooled by the cooling device; and a gas supply unit that resupplies the cooling gas that is not liquefied by the gas storage unit to the heating furnace.
- Document 2 discloses a method for producing a plastic pyrolysis apparatus, comprising: an input unit having a hopper for inputting plastic; a heating furnace having a burner mounted thereon to create a high-temperature environment inside, and a combustion gas discharge port; a melting furnace having one end connected to the input unit, penetrating the heating furnace so that both ends are exposed to the outside, and a transfer compression means for transferring and compressing the plastic in one direction along the internal length direction, to transfer, compress, and melt the plastic, and a steam discharge port for discharging steam resulting from the compression and melting of the plastic; a first transfer unit connected to the other end of the melting furnace to transfer a molten plastic; a vacuum pyrolysis furnace having one end connected to the first transfer unit, penetrating the heating furnace so that both ends are exposed to the outside, and a transfer means for transferring the melt in one direction along the internal length direction, to transfer and pyrolyze the melt, and a steam discharge port for discharging steam resulting from the transfer
- the conventional technology as described above not only does not smoothly transport the melt during the process of transporting the melt by means of a transport means having a spiral screw structure that rotates inside a vacuum pyrolysis furnace, but also causes a phenomenon of jamming or sticking due to foreign substances in the melt, which ultimately hinders the transport operation of the transport means and causes a bottleneck phenomenon of the melt.
- the pyrolysis reaction continues until the pyrolysis reactor with heat inside is cooled below a certain temperature, so the pressure of the pyrolysis gas generated in the pyrolysis reactor continues to increase due to the heat remaining inside the pyrolysis reactor, which may lead to an explosion risk in the pyrolysis reactor.
- waste plastic which is one of the polymer wastes
- moisture is generated in the waste container during the collection process of waste plastic, and water may flow in during the process of sorting, storage, and transportation. This evaporates during the drying process during thermal decomposition and is discharged as water vapor, and is discharged as waste water during the condensation process. There is a problem of causing water pollution by discharging this waste water as it is.
- the present invention has been made to solve the problems described above, and aims to provide a continuous thermal decomposition and emulsification system for polymer waste, which can continuously supply polymer waste by continuously replacing oxygen air contained in the pores of polymer waste with an inert gas (nitrogen, steam, etc.) in an oxygen-free or diluted oxygen state by a polymer waste supply device.
- an inert gas nitrogen, steam, etc.
- the purpose is to provide a continuous thermal decomposition emulsification system for polymer waste that enables smooth movement of polymer waste and prevents the phenomenon of jamming or sticking due to foreign substances in the polymer waste according to a structure in which drying and thermal decomposition are performed while scraping the polymer waste fed into the drying/pyrolysis reactor.
- the purpose is to provide a continuous pyrolysis emulsification system for polymer waste that burns and discharges residual combustible gas in the event that the entire or partial system becomes unoperable due to a power outage, emergency situation, etc. that may occur during the process of drying and pyrolysis of polymer waste.
- the purpose is to provide a continuous thermal decomposition emulsification system for polymer waste, which purifies the condensate generated from the first oil-water separator and the second oil-water separator and uses it as process water for an air pollution prevention facility instead of discharging it as wastewater, and evaporates and reuses the wastewater generated from all or part of the system, thereby preventing it from being discharged to the outside.
- the continuous pyrolysis emulsification system of polymer waste comprises: a polymer waste supply device (100) for continuously supplying polymer waste in an oxygen-free or rare-oxygen condition; a drying/pyrolysis reactor (200) for removing moisture in the pores of polymer waste supplied from the polymer waste supply device (100) and for generating oil vapor by pyrolysis; a first condenser (310) for converting water vapor discharged from the drying/pyrolysis reactor (200) into condensate; a second condenser (320) for converting oil vapor discharged from the drying/pyrolysis reactor (200) into mixed oil; a first oil-water separator (410) connected to the first condenser (310) for separating a trace amount of oil from the condensate generated from the first condenser (310); a second oil-water separator (420) connected to the second condenser (320) for separating a trace amount of water from the mixed oil generated
- the continuous pyrolysis emulsification system of polymer waste comprises: a polymer waste supply device (100) that continuously supplies polymer waste in an oxygen-free or rare-oxygen condition; a drying/pyrolysis reactor (200) that removes moisture in the pores of polymer waste supplied from the polymer waste supply device (100) and generates oil vapor by pyrolysis; a first condenser (310) that converts water vapor discharged from the drying/pyrolysis reactor (200) into condensate; a second condenser (320) that converts oil vapor discharged from the drying/pyrolysis reactor (200) into mixed oil; a first oil-water separator (410) that is connected to the first condenser (310) to separate a trace amount of oil from the condensate generated from the first condenser (310); a second oil-water separator (420) that is connected to the second condenser (320) to separate a trace amount of water from the mixed oil generated from the second conden
- a heat supply device (500) that supplies a heat source to the drying/pyrolysis reactor (200); an air pollution prevention facility (600) that processes exhaust gas remaining after heat exchange in the drying/pyrolysis reactor (200) or exhaust gas discharged from the heat supply device (500); and a zero-discharge treatment device (900) that purifies condensate generated from the first oil-water separator (410) and the second oil-water separator (420) and uses it as process water for the air pollution prevention facility (600) and evaporates wastewater generated in the system so that it is not discharged to the outside.
- the polymer waste supply device (100) is characterized by including: a chamber (110) having a hopper (111) provided at the top and an inlet (113) formed at one side for injecting an inert gas; first and second opening/closing valves (120, 130) installed at the top and bottom of the chamber (110) respectively to open or close the chamber (110); a piston (150) installed in a pipe (114) that protrudes obliquely and communicates at the bottom of the chamber (110) and is operated by an actuator (140) to supply polymer waste; and a transfer means (160) installed at the bottom of the chamber (110) to transfer polymer waste to a drying/pyrolysis reactor (200).
- the above drying/pyrolysis reactor (200) comprises: a reactor body (210) having an inlet (211) formed on the upper side into which polymer waste is fed, an outlet (212) formed on the lower side through which slag composed of ash and undecomposed carbon is discharged, and an interior having a multi-stage structure; a drying chamber (220) located at the uppermost interior surface of the reactor body (210) to remove moisture in the pores of the polymer waste; a thermal decomposition chamber (230) located below the drying chamber (220) to thermally decompose the polymer waste while moving in a zigzag shape to generate vapor; a driving sprocket (260) coupled to a driving shaft (240) installed on one side of the drying chamber (220) and the thermal decomposition chamber (230); a driven sprocket (270) coupled to a driven shaft (250) installed on the other side of the drying chamber (220) and the thermal decomposition chamber (230); It is characterized by including a chain (280) that connects the driving
- the present invention is characterized in that the water vapor generated in the drying room (220) of the drying/pyrolysis reactor (200) is condensed by the first condenser (310) to lower the moisture content of the pyrolysis oil generated in the pyrolysis room (230) and increase its purity.
- the above air pollution prevention facility (600) is characterized by including a scrubber (610) that oxidizes acid gas and organic pollutants (VOC) in combustion gas generated during the process of combusting fuel in the drying/pyrolysis reactor (200) with ozone and removes them with a cleaning solution; and an ozone injection device (620) that injects ozone into the front of the scrubber (610).
- a scrubber (610) that oxidizes acid gas and organic pollutants (VOC) in combustion gas generated during the process of combusting fuel in the drying/pyrolysis reactor (200) with ozone and removes them with a cleaning solution
- VOC organic pollutants
- the above emergency power generation/combustion device (700) is characterized by including an emergency exhaust line (710) for transporting pyrolysis gas from the drying/pyrolysis reactor (200); a combustion burner (720) for combusting the pyrolysis gas transported through the emergency exhaust line (710); a combustion fan (730) for sucking and exhausting the pyrolysis gas transported through the emergency exhaust line (710); and a generator (740) for supplying power to drive the combustion burner (720) and the combustion fan (730).
- the above emergency discharge line (710) is characterized by including a first emergency switching valve (712) installed on a first connecting pipe (711) connected between a heat supply device (500) and a backfire prevention device (860); a second emergency switching valve (714) installed on a second connecting pipe (713) branched from the first connecting pipe (711) and connected to a steam boiler (840); a third emergency switching valve (716) installed on a third connecting pipe (715) branched from the first connecting pipe (711) and connected to an emergency power generation/combustion device (700); and a fourth emergency switching valve (718) installed on a fourth connecting pipe (717) connected between the emergency power generation/combustion device (700) and a heat exchanger (820).
- a first emergency switching valve (712) installed on a first connecting pipe (711) connected between a heat supply device (500) and a backfire prevention device (860)
- a second emergency switching valve (714) installed on a second connecting pipe (713) branched from the first connecting pipe (711) and connected
- the above-mentioned zero-discharge treatment device (900) is characterized by including an evaporator (910) that evaporates wastewater generated in the air pollution prevention facility (600) and exhausts the evaporated water vapor to the air pollution prevention facility (600); a water treatment device (920) that supplies the condensate separated in the first oil-water separator (410) and the second oil-water separator (420) to the air pollution prevention facility (600) by subjecting it to advanced oxidation treatment using ultrafine ozone bubbles.
- VOC organic pollutant
- jacket-type distillation tower (830) for separating the wax component from the vapor generated in the thermal decomposition chamber (230) of the above drying/thermolysis reactor (200).
- the uncondensed gas that is not condensed in the first condenser (310) and second condenser (320) is uniformly generated according to a continuous reaction, and the generated gas is continuously used in a heat supply device (500), and the remaining uncondensed gas is used as fuel for a steam boiler (840).
- a vacuum pump (850) for transporting uncondensed gas generated in the drying/pyrolysis reactor (200), and a backfire prevention device (860) for preventing fire occurrence of uncondensed gas due to backfire of the heat supply device (500) and the steam boiler (840).
- the continuous thermal decomposition emulsification system for polymer waste according to the present invention has the effect of increasing the thermal decomposition yield by continuously supplying polymer waste and performing substitution in an oxygen-free or diluted oxygen state.
- Figure 1 is a schematic diagram showing the overall configuration of a continuous thermal decomposition emulsification system for polymer waste according to the present invention.
- Figure 2 is a configuration diagram showing a polymer waste supply device of a continuous thermal decomposition emulsification system for polymer waste according to the present invention.
- Figure 3 is a configuration diagram showing a drying/pyrolysis reactor of a continuous pyrolysis emulsification system for polymer waste according to the present invention.
- Figure 4 is an enlarged schematic diagram showing the emergency power generation/combustion device of a continuous thermal decomposition emulsification system for polymer waste according to the present invention.
- Figure 5 is a configuration diagram showing a backfire prevention device of a continuous thermal decomposition emulsification system for polymer waste according to the present invention.
- Figure 6 is a configuration diagram showing a zero-discharge treatment device of a continuous thermal decomposition emulsification system for polymer waste according to the present invention.
- the continuous thermal decomposition emulsification system for polymer waste includes a polymer waste supply device (100), a drying/thermolysis reactor (200), a first condenser (310), a second condenser (320), a first oil-water separator (410), a second oil-water separator (420), a heat supply device (500), an air pollution prevention facility (600), and an emergency power generation/combustion device (700).
- the continuous pyrolysis emulsification system for polymer waste of the present invention may include a control unit (not shown) for controlling the overall operation of the above-mentioned components.
- waste synthetic resins PE, PP, PS
- PES waste synthetic resins
- the polymer waste supply device (100) is a device that continuously supplies polymer waste in an oxygen-free or rare oxygen state, and includes a chamber (110), first and second opening/closing valves (120, 130), an actuator (140), a piston (150), and a transfer means (160).
- the above chamber (110) is equipped with a hopper (111) at the top, and an injection port (113) for injecting an inert gas is formed on one side.
- the chamber (110) is divided into a substitution chamber (112) formed in the space between the first opening/closing valve (120) and the second opening/closing valve (130), and an equalization chamber (117) formed at the bottom of the substitution chamber (112).
- an air exhaust port (115) for exhausting air is formed on one side of the chamber (110).
- a tube body (114) is protruded and connected in an upwardly inclined manner, and on the other side, a folded portion (116) is formed to prevent the polymer waste from getting caught.
- the above first opening/closing valve (120) is installed at the top of the chamber (110) and opens or closes the chamber (110).
- the above second opening/closing valve (130) is installed at the bottom of the chamber (110) and opens or closes the chamber (110).
- Thermal decomposition of polymer waste melts polymer waste with heat of about 80 to 450°C in an oxygen-free environment, vaporizes it, and decomposes it into low-carbon molecules.
- a substitution chamber (112) is applied to replace air with nitrogen before feeding polymer waste from the polymer waste supply device (100) into the thermal decomposition area.
- the substitution chamber (112) is sealed using the first and second opening/closing valves (120, 130), and nitrogen is injected through the inlet (113).
- the above piston (150) is installed in the above body (114) and is operated by an actuator (140) to control the supply amount of polymer waste.
- the above-mentioned transport means (160) is installed at an angle at the bottom of the chamber (110) to transport the polymer waste to the drying/pyrolysis reactor (200).
- the above-mentioned transport means (160) may be a screw conveyor that rotates by a motor or the like, and a scraper may be additionally configured.
- the polymer waste supply device (100) closes the second opening/closing valve (130) and inputs polymer waste, then closes the first opening/closing valve (120), performs nitrogen purging for a certain period of time, and then opens the second opening/closing valve (130) to drop the nitrogen-purged polymer waste into the equalization chamber (117).
- the second opening/closing valve (130) is closed.
- the first on-off valve (120) is opened before the polymer waste is exhausted in the equalization chamber (117), and the polymer waste is filled in the displacement chamber (112).
- the first on-off valve (120) is closed and nitrogen purging is performed.
- the polymer waste supply device (100) adjusts the supply amount of polymer waste by arranging the piston (150) including the actuator (140) at an angle so that it is evenly distributed to the transport means (160), thereby preventing the polymer waste from jamming or clogging, thereby improving the performance of the system. Accordingly, the normal operating rate of the system equipment is increased, thereby increasing the thermal decomposition yield.
- the transport means (160) by arranging the transport means (160) so as to be inclined upward, the length of the transport means (160) can be shortened, thereby shortening the time for inputting polymer waste and reducing the input space and equipment, thereby reducing the manufacturing cost.
- the drying/pyrolysis reactor (200) removes moisture in the pores of polymer waste supplied from the polymer waste supply device (100) and thermally decomposes the waste to generate vapor.
- the drying/pyrolysis reactor (200) includes a reactor body (210), a drying chamber (220), a thermal decomposition chamber (230), a driving shaft (240), a driven shaft (250), a driving sprocket (260), a driven sprocket (270), a chain (280), and a transfer plate (290).
- the thermal decomposition area of this drying/pyrolysis reactor (200) is separated from the atmosphere throughout the entire process from the supply of polymer waste to the recovery of mixed oil.
- the reactor body (210) above has an inlet (211) formed on the upper side into which polymer waste is fed, and an outlet (212) formed on the lower side into which slag composed of ash and undecomposed carbon is discharged.
- the reactor body (210) has a multi-stage internal structure and includes a drying room (220) and a thermal decomposition room (230).
- Polymer waste such as waste plastics fed into the above reactor body (210) is gradually heated in the temperature range of 80 to 450°C to undergo moisture drying, polymer waste melting, thermal decomposition, and slag formation processes.
- the result of the thermal decomposition reaction is discharged as mixed steam composed of water vapor and thermal decomposition gas and slag composed of ash and a small amount of undecomposed carbon.
- the slag is discharged through a slag discharge device (870) installed on one side of the drying/thermolysis reactor (200).
- the above drying room (220) is located at the top inside the reactor body (210) and removes moisture in the pores of the polymer waste.
- the water vapor generated in the drying room (220) is condensed by the first condenser (310) to lower the moisture content of the pyrolysis oil generated in the pyrolysis room (230) and increase its purity.
- the above thermal decomposition chamber (230) is located below the above drying chamber (220), and thermally decomposes the polymer waste while moving in a zigzag shape to generate vapor.
- the drying room (220) is a region where the moisture in the pores of the polymer waste is dried while heating the polymer waste at a temperature of 80 to 150°C
- the thermal decomposition room (230) having a multi-stage structure located below the drying room (220) includes a region where some thermal decomposition occurs while the polymer waste melts at a temperature of 100 to 250°C and vaporization proceeds, a region where thermal decomposition occurs at a temperature of 200 to 350°C and vaporization occurs, and a region where slag composed of ash and a small amount of undecomposed carbon due to decomposition and carbonization is generated at a temperature of 300 to 450°C.
- the present invention is a region where drying and thermal decomposition of polymer waste are performed under the above-mentioned regions and temperature conditions, but is not limited thereto, and the drying room (220) and the thermal decomposition room (230) may be configured in one stage, two stages, three stages, or additional stages, and various temperatures may be applied.
- the above driving sprocket (260) is coupled to a driving shaft (240) installed on one side of the drying room (220) and the thermal decomposition room (230).
- the above-mentioned passive sprocket (270) is coupled to a passive shaft (250) installed on the other side of the drying room (220) and the thermal decomposition room (230).
- the driving sprocket (260) is rotated by receiving power from a motor (not shown).
- the motor is installed on the outside of the reactor body (210), and a reducer is installed on the shaft of the motor.
- the reducer and the driving shaft (240) are installed so as to be connected, so that when the motor is operated, the driving sprocket (260) rotates through the driving shaft (240).
- the above chain (280) connects the driving sprocket (260) and the driven sprocket (270) and moves in an endless track manner.
- the above-mentioned transfer plates (290) are installed at predetermined intervals on the above-mentioned chain (280) and transfer polymer waste while moving in circulation with the chain (280). That is, the polymer waste is thermally decomposed while moving through the multi-stage thermal decomposition chamber (230) by the continuous circulation of the transfer plates (290) together with the above-mentioned chain (280).
- the drying/pyrolysis reactor (200) moves while scraping the input polymer waste, drops it to the next stage, and then moves again while performing pyrolysis, so that not only smooth movement of the polymer waste is possible, but also the phenomenon of jamming or sticking due to foreign substances in the polymer waste can be prevented.
- the above first condenser (310) converts the water vapor discharged from the drying room (220) of the drying/pyrolysis reactor (200) into condensate and supplies it to the first oil-water separator (410).
- the second condenser (320) converts the vapor discharged from the thermal decomposition chamber (230) of the drying/thermolysis reactor (200) into mixed oil and supplies it to the second oil-water separator (420).
- the uncondensed gas that is not condensed in the first condenser (310) and second condenser (320) is uniformly generated according to a continuous reaction, and the generated uncondensed gas is continuously used in the heat supply device (500), and the remaining uncondensed gas is used as fuel for the steam boiler (840).
- the above first oil separator (410) is connected to the first condenser (310) and separates a small amount of oil from the condensate generated in the first condenser (310).
- the above second oil-water separator (420) is connected to the second condenser (320) and separates a small amount of water from the mixed oil generated in the second condenser (320).
- the first and second oil-water separators (410, 420) separate water and oil from the condensate in which a small amount of oil vapor evaporated together with water vapor during the drying process of polymer waste by the drying/pyrolysis reactor (200) is condensed, and the mixed oil in which a small amount of water vapor evaporated together with the pyrolysis gas generated during the pyrolysis process is condensed.
- the separated oil is discharged to a storage tank.
- the above heat supply device (500) is installed on one side of the drying/pyrolysis reactor (200) and supplies a heat source to the drying/pyrolysis reactor (200).
- the above heat supply device (500) supplies heat for controlling the temperature of the drying/pyrolysis reactor (200), and a boiler using hot air or heat oil with a direct-fired burner integrated with the drying/pyrolysis reactor may be used.
- the boiler burner is operated by supplying natural gas during operation, and when pyrolysis progresses and uncondensed gas, which is a by-product gas, is generated, the uncondensed gas is used as fuel.
- the above air pollution prevention facility (600) processes the exhaust gas remaining after heat exchange in the drying/pyrolysis reactor (200) or the exhaust gas discharged from the heat supply device (500).
- the above air pollution prevention facility (600) includes a scrubber (610) that oxidizes acid gas and organic pollutants (VOC) in combustion gas generated during the process of burning fuel in the drying/pyrolysis reactor (200) with ozone and removes them with a cleaning solution, and an ozone injection device (620) that injects ozone in front of the scrubber (610).
- a scrubber (610) that oxidizes acid gas and organic pollutants (VOC) in combustion gas generated during the process of burning fuel in the drying/pyrolysis reactor (200) with ozone and removes them with a cleaning solution
- VOC organic pollutants
- the above scrubber (610) is a device that sprays cleaning water onto combustion gas flowing in through a pipe to bring the combustion gas and cleaning water into gas-liquid contact, and may be a conventional wet scrubber.
- the above ozone injection device (620) can inject ozone through the cleaning water supply line of the scrubber (610) and supply it into the interior of the scrubber (610).
- the thermal decomposition reaction continues until the drying/thermolysis reactor with heat inside while cut off from the atmosphere is cooled below a certain temperature, and the pressure of the residual combustible gas generated in the drying/thermolysis reactor continues to increase due to the heat remaining inside the drying/thermolysis reactor, which may result in a risk of thermal decomposition gas leakage or explosion of the drying/thermolysis reactor.
- the present invention includes an emergency power generation/combustion device (700) that combusts and discharges residual combustible gas when the system cannot be operated due to an emergency situation such as a power outage or boiler failure.
- an emergency power generation/combustion device 700 that combusts and discharges residual combustible gas when the system cannot be operated due to an emergency situation such as a power outage or boiler failure.
- the emergency power generation/combustion device (700) includes an emergency exhaust line (710) for transporting residual combustible gas from the drying/pyrolysis reactor (200), a combustion burner (720) for combusting the residual combustible gas transported through the emergency exhaust line (710), a combustion fan (730) for sucking and exhausting the residual combustible gas transported through the emergency exhaust line (710), and a generator (740) for supplying power to drive the combustion burner (720) and the combustion fan (730).
- an emergency exhaust line (710) for transporting residual combustible gas from the drying/pyrolysis reactor (200)
- a combustion burner (720) for combusting the residual combustible gas transported through the emergency exhaust line (710)
- a combustion fan (730) for sucking and exhausting the residual combustible gas transported through the emergency exhaust line (710)
- a generator (740) for supplying power to drive the combustion burner (720) and the combustion fan (730).
- the emergency discharge line (710) includes a first emergency switching valve (712) installed on a first connecting pipe (711) connected between a heat supply device (500) and a backfire prevention device (860), a second emergency switching valve (714) installed on a second connecting pipe (713) branched from the first connecting pipe (711) and connected to a steam boiler (840), a third emergency switching valve (716) installed on a third connecting pipe (715) branched from the first connecting pipe (711) and connected to an emergency power generation/combustion device (700), and a fourth emergency switching valve (718) installed on a fourth connecting pipe (717) connected between the emergency power generation/combustion device (700) and a heat exchanger (820).
- a first emergency switching valve (712) installed on a first connecting pipe (711) connected between a heat supply device (500) and a backfire prevention device (860
- a second emergency switching valve (714) installed on a second connecting pipe (713) branched from the first connecting pipe (711) and connected to a steam boiler (
- the bypass valve (880) is closed, and the first emergency switching valve (712) and the second emergency switching valve (714) are opened.
- the third emergency switching valve (716) and the fourth emergency switching valve (718) are closed so that the emergency power generation/combustion device (700) is not operated.
- bypass valve (880) is opened, and the first emergency switching valve (712) and the second emergency switching valve (714) are closed. Then, the third emergency switching valve (716) and the fourth emergency switching valve (718) are opened to operate the emergency power generation/combustion device (700).
- the bypass valve (880) is closed, the first emergency switching valve (712) is opened, and the second emergency switching valve (714) is closed. Then, the third emergency switching valve (716) and the fourth emergency switching valve (718) are opened to operate the emergency power generation/combustion device (700).
- the operation of the drying/pyrolysis reactor (200) is stopped by the emergency power generation/combustion device (700), and the residual combustible gas generated in the drying/pyrolysis reactor is combusted by bypassing the vacuum pump for a certain period of time, and the exhaust gas generated during combustion is discharged to the air pollution prevention facility (600).
- the present invention can actively prevent safety accidents such as fires and explosions by burning and discharging residual combustible gas in the event that the entire or partial system becomes inoperable due to a power outage or emergency situation that may occur during the process of pyrolysis of polymer waste due to the installation of an emergency power generation/combustion device (700), and can also prevent damage to the device due to malfunction in an emergency situation and prevent air pollution due to leakage of pyrolysis gas.
- the continuous thermal decomposition emulsification system of polymer waste of the present invention may further include an adsorption tower (810) for adsorbing and removing organic pollutant (VOC) gas that has passed through the air pollution prevention facility (600) without being cleaned, and may further include a heat exchanger (820) for heat-exchanging purified combustion gas discharged from the adsorption tower (810).
- VOC organic pollutant
- the above heat exchanger (820) prevents white smoke by exchanging heat between high temperature (approximately 300 to 400°C) gas discharged from a heat supply device (500), an emergency power generation/combustion device (700), a steam boiler (840), etc. and low temperature (approximately 60 to 70°C or less) gas discharged from a scrubber (610).
- the continuous thermal decomposition emulsification system of polymer waste of the present invention may further include a jacket-type distillation tower (830) for separating a wax component from the vapor generated in the thermal decomposition chamber (230) of the drying/thermal decomposition reactor (200).
- the jacket-type distillation tower (830) is provided with a jacket having a temperature control space outside the distillation tower, thereby enabling azeotropic distillation to be performed more smoothly.
- the continuous thermal decomposition emulsification system of polymer waste of the present invention may further include a vacuum pump (850) for transporting uncondensed gas generated from the drying/thermolysis reactor (200), and may further include a flashback prevention device (860) for preventing fire occurrence of uncondensed gas due to flashback of the heat supply device (500) and the steam boiler (840).
- a vacuum pump 850
- a flashback prevention device 860 for preventing fire occurrence of uncondensed gas due to flashback of the heat supply device (500) and the steam boiler (840).
- a bypass valve (880) is installed on the pipe connected between the first condenser (310) and the second condenser (320) and the vacuum pump (850) so that, when the vacuum pump (850) fails, the uncondensed gas is bypassed to the backfire prevention device (860) without passing through the vacuum pump (850).
- the backfire prevention device (860) includes first and second backfire prevention tanks (861, 862) that contain water therein and have valves at the bottom, a first gas inlet pipe (863) that is connected to one side of the upper portion of the first backfire prevention tank (861) and is installed so that one end is submerged in the water inside the first backfire prevention tank (861), a second gas inlet pipe (864) that is connected to one side of the upper portion of the first backfire prevention tank (861) and the other end is installed so that the other end is submerged in the water inside the second backfire prevention tank (862), and a gas discharge pipe (865) that is connected to one side of the upper portion of the second backfire prevention tank (862).
- the backfire prevention device (860) is a device in which the ends of the first gas inlet pipe (863) and the second gas inlet pipe (864) through which the uncondensed gas is supplied are each immersed in water, thereby allowing the uncondensed gas to pass through the water and be discharged through the gas discharge pipe (865), thereby preventing the fire coming in through the pipe due to backfire of the burner from spreading by allowing the uncondensed gas to pass through the water.
- the continuous thermal decomposition emulsification system for polymer waste of the present invention includes a blower fan (892) that forcibly blows the exhaust gas treated in the adsorption tower (810) to the chimney (891).
- the continuous thermal decomposition emulsification system for polymer waste may include a zero-discharge treatment device (900) that purifies condensate generated from the first oil-water separator (410) and the second oil-water separator (420) and uses it as process water for an air pollution prevention facility (600), and evaporates wastewater generated from the system so that it is not discharged to the outside.
- a zero-discharge treatment device 900
- the above-mentioned zero-discharge treatment device (900) purifies the condensate generated from the first oil-water separator (410) and the second oil-water separator (420) and uses it as process water for the air pollution prevention facility (600), and evaporates the wastewater generated in the system so that it is not discharged to the outside.
- Polymer waste may contain moisture in the waste container during the collection process, and water may flow in during the classification, storage, and transport processes. This moisture evaporates and is discharged as water vapor during the thermal decomposition process by the drying/thermolysis reactor (200), and is discharged as waste water during the condensation process. At this time, the discharged waste water can be treated in a zero-discharge treatment device (900) and used as process water for an air pollution prevention facility (600).
- the above zero-discharge treatment device (900) includes an evaporator (910) that evaporates wastewater generated in the air pollution prevention facility (600) and exhausts the evaporated water vapor to the air pollution prevention facility (600), and a water treatment device (920) that supplies the condensate separated in the first oil-water separator (410) and the second oil-water separator (420) to the air pollution prevention facility (600) by subjecting it to advanced oxidation treatment using ultrafine ozone bubbles.
- the water vapor evaporated by the above evaporator (910) is condensed in the air pollution prevention facility (600) and used again as process water of the air pollution prevention facility (600).
- the evaporation residue is solidified as wastewater sludge or salt and removed.
- the zero-discharge treatment device (900) of the present invention can use a circular disk-type evaporative crystallizer instead of an evaporator.
- the above evaporative crystallizer comprises a circular disc, a spray unit for spraying wastewater onto the disc, a motor for rotating the disc, a steam generator for providing steam to the inside of the disc, and a blade for removing sludge or salt components attached to the disc.
- the evaporative crystallizer can treat a large amount of wastewater, efficiently attach the wastewater to a disk at a temperature at which the wastewater can evaporate, evaporate moisture, and separate and remove dissolved solids in the wastewater that are concentrated or crystallized and attached to the disk.
- the above water treatment device (920) includes an ozone water-based wastewater circulation treatment unit that receives wastewater, injects ozone gas into the received wastewater, generates and discharges wastewater containing fine ozone bubbles and having ozone dissolved therein by collision of the wastewater into which the ozone gas has been injected, and a reaction unit that stores wastewater containing fine ozone bubbles and having ozone dissolved therein discharged by the wastewater circulation treatment unit.
- the reaction unit may further include an activated carbon filter that receives a portion of the wastewater stored therein, adsorbs a difficult-to-decompose substance present in the received wastewater, and then discharges the same.
- This water treatment device (920) is disclosed in the Republic of Korea Patent Publication No. 10-1144704 (published on May 24, 2012) previously applied for and registered by the inventor of the present invention, so a detailed description thereof will be omitted.
- the zero-discharge treatment device (900) purifies condensate generated during the thermal decomposition process and supplies it to the air pollution prevention facility (600) for reuse, and purifies wastewater generated in the air pollution prevention facility (600) for continued use, thereby providing a device with no discharge.
- the continuous thermal decomposition emulsification system for polymer waste according to the present invention can be operated continuously, thereby expanding the scale of polymer waste processing, and improving oil yield, facility operation efficiency, and energy utilization efficiency through stable operation.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Mechanical Engineering (AREA)
- Public Health (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
The present invention relates to a continuous pyrolysis emulsification system for polymer waste and, more specifically, to a continuous pyrolysis emulsification system for polymer waste, wherein oil is extracted by pyrolyzing polymer waste, such as waste plastics, in a multi-stage continuous manner under oxygen-free or oxygen-lean conditions.
Description
본 발명은 고분자 폐기물의 연속식 열분해 유화 시스템에 관한 것으로, 보다 상세하게는 폐플라스틱 등의 고분자 폐기물을 무산소 또는 희박산소 상태에서 다단 연속식으로 열분해하여 오일을 추출하는 고분자 폐기물의 연속식 열분해 유화 시스템에 관한 것이다.The present invention relates to a continuous pyrolysis emulsification system for polymer waste, and more specifically, to a continuous pyrolysis emulsification system for polymer waste that extracts oil by pyrolyzing polymer waste such as waste plastic in a multi-stage continuous manner under an oxygen-free or diluted oxygen condition.
일반적으로 폐합성수지, 폐플라스틱, 폐고무, 폐비닐, 폐타이어 등을 비롯한 고분자 폐기물은 분류 및 선별하여 재활용 또는 재생 원료로 사용하고 있지만, 대부분이 소각처리 또는 매립되고 있는 실정이므로 자원 낭비는 물론 대기와 토양의 심각한 환경오염을 유발하고 있다.In general, polymer wastes including waste synthetic resins, waste plastics, waste rubber, waste vinyl, and waste tires are classified and sorted to be recycled or used as regenerated raw materials. However, most of them are incinerated or landfilled, which not only wastes resources but also causes serious environmental pollution of the air and soil.
최근 들어, 플라스틱 원자재, 연료유 등의 원료인 석유류의 유가 상승으로 인해 자원의 순환적 이용을 위한 방안이 강구되고 있으며, 이의 일환으로 고분자 폐기물을 열분해하여 연료유(오일)를 얻을 수 있는 열분해 유화 기술들이 꾸준히 개발되고 있다.Recently, due to the rise in the price of petroleum, which is a raw material for plastic raw materials and fuel oil, measures for the circular use of resources are being sought, and as part of this, thermal decomposition emulsification technologies that can obtain fuel oil (oil) by thermal decomposition of polymer waste are being continuously developed.
고분자 폐기물의 열분해 유화는 무산소 또는 희박산소 조건하에서 열을 가하여 고분자 원료를 구성하는 탄소 사슬을 끊어서 저분자로 생성하는 열분해 공정을 통하여 액체 연료로 변환시키는 기술로서, 생성된 연료유(오일)은 주로 산업용 대체 연료나 석유화학 원료로 사용된다.Pyrolysis emulsification of polymer waste is a technology that converts it into liquid fuel through a pyrolysis process that breaks the carbon chains that make up polymer raw materials by applying heat under oxygen-free or low-oxygen conditions, thereby creating low-molecular-weight polymers. The resulting fuel oil is mainly used as an industrial alternative fuel or a petrochemical raw material.
이러한 기술의 일예가 대한민국 등록실용신안공보 제20-0452087호(문헌 1) 및 대한민국 등록특허공보 제10-1910750호(문헌 2)에 개시되어 있다.Examples of such technologies are disclosed in Republic of Korea Utility Model Publication No. 20-0452087 (Document 1) and Republic of Korea Patent Publication No. 10-1910750 (Document 2).
문헌 1에는 수평으로 배치되어 모터가 제공하는 회전력에 의해 회전하며, 투입된 폐플라스틱 및 폐비닐을 스크류에 의해 용매와 교반하여 가열하는 원통형의 가열로; 상기 가열로로부터 배출된 가스를 중유가스와 경유가스로 분리하는 분리장치; 상기 분리장치에 의해 분리된 경유가스를 냉각 및 액화하는 냉각장치; 상기 냉각장치에 의해 냉각된 냉각가스와 경유를 저장 및 액화하는 가스저장부; 및 상기 가스저장부에 의해 액화되지 않은 냉각가스를 상기 가열로에 재공급하는 가스공급부;를 포함하는 것을 특징으로 하는 폐플라스틱 및 폐비닐 종합 유화장치에 대해 개시되어 있다.Document 1 discloses a waste plastic and waste vinyl comprehensive emulsifying device characterized by including: a cylindrical heating furnace that is horizontally arranged and rotates by the rotational force provided by a motor, and heats the introduced waste plastic and waste vinyl by stirring them with a solvent by a screw; a separation device that separates gas discharged from the heating furnace into heavy oil gas and diesel gas; a cooling device that cools and liquefies the diesel gas separated by the separation device; a gas storage unit that stores and liquefies the cooling gas and diesel oil cooled by the cooling device; and a gas supply unit that resupplies the cooling gas that is not liquefied by the gas storage unit to the heating furnace.
그러나, 상술한 바와 같은 종래의 기술은 가열로 내부의 진공 유지 등을 이유로 공정 진행 중 폐기물의 연속 투입이 불가능한 이른바 배치(batch) 타입을 선택하고 있다. 이 때문에 1회 공정 시 정해진 양의 폐기물만 처리하게 되므로 작업성 및 생산성이 저하되는 문제가 있다.However, as described above, conventional technologies have chosen the so-called batch type, which makes it impossible to continuously input waste during the process due to reasons such as maintaining a vacuum inside the furnace. Because of this, only a set amount of waste is processed per process, which causes problems in workability and productivity.
또한, 가열로에서 반응이 진행되는 동안 유증기는 분리장치를 통해 비중에 의한 분리 과정을 거치게 되는데, 이 분리 과정이 원활하게 이루어지지 못하여 생산성이 저하될 뿐만 아니라 열분해 용융 공정 중 폐기물의 용융을 위해 다량의 에너지가 소비됨에 따라 경제성 및 수율이 저하되는 문제가 있다.In addition, while the reaction is taking place in the furnace, the vapor undergoes a separation process by gravity through a separator. However, if this separation process is not carried out smoothly, not only does productivity decrease, but also a large amount of energy is consumed to melt the waste during the pyrolysis melting process, which reduces economic efficiency and yield.
한편, 문헌 2에는 플라스틱의 투입을 위한 호퍼가 구비된 투입부; 버너가 장착되어 내부에 고온 환경이 조성되고, 연소가스 배출구가 구비된 가열로; 상기 투입부에 일단이 연결되고, 양단이 외부로 노출되도록 상기 가열로를 관통하며, 내부 길이 방향을 따라 상기 플라스틱을 일 방향으로 이송 및 압축하는 이송 압축수단이 장착되어 상기 플라스틱을 이송, 압축, 용융하고, 상기 플라스틱의 압축 및 용융에 따른 수증기의 배출을 위한 증기 배출구가 구비된 용융로; 상기 용융로의 타단에 연결되어 상기 플라스틱의 용융물을 이송하는 제1 이송부; 상기 제1 이송부에 일단이 연결되고, 양단이 외부로 노출되도록 상기 가열로를 관통하며, 내부 길이 방향을 따라 상기 용융물을 일 방향으로 이송하는 이송수단이 장착되어 상기 용융물을 이송 및 열분해하고, 상기 용융물의 이송 및 열분해에 따른 유증기의 배출을 위한 유증기 배출구가 구비된 진공 열분해로; 상기 진공 열분해로의 타단에 연결되어 상기 용융물의 열분해 잔유물을 이송하는 제2 이송부; 상기 제2 이송부에 연결되어 상기 열분해 잔유물을 배출하는 배출부; 상기 증기 배출구에 연결되어 수증기를 응축하는 제1 응축기; 상기 유증기 배출구에 연결되어 상기 유증기를 응축하는 제2 응축기; 제1,2,3 밸브를 매개로 상기 제2 응축기에 각각 연결되는 복수의 제3 응축기; 제4,5,6 밸브를 매개로 복수의 제3 응축기에 각각 연결되는 진공펌프; 상기 진공펌프에 연결되는 제4 응축기를 포함하는 것을 특징으로 하는 플라스틱의 열분해 유화 시스템에 대해 개시되어 있다.Meanwhile, Document 2 discloses a method for producing a plastic pyrolysis apparatus, comprising: an input unit having a hopper for inputting plastic; a heating furnace having a burner mounted thereon to create a high-temperature environment inside, and a combustion gas discharge port; a melting furnace having one end connected to the input unit, penetrating the heating furnace so that both ends are exposed to the outside, and a transfer compression means for transferring and compressing the plastic in one direction along the internal length direction, to transfer, compress, and melt the plastic, and a steam discharge port for discharging steam resulting from the compression and melting of the plastic; a first transfer unit connected to the other end of the melting furnace to transfer a molten plastic; a vacuum pyrolysis furnace having one end connected to the first transfer unit, penetrating the heating furnace so that both ends are exposed to the outside, and a transfer means for transferring the melt in one direction along the internal length direction, to transfer and pyrolyze the melt, and a steam discharge port for discharging steam resulting from the transfer and pyrolyze of the melt; a second transfer unit connected to the other end of the vacuum pyrolysis furnace to transfer pyrolysis residue of the melt; A pyrolysis emulsification system for plastic is disclosed, characterized by including: a discharge unit connected to the second conveying unit and discharging the pyrolysis residue; a first condenser connected to the steam discharge port and condensing water vapor; a second condenser connected to the steam discharge port and condensing the steam; a plurality of third condensers each connected to the second condensers via first, second, and third valves; a vacuum pump each connected to the plurality of third condensers via fourth, fifth, and sixth valves; and a fourth condenser connected to the vacuum pump.
그러나, 상술한 바와 같은 종래의 기술은 진공 열분해로의 내부에서 회전을 하는 나선형의 스크류 구조로 이루어진 이송수단에 의해 용융물을 이송하는 과정 중에 용융물의 이송이 원활하지 못할 뿐만 아니라 용융물 내의 이물질에 의한 끼임 현상 또는 고착 현상이 발생하며, 결국엔 이송수단의 이송 동작을 방해하여 용융물의 병목현상을 유발한다.However, the conventional technology as described above not only does not smoothly transport the melt during the process of transporting the melt by means of a transport means having a spiral screw structure that rotates inside a vacuum pyrolysis furnace, but also causes a phenomenon of jamming or sticking due to foreign substances in the melt, which ultimately hinders the transport operation of the transport means and causes a bottleneck phenomenon of the melt.
게다가, 폐플라스틱이 이송수단의 일방향 회전에 의해 열분해로의 내벽을 타고 한쪽 방향으로 치우쳐 이동하면서 용융되는 구조이기 때문에 폐플라스틱의 고르지 못한 가열로 인해 코킹이 발생하여 장비의 수명에 영향을 미칠 수 있고, 에너지 소비와 처리 비용이 많이 소요되는 문제점이 있다.In addition, since the waste plastic is melted while moving in one direction along the inner wall of the pyrolysis furnace due to the unidirectional rotation of the transport means, there is a problem that coking may occur due to uneven heating of the waste plastic, which may affect the life of the equipment, and energy consumption and processing costs are high.
또한, 정전 등의 비상 상황 발생으로 인해 시스템 운전에 필요한 전원이 차단될 경우, 내부에 열이 존재하는 열분해 반응기가 일정 온도 이하로 냉각될 때까지 열분해 반응이 지속됨으로써, 열분해 반응기 내부에 남아있는 열에 의하여 열분해 반응기에서 발생하는 열분해 가스의 압력이 계속 증가하여 열분해 반응기의 폭발 위험성이 있다.In addition, if the power required for system operation is cut off due to an emergency situation such as a power outage, the pyrolysis reaction continues until the pyrolysis reactor with heat inside is cooled below a certain temperature, so the pressure of the pyrolysis gas generated in the pyrolysis reactor continues to increase due to the heat remaining inside the pyrolysis reactor, which may lead to an explosion risk in the pyrolysis reactor.
또한, 고분자 폐기물 중 하나인 폐플라스틱의 경우, 폐플라스틱의 수집과정에서 폐용기 속에 수분이 생기며, 분류, 저장, 이송 등의 과정에서 물이 유입될 수 있다. 이는 열분해 시 건조 과정에서 증발하여 수증기로 배출되고, 응축과정에서 폐수로 배출된다. 이러한 폐수를 그대로 방류함에 따라 수질오염을 유발하는 문제점이 있다.In addition, in the case of waste plastic, which is one of the polymer wastes, moisture is generated in the waste container during the collection process of waste plastic, and water may flow in during the process of sorting, storage, and transportation. This evaporates during the drying process during thermal decomposition and is discharged as water vapor, and is discharged as waste water during the condensation process. There is a problem of causing water pollution by discharging this waste water as it is.
본 발명은 상술한 바와 같은 문제점을 해결하기 위해 안출된 것으로서, 고분자 폐기물 공급장치에 의해 고분자 폐기물의 공극에 포함되어 있는 산소 공기를 비활성가스(질소, 스팀 등)를 이용하여 무산소 또는 희박산소 상태에서 연속적으로 치환하고, 고분자 폐기물을 연속적으로 공급할 수 있는 고분자 폐기물의 연속식 열분해 유화 시스템을 제공하는데 목적이 있다.The present invention has been made to solve the problems described above, and aims to provide a continuous thermal decomposition and emulsification system for polymer waste, which can continuously supply polymer waste by continuously replacing oxygen air contained in the pores of polymer waste with an inert gas (nitrogen, steam, etc.) in an oxygen-free or diluted oxygen state by a polymer waste supply device.
또한, 건조/열분해 반응기에 투입된 고분자 폐기물을 스크래핑하면서 이동하는 건조 및 열분해를 진행하는 구조에 따라 고분자 폐기물의 원활한 이동이 가능할 뿐만 아니라 고분자 폐기물의 이물질에 의한 끼임 현상 또는 고착 현상을 방지할 수 있는 고분자 폐기물의 연속식 열분해 유화 시스템을 제공하는데 목적이 있다.In addition, the purpose is to provide a continuous thermal decomposition emulsification system for polymer waste that enables smooth movement of polymer waste and prevents the phenomenon of jamming or sticking due to foreign substances in the polymer waste according to a structure in which drying and thermal decomposition are performed while scraping the polymer waste fed into the drying/pyrolysis reactor.
또한, 고분자 폐기물을 건조 및 열분해하는 과정에서 발생할 수 있는 정전, 비상 상황 등으로 인해 전체 또는 일부 시스템의 작동이 불가능한 경우 잔류 가연성 가스를 연소하여 배출하는 고분자 폐기물의 연속식 열분해 유화 시스템을 제공하는데 목적이 있다.In addition, the purpose is to provide a continuous pyrolysis emulsification system for polymer waste that burns and discharges residual combustible gas in the event that the entire or partial system becomes unoperable due to a power outage, emergency situation, etc. that may occur during the process of drying and pyrolysis of polymer waste.
또한, 제1 유수분리기 및 제2 유수분리기에서 발생된 응축수를 폐수로 방류하지 않고 정화하여 대기오염 방지시설의 공정용수로 사용하고, 전체 또는 일부 시스템에서 발생되는 폐수를 증발시켜 재사용함으로써 외부로 배출되지 않게 하는 고분자 폐기물의 연속식 열분해 유화 시스템을 제공하는데 목적이 있다.In addition, the purpose is to provide a continuous thermal decomposition emulsification system for polymer waste, which purifies the condensate generated from the first oil-water separator and the second oil-water separator and uses it as process water for an air pollution prevention facility instead of discharging it as wastewater, and evaporates and reuses the wastewater generated from all or part of the system, thereby preventing it from being discharged to the outside.
상기 목적을 달성하기 위해 본 발명에 따른 고분자 폐기물의 연속식 열분해 유화 시스템은 무산소 또는 희박산소 상태에서 고분자 폐기물을 연속으로 공급하는 고분자 폐기물 공급장치(100); 상기 고분자 폐기물 공급장치(100)로부터 공급되는 고분자 폐기물의 공극에 있는 수분을 제거하고, 열분해하여 유증기를 생성하는 건조/열분해 반응기(200); 상기 건조/열분해 반응기(200)에서 배출되는 수증기를 응축수로 전환시키는 제1 응축기(310); 상기 건조/열분해 반응기(200)에서 배출되는 유증기를 혼합유로 전환시키는 제2 응축기(320); 상기 제1 응축기(310)에 연결되어 제1 응축기(310)에서 발생되는 응축수로부터 미량의 유분을 분리하는 제1 유수분리기(410); 상기 제2 응축기(320)에 연결되어 제2 응축기(320)에서 발생되는 혼합유로부터 미량의 물을 분리하는 제2 유수분리기(420); 상기 건조/열분해 반응기(200)에 열원을 공급하는 열공급장치(500); 상기 건조/열분해 반응기(200)에서 열교환이 이루어지고 남은 배기가스 또는 상기 열공급장치(500)에서 배출되는 배기가스를 처리하는 대기오염 방지시설(600); 및 비상 상황으로 시스템의 작동이 불가능한 경우 잔류 가연성 가스를 연소하여 배출시키는 비상 발전/연소장치(700);를 포함하는 것을 특징으로 한다.In order to achieve the above object, the continuous pyrolysis emulsification system of polymer waste according to the present invention comprises: a polymer waste supply device (100) for continuously supplying polymer waste in an oxygen-free or rare-oxygen condition; a drying/pyrolysis reactor (200) for removing moisture in the pores of polymer waste supplied from the polymer waste supply device (100) and for generating oil vapor by pyrolysis; a first condenser (310) for converting water vapor discharged from the drying/pyrolysis reactor (200) into condensate; a second condenser (320) for converting oil vapor discharged from the drying/pyrolysis reactor (200) into mixed oil; a first oil-water separator (410) connected to the first condenser (310) for separating a trace amount of oil from the condensate generated from the first condenser (310); a second oil-water separator (420) connected to the second condenser (320) for separating a trace amount of water from the mixed oil generated from the second condenser (320); It is characterized by including a heat supply device (500) that supplies a heat source to the drying/pyrolysis reactor (200); an air pollution prevention facility (600) that processes exhaust gas remaining after heat exchange in the drying/pyrolysis reactor (200) or exhaust gas discharged from the heat supply device (500); and an emergency power generation/combustion device (700) that combusts and discharges residual combustible gas in case the system cannot be operated due to an emergency situation.
또한, 본 발명에 따른 고분자 폐기물의 연속식 열분해 유화 시스템은 무산소 또는 희박산소 상태에서 고분자 폐기물을 연속으로 공급하는 고분자 폐기물 공급장치(100); 상기 고분자 폐기물 공급장치(100)로부터 공급되는 고분자 폐기물의 공극에 있는 수분을 제거하고, 열분해하여 유증기를 생성하는 건조/열분해 반응기(200); 상기 건조/열분해 반응기(200)에서 배출되는 수증기를 응축수로 전환시키는 제1 응축기(310); 상기 건조/열분해 반응기(200)에서 배출되는 유증기를 혼합유로 전환시키는 제2 응축기(320); 상기 제1 응축기(310)에 연결되어 제1 응축기(310)에서 발생되는 응축수로부터 미량의 유분을 분리하는 제1 유수분리기(410); 상기 제2 응축기(320)에 연결되어 제2 응축기(320)에서 발생되는 혼합유로부터 미량의 물을 분리하는 제2 유수분리기(420); 상기 건조/열분해 반응기(200)에 열원을 공급하는 열공급장치(500); 상기 건조/열분해 반응기(200)에서 열교환이 이루어지고 남은 배기가스 또는 상기 열공급장치(500)에서 배출되는 배기가스를 처리하는 대기오염 방지시설(600); 및 상기 제1 유수분리기(410) 및 제2 유수분리기(420)에서 발생되는 응축수를 정화하여 대기오염 방지시설(600)의 공정용수로 사용하고, 시스템에서 발생되는 폐수를 증발시켜 외부로 배출되지 않도록 하는 무방류 처리장치(900);를 포함하는 것을 특징으로 한다.In addition, the continuous pyrolysis emulsification system of polymer waste according to the present invention comprises: a polymer waste supply device (100) that continuously supplies polymer waste in an oxygen-free or rare-oxygen condition; a drying/pyrolysis reactor (200) that removes moisture in the pores of polymer waste supplied from the polymer waste supply device (100) and generates oil vapor by pyrolysis; a first condenser (310) that converts water vapor discharged from the drying/pyrolysis reactor (200) into condensate; a second condenser (320) that converts oil vapor discharged from the drying/pyrolysis reactor (200) into mixed oil; a first oil-water separator (410) that is connected to the first condenser (310) to separate a trace amount of oil from the condensate generated from the first condenser (310); a second oil-water separator (420) that is connected to the second condenser (320) to separate a trace amount of water from the mixed oil generated from the second condenser (320). It is characterized by including a heat supply device (500) that supplies a heat source to the drying/pyrolysis reactor (200); an air pollution prevention facility (600) that processes exhaust gas remaining after heat exchange in the drying/pyrolysis reactor (200) or exhaust gas discharged from the heat supply device (500); and a zero-discharge treatment device (900) that purifies condensate generated from the first oil-water separator (410) and the second oil-water separator (420) and uses it as process water for the air pollution prevention facility (600) and evaporates wastewater generated in the system so that it is not discharged to the outside.
상기 고분자 폐기물 공급장치(100)는, 상부에 호퍼(111)가 구비되고, 일측에 비활성가스를 주입하기 위한 주입구(113)가 형성되는 챔버(110); 상기 챔버(110)의 상부와 하부에 각각 설치되어 챔버(110)를 개방 또는 폐쇄하는 제1,2 개폐밸브(120,130); 상기 챔버(110)의 하부에 경사지게 돌출 연통된 관체(114)에 설치되며, 액추에이터(140)에 의해 작동되어 고분자 폐기물을 공급하는 피스톤(150); 및 상기 챔버(110)의 하부에 설치되어 고분자 폐기물을 건조/열분해 반응기(200)로 이송시키는 이송수단(160);을 포함하는 것을 특징으로 한다.The polymer waste supply device (100) is characterized by including: a chamber (110) having a hopper (111) provided at the top and an inlet (113) formed at one side for injecting an inert gas; first and second opening/closing valves (120, 130) installed at the top and bottom of the chamber (110) respectively to open or close the chamber (110); a piston (150) installed in a pipe (114) that protrudes obliquely and communicates at the bottom of the chamber (110) and is operated by an actuator (140) to supply polymer waste; and a transfer means (160) installed at the bottom of the chamber (110) to transfer polymer waste to a drying/pyrolysis reactor (200).
상기 건조/열분해 반응기(200)는, 상부 일측에 고분자 폐기물이 투입되는 투입구(211)가 형성되고, 하부 일측에 회분과 미분해 탄소로 이루어진 슬래그가 배출되는 배출구(212)가 형성되며, 내부가 다단 구조를 이루는 반응기 본체(210); 상기 반응기 본체(210)의 내부 최상단에 위치하여 고분자 폐기물의 공극에 있는 수분을 제거하는 건조실(220); 상기 건조실(220)의 하부에 위치하며, 고분자 폐기물이 지그재그 형태로 이동하면서 열분해하여 유증기를 생성하는 열분해실(230); 상기 건조실(220) 및 열분해실(230)의 일측에 설치된 구동축(240)에 결합되는 구동 스프로킷(260); 상기 건조실(220) 및 열분해실(230)의 타측에 설치된 피동축(250)에 결합되는 피동 스프로킷(270); 상기 구동 스프로킷(260)과 피동 스프로킷(270) 간을 연결하여 무한궤도 방식으로 이동되는 체인(280); 및 상기 체인(280)에 소정 간격을 두고 설치되어 체인(280)과 함께 순환 이동하면서 고분자 폐기물을 이송시키는 다수의 이송판(290);을 포함하는 것을 특징으로 한다.The above drying/pyrolysis reactor (200) comprises: a reactor body (210) having an inlet (211) formed on the upper side into which polymer waste is fed, an outlet (212) formed on the lower side through which slag composed of ash and undecomposed carbon is discharged, and an interior having a multi-stage structure; a drying chamber (220) located at the uppermost interior surface of the reactor body (210) to remove moisture in the pores of the polymer waste; a thermal decomposition chamber (230) located below the drying chamber (220) to thermally decompose the polymer waste while moving in a zigzag shape to generate vapor; a driving sprocket (260) coupled to a driving shaft (240) installed on one side of the drying chamber (220) and the thermal decomposition chamber (230); a driven sprocket (270) coupled to a driven shaft (250) installed on the other side of the drying chamber (220) and the thermal decomposition chamber (230); It is characterized by including a chain (280) that connects the driving sprocket (260) and the driven sprocket (270) and moves in an endless track manner; and a plurality of transfer plates (290) that are installed at a predetermined interval on the chain (280) and move cyclically together with the chain (280) to transfer polymer waste.
상기 건조/열분해 반응기(200)의 건조실(220)에서 발생된 수증기를 제1 응축기(310)에 의해 응축하여 열분해실(230)에서 생성되는 열분해유의 함수율을 낮추고, 순도를 높이는 것을 특징으로 한다.The present invention is characterized in that the water vapor generated in the drying room (220) of the drying/pyrolysis reactor (200) is condensed by the first condenser (310) to lower the moisture content of the pyrolysis oil generated in the pyrolysis room (230) and increase its purity.
상기 대기오염 방지시설(600)은, 상기 건조/열분해 반응기(200)에서 연료가 연소되는 과정에서 발생된 연소가스 속의 산가스와 유기성 오염물질(VOC)을 오존으로 산화하고, 세정액으로 제거하는 스크러버(610); 상기 스크러버(610) 전단에 오존을 주입하는 오존 주입장치(620);를 포함하는 것을 특징으로 한다.The above air pollution prevention facility (600) is characterized by including a scrubber (610) that oxidizes acid gas and organic pollutants (VOC) in combustion gas generated during the process of combusting fuel in the drying/pyrolysis reactor (200) with ozone and removes them with a cleaning solution; and an ozone injection device (620) that injects ozone into the front of the scrubber (610).
상기 비상 발전/연소장치(700)는, 상기 건조/열분해 반응기(200)로부터 열분해 가스를 이송하는 비상배출라인(710); 상기 비상배출라인(710)을 통해 이송되는 열분해 가스를 연소시키는 연소 버너(720); 상기 비상배출라인(710)을 통해 이송되는 열분해 가스를 흡입하여 배출하는 연소 팬(730); 및 상기 연소 버너(720)와 연소 팬(730)이 구동되도록 전원을 공급하는 발전기(740);를 포함하는 것을 특징으로 한다.The above emergency power generation/combustion device (700) is characterized by including an emergency exhaust line (710) for transporting pyrolysis gas from the drying/pyrolysis reactor (200); a combustion burner (720) for combusting the pyrolysis gas transported through the emergency exhaust line (710); a combustion fan (730) for sucking and exhausting the pyrolysis gas transported through the emergency exhaust line (710); and a generator (740) for supplying power to drive the combustion burner (720) and the combustion fan (730).
상기 비상배출라인(710)은, 열공급장치(500)와 역화방지장치(860) 사이에 연결된 제1 연결배관(711) 상에 설치되는 제1 비상전환밸브(712); 상기 제1 연결배관(711)에서 분기되어 스팀 보일러(840)에 연결된 제2 연결배관(713) 상에 설치되는 제2 비상전환밸브(714); 상기 제1 연결배관(711)에서 분기되어 비상 발전/연소장치(700)에 연결된 제3 연결배관(715) 상에 설치되는 제3 비상전환밸브(716); 및 상기 비상 발전/연소장치(700)와 열교환기(820) 사이에 연결된 제4 연결배관(717) 상에 설치되는 제4 비상전환밸브(718);를 포함하는 것을 특징으로 한다.The above emergency discharge line (710) is characterized by including a first emergency switching valve (712) installed on a first connecting pipe (711) connected between a heat supply device (500) and a backfire prevention device (860); a second emergency switching valve (714) installed on a second connecting pipe (713) branched from the first connecting pipe (711) and connected to a steam boiler (840); a third emergency switching valve (716) installed on a third connecting pipe (715) branched from the first connecting pipe (711) and connected to an emergency power generation/combustion device (700); and a fourth emergency switching valve (718) installed on a fourth connecting pipe (717) connected between the emergency power generation/combustion device (700) and a heat exchanger (820).
상기 무방류 처리장치(900)는, 상기 대기오염 방지시설(600)에서 발생된 폐수를 증발시키고, 증발된 수증기를 대기오염 방지시설(600)로 배기하는 증발기(910); 상기 제1 유수분리기(410) 및 제2 유수분리기(420)에서 분리된 응축수를 초미세 오존 기포로 고도산화처리하여 대기오염 방지시설(600)에 공급하는 수처리기(920);를 포함하는 것을 특징으로 한다.The above-mentioned zero-discharge treatment device (900) is characterized by including an evaporator (910) that evaporates wastewater generated in the air pollution prevention facility (600) and exhausts the evaporated water vapor to the air pollution prevention facility (600); a water treatment device (920) that supplies the condensate separated in the first oil-water separator (410) and the second oil-water separator (420) to the air pollution prevention facility (600) by subjecting it to advanced oxidation treatment using ultrafine ozone bubbles.
상기 대기오염 방지시설(600)에서 세정되지 않고 통과한 유기성 오염물질(VOC) 가스를 흡착 제거하는 흡착탑(810);을 더 포함하는 것을 특징으로 한다.It is characterized by further including an adsorption tower (810) for adsorbing and removing organic pollutant (VOC) gas that has passed through the above air pollution prevention facility (600) without being cleaned.
상기 흡착탑(810)에서 배출되는 정화된 연소가스를 열교환시키는 열교환기(820);를 더 포함하는 것을 특징으로 한다.It is characterized by further including a heat exchanger (820) for heat-exchanging purified combustion gas discharged from the above adsorption tower (810).
상기 건조/열분해 반응기(200)의 열분해실(230)에서 발생되는 유증기 중 왁스 성분을 분리하는 자켓식 증류탑(830)을 더 포함하는 것을 특징으로 한다.It is characterized by further including a jacket-type distillation tower (830) for separating the wax component from the vapor generated in the thermal decomposition chamber (230) of the above drying/thermolysis reactor (200).
상기 제1 응축기(310) 및 제2 응축기(320)에서 응축되지 않은 미응축 가스는 연속 반응에 따라 균일하게 발생되며, 발생된 가스는 연속적으로 열공급장치(500)에 사용되고, 남은 미응축 가스는 스팀 보일러(840)의 연료로 사용되는 것을 특징으로 한다.The uncondensed gas that is not condensed in the first condenser (310) and second condenser (320) is uniformly generated according to a continuous reaction, and the generated gas is continuously used in a heat supply device (500), and the remaining uncondensed gas is used as fuel for a steam boiler (840).
상기 건조/열분해 반응기(200)에서 발생되는 미응축 가스를 이송하는 진공펌프(850)를 더 포함하고, 열공급장치(500) 및 스팀 보일러(840)의 역화로 인한 미응축 가스의 화재 발생을 방지하는 역화방지장치(860)를 더 포함하는 것을 특징으로 한다.It is characterized by further including a vacuum pump (850) for transporting uncondensed gas generated in the drying/pyrolysis reactor (200), and a backfire prevention device (860) for preventing fire occurrence of uncondensed gas due to backfire of the heat supply device (500) and the steam boiler (840).
상술한 바와 같이, 본 발명에 따른 고분자 폐기물의 연속식 열분해 유화 시스템은 무산소 또는 희박산소 상태에서 연속적으로 치환하고, 고분자 폐기물을 연속적으로 공급함으로써 열분해 수율을 증가시키는 효과가 있다.As described above, the continuous thermal decomposition emulsification system for polymer waste according to the present invention has the effect of increasing the thermal decomposition yield by continuously supplying polymer waste and performing substitution in an oxygen-free or diluted oxygen state.
또한, 건조/열분해 반응기에 투입된 고분자 폐기물을 스크래핑하면서 이동하고, 다음 단으로 낙하시킨 후 다시 이동하면서 열분해를 진행하는 구조에 따라, 고분자 폐기물의 원활한 이동이 가능할 뿐만 아니라 고분자 폐기물의 이물질에 의한 끼임 현상 또는 고착 현상을 방지하는 효과가 있다.In addition, since the polymer waste fed into the drying/pyrolysis reactor is moved while being scraped, dropped to the next stage, and then moved again while being pyrolyzed, not only is smooth movement of the polymer waste possible, but there is also an effect of preventing the phenomenon of polymer waste becoming stuck or sticking due to foreign substances.
또한, 고분자 폐기물을 건조 및 열분해하는 과정에서 발생할 수 있는 정전, 비상 상황 등으로 인해 전체 또는 일부 시스템의 작동이 불가능한 경우 잔류 가연성 가스를 연소하여 배출함으로써 화재, 폭발 등의 안전사고를 적극적으로 예방할 수 있을 뿐만 아니라, 긴급한 상황에서의 오작동으로 인한 장치의 파손을 방지하고, 열분해 가스의 누설로 인한 대기오염을 방지하는 효과가 있다.In addition, in the event that the entire or partial system becomes inoperable due to a power outage or emergency situation that may occur during the drying and pyrolysis of polymer waste, it is possible to actively prevent safety accidents such as fires and explosions by burning and discharging residual combustible gas, and it also has the effect of preventing damage to the device due to malfunction in an emergency situation and preventing air pollution due to leakage of pyrolysis gas.
또한, 제1 유수분리기 및 제2 유수분리기에서 발생된 응축수를 정화하여 대기오염 방지시설의 공정용수로 사용하고, 전체 또는 일부 시스템에서 발생되는 폐수를 증발시켜 외부로 배출되지 않게 하는 효과가 있다.In addition, it has the effect of purifying the condensate generated from the first oil-water separator and the second oil-water separator and using it as process water for an air pollution prevention facility, and evaporating wastewater generated from all or part of the system and preventing it from being discharged to the outside.
도 1은 본 발명에 따른 고분자 폐기물의 연속식 열분해 유화 시스템을 개략적으로 나타낸 전체 구성도.Figure 1 is a schematic diagram showing the overall configuration of a continuous thermal decomposition emulsification system for polymer waste according to the present invention.
도 2는 본 발명에 따른 고분자 폐기물의 연속식 열분해 유화 시스템의 고분자 폐기물 공급장치를 나타낸 구성도.Figure 2 is a configuration diagram showing a polymer waste supply device of a continuous thermal decomposition emulsification system for polymer waste according to the present invention.
도 3은 본 발명에 따른 고분자 폐기물의 연속식 열분해 유화 시스템의 건조/열분해 반응기를 나타낸 구성도.Figure 3 is a configuration diagram showing a drying/pyrolysis reactor of a continuous pyrolysis emulsification system for polymer waste according to the present invention.
도 4는 본 발명에 따른 고분자 폐기물의 연속식 열분해 유화 시스템의 비상 발전/연소장치를 확대하여 나타낸 구성도.Figure 4 is an enlarged schematic diagram showing the emergency power generation/combustion device of a continuous thermal decomposition emulsification system for polymer waste according to the present invention.
도 5는 본 발명에 따른 고분자 폐기물의 연속식 열분해 유화 시스템의 역화방지장치를 나타낸 구성도.Figure 5 is a configuration diagram showing a backfire prevention device of a continuous thermal decomposition emulsification system for polymer waste according to the present invention.
도 6은 본 발명에 따른 고분자 폐기물의 연속식 열분해 유화 시스템의 무방류 처리장치를 나타낸 구성도.Figure 6 is a configuration diagram showing a zero-discharge treatment device of a continuous thermal decomposition emulsification system for polymer waste according to the present invention.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 상세하게 설명한다.Hereinafter, the most preferred embodiment of the present invention will be described in detail so that a person having ordinary skill in the art to which the present invention pertains can easily practice the present invention.
도 1에 도시된 바와 같이, 본 발명에 따른 고분자 폐기물의 연속식 열분해 유화 시스템은 고분자 폐기물 공급장치(100), 건조/열분해 반응기(200), 제1 응축기(310), 제2 응축기(320), 제1 유수분리기(410), 제2 유수분리기(420), 열공급장치(500), 대기오염 방지시설(600) 및 비상 발전/연소장치(700)를 포함한다. As illustrated in FIG. 1, the continuous thermal decomposition emulsification system for polymer waste according to the present invention includes a polymer waste supply device (100), a drying/thermolysis reactor (200), a first condenser (310), a second condenser (320), a first oil-water separator (410), a second oil-water separator (420), a heat supply device (500), an air pollution prevention facility (600), and an emergency power generation/combustion device (700).
그 밖에, 본 발명의 고분자 폐기물의 연속식 열분해 유화 시스템은 상기한 구성요소들의 전반적인 동작을 제어하기 위한 제어부(미도시)가 포함될 수 있다.In addition, the continuous pyrolysis emulsification system for polymer waste of the present invention may include a control unit (not shown) for controlling the overall operation of the above-mentioned components.
먼저, 본 발명을 설명하기에 앞서, 생활폐기물 및 사업장폐기물 중에서 금속류와 파쇄 곤란한 폐플라스틱 및 염화비닐류를 제외한 폐합성수지류(PE, PP, PS)를 선별하고, 파쇄기에서 건조/열분해 반응기에 투입 가능한 크기로 파쇄하는 것이 바람직하며, 대략 50×50㎜ 이하의 크기로 파쇄한다.First, before explaining the present invention, it is preferable to select waste synthetic resins (PE, PP, PS) from among household waste and industrial waste, excluding metals and waste plastics and vinyl chloride that are difficult to crush, and crush them in a crusher to a size that can be fed into a drying/pyrolysis reactor, and to crush them to a size of approximately 50×50mm or less.
도 2에 도시된 바와 같이, 상기 고분자 폐기물 공급장치(100)는 무산소 또는 희박산소 상태에서 고분자 폐기물을 연속으로 공급하는 장치로서, 챔버(110), 제1,2 개폐밸브(120,130), 액추에이터(140), 피스톤(150) 및 이송수단(160)을 포함한다.As illustrated in FIG. 2, the polymer waste supply device (100) is a device that continuously supplies polymer waste in an oxygen-free or rare oxygen state, and includes a chamber (110), first and second opening/closing valves (120, 130), an actuator (140), a piston (150), and a transfer means (160).
상기 챔버(110)는 상부에 호퍼(111)가 구비되고, 일측에는 비활성가스를 주입하기 위한 주입구(113)가 형성된다. The above chamber (110) is equipped with a hopper (111) at the top, and an injection port (113) for injecting an inert gas is formed on one side.
특히, 상기 챔버(110)는 상기 제1 개폐밸브(120)와 제2 개폐밸브(130) 사이의 공간에 형성되는 치환실(112)과, 상기 치환실(112)의 하부에 형성되는 균등화실(117)로 구획 형성된다.In particular, the chamber (110) is divided into a substitution chamber (112) formed in the space between the first opening/closing valve (120) and the second opening/closing valve (130), and an equalization chamber (117) formed at the bottom of the substitution chamber (112).
또한, 상기 챔버(110)의 일측에는 공기를 배출하기 위한 공기배출구(115)가 형성된다. Additionally, an air exhaust port (115) for exhausting air is formed on one side of the chamber (110).
상기 챔버(110)의 하부 일측에는 상향 경사지게 관체(114)가 돌출 연통되고, 타측에는 고분자 폐기물의 끼임 현상을 방지하기 위한 절곡부(116)가 형성된다.On one side of the lower portion of the chamber (110), a tube body (114) is protruded and connected in an upwardly inclined manner, and on the other side, a folded portion (116) is formed to prevent the polymer waste from getting caught.
상기 제1 개폐밸브(120)는 상기 챔버(110)의 상부에 설치되어 챔버(110)를 개방 또는 폐쇄한다.The above first opening/closing valve (120) is installed at the top of the chamber (110) and opens or closes the chamber (110).
상기 제2 개폐밸브(130)는 상기 챔버(110)의 하부에 설치되어 챔버(110)를 개방 또는 폐쇄한다.The above second opening/closing valve (130) is installed at the bottom of the chamber (110) and opens or closes the chamber (110).
고분자 폐기물의 열분해는 무산소 상태에서 약 80~450℃의 열로 고분자 폐기물을 용융시키고, 이를 기화시켜 저탄소 분자로 분해한다. 열분해 영역으로 공기 중의 산소가 유입되는 것을 방지하기 위하여 고분자 폐기물 공급장치(100)에서 열분해 영역으로 고분자 폐기물을 투입하기 전에 공기를 질소로 대체하는 치환실(112)이 적용된다. 상기 치환실(112)은 상기 제1,2 개폐밸브(120,130)를 사용하여 밀폐시키고, 주입구(113)를 통해 질소를 주입하게 된다.Thermal decomposition of polymer waste melts polymer waste with heat of about 80 to 450℃ in an oxygen-free environment, vaporizes it, and decomposes it into low-carbon molecules. In order to prevent oxygen in the air from flowing into the thermal decomposition area, a substitution chamber (112) is applied to replace air with nitrogen before feeding polymer waste from the polymer waste supply device (100) into the thermal decomposition area. The substitution chamber (112) is sealed using the first and second opening/closing valves (120, 130), and nitrogen is injected through the inlet (113).
상기 피스톤(150)은 상기 관체(114)에 설치되며, 액추에이터(140)에 의해 작동되어 고분자 폐기물의 공급량을 조절한다.The above piston (150) is installed in the above body (114) and is operated by an actuator (140) to control the supply amount of polymer waste.
상기 이송수단(160)은 상기 챔버(110)의 하부에 경사지게 설치되어 고분자 폐기물을 건조/열분해 반응기(200)로 이송시킨다. 상기 이송수단(160)은 모터 등에 의해 회전하는 스크류 컨베이어가 사용될 수 있으며, 스크래퍼가 추가로 구성될 수 있다.The above-mentioned transport means (160) is installed at an angle at the bottom of the chamber (110) to transport the polymer waste to the drying/pyrolysis reactor (200). The above-mentioned transport means (160) may be a screw conveyor that rotates by a motor or the like, and a scraper may be additionally configured.
상기와 같은 구성에 의하면, 상기 고분자 폐기물 공급장치(100)는 제2 개폐밸브(130)를 폐쇄하고 고분자 폐기물을 투입한 후, 제1 개폐밸브(120)를 폐쇄한 뒤 일정 시간 질소 퍼징(purging)을 하고, 질소 퍼징된 고분자 폐기물을 제2 개폐밸브(130)를 개방하여 균등화실(117)로 낙하시킨다. 퍼징된 고분자 폐기물의 낙하가 완료되면, 제2 개폐밸브(130)를 폐쇄한다. According to the above configuration, the polymer waste supply device (100) closes the second opening/closing valve (130) and inputs polymer waste, then closes the first opening/closing valve (120), performs nitrogen purging for a certain period of time, and then opens the second opening/closing valve (130) to drop the nitrogen-purged polymer waste into the equalization chamber (117). When the dropping of the purged polymer waste is completed, the second opening/closing valve (130) is closed.
고분자 폐기물의 연속적인 공급을 위해 균등화실(117)에서 고분자 폐기물이 소진되기 전에 제1 개폐밸브(120)를 개방하고, 치환실(112)에 고분자 폐기물을 채운다. 고분자 폐기물이 치환실(112)에 채워지면, 제1 개폐밸브(120)를 폐쇄하고 질소 퍼징을 한다.To ensure continuous supply of polymer waste, the first on-off valve (120) is opened before the polymer waste is exhausted in the equalization chamber (117), and the polymer waste is filled in the displacement chamber (112). When the polymer waste is filled in the displacement chamber (112), the first on-off valve (120) is closed and nitrogen purging is performed.
한편, 상기 고분자 폐기물 공급장치(100)는 액추에이터(140)를 비롯한 피스톤(150)을 경사지게 배치함으로써 고분자 폐기물의 공급량을 조절하여 이송수단(160)에 고르게 분포되도록 하고, 이를 통하여 고분자 폐기물의 끼임 현상 또는 막힘 현상을 방지하여 시스템의 성능을 향상시킨다. 따라서, 시스템 설비의 정상 조업률이 높아지게 되어 열분해 수율이 증가되는 효과가 있다.Meanwhile, the polymer waste supply device (100) adjusts the supply amount of polymer waste by arranging the piston (150) including the actuator (140) at an angle so that it is evenly distributed to the transport means (160), thereby preventing the polymer waste from jamming or clogging, thereby improving the performance of the system. Accordingly, the normal operating rate of the system equipment is increased, thereby increasing the thermal decomposition yield.
더불어, 상기 이송수단(160)을 상향 경사지게 배치함으로써 이송수단(160)의 길이를 짧게 할 수 있고, 이로 인하여 고분자 폐기물의 투입 시간이 짧아지고, 투입 공간과 장비 등의 감소로 인해 제조 원가를 절감하는 효과가 있다.In addition, by arranging the transport means (160) so as to be inclined upward, the length of the transport means (160) can be shortened, thereby shortening the time for inputting polymer waste and reducing the input space and equipment, thereby reducing the manufacturing cost.
도 3에 도시된 바와 같이, 상기 건조/열분해 반응기(200)는 상기 고분자 폐기물 공급장치(100)로부터 공급되는 고분자 폐기물의 공극에 있는 수분을 제거하고, 열분해하여 유증기를 생성한다. 이러한 건조/열분해 반응기(200)는 반응기 본체(210), 건조실(220), 열분해실(230), 구동축(240), 피동축(250), 구동 스프로킷(260), 피동 스프로킷(270), 체인(280) 및 이송판(290)을 포함한다.As illustrated in FIG. 3, the drying/pyrolysis reactor (200) removes moisture in the pores of polymer waste supplied from the polymer waste supply device (100) and thermally decomposes the waste to generate vapor. The drying/pyrolysis reactor (200) includes a reactor body (210), a drying chamber (220), a thermal decomposition chamber (230), a driving shaft (240), a driven shaft (250), a driving sprocket (260), a driven sprocket (270), a chain (280), and a transfer plate (290).
이러한 건조/열분해 반응기(200)의 열분해 영역은 고분자 폐기물의 공급부터 혼합유 회수까지의 전 과정이 대기와 분리된 상태로 이루어진다. The thermal decomposition area of this drying/pyrolysis reactor (200) is separated from the atmosphere throughout the entire process from the supply of polymer waste to the recovery of mixed oil.
상기 반응기 본체(210)는 상부 일측에 고분자 폐기물이 투입되는 투입구(211)가 형성되고, 하부 일측에 회분과 미분해 탄소로 이루어진 슬래그가 배출되는 배출구(212)가 형성된다. The reactor body (210) above has an inlet (211) formed on the upper side into which polymer waste is fed, and an outlet (212) formed on the lower side into which slag composed of ash and undecomposed carbon is discharged.
또한, 상기 반응기 본체(210)는 내부가 다단 구조로 이루어지며, 건조실(220)과 열분해실(230)을 포함한다.In addition, the reactor body (210) has a multi-stage internal structure and includes a drying room (220) and a thermal decomposition room (230).
상기 반응기 본체(210)에 투입되는 폐플라스틱 등의 고분자 폐기물은 80~450℃의 온도 영역에서 점차 가열되어 수분 건조, 고분자 폐기물 용융, 열분해, 슬래그화 과정을 거치게 된다. 열분해 반응의 결과물은 수증기와 열분해 가스로 구성된 혼합증기와 회분 및 미량의 미분해 탄소로 구성된 슬래그로 구분되어 배출된다. 이때, 상기 슬래그는 건조/열분해 반응기(200)의 일측에 설치된 슬래그 배출장치(870)를 통해 배출된다.Polymer waste such as waste plastics fed into the above reactor body (210) is gradually heated in the temperature range of 80 to 450°C to undergo moisture drying, polymer waste melting, thermal decomposition, and slag formation processes. The result of the thermal decomposition reaction is discharged as mixed steam composed of water vapor and thermal decomposition gas and slag composed of ash and a small amount of undecomposed carbon. At this time, the slag is discharged through a slag discharge device (870) installed on one side of the drying/thermolysis reactor (200).
상기 건조실(220)은 상기 반응기 본체(210)의 내부 최상단에 위치하여 고분자 폐기물의 공극에 있는 수분을 제거한다.The above drying room (220) is located at the top inside the reactor body (210) and removes moisture in the pores of the polymer waste.
특히, 상기 건조실(220)에서 발생된 수증기를 제1 응축기(310)에 의해 응축하여 열분해실(230)에서 생성되는 열분해유의 함수율을 낮추고, 순도를 높인다.In particular, the water vapor generated in the drying room (220) is condensed by the first condenser (310) to lower the moisture content of the pyrolysis oil generated in the pyrolysis room (230) and increase its purity.
상기 열분해실(230)은 상기 건조실(220)의 하부에 위치하며, 고분자 폐기물이 지그재그 형태로 이동하면서 열분해하여 유증기를 생성한다.The above thermal decomposition chamber (230) is located below the above drying chamber (220), and thermally decomposes the polymer waste while moving in a zigzag shape to generate vapor.
부연하면, 상기 건조실(220)은 80~150℃의 온도에서 고분자 폐기물을 가열하면서 고분자 폐기물의 공극에 있는 수분을 건조하는 영역이고, 상기 건조실(220)의 하부에 다단 구조로 이루어진 열분해실(230)은 100~250℃의 온도에서 고분자 폐기물이 용융하면서 일부 열분해가 일어나 기화가 진행되는 영역, 200~350℃의 온도에서 열분해가 일어나 유증기를 생성하는 영역, 300~450℃의 온도에서 분해 및 탄화로 인한 회분과 미량의 미분해 탄소로 구성된 슬래그가 생성되는 영역을 포함한다. 한편, 본 발명은 상기와 같은 영역 및 온도 조건에서 고분자 폐기물의 건조 및 열분해가 이루어지는 것이지만, 이에 한정되지 않고 건조실(220) 및 열분해실(230)을 1단, 2단, 3단 및 추가로 구성할 수 있고, 다양한 온도를 적용할 수도 있다.In detail, the drying room (220) is a region where the moisture in the pores of the polymer waste is dried while heating the polymer waste at a temperature of 80 to 150°C, and the thermal decomposition room (230) having a multi-stage structure located below the drying room (220) includes a region where some thermal decomposition occurs while the polymer waste melts at a temperature of 100 to 250°C and vaporization proceeds, a region where thermal decomposition occurs at a temperature of 200 to 350°C and vaporization occurs, and a region where slag composed of ash and a small amount of undecomposed carbon due to decomposition and carbonization is generated at a temperature of 300 to 450°C. Meanwhile, the present invention is a region where drying and thermal decomposition of polymer waste are performed under the above-mentioned regions and temperature conditions, but is not limited thereto, and the drying room (220) and the thermal decomposition room (230) may be configured in one stage, two stages, three stages, or additional stages, and various temperatures may be applied.
상기 구동 스프로킷(260)은 상기 건조실(220) 및 열분해실(230)의 일측에 설치된 구동축(240)에 결합된다.The above driving sprocket (260) is coupled to a driving shaft (240) installed on one side of the drying room (220) and the thermal decomposition room (230).
상기 피동 스프로킷(270)은 상기 건조실(220) 및 열분해실(230)의 타측에 설치된 피동축(250)에 결합된다.The above-mentioned passive sprocket (270) is coupled to a passive shaft (250) installed on the other side of the drying room (220) and the thermal decomposition room (230).
여기서, 상기 구동 스프로킷(260)은 모터(미도시)의 동력을 전달받아 회전하게 된다. 상기 모터는 반응기 본체(210)의 외측에 설치되고, 모터의 축에는 감속기가 설치된다. 상기 감속기와 구동축(240)이 연결되게 설치되어, 모터가 작동되면 구동축(240)을 통해 구동 스프로킷(260)이 회전하게 된다.Here, the driving sprocket (260) is rotated by receiving power from a motor (not shown). The motor is installed on the outside of the reactor body (210), and a reducer is installed on the shaft of the motor. The reducer and the driving shaft (240) are installed so as to be connected, so that when the motor is operated, the driving sprocket (260) rotates through the driving shaft (240).
상기 체인(280)은 상기 구동 스프로킷(260)과 피동 스프로킷(270) 간을 연결하여 무한궤도 방식으로 이동된다.The above chain (280) connects the driving sprocket (260) and the driven sprocket (270) and moves in an endless track manner.
상기 이송판(290)은 상기 체인(280)에 소정 간격을 두고 다수 설치되어 체인(280)과 함께 순환 이동하면서 고분자 폐기물을 이송시킨다. 즉, 상기 체인(280)과 함께 이송판(290)의 계속되는 순환에 의해 고분자 폐기물은 다단의 열분해실(230)을 이동하면서 열분해 된다.The above-mentioned transfer plates (290) are installed at predetermined intervals on the above-mentioned chain (280) and transfer polymer waste while moving in circulation with the chain (280). That is, the polymer waste is thermally decomposed while moving through the multi-stage thermal decomposition chamber (230) by the continuous circulation of the transfer plates (290) together with the above-mentioned chain (280).
상기와 같은 구성에 의하면, 상기 건조/열분해 반응기(200)는 투입된 고분자 폐기물을 스크래핑하면서 이동하고, 다음 단으로 낙하시킨 후 다시 이동하면서 열분해를 진행하는 구조에 따라, 고분자 폐기물의 원활한 이동이 가능할 뿐만 아니라 고분자 폐기물의 이물질에 의한 끼임 현상 또는 고착 현상을 방지할 수 있다. According to the above configuration, the drying/pyrolysis reactor (200) moves while scraping the input polymer waste, drops it to the next stage, and then moves again while performing pyrolysis, so that not only smooth movement of the polymer waste is possible, but also the phenomenon of jamming or sticking due to foreign substances in the polymer waste can be prevented.
상기 제1 응축기(310)는 상기 건조/열분해 반응기(200)의 건조실(220)에서 배출되는 수증기를 응축수로 전환시켜 제1 유수분리기(410)로 공급한다.The above first condenser (310) converts the water vapor discharged from the drying room (220) of the drying/pyrolysis reactor (200) into condensate and supplies it to the first oil-water separator (410).
상기 제2 응축기(320)는 상기 건조/열분해 반응기(200)의 열분해실(230)에서 배출되는 유증기를 혼합유로 전환시켜 제2 유수분리기(420)로 공급한다.The second condenser (320) converts the vapor discharged from the thermal decomposition chamber (230) of the drying/thermolysis reactor (200) into mixed oil and supplies it to the second oil-water separator (420).
상기 제1 응축기(310) 및 제2 응축기(320)에서 응축되지 않은 미응축 가스는 연속 반응에 따라 균일하게 발생되며, 발생된 미응축 가스는 연속적으로 열공급장치(500)에 사용되고, 남은 미응축 가스는 스팀 보일러(840)의 연료로 사용된다.The uncondensed gas that is not condensed in the first condenser (310) and second condenser (320) is uniformly generated according to a continuous reaction, and the generated uncondensed gas is continuously used in the heat supply device (500), and the remaining uncondensed gas is used as fuel for the steam boiler (840).
상기 제1 유수분리기(410)는 상기 제1 응축기(310)에 연결되어 제1 응축기(310)에서 발생되는 응축수로부터 미량의 유분(오일)을 분리한다.The above first oil separator (410) is connected to the first condenser (310) and separates a small amount of oil from the condensate generated in the first condenser (310).
상기 제2 유수분리기(420)는 상기 제2 응축기(320)에 연결되어 제2 응축기(320)에서 발생되는 혼합유로부터 미량의 물을 분리한다.The above second oil-water separator (420) is connected to the second condenser (320) and separates a small amount of water from the mixed oil generated in the second condenser (320).
부연하면, 상기 제1,2 유수분리기(410,420)는 상기 건조/열분해 반응기(200)에 의한 고분자 폐기물의 건조 과정에서 수증기와 함께 증발한 미량의 유증기가 응축된 응축수와, 열분해 과정에서 발생한 열분해 가스와 함께 증발한 미량의 수증기가 응축된 혼합유로부터 물과 오일을 분리한다. 여기서, 분리된 오일은 저장탱크로 배출된다.In detail, the first and second oil-water separators (410, 420) separate water and oil from the condensate in which a small amount of oil vapor evaporated together with water vapor during the drying process of polymer waste by the drying/pyrolysis reactor (200) is condensed, and the mixed oil in which a small amount of water vapor evaporated together with the pyrolysis gas generated during the pyrolysis process is condensed. Here, the separated oil is discharged to a storage tank.
상기 열공급장치(500)는 상기 건조/열분해 반응기(200)의 일측에 설치되어 건조/열분해 반응기(200)에 열원을 공급한다.The above heat supply device (500) is installed on one side of the drying/pyrolysis reactor (200) and supplies a heat source to the drying/pyrolysis reactor (200).
상기 열공급장치(500)는 상기 건조/열분해 반응기(200)의 온도를 제어하기 위한 열을 공급하는 것으로서, 건조/열분해 반응기와 일체형 직화 버너를 사용한 열풍 또는 열매유를 사용하는 보일러 등이 사용될 수 있다. 이때, 보일러 버너는 작동 시 천연가스를 공급하여 작동되고, 열분해가 진행되어 부생가스인 미응축 가스가 발생하면 미응축 가스를 연료로 사용한다.The above heat supply device (500) supplies heat for controlling the temperature of the drying/pyrolysis reactor (200), and a boiler using hot air or heat oil with a direct-fired burner integrated with the drying/pyrolysis reactor may be used. At this time, the boiler burner is operated by supplying natural gas during operation, and when pyrolysis progresses and uncondensed gas, which is a by-product gas, is generated, the uncondensed gas is used as fuel.
상기 대기오염 방지시설(600)은 상기 건조/열분해 반응기(200)에서 열교환이 이루어지고 남은 배기가스 또는 상기 열공급장치(500)에서 배출되는 배기가스를 처리한다. The above air pollution prevention facility (600) processes the exhaust gas remaining after heat exchange in the drying/pyrolysis reactor (200) or the exhaust gas discharged from the heat supply device (500).
이에 상기 대기오염 방지시설(600)은 상기 건조/열분해 반응기(200)에서 연료가 연소되는 과정에서 발생된 연소가스 속의 산가스와 유기성 오염물질(VOC)을 오존으로 산화하고, 세정액으로 제거하는 스크러버(610)와, 상기 스크러버(610) 전단에 오존을 주입하는 오존 주입장치(620)를 포함한다.Accordingly, the above air pollution prevention facility (600) includes a scrubber (610) that oxidizes acid gas and organic pollutants (VOC) in combustion gas generated during the process of burning fuel in the drying/pyrolysis reactor (200) with ozone and removes them with a cleaning solution, and an ozone injection device (620) that injects ozone in front of the scrubber (610).
상기 스크러버(610)는 배관을 통해 유입되는 연소가스에 세정수를 분무하여 연소가스와 세정수를 기액 접촉시키는 장치로서, 통상의 습식 스크러버일 수 있다.The above scrubber (610) is a device that sprays cleaning water onto combustion gas flowing in through a pipe to bring the combustion gas and cleaning water into gas-liquid contact, and may be a conventional wet scrubber.
상기 오존 주입장치(620)는 스크러버(610)의 세정수 공급라인을 통해 오존을 주입하여 스크러버(610) 내부로 공급되게 할 수 있다.The above ozone injection device (620) can inject ozone through the cleaning water supply line of the scrubber (610) and supply it into the interior of the scrubber (610).
한편, 정전, 비상 상황 등의 발생으로 인해 시스템 운전에 필요한 전원이 차단될 경우, 대기와 차단된 상태에서 내부에 열이 존재하는 건조/열분해 반응기가 일정 온도 이하로 냉각될 때까지 열분해 반응이 지속됨으로써, 건조/열분해 반응기 내부에 남아있는 열에 의하여 건조/열분해 반응기에서 발생하는 잔류 가연성 가스의 압력이 계속 증가하여 건조/열분해 반응기의 열분해 가스 누설 또는 폭발 위험성이 있다.Meanwhile, in the event that the power required for system operation is cut off due to a power outage, emergency situation, etc., the thermal decomposition reaction continues until the drying/thermolysis reactor with heat inside while cut off from the atmosphere is cooled below a certain temperature, and the pressure of the residual combustible gas generated in the drying/thermolysis reactor continues to increase due to the heat remaining inside the drying/thermolysis reactor, which may result in a risk of thermal decomposition gas leakage or explosion of the drying/thermolysis reactor.
이에 본 발명은 정전, 보일러 고장 등의 비상 상황으로 시스템의 작동이 불가능한 경우 잔류 가연성 가스를 연소하여 배출시키는 비상 발전/연소장치(700)를 포함한다.Accordingly, the present invention includes an emergency power generation/combustion device (700) that combusts and discharges residual combustible gas when the system cannot be operated due to an emergency situation such as a power outage or boiler failure.
도 1 및 도 4에 도시된 바와 같이, 상기 비상 발전/연소장치(700)는 상기 건조/열분해 반응기(200)로부터 잔류 가연성 가스를 이송하는 비상배출라인(710), 상기 비상배출라인(710)을 통해 이송되는 잔류 가연성 가스를 연소시키는 연소 버너(720), 상기 비상배출라인(710)을 통해 이송되는 잔류 가연성 가스를 흡입하여 배출하는 연소 팬(730) 및 상기 연소 버너(720)와 연소 팬(730)이 구동되도록 전원을 공급하는 발전기(740)를 포함한다.As illustrated in FIGS. 1 and 4, the emergency power generation/combustion device (700) includes an emergency exhaust line (710) for transporting residual combustible gas from the drying/pyrolysis reactor (200), a combustion burner (720) for combusting the residual combustible gas transported through the emergency exhaust line (710), a combustion fan (730) for sucking and exhausting the residual combustible gas transported through the emergency exhaust line (710), and a generator (740) for supplying power to drive the combustion burner (720) and the combustion fan (730).
특히, 상기 비상배출라인(710)은 열공급장치(500)와 역화방지장치(860) 사이에 연결된 제1 연결배관(711) 상에 설치되는 제1 비상전환밸브(712), 상기 제1 연결배관(711)에서 분기되어 스팀 보일러(840)에 연결된 제2 연결배관(713) 상에 설치되는 제2 비상전환밸브(714), 상기 제1 연결배관(711)에서 분기되어 비상 발전/연소장치(700)에 연결된 제3 연결배관(715) 상에 설치되는 제3 비상전환밸브(716) 및 상기 비상 발전/연소장치(700)와 열교환기(820) 사이에 연결된 제4 연결배관(717) 상에 설치되는 제4 비상전환밸브(718)를 포함한다.In particular, the emergency discharge line (710) includes a first emergency switching valve (712) installed on a first connecting pipe (711) connected between a heat supply device (500) and a backfire prevention device (860), a second emergency switching valve (714) installed on a second connecting pipe (713) branched from the first connecting pipe (711) and connected to a steam boiler (840), a third emergency switching valve (716) installed on a third connecting pipe (715) branched from the first connecting pipe (711) and connected to an emergency power generation/combustion device (700), and a fourth emergency switching valve (718) installed on a fourth connecting pipe (717) connected between the emergency power generation/combustion device (700) and a heat exchanger (820).
일예로, 시스템이 정상 운전을 하는 경우에는 바이패스 밸브(880)를 폐쇄하고, 제1 비상전환밸브(712) 및 제2 비상전환밸브(714)를 개방한다. 그리고, 제3 비상전환밸브(716) 및 제4 비상전환밸브(718)를 폐쇄하여 비상 발전/연소장치(700)를 작동시키지 않는다.For example, when the system is operating normally, the bypass valve (880) is closed, and the first emergency switching valve (712) and the second emergency switching valve (714) are opened. In addition, the third emergency switching valve (716) and the fourth emergency switching valve (718) are closed so that the emergency power generation/combustion device (700) is not operated.
정전이 발생하는 경우에는 바이패스 밸브(880)를 개방하고, 제1 비상전환밸브(712) 및 제2 비상전환밸브(714)를 폐쇄한다. 그리고, 제3 비상전환밸브(716) 및 제4 비상전환밸브(718)를 개방하여 비상 발전/연소장치(700)를 작동시킨다.In the event of a power outage, the bypass valve (880) is opened, and the first emergency switching valve (712) and the second emergency switching valve (714) are closed. Then, the third emergency switching valve (716) and the fourth emergency switching valve (718) are opened to operate the emergency power generation/combustion device (700).
스팀 보일러(840)의 고장이 발생하는 경우에는 바이패스 밸브(880)를 폐쇄하고, 제1 비상전환밸브(712)를 개방하고 제2 비상전환밸브(714)를 폐쇄한다. 그리고, 제3 비상전환밸브(716) 및 제4 비상전환밸브(718)를 개방하여 비상 발전/연소장치(700)를 작동시킨다.In the event of a failure of the steam boiler (840), the bypass valve (880) is closed, the first emergency switching valve (712) is opened, and the second emergency switching valve (714) is closed. Then, the third emergency switching valve (716) and the fourth emergency switching valve (718) are opened to operate the emergency power generation/combustion device (700).
즉, 정전 등의 비상 상황이 발생하면, 비상 발전/연소장치(700)에 의해 건조/열분해 반응기(200)의 구동 정지 후 일정 시간 동안 건조/열분해 반응기에서 발생하는 잔류 가연성 가스를 진공펌프를 우회하여 연소시키고, 연소 시 발생된 배기가스를 대기오염 방지시설(600)로 배출한다.That is, when an emergency situation such as a power outage occurs, the operation of the drying/pyrolysis reactor (200) is stopped by the emergency power generation/combustion device (700), and the residual combustible gas generated in the drying/pyrolysis reactor is combusted by bypassing the vacuum pump for a certain period of time, and the exhaust gas generated during combustion is discharged to the air pollution prevention facility (600).
이처럼, 본 발명은 비상 발전/연소장치(700)의 설치로 인하여 고분자 폐기물을 열분해하는 과정에서 발생할 수 있는 정전, 비상 상황 등으로 인해 전체 또는 일부 시스템의 작동이 불가능한 경우 잔류 가연성 가스를 연소하여 배출함으로써 화재, 폭발 등의 안전사고를 적극적으로 예방할 수 있을 뿐만 아니라, 긴급한 상황에서의 오작동으로 인한 장치의 파손을 방지하고, 열분해 가스의 누설로 인한 대기오염을 방지할 수 있다.In this way, the present invention can actively prevent safety accidents such as fires and explosions by burning and discharging residual combustible gas in the event that the entire or partial system becomes inoperable due to a power outage or emergency situation that may occur during the process of pyrolysis of polymer waste due to the installation of an emergency power generation/combustion device (700), and can also prevent damage to the device due to malfunction in an emergency situation and prevent air pollution due to leakage of pyrolysis gas.
본 발명의 고분자 폐기물의 연속식 열분해 유화 시스템은 상기 대기오염 방지시설(600)에서 세정되지 않고 통과한 유기성 오염물질(VOC) 가스를 흡착 제거하는 흡착탑(810)을 더 포함할 수 있고, 상기 흡착탑(810)에서 배출되는 정화된 연소가스를 열교환시키는 열교환기(820)를 더 포함할 수 있다.The continuous thermal decomposition emulsification system of polymer waste of the present invention may further include an adsorption tower (810) for adsorbing and removing organic pollutant (VOC) gas that has passed through the air pollution prevention facility (600) without being cleaned, and may further include a heat exchanger (820) for heat-exchanging purified combustion gas discharged from the adsorption tower (810).
상기 열교환기(820)는 열공급장치(500), 비상 발전/연소장치(700), 스팀 보일러(840) 등으로부터 배출되는 고온(약 300~400℃)의 가스와 스크러버(610)로부터 배출되는 저온(약 60~70℃ 이하)의 가스를 서로 열교환시켜 백연현상을 방지하는 역할을 한다.The above heat exchanger (820) prevents white smoke by exchanging heat between high temperature (approximately 300 to 400°C) gas discharged from a heat supply device (500), an emergency power generation/combustion device (700), a steam boiler (840), etc. and low temperature (approximately 60 to 70°C or less) gas discharged from a scrubber (610).
본 발명의 고분자 폐기물의 연속식 열분해 유화 시스템은 상기 건조/열분해 반응기(200)의 열분해실(230)에서 발생되는 유증기 중 왁스 성분을 분리하는 자켓식 증류탑(830)을 더 포함할 수 있다. 상기 자켓식 증류탑(830)은 증류탑 외부에 온도조절 공간을 갖는 자켓이 설치됨으로써 공비증류(azeotropic distillation)가 더욱 원활하게 이루어진다.The continuous thermal decomposition emulsification system of polymer waste of the present invention may further include a jacket-type distillation tower (830) for separating a wax component from the vapor generated in the thermal decomposition chamber (230) of the drying/thermal decomposition reactor (200). The jacket-type distillation tower (830) is provided with a jacket having a temperature control space outside the distillation tower, thereby enabling azeotropic distillation to be performed more smoothly.
본 발명의 고분자 폐기물의 연속식 열분해 유화 시스템은 상기 건조/열분해 반응기(200)에서 발생되는 미응축 가스를 이송하는 진공펌프(850)를 더 포함하고, 열공급장치(500) 및 스팀 보일러(840)의 역화로 인한 미응축 가스의 화재 발생을 방지하는 역화방지장치(860)를 더 포함할 수 있다.The continuous thermal decomposition emulsification system of polymer waste of the present invention may further include a vacuum pump (850) for transporting uncondensed gas generated from the drying/thermolysis reactor (200), and may further include a flashback prevention device (860) for preventing fire occurrence of uncondensed gas due to flashback of the heat supply device (500) and the steam boiler (840).
한편, 상기 제1 응축기(310) 및 제2 응축기(320)와 진공펌프(850) 사이에 연결된 배관상에는 진공펌프(850)의 고장 시 미응축 가스가 진공펌프(850)를 거치지 않고 역화방지장치(860)로 바이패스(by pass) 되도록 하는 바이패스 밸브(880)가 설치된다.Meanwhile, a bypass valve (880) is installed on the pipe connected between the first condenser (310) and the second condenser (320) and the vacuum pump (850) so that, when the vacuum pump (850) fails, the uncondensed gas is bypassed to the backfire prevention device (860) without passing through the vacuum pump (850).
도 5에 도시된 바와 같이, 상기 역화방지장치(860)는 내부에 물이 수용되어 있고, 하부에 밸브가 구비되는 제1,2 역화방지 탱크(861,862), 상기 제1 역화방지 탱크(861)의 상부 일측에 연결되되 단부가 제1 역화방지 탱크(861)의 내부 물속에 잠기도록 설치되는 제1 가스유입관(863), 일측이 상기 제1 역화방지 탱크(861)의 상측에 연결되고, 타측이 제2 역화방지 탱크(862)의 내부 물속에 잠기도록 설치되는 제2 가스유입관(864) 및 상기 제2 역화방지 탱크(862)의 상부 일측에 연결되는 가스토출관(865)을 포함한다.As illustrated in FIG. 5, the backfire prevention device (860) includes first and second backfire prevention tanks (861, 862) that contain water therein and have valves at the bottom, a first gas inlet pipe (863) that is connected to one side of the upper portion of the first backfire prevention tank (861) and is installed so that one end is submerged in the water inside the first backfire prevention tank (861), a second gas inlet pipe (864) that is connected to one side of the upper portion of the first backfire prevention tank (861) and the other end is installed so that the other end is submerged in the water inside the second backfire prevention tank (862), and a gas discharge pipe (865) that is connected to one side of the upper portion of the second backfire prevention tank (862).
이러한 구성에 의하면, 상기 역화방지장치(860)는 미응축 가스가 공급되는 제1 가스유입관(863) 및 제2 가스유입관(864)의 단부가 물속에 각각 침지됨으로써 미응축 가스가 물속을 통과하여 가스토출관(865)을 통해 토출시키는 장치로서, 미응축 가스가 물속을 통과하도록 하여 버너의 역화로 인하여 배관을 타고 들어오는 화재가 확산되는 것을 방지한다.According to this configuration, the backfire prevention device (860) is a device in which the ends of the first gas inlet pipe (863) and the second gas inlet pipe (864) through which the uncondensed gas is supplied are each immersed in water, thereby allowing the uncondensed gas to pass through the water and be discharged through the gas discharge pipe (865), thereby preventing the fire coming in through the pipe due to backfire of the burner from spreading by allowing the uncondensed gas to pass through the water.
한편, 본 발명의 고분자 폐기물의 연속식 열분해 유화 시스템은 흡착탑(810)에서 처리된 배출가스를 연돌(891)로 강제 송풍하는 송풍팬(892)을 포함한다.Meanwhile, the continuous thermal decomposition emulsification system for polymer waste of the present invention includes a blower fan (892) that forcibly blows the exhaust gas treated in the adsorption tower (810) to the chimney (891).
도 6에 도시된 바와 같이, 본 발명에 따른 고분자 폐기물의 연속식 열분해 유화 시스템은 상기 제1 유수분리기(410) 및 제2 유수분리기(420)에서 발생되는 응축수를 정화하여 대기오염 방지시설(600)의 공정용수로 사용하고, 시스템에서 발생되는 폐수를 증발시켜 외부로 배출되지 않도록 하는 무방류 처리장치(900)를 포함할 수 있다.As illustrated in FIG. 6, the continuous thermal decomposition emulsification system for polymer waste according to the present invention may include a zero-discharge treatment device (900) that purifies condensate generated from the first oil-water separator (410) and the second oil-water separator (420) and uses it as process water for an air pollution prevention facility (600), and evaporates wastewater generated from the system so that it is not discharged to the outside.
상기 무방류 처리장치(900)는 상기 제1 유수분리기(410) 및 제2 유수분리기(420)에서 발생되는 응축수를 정화하여 대기오염 방지시설(600)의 공정용수로 사용하고, 시스템에서 발생되는 폐수를 증발시켜 외부로 배출되지 않도록 한다.The above-mentioned zero-discharge treatment device (900) purifies the condensate generated from the first oil-water separator (410) and the second oil-water separator (420) and uses it as process water for the air pollution prevention facility (600), and evaporates the wastewater generated in the system so that it is not discharged to the outside.
고분자 폐기물은 수집과정에서 폐용기 속에 수분이 있을 수 있으며, 분류, 저장, 이송 등의 과정에서 물이 유입될 수 있다. 이러한 수분은 건조/열분해 반응기(200)에 의한 열분해 과정에서 증발하여 수증기로 배출되고, 응축과정에서 폐수로 배출된다. 이때, 배출되는 폐수를 무방류 처리장치(900)에서 처리하여 대기오염 방지시설(600)의 공정용수로 사용할 수 있다.Polymer waste may contain moisture in the waste container during the collection process, and water may flow in during the classification, storage, and transport processes. This moisture evaporates and is discharged as water vapor during the thermal decomposition process by the drying/thermolysis reactor (200), and is discharged as waste water during the condensation process. At this time, the discharged waste water can be treated in a zero-discharge treatment device (900) and used as process water for an air pollution prevention facility (600).
이에 상기 무방류 처리장치(900)는 상기 대기오염 방지시설(600)에서 발생된 폐수를 증발시키고, 증발된 수증기를 대기오염 방지시설(600)로 배기하는 증발기(910), 상기 제1 유수분리기(410) 및 제2 유수분리기(420)에서 분리된 응축수를 초미세 오존 기포로 고도산화처리하여 대기오염 방지시설(600)에 공급하는 수처리기(920)를 포함한다.Accordingly, the above zero-discharge treatment device (900) includes an evaporator (910) that evaporates wastewater generated in the air pollution prevention facility (600) and exhausts the evaporated water vapor to the air pollution prevention facility (600), and a water treatment device (920) that supplies the condensate separated in the first oil-water separator (410) and the second oil-water separator (420) to the air pollution prevention facility (600) by subjecting it to advanced oxidation treatment using ultrafine ozone bubbles.
상기 증발기(910)에 의해 증발된 수증기는 대기오염 방지시설(600)에서 응축되어 다시 대기오염 방지시설(600)의 공정용수로 사용된다. 또한, 증발 잔류물은 폐수 슬러지 또는 염으로 고형화되어 제거된다.The water vapor evaporated by the above evaporator (910) is condensed in the air pollution prevention facility (600) and used again as process water of the air pollution prevention facility (600). In addition, the evaporation residue is solidified as wastewater sludge or salt and removed.
한편, 본 발명의 무방류 처리장치(900)는 증발기 대신 원형 디스크 방식의 증발 결정화기를 사용할 수 있다.Meanwhile, the zero-discharge treatment device (900) of the present invention can use a circular disk-type evaporative crystallizer instead of an evaporator.
상기 증발 결정화기는 원형의 디스크, 상기 디스크에 폐수를 분사하는 분사부, 상기 디스크를 회전시키는 모터, 상기 디스크의 내부에 스팀을 제공하는 스팀 발생기 및 상기 디스크 상에 부착된 슬러지 또는 염 성분을 제거하기 위한 블레이드를 포함하여 구성된다.The above evaporative crystallizer comprises a circular disc, a spray unit for spraying wastewater onto the disc, a motor for rotating the disc, a steam generator for providing steam to the inside of the disc, and a blade for removing sludge or salt components attached to the disc.
이러한 구성에 의하면, 상기 증발 결정화기는 폐수를 대량으로 처리할 수 있고, 폐수가 증발할 수 있는 온도의 디스크에 폐수를 효율적으로 부착시켜 수분을 증발시키며, 디스크에 농축 또는 결정화되어 부착된 폐수 속의 용존 고형물을 분리하여 제거할 수 있다.According to this configuration, the evaporative crystallizer can treat a large amount of wastewater, efficiently attach the wastewater to a disk at a temperature at which the wastewater can evaporate, evaporate moisture, and separate and remove dissolved solids in the wastewater that are concentrated or crystallized and attached to the disk.
상기 수처리기(920)는 폐수가 유입되고, 유입된 폐수에 오존가스를 주입하며, 오존가스가 주입된 폐수의 충돌에 의한 미세 오존 기포가 함유되고, 오존이 녹아 있는 폐수를 생성하여 배출하는 오존수 기반의 폐수 순환처리부, 상기 폐수 순환처리부에 의해 배출되는 미세 오존 기포가 함유되고, 오존이 녹아 있는 폐수를 저장하는 반응유닛을 포함한다. 또한, 상기 반응유닛이 저장하는 폐수의 일부가 유입되고, 유입된 폐수에 존재하는 난분해성 물질을 흡착한 후 배출하는 활성탄 필터를 더 포함할 수 있다.The above water treatment device (920) includes an ozone water-based wastewater circulation treatment unit that receives wastewater, injects ozone gas into the received wastewater, generates and discharges wastewater containing fine ozone bubbles and having ozone dissolved therein by collision of the wastewater into which the ozone gas has been injected, and a reaction unit that stores wastewater containing fine ozone bubbles and having ozone dissolved therein discharged by the wastewater circulation treatment unit. In addition, the reaction unit may further include an activated carbon filter that receives a portion of the wastewater stored therein, adsorbs a difficult-to-decompose substance present in the received wastewater, and then discharges the same.
이러한 수처리기(920)는 본 발명의 발명자에 의해 기출원되어 등록된 대한민국 등록특허공보 제10-1144704호(2012.05.24. 공고)에 개시되어 있으므로, 이에 대한 구체적인 설명은 생략하기로 한다.This water treatment device (920) is disclosed in the Republic of Korea Patent Publication No. 10-1144704 (published on May 24, 2012) previously applied for and registered by the inventor of the present invention, so a detailed description thereof will be omitted.
상술한 바와 같이, 무방류 처리장치(900)는 열분해 과정에서 발생한 응축수를 정화하여 대기오염 방지시설(600)에 공급하여 재사용하도록 하고, 대기오염 방지시설(600)에서 발생한 폐수를 정화하여 계속해서 사용할 수 있도록 함으로써 방류수가 없는 장치를 제공한다.As described above, the zero-discharge treatment device (900) purifies condensate generated during the thermal decomposition process and supplies it to the air pollution prevention facility (600) for reuse, and purifies wastewater generated in the air pollution prevention facility (600) for continued use, thereby providing a device with no discharge.
본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 기술되었지만 당업자라면 이러한 기재로부터 본 발명의 범주를 벗어남이 없이 다양한 변형이 가능하다는 것은 명백하다. 따라서 본 발명의 범주는 이러한 많은 변형의 예들을 포함하도록 기술된 청구범위에 의해서 해석되어져야 한다.Although the present invention has been described with reference to the attached drawings and focusing on preferred embodiments thereof, it will be apparent to those skilled in the art that various modifications may be made therein without departing from the scope of the present invention. Accordingly, the scope of the present invention should be construed by the claims which are written to include such many examples of modifications.
본 발명에 따른 고분자 폐기물의 연속식 열분해 유화 시스템은 연속 운전이 가능하여 고분자 폐기물의 처리 규모가 확대되고, 안정적인 운전에 의한 오일 수율과 설비 가동 효율 및 에너지 이용 효율을 향상시킬 수 있다.The continuous thermal decomposition emulsification system for polymer waste according to the present invention can be operated continuously, thereby expanding the scale of polymer waste processing, and improving oil yield, facility operation efficiency, and energy utilization efficiency through stable operation.
Claims (14)
- 무산소 또는 희박산소 상태에서 고분자 폐기물을 연속으로 공급하는 고분자 폐기물 공급장치(100);A polymer waste supply device (100) that continuously supplies polymer waste in an oxygen-free or low-oxygen condition;상기 고분자 폐기물 공급장치(100)로부터 공급되는 고분자 폐기물의 공극에 있는 수분을 제거하고, 열분해하여 유증기를 생성하는 건조/열분해 반응기(200);A drying/pyrolysis reactor (200) that removes moisture in the pores of polymer waste supplied from the polymer waste supply device (100) and generates vapor by pyrolysis;상기 건조/열분해 반응기(200)에서 배출되는 수증기를 응축수로 전환시키는 제1 응축기(310);A first condenser (310) that converts water vapor discharged from the drying/pyrolysis reactor (200) into condensate;상기 건조/열분해 반응기(200)에서 배출되는 유증기를 혼합유로 전환시키는 제2 응축기(320);A second condenser (320) that converts the vapor discharged from the drying/pyrolysis reactor (200) into mixed oil;상기 제1 응축기(310)에 연결되어 제1 응축기(310)에서 발생되는 응축수로부터 미량의 유분을 분리하는 제1 유수분리기(410); A first oil-water separator (410) connected to the first condenser (310) and separating a small amount of oil from the condensate generated in the first condenser (310);상기 제2 응축기(320)에 연결되어 제2 응축기(320)에서 발생되는 혼합유로부터 미량의 물을 분리하는 제2 유수분리기(420);A second oil-water separator (420) connected to the second condenser (320) to separate a small amount of water from the mixed oil generated in the second condenser (320);상기 건조/열분해 반응기(200)에 열원을 공급하는 열공급장치(500);A heat supply device (500) that supplies a heat source to the above drying/pyrolysis reactor (200);상기 건조/열분해 반응기(200)에서 열교환이 이루어지고 남은 배기가스 또는 상기 열공급장치(500)에서 배출되는 배기가스를 처리하는 대기오염 방지시설(600); 및An air pollution prevention facility (600) that processes the remaining exhaust gas after heat exchange in the drying/pyrolysis reactor (200) or the exhaust gas discharged from the heat supply device (500); and비상 상황으로 시스템의 작동이 불가능한 경우 잔류 가연성 가스를 연소하여 배출시키는 비상 발전/연소장치(700);를 포함하는 것을 특징으로 하는 고분자 폐기물의 연속식 열분해 유화 시스템.A continuous thermal decomposition emulsification system for polymer waste, characterized by including an emergency power generation/combustion device (700) for burning and discharging residual combustible gas in the event that the system becomes inoperable due to an emergency situation.
- 무산소 또는 희박산소 상태에서 고분자 폐기물을 연속으로 공급하는 고분자 폐기물 공급장치(100);A polymer waste supply device (100) that continuously supplies polymer waste in an oxygen-free or low-oxygen condition;상기 고분자 폐기물 공급장치(100)로부터 공급되는 고분자 폐기물의 공극에 있는 수분을 제거하고, 열분해하여 유증기를 생성하는 건조/열분해 반응기(200);A drying/pyrolysis reactor (200) that removes moisture in the pores of polymer waste supplied from the polymer waste supply device (100) and generates vapor by pyrolysis;상기 건조/열분해 반응기(200)에서 배출되는 수증기를 응축수로 전환시키는 제1 응축기(310);A first condenser (310) that converts water vapor discharged from the drying/pyrolysis reactor (200) into condensate;상기 건조/열분해 반응기(200)에서 배출되는 유증기를 혼합유로 전환시키는 제2 응축기(320);A second condenser (320) that converts the vapor discharged from the drying/pyrolysis reactor (200) into mixed oil;상기 제1 응축기(310)에 연결되어 제1 응축기(310)에서 발생되는 응축수로부터 미량의 유분을 분리하는 제1 유수분리기(410); A first oil-water separator (410) connected to the first condenser (310) and separating a small amount of oil from the condensate generated in the first condenser (310);상기 제2 응축기(320)에 연결되어 제2 응축기(320)에서 발생되는 혼합유로부터 미량의 물을 분리하는 제2 유수분리기(420);A second oil-water separator (420) connected to the second condenser (320) to separate a small amount of water from the mixed oil generated in the second condenser (320);상기 건조/열분해 반응기(200)에 열원을 공급하는 열공급장치(500);A heat supply device (500) that supplies a heat source to the above drying/pyrolysis reactor (200);상기 건조/열분해 반응기(200)에서 열교환이 이루어지고 남은 배기가스 또는 상기 열공급장치(500)에서 배출되는 배기가스를 처리하는 대기오염 방지시설(600); 및An air pollution prevention facility (600) that processes the remaining exhaust gas after heat exchange in the drying/pyrolysis reactor (200) or the exhaust gas discharged from the heat supply device (500); and상기 제1 유수분리기(410) 및 제2 유수분리기(420)에서 발생되는 응축수를 정화하여 대기오염 방지시설(600)의 공정용수로 사용하고, 시스템에서 발생되는 폐수를 증발시켜 외부로 배출되지 않도록 하는 무방류 처리장치(900);를 포함하는 것을 특징으로 하는 고분자 폐기물의 연속식 열분해 유화 시스템.A continuous thermal decomposition emulsification system for polymer waste, characterized by including a zero-discharge treatment device (900) that purifies condensate generated from the first oil-water separator (410) and the second oil-water separator (420) and uses it as process water for an air pollution prevention facility (600), and evaporates wastewater generated from the system so that it is not discharged to the outside.
- 청구항 1 또는 청구항 2에 있어서, In claim 1 or claim 2,상기 고분자 폐기물 공급장치(100)는, 상부에 호퍼(111)가 구비되고, 일측에 비활성가스를 주입하기 위한 주입구(113)가 형성되는 챔버(110);The above polymer waste supply device (100) comprises a chamber (110) having a hopper (111) provided at the top and an injection port (113) formed on one side for injecting an inert gas;상기 챔버(110)의 상부와 하부에 각각 설치되어 챔버(110)를 개방 또는 폐쇄하는 제1,2 개폐밸브(120,130);First and second opening/closing valves (120, 130) installed respectively at the upper and lower portions of the chamber (110) to open or close the chamber (110);상기 챔버(110)의 하부에 경사지게 돌출 연통된 관체(114)에 설치되며, 액추에이터(140)에 의해 작동되어 고분자 폐기물을 공급하는 피스톤(150); 및A piston (150) installed in a pipe (114) that protrudes obliquely at the bottom of the chamber (110) and is operated by an actuator (140) to supply polymer waste; and상기 챔버(110)의 하부에 설치되어 고분자 폐기물을 건조/열분해 반응기(200)로 이송시키는 이송수단(160);을 포함하는 것을 특징으로 하는 고분자 폐기물의 연속식 열분해 유화 시스템.A continuous thermal decomposition emulsification system for polymer waste, characterized by including a transfer means (160) installed at the lower part of the chamber (110) to transfer polymer waste to a drying/thermolysis reactor (200).
- 청구항 1 또는 청구항 2에 있어서, In claim 1 or claim 2,상기 건조/열분해 반응기(200)는, 상부 일측에 고분자 폐기물이 투입되는 투입구(211)가 형성되고, 하부 일측에 회분과 미분해 탄소로 이루어진 슬래그가 배출되는 배출구(212)가 형성되며, 내부가 다단 구조를 이루는 반응기 본체(210);The above drying/pyrolysis reactor (200) comprises a reactor body (210) having a multi-stage structure inside, with an inlet (211) formed on the upper side into which polymer waste is fed, and an outlet (212) formed on the lower side through which slag composed of ash and undecomposed carbon is discharged;상기 반응기 본체(210)의 내부 최상단에 위치하여 고분자 폐기물의 공극에 있는 수분을 제거하는 건조실(220);A drying room (220) located at the top inside the reactor body (210) to remove moisture in the pores of polymer waste;상기 건조실(220)의 하부에 위치하며, 고분자 폐기물이 지그재그 형태로 이동하면서 열분해하여 유증기를 생성하는 열분해실(230);A thermal decomposition chamber (230) located at the lower part of the above drying chamber (220) where polymer waste moves in a zigzag shape and is thermally decomposed to generate vapor;상기 건조실(220) 및 열분해실(230)의 일측에 설치된 구동축(240)에 결합되는 구동 스프로킷(260);A driving sprocket (260) coupled to a driving shaft (240) installed on one side of the drying room (220) and the thermal decomposition room (230);상기 건조실(220) 및 열분해실(230)의 타측에 설치된 피동축(250)에 결합되는 피동 스프로킷(270);A driven sprocket (270) coupled to a driven shaft (250) installed on the other side of the drying room (220) and the thermal decomposition room (230);상기 구동 스프로킷(260)과 피동 스프로킷(270) 간을 연결하여 무한궤도 방식으로 이동되는 체인(280); 및A chain (280) that connects the above driving sprocket (260) and the driven sprocket (270) and moves in an endless track manner; and상기 체인(280)에 소정 간격을 두고 설치되어 체인(280)과 함께 순환 이동하면서 고분자 폐기물을 이송시키는 다수의 이송판(290);을 포함하는 것을 특징으로 하는 고분자 폐기물의 연속식 열분해 유화 시스템.A continuous thermal decomposition emulsification system for polymer waste, characterized by including a plurality of transfer plates (290) installed at predetermined intervals on the chain (280) and transporting polymer waste while moving cyclically with the chain (280).
- 청구항 4에 있어서, In claim 4,상기 건조/열분해 반응기(200)의 건조실(220)에서 발생된 수증기를 제1 응축기(310)에 의해 응축하여 열분해실(230)에서 생성되는 열분해유의 함수율을 낮추고, 순도를 높이는 것을 특징으로 하는 고분자 폐기물의 연속식 열분해 유화 시스템.A continuous thermal decomposition emulsification system for polymer waste, characterized in that the water vapor generated in the drying room (220) of the above drying/thermolysis reactor (200) is condensed by the first condenser (310) to lower the moisture content of the thermal decomposition oil generated in the thermal decomposition room (230) and increase its purity.
- 청구항 1 또는 청구항 2에 있어서,In claim 1 or claim 2,상기 대기오염 방지시설(600)은, 상기 건조/열분해 반응기(200)에서 연료가 연소되는 과정에서 발생된 연소가스 속의 산가스와 유기성 오염물질(VOC)을 오존으로 산화하고, 세정액으로 제거하는 스크러버(610);The above air pollution prevention facility (600) comprises a scrubber (610) that oxidizes acid gas and organic pollutants (VOC) in combustion gas generated during the combustion of fuel in the drying/pyrolysis reactor (200) with ozone and removes them with a cleaning solution;상기 스크러버(610) 전단에 오존을 주입하는 오존 주입장치(620);를 포함하는 것을 특징으로 하는 고분자 폐기물의 연속식 열분해 유화 시스템.A continuous thermal decomposition emulsification system for polymer waste, characterized by including an ozone injection device (620) for injecting ozone into the front end of the above scrubber (610).
- 청구항 1에 있어서, In claim 1,상기 비상 발전/연소장치(700)는, 상기 건조/열분해 반응기(200)로부터 열분해 가스를 이송하는 비상배출라인(710);The above emergency power generation/combustion device (700) comprises an emergency exhaust line (710) for transporting pyrolysis gas from the drying/pyrolysis reactor (200);상기 비상배출라인(710)을 통해 이송되는 열분해 가스를 연소시키는 연소 버너(720);A combustion burner (720) that combusts pyrolysis gas transported through the above emergency exhaust line (710);상기 비상배출라인(710)을 통해 이송되는 열분해 가스를 흡입하여 배출하는 연소 팬(730); 및A combustion fan (730) that sucks in and discharges the pyrolysis gas transported through the above emergency exhaust line (710); and상기 연소 버너(720)와 연소 팬(730)이 구동되도록 전원을 공급하는 발전기(740);를 포함하는 것을 특징으로 하는 고분자 폐기물의 연속식 열분해 유화 시스템.A continuous thermal decomposition emulsification system for polymer waste, characterized by including a generator (740) for supplying power to drive the combustion burner (720) and combustion fan (730).
- 청구항 7에 있어서, In claim 7,상기 비상배출라인(710)은, 열공급장치(500)와 역화방지장치(860) 사이에 연결된 제1 연결배관(711) 상에 설치되는 제1 비상전환밸브(712);The above emergency discharge line (710) comprises a first emergency switching valve (712) installed on a first connecting pipe (711) connected between a heat supply device (500) and a backfire prevention device (860);상기 제1 연결배관(711)에서 분기되어 스팀 보일러(840)에 연결된 제2 연결배관(713) 상에 설치되는 제2 비상전환밸브(714);A second emergency switching valve (714) installed on a second connecting pipe (713) branched from the first connecting pipe (711) and connected to a steam boiler (840);상기 제1 연결배관(711)에서 분기되어 비상 발전/연소장치(700)에 연결된 제3 연결배관(715) 상에 설치되는 제3 비상전환밸브(716); 및A third emergency switching valve (716) installed on a third connecting pipe (715) branched from the first connecting pipe (711) and connected to an emergency power generation/combustion device (700); and상기 비상 발전/연소장치(700)와 열교환기(820) 사이에 연결된 제4 연결배관(717) 상에 설치되는 제4 비상전환밸브(718);를 포함하는 것을 특징으로 하는 고분자 폐기물의 연속식 열분해 유화 시스템.A continuous thermal decomposition emulsification system for polymer waste, characterized by including a fourth emergency switching valve (718) installed on a fourth connecting pipe (717) connected between the emergency power generation/combustion device (700) and the heat exchanger (820).
- 청구항 2에 있어서, In claim 2,상기 무방류 처리장치(900)는, 상기 대기오염 방지시설(600)에서 발생된 폐수를 증발시키고, 증발된 수증기를 대기오염 방지시설(600)로 배기하는 증발기(910);The above-mentioned zero-discharge treatment device (900) comprises an evaporator (910) that evaporates wastewater generated in the air pollution prevention facility (600) and exhausts the evaporated water vapor to the air pollution prevention facility (600);상기 제1 유수분리기(410) 및 제2 유수분리기(420)에서 분리된 응축수를 초미세 오존 기포로 고도산화처리하여 대기오염 방지시설(600)에 공급하는 수처리기(920);를 포함하는 것을 특징으로 하는 고분자 폐기물의 연속식 열분해 유화 시스템.A continuous thermal decomposition emulsification system for polymer waste, characterized by including a water treatment unit (920) that supplies the condensate separated from the first oil-water separator (410) and the second oil-water separator (420) to an air pollution prevention facility (600) by subjecting it to advanced oxidation treatment using ultrafine ozone bubbles.
- 청구항 1 또는 청구항 2에 있어서, In claim 1 or claim 2,상기 대기오염 방지시설(600)에서 세정되지 않고 통과한 유기성 오염물질(VOC) 가스를 흡착 제거하는 흡착탑(810);을 더 포함하는 것을 특징으로 하는 고분자 폐기물의 연속식 열분해 유화 시스템.A continuous thermal decomposition emulsification system for polymer waste, characterized by further including an adsorption tower (810) for adsorbing and removing organic pollutant (VOC) gases that have passed through the above air pollution prevention facility (600) without being cleaned.
- 청구항 10에 있어서, In claim 10,상기 흡착탑(810)에서 배출되는 정화된 연소가스를 열교환시키는 열교환기(820);를 더 포함하는 것을 특징으로 하는 고분자 폐기물의 연속식 열분해 유화 시스템.A continuous thermal decomposition emulsification system for polymer waste, characterized in that it further includes a heat exchanger (820) for exchanging heat with purified combustion gas discharged from the above adsorption tower (810).
- 청구항 1 또는 청구항 2에 있어서, In claim 1 or claim 2,상기 건조/열분해 반응기(200)의 열분해실(230)에서 발생되는 유증기 중 왁스 성분을 분리하는 자켓식 증류탑(830)을 더 포함하는 것을 특징으로 하는 고분자 폐기물의 연속식 열분해 유화 시스템.A continuous thermal decomposition emulsification system for polymer waste, characterized in that it further includes a jacket-type distillation tower (830) for separating wax components from the vapor generated in the thermal decomposition chamber (230) of the drying/thermolysis reactor (200).
- 청구항 1 또는 청구항 2에 있어서, In claim 1 or claim 2,상기 제1 응축기(310) 및 제2 응축기(320)에서 응축되지 않은 미응축 가스는 연속 반응에 따라 균일하게 발생되며, 발생된 가스는 연속적으로 열공급장치(500)에 사용되고, 남은 미응축 가스는 스팀 보일러(840)의 연료로 사용되는 것을 특징으로 하는 고분자 폐기물의 연속식 열분해 유화 시스템.A continuous thermal decomposition emulsification system for polymer waste, characterized in that the uncondensed gas that is not condensed in the first condenser (310) and the second condenser (320) is uniformly generated according to a continuous reaction, the generated gas is continuously used in a heat supply device (500), and the remaining uncondensed gas is used as fuel for a steam boiler (840).
- 청구항 1 또는 청구항 2에 있어서,In claim 1 or claim 2,상기 건조/열분해 반응기(200)에서 발생되는 미응축 가스를 이송하는 진공펌프(850)를 더 포함하고, 열공급장치(500) 및 스팀 보일러(840)의 역화로 인한 미응축 가스의 화재 발생을 방지하는 역화방지장치(860)를 더 포함하는 것을 특징으로 하는 고분자 폐기물의 연속식 열분해 유화 시스템.A continuous thermal decomposition emulsification system for polymer waste, characterized in that it further includes a vacuum pump (850) for transporting uncondensed gas generated from the drying/thermolysis reactor (200), and a flashback prevention device (860) for preventing fire from occurring in uncondensed gas due to flashback of the heat supply device (500) and the steam boiler (840).
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20230024728 | 2023-02-24 | ||
KR20230024755 | 2023-02-24 | ||
KR10-2023-0024755 | 2023-02-24 | ||
KR10-2023-0024728 | 2023-02-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024177198A1 true WO2024177198A1 (en) | 2024-08-29 |
Family
ID=92501163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/005898 WO2024177198A1 (en) | 2023-02-24 | 2023-04-28 | Continuous pyrolysis emulsification system for polymer waste |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024177198A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000146149A (en) * | 1998-11-05 | 2000-05-26 | Takuma Co Ltd | Dry distillation thermal decomposition molten combustor for waste |
JP2007246685A (en) * | 2006-03-16 | 2007-09-27 | Aasu Recycle Kk | Method for oiling waste |
KR101817728B1 (en) * | 2016-09-28 | 2018-01-11 | 최준호 | Continuous Operation Type Liquefaction Facility Using Waste of Synthetic Resins |
KR20180031301A (en) * | 2016-09-19 | 2018-03-28 | 이지영 | Hybrid type recycle processing system for the waste imitation marble, acrylic resin and biomass using fluidized bed fast-pyrolysis technology, and the method thereof |
KR102262779B1 (en) * | 2020-12-08 | 2021-06-11 | 성안이엔티주식회사 | Methods and devices for pyrolysis emulsifying the continuous injection of waste synthetic resins and flammable wastes, as well as continuous discharge of pyrolysis by-products and producing high-quality without the discharge of fine dust and wastewater |
KR20230022460A (en) * | 2021-08-05 | 2023-02-16 | 그린웍스 주식회사 | Condensed wastewater treatment and air pollutants reduction system of the resulting from pyrolyzing oil producing facilities |
-
2023
- 2023-04-28 WO PCT/KR2023/005898 patent/WO2024177198A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000146149A (en) * | 1998-11-05 | 2000-05-26 | Takuma Co Ltd | Dry distillation thermal decomposition molten combustor for waste |
JP2007246685A (en) * | 2006-03-16 | 2007-09-27 | Aasu Recycle Kk | Method for oiling waste |
KR20180031301A (en) * | 2016-09-19 | 2018-03-28 | 이지영 | Hybrid type recycle processing system for the waste imitation marble, acrylic resin and biomass using fluidized bed fast-pyrolysis technology, and the method thereof |
KR101817728B1 (en) * | 2016-09-28 | 2018-01-11 | 최준호 | Continuous Operation Type Liquefaction Facility Using Waste of Synthetic Resins |
KR102262779B1 (en) * | 2020-12-08 | 2021-06-11 | 성안이엔티주식회사 | Methods and devices for pyrolysis emulsifying the continuous injection of waste synthetic resins and flammable wastes, as well as continuous discharge of pyrolysis by-products and producing high-quality without the discharge of fine dust and wastewater |
KR20230022460A (en) * | 2021-08-05 | 2023-02-16 | 그린웍스 주식회사 | Condensed wastewater treatment and air pollutants reduction system of the resulting from pyrolyzing oil producing facilities |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009136737A9 (en) | Combustible waste pyrolysis system and pyrolysis method | |
WO2013094879A1 (en) | Apparatus for pyrolysis using molten metal | |
JPH11514429A (en) | Volatile substance processing equipment | |
WO2009093852A1 (en) | A thermal decomposition treatment system of flammable waste and method for treating the waste using the system | |
HU215757B (en) | Method and device for heat treating of waste | |
KR20040099251A (en) | Ash fusing system, method of operating the system, and gasification fusing system for waste | |
KR102498715B1 (en) | Continuous low-temperature pyrolysis system | |
KR100897521B1 (en) | Recycling equipment and methode of waste electric wire | |
WO2024177198A1 (en) | Continuous pyrolysis emulsification system for polymer waste | |
JP7130693B2 (en) | Combustion device | |
WO2023277565A1 (en) | Device and method for continuous low-temperature pyrolysis | |
KR102554872B1 (en) | Pyrolysis system for waste | |
JP2001247874A (en) | Apparatus and process for converting waste plastic into oil | |
CN111408608A (en) | Process and system for automatic ash removal and heat energy recovery of waste paint iron drum organic matter pyrolysis and application | |
WO2021107181A1 (en) | Waste resin emulsification plant system | |
KR100639643B1 (en) | Multi recycling equipment of waste using exhaust heat and method thereof | |
CN115536231A (en) | Recycling treatment method for oily sludge | |
KR200480366Y1 (en) | APPARATUS FOR DISPOSING Al-PE WASTE MATERIAL BY LOW TEMPERATURE BURNING PROCESS | |
JPH11159718A (en) | Device and method for combustion | |
JPH0816226B2 (en) | Contact pyrolysis method for waste plastics | |
KR100776365B1 (en) | Evaporator for disposing of waste materials using pyrolysis process | |
WO2009128665A2 (en) | Method and facility for continuous carbonization of condensed organic wastes using hydrolyzed petroleum-based compounds as fuel | |
JP2003262319A (en) | Gasification melting system and gasification melting method | |
KR200402474Y1 (en) | Recycling system of waste organic solvents using thermal decomposition | |
KR20210095327A (en) | Melting apparatus for waste plastic processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23924306 Country of ref document: EP Kind code of ref document: A1 |