[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024176803A1 - Transparent electrically conductive film, substrate having transparent electrically conductive film, and photoelectric conversion element - Google Patents

Transparent electrically conductive film, substrate having transparent electrically conductive film, and photoelectric conversion element Download PDF

Info

Publication number
WO2024176803A1
WO2024176803A1 PCT/JP2024/003815 JP2024003815W WO2024176803A1 WO 2024176803 A1 WO2024176803 A1 WO 2024176803A1 JP 2024003815 W JP2024003815 W JP 2024003815W WO 2024176803 A1 WO2024176803 A1 WO 2024176803A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
transparent conductive
layer
film
substrate
Prior art date
Application number
PCT/JP2024/003815
Other languages
French (fr)
Japanese (ja)
Inventor
崇 鯉田
均 齋
卓矢 松井
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2024176803A1 publication Critical patent/WO2024176803A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer

Definitions

  • the present invention relates to a transparent conductive film, a substrate with a transparent conductive film, and a photoelectric conversion element.
  • In2O3 -based materials such as ITO (tin-doped indium oxide) are widely known as transparent conductive films for light-receiving transparent electrodes of optoelectronic devices such as displays and solar cells (see, for example, Patent Document 1) .
  • ITO in-doped indium oxide
  • In2O3 - based materials have the advantages of being capable of being formed into films by low-temperature processes and of having both high transparency and electrical conductivity.
  • indium is a rare metal and very expensive, it is being considered to replace In2O3 - based materials with other materials.
  • a transparent conductive film that is relatively inexpensive and can be formed at low temperatures a film made of ZnO (zinc oxide) is known (for example, Patent Document 2).
  • a transparent conductive film mainly made of zinc oxide has low moisture resistance and chemical resistance. Therefore, it has been difficult to replace a transparent conductive film mainly made of zinc oxide with a transparent conductive film made of ITO or the like.
  • films containing SnO 2 such as FTO (fluorine-doped tin oxide) and ATO (antimony-doped tin oxide), are also known as transparent conductive films that are highly transparent and have excellent stability and chemical resistance.
  • FTO and ATO are polycrystalline, and the conductivity is increased by forming the film at a high temperature and improving the crystallinity. Therefore, the FTO film and ATO film need to be formed at about 500°C by thermal CVD, or at 400°C to 500°C by sputtering.
  • film formation at a high temperature exceeding 400°C is likely to cause thermal damage to the substrate on which the film is laminated and each layer of the optoelectronic device. Therefore, it has been difficult to use FTO and ATO as the transparent conductive film of the optoelectronic device. Therefore, in the current situation, it has been necessary to use a transparent conductive film of In 2 O 3 system mainly composed of rare indium.
  • the present invention has been made in consideration of the above problems.
  • the present invention aims to provide a transparent conductive film that can be formed at low temperatures, has high transparency and high conductivity, and further contains a small amount of indium or does not contain indium, as well as a transparent conductive film-coated substrate and a photoelectric conversion element that contain the same.
  • One embodiment of the present invention provides a transparent conductive film comprising a metal oxide mainly composed of amorphous tin oxide, in which, among metal elements constituting the metal oxide, the amount of Sn is 85 atomic % or more and the amount of In is 4 atomic % or less, and the film has a resistivity of 2 ⁇ 10 ⁇ 3 ⁇ cm or less.
  • One embodiment of the present invention also provides a substrate with a transparent conductive film, comprising a substrate and the above-described transparent conductive film disposed on the substrate.
  • one embodiment of the present invention provides a photoelectric conversion element having a photoelectric conversion layer, a first electrode including at least one conductive film arranged adjacent to the photoelectric conversion layer, and a second electrode including at least one conductive film arranged adjacent to the photoelectric conversion layer, in which at least one of the first electrode and the second electrode includes the transparent conductive film.
  • the present invention provides a transparent conductive film that can be formed at low temperatures, has high transparency and high conductivity, and contains little or no indium.
  • the transparent conductive film can also be applied to various photoelectric conversion elements such as solar cells.
  • FIG. 1A is a graph for explaining the correlation between the valence of Sn in a transparent conductive film and the extinction coefficient k
  • FIG. 1B is a graph for explaining the correlation between the valence of Sn in a transparent conductive film and the absorption coefficient ⁇ .
  • FIG. 2 is a graph showing the relationship between the depth from the surface of the transparent conductive film and the hydrogen atom concentration in the transparent conductive film.
  • FIG. 3 is a schematic diagram of a reactive plasma deposition apparatus capable of forming a transparent conductive film according to one embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the structure of a Si heterojunction solar cell.
  • FIG. 5 is a schematic diagram showing the structure of a perovskite solar cell.
  • FIG. 1A is a graph for explaining the correlation between the valence of Sn in a transparent conductive film and the extinction coefficient k
  • FIG. 1B is a graph for explaining the correlation between the valence of Sn in a transparent
  • FIG. 6 is a graph showing the extinction coefficient k and refractive index n for each wavelength of the amorphous SnO 2 films produced in Examples 1-1 and 1-2 and the a-In 2 O 3 :H film produced in Reference Example 1.
  • FIG. 7A is a graph showing the transmission spectrum and the reflection spectrum of the PET substrate only, the PET substrate and the transparent conductive film (Example 1-3), and the PET substrate with SiO2 and the transparent conductive film (Example 1-4).
  • FIG. 7B is a graph showing the transmission spectrum and the reflection spectrum of the glass substrate only, and the glass substrate and the transparent conductive film (Example 1-3, Example 1-4).
  • FIG. 7A is a graph showing the transmission spectrum and the reflection spectrum of the PET substrate only, the PET substrate and the transparent conductive film (Example 1-3), and the PET substrate with SiO2 and the transparent conductive film (Example 1-4).
  • FIG. 7B is a graph showing the transmission spectrum and the reflection spectrum of the glass substrate only, and the
  • FIG. 8 shows the external quantum efficiency spectra of the front junction Si heterojunction solar cells fabricated in Examples 2-1 and 2-2, and Reference Example 2.
  • FIG. 9 is a graph showing the current-voltage characteristics of the rear junction Si heterojunction solar cells fabricated in Examples 3-1 and 3-2, and Reference Example 3.
  • FIG. 10 is a graph showing the current-voltage characteristics of the rear junction Si heterojunction solar cells fabricated in Example 3-2a and Reference Example 3.
  • FIG. 11 is a graph showing the series resistance values of the Si heterojunction solar cells fabricated in each example.
  • a numerical range indicated with “ ⁇ ” means a numerical range including the numbers written before and after " ⁇ ".
  • the transparent conductive film of the present invention contains a metal oxide mainly composed of amorphous tin oxide, and among the metal elements constituting the metal oxide, the amount of Sn is 85 atomic % or more, the amount of In is 4 atomic % or less, and the resistivity is 2 ⁇ 10 ⁇ 3 ⁇ cm or less.
  • the tin oxide in the transparent conductive film is "amorphous" means that when the X-ray diffraction intensity (XRD intensity) is measured, a broad peak derived from the amorphous structure is dominant and a peak derived from the crystal is not significantly confirmed.
  • the transparent conductive film may partially contain components other than the above metal oxide, for example, may be doped with fluorine, within a range that does not impair the object and effect of the present invention, but it is preferable that 85 mass % or more of the transparent conductive film is the above metal oxide, and it is more preferable that the transparent conductive film is made of the above metal oxide.
  • polycrystalline FTO SnO 2 :F
  • ATO SnO 2 :Sb
  • a film mainly containing amorphous tin oxide can not only be formed at low temperatures, but also has excellent transparency and conductivity. The reason for this is believed to be as follows.
  • the conduction band of tin oxide (especially SnO 2 ) is mainly composed of Sn5s orbitals.
  • the Sn5s orbitals have a large spatial spread of electrons, and the spherical s orbitals overlap each other. Therefore, even if the bond angle fluctuates due to the amorphous structure, the overlap between the orbitals does not decrease as much as in the case of crystalline materials, and it is considered that high mobility of electrons is realized.
  • the effective mass of electrons in a film made of amorphous SnO 2 is 0.35 m 0 , which is not significantly different from the effective mass of electrons in a film made of crystalline SnO 2. Therefore, it is considered that the carrier conduction path is not easily affected by the amorphous structure, and the amorphous tin oxide (especially SnO 2 ) realizes high transparency and high conductivity similar to those of crystalline SnO 2 .
  • the transparent conductive film of the present invention also has the advantage of having good moisture resistance.
  • the metal oxide may contain metal elements other than Sn within a range that does not impair the purpose and effect of the present invention, but the total amount is preferably 15 atomic % or less, more preferably 10 atomic % or less, and even more preferably 5 atomic % or less, of all metal elements constituting the metal oxide.
  • metal elements other than Sn contained in the metal oxide include In, Zn, Cd, Nb, Ta, B, Ga, Ba, Mo, Pb, Rb, Re, Sb, W, Ce, Cs, Dy, Er, Ge, Hf, Ho, La, Lu, Nd, Pr, Sc, Si, Sm, Tb, V, Y, Al, Ti, Zr, etc., and among these, Zn, Cd, B, Ga, Si, Ge, Pb, Sb, V, Nb, Ta, Mo, W, and Ce are preferred.
  • the metal oxide may contain only one of these, or may contain two or more. When the metal oxide further contains a metal element other than Sn, the processability of the material for forming the transparent conductive film is improved, and depending on the type of metal element, the density, transparency, and conductivity of the transparent conductive film are further improved.
  • the amount of In relative to the total amount of metal elements constituting the metal oxide is 4 atomic % or less, preferably 3 atomic % or less, preferably 0.09 atomic % or less, and more preferably substantially none.
  • the lower the amount of In the lower the cost of the transparent conductive film.
  • the metal oxide transparent conductive film
  • the metal oxide does not contain In, it is not subject to regulation, and there is an advantage in that workability is improved.
  • the amount of each metal element constituting the metal oxide can be identified by, for example, confirming the composition of the transparent conductive film using ICP analysis.
  • Sn is mainly contained in a tetravalent (Sn 4+ ) state.
  • Sn can have a mixed valence of Sn 4+ and Sn 2+ , but as the amount of Sn 2+ in the transparent conductive film increases, the number of acceptor-type defects increases. As a result, both the carrier concentration and the mobility decrease, and the resistivity tends to increase, as shown in Table 1 below.
  • FIG. 1A shows the extinction coefficient k at a wavelength of 200 nm or more and 1200 nm or less when the ratio of the amount of Sn 4+ to the amount of Sn 2+ is changed.
  • FIG. 1B shows the absorption coefficient ⁇ at wavelengths of 400 nm or more and 600 nm or less when the ratio of the amount of Sn 4+ to the amount of Sn 2+ is changed.
  • the maximum absorption coefficient ⁇ in the wavelength range of 420 nm to 500 nm is 1 ⁇ 10 4 cm ⁇ 1 or less, it can be said that the amount of tetravalent Sn in the transparent conductive film is sufficiently large, and high transparency and high conductivity are more easily achieved.
  • the absorption coefficient ⁇ can be determined from the absorption spectrum obtained by measuring the transmittance and reflectance of light having a wavelength of 200 nm or more and 1200 nm or less using a spectrophotometer.
  • the method for adjusting the extinction coefficient k or absorption coefficient ⁇ in the transparent conductive film can be adjusted by depositing the transparent conductive film in an atmosphere containing a sufficient amount of oxygen, reducing the partial pressure of water vapor remaining in the deposition chamber, or by heating the film to a temperature of about 200°C or less.
  • the resistivity of the transparent conductive film may be 2 ⁇ 10 ⁇ 3 ⁇ cm or less, preferably 1.5 ⁇ 10 ⁇ 3 ⁇ cm or less, and more preferably 1 ⁇ 10 ⁇ 3 ⁇ cm or less. If the resistivity of the transparent conductive film is 2 ⁇ 10 ⁇ 3 ⁇ cm or less, the transparent conductive film can be used for various applications, such as a transparent electrode of a photoelectric conversion element.
  • the resistivity can be determined by a Loresta (low resistivity meter).
  • the film density of the transparent conductive film is preferable for the film density of the transparent conductive film to be as high as possible.
  • the following four samples were produced using a method similar to that shown in Example 1-1 described below.
  • the composition, film density, and resistivity at this time are shown in Table 1 below.
  • the average composition was analyzed using the Rutherford backscattering spectrometry (RBS) method, and the resistivity was measured using a Loresta (low resistivity meter).
  • the film density was calculated from the areal density determined by the RBS method and the film thickness determined by spectroscopic ellipsometry.
  • the resistivity decreases as the film density of the transparent conductive film increases.
  • the film density analyzed by the Rutherford backscattering spectrometry (RBS) method is 5.6 g/cm 3 or more, more preferably 6.3 g/cm 3 or more, and even more preferably 6.4 g/cm 3 or more.
  • RBS Rutherford backscattering spectrometry
  • the concentration of hydrogen atoms in the region 10 nm or more inside from each of both surfaces of the transparent conductive film is preferably 8 ⁇ 10 21 atoms/cm 3 or less, more preferably 7 ⁇ 10 21 atoms/cm 3 or less, and even more preferably 6 ⁇ 10 21 atoms/cm 3 or less.
  • the thickness of the transparent conductive film is appropriately selected depending on the application.
  • the thickness is preferably 1 nm or more and 5000 nm or less, and more preferably 10 nm or more and 1000 nm or less.
  • the thickness of the transparent conductive film is within this range, it becomes easier to obtain the high transparency and high conductivity required for a transparent electrode.
  • the method for producing the transparent conductive film is not particularly limited as long as the above-mentioned composition and resistivity are satisfied, and the film can be formed by, for example, a film formation method using reactive plasma deposition or a sputtering method.
  • a film formation method using reactive plasma deposition is described below, but the method for producing the transparent conductive film is not limited to this method.
  • a method for forming a transparent conductive film by magnetron sputtering is also shown.
  • Film formation using the reactive plasma deposition method can be performed, for example, by a reactive plasma deposition apparatus 100 shown in the schematic diagram of FIG. 3.
  • a reactive plasma deposition apparatus 100 shown in the schematic diagram of FIG. 3.
  • the configuration of the reactive plasma deposition apparatus 100 is not limited to this configuration.
  • the reactive plasma deposition apparatus 100 has a hearth section 10 for holding the material at a predetermined temperature, a plasma gun 20 for generating a plasma beam 21 and a plasma 22, a plasma beam controller 30 for directing the plasma beam 21 generated from the plasma gun 20 to the material in the hearth section 10, and a chamber 40 for housing these.
  • the material is housed in the hearth section 10, and the substrate 1 is placed at a predetermined position.
  • the inside of the chamber 40 is adjusted to a predetermined atmosphere and a predetermined pressure. Then, the plasma beam 21 and the plasma 22 are generated from the plasma gun 20.
  • the plasma beam 21 emitted from the plasma gun 20 is guided to the hearth section 10 by the plasma beam controller 30 and perpendicularly enters the material in the hearth section 10.
  • the material heated by irradiation with the plasma beam 21 sublimes and is ionized in the plasma 22.
  • the ionized material 11 then reaches the substrate 1 in an activated state. This forms the above-mentioned transparent conductive film on the substrate 1.
  • the material to be accommodated in the hearth unit 10 is preferably a sintered body having a composition substantially similar to that of the transparent conductive film, a sintered body made of a metal constituting the transparent conductive film, a metal oxide including a suboxide of the metal, or a mixture thereof.
  • the sintered body may be amorphous or crystalline.
  • the sintered body is obtained by mixing SnO2 , SnO, or Sn with other metals or metal oxides as necessary, and sintering the mixture by a known method such as a normal pressure sintering method or a hot press method.
  • the temperature of the substrate 1 In order to make the tin oxide in the transparent conductor (metal oxide) amorphous, it is preferable to maintain the temperature of the substrate 1 at 300°C or less.
  • the temperature of the substrate 1 may be around room temperature, in particular when not intentionally heated. It may also be intentionally cooled to around 0°C.
  • the pressure in the chamber is preferably 0.01 Pa to 10 Pa, and more preferably 0.1 Pa to 1 Pa.
  • the atmosphere in the chamber 40 may be an inert gas atmosphere such as nitrogen or argon, but in order to facilitate the conversion of Sn to tetravalent (Sn 4+ ), it is preferable to introduce oxygen into the atmosphere, and the oxygen partial pressure is more preferably 0.01 Pa to 10 Pa, and even more preferably 0.1 Pa to 1 Pa. When the oxygen partial pressure is within this range, it becomes easier to obtain a transparent conductive film having the above-mentioned extinction coefficient and absorption coefficient.
  • the film is formed by the reactive plasma deposition method, it is preferable to perform a heat treatment at 20°C or more and 400°C or less, and preferably 100°C or more and 300°C or less.
  • the heat treatment time is preferably 0.1 seconds or more and 24 hours or less, and more preferably 0.1 seconds or more and 1 hour or less.
  • the substrate with transparent conductive film of the present invention only needs to have a substrate and the transparent conductive film disposed on the substrate, and the shape of the substrate and the thickness of the transparent conductive film are not particularly limited.
  • the transparent conductive film may be disposed on the entire surface of the substrate, or may be disposed only on a partial region of the substrate.
  • the substrate may include a configuration other than the substrate and the transparent conductive film.
  • an arbitrary layer e.g., an arbitrary conductive film other than the above, a barrier film, etc.
  • the arbitrary layer may be a known layer.
  • the material of the substrate may be an inorganic material such as glass, but may also be a resin material. That is, the substrate may be a resin film.
  • the substrate may also be composed of multiple layers.
  • the shape of the substrate is not particularly limited, and may be flat or may have a three-dimensional shape.
  • the optical transparency of the substrate is appropriately selected depending on the application, and may or may not be optically transparent.
  • the substrate may also be flexible.
  • the transparent conductive film described above has high transparency and conductivity. Furthermore, the transparent conductive film can be formed at a relatively low temperature (e.g., 300°C or less). Therefore, substrates made of various materials can be used as the substrate.
  • Examples of the structure of the substrate with the transparent conductive film include a laminated structure including a substrate/barrier film/the transparent metal film, a laminated structure including a substrate/another conductive film/the transparent conductive film, and a laminated structure including a substrate/the transparent conductive film/the other conductive film.
  • Applications of the substrate with the transparent conductive film are not limited to photoelectric conversion elements described below, and examples include, but are not limited to, various photodetection elements, displays, wearable devices, thin film transistors (TFTs), transparent heaters, infrared communication devices, infrared sensors, heat ray reflecting materials, electromagnetic wave blocking materials, antistatic agents, etc.
  • TFTs thin film transistors
  • Photoelectric conversion element The above-mentioned transparent conductive film can be used for either one or both of the first and second electrodes of a photoelectric conversion element having a photoelectric conversion layer, a first electrode including at least one conductive film arranged adjacent to the photoelectric conversion layer, and a second electrode including at least one conductive film arranged adjacent to the photoelectric conversion layer.
  • the first electrode and the second electrode may be composed of multiple layers. In this case, any layer constituting the first electrode or any layer constituting the second electrode may be the above-mentioned transparent conductive film. In addition, at this time, two or more layers may be the above-mentioned transparent conductive film.
  • the layer corresponding to the first electrode layer or the second electrode layer may be called an electron transport layer, a carrier selection layer, an n-type buffer layer, a (conductive) cap layer, etc., but the above-mentioned transparent conductive film can also be used for these layers.
  • photoelectric conversion element refers to an element that converts light energy into electrical energy, or an element that converts electrical energy into light energy.
  • photoelectric conversion elements include solar cells, organic EL elements, light-emitting diodes, laser diodes, etc.
  • the photoelectric conversion element is a solar cell, but the above-mentioned transparent conductive film can also be used for the transparent electrode or metal electrode on the light-emitting side of an organic EL element, etc.
  • the first electrode 131 is composed of the light-receiving transparent electrode 125 and the grid electrode 126
  • the second electrode 132 is composed of the backside transparent electrode 127 and the metal electrode 128.
  • the above-mentioned transparent conductive film can be used for either or both of the light-receiving transparent electrode 125 and the backside transparent electrode 127.
  • the other can be a known transparent conductive film such as ITO. From the viewpoint of reducing the cost of the solar cell 200, it is preferable to use the above-mentioned transparent conductive film for both the light-receiving transparent electrode 125 and the backside transparent electrode 127.
  • either or both of the light-receiving transparent electrode 125 and the backside transparent electrode 127 may be a laminate of multiple conductive films.
  • the above-mentioned transparent conductive film may be used for any of the layers constituting the light-receiving transparent electrode 125 and the backside transparent electrode 127.
  • a laminate of the transparent conductive film and the ITO film may be used as the light-receiving transparent electrode 125 or the back transparent electrode 127.
  • the grid electrode 126 and the metal electrode 128 are similar to the electrodes of known solar cells, and are electrodes made of Ag, Cu, composite metals, etc.
  • the metal electrode 128 is formed on the entire surface in FIG. 4, but it may be in a grid shape like the grid electrode 126. In that case, a bifacial solar cell can be formed in which light incident from the second electrode 132 side also contributes to power generation.
  • the photoelectric conversion layer 130 has a structure in which an n-type single crystal silicon layer 120 is sandwiched between a p-type semiconductor layer 122 and an n-type semiconductor layer 124. Between the n-type single crystal silicon layer 120 and the p-type semiconductor layer 122, and between the n-type single crystal silicon layer 120 and the n-type semiconductor layer 124, i-type semiconductor layers 121 and 123 are disposed, respectively.
  • the order of arrangement of the layers of the photoelectric conversion layer 130 may be reversed, and the n-type semiconductor layer may be arranged on the light receiving surface side and the p-type semiconductor layer may be arranged on the back surface side.
  • a structure in which a p-i-n junction structure consisting of a p-type semiconductor layer 122, an i-type semiconductor layer 121, and an n-type single crystal silicon layer 120 is arranged on the light receiving surface side is usually called a front junction type
  • a structure in which a p-i-n junction structure is arranged on the back surface side is called a rear junction type.
  • the solar cell of the present invention may be a front junction type or a rear junction type.
  • the photoelectric conversion layer 130 is described as having an n-type single crystal silicon layer 120 as an example, but the photoelectric conversion layer 130 may have a structure in which the n-type single crystal silicon layer 120 is replaced with a p-type single crystal silicon layer.
  • the p-type semiconductor layer and the n-type semiconductor layer may each be arranged in a comb-tooth shape on the back surface side. In this case, either a p-type semiconductor layer or an n-type semiconductor layer may be disposed on the light-receiving surface side, or neither of these may be disposed on the light-receiving surface side.
  • the n-type single crystal silicon layer 120 of the photoelectric conversion layer 130 is similar to the n-type single crystal silicon layer of a known solar cell, and is a layer made of n-type single crystal silicon into which n-type impurities such as phosphorus (P) have been introduced.
  • the light-receiving surface side and the back surface side of the n-type single crystal silicon layer 120 may be flat surfaces composed of (100) planes, but it is preferable that a random pyramid texture structure composed of silicon (111) facets is formed on one or both surfaces, and it is more preferable that a random pyramid texture structure is formed on both surfaces.
  • examples of the p-type semiconductor layer 122 include a layer made of p-type hydrogen-containing amorphous silicon (also referred to as "(p)a-Si:H” in this specification) into which p-type impurities such as boron (B) have been introduced.
  • the p-type semiconductor layer 122 is a p-type microcrystalline silicon (also referred to as "(p)nc-Si:H” in this specification) layer containing p-type microcrystalline silicon in a hydrogenated amorphous silicon layer.
  • the p-type semiconductor layer 122 may be an alloy layer of p-type microcrystalline silicon, for example, a p-type microcrystalline silicon oxide (also referred to as "(p)nc-SiO x :H" in this specification) layer in which oxygen has been added to the hydrogenated amorphous silicon layer in the middle.
  • a p-type microcrystalline silicon oxide also referred to as "(p)nc-SiO x :H” in this specification
  • the higher the oxygen concentration of the microcrystalline silicon oxide the more transparent it becomes.
  • x is preferably 0.1 to 1.5.
  • the microcrystalline silicon phase contained in these layers is composed of minute silicon crystallites, and the crystal size is preferably on the order of nanometers.
  • the series resistance of the solar cell 200 may increase.
  • a decrease in the fill factor may be observed compared to when an ITO film is used as the transparent electrode (here, the light-receiving side transparent electrode 125).
  • the series resistance does not increase, and electrical characteristics that are comparable to those when ITO is used as the transparent electrode are obtained.
  • the carrier concentration can be increased in the (p)nc-Si:H or (p)nc-SiO x :H film compared to the (p)a-Si:H film.
  • the thickness of the depletion layer generated at the interface between the transparent conductive film and the p-type layer becomes smaller, enabling carrier movement due to the tunnel effect and reducing resistance.
  • the n-type semiconductor layer 124 examples include a layer made of hydrogen-containing amorphous silicon (also referred to as "(n) a-Si:H” in this specification) into which n-type impurities such as phosphorus (P) have been introduced.
  • the n-type semiconductor layer 124 is an n-type microcrystalline silicon (also referred to as "(n) nc-Si:H” in this specification) layer containing n-type microcrystalline silicon in a hydrogenated amorphous silicon layer.
  • the n-type semiconductor layer 124 may be an alloy layer of n-type microcrystalline silicon, for example, an n-type microcrystalline silicon oxide (also referred to as "(n) nc-SiO x :H" in this specification) layer in which oxygen is added to a hydrogenated amorphous silicon layer in n-type microcrystalline silicon.
  • n-type microcrystalline silicon oxide also referred to as "(n) nc-SiO x :H” in this specification
  • the higher the oxygen concentration of the microcrystalline silicon oxide the more transparent it becomes.
  • x is preferably 0.1 to 1.5.
  • the microcrystalline silicon phase contained in these layers is composed of minute silicon crystallites, and the crystal size is preferably on the order of nanometers.
  • the series resistance of the solar cell 200 may increase.
  • the series resistance does not increase, and electrical characteristics that are comparable to those when ITO is used as a transparent electrode can be obtained.
  • the i-type semiconductor layers 121 and 123 are similar to the i-type semiconductor layers of known solar cells, and are, for example, layers made of intrinsic amorphous silicon with added hydrogen (also referred to as "(i) a-Si:H" in this specification).
  • the solar cell 200 In the solar cell 200, light incident from the grid electrode 126 side is incident on the n-type single crystal silicon layer 120 through the transparent electrode 125, the p-type semiconductor layer 122, and the i-type semiconductor layer 121. Of the light incident on the n-type single crystal silicon layer 120, the light energy larger than the band gap of silicon excites the n-type crystalline silicon, forming electron-hole pairs. The electrons (e - ) move to the metal electrode 128 side. On the other hand, the holes (h + ) move to the grid electrode 126 side, and the solar cell 200 operates.
  • the manufacturing method of the solar cell 200 is not particularly limited.
  • the photoelectric conversion layer 130 is formed by a known method, and the light-receiving transparent electrode 125 and the back transparent electrode 127 are formed on the photoelectric conversion layer 130.
  • an ITO film is formed as the light-receiving transparent electrode 125 or the back transparent electrode 127, it can be formed by a sputtering method or the like.
  • the above-mentioned transparent conductive film is formed as the light-receiving transparent electrode 125 or the back transparent electrode 127, it can be formed by the above-mentioned reactive plasma deposition method or the like.
  • the transparent conductive film containing amorphous SnO 2 can be formed at a relatively low temperature (for example, 300° C. or less). Therefore, even if it is laminated on the photoelectric conversion layer 130, there is an advantage that each layer in the photoelectric conversion layer 130 is unlikely to deteriorate.
  • the above-mentioned grid electrode 126 and metal electrode 128 are formed by a known method.
  • the transparent conductive film described above can also be applied to, for example, perovskite solar cells.
  • An example of the structure of a perovskite solar cell is shown in FIG. 5.
  • the perovskite solar cell 400 has a structure in which a substrate/first electrode/first buffer layer/light absorbing (halide-based perovskite material) layer/second buffer layer/second electrode are laminated in this order.
  • Either the first buffer layer or the second buffer layer functions as a hole transport layer, and the other functions as an electron transport layer.
  • both or one of the first buffer layer and the second buffer layer may have a structure in which different materials are laminated.
  • the perovskite solar cell may receive light from the second electrode or from the substrate side.
  • the above-mentioned transparent conductive film can be used for either or both of the first electrode and the second electrode of the perovskite solar cell.
  • the first electrode and the second electrode may each be a laminate of multiple conductive films, in which case the transparent conductive film may be used for one of the layers.
  • the first electrode and the second electrode may have a two-layer structure of the transparent conductive film and an ITO film, or a three-layer structure of the transparent conductive film/ITO film/transparent conductive film.
  • Conventional conductive layers and counter electrodes are generally made of an ITO film, but using the transparent conductive film as part of the film has the advantage of reducing the amount of ITO (especially In) used.
  • the transparent conductive film described above can be formed at a relatively low temperature. Therefore, when the transparent conductive film is used as a conductive layer, not only substrates made of inorganic materials such as glass plates, but also substrates or films made of resins can be used as substrates.
  • the materials of each layer of the perovskite type are the same as the materials of each layer of known perovskite type solar cells.
  • the transparent conductive film can be used for the electrodes of solar cells having any structure, such as solar cells other than the above-mentioned Si heterojunction solar cells and perovskite solar cells, for example, TOPCon (Tunnel Oxide Passivated Contact) type solar cells, CdTe solar cells, I-III-VI 2 group compound solar cells represented by CuInSe 2 , I 2 -II-IV-VI 4 group compound solar cells represented by Cu 2 ZnSnS 4 , I 2 -IV-VI 3 group compound solar cells represented by Cu 2 SnS 3 , I 2 -VI group compound solar cells represented by Cu 2 S, II-VI group compound solar cells represented by SnS, solar cells with a multi-junction structure combining the above-mentioned perovskite solar cells and Si-based solar cells, etc.
  • TOPCon Tel Oxide Passivated Contact
  • the TOPCon type solar cell here has a structure in which the above-mentioned transparent conductive film is laminated on a semiconductor layer on a tunnel oxide film.
  • the above-mentioned transparent conductive film may be used as a single layer as an electrode, or a laminate of a known conductive film such as an ITO film and the above-mentioned transparent conductive film may be used as an electrode.
  • Example 1-1 A transparent conductive film was prepared by the following reactive plasma deposition method.
  • a Si substrate dimensions 30 mm x 30 mm
  • a thermal oxide film thickness 50 nm
  • an alkali-free glass substrate XG manufactured by Corning
  • a SnO2 sintered body a material for a transparent conductive film, was prepared and stored in the hearth part 10 of the reactive plasma deposition apparatus 100.
  • the temperature of the substrate 1 in the chamber 40 was unheated (room temperature).
  • the composition of the produced transparent conductive film was confirmed by ICP analysis, the only constituent metal element was Sn, and the amount of In was below the lower limit of quantification. Furthermore, when the resistivity was measured by a Loresta (low resistivity meter), it was 1.2 ⁇ 10 ⁇ 3 ⁇ cm.
  • the reflected light of light with wavelengths of 200 nm to 1200 nm was measured for the transparent conductive film on the thermally-oxidized Si substrate using a spectroscopic ellipsometry device.
  • the change in the polarization state of the incident light and reflected light, and the maximum extinction coefficient k of light with wavelengths of 420 nm to 500 nm were confirmed, and the maximum extinction coefficient k in that range was found to be 0.018.
  • the refractive index n of the transparent conductive film for wavelengths of 420 nm to 500 nm was 2.09 to 2.17.
  • the transmission spectrum and reflection spectrum of light having a wavelength of 220 nm or more and 2500 nm or less were measured using a spectrophotometer for the transparent conductive film formed on an XG glass substrate manufactured by Corning Inc. From the obtained spectrum, the maximum absorption coefficient ⁇ of light having a wavelength of 420 nm or more and 500 nm or less was confirmed, and the maximum absorption coefficient ⁇ in this range was 3219 cm -1 .
  • the transparent conductive film was placed in a thermo-hygrostat at a temperature of 85° C. and a humidity of 85% for 1000 hours, and the resistivity was measured in the same manner as above, and it was found to be 1.1 ⁇ 10 ⁇ 3 ⁇ cm, confirming that the moisture resistance was also excellent.
  • a similar test was also performed on an FTO-coated glass substrate (type-VU manufactured by AGC Fabritech Co., Ltd.) with a resistivity of 1.1 ⁇ 10 ⁇ 3 ⁇ cm, and the resistivity after the test was 1.1 ⁇ 10 ⁇ 3 ⁇ cm. In other words, it was confirmed that the transparent conductive film (SnO 2 film) has moisture resistance comparable to that of an FTO film.
  • Example 1-2 An amorphous SnO2 film (transparent conductive film) having a thickness of 70 nm was prepared on a substrate by the same reactive plasma deposition method as in Example 1-1, and the transparent conductive film was annealed for 0.5 hours at 200° C. in a nitrogen atmosphere.
  • the resistivity of the transparent conductive film after the annealing treatment was measured by a Loresta (low resistivity meter) and found to be 9.1 ⁇ 10 ⁇ 4 ⁇ cm.
  • the reflected light of light having a wavelength of 200 nm or more and 1200 nm or less was measured for the transparent conductive film on the thermally oxidized Si substrate after the annealing treatment by a spectroscopic ellipsometry device.
  • the change in the polarization state of the incident light and the reflected light, and the maximum extinction coefficient k of light having a wavelength of 420 nm or more and 500 nm or less were confirmed, and the maximum extinction coefficient k in the said range was 0.021.
  • the refractive index n of the transparent conductive film in the wavelength range of 420 nm or more and 500 nm or less was 2.08 to 2.16.
  • the transmission spectrum and reflection spectrum of light having a wavelength of 220 nm or more and 2500 nm or less were measured by a spectrophotometer for the transparent conductive film formed on the Corning XG glass substrate.
  • the maximum absorption coefficient ⁇ of light having a wavelength of 420 nm or more and 500 nm or less was confirmed from the obtained spectrum, and the maximum absorption coefficient ⁇ in the said range was 5740 cm -1 .
  • the transparent conductive film was placed in a thermo-hygrostat at a temperature of 85° C. and a humidity of 85% for 1000 hours and the resistivity was measured in the same manner as above, it was 9.6 ⁇ 10 ⁇ 4 ⁇ cm, confirming that the film also had excellent moisture resistance.
  • amorphous hydrogen-containing In 2 O 3 (a-In 2 O 3 :H) film transparent conductive film
  • a-In 2 O 3 :H film transparent conductive film
  • the thickness of the a-In 2 O 3 :H film was 70 nm.
  • the resistivity of the transparent conductive film was measured with a Loresta (low resistivity meter) and found to be 5.4 x 10 -4 ⁇ cm.
  • the reflected light of the transparent conductive film (a-In 2 O 3 :H film) with wavelengths of 200 nm to 1200 nm was measured using a spectroscopic ellipsometry device, and the extinction coefficient k in the range was determined from the change in the polarization state of the incident light and the reflected light. Furthermore, the refractive index n in the range was also determined.
  • Fig. 6 shows the extinction coefficient k and refractive index n at wavelengths of 200 nm or more and 1200 nm or less for each transparent conductive film produced in Examples 1-1 and 1-2 and Reference Example 1.
  • the amorphous SnO 2 films produced in Examples 1-1 and 1-2 have almost the same extinction coefficient k and refractive index n as the amorphous In 2 O 3 :H film of Reference Example 1, and the transparent conductive film of the present invention has excellent optical properties.
  • the resistivity of the transparent conductive films produced in Examples 1-1 and 1-2 was 1.2 x 10 -3 ⁇ cm or less, and all of them showed excellent conductivity.
  • Examples 1 to 3 As the substrates, a PET (polyethylene terephthalate) substrate (dimensions 100 mm x 100 mm) and an alkali-free glass substrate (XG manufactured by Corning Incorporated) (dimensions 100 mm x 100 mm) were prepared. An amorphous SnO 2 film (transparent conductive film) having a thickness of 70 nm was produced on the substrate by reactive plasma deposition in the same manner as in Example 1-1. The resistivity of the obtained transparent conductive film was measured by a Loresta (low resistivity meter) and found to be 1.27 x 10 -3 ⁇ cm on the PET substrate and 1.37 x 10 -3 ⁇ cm on the glass substrate.
  • a Loresta low resistivity meter
  • Example 1 to 4 As the substrates, a PET substrate with SiO2 (dimensions 100 mm x 100 mm) and an alkali-free glass substrate (XG manufactured by Corning Incorporated) (dimensions 100 mm x 100 mm) were prepared. An amorphous SnO2 film (transparent conductive film) with a thickness of 70 nm was produced on the substrate by reactive plasma deposition in the same manner as in Example 1-1. The resistivity of the obtained transparent conductive film was measured by Loresta (low resistivity meter) to find that the resistivity was 1.34 x 10-3 ⁇ cm for the PET substrate with SiO2 and 1.34 x 10-3 ⁇ cm for the glass substrate.
  • Loresta low resistivity meter
  • FIG. 7A shows the transmission spectrum and reflection spectrum of the PET substrate only, the PET substrate and the transparent conductive film (Example 1-3), and the PET substrate with SiO 2 and the transparent conductive film (Example 1-4).
  • FIG. 7B shows the transmission spectrum and reflection spectrum of the glass substrate only, the glass substrate and the transparent conductive film (Example 1-3 ), and the glass substrate and the transparent conductive film (Example 1-4). As shown in FIG. 7A and FIG.
  • the resistivity of the transparent conductive films prepared in Examples 1-1 and 1-2 was 1.37 ⁇ 10 ⁇ 3 ⁇ cm or less, and both showed excellent conductivity.
  • Examples 1-5 to 1-9 A transparent conductive film was obtained in the same manner as in Example 1-1, except that the material of the transparent conductive film was a sintered body of a metal oxide shown in Table 3 below. The resistivity of the obtained transparent conductive film is also shown in Table 3. Furthermore, the resistivity when the transparent conductive film was annealed in a nitrogen atmosphere at 250° C. for 0.5 hours is also shown in Table 3.
  • Examples 1 to 10 A transparent conductive film was obtained in the same manner as in Example 1-1, except that the material of the transparent conductive film was a sintered body of a metal oxide shown in Table 3 below. The resistivity of the obtained transparent conductive film is also shown in Table 3. Furthermore, the resistivity when the transparent conductive film was annealed in a nitrogen atmosphere at 200° C. for 0.5 hours is also shown in Table 3.
  • the resistivity exceeded 2 ⁇ 10 ⁇ 3 without annealing, but the resistivity could be reduced to 2 ⁇ 10 ⁇ 3 ⁇ cm or less by annealing (Example 1-10).
  • a front-junction Si heterojunction solar cell was fabricated using the transparent conductive film of the present invention as the light-receiving transparent electrode and/or the back-side transparent electrode, and the external quantum efficiency of the solar cell was compared and evaluated with the external quantum efficiency of a conventional Si heterojunction solar cell using an ITO film as the light-receiving transparent electrode and the back-side transparent electrode.
  • Example 2-1 Preparation of photoelectric conversion layer An n-type single crystal silicon substrate having both surfaces of (100) plane, a thickness of 280 ⁇ m, and a resistivity of 2 ⁇ cm was prepared. The surface of the n-type single crystal silicon substrate was wet etched with a solution mainly composed of KOH to form a random texture structure consisting of (111) facets on both sides of the n-type single crystal silicon substrate. Next, the natural oxide films on both sides of the n-type single crystal silicon substrate were removed with dilute hydrofluoric acid.
  • an i-type a-Si:H layer (thickness of about 5 nm) and an n-type a-Si:H layer (thickness of about 7 nm) were fabricated on the back side of the n-type single crystal silicon substrate by plasma-assisted chemical vapor deposition (PECVD). Furthermore, an i-type a-Si:H layer (thickness of about 5 nm) and a p-type a-Si:H layer (thickness of about 5 nm) were fabricated on the light-receiving surface side of the n-type single crystal silicon substrate by PECVD.
  • PECVD plasma-assisted chemical vapor deposition
  • a photoelectric conversion layer was obtained in which a p-type a-Si:H layer/i-type a-Si:H layer/n-type single crystal silicon layer/i-type a-Si:H layer/n-type a-Si:H layer were stacked in this order from the light-receiving surface side.
  • Transparent electrodes made of amorphous SnO2 film were formed on both sides of the photoelectric conversion layer in the same manner as in Example 1-1 described above.
  • the thickness of each was set to 75 nm.
  • a grid electrode (width 100 ⁇ m, thickness 2 ⁇ m) made of Ag was formed on the transparent conductive film (light-receiving side transparent electrode) on the light-receiving side by a sputtering method.
  • a metal electrode made of Ag was formed on the entire surface of the transparent conductive film (on the back transparent electrode) on the back side by a sputtering method. After that, an annealing treatment was performed at 160 ° C. to obtain a front junction Si heterojunction solar cell.
  • Example 2-2 A front junction Si heterojunction solar cell was obtained in the same manner as in Example 2-1 above, except that the transparent electrode on the light-receiving surface side was an amorphous SnO2 film (thickness 75 nm) and the transparent electrode on the back surface side was an ITO film (thickness 75 nm, prepared by a sputtering method).
  • a rear junction Si heterojunction solar cell was fabricated using the transparent conductive film of the present invention as the light-receiving transparent electrode and/or the back-side transparent electrode.
  • the current-voltage characteristics of the solar cell were compared and evaluated with those of a conventional rear junction Si heterojunction solar cell using an ITO film as the light-receiving transparent electrode and the back-side transparent electrode.
  • a rear junction Si heterojunction solar cell was also fabricated in which the type of semiconductor layer adjacent to the transparent conductive film (a- SnO2 film) of the present invention was changed, and the current-voltage characteristics of the solar cell were compared with those of a conventional rear junction Si heterojunction solar cell.
  • Example 3-1 A rear junction Si heterojunction solar cell was fabricated by carrying out the same steps as in Example 2-1, except that the photoelectric conversion layer was formed in the following order from the light-receiving surface side: n-type a-Si:H layer/i-type a-Si:H layer/n-type single crystal silicon layer/i-type a-Si:H layer/p-type a-Si:H layer.
  • Example 3-2 A rear junction Si heterojunction solar cell was obtained in the same manner as in Example 3-1 above, except that the transparent electrode on the light-receiving surface side was an amorphous SnO2 film (thickness 75 nm) and the transparent electrode on the back surface side was an ITO film (thickness 75 nm, prepared by a sputtering method).
  • Example 3-2a A rear junction Si heterojunction solar cell was obtained in the same manner as in Example 3-2, except that the n-type a-Si:H film of the photoelectric conversion layer was changed to an n-type nc-SiOx:H film (thickness: 10 nm).
  • (evaluation) 9 shows the current-voltage characteristics of the rear junction Si heterojunction solar cells obtained in Examples 3-1 and 3-2, and Reference Example 3.
  • Example 3-2a a solar cell (Example 3-2a) in which the n-type semiconductor layer adjacent to the transparent conductive film of the present invention was changed from an a-Si:H layer to an n-type nc-SiOx:H layer was similarly evaluated.
  • the current-voltage characteristics of the solar cell of Example 3-2a and the current-voltage characteristics of the solar cell of Reference Example 3 are shown in FIG. 10.
  • the fill factor (FF) did not decrease, and current-voltage characteristics very close to those of the conventional solar cell (Reference Example 3) were obtained.
  • the contact resistance of the n-type and p-type contact structures was evaluated by the TLM (transmission line measurement) method.
  • the n-type and p-type contact resistance evaluation samples had the same layer structure as the light incident side of the rear junction and front junction Si heterojunction solar cells, respectively. That is, the n-type contact resistance evaluation sample was composed of Ag/transparent conductive film/n-type semiconductor layer/i-type a-Si:H layer/n-type crystalline silicon layer, and the series resistance of the light incident side n-type contact structure of the rear junction Si heterojunction solar cell was evaluated by the n-type contact resistance evaluation sample.
  • the p-type contact resistance evaluation sample was composed of Ag/transparent conductive film/p-type semiconductor layer/i-type a-Si:H layer/p-type crystalline silicon layer, and the series resistance of the light incident side p-type contact structure of the front junction Si heterojunction solar cell was evaluated by the p-type contact resistance evaluation sample.
  • the contact resistance evaluation sample and the solar cell differ in two ways: the laminated portion of Ag/transparent conductive film serving as an electrode is patterned into a rectangular shape, and the p-type contact resistance evaluation sample uses p-type crystalline silicon.
  • Example 2-2a For the p-type contact structure of the front junction Si hetero-type solar cell (configuration of Example 2-2), a contact resistance evaluation sample (Example 2-2a below) was prepared by changing the type of semiconductor layer adjacent to the transparent conductive film (a-SnO 2 film) of the present invention, and the contact resistance value was evaluated. Furthermore, for the p-type contact structure of the solar cell using a conventional ITO film (Reference Examples 2 and 3), a contact resistance evaluation sample (Reference Examples 2a and 3a below) was prepared by changing the type of semiconductor layer adjacent to the ITO film, and the contact resistance value was confirmed.
  • Example 2-2a A p-type contact resistance evaluation sample was obtained having the same structure as in Example 2-2, except that the p-type a-Si:H layer of the photoelectric conversion layer was changed to a p-type nc-Si:H layer (thickness: 20 nm).
  • Reference Example 2a A p-type contact resistance evaluation sample was obtained having the same structure as in Reference Example 2, except that the p-type a-Si:H layer of the photoelectric conversion layer was changed to a p-type nc-Si:H layer (thickness: 20 nm).
  • Reference Example 3a An n-type contact resistance evaluation sample was obtained having the same structure as in Reference Example 3, except that the n-type a-Si:H layer of the photoelectric conversion layer was changed to an n-type nc-SiOx:H layer (thickness 10 nm).
  • FIG. 11 shows the contact resistance value of each n-type contact structure (Ag/transparent conductive film/n-type semiconductor layer/i-type a-Si:H layer/n-type crystalline silicon layer) corresponding to the contact structure on the light incident side of the rear junction Si heterojunction solar cells produced in Example 3-2a, Reference Example 3a, Example 3-2, and Reference Example 3.
  • FIG. 11 shows the contact resistance value of each p-type contact structure (Ag/transparent conductive film/p-type semiconductor layer/i-type a-Si:H layer/p-type crystalline silicon layer) corresponding to the contact structure on the light incident side of the front junction Si heterojunction solar cells obtained in Example 2-2a, Reference Example 2a, Example 2-2, and Reference Example 2.
  • a transparent conductive film was prepared by the following method using the RF magnetron sputtering method.
  • an alkali-free glass substrate (XG manufactured by Corning) (dimensions 50 mm x 50 mm) was prepared as a substrate.
  • a 3-inch ⁇ SnO2 sintered body was prepared as a target, and the substrate temperature was unheated (room temperature).
  • Ar gas and O2 gas were introduced into the sputtering device, the oxygen flow ratio was set to 0.25% or 0.375%, and the chamber pressure was set to 0.5 Pa.
  • the X-ray diffraction intensity (XRD intensity) of the prepared transparent conductive film was measured in the same manner as in Example 1-1. Although a diffraction peak due to SnO 2 of the rutile structure was slightly observed in each thin film, it was confirmed that the amorphous structure was predominant.
  • the resistivity of the transparent conductive film was measured by Loresta (low resistivity meter). The resistivity of the transparent conductive film prepared at an oxygen flow rate ratio of 0.25% before annealing was 4.7 ⁇ 10 ⁇ 3 ⁇ cm, and the resistivity after annealing was 2.0 ⁇ 10 ⁇ 3 ⁇ cm.
  • the resistivity of the transparent conductive film prepared at an oxygen flow rate ratio of 0.375% before annealing was 7.0 ⁇ 10 ⁇ 3 ⁇ cm, and the resistivity after annealing was 1.9 ⁇ 10 ⁇ 3 ⁇ cm.
  • the composition of the prepared transparent conductive film was confirmed by ICP analysis in the same manner as in Example 1-1, and the constituent metal element was only Sn, and In was below the lower limit of quantification.
  • a transparent conductive film ( SnO2 film) was formed by magnetron sputtering and then annealed, thereby obtaining a transparent conductive film containing a metal oxide (among the metal elements, Sn is 85 atomic % or more and In is 4 atomic % or less) mainly composed of amorphous tin oxide and having a resistivity of 2 ⁇ 10-3 ⁇ cm or less.
  • the transmission spectrum and reflection spectrum of light having a wavelength of 220 nm or more and 2500 nm or less were measured using a spectrophotometer for each transparent conductive film that had been annealed.
  • the maximum absorption coefficient ⁇ of light having a wavelength of 420 nm or more and 500 nm or less was confirmed from the obtained reflection spectrum.
  • the maximum absorption coefficient ⁇ of the transparent conductive film fabricated with an oxygen flow ratio of 0.25% was 1059 cm -1
  • the maximum absorption coefficient ⁇ of the transparent conductive film fabricated with an oxygen flow ratio of 0.375% was 2585 cm -1 .
  • Example a1 A PI (polyimide) substrate (thickness 125 ⁇ m, dimensions 100 mm ⁇ 100 mm) was prepared as a substrate.
  • a transparent conductive film mainly composed of amorphous SnO 2 was then produced on the PI substrate by reactive plasma deposition under the same conditions as in Example 1-1.
  • the sheet resistance of the obtained transparent conductive film was measured by a Loresta (low resistivity meter).
  • the film thickness, sheet resistance, and specific resistance at this time are shown in Table 4.
  • Table 4 when the composition of the transparent conductive film was confirmed by ICP analysis in the same manner as in Example 1-1, the only constituent metal element was Sn, and In was below the lower limit of quantification.
  • Example a2 The substrate with the transparent conductive film produced in Example (a1) was annealed for 0.5 hours at 250° C. The sheet resistance and specific resistance at this time are shown in Table 4.
  • Example a3 On a PI substrate, a reactive plasma deposition method was used to deposit an In 2 O 3 :Ce,H transparent conductive film, which is one of the In 2 O 3 -based transparent conductive films and is doped with Ce and H. Thereafter, a transparent conductive film mainly composed of amorphous SnO 2 was prepared in the same manner as in Example a1.
  • the film thickness, sheet resistance, and resistivity of each transparent conductive film are shown in Table 4.
  • the resistivity shown in Table 4 is the resistivity (reference data) when it is assumed that the electrical properties of each transparent conductive film are uniform in the film thickness direction.
  • the only metal element constituting the transparent conductive film mainly composed of amorphous SnO 2 is Sn, and In was below the lower limit of quantification. Furthermore, although not shown in Table 4, it is clear from the resistivity of Example a1 that the resistivity of only the transparent conductive film mainly composed of amorphous SnO 2 is 2 ⁇ 10 ⁇ 3 ⁇ cm or less.
  • Example a4 (Examples a4, a6, a8, and a10)
  • the transparent conductive film-attached substrates produced in Examples a3, a5, a7, and a9 were each annealed for 0.5 hours at 250° C.
  • the sheet resistance and specific resistance at this time are shown in Table 4.
  • Example 7 Preparation of substrate with transparent conductive film B (Examples b1, b3, b5, and b7)
  • a PI (polyimide) substrate (thickness 125 ⁇ m, dimensions 100 mm ⁇ 100 mm) was prepared as the substrate.
  • a transparent conductive film mainly composed of amorphous SnO 2 was prepared by reactive plasma deposition.
  • an In 2 O 3 :Ce,H transparent conductive film was deposited on the transparent conductive film (amorphous SnO 2 ) by reactive plasma deposition, as in Example a3.
  • a transparent conductive film mainly composed of amorphous SnO 2 was prepared by reactive plasma deposition.
  • the film thickness, sheet resistance, and resistivity of each transparent conductive film are shown in Table 5.
  • the resistivity shown in Table 5 is the resistivity (reference data) when it is assumed that the electrical properties of each transparent conductive film are uniform in the film thickness direction.
  • the metal element constituting the transparent conductive film mainly composed of amorphous SnO 2 is only Sn, and In is below the lower limit of quantification.
  • the resistivity of the above-mentioned Example a1 it is clear from the resistivity of the above-mentioned Example a1 that the resistivity of only the transparent conductive film mainly composed of amorphous SnO 2 is 2 ⁇ 10 ⁇ 3 ⁇ cm or less.
  • Example b2 (Examples b2, b4, b6, and b8)
  • the transparent conductive film-attached substrates produced in Examples b1, b3, b5, and b7 were annealed for 0.5 hours at 250° C.
  • the sheet resistance and specific resistance at this time are shown in Table 5.
  • the present invention provides a transparent conductive film that can be formed at low temperatures, has high transparency and high conductivity, and contains a small amount of indium.
  • This transparent conductive film can be used in various devices as a substitute for conventional ITO films.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The purpose of the present invention is to provide a transparent electrically conductive film which can be formed at a low temperature, has high transparency and high electrical conductivity, and has a low indium content or does not contain indium. This transparent electrically conductive film contains a metal oxide whose primary component is amorphous tin oxide. Among metal elements that constitute the metal oxide, the amount of Sn is 85 atom% or more and the amount of In is 4 atom% or less. The transparent electrically conductive film has a resistivity of 2×10-3 Ω·cm or less.

Description

透明導電膜、透明導電膜付基板、および光電変換素子TRANSPARENT CONDUCTIVE FILM, SUBSTRATE WITH TRANSPARENT CONDUCTIVE FILM, AND PHOTOELECTRIC CONVERSION ELEMENT
 本発明は、透明導電膜、透明導電膜付基板、および光電変換素子に関する。 The present invention relates to a transparent conductive film, a substrate with a transparent conductive film, and a photoelectric conversion element.
 ディスプレイや、太陽電池等といった光電子デバイスの受光側透明電極用の透明導電膜として、ITO(スズドープ酸化インジウム)等のIn系材料が広く知られている(例えば特許文献1)。In系材料は、低温プロセスで成膜可能であり、かつ高い透明性および導電性を兼ね備える、という利点がある。 In2O3 -based materials such as ITO (tin-doped indium oxide) are widely known as transparent conductive films for light-receiving transparent electrodes of optoelectronic devices such as displays and solar cells (see, for example, Patent Document 1) . In2O3 - based materials have the advantages of being capable of being formed into films by low-temperature processes and of having both high transparency and electrical conductivity.
 しかしながら、インジウムは希少金属であり、非常に高価であることから、In系材料を他の材料に置き換えることが検討されている。比較的安価で、かつ低温での成膜が可能な透明導電膜として、ZnO(酸化亜鉛)からなる膜が知られている(例えば特許文献2)。ただし、酸化亜鉛を主成分とする透明導電膜は、耐湿性や耐薬品性が低い。したがって、酸化亜鉛を主成分とする透明導電膜をITO等からなる透明導電膜と置き換えることは困難であった。 However, since indium is a rare metal and very expensive, it is being considered to replace In2O3 - based materials with other materials. As a transparent conductive film that is relatively inexpensive and can be formed at low temperatures, a film made of ZnO (zinc oxide) is known (for example, Patent Document 2). However, a transparent conductive film mainly made of zinc oxide has low moisture resistance and chemical resistance. Therefore, it has been difficult to replace a transparent conductive film mainly made of zinc oxide with a transparent conductive film made of ITO or the like.
 一方、透明性が高く、かつ安定性や耐薬品性に優れる透明導電膜として、FTO(フッ素ドープ酸化スズ)やATO(アンチモンドープ酸化スズ)等、SnO(二酸化スズ)を含む膜も知られている。 On the other hand, films containing SnO 2 (tin dioxide), such as FTO (fluorine-doped tin oxide) and ATO (antimony-doped tin oxide), are also known as transparent conductive films that are highly transparent and have excellent stability and chemical resistance.
国際公開第2017/057556号International Publication No. 2017/057556 特開2012-117903号公報JP 2012-117903 A
 ここで、FTOやATOは多結晶であり、高温で成膜を行い、結晶性を良好にすることで、その導電性が高まる。そのため、FTO膜やATO膜は、熱CVD法によって500℃程度で成膜したり、スパッタ法によって400℃~500℃で成膜したりする必要がある。しかしながら、400℃を超える高温での成膜は、当該膜を積層する基板や光電子デバイスの各層に熱的ダメージを及ぼしやすい。したがって、FTOやATOを光電子デバイスの透明導電膜に使用することは困難であった。そのため、現状では、希少なインジウムを主成分とするIn系の透明導電膜を使用せざるを得なかった。 Here, FTO and ATO are polycrystalline, and the conductivity is increased by forming the film at a high temperature and improving the crystallinity. Therefore, the FTO film and ATO film need to be formed at about 500°C by thermal CVD, or at 400°C to 500°C by sputtering. However, film formation at a high temperature exceeding 400°C is likely to cause thermal damage to the substrate on which the film is laminated and each layer of the optoelectronic device. Therefore, it has been difficult to use FTO and ATO as the transparent conductive film of the optoelectronic device. Therefore, in the current situation, it has been necessary to use a transparent conductive film of In 2 O 3 system mainly composed of rare indium.
 本発明は、上記課題を鑑みてなされたものである。本発明は、低温で成膜が可能であり、高い透明性および高い導電性を有し、さらにインジウム量が少ない、もしくはインジウムを含まない透明導電膜、ならびにこれを含む透明導電膜付基板および光電変換素子の提供を目的とする。 The present invention has been made in consideration of the above problems. The present invention aims to provide a transparent conductive film that can be formed at low temperatures, has high transparency and high conductivity, and further contains a small amount of indium or does not contain indium, as well as a transparent conductive film-coated substrate and a photoelectric conversion element that contain the same.
 本発明の一実施形態は、非晶質の酸化錫が主成分である金属酸化物を含み、前記金属酸化物を構成する金属元素のうちSnの量が85原子%以上であり、Inの量が4原子%以下であり、かつ比抵抗が2×10-3Ω・cm以下である、透明導電膜を提供する。 One embodiment of the present invention provides a transparent conductive film comprising a metal oxide mainly composed of amorphous tin oxide, in which, among metal elements constituting the metal oxide, the amount of Sn is 85 atomic % or more and the amount of In is 4 atomic % or less, and the film has a resistivity of 2×10 −3 Ω·cm or less.
 本発明の一実施形態は、基板と、前記基板上に配置された上記透明導電膜と、を含む、透明導電膜付基板も提供する。 One embodiment of the present invention also provides a substrate with a transparent conductive film, comprising a substrate and the above-described transparent conductive film disposed on the substrate.
 さらに、本発明の一実施形態は、光電変換層と、前記光電変換層に隣接して配置された、少なくとも一層の導電膜を含む第1電極と、前記光電変換層に隣接して配置された、少なくとも一層の導電膜を含む第2電極と、を有し、前記第1電極および前記第2電極の少なくとも一方が、上記透明導電膜を含む、光電変換素子も提供する。 Furthermore, one embodiment of the present invention provides a photoelectric conversion element having a photoelectric conversion layer, a first electrode including at least one conductive film arranged adjacent to the photoelectric conversion layer, and a second electrode including at least one conductive film arranged adjacent to the photoelectric conversion layer, in which at least one of the first electrode and the second electrode includes the transparent conductive film.
 本発明によれば、低温で成膜が可能であり、かつ高い透明性および高い導電性を有し、さらにインジウム含有量が少ない、もしくはインジウムを含まない透明導電膜が提供される。また、当該透明導電膜は、太陽電池等の各種光電変換素子に適用可能である。 The present invention provides a transparent conductive film that can be formed at low temperatures, has high transparency and high conductivity, and contains little or no indium. The transparent conductive film can also be applied to various photoelectric conversion elements such as solar cells.
図1Aは、透明導電膜中のSnの価数と、消衰係数kとの相関性を説明するためのグラフであり、図1Bは、透明導電膜中のSnの価数と吸収係数αとの相関性を説明するためのグラフである。FIG. 1A is a graph for explaining the correlation between the valence of Sn in a transparent conductive film and the extinction coefficient k, and FIG. 1B is a graph for explaining the correlation between the valence of Sn in a transparent conductive film and the absorption coefficient α. 図2は、透明導電膜の表面からの深さと、透明導電膜中の水素原子濃度との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the depth from the surface of the transparent conductive film and the hydrogen atom concentration in the transparent conductive film. 図3は、本発明の一実施形態に係る透明導電膜を形成可能な反応性プラズマ堆積装置の模式図である。FIG. 3 is a schematic diagram of a reactive plasma deposition apparatus capable of forming a transparent conductive film according to one embodiment of the present invention. 図4は、Siヘテロ接合型太陽電池の構造を示す模式図である。FIG. 4 is a schematic diagram showing the structure of a Si heterojunction solar cell. 図5は、ペロブスカイト型太陽電池の構造を示す模式図である。FIG. 5 is a schematic diagram showing the structure of a perovskite solar cell. 図6は、実施例1-1および1-2で作製した非晶質SnO膜、および参考例1で作製したa-In:H膜の波長毎の消衰係数kおよび屈折率nを示すグラフである。FIG. 6 is a graph showing the extinction coefficient k and refractive index n for each wavelength of the amorphous SnO 2 films produced in Examples 1-1 and 1-2 and the a-In 2 O 3 :H film produced in Reference Example 1. 図7Aは、PET基板のみ、PET基板および透明導電膜(実施例1-3)、SiO付PET基板および透明導電膜(実施例1-4)の透過スペクトルおよび反射スペクトルを示すグラフであり、図7Bは、ガラス基板のみ、ガラス基板および透明導電膜(実施例1-3、実施例1-4)の透過スペクトルおよび反射スペクトルを示すグラフである。FIG. 7A is a graph showing the transmission spectrum and the reflection spectrum of the PET substrate only, the PET substrate and the transparent conductive film (Example 1-3), and the PET substrate with SiO2 and the transparent conductive film (Example 1-4). FIG. 7B is a graph showing the transmission spectrum and the reflection spectrum of the glass substrate only, and the glass substrate and the transparent conductive film (Example 1-3, Example 1-4). 図8は、実施例2-1、2-2、および参考例2で作製したフロントジャンクションSiヘテロ接合型太陽電池の外部量子効率スペクトルである。FIG. 8 shows the external quantum efficiency spectra of the front junction Si heterojunction solar cells fabricated in Examples 2-1 and 2-2, and Reference Example 2. 図9は、実施例3-1、3-2、および参考例3で作製したリアジャンクションSiヘテロ接合型太陽電池の電流-電圧特性を示すグラフである。FIG. 9 is a graph showing the current-voltage characteristics of the rear junction Si heterojunction solar cells fabricated in Examples 3-1 and 3-2, and Reference Example 3. 図10は、実施例3-2a、および参考例3で作製したリアジャンクションSiヘテロ接合型太陽電池の電流-電圧特性を示すグラフである。FIG. 10 is a graph showing the current-voltage characteristics of the rear junction Si heterojunction solar cells fabricated in Example 3-2a and Reference Example 3. 図11は、各実施例で作製したSiヘテロ接合型太陽電池の直列抵抗値を示すグラフである。FIG. 11 is a graph showing the series resistance values of the Si heterojunction solar cells fabricated in each example.
 本明細書において、「~」で示す数値範囲は、「~」の前後に記載された数値を含む数値範囲を意味する。 In this specification, a numerical range indicated with "~" means a numerical range including the numbers written before and after "~".
 1.透明導電膜
 本発明の透明導電膜は、非晶質の酸化錫が主成分である金属酸化物を含み、金属酸化物を構成する金属元素のうちSnの量が85原子%以上であり、Inの量が4原子%以下であり、かつ比抵抗が2×10-3Ω・cm以下である。なお、本明細書において、透明導電膜中の酸化錫が「非晶質」であるとは、X線回折強度(XRD強度)を測定したときに、非晶質由来のブロードなピークが支配的で結晶由来のピークが顕著に確認されないことをいう。つまり、透過電子顕微鏡像(TEM像)を観察した時に非晶質構造が支配的で非晶質層の中に結晶質が点在する程度の微結晶性は有していてもよい。また、当該透明導電膜は、本発明の目的および効果を損なわない範囲で、上記金属酸化物以外の成分を一部に含んでいてもよく、例えばフッ素等がドープされていてもよいが、その85質量%以上が上記金属酸化物であることが好ましく、上記金属酸化物からなることがより好ましい。
1. Transparent conductive film The transparent conductive film of the present invention contains a metal oxide mainly composed of amorphous tin oxide, and among the metal elements constituting the metal oxide, the amount of Sn is 85 atomic % or more, the amount of In is 4 atomic % or less, and the resistivity is 2×10 −3 Ω·cm or less. In this specification, the tin oxide in the transparent conductive film is "amorphous" means that when the X-ray diffraction intensity (XRD intensity) is measured, a broad peak derived from the amorphous structure is dominant and a peak derived from the crystal is not significantly confirmed. In other words, when a transmission electron microscope image (TEM image) is observed, the amorphous structure is dominant and the film may have a degree of microcrystalline nature such that crystalline structures are scattered in the amorphous layer. In addition, the transparent conductive film may partially contain components other than the above metal oxide, for example, may be doped with fluorine, within a range that does not impair the object and effect of the present invention, but it is preferable that 85 mass % or more of the transparent conductive film is the above metal oxide, and it is more preferable that the transparent conductive film is made of the above metal oxide.
 上述のように、多結晶のFTO(SnO:F)やATO(SnO:Sb)等については、高い透明性や高い導電性を有することが知られている。しかしながら、これらは低温での成膜が難しいことから、実用化が難しかった。これに対し、本発明者らが鋭意検討したところ、非晶質の酸化錫を主に含む膜は、低温で成膜できるだけでなく、透明性および導電性が非常に優れることが明らかとなった。その理由は、以下のように考えられる。 As described above, polycrystalline FTO (SnO 2 :F) and ATO (SnO 2 :Sb) are known to have high transparency and high conductivity. However, it is difficult to form a film of these at low temperatures, making it difficult to put them to practical use. In response to this, the inventors of the present invention conducted extensive research and found that a film mainly containing amorphous tin oxide can not only be formed at low temperatures, but also has excellent transparency and conductivity. The reason for this is believed to be as follows.
 酸化錫(特にSnO)の伝導帯は、主としてSn5s軌道から構成される。そして、当該Sn5s軌道は、空間的な電子の広がりが大きく、球形のs軌道同士が重なっている。したがって、非晶質構造とすることでボンド角が揺らいだとしても、軌道同士の重なりは、結晶質の場合と比較してそれほど減少せず、電子の高い移動度が実現すると考えられる。実際、非晶質のSnOからなる膜における、電子の有効質量は0.35mであり、結晶質のSnOからなる膜の電子の有効質量と大きく変わらない。したがって、キャリア伝導路が非晶質構造の影響を受けにくく、非晶質の酸化錫(特にSnO)によって、結晶質のSnOと同様の高い透明性および高い導電性が実現されると考えられる。 The conduction band of tin oxide (especially SnO 2 ) is mainly composed of Sn5s orbitals. The Sn5s orbitals have a large spatial spread of electrons, and the spherical s orbitals overlap each other. Therefore, even if the bond angle fluctuates due to the amorphous structure, the overlap between the orbitals does not decrease as much as in the case of crystalline materials, and it is considered that high mobility of electrons is realized. In fact, the effective mass of electrons in a film made of amorphous SnO 2 is 0.35 m 0 , which is not significantly different from the effective mass of electrons in a film made of crystalline SnO 2. Therefore, it is considered that the carrier conduction path is not easily affected by the amorphous structure, and the amorphous tin oxide (especially SnO 2 ) realizes high transparency and high conductivity similar to those of crystalline SnO 2 .
 なお、本発明の透明導電膜は、耐湿性が良好であるという利点も有する。 The transparent conductive film of the present invention also has the advantage of having good moisture resistance.
 ここで、透明導電膜の高い透明性および高い導電性を実現する観点で、金属酸化物を構成する全金属元素に対して、85原子%以上がSnであればよいが、Snの量は90原子%以上がより好ましく、95原子%以上がさらに好ましい。また、金属酸化物は、本発明の目的および効果を損なわない範囲で、Sn以外の金属元素を含んでいてもよいが、その総量は、金属酸化物を構成する全金属元素に対して15原子%以下が好ましく、10原子%以下がより好ましく、5原子%以下がさらに好ましい。 Here, from the viewpoint of realizing high transparency and high conductivity of the transparent conductive film, it is sufficient that 85 atomic % or more of all metal elements constituting the metal oxide is Sn, but the amount of Sn is more preferably 90 atomic % or more, and even more preferably 95 atomic % or more. Furthermore, the metal oxide may contain metal elements other than Sn within a range that does not impair the purpose and effect of the present invention, but the total amount is preferably 15 atomic % or less, more preferably 10 atomic % or less, and even more preferably 5 atomic % or less, of all metal elements constituting the metal oxide.
 金属酸化物が含む、Sn以外の金属元素の例には、In、Zn、Cd、Nb、Ta、B、Ga、Ba、Mo、Pb、Rb、Re、Sb、W、Ce、Cs、Dy、Er、Ge、Hf、Ho、La、Lu、Nd、Pr、Sc、Si、Sm、Tb、V、Y、Al、Ti、Zr等が含まれ、中でもZn、Cd、B、Ga、Si、Ge、Pb、Sb、V、Nb、Ta、Mo、W、Ceが好ましい。金属酸化物は、これらを1種のみ含んでいてもよく、2種以上含んでいてもよい。金属酸化物が、Sn以外の金属元素をさらに含むと、透明導電膜を成膜するための材料の加工性が良好になったり、金属元素の種類によっては、透明導電膜の密度や透明性や導電性がさらに良好になったりする。 Examples of metal elements other than Sn contained in the metal oxide include In, Zn, Cd, Nb, Ta, B, Ga, Ba, Mo, Pb, Rb, Re, Sb, W, Ce, Cs, Dy, Er, Ge, Hf, Ho, La, Lu, Nd, Pr, Sc, Si, Sm, Tb, V, Y, Al, Ti, Zr, etc., and among these, Zn, Cd, B, Ga, Si, Ge, Pb, Sb, V, Nb, Ta, Mo, W, and Ce are preferred. The metal oxide may contain only one of these, or may contain two or more. When the metal oxide further contains a metal element other than Sn, the processability of the material for forming the transparent conductive film is improved, and depending on the type of metal element, the density, transparency, and conductivity of the transparent conductive film are further improved.
 ただし、金属酸化物を構成する金属元素の総量に対して、Inの量は、4原子%以下であり、3原子%以下が好ましく、0.09原子%以下が好ましく、実質的に含まないことがより好ましい。Inの量が少ないほど、透明導電膜のコストを低減できる。また、金属酸化物(透明導電膜)が、特定化学物質であるInを含むと、当該透明導電膜を取り扱う作業全般が規制の対象となる。これに対し、金属酸化物がInを含まない場合等には、規制対象とならず、作業性が向上するという利点もある。金属酸化物を構成する各金属元素の量は、透明導電膜の組成をICP分析法で確認すること等によって特定可能である。 However, the amount of In relative to the total amount of metal elements constituting the metal oxide is 4 atomic % or less, preferably 3 atomic % or less, preferably 0.09 atomic % or less, and more preferably substantially none. The lower the amount of In, the lower the cost of the transparent conductive film. In addition, if the metal oxide (transparent conductive film) contains In, which is a specified chemical substance, all work involving the handling of the transparent conductive film becomes subject to regulation. In contrast, if the metal oxide does not contain In, it is not subject to regulation, and there is an advantage in that workability is improved. The amount of each metal element constituting the metal oxide can be identified by, for example, confirming the composition of the transparent conductive film using ICP analysis.
 また、透明導電膜(金属酸化物)では、Snが主に4価(Sn4+)の状態で含まれていることが好ましい。Snは、Sn4+およびSn2+の混合原子価を取りうるが、透明導電膜中のSn2+の量が増えると、アクセプター型の欠陥が増える。その結果、キャリア濃度および移動度が共に低下し、後述の表1に示すように、比抵抗が増加する傾向にある。透明導電膜中のSnの価数を直接測定することは難しいが、Snの価数と、透明導電膜の波長420nm以上500nm以下における消衰係数kあるいは吸収係数αとの間には相関性がある。そこで、透明導電膜の消衰係数kあるいは吸収係数αを確認することで、透明導電膜中のSnの価数を評価できる。図1Aに、Sn4+量とSn2+量との比率を変化させたときの、波長200nm以上1200nm以下における消衰係数kを示す。図1Bに、Sn4+量とSn2+量との比率を変化させたときの、波長400nm以上600nm以下における吸収係数αを示す。 In addition, in the transparent conductive film (metal oxide), it is preferable that Sn is mainly contained in a tetravalent (Sn 4+ ) state. Sn can have a mixed valence of Sn 4+ and Sn 2+ , but as the amount of Sn 2+ in the transparent conductive film increases, the number of acceptor-type defects increases. As a result, both the carrier concentration and the mobility decrease, and the resistivity tends to increase, as shown in Table 1 below. Although it is difficult to directly measure the valence of Sn in the transparent conductive film, there is a correlation between the valence of Sn and the extinction coefficient k or absorption coefficient α of the transparent conductive film at a wavelength of 420 nm or more and 500 nm or less. Therefore, the valence of Sn in the transparent conductive film can be evaluated by checking the extinction coefficient k or absorption coefficient α of the transparent conductive film. FIG. 1A shows the extinction coefficient k at a wavelength of 200 nm or more and 1200 nm or less when the ratio of the amount of Sn 4+ to the amount of Sn 2+ is changed. FIG. 1B shows the absorption coefficient α at wavelengths of 400 nm or more and 600 nm or less when the ratio of the amount of Sn 4+ to the amount of Sn 2+ is changed.
 図1Aに示すように、Sn4+を主に含む透明導電膜では、波長420nm以上500nm以下の範囲で、消衰係数kが非常に小さい。これに対し、透明導電膜中のSn2+の割合が多くなると、波長420nm以上500nm以下における消衰係数kが大きくなる。そこで、透明導電膜の波長420nm以上500nm以下における、消衰係数kの最大値(最大消衰係数)は、0.033以下が好ましく、0.025以下がより好ましく、0.017以下がさらに好ましい。波長420nm以上500nm以下における最大消衰係数が0.033以下である場合には、透明導電膜中の4価のSn量が十分に多いといえ、高い透明性や高い導電性がさらに実現されやすくなる。なお、当該消衰係数kは、分光エリプソメトリー装置により、波長200nm以上1200nm以下の光の反射光を測定し、入射光と反射光の偏光状態の変化から求めることが可能である。 As shown in FIG. 1A, in the transparent conductive film mainly containing Sn 4+ , the extinction coefficient k is very small in the wavelength range of 420 nm to 500 nm. In contrast, when the proportion of Sn 2+ in the transparent conductive film increases, the extinction coefficient k in the wavelength range of 420 nm to 500 nm increases. Therefore, the maximum value (maximum extinction coefficient) of the extinction coefficient k in the wavelength range of 420 nm to 500 nm of the transparent conductive film is preferably 0.033 or less, more preferably 0.025 or less, and even more preferably 0.017 or less. When the maximum extinction coefficient in the wavelength range of 420 nm to 500 nm is 0.033 or less, it can be said that the amount of tetravalent Sn in the transparent conductive film is sufficiently large, and high transparency and high conductivity are more easily achieved. The extinction coefficient k can be obtained by measuring the reflected light of light with a wavelength of 200 nm to 1200 nm using a spectroscopic ellipsometry device and determining the change in the polarization state of the incident light and the reflected light.
 一方、図1Bに示すように、Sn4+を主に含む透明導電膜では、波長420nm以上500nm以下の範囲における、吸収係数αが非常に小さい。これに対し、透明導電膜中のSn2+の割合が多くなると、波長420nm以上500nm以下における吸収係数αが大きくなる。透明導電膜の波長420nm以上500nm以下における、吸収係数αの最大値(最大吸収係数)は、1×10cm-1以下が好ましく、7.5×10cm-1以下がより好ましく、5×10cm-1以下がさらに好ましい。波長420nm以上500nm以下における最大吸収係数αが1×10cm-1以下である場合には、透明導電膜中の4価のSn量が十分に多いといえ、高い透明性や高い導電性がさらに実現されやすくなる。なお当該吸収係数αは分光光度計により、波長200nm以上1200nm以下の光の透過率と反射率を測定し、得られた吸収スペクトルから求めることが可能である。 On the other hand, as shown in FIG. 1B, in the transparent conductive film mainly containing Sn 4+ , the absorption coefficient α in the wavelength range of 420 nm to 500 nm is very small. In contrast, when the proportion of Sn 2+ in the transparent conductive film increases, the absorption coefficient α in the wavelength range of 420 nm to 500 nm increases. The maximum value (maximum absorption coefficient) of the absorption coefficient α in the wavelength range of 420 nm to 500 nm of the transparent conductive film is preferably 1×10 4 cm −1 or less, more preferably 7.5×10 3 cm −1 or less, and even more preferably 5×10 3 cm −1 or less. When the maximum absorption coefficient α in the wavelength range of 420 nm to 500 nm is 1×10 4 cm −1 or less, it can be said that the amount of tetravalent Sn in the transparent conductive film is sufficiently large, and high transparency and high conductivity are more easily achieved. The absorption coefficient α can be determined from the absorption spectrum obtained by measuring the transmittance and reflectance of light having a wavelength of 200 nm or more and 1200 nm or less using a spectrophotometer.
 なお、透明導電膜中の消衰係数kやあるいは吸収係数αを調整する方法は制限されないが、透明導電膜の成膜を、十分な量の酸素が存在する雰囲気で行ったり、製膜チャンバーに残存する水蒸気分圧を減少したり、200℃以下程度で加熱製膜することで、調整できる。 In addition, there are no limitations on the method for adjusting the extinction coefficient k or absorption coefficient α in the transparent conductive film, but they can be adjusted by depositing the transparent conductive film in an atmosphere containing a sufficient amount of oxygen, reducing the partial pressure of water vapor remaining in the deposition chamber, or by heating the film to a temperature of about 200°C or less.
 ここで、透明導電膜の比抵抗は、2×10-3Ω・cm以下であればよいが、1.5×10-3Ω・cm以下が好ましく、1×10-3Ω・cm以下がより好ましい。透明導電膜の比抵抗が、2×10-3Ω・cm以下であると、例えば光電変換素子の透明電極等、様々な用途に当該透明導電膜を使用可能となる。上記比抵抗は、ロレスタ(低抵抗率計)によって特定可能である。 Here, the resistivity of the transparent conductive film may be 2×10 −3 Ω·cm or less, preferably 1.5×10 −3 Ω·cm or less, and more preferably 1×10 −3 Ω·cm or less. If the resistivity of the transparent conductive film is 2×10 −3 Ω·cm or less, the transparent conductive film can be used for various applications, such as a transparent electrode of a photoelectric conversion element. The resistivity can be determined by a Loresta (low resistivity meter).
 なお、本発明者らの鋭意検討によれば、透明導電膜の比抵抗を低めるうえで、透明導電膜の膜密度は高いほどが好ましいことも明らかとなった。後述の実施例1-1に示す方法と同様の方法で、以下の4つの試料を作製した。このときの組成、膜密度、および比抵抗を下記表1に示す。なお、平均組成はラザフォード後方散乱分析(RBS)法で分析し、比抵抗はロレスタ(低抵抗率計)により測定した。さらに、膜密度は、RBS法により決定した面密度と分光エリプソメトリーで決定した膜厚から算出した。 In addition, according to the inventors' intensive research, it has become clear that in order to reduce the resistivity of a transparent conductive film, it is preferable for the film density of the transparent conductive film to be as high as possible. The following four samples were produced using a method similar to that shown in Example 1-1 described below. The composition, film density, and resistivity at this time are shown in Table 1 below. The average composition was analyzed using the Rutherford backscattering spectrometry (RBS) method, and the resistivity was measured using a Loresta (low resistivity meter). Furthermore, the film density was calculated from the areal density determined by the RBS method and the film thickness determined by spectroscopic ellipsometry.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、透明導電膜の膜密度が高まるにつれて、比抵抗が低下する。そして、当該結果を鑑みると、透明導電膜の比抵抗を2.0×10-3以下にする観点では、ラザフォード後方散乱分析(RBS)法により分析される膜密度を、5.6g/cm以上とすることが好ましく、膜密度は6.3g/cm以上がより好ましく、6.4g/cm以上がさらに好ましいといえる。なお、X線反射(XRR)法でも膜密度を算出することが可能である。ただし、XRR法では膜組成を仮定して膜密度を算出する。したがって、RBS法およびXRR法のどちらが真値に近いかは、薄膜でかつ膜密度が既知の標準試料が存在しないため、未だ明らかになっていない。そのため、上記結果は真値から誤差を含んだ値とも考えられるが、透明導電膜の膜密度が高い方が好ましいことは明らかであり、RBS法で膜密度を測定する場合には、上記値以上であることが好ましいといえる。
Figure JPOXMLDOC01-appb-T000001
As shown in Table 1, the resistivity decreases as the film density of the transparent conductive film increases. In view of the results, in order to make the resistivity of the transparent conductive film 2.0×10 −3 or less, it is preferable that the film density analyzed by the Rutherford backscattering spectrometry (RBS) method is 5.6 g/cm 3 or more, more preferably 6.3 g/cm 3 or more, and even more preferably 6.4 g/cm 3 or more. It is also possible to calculate the film density by the X-ray reflectometry (XRR) method. However, the film composition is assumed in the XRR method to calculate the film density. Therefore, it is not yet clear which of the RBS method and the XRR method is closer to the true value, since there is no standard sample that is a thin film and has a known film density. Therefore, although the above results are considered to be values that include an error from the true value, it is clear that a higher film density of the transparent conductive film is preferable, and it can be said that when measuring the film density by the RBS method, it is preferable that the film density is equal to or higher than the above value.
 さらに、本発明者らの鋭意検討によって、透明導電膜の比抵抗を低めるうえで、透明導電膜中の二次イオン質量分析法(SIMS)で測定される水素原子濃度を制御し、水素原子濃度を低く調整するほうが好ましいことも明らかとなった。水素原子濃度が低くなると、緻密な膜が形成され、膜密度の高い膜が得られるともいえる。 Furthermore, through intensive research by the inventors, it has become clear that in order to reduce the resistivity of the transparent conductive film, it is preferable to control the hydrogen atom concentration in the transparent conductive film as measured by secondary ion mass spectrometry (SIMS) and adjust the hydrogen atom concentration to a low level. It can also be said that a lower hydrogen atom concentration results in a denser film, resulting in a film with a higher film density.
 後述の実施例1-1や1-2に示す方法と同様の方法で、以下の5つのSnO膜(透明導電膜)を作製した。これらの透明導電膜について、一方の表面から、SIMSで水素原子濃度を測定したときの、透明導電膜の深さと水素原子濃度との関係を図2に示す。透明導電膜の表面や、透明導電膜と他の膜(ここではガラス基板)との界面では水素原子が蓄積しやすく、その内部と比べ高濃度となることが図2から明らかである。また、SIMS分析ではスパッタ用イオンによる元素の押し込みが生じるため、深い方に広がったプロファイルとなる。そこで、これらの透明導電膜の内部(両方の表面(もしくは界面)からそれぞれ10nm以上内側の領域)における水素原子の濃度を特定した。結果を下記表2に示す。また、各透明導電膜について、それぞれ比抵抗をロレスタ(低抵抗率計)により測定した。結果を下記表2に示す。 The following five SnO 2 films (transparent conductive films) were prepared in the same manner as in Examples 1-1 and 1-2 described later. The relationship between the depth of the transparent conductive film and the hydrogen atom concentration when the hydrogen atom concentration was measured from one surface of these transparent conductive films by SIMS is shown in FIG. 2. It is clear from FIG. 2 that hydrogen atoms tend to accumulate on the surface of the transparent conductive film and on the interface between the transparent conductive film and another film (here, a glass substrate), resulting in a higher concentration than inside. In addition, in the SIMS analysis, the element is pushed in by the sputtering ions, resulting in a profile that spreads deeper. Therefore, the concentration of hydrogen atoms in the interior of these transparent conductive films (regions 10 nm or more inward from both surfaces (or interfaces)) was identified. The results are shown in Table 2 below. In addition, the resistivity of each transparent conductive film was measured using a Loresta (low resistivity meter). The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 上記表に示すように、透明導電膜内部の水素原子濃度が低くなるにつれて、比抵抗が小さくなる。また、比抵抗を2.0×10-3以下にする観点では、透明導電膜の両表面からそれぞれ10nm以上内側の領域における水素原子の濃度を、8×1021原子/cm以下とすることが好ましく、7×1021原子/cm以下がより好ましく、6×1021原子/cm以下がさらに好ましいといえる。
Figure JPOXMLDOC01-appb-T000002
As shown in the above table, the lower the hydrogen atom concentration inside the transparent conductive film, the smaller the resistivity. From the viewpoint of making the resistivity 2.0×10 −3 or less, it can be said that the concentration of hydrogen atoms in the region 10 nm or more inside from each of both surfaces of the transparent conductive film is preferably 8×10 21 atoms/cm 3 or less, more preferably 7×10 21 atoms/cm 3 or less, and even more preferably 6×10 21 atoms/cm 3 or less.
 ここで、透明導電膜の厚みは、その用途に応じて適宜選択される。透明導電膜を、後述の光電変換素子の受光側または光出射側の透明電極として使用する場合には、1nm以上5000nm以下が好ましく、10nm以上1000nm以下がより好ましい。透明導電膜の厚みが当該範囲であると、透明電極に必要とされる、高い透明性および高い導電性が得られやすくなる。 The thickness of the transparent conductive film is appropriately selected depending on the application. When the transparent conductive film is used as a transparent electrode on the light receiving side or the light emitting side of a photoelectric conversion element described below, the thickness is preferably 1 nm or more and 5000 nm or less, and more preferably 10 nm or more and 1000 nm or less. When the thickness of the transparent conductive film is within this range, it becomes easier to obtain the high transparency and high conductivity required for a transparent electrode.
 上記透明導電膜の製造方法は、上述の組成や比抵抗を満たすことが可能な限りにおいて、特に制限されず、例えば反応性プラズマ堆積法を利用した成膜法やスパッタ法で成膜可能である。以下、反応性プラズマ堆積法を利用した成膜法を説明するが、上記透明導電膜の製造方法は、当該方法に限定されない。後述の実施例では、マグネトロンスパッタ法により透明導電膜を形成する方法も示す。 The method for producing the transparent conductive film is not particularly limited as long as the above-mentioned composition and resistivity are satisfied, and the film can be formed by, for example, a film formation method using reactive plasma deposition or a sputtering method. A film formation method using reactive plasma deposition is described below, but the method for producing the transparent conductive film is not limited to this method. In the examples described later, a method for forming a transparent conductive film by magnetron sputtering is also shown.
 反応性プラズマ堆積法による成膜は、例えば図3の模式図に示す反応性プラズマ堆積装置100によって行うことができる。ただし、反応性プラズマ堆積装置100の構成は、当該構成に限定されない。 Film formation using the reactive plasma deposition method can be performed, for example, by a reactive plasma deposition apparatus 100 shown in the schematic diagram of FIG. 3. However, the configuration of the reactive plasma deposition apparatus 100 is not limited to this configuration.
 当該反応性プラズマ堆積装置100は、材料を所定の温度で保持するためのハース部10と、プラズマビーム21およびプラズマ22を発生させるためのプラズマガン20と、プラズマガン20から発生したプラズマビーム21をハース部10内の材料に導くプラズマビームコントローラ30と、これらを収容するチャンバー40と、を有する。当該反応性プラズマ堆積法により、基板1上に上述の透明導電膜を形成する場合、ハース部10に材料を収容し、所定の位置に基板1を設置する。また、チャンバー40内部を、所定の雰囲気、かつ所定の圧力に調整する。そして、プラズマガン20からプラズマビーム21およびプラズマ22を発生させる。プラズマガン20から出射したプラズマビーム21は、プラズマビームコントローラ30によってハース部10に導かれ、ハース部10の材料に垂直に入射する。プラズマビーム21の照射によって加熱された材料は昇華し、プラズマ22中でイオン化する。そして、イオン化した材料11は、活性化した状態で、基板1に到達する。これにより、基板1上に、上述の透明導電膜が形成される。 The reactive plasma deposition apparatus 100 has a hearth section 10 for holding the material at a predetermined temperature, a plasma gun 20 for generating a plasma beam 21 and a plasma 22, a plasma beam controller 30 for directing the plasma beam 21 generated from the plasma gun 20 to the material in the hearth section 10, and a chamber 40 for housing these. When forming the above-mentioned transparent conductive film on the substrate 1 by the reactive plasma deposition method, the material is housed in the hearth section 10, and the substrate 1 is placed at a predetermined position. The inside of the chamber 40 is adjusted to a predetermined atmosphere and a predetermined pressure. Then, the plasma beam 21 and the plasma 22 are generated from the plasma gun 20. The plasma beam 21 emitted from the plasma gun 20 is guided to the hearth section 10 by the plasma beam controller 30 and perpendicularly enters the material in the hearth section 10. The material heated by irradiation with the plasma beam 21 sublimes and is ionized in the plasma 22. The ionized material 11 then reaches the substrate 1 in an activated state. This forms the above-mentioned transparent conductive film on the substrate 1.
 ここで、上記反応性プラズマ堆積法にて透明導電膜を成膜する場合、ハース部10に収容する材料は、上述の透明導電膜の組成と略同様の組成を有する焼結体、透明導電膜を構成する金属、その金属の亜酸化物を含む金属酸化物からなる焼結体、そしてそれらの混合物が好ましい。当該焼結体は、非晶質であってもよく、結晶質であってもよい。当該焼結体は、SnOあるいはSnOあるいはSnと、必要に応じて他の金属や金属酸化物とを混合し、これを常圧焼結法、ホットプレス法等、公知の方法で焼結することで得られる。 Here, when forming a transparent conductive film by the reactive plasma deposition method, the material to be accommodated in the hearth unit 10 is preferably a sintered body having a composition substantially similar to that of the transparent conductive film, a sintered body made of a metal constituting the transparent conductive film, a metal oxide including a suboxide of the metal, or a mixture thereof. The sintered body may be amorphous or crystalline. The sintered body is obtained by mixing SnO2 , SnO, or Sn with other metals or metal oxides as necessary, and sintering the mixture by a known method such as a normal pressure sintering method or a hot press method.
 また、透明導電体(金属酸化物)中の酸化錫を非晶質とするためには、基板1の温度を、300℃以下に維持することが好ましい。基板1の温度を、特に意図的な加熱をしない場合、すなわち室温程度でもよい。また、意図的に冷却した0℃程度でもよい。 In order to make the tin oxide in the transparent conductor (metal oxide) amorphous, it is preferable to maintain the temperature of the substrate 1 at 300°C or less. The temperature of the substrate 1 may be around room temperature, in particular when not intentionally heated. It may also be intentionally cooled to around 0°C.
 また、チャンバー内の圧力は、0.01Pa以上10Pa以下が成膜効率の観点で好ましく、0.1Pa以上1Pa以下がより好ましい。また、チャンバー40内の雰囲気は、例えば窒素やアルゴン等の不活性ガス雰囲気であってもよいが、Snを4価(Sn4+)にしやすくするため、雰囲気中に酸素を導入することが好ましく、酸素分圧を0.01Pa以上10Pa以下することがより好ましく、0.1Pa以上1Pa以下とすることがさらに好ましい。酸素分圧を当該範囲にすると、上述の消衰係数や吸収係数を有する透明導電膜がさらに得られやすくなる。 From the viewpoint of film formation efficiency, the pressure in the chamber is preferably 0.01 Pa to 10 Pa, and more preferably 0.1 Pa to 1 Pa. The atmosphere in the chamber 40 may be an inert gas atmosphere such as nitrogen or argon, but in order to facilitate the conversion of Sn to tetravalent (Sn 4+ ), it is preferable to introduce oxygen into the atmosphere, and the oxygen partial pressure is more preferably 0.01 Pa to 10 Pa, and even more preferably 0.1 Pa to 1 Pa. When the oxygen partial pressure is within this range, it becomes easier to obtain a transparent conductive film having the above-mentioned extinction coefficient and absorption coefficient.
 また、上記反応性プラズマ堆積法による成膜後、20℃以上400℃以下、好ましくは100℃以上300℃以下で、熱処理をすることが好ましい。熱処理の時間は0.1秒以上24時間以下が好ましく、0.1秒以上1時間以下がより好ましい。アニール処理を行うと、構造緩和が起こり、得られる透明導電膜が安定になりやすく、導電率がさらに低くなりやすい。 Furthermore, after the film is formed by the reactive plasma deposition method, it is preferable to perform a heat treatment at 20°C or more and 400°C or less, and preferably 100°C or more and 300°C or less. The heat treatment time is preferably 0.1 seconds or more and 24 hours or less, and more preferably 0.1 seconds or more and 1 hour or less. When the annealing treatment is performed, structural relaxation occurs, and the obtained transparent conductive film tends to become stable and the conductivity tends to become even lower.
 2.透明導電膜付基板
 本発明の透明導電膜付基板は、基板と、当該基板上に配置された上記透明導電膜と、を有していればよく、基板の形状や上記透明導電膜の厚さ等は特に制限されない。また、基板の全面に上記透明導電膜が配置されていてもよく、基板の一部領域のみに上記透明導電膜が配置されていてもよい。さらに、基板および上記透明導電膜以外の構成を含んでいてもよい。例えば基板と上記透明導電膜との間、もしくは上記透明導電膜上に、任意の層(例えば上記以外の導電膜や、バリア膜等)を有していてもよい。任意の層は、公知の層とすることができる。
2. Substrate with transparent conductive film The substrate with transparent conductive film of the present invention only needs to have a substrate and the transparent conductive film disposed on the substrate, and the shape of the substrate and the thickness of the transparent conductive film are not particularly limited. The transparent conductive film may be disposed on the entire surface of the substrate, or may be disposed only on a partial region of the substrate. Furthermore, the substrate may include a configuration other than the substrate and the transparent conductive film. For example, an arbitrary layer (e.g., an arbitrary conductive film other than the above, a barrier film, etc.) may be present between the substrate and the transparent conductive film, or on the transparent conductive film. The arbitrary layer may be a known layer.
 基板の材料は、ガラス等の無機材料であってもよいが、樹脂材料であってもよい。すなわち、基板は樹脂フィルムであってもよい。また基板は、複数層から構成されていてもよい。また基板の形状は特に制限されず、平板状であってもよく、立体的な形状を有していてもよい。さらに、基板の光透過性は、その用途に応じて適宜選択され、光透過性を有していてもよく、光透過性を有していなくてもよい。当該基板はフレキシブル性を有していてもよい。 The material of the substrate may be an inorganic material such as glass, but may also be a resin material. That is, the substrate may be a resin film. The substrate may also be composed of multiple layers. The shape of the substrate is not particularly limited, and may be flat or may have a three-dimensional shape. Furthermore, the optical transparency of the substrate is appropriately selected depending on the application, and may or may not be optically transparent. The substrate may also be flexible.
 上述の透明導電膜は、高い透明性および導電性を有する。さらに上記透明導電膜は、比較的低い温度(例えば300℃以下)で成膜可能である。したがって、基板として各種材料からなる基板を使用可能である。 The transparent conductive film described above has high transparency and conductivity. Furthermore, the transparent conductive film can be formed at a relatively low temperature (e.g., 300°C or less). Therefore, substrates made of various materials can be used as the substrate.
 当該透明導電膜付基板の構造の例には、基板/バリア膜/上記透明金属膜を含む積層構造や、基板/上記以外の導電膜/上記透明導電膜を含む積層構造、基板/上記透明導電膜/上記以外の導電膜を含む積層構造等、様々な構造が含まれる。 Examples of the structure of the substrate with the transparent conductive film include a laminated structure including a substrate/barrier film/the transparent metal film, a laminated structure including a substrate/another conductive film/the transparent conductive film, and a laminated structure including a substrate/the transparent conductive film/the other conductive film.
 当該透明導電膜付基板の用途は、後述の光電変換素子に限定されず、その例には、各種光検出素子、ディスプレイ、ウェアラブルデバイス、薄膜トランジスタ(TFT)、透明ヒータ、赤外線通信用デバイス、赤外線センサ、熱線反射材、電磁波遮断材、帯電防止剤等が含まれるが、これらに限定されない。  Applications of the substrate with the transparent conductive film are not limited to photoelectric conversion elements described below, and examples include, but are not limited to, various photodetection elements, displays, wearable devices, thin film transistors (TFTs), transparent heaters, infrared communication devices, infrared sensors, heat ray reflecting materials, electromagnetic wave blocking materials, antistatic agents, etc.
 3.光電変換素子
 上述の透明導電膜は、光電変換層と、当該光電変換層に隣接して配置された、少なくとも一層の導電膜を含む第1電極と、当該光電変換層に隣接して配置された、少なくとも一層の導電膜を含む第2電極と、を有する光電変換素子の、第1電極および第2電極のいずれか一方、もしくは両方に使用可能である。なお、第1電極や第2電極は、複数層で構成されていてもよい。この場合、第1電極を構成するいずれかの層、もしくは第2電極を構成するいずれかの層が、上述の透明導電膜であればよい。またこのとき、2層以上が上述の透明導電膜であってもよい。なお、光電変換素子の種類によっては、第1電極層や第2電極層に相当する層を、電子輸送層、キャリア選択層、n型バッファ層、(導電性を有する)キャップ層等と称する場合もあるが、上記透明導電膜は、これらの層にも使用可能である。
3. Photoelectric conversion element The above-mentioned transparent conductive film can be used for either one or both of the first and second electrodes of a photoelectric conversion element having a photoelectric conversion layer, a first electrode including at least one conductive film arranged adjacent to the photoelectric conversion layer, and a second electrode including at least one conductive film arranged adjacent to the photoelectric conversion layer. The first electrode and the second electrode may be composed of multiple layers. In this case, any layer constituting the first electrode or any layer constituting the second electrode may be the above-mentioned transparent conductive film. In addition, at this time, two or more layers may be the above-mentioned transparent conductive film. Depending on the type of photoelectric conversion element, the layer corresponding to the first electrode layer or the second electrode layer may be called an electron transport layer, a carrier selection layer, an n-type buffer layer, a (conductive) cap layer, etc., but the above-mentioned transparent conductive film can also be used for these layers.
 本明細書において、「光電変換素子」とは、光エネルギーを電気エネルギーに変換する素子、または電気エネルギーを光エネルギーに変換する素子をいう。光電変換素子の例には、太陽電池、有機EL素子、発光ダイオード、レーザーダイオード等が含まれる。以下、光電変換素子が太陽電池である場合を説明するが、上述の透明導電膜は、有機EL素子等の光出射側の透明電極や金属電極にも使用可能である。 In this specification, the term "photoelectric conversion element" refers to an element that converts light energy into electrical energy, or an element that converts electrical energy into light energy. Examples of photoelectric conversion elements include solar cells, organic EL elements, light-emitting diodes, laser diodes, etc. Below, we will explain the case where the photoelectric conversion element is a solar cell, but the above-mentioned transparent conductive film can also be used for the transparent electrode or metal electrode on the light-emitting side of an organic EL element, etc.
 また、上記透明導電膜を使用可能な太陽電池の種類は特に制限されず、公知のあらゆる種類の太陽電池に使用可能である。以下、いくつかの太陽電池の構成を示すが、上述の透明導電膜を使用可能な太陽電池の構成はこれらに限定されない。 In addition, there are no particular limitations on the type of solar cell that can use the transparent conductive film, and it can be used with any type of solar cell known in the art. Several solar cell configurations are shown below, but the configurations of solar cells that can use the transparent conductive film described above are not limited to these.
 (Siヘテロ接合型太陽電池)
 Siヘテロ接合型太陽電池の構造の一例を図4に示す。当該Siヘテロ接合型太陽電池(以下、単に「太陽電池」とも称する)200は、光電変換層130が、第1電極131および第2電極132によって挟み込まれた構造を有する。なお、当該太陽電池200では、第1電極131側から光が入射する。
(Si heterojunction solar cell)
An example of the structure of a Si heterojunction solar cell is shown in Fig. 4. The Si heterojunction solar cell (hereinafter also simply referred to as a "solar cell") 200 has a structure in which a photoelectric conversion layer 130 is sandwiched between a first electrode 131 and a second electrode 132. In the solar cell 200, light is incident from the first electrode 131 side.
 当該太陽電池200では、第1電極131が、受光側透明電極125およびグリッド電極126で構成され、第2電極132が、裏側透明電極127および金属電極128で構成されている。上述の透明導電膜は、受光側透明電極125および裏側透明電極127のいずれか一方、もしくは両方に使用可能である。なお、いずれか一方のみに上述の透明導電膜を使用する場合、他方は、例えばITO等の公知の透明導電膜とすることができる。太陽電池200のコストを低減する観点では、受光側透明電極125および裏側透明電極127の両方に、上述の透明導電膜を使用することが好ましい。また、受光側透明電極125および裏側透明電極127のいずれか一方、もしくは両方を、複数の導電膜の積層体としてもよく、この場合、受光側透明電極125および裏側透明電極127を構成するいずれかの層に、上述の透明導電膜を使用すればよい。例えば、上述の透明導電膜とITO膜との積層体を受光側透明電極125または裏側透明電極127として使用してもよい。受光側透明電極125または裏側透明電極127の一部に上述の透明導電膜を使用することで、ITO(特にIn)の使用量を低減できるという利点がある。なお、グリッド電極126および金属電極128は、公知の太陽電池の電極と同様であり、Ag、Cu、複合金属等から構成される電極である。また、金属電極128は、図4では全面に形成されているが、グリッド電極126のようにグリッド状でも良く、その場合は、第2電極132側から入射する光も発電に寄与する、両面受光型太陽電池とすることができる。 In the solar cell 200, the first electrode 131 is composed of the light-receiving transparent electrode 125 and the grid electrode 126, and the second electrode 132 is composed of the backside transparent electrode 127 and the metal electrode 128. The above-mentioned transparent conductive film can be used for either or both of the light-receiving transparent electrode 125 and the backside transparent electrode 127. When the above-mentioned transparent conductive film is used for only one of them, the other can be a known transparent conductive film such as ITO. From the viewpoint of reducing the cost of the solar cell 200, it is preferable to use the above-mentioned transparent conductive film for both the light-receiving transparent electrode 125 and the backside transparent electrode 127. In addition, either or both of the light-receiving transparent electrode 125 and the backside transparent electrode 127 may be a laminate of multiple conductive films. In this case, the above-mentioned transparent conductive film may be used for any of the layers constituting the light-receiving transparent electrode 125 and the backside transparent electrode 127. For example, a laminate of the transparent conductive film and the ITO film may be used as the light-receiving transparent electrode 125 or the back transparent electrode 127. By using the transparent conductive film as part of the light-receiving transparent electrode 125 or the back transparent electrode 127, there is an advantage that the amount of ITO (especially In) used can be reduced. The grid electrode 126 and the metal electrode 128 are similar to the electrodes of known solar cells, and are electrodes made of Ag, Cu, composite metals, etc. In addition, the metal electrode 128 is formed on the entire surface in FIG. 4, but it may be in a grid shape like the grid electrode 126. In that case, a bifacial solar cell can be formed in which light incident from the second electrode 132 side also contributes to power generation.
 一方、光電変換層130は、n型単結晶シリコン層120が、p型半導体層122およびn型半導体層124によって挟み込まれた構造を有する。n型単結晶シリコン層120とp型半導体層122との間、およびn型単結晶シリコン層120とn型半導体層124との間には、それぞれi型半導体層121、123が配置されている。 On the other hand, the photoelectric conversion layer 130 has a structure in which an n-type single crystal silicon layer 120 is sandwiched between a p-type semiconductor layer 122 and an n-type semiconductor layer 124. Between the n-type single crystal silicon layer 120 and the p-type semiconductor layer 122, and between the n-type single crystal silicon layer 120 and the n-type semiconductor layer 124, i-type semiconductor layers 121 and 123 are disposed, respectively.
 上記光電変換層130の各層の配置順序は逆であってもよく、n型半導体層が受光面側に、p型半導体層が裏面側に配置されていてもよい。図4に示すような、受光面側に、p型半導体層122、i型半導体層121、およびn型単結晶シリコン層120で構成されるp-i-nジャンクション構造が配置される構造は、通常、フロントジャンクション型と称され、裏面側にp-i-nジャンクション構造が配置される構造は、リアジャンクション型と称される。本発明の太陽電池は、フロントジャンクション型であってもよく、リアジャンクション型であってもよい。また、本明細書では、光電変換層130がn型単結晶シリコン層120を有する場合を例に説明するが、光電変換層130は、n型単結晶シリコン層120をp型単結晶シリコン層に置き換えた構造であってもよい。さらに、p型半導体層およびn型半導体層がそれぞれ裏面側に櫛歯状に配置された構造であってもよい。このとき、受光面側には、p型半導体層またはn型半導体層のいずれかを配置してもよく、受光面側にはこれらを配置しなくてもよい。 The order of arrangement of the layers of the photoelectric conversion layer 130 may be reversed, and the n-type semiconductor layer may be arranged on the light receiving surface side and the p-type semiconductor layer may be arranged on the back surface side. As shown in FIG. 4, a structure in which a p-i-n junction structure consisting of a p-type semiconductor layer 122, an i-type semiconductor layer 121, and an n-type single crystal silicon layer 120 is arranged on the light receiving surface side is usually called a front junction type, and a structure in which a p-i-n junction structure is arranged on the back surface side is called a rear junction type. The solar cell of the present invention may be a front junction type or a rear junction type. In addition, in this specification, the photoelectric conversion layer 130 is described as having an n-type single crystal silicon layer 120 as an example, but the photoelectric conversion layer 130 may have a structure in which the n-type single crystal silicon layer 120 is replaced with a p-type single crystal silicon layer. Furthermore, the p-type semiconductor layer and the n-type semiconductor layer may each be arranged in a comb-tooth shape on the back surface side. In this case, either a p-type semiconductor layer or an n-type semiconductor layer may be disposed on the light-receiving surface side, or neither of these may be disposed on the light-receiving surface side.
 当該光電変換層130のn型単結晶シリコン層120は、公知の太陽電池のn型単結晶シリコン層と同様であり、例えばリン(P)等のn型不純物が導入されたn型単結晶シリコンからなる層である。ここで、n型単結晶シリコン層120の受光面側および裏面側の表面は、(100)面で構成される平坦な面であってもよいが、いずれか一方の面、もしくは両面に、シリコン(111)ファセット面で構成されるランダムピラミッドテクスチャ構造が形成されていることが好ましく、両面にランダムピラミッドテクスチャ構造が形成されていることがより好ましい。n型単結晶シリコン層120の受光面側および裏面側にそれぞれランダムピラミッドテクスチャ構造が形成されていると、n型単結晶シリコン層120に入射する光が、その表面で反射され難く、さらに入射した光が、光閉じ込め効果によって出射し難い。したがって、太陽電池200の光電変換効率が高まりやすくなる。 The n-type single crystal silicon layer 120 of the photoelectric conversion layer 130 is similar to the n-type single crystal silicon layer of a known solar cell, and is a layer made of n-type single crystal silicon into which n-type impurities such as phosphorus (P) have been introduced. Here, the light-receiving surface side and the back surface side of the n-type single crystal silicon layer 120 may be flat surfaces composed of (100) planes, but it is preferable that a random pyramid texture structure composed of silicon (111) facets is formed on one or both surfaces, and it is more preferable that a random pyramid texture structure is formed on both surfaces. When a random pyramid texture structure is formed on each of the light-receiving surface side and the back surface side of the n-type single crystal silicon layer 120, light incident on the n-type single crystal silicon layer 120 is less likely to be reflected on the surface, and further, the incident light is less likely to be emitted due to the light trapping effect. Therefore, the photoelectric conversion efficiency of the solar cell 200 is likely to be increased.
 一方、p型半導体層122の例には、例えばボロン(B)等のp型不純物が導入された、p型の水素を含む非晶質シリコン(本明細書において、「(p)a-Si:H」とも称する)からなる層が含まれる。ただし、上述の透明導電膜とp型半導体層122とを隣接して配置する場合、p型半導体層122を、水素化非晶質シリコン層内にp型微結晶シリコンを含むp型微結晶シリコン(本明細書では「(p)nc-Si:H」とも称する)層とすることが好ましい。あるいは、p型半導体層122を、p型微結晶シリコンの合金層、例えば中の水素化非晶質シリコン層に酸素を添加したp型微結晶シリコンオキサイド(本明細書では「(p)nc-SiOx:H」とも称する)層としてもよい。微結晶シリコンオキサイドは、酸素濃度が高いほど透明性が増す。一方で、酸素濃度が高いほど電気伝導率が低下するため、適切な範囲の酸素濃度を選ぶ必要があり、xは、0.1以上1.5以下が好ましい。これらの層に含まれる微結晶シリコン相は、微小なシリコン結晶子からなり、その結晶サイズはナノメートルオーダーが好ましい。後述の実施例で詳しく示すように、上述の透明導電膜と、(p)a-Si:H膜とを隣接して配置すると、太陽電池200の直列抵抗が大きくなることがある。その結果、透明電極(ここでは受光側透明電極125)としてITO膜を使用した場合と比較して、曲線因子の低下が見られることがある。これに対し、上述の透明導電膜と、(p)nc-Si:H膜または(p)nc-SiO:H膜とを隣接して配置すると、直列抵抗が大きくならず、ITOを透明電極とした場合と遜色がない電気特性が得られる。このように良好な電気特性が得られる理由としては、(p)a-Si:Hに較べて(p)nc-Si:Hや(p)nc-SiO:H膜ではキャリア濃度を高めることができる。その結果、透明導電膜とp型層の界面に生じる空乏層厚さが小さくなり、トンネル効果によるキャリア移動が可能となって抵抗が低減されるためと考えられる。 On the other hand, examples of the p-type semiconductor layer 122 include a layer made of p-type hydrogen-containing amorphous silicon (also referred to as "(p)a-Si:H" in this specification) into which p-type impurities such as boron (B) have been introduced. However, when the above-mentioned transparent conductive film and the p-type semiconductor layer 122 are arranged adjacent to each other, it is preferable that the p-type semiconductor layer 122 is a p-type microcrystalline silicon (also referred to as "(p)nc-Si:H" in this specification) layer containing p-type microcrystalline silicon in a hydrogenated amorphous silicon layer. Alternatively, the p-type semiconductor layer 122 may be an alloy layer of p-type microcrystalline silicon, for example, a p-type microcrystalline silicon oxide (also referred to as "(p)nc-SiO x :H" in this specification) layer in which oxygen has been added to the hydrogenated amorphous silicon layer in the middle. The higher the oxygen concentration of the microcrystalline silicon oxide, the more transparent it becomes. On the other hand, since the higher the oxygen concentration, the lower the electrical conductivity, it is necessary to select an appropriate range of oxygen concentration, and x is preferably 0.1 to 1.5. The microcrystalline silicon phase contained in these layers is composed of minute silicon crystallites, and the crystal size is preferably on the order of nanometers. As will be described in detail in the examples below, when the above-mentioned transparent conductive film and the (p)a-Si:H film are arranged adjacent to each other, the series resistance of the solar cell 200 may increase. As a result, a decrease in the fill factor may be observed compared to when an ITO film is used as the transparent electrode (here, the light-receiving side transparent electrode 125). In contrast, when the above-mentioned transparent conductive film and the (p)nc-Si:H film or the (p)nc-SiO x :H film are arranged adjacent to each other, the series resistance does not increase, and electrical characteristics that are comparable to those when ITO is used as the transparent electrode are obtained. The reason why such good electrical characteristics are obtained is that the carrier concentration can be increased in the (p)nc-Si:H or (p)nc-SiO x :H film compared to the (p)a-Si:H film. As a result, it is believed that the thickness of the depletion layer generated at the interface between the transparent conductive film and the p-type layer becomes smaller, enabling carrier movement due to the tunnel effect and reducing resistance.
 また、n型半導体層124の例には、例えばリン(P)等のn型不純物が導入された、水素を含む非晶質シリコン(本明細書において、「(n)a-Si:H」とも称する)からなる層が含まれる。ただし、上述の透明導電膜とn型半導体層124とを隣接して配置する場合、n型半導体層124を、水素化非晶質シリコン層内にn型微結晶シリコンを含むn型微結晶シリコン(本明細書では「(n)nc-Si:H」とも称する)層とすることが好ましい。あるいは、n型半導体層124をn型微結晶シリコンの合金層、例えばn型微結晶シリコン中の水素化非晶質シリコン層に酸素を添加したn型微結晶シリコンオキサイド(本明細書では「(n)nc-SiOx:H」とも称する)層としてもよい。微結晶シリコンオキサイドは、酸素濃度が高いほど透明性が増す。一方で、酸素濃度が高いほど電気伝導率が低下するため、適切な範囲の酸素濃度を選ぶ必要があり、xは、0.1以上1.5以下が好ましい。これらの層に含まれる微結晶シリコン相は、微小なシリコン結晶子からなり、その結晶サイズはナノメートルオーダーが好ましい。後述の実施例で詳しく示すように、上述の透明導電膜と、(n)a-Si:H膜とを隣接して配置した場合にも、太陽電池200の直列抵抗が大きくなることがある。これに対し、上述の透明導電膜と、(n)nc-Si:H膜または(n)nc-SiO:H膜とを隣接して配置すると、直列抵抗が大きくならず、ITOを透明電極とした場合と遜色がない電気特性が得られる。 Examples of the n-type semiconductor layer 124 include a layer made of hydrogen-containing amorphous silicon (also referred to as "(n) a-Si:H" in this specification) into which n-type impurities such as phosphorus (P) have been introduced. However, when the above-mentioned transparent conductive film and the n-type semiconductor layer 124 are disposed adjacent to each other, it is preferable that the n-type semiconductor layer 124 is an n-type microcrystalline silicon (also referred to as "(n) nc-Si:H" in this specification) layer containing n-type microcrystalline silicon in a hydrogenated amorphous silicon layer. Alternatively, the n-type semiconductor layer 124 may be an alloy layer of n-type microcrystalline silicon, for example, an n-type microcrystalline silicon oxide (also referred to as "(n) nc-SiO x :H" in this specification) layer in which oxygen is added to a hydrogenated amorphous silicon layer in n-type microcrystalline silicon. The higher the oxygen concentration of the microcrystalline silicon oxide, the more transparent it becomes. On the other hand, since the higher the oxygen concentration, the lower the electrical conductivity, it is necessary to select an appropriate range of oxygen concentration, and x is preferably 0.1 to 1.5. The microcrystalline silicon phase contained in these layers is composed of minute silicon crystallites, and the crystal size is preferably on the order of nanometers. As will be described in detail in the examples below, even when the above-mentioned transparent conductive film and the (n) a-Si:H film are arranged adjacent to each other, the series resistance of the solar cell 200 may increase. In contrast, when the above-mentioned transparent conductive film and the (n) nc-Si:H film or the (n) nc-SiO x :H film are arranged adjacent to each other, the series resistance does not increase, and electrical characteristics that are comparable to those when ITO is used as a transparent electrode can be obtained.
 また、i型半導体層121、123は、公知の太陽電池のi型半導体層と同様であり、例えば、水素を添加した真性非晶質シリコン(本明細書において、「(i)a-Si:H」とも称する)からなる層である。 The i-type semiconductor layers 121 and 123 are similar to the i-type semiconductor layers of known solar cells, and are, for example, layers made of intrinsic amorphous silicon with added hydrogen (also referred to as "(i) a-Si:H" in this specification).
 当該太陽電池200では、グリッド電極126側から入射した光が、透明電極125や、p型半導体層122、i型半導体層121を介して、n型単結晶シリコン層120に入射する。当該n型単結晶シリコン層120に入射した光のうち、シリコンのバンドギャップより大きな光エネルギーによって、n型結晶シリコンが励起され、電子正孔対が形成される。電子(e)は、金属電極128側に移動する。一方、正孔(h)は、グリッド電極126側に移動し、太陽電池200が動作する。 In the solar cell 200, light incident from the grid electrode 126 side is incident on the n-type single crystal silicon layer 120 through the transparent electrode 125, the p-type semiconductor layer 122, and the i-type semiconductor layer 121. Of the light incident on the n-type single crystal silicon layer 120, the light energy larger than the band gap of silicon excites the n-type crystalline silicon, forming electron-hole pairs. The electrons (e - ) move to the metal electrode 128 side. On the other hand, the holes (h + ) move to the grid electrode 126 side, and the solar cell 200 operates.
 上記太陽電池200の製造方法は特に制限されない。例えば公知の方法により、光電変換層130を形成し、当該光電変換層130上に、受光側透明電極125および裏側透明電極127をそれぞれ形成する。受光側透明電極125または裏側透明電極127として、ITO膜を形成する場合には、スパッタリング法等によって形成可能である。一方、受光側透明電極125や裏側透明電極127として、上述の透明導電膜を形成する場合、上述の反応性プラズマ堆積法等によって成膜可能である。上述のように、非晶質のSnOを含む透明導電膜は、比較的低温(例えば300℃以下)で成膜可能である。したがって、光電変換層130上に積層しても、光電変換層130中の各層を劣化させ難い、という利点がある。なお、受光側透明電極125および裏側透明電極127の作製後、上述のグリッド電極126および金属電極128を公知の方法で作製する。 The manufacturing method of the solar cell 200 is not particularly limited. For example, the photoelectric conversion layer 130 is formed by a known method, and the light-receiving transparent electrode 125 and the back transparent electrode 127 are formed on the photoelectric conversion layer 130. When an ITO film is formed as the light-receiving transparent electrode 125 or the back transparent electrode 127, it can be formed by a sputtering method or the like. On the other hand, when the above-mentioned transparent conductive film is formed as the light-receiving transparent electrode 125 or the back transparent electrode 127, it can be formed by the above-mentioned reactive plasma deposition method or the like. As described above, the transparent conductive film containing amorphous SnO 2 can be formed at a relatively low temperature (for example, 300° C. or less). Therefore, even if it is laminated on the photoelectric conversion layer 130, there is an advantage that each layer in the photoelectric conversion layer 130 is unlikely to deteriorate. After the light-receiving transparent electrode 125 and the back transparent electrode 127 are formed, the above-mentioned grid electrode 126 and metal electrode 128 are formed by a known method.
 (ペロブスカイト型太陽電池)
 上述の透明導電膜は、例えばペロブスカイト型太陽電池にも適用可能である。ペロブスカイト型太陽電池の構造の一例を図5に示す。当該ペロブスカイト型太陽電池400は、基板/第1電極/第1バッファ層/光吸収(ハライド系ペロブスカイト材料)層/第2バッファ層/第2電極がこの順に積層された構造を有する。第1バッファ層と第2バッファ層は、いずれかが正孔輸送層として機能し、他方が電子輸送層として機能する。当該ペロブスカイト型太陽電池が、より優れた変換効率を達成するためには、これらの層を具備することが望ましいが、実施形態においては必ずしも必須ではなく、これらのいずれか、または両方が具備されていなくても良い。また第1バッファ層および第2バッファ層の両方または一方は、異なる材料が積層された構造を有していてもよい。当該ペロブスカイト型太陽電池は、第2電極から光が入射してもよく基板側から光が入射してもよい。上述の透明導電膜は、当該ペロブスカイト型太陽電池の第1電極および第2電極のいずれか一方、または両方に使用可能である。
(Perovskite solar cells)
The transparent conductive film described above can also be applied to, for example, perovskite solar cells. An example of the structure of a perovskite solar cell is shown in FIG. 5. The perovskite solar cell 400 has a structure in which a substrate/first electrode/first buffer layer/light absorbing (halide-based perovskite material) layer/second buffer layer/second electrode are laminated in this order. Either the first buffer layer or the second buffer layer functions as a hole transport layer, and the other functions as an electron transport layer. In order to achieve a better conversion efficiency, it is desirable for the perovskite solar cell to have these layers, but this is not necessarily required in the embodiment, and either or both of these may not be provided. In addition, both or one of the first buffer layer and the second buffer layer may have a structure in which different materials are laminated. The perovskite solar cell may receive light from the second electrode or from the substrate side. The above-mentioned transparent conductive film can be used for either or both of the first electrode and the second electrode of the perovskite solar cell.
 なお、第1電極や第2電極はそれぞれ、複数の導電膜の積層体であってもよく、この場合、いずれかの層に上記透明導電膜を使用すればよい。第1電極や第2電極が複数層の導電膜の積層体である場合、第1電極や第2電極は、上述の透明導電膜とITO膜との2層構造としたり、上記透明導電膜/ITO膜/上記透明導電膜の3層構造としたりしてもよい。従来の導電層や対極は、ITO膜からなることが一般的であるが、一部に上述の透明導電膜を使用することで、ITO(特にIn)の使用量を低減できるという利点がある。 The first electrode and the second electrode may each be a laminate of multiple conductive films, in which case the transparent conductive film may be used for one of the layers. When the first electrode and the second electrode are a laminate of multiple conductive films, the first electrode and the second electrode may have a two-layer structure of the transparent conductive film and an ITO film, or a three-layer structure of the transparent conductive film/ITO film/transparent conductive film. Conventional conductive layers and counter electrodes are generally made of an ITO film, but using the transparent conductive film as part of the film has the advantage of reducing the amount of ITO (especially In) used.
 また、上述の透明導電膜は、比較的低温で成膜可能である。したがって、上記透明導電膜を導電層に用いる場合、基板として、ガラス板等の無機材料からなる基板だけでなく、樹脂からなる基板やフィルムを使用可能である。なお、当該ペロブスカイト型の各層の材料は、公知のペロブスカイト型太陽電池の各層の材料と同様である。 The transparent conductive film described above can be formed at a relatively low temperature. Therefore, when the transparent conductive film is used as a conductive layer, not only substrates made of inorganic materials such as glass plates, but also substrates or films made of resins can be used as substrates. The materials of each layer of the perovskite type are the same as the materials of each layer of known perovskite type solar cells.
 (その他の太陽電池)
 上述のSiヘテロ接合型太陽電池やペロブスカイト太陽電池以外の太陽電池、例えばTOPCon(Tunnel Oxide Passivated Contact)型の太陽電池や、CdTe太陽電池、CuInSeに代表されるI-III-VI族化合物太陽電池、CuZnSnSに代表されるI-II-IV-VI族化合物太陽電池、CuSnSに代表されるI-IV-VI族化合物太陽電池、CuSに代表されるI-VI族化合物太陽電池、SnSに代表されるII-VI族化合物太陽電池、上記ペロブスカイト型太陽電池とSi系太陽電池等とを組み合わせた多接合構造の太陽電池等、いずれの構造の太陽電池の電極にも、上述の透明導電膜を使用可能である。なお、ここでのTOPCon型の太陽電池は、トンネル酸化膜上の半導体層の上に上述の透明導電膜を積層した構造を有する。いずれの態様においても、上述の透明導電膜を単層で電極として使用してもよく、ITO膜等の公知の導電膜と上述の透明導電膜との積層体を電極として使用してもよい。
(Other solar cells)
The transparent conductive film can be used for the electrodes of solar cells having any structure, such as solar cells other than the above-mentioned Si heterojunction solar cells and perovskite solar cells, for example, TOPCon (Tunnel Oxide Passivated Contact) type solar cells, CdTe solar cells, I-III-VI 2 group compound solar cells represented by CuInSe 2 , I 2 -II-IV-VI 4 group compound solar cells represented by Cu 2 ZnSnS 4 , I 2 -IV-VI 3 group compound solar cells represented by Cu 2 SnS 3 , I 2 -VI group compound solar cells represented by Cu 2 S, II-VI group compound solar cells represented by SnS, solar cells with a multi-junction structure combining the above-mentioned perovskite solar cells and Si-based solar cells, etc. The TOPCon type solar cell here has a structure in which the above-mentioned transparent conductive film is laminated on a semiconductor layer on a tunnel oxide film. In any embodiment, the above-mentioned transparent conductive film may be used as a single layer as an electrode, or a laminate of a known conductive film such as an ITO film and the above-mentioned transparent conductive film may be used as an electrode.
 以下、本発明を実施例により更に詳細に説明する。しかしながら、本発明の範囲はこれによって何ら制限を受けない。 The present invention will be described in more detail below with reference to examples. However, the scope of the present invention is not limited by these in any way.
 1.透明導電膜の作製
 本発明の透明導電膜の光学的特性および導電性を、従来の透明導電膜(In膜)の光学特性および導電性と以下の方法で比較し、評価した。
1. Preparation of Transparent Conductive Film The optical properties and conductivity of the transparent conductive film of the present invention were compared with those of a conventional transparent conductive film (In 2 O 3 film) and evaluated by the following method.
 (実施例1-1)
 以下の反応性プラズマ堆積法により、透明導電膜を作製した。
 基板として、熱酸化膜(厚さ50nm)付きSi基板(寸法30mm×30mm)および無アルカリガラス基板(コーニング社製XG)(寸法100mm×100mm)を準備し、図3に示す反応性プラズマ堆積装置100の所定の位置にそれぞれ固定した。また、透明導電膜の材料SnO焼結体を準備し、反応性プラズマ堆積装置100のハース部10内に収納した。チャンバー40内での基板1の温度は非加熱(室温)とした。さらに、当該反応性プラズマ堆積装置100のチャンバー40内にArとOガスとを導入し、チャンバー40内の圧力を0.4Pa(酸素分圧0.3Pa)に調整した。そして、プラズマガン20からプラズマビーム21を出射させ、プラズマビームコントローラ30によって、プラズマビーム21が材料に垂直に入射するように、プラズマビーム21の位置を調整した。このとき、放電電流値は150mAとした。当該条件で0.7分成膜を行い、厚み70nmの透明導電膜(SnO膜)を得た。
(Example 1-1)
A transparent conductive film was prepared by the following reactive plasma deposition method.
As the substrate, a Si substrate (dimensions 30 mm x 30 mm) with a thermal oxide film (thickness 50 nm) and an alkali-free glass substrate (XG manufactured by Corning) (dimensions 100 mm x 100 mm) were prepared and fixed at a predetermined position of the reactive plasma deposition apparatus 100 shown in FIG. 3. In addition, a SnO2 sintered body, a material for a transparent conductive film, was prepared and stored in the hearth part 10 of the reactive plasma deposition apparatus 100. The temperature of the substrate 1 in the chamber 40 was unheated (room temperature). Furthermore, Ar and O2 gas were introduced into the chamber 40 of the reactive plasma deposition apparatus 100, and the pressure in the chamber 40 was adjusted to 0.4 Pa (oxygen partial pressure 0.3 Pa). Then, the plasma beam 21 was emitted from the plasma gun 20, and the position of the plasma beam 21 was adjusted by the plasma beam controller 30 so that the plasma beam 21 was perpendicularly incident on the material. At this time, the discharge current value was set to 150 mA. The film was formed under these conditions for 0.7 minutes, and a transparent conductive film ( SnO2 film) with a thickness of 70 nm was obtained.
 作製した透明導電膜について、下記条件でX線回折強度(XRD強度)を測定したところ、ピークが確認されず、SnOが非晶質であることが確認された。
 (測定条件)
 装置:RIGAKU SmartLab
 X線:Cu Kα線
 出力:9kW
When the X-ray diffraction intensity (XRD intensity) of the produced transparent conductive film was measured under the following conditions, no peak was confirmed, and it was confirmed that SnO2 was amorphous.
(Measurement conditions)
Equipment: RIGAKU SmartLab
X-ray: Cu Kα ray Output: 9kW
 さらに、作製した透明導電膜の組成をICP分析法で確認したところ、構成する金属元素はSnのみであり、Inは定量下限以下であった。さらに、比抵抗をロレスタ(低抵抗率計)により測定したところ、1.2×10-3Ω・cmであった。 Furthermore, when the composition of the produced transparent conductive film was confirmed by ICP analysis, the only constituent metal element was Sn, and the amount of In was below the lower limit of quantification. Furthermore, when the resistivity was measured by a Loresta (low resistivity meter), it was 1.2×10 −3 Ω·cm.
 熱酸化膜付きSi基板上の当該透明導電膜について、分光エリプソメトリー装置により、波長200nm以上1200nm以下の光の反射光を測定した。入射光と反射光の偏光状態の変化、波長420nm以上500nm以下の光の最大消衰係数kを確認したところ、当該範囲における最大消衰係数kは、0.018であった。さらに、透明導電膜の波長420nm以上500nm以下における屈折率nは2.09~2.17であった。 The reflected light of light with wavelengths of 200 nm to 1200 nm was measured for the transparent conductive film on the thermally-oxidized Si substrate using a spectroscopic ellipsometry device. The change in the polarization state of the incident light and reflected light, and the maximum extinction coefficient k of light with wavelengths of 420 nm to 500 nm were confirmed, and the maximum extinction coefficient k in that range was found to be 0.018. Furthermore, the refractive index n of the transparent conductive film for wavelengths of 420 nm to 500 nm was 2.09 to 2.17.
 さらに、コーニング社製XGガラス基板上に作製した当該透明導電膜について、分光光度計により、波長220nm以上2500nm以下の光の透過スペクトル、反射スペクトルを測定した。得られたスペクトルから、波長420nm以上500nm以下の光の最大吸収係数αを確認したところ、当該範囲における最大吸収係数αは、3219cm-1であった。 Furthermore, the transmission spectrum and reflection spectrum of light having a wavelength of 220 nm or more and 2500 nm or less were measured using a spectrophotometer for the transparent conductive film formed on an XG glass substrate manufactured by Corning Inc. From the obtained spectrum, the maximum absorption coefficient α of light having a wavelength of 420 nm or more and 500 nm or less was confirmed, and the maximum absorption coefficient α in this range was 3219 cm -1 .
 また、上記透明導電膜を温度85℃、湿度85%の恒温恒湿槽に1000時間投入後、比抵抗を上記と同様に測定したところ、1.1×10-3Ω・cmであり、耐湿性も優れることが確認された。また、比較として、FTOコートガラス基板(AGCファブリテック社製type-VU)、比抵抗1.1×10-3Ω・cmについても、同様の試験を行ったところ、試験後の比抵抗が1.1×10-3Ω・cmであった。つまり、上記透明導電膜(SnO膜)は、FTO膜と比較して遜色のない耐湿性を有していることが確認された。 In addition, the transparent conductive film was placed in a thermo-hygrostat at a temperature of 85° C. and a humidity of 85% for 1000 hours, and the resistivity was measured in the same manner as above, and it was found to be 1.1×10 −3 Ω·cm, confirming that the moisture resistance was also excellent. In addition, for comparison, a similar test was also performed on an FTO-coated glass substrate (type-VU manufactured by AGC Fabritech Co., Ltd.) with a resistivity of 1.1×10 −3 Ω·cm, and the resistivity after the test was 1.1×10 −3 Ω·cm. In other words, it was confirmed that the transparent conductive film (SnO 2 film) has moisture resistance comparable to that of an FTO film.
 (実施例1-2)
 実施例1-1と同様の反応性プラズマ堆積法により、基板上に厚み70nmの非晶質のSnO膜(透明導電膜)を作製し、当該透明導電膜を、窒素雰囲気下、200℃で0.5時間アニール処理した。アニール処理後の透明導電膜の比抵抗をロレスタ(低抵抗率計)により測定したところ、9.1×10-4Ω・cmであった。
(Example 1-2)
An amorphous SnO2 film (transparent conductive film) having a thickness of 70 nm was prepared on a substrate by the same reactive plasma deposition method as in Example 1-1, and the transparent conductive film was annealed for 0.5 hours at 200° C. in a nitrogen atmosphere. The resistivity of the transparent conductive film after the annealing treatment was measured by a Loresta (low resistivity meter) and found to be 9.1× 10−4 Ω·cm.
 さらに、アニール処理後の熱酸化膜付きSi基板上の当該透明導電膜について、分光エリプソメトリー装置により、波長200nm以上1200nm以下の光の反射光を測定した。入射光と反射光の偏光状態の変化、波長420nm以上500nm以下の光の最大消衰係数kを確認したところ、当該範囲における最大消衰係数kは、0.021であった。さらに、透明導電膜の波長420nm以上500nm以下における屈折率nは2.08~2.16であった。コーニング社製XGガラス基板上に作製した当該透明導電膜について、分光光度計により、波長220nm以上2500nm以下の光の透過スペクトル、反射スペクトルを測定した。得られたスペクトルから、波長420nm以上500nm以下の光の最大吸収係数αを確認したところ、当該範囲における最大吸収係数αは、5740cm-1であった。 Furthermore, the reflected light of light having a wavelength of 200 nm or more and 1200 nm or less was measured for the transparent conductive film on the thermally oxidized Si substrate after the annealing treatment by a spectroscopic ellipsometry device. The change in the polarization state of the incident light and the reflected light, and the maximum extinction coefficient k of light having a wavelength of 420 nm or more and 500 nm or less were confirmed, and the maximum extinction coefficient k in the said range was 0.021. Furthermore, the refractive index n of the transparent conductive film in the wavelength range of 420 nm or more and 500 nm or less was 2.08 to 2.16. The transmission spectrum and reflection spectrum of light having a wavelength of 220 nm or more and 2500 nm or less were measured by a spectrophotometer for the transparent conductive film formed on the Corning XG glass substrate. The maximum absorption coefficient α of light having a wavelength of 420 nm or more and 500 nm or less was confirmed from the obtained spectrum, and the maximum absorption coefficient α in the said range was 5740 cm -1 .
 また、上記透明導電膜を温度85℃、湿度85%の恒温恒湿槽に1000時間投入後、比抵抗を上記と同様に測定したところ、9.6×10-4Ω・cmであり、耐湿性も優れることが確認された。 Furthermore, when the transparent conductive film was placed in a thermo-hygrostat at a temperature of 85° C. and a humidity of 85% for 1000 hours and the resistivity was measured in the same manner as above, it was 9.6×10 −4 Ω·cm, confirming that the film also had excellent moisture resistance.
 (参考例1)
 熱酸化膜(厚さ50nm)付きSi基板(寸法50mm×50mm)からなる基板上に、スパッタリング法により、非晶質の水素含有In(a-In:H)膜(透明導電膜)を作製した。当該a-In:H膜の厚みは70nmとした。また、当該透明導電膜の比抵抗をロレスタ(低抵抗率計)により測定したところ、5.4×10-4Ω・cmであった。
(Reference Example 1)
An amorphous hydrogen-containing In 2 O 3 (a-In 2 O 3 :H) film (transparent conductive film) was produced by sputtering on a substrate consisting of a Si substrate (dimensions 50 mm x 50 mm) with a thermal oxide film (thickness 50 nm). The thickness of the a-In 2 O 3 :H film was 70 nm. The resistivity of the transparent conductive film was measured with a Loresta (low resistivity meter) and found to be 5.4 x 10 -4 Ω·cm.
 当該透明導電膜(a-In:H膜)について、分光エリプソメトリー装置により、波長200nm以上1200nm以下の光の反射光を測定し、入射光と反射光の偏光状態の変化より当該範囲の消衰係数kを特定した。さらに、当該範囲の屈折率nも特定した。 The reflected light of the transparent conductive film (a-In 2 O 3 :H film) with wavelengths of 200 nm to 1200 nm was measured using a spectroscopic ellipsometry device, and the extinction coefficient k in the range was determined from the change in the polarization state of the incident light and the reflected light. Furthermore, the refractive index n in the range was also determined.
 (評価)
 図6に、上記実施例1-1および1-2、ならびに参考例1で作製した各透明導電膜の波長200nm以上1200nm以下における消衰係数kおよび屈折率nを示す。図6に示すように、実施例1-1および実施例1-2で作製した非晶質のSnO膜は、消衰係数kおよび屈折率nともに、参考例1の非晶質のIn:H膜と略同等であり、本発明の透明導電膜は優れた光学特性を有していた。また、上述のように、実施例1―1および実施例1-2で作製した透明導電膜の比抵抗は、1.2×10-3Ω・cm以下であり、いずれも優れた導電性を示した。
(evaluation)
Fig. 6 shows the extinction coefficient k and refractive index n at wavelengths of 200 nm or more and 1200 nm or less for each transparent conductive film produced in Examples 1-1 and 1-2 and Reference Example 1. As shown in Fig. 6, the amorphous SnO 2 films produced in Examples 1-1 and 1-2 have almost the same extinction coefficient k and refractive index n as the amorphous In 2 O 3 :H film of Reference Example 1, and the transparent conductive film of the present invention has excellent optical properties. Also, as described above, the resistivity of the transparent conductive films produced in Examples 1-1 and 1-2 was 1.2 x 10 -3 Ω cm or less, and all of them showed excellent conductivity.
 (実施例1-3)
 基板として、PET(ポリエチレンテレフタラート)基板(寸法100mm×100mm)および無アルカリガラス基板(コーニング社製XG)(寸法100mm×100mm)を準備した。実施例1-1と同様に反応性プラズマ堆積法により、基板上に厚み70nmの非晶質のSnO膜(透明導電膜)を作製した。得られた透明導電膜の比抵抗をロレスタ(低抵抗率計)により測定したところ、PET基板上では、1.27×10-3Ω・cmであり、ガラス基板上では、1.37×10-3Ω・cmであった。
(Examples 1 to 3)
As the substrates, a PET (polyethylene terephthalate) substrate (dimensions 100 mm x 100 mm) and an alkali-free glass substrate (XG manufactured by Corning Incorporated) (dimensions 100 mm x 100 mm) were prepared. An amorphous SnO 2 film (transparent conductive film) having a thickness of 70 nm was produced on the substrate by reactive plasma deposition in the same manner as in Example 1-1. The resistivity of the obtained transparent conductive film was measured by a Loresta (low resistivity meter) and found to be 1.27 x 10 -3 Ω·cm on the PET substrate and 1.37 x 10 -3 Ω·cm on the glass substrate.
 (実施例1-4)
 基板として、SiO付PET基板(寸法100mm×100mm)および無アルカリガラス基板(コーニング社製XG)(寸法100mm×100mm)を準備した。実施例1-1と同様に反応性プラズマ堆積法により、基板上に厚み70nmの非晶質のSnO膜(透明導電膜)を作製した。得られた透明導電膜の比抵抗をロレスタ(低抵抗率計)により測定したところ、SiO付PET基板1.34×10-3Ω・cmであり、ガラス基板上では、1.34×10-3Ω・cmであった。
(Examples 1 to 4)
As the substrates, a PET substrate with SiO2 (dimensions 100 mm x 100 mm) and an alkali-free glass substrate (XG manufactured by Corning Incorporated) (dimensions 100 mm x 100 mm) were prepared. An amorphous SnO2 film (transparent conductive film) with a thickness of 70 nm was produced on the substrate by reactive plasma deposition in the same manner as in Example 1-1. The resistivity of the obtained transparent conductive film was measured by Loresta (low resistivity meter) to find that the resistivity was 1.34 x 10-3 Ω·cm for the PET substrate with SiO2 and 1.34 x 10-3 Ω·cm for the glass substrate.
 (評価)
 それぞれの透明導電膜付基板について、波長220nm以上2500nm以下の光の透過スペクトル、反射スペクトルを測定した。図7Aに、PET基板のみ、PET基板および透明導電膜(実施例1-3)、SiO付PET基板および透明導電膜(実施例1-4)の透過スペクトルおよび反射スペクトルを示す。図7Bに、ガラス基板のみ、ガラス基板および透明導電膜(実施例1-3)、ガラス基板および透明導電膜(実施例1-4)の透過スペクトルおよび反射スペクトルを示す。図7Aおよび図7Bに示すように、PET基板上や、SiO付PET基板上に、反応性プラズマ堆積法によって、基板にダメージを与えることなく、所望の透明導電膜(a-SnO膜)を形成することが可能であった。また、上述のように、実施例1―1および実施例1-2で作製した透明導電膜の比抵抗は、1.37×10-3Ω・cm以下であり、いずれも優れた導電性を示した。
(evaluation)
For each transparent conductive film-attached substrate, the transmission spectrum and reflection spectrum of light having a wavelength of 220 nm or more and 2500 nm or less were measured. FIG. 7A shows the transmission spectrum and reflection spectrum of the PET substrate only, the PET substrate and the transparent conductive film (Example 1-3), and the PET substrate with SiO 2 and the transparent conductive film (Example 1-4). FIG. 7B shows the transmission spectrum and reflection spectrum of the glass substrate only, the glass substrate and the transparent conductive film (Example 1-3 ), and the glass substrate and the transparent conductive film (Example 1-4). As shown in FIG. 7A and FIG. 7B, it was possible to form a desired transparent conductive film (a-SnO 2 film) on the PET substrate and the PET substrate with SiO 2 by the reactive plasma deposition method without damaging the substrate. In addition, as described above, the resistivity of the transparent conductive films prepared in Examples 1-1 and 1-2 was 1.37×10 −3 Ω·cm or less, and both showed excellent conductivity.
 (実施例1-5~実施例1-9)
 透明導電膜の材料を、以下の表3に示す酸化金属の焼結体とした以外は、実施例1-1と同様に透明導電膜を得た。得られた透明導電膜の比抵抗を合わせて表3に示す。さらに、当該透明導電膜を窒素雰囲気下、250℃で0.5時間アニール処理したときの比抵抗も表3に示す。
(Examples 1-5 to 1-9)
A transparent conductive film was obtained in the same manner as in Example 1-1, except that the material of the transparent conductive film was a sintered body of a metal oxide shown in Table 3 below. The resistivity of the obtained transparent conductive film is also shown in Table 3. Furthermore, the resistivity when the transparent conductive film was annealed in a nitrogen atmosphere at 250° C. for 0.5 hours is also shown in Table 3.
 (実施例1-10)
 透明導電膜の材料を、以下の表3に示す酸化金属の焼結体とした以外は、実施例1-1と同様に透明導電膜を得た。得られた透明導電膜の比抵抗を合わせて表3に示す。さらに、当該透明導電膜を窒素雰囲気下、200℃で0.5時間アニール処理したときの比抵抗も表3に示す。
(Examples 1 to 10)
A transparent conductive film was obtained in the same manner as in Example 1-1, except that the material of the transparent conductive film was a sintered body of a metal oxide shown in Table 3 below. The resistivity of the obtained transparent conductive film is also shown in Table 3. Furthermore, the resistivity when the transparent conductive film was annealed in a nitrogen atmosphere at 200° C. for 0.5 hours is also shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (評価)
 上記表3に示されるように、金属酸化物を構成する金属元素として、Sn以外の元素(Zn、InまたはGa)を3原子%含む場合にも、比抵抗を2×10-3Ω・cm以下とできた。また、いずれの透明導電膜においても、アニールによって、比抵抗がより小さくなった(実施例1-5~1-8)。なお、金属酸化物を構成する金属元素として、Wを3原子%含む場合には、アニール無しでは、比抵抗が2×10-3を超えたが、アニールによって、比抵抗を2×10-3Ω・cm以下とできた。
(evaluation)
As shown in Table 3 above, even when the metal oxide contained 3 atomic % of an element other than Sn (Zn, In, or Ga), the resistivity could be reduced to 2×10 −3 Ω·cm or less. Furthermore, in all transparent conductive films, the resistivity was reduced by annealing (Examples 1-5 to 1-8). Note that when the metal oxide contained 3 atomic % of W as a metal element, the resistivity exceeded 2×10 −3 without annealing, but the resistivity could be reduced to 2×10 −3 Ω·cm or less by annealing.
 また同様に、金属酸化物を構成する金属元素として、Sn以外の元素(Ga)を15原子%含む場合には、アニール無しでは、比抵抗が2×10-3を超えたが、アニールによって、比抵抗を2×10-3Ω・cm以下とできた(実施例1-10)。 Similarly, when the metal oxide contained 15 atomic % of an element other than Sn (Ga) as a metal element, the resistivity exceeded 2×10 −3 without annealing, but the resistivity could be reduced to 2×10 −3 Ω·cm or less by annealing (Example 1-10).
 2.太陽電池の作製(フロントジャンクションSiヘテロ接合型太陽電池の作製)
 本発明の透明導電膜を、受光側透明電極および/または裏側透明電極に用い、フロントジャンクションSiヘテロ接合型太陽電池を作製した。当該太陽電池の外部量子効率と、ITO膜を受光側透明電極および裏側透明電極に用いた、従来型のSiヘテロ接合型太陽電池の外部量子効率とを比較し、評価を行った。
2. Fabrication of solar cells (Fabrication of front junction Si heterojunction solar cells)
A front-junction Si heterojunction solar cell was fabricated using the transparent conductive film of the present invention as the light-receiving transparent electrode and/or the back-side transparent electrode, and the external quantum efficiency of the solar cell was compared and evaluated with the external quantum efficiency of a conventional Si heterojunction solar cell using an ITO film as the light-receiving transparent electrode and the back-side transparent electrode.
 (実施例2-1)
 ・光電変換層の準備
 両表面が(100)面である、厚み280μm、かつ比抵抗が2Ωcmであるn型単結晶シリコン基板を準備した。当該n型単結晶シリコン基板の表面を、KOHを主成分とする溶液でウェットエッチングし、n型単結晶シリコン基板の両面に(111)ファセット面からなるランダムテクスチャ構造を形成した。
 続いて、希フッ酸により、n型単結晶シリコン基板の両面の自然酸化膜を除去した。そして、n型単結晶シリコン基板の裏面側に、i型のa-Si:H層(厚み5nm程度)およびn型のa-Si:H層(厚み7nm程度)をプラズマ支援化学気相堆積法(PECVD)法で作製した。さらに、n型単結晶シリコン基板の受光面側にi型のa-Si:H層(厚み5nm程度)およびp型のa-Si:H層(厚み5nm程度)をPECVD法で作製した。これにより、受光面側から、p型a-Si:H層/i型a-Si:H層/n型単結晶シリコン層/i型a-Si:H層/n型a-Si:H層がこの順に積層された光電変換層を得た。
(Example 2-1)
Preparation of photoelectric conversion layer An n-type single crystal silicon substrate having both surfaces of (100) plane, a thickness of 280 μm, and a resistivity of 2 Ωcm was prepared. The surface of the n-type single crystal silicon substrate was wet etched with a solution mainly composed of KOH to form a random texture structure consisting of (111) facets on both sides of the n-type single crystal silicon substrate.
Next, the natural oxide films on both sides of the n-type single crystal silicon substrate were removed with dilute hydrofluoric acid. Then, an i-type a-Si:H layer (thickness of about 5 nm) and an n-type a-Si:H layer (thickness of about 7 nm) were fabricated on the back side of the n-type single crystal silicon substrate by plasma-assisted chemical vapor deposition (PECVD). Furthermore, an i-type a-Si:H layer (thickness of about 5 nm) and a p-type a-Si:H layer (thickness of about 5 nm) were fabricated on the light-receiving surface side of the n-type single crystal silicon substrate by PECVD. As a result, a photoelectric conversion layer was obtained in which a p-type a-Si:H layer/i-type a-Si:H layer/n-type single crystal silicon layer/i-type a-Si:H layer/n-type a-Si:H layer were stacked in this order from the light-receiving surface side.
 ・第1電極および第2電極の作製
 上記光電変換層の両面に、上述の実施例1-1と同様の方法で、非晶質SnO膜からなる透明電極を形成した。これらの厚みは、それぞれ75nmとした。さらに、受光面側の透明導電膜(受光側透明電極)上に、スパッタリング法により、Agからなるグリッド電極(幅100μm、厚み2μm)を作製した。裏面側の透明導電膜(裏側透明電極上)には、スパッタリング法により、Agからなる金属電極を全面に形成した。その後、160℃にてアニール処理を行って、フロントジャンクションSiヘテロ接合型太陽電池を得た。
- Preparation of the first electrode and the second electrode Transparent electrodes made of amorphous SnO2 film were formed on both sides of the photoelectric conversion layer in the same manner as in Example 1-1 described above. The thickness of each was set to 75 nm. Furthermore, a grid electrode (width 100 μm, thickness 2 μm) made of Ag was formed on the transparent conductive film (light-receiving side transparent electrode) on the light-receiving side by a sputtering method. A metal electrode made of Ag was formed on the entire surface of the transparent conductive film (on the back transparent electrode) on the back side by a sputtering method. After that, an annealing treatment was performed at 160 ° C. to obtain a front junction Si heterojunction solar cell.
 (実施例2-2)
 受光面側の透明電極を非晶質SnO膜(厚み75nm)とし、裏面側の透明電極をITO膜(厚み75nm、スパッタリング法で作製)とした以外は、上記実施例2-1と同様にフロントジャンクションSiヘテロ接合型太陽電池を得た。
(Example 2-2)
A front junction Si heterojunction solar cell was obtained in the same manner as in Example 2-1 above, except that the transparent electrode on the light-receiving surface side was an amorphous SnO2 film (thickness 75 nm) and the transparent electrode on the back surface side was an ITO film (thickness 75 nm, prepared by a sputtering method).
 (参考例2)
 受光面側および裏面側の透明電極を、それぞれITO膜(厚み75nm、スパッタリング法で作製)とした以外は、上記実施例2-1と同様にフロントジャンクションSiヘテロ接合型太陽電池を得た。
(Reference Example 2)
A front junction Si heterojunction solar cell was obtained in the same manner as in Example 2-1 above, except that the transparent electrodes on the light-receiving surface side and the back surface side were each an ITO film (75 nm thick, prepared by sputtering).
 (評価)
 実施例2-1および2-2、ならびに参考例2で得られたフロントジャンクションSiヘテロ接合型太陽電池の外部量子効率スペクトルを図8に示す。図8に示すように、受光面側/裏面側の透明電極を非晶質SnO膜/非晶質SnO膜とした実施例2-1の太陽電池や、受光面側/裏面側の透明電極を非晶質SnO膜/ITO膜とした実施例2-2の太陽電池の外部量子効率は、従来型(参考例2)の太陽電池の外部量子効率と比較して遜色がなかった。
(evaluation)
The external quantum efficiency spectra of the front junction Si heterojunction solar cells obtained in Examples 2-1 and 2-2, and Reference Example 2 are shown in Figure 8. As shown in Figure 8, the external quantum efficiency of the solar cell of Example 2-1 in which the transparent electrodes on the light receiving surface side/back surface side were amorphous SnO2 film/amorphous SnO2 film, and the solar cell of Example 2-2 in which the transparent electrodes on the light receiving surface side/back surface side were amorphous SnO2 film/ITO film, were comparable to the external quantum efficiency of the conventional solar cell (Reference Example 2).
 3.太陽電池の作製(リアジャンクションSiヘテロ接合型太陽電池の作製)
 本発明の透明導電膜を、受光側透明電極および/または裏側透明電極に用いたリアジャンクションSiヘテロ接合型太陽電池を作製した。当該太陽電池の電流-電圧特性と、ITO膜を受光側透明電極および裏側透明電極に用いた、従来型のリアジャンクションSiヘテロ接合型太陽電池の電流-電圧特性とを比較し、評価を行った。
3. Fabrication of solar cells (Fabrication of rear junction Si heterojunction solar cells)
A rear junction Si heterojunction solar cell was fabricated using the transparent conductive film of the present invention as the light-receiving transparent electrode and/or the back-side transparent electrode. The current-voltage characteristics of the solar cell were compared and evaluated with those of a conventional rear junction Si heterojunction solar cell using an ITO film as the light-receiving transparent electrode and the back-side transparent electrode.
 併せて、本発明の透明導電膜(a-SnO膜)に隣接する半導体層の種類を変更したリアジャンクションSiヘテロ接合型太陽電池も作製し、当該太陽電池の電流-電圧特性と、従来型のリアジャンクションSiヘテロ接合型太陽電池の電流-電圧特性との比較も行った。 In addition, a rear junction Si heterojunction solar cell was also fabricated in which the type of semiconductor layer adjacent to the transparent conductive film (a- SnO2 film) of the present invention was changed, and the current-voltage characteristics of the solar cell were compared with those of a conventional rear junction Si heterojunction solar cell.
 (実施例3-1)
 光電変換層を受光面側から、n型a-Si:H層/i型a-Si:H層/n型単結晶シリコン層/i型a-Si:H層/p型a-Si:H層とした以外は、実施例2-1と同様の工程を行い、リアジャンクションSiヘテロ接合型太陽電池を作製した。
(Example 3-1)
A rear junction Si heterojunction solar cell was fabricated by carrying out the same steps as in Example 2-1, except that the photoelectric conversion layer was formed in the following order from the light-receiving surface side: n-type a-Si:H layer/i-type a-Si:H layer/n-type single crystal silicon layer/i-type a-Si:H layer/p-type a-Si:H layer.
 (実施例3-2)
 受光面側の透明電極を非晶質SnO膜(厚み75nm)とし、裏面側の透明電極をITO膜(厚み75nm、スパッタリング法で作製)とした以外は、上記実施例3-1と同様に、リアジャンクションSiヘテロ接合型太陽電池を得た。
(Example 3-2)
A rear junction Si heterojunction solar cell was obtained in the same manner as in Example 3-1 above, except that the transparent electrode on the light-receiving surface side was an amorphous SnO2 film (thickness 75 nm) and the transparent electrode on the back surface side was an ITO film (thickness 75 nm, prepared by a sputtering method).
 (参考例3)
 受光面側および裏面側の透明電極を、それぞれITO膜(厚み75nm、スパッタリング法で作製)とした以外は、実施例3-1と同様にリアジャンクションSiヘテロ接合型太陽電池を得た。
(Reference Example 3)
A rear junction Si heterojunction solar cell was obtained in the same manner as in Example 3-1, except that the transparent electrodes on the light-receiving surface side and the back surface side were each an ITO film (75 nm thick, prepared by sputtering).
 (実施例3-2a)
 光電変換層のn型a-Si:H膜を、n型nc-SiOx:H膜(厚み10nm)に変更した以外は、実施例3-2と同様に、リアジャンクションSiヘテロ接合型太陽電池を得た。
(Example 3-2a)
A rear junction Si heterojunction solar cell was obtained in the same manner as in Example 3-2, except that the n-type a-Si:H film of the photoelectric conversion layer was changed to an n-type nc-SiOx:H film (thickness: 10 nm).
 (評価)
 実施例3-1および3-2、ならびに参考例3で得られたリアジャンクションSiヘテロ接合型太陽電池の電流-電圧特性を図9に示す。本発明の透明導電膜を受光側透明電極および/または裏側透明電極に用いた実施例3-1および実施例3-2の太陽電池では、良好な電流-電圧特性を示したものの、従来型の太陽電池(参考例3)と比較すると、直列抵抗の増加に伴い、曲線因子(FF)が低下した。
(evaluation)
9 shows the current-voltage characteristics of the rear junction Si heterojunction solar cells obtained in Examples 3-1 and 3-2, and Reference Example 3. The solar cells of Examples 3-1 and 3-2, in which the transparent conductive film of the present invention was used for the light-receiving transparent electrode and/or the back-side transparent electrode, showed good current-voltage characteristics, but compared with the conventional solar cell (Reference Example 3), the fill factor (FF) decreased with an increase in series resistance.
 そこで、本発明の透明導電膜と隣接するn型半導体層を、a-Si:H層からn型nc-SiOx:H層に変更した太陽電池(実施例3-2a)について、同様の評価を行った。実施例3-2aの太陽電池の電流-電圧特性および参考例3の太陽電池の電流-電圧特性を図10に示す。図10に示すように、本発明の透明導電膜(a-SnO膜)と隣接する層が、n型nc-SiOx:H層である場合には、曲線因子(FF)が低下せず、従来型の太陽電池(参考例3)に非常に近い電流-電圧特性が得られた。 Therefore, a solar cell (Example 3-2a) in which the n-type semiconductor layer adjacent to the transparent conductive film of the present invention was changed from an a-Si:H layer to an n-type nc-SiOx:H layer was similarly evaluated. The current-voltage characteristics of the solar cell of Example 3-2a and the current-voltage characteristics of the solar cell of Reference Example 3 are shown in FIG. 10. As shown in FIG. 10, when the layer adjacent to the transparent conductive film (a- SnO2 film) of the present invention was an n-type nc-SiOx:H layer, the fill factor (FF) did not decrease, and current-voltage characteristics very close to those of the conventional solar cell (Reference Example 3) were obtained.
 4.コンタクト抵抗評価サンプルの作製
 上述の結果を受け、曲線因子(FF)の低下要因を明らかにするため、n型およびp型コンタクト構造のコンタクト抵抗をTLM(transmission line measurement)法にて評価した。n型およびp型コンタクト抵抗評価サンプルは、それぞれ、リアジャンクションおよびフロントジャンクション型Siヘテロ接合型太陽電池の光入射側と全く同一の層構造とした。すなわち、n型コンタクト抵抗評価サンプルは、Ag/透明導電膜/n型半導体層/i型a-Si:H層/n型結晶シリコン層で構成され、当該n型コンタクト抵抗評価サンプルによって、リアジャンクション型Siヘテロ接合型太陽電池の光入射側n型コンタクト構造の直列抵抗を評価した。また、p型コンタクト抵抗評価サンプルは、Ag/透明導電膜/p型半導体層/i型a-Si:H層/p型結晶シリコン層で構成され、当該p型コンタクト抵抗評価サンプルによって、フロントジャンクション型Siヘテロ接合型太陽電池の光入射側p型コンタクト構造の直列抵抗を評価した。コンタクト抵抗評価サンプルと太陽電池との相違点は、電極となるAg/透明導電膜の積層部が短冊形状にパターン化されている点、およびp型コンタクト抵抗評価サンプルではp型結晶シリコンを用いる点の2つである。フロントジャンクションSiヘテロ型太陽電池(実施例2-2の構成)のp型コンタクト構造について、本発明の透明導電膜(a-SnO膜)に隣接する半導体層の種類を変更したコンタクト抵抗評価サンプル(下記の実施例2-2a)を作製し、コンタクト抵抗値を評価した。さらに、従来型のITO膜を用いた太陽電池(参考例2および3)のp型コンタクト構造についても、ITO膜に隣接する半導体層の種類を変更したコンタクト抵抗評価サンプル(下記の参考例2aおよび3a)を作製し、そのコンタクト抵抗値を確認した。
4. Preparation of contact resistance evaluation sample In response to the above results, in order to clarify the cause of the decrease in the fill factor (FF), the contact resistance of the n-type and p-type contact structures was evaluated by the TLM (transmission line measurement) method. The n-type and p-type contact resistance evaluation samples had the same layer structure as the light incident side of the rear junction and front junction Si heterojunction solar cells, respectively. That is, the n-type contact resistance evaluation sample was composed of Ag/transparent conductive film/n-type semiconductor layer/i-type a-Si:H layer/n-type crystalline silicon layer, and the series resistance of the light incident side n-type contact structure of the rear junction Si heterojunction solar cell was evaluated by the n-type contact resistance evaluation sample. The p-type contact resistance evaluation sample was composed of Ag/transparent conductive film/p-type semiconductor layer/i-type a-Si:H layer/p-type crystalline silicon layer, and the series resistance of the light incident side p-type contact structure of the front junction Si heterojunction solar cell was evaluated by the p-type contact resistance evaluation sample. The contact resistance evaluation sample and the solar cell differ in two ways: the laminated portion of Ag/transparent conductive film serving as an electrode is patterned into a rectangular shape, and the p-type contact resistance evaluation sample uses p-type crystalline silicon. For the p-type contact structure of the front junction Si hetero-type solar cell (configuration of Example 2-2), a contact resistance evaluation sample (Example 2-2a below) was prepared by changing the type of semiconductor layer adjacent to the transparent conductive film (a-SnO 2 film) of the present invention, and the contact resistance value was evaluated. Furthermore, for the p-type contact structure of the solar cell using a conventional ITO film (Reference Examples 2 and 3), a contact resistance evaluation sample (Reference Examples 2a and 3a below) was prepared by changing the type of semiconductor layer adjacent to the ITO film, and the contact resistance value was confirmed.
 (実施例2-2a)
 光電変換層のp型a-Si:H層を、p型nc-Si:H層(厚み20nm)に変更した以外は、実施例2-2と同様の構造を持つ、p型コンタクト抵抗評価サンプルを得た。
(Example 2-2a)
A p-type contact resistance evaluation sample was obtained having the same structure as in Example 2-2, except that the p-type a-Si:H layer of the photoelectric conversion layer was changed to a p-type nc-Si:H layer (thickness: 20 nm).
 (参考例2a)
 光電変換層のp型a-Si:H層を、p型nc-Si:H層(厚み20nm)に変更した以外は、参考例2と同様の構造を持つ、p型コンタクト抵抗評価サンプルを得た。
(Reference Example 2a)
A p-type contact resistance evaluation sample was obtained having the same structure as in Reference Example 2, except that the p-type a-Si:H layer of the photoelectric conversion layer was changed to a p-type nc-Si:H layer (thickness: 20 nm).
 (参考例3a)
 光電変換層のn型a-Si:H層を、n型nc-SiOx:H層(厚み10nm)に変更した以外は、参考例3と同様の構造を持つ、n型コンタクト抵抗評価サンプルを得た。
(Reference Example 3a)
An n-type contact resistance evaluation sample was obtained having the same structure as in Reference Example 3, except that the n-type a-Si:H layer of the photoelectric conversion layer was changed to an n-type nc-SiOx:H layer (thickness 10 nm).
 (評価)
 実施例3-2a、参考例3a、実施例3-2、および参考例3で作製したリアジャンクションSiヘテロ接合型太陽電池の光入射側のコンタクト構造に相当する、各n型コンタクト構造(Ag/透明導電膜/n型半導体層/i型a-Si:H層/n型結晶シリコン層)のコンタクト抵抗値を図11に示す。同様に、実施例2-2a、参考例2a、実施例2-2、および参考例2で得られたフロントジャンクションSiヘテロ接合型太陽電池の光入射側のコンタクト構造に相当する、各p型コンタクト構造(Ag/透明導電膜/p型半導体層/i型a-Si:H層/p型結晶シリコン層)のコンタクト抵抗値も図11に示す。図11から明らかなように、フロントジャンクション型(光入射側がp型コンタクト)、リアジャンクション型(光入射側がn型コンタクト)のいずれの構成においても、本発明の透明導電膜(a-SnO膜)に隣接する半導体層を、a-Si:H層からnc-Si:H層またはnc-SiO:Hに変更することで、直列抵抗値が格段に低下した(実施例3-2aおよび実施例2-2a)。また、このような構成とすることで、従来型の太陽電池(参考例3および参考例2)と同等、もしくは従来型より低い直列抵抗値とすることができた。
(evaluation)
11 shows the contact resistance value of each n-type contact structure (Ag/transparent conductive film/n-type semiconductor layer/i-type a-Si:H layer/n-type crystalline silicon layer) corresponding to the contact structure on the light incident side of the rear junction Si heterojunction solar cells produced in Example 3-2a, Reference Example 3a, Example 3-2, and Reference Example 3. Similarly, FIG. 11 shows the contact resistance value of each p-type contact structure (Ag/transparent conductive film/p-type semiconductor layer/i-type a-Si:H layer/p-type crystalline silicon layer) corresponding to the contact structure on the light incident side of the front junction Si heterojunction solar cells obtained in Example 2-2a, Reference Example 2a, Example 2-2, and Reference Example 2. As is clear from Fig. 11, in both the front junction type (p-type contact on the light incident side) and rear junction type (n-type contact on the light incident side) configurations, the series resistance was significantly reduced by changing the semiconductor layer adjacent to the transparent conductive film (a- SnO2 film) of the present invention from an a-Si:H layer to an nc-Si:H layer or an nc- SiOx :H layer (Examples 3-2a and 2-2a). Furthermore, by adopting such a configuration, it was possible to achieve a series resistance value equivalent to or lower than that of conventional solar cells (Reference Examples 3 and 2).
 5.マグネトロンスパッタ法による透明導電膜の作製(実施例)
 RFマグネトロンスパッタ法により、以下の方法で透明導電膜を作製した。まず、基板として無アルカリガラス基板(コーニング社製XG)(寸法50mm×50mm)を準備した。さらに、ターゲットとして3インチφのSnO焼結体を準備し、基板温度を非加熱(室温)とした。スパッタ装置内にArガスとOガスとを導入し、酸素流量比0.25%あるいは0.375%とし、チャンバー圧力を0.5Paとした。そして、スパッタ投入電力100Wにて、それぞれ20分成膜を行い、厚み70nmの透明導電膜(SnO膜)を得た。得られた透明導電膜を、窒素雰囲気下、200℃で0.5時間アニール処理した。
5. Preparation of transparent conductive film by magnetron sputtering (Example)
A transparent conductive film was prepared by the following method using the RF magnetron sputtering method. First, an alkali-free glass substrate (XG manufactured by Corning) (dimensions 50 mm x 50 mm) was prepared as a substrate. Furthermore, a 3-inch φ SnO2 sintered body was prepared as a target, and the substrate temperature was unheated (room temperature). Ar gas and O2 gas were introduced into the sputtering device, the oxygen flow ratio was set to 0.25% or 0.375%, and the chamber pressure was set to 0.5 Pa. Then, at a sputtering input power of 100 W, film formation was performed for 20 minutes each, and a transparent conductive film ( SnO2 film) with a thickness of 70 nm was obtained. The obtained transparent conductive film was annealed at 200 ° C for 0.5 hours in a nitrogen atmosphere.
 作製した透明導電膜について、実施例1-1と同様に、X線回折強度(XRD強度)を測定したところ、いずれの薄膜もルチル構造のSnOに起因した回折ピークがわずかに観察されたが、非晶質が支配的な構造であることが確認された。また、透明導電膜の比抵抗をロレスタ(低抵抗率計)により測定したところ、酸素流量比0.25%で作製した透明導電膜のアニール処理前の比抵抗は4.7×10-3Ω・cmであり、アニール処理後の比抵抗は2.0×10-3Ω・cmであった。一方、酸素流量比0.375%で作製した透明導電膜のアニール処理前の比抵抗は7.0×10-3Ω・cmであり、アニール処理後の比抵抗は1.9×10-3Ω・cmであった。また、作製した透明導電膜の組成を実施例1-1と同様にICP分析法で確認したところ、構成する金属元素はSnのみであり、Inは定量下限以下であった。つまり、マグネトロンスパッタ法により透明導電膜(SnO膜)を形成し、アニール処理を行うことで、非晶質の酸化錫が主成分である金属酸化物(金属元素のうち、Snが85原子%以上、かつInが4原子%以下である)を含み、かつ比抵抗が2×10-3Ω・cm以下である、透明導電膜が得られた。 The X-ray diffraction intensity (XRD intensity) of the prepared transparent conductive film was measured in the same manner as in Example 1-1. Although a diffraction peak due to SnO 2 of the rutile structure was slightly observed in each thin film, it was confirmed that the amorphous structure was predominant. In addition, the resistivity of the transparent conductive film was measured by Loresta (low resistivity meter). The resistivity of the transparent conductive film prepared at an oxygen flow rate ratio of 0.25% before annealing was 4.7×10 −3 Ω·cm, and the resistivity after annealing was 2.0×10 −3 Ω·cm. On the other hand, the resistivity of the transparent conductive film prepared at an oxygen flow rate ratio of 0.375% before annealing was 7.0×10 −3 Ω·cm, and the resistivity after annealing was 1.9×10 −3 Ω·cm. In addition, the composition of the prepared transparent conductive film was confirmed by ICP analysis in the same manner as in Example 1-1, and the constituent metal element was only Sn, and In was below the lower limit of quantification. That is, a transparent conductive film ( SnO2 film) was formed by magnetron sputtering and then annealed, thereby obtaining a transparent conductive film containing a metal oxide (among the metal elements, Sn is 85 atomic % or more and In is 4 atomic % or less) mainly composed of amorphous tin oxide and having a resistivity of 2× 10-3 Ω·cm or less.
 なお、アニール処理を実施した各透明導電膜について、分光光度計により、波長220nm以上2500nm以下の光の透過スペクトルおよび反射スペクトルを測定した。そして、得られた反射スペクトルから、波長420nm以上500nm以下の光の最大吸収係数αを確認したところ、酸素流量比0.25%で作製した透明導電膜の最大吸収係数αは、1059cm-1であり、酸素流量比0.375%で作製した透明導電膜の最大吸収係数αは2585cm-1であった。 The transmission spectrum and reflection spectrum of light having a wavelength of 220 nm or more and 2500 nm or less were measured using a spectrophotometer for each transparent conductive film that had been annealed. The maximum absorption coefficient α of light having a wavelength of 420 nm or more and 500 nm or less was confirmed from the obtained reflection spectrum. The maximum absorption coefficient α of the transparent conductive film fabricated with an oxygen flow ratio of 0.25% was 1059 cm -1 , and the maximum absorption coefficient α of the transparent conductive film fabricated with an oxygen flow ratio of 0.375% was 2585 cm -1 .
 6.透明導電膜付き基板作製A
 (実施例a1)
 基板として、PI(ポリイミド)基板(厚さ125μm、寸法100mm×100mm)を準備した。そして、当該PI基板上に、実施例1-1と同様の条件にて、反応性プラズマ堆積法により、非晶質SnOを主成分とする透明導電膜を作製した。得られた透明導電膜のシート抵抗はロレスタ(低抵抗率計)により測定した。このときの膜厚、シート抵抗、および比抵抗をそれぞれ表4に示す。なお、表4には記載しないが、透明導電膜の組成を実施例1―1と同様にICP分析法で確認したところ、構成する金属元素はSnのみであり、Inは定量下限以下であった。
6. Preparation of substrate with transparent conductive film A
(Example a1)
A PI (polyimide) substrate (thickness 125 μm, dimensions 100 mm × 100 mm) was prepared as a substrate. A transparent conductive film mainly composed of amorphous SnO 2 was then produced on the PI substrate by reactive plasma deposition under the same conditions as in Example 1-1. The sheet resistance of the obtained transparent conductive film was measured by a Loresta (low resistivity meter). The film thickness, sheet resistance, and specific resistance at this time are shown in Table 4. Although not shown in Table 4, when the composition of the transparent conductive film was confirmed by ICP analysis in the same manner as in Example 1-1, the only constituent metal element was Sn, and In was below the lower limit of quantification.
 (実施例a2)
 実施例(a1)で作製した透明導電膜付基板を、250℃で0.5時間アニール処理した。このときのシート抵抗、および比抵抗を表4に示す。
(Example a2)
The substrate with the transparent conductive film produced in Example (a1) was annealed for 0.5 hours at 250° C. The sheet resistance and specific resistance at this time are shown in Table 4.
 (実施例a3、a5、a7、およびa9)
 PI基板上に、反応性プラズマ堆積法により、In系透明導電膜の一つであるCeとHとを添加したIn:Ce,H透明導電膜を堆積した。その後、実施例a1と同様に非晶質SnOを主成分とする透明導電膜を作製した。各透明導電膜の膜厚、シート抵抗、および比抵抗を表4に示す。なお、表4に示す比抵抗は、各透明導電膜の電気特性が膜厚方向に均一であると仮定した場合の比抵抗(参考データ)である。また表4には記載しないが、非晶質SnOを主成分とする透明導電膜を構成する金属元素はSnのみであり、Inは定量下限以下であった。さらに、表4には記載しないが、非晶質SnOを主成分とする透明導電膜のみの比抵抗が、2×10-3Ω・cm以下であることは、実施例a1の比抵抗から明らかである。
(Examples a3, a5, a7, and a9)
On a PI substrate, a reactive plasma deposition method was used to deposit an In 2 O 3 :Ce,H transparent conductive film, which is one of the In 2 O 3 -based transparent conductive films and is doped with Ce and H. Thereafter, a transparent conductive film mainly composed of amorphous SnO 2 was prepared in the same manner as in Example a1. The film thickness, sheet resistance, and resistivity of each transparent conductive film are shown in Table 4. The resistivity shown in Table 4 is the resistivity (reference data) when it is assumed that the electrical properties of each transparent conductive film are uniform in the film thickness direction. Although not shown in Table 4, the only metal element constituting the transparent conductive film mainly composed of amorphous SnO 2 is Sn, and In was below the lower limit of quantification. Furthermore, although not shown in Table 4, it is clear from the resistivity of Example a1 that the resistivity of only the transparent conductive film mainly composed of amorphous SnO 2 is 2×10 −3 Ω·cm or less.
 (実施例a4、a6、a8、およびa10)
 上記実施例a3、a5、a7、およびa9で作製した透明導電膜付基板を、それぞれ250℃で0.5時間アニール処理した。このときのシート抵抗、および比抵抗を表4に示す。
(Examples a4, a6, a8, and a10)
The transparent conductive film-attached substrates produced in Examples a3, a5, a7, and a9 were each annealed for 0.5 hours at 250° C. The sheet resistance and specific resistance at this time are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (結果)
 上記表4に示すように、In:Ce,H透明導電膜の上に非晶質SnOを主成分とする透明導電膜を積層した場合、In:Ce,H透明導電膜の割合を増加させることにより、透明導電膜付基板のシート抵抗が単調に減少した(実施例a3~a10)。つまり、公知の透明導電膜(In:Ce,H膜)を有する基板に、さらに本発明の透明導電膜(非晶質SnO膜)を積層することで、非常に有用な透明導電膜付基板が得られることが確認された。
(result)
As shown in Table 4 above, when a transparent conductive film mainly composed of amorphous SnO2 was laminated on an In2O3 :Ce,H transparent conductive film, the sheet resistance of the substrate with the transparent conductive film monotonically decreased by increasing the ratio of the In2O3 :Ce,H transparent conductive film (Examples a3 to a10). In other words, it was confirmed that a very useful substrate with a transparent conductive film can be obtained by further laminating the transparent conductive film ( amorphous SnO2 film) of the present invention on a substrate having a known transparent conductive film (In2O3:Ce,H film).
 7.透明導電膜付基板の作製B
 (実施例b1、b3、b5、およびb7)
 基板として、PI(ポリイミド)基板(厚さ125μm、寸法100mm×100mm)を準備した。その後、実施例1-1と同様の条件にて、反応性プラズマ堆積法により、非晶質SnOを主成分とする透明導電膜を作製した。次いで、当該透明導電膜(非晶質SnO)上に、実施例a3と同様に、反応性プラズマ堆積法によりIn:Ce,H透明導電膜を堆積した。さらに実施例1-1と同様の条件にて、反応性プラズマ堆積法により、非晶質SnOを主成分とする透明導電膜を作製した。各透明導電膜の膜厚、シート抵抗、および比抵抗を表5に示す。なお、表5に示す比抵抗は、各透明導電膜の電気特性が膜厚方向に均一であると仮定した場合の比抵抗(参考データ)である。また、表5には記載しないが、非晶質SnOを主成分とする透明導電膜を構成する金属元素はSnのみであり、Inは定量下限以下であった。さらに、表5には記載しないが、非晶質SnOを主成分とする透明導電膜のみの比抵抗が、2×10-3Ω・cm以下であることは、上述の実施例a1の比抵抗から明らかである。
7. Preparation of substrate with transparent conductive film B
(Examples b1, b3, b5, and b7)
A PI (polyimide) substrate (thickness 125 μm, dimensions 100 mm×100 mm) was prepared as the substrate. Then, under the same conditions as in Example 1-1, a transparent conductive film mainly composed of amorphous SnO 2 was prepared by reactive plasma deposition. Next, an In 2 O 3 :Ce,H transparent conductive film was deposited on the transparent conductive film (amorphous SnO 2 ) by reactive plasma deposition, as in Example a3. Further, under the same conditions as in Example 1-1, a transparent conductive film mainly composed of amorphous SnO 2 was prepared by reactive plasma deposition. The film thickness, sheet resistance, and resistivity of each transparent conductive film are shown in Table 5. The resistivity shown in Table 5 is the resistivity (reference data) when it is assumed that the electrical properties of each transparent conductive film are uniform in the film thickness direction. In addition, although not shown in Table 5, the metal element constituting the transparent conductive film mainly composed of amorphous SnO 2 is only Sn, and In is below the lower limit of quantification. Furthermore, although not shown in Table 5, it is clear from the resistivity of the above-mentioned Example a1 that the resistivity of only the transparent conductive film mainly composed of amorphous SnO 2 is 2×10 −3 Ω·cm or less.
 (実施例b2、b4、b6、およびb8)
 実施例b1、b3、b5、およびb7で作製した透明導電膜付基板を、250℃で0.5時間アニール処理した。このときのシート抵抗、および比抵抗を表5に示す。
(Examples b2, b4, b6, and b8)
The transparent conductive film-attached substrates produced in Examples b1, b3, b5, and b7 were annealed for 0.5 hours at 250° C. The sheet resistance and specific resistance at this time are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (結果)
 上記表5に示すように、非晶質SnOを主成分とする透明導電膜/In:Ce,H膜/非晶質SnOを主成分とする透明導電膜を積層した場合、In:Ce,H膜の割合を増加させることにより、透明導電膜付基板のシート抵抗が単調に減少した。つまり、本発明の透明導電膜(非晶質SnO膜)と、公知の透明導電膜(In:Ce,H膜)とを積層することで、非常に有用な透明導電膜付基板が得られることが確認された。
(result)
As shown in Table 5, when a transparent conductive film mainly composed of amorphous SnO2 / In2O3 :Ce,H film/transparent conductive film mainly composed of amorphous SnO2 were laminated, the sheet resistance of the substrate with the transparent conductive film monotonically decreased by increasing the ratio of the In2O3 :Ce,H film. In other words, it was confirmed that a very useful substrate with a transparent conductive film can be obtained by laminating the transparent conductive film of the present invention ( amorphous SnO2 film) and a known transparent conductive film ( In2O3 :Ce,H film).
 本出願は、2023年2月22日出願の特願2023-026205号に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority from Japanese Patent Application No. 2023-026205, filed February 22, 2023. The contents of the specification and drawings of that application are incorporated herein by reference in their entirety.
 本発明によれば、低温で成膜が可能であり、かつ高い透明性および高い導電性を有し、さらにインジウム含有量が少ない透明導電膜が提供される。当該透明導電膜は、従来のITO膜と代替可能な膜として、各種デバイスに適用可能である。 The present invention provides a transparent conductive film that can be formed at low temperatures, has high transparency and high conductivity, and contains a small amount of indium. This transparent conductive film can be used in various devices as a substitute for conventional ITO films.
 1 基板
 10 ハース部
 11 材料
 20 プラズマガン
 21 プラズマビーム
 22 プラズマ
 30 プラズマコントローラ
 40 チャンバー
 100 反応性プラズマ堆積装置
 120 n型単結晶シリコン層
 121、123 i型半導体層
 122 p型半導体層
 124 n型半導体層
 125 受光側透明電極
 126 グリッド電極
 127 裏側透明電極
 128 金属電極
 130 光電変換層
 131 第1電極
 132 第2電極
 200 Siヘテロ接合型太陽電池
 400 ペロブスカイト型太陽電池
 
REFERENCE SIGNS LIST 1 Substrate 10 Hearth section 11 Material 20 Plasma gun 21 Plasma beam 22 Plasma 30 Plasma controller 40 Chamber 100 Reactive plasma deposition device 120 n-type single crystal silicon layer 121, 123 i-type semiconductor layer 122 p-type semiconductor layer 124 n-type semiconductor layer 125 Light-receiving transparent electrode 126 Grid electrode 127 Back transparent electrode 128 Metal electrode 130 Photoelectric conversion layer 131 First electrode 132 Second electrode 200 Si heterojunction solar cell 400 Perovskite solar cell

Claims (9)

  1.  非晶質の酸化錫が主成分である金属酸化物を含み、
     前記金属酸化物を構成する金属元素のうちSnの量が85原子%以上であり、Inの量が4原子%以下であり、かつ
     比抵抗が2×10-3Ω・cm以下である、透明導電膜。
    The metal oxide includes amorphous tin oxide as a main component,
    The transparent conductive film, among the metal elements constituting the metal oxide, has an amount of Sn of 85 atomic % or more and an amount of In of 4 atomic % or less, and has a specific resistance of 2×10 −3 Ω·cm or less.
  2.  波長420nm以上500nm以下における、最大吸収係数が1×10cm-1以下である、
     請求項1に記載の透明導電膜。
    The maximum absorption coefficient at a wavelength of 420 nm or more and 500 nm or less is 1×10 4 cm −1 or less.
    The transparent conductive film according to claim 1 .
  3.  In、Zn、Cd、Nb、Ta、B、Ga、Ba、Mo、Pb、Rb、Re、Sb、W、Ce、Cs、Dy、Er、Ge、Hf、Ho、La、Lu、Nd、Pr、Sc、Si、Sm、Tb、V、Y、Al、Ti、Zr、Siからなる群から選ばれる少なくとも一種を含む、
     請求項1に記載の透明導電膜。
    At least one selected from the group consisting of In, Zn, Cd, Nb, Ta, B, Ga, Ba, Mo, Pb, Rb, Re, Sb, W, Ce, Cs, Dy, Er, Ge, Hf, Ho, La, Lu, Nd, Pr, Sc, Si, Sm, Tb, V, Y, Al, Ti, Zr, and Si;
    The transparent conductive film according to claim 1 .
  4.  二次イオン質量分析法で測定される、両表面からそれぞれ10nm以上内側の領域における水素原子の濃度が、8×1021原子/cm以下である、
     請求項1に記載の透明導電膜。
    The concentration of hydrogen atoms in the regions 10 nm or more inward from each of the two surfaces, as measured by secondary ion mass spectrometry, is 8× 10 atoms/cm or less.
    The transparent conductive film according to claim 1 .
  5.  基板と、
     前記基板上に配置された、請求項1~4のいずれか一項に記載の透明導電膜と、
     を含む、透明導電膜付基板。
    A substrate;
    The transparent conductive film according to any one of claims 1 to 4, which is disposed on the substrate;
    A substrate with a transparent conductive film comprising:
  6.  前記基板が、樹脂フィルムである。
     請求項5に記載の透明導電膜付基板。
    The substrate is a resin film.
    The transparent conductive film-attached substrate according to claim 5 .
  7.  光電変換層と、
     前記光電変換層に隣接して配置された、少なくとも一層の導電膜を含む第1電極と、
     前記光電変換層に隣接して配置された、少なくとも一層の導電膜を含む第2電極と、
     を有し、
     前記第1電極および前記第2電極の少なくとも一方が、請求項1~4のいずれか一項に記載の透明導電膜を含む、
     光電変換素子。
    A photoelectric conversion layer;
    a first electrode including at least one conductive film disposed adjacent to the photoelectric conversion layer;
    a second electrode including at least one conductive film disposed adjacent to the photoelectric conversion layer;
    having
    At least one of the first electrode and the second electrode comprises the transparent conductive film according to any one of claims 1 to 4.
    Photoelectric conversion element.
  8.  前記光電変換素子が太陽電池であり、
     前記光電変換層が、n型またはp型にドープされた単結晶シリコン層と、前記単結晶シリコン層の一方の側に配置されたp型半導体層と、前記単結晶シリコン層の他方の側または同じ側に配置されたn型半導体層と、を含む、
     請求項7に記載の光電変換素子。
    the photoelectric conversion element is a solar cell,
    The photoelectric conversion layer includes a single crystal silicon layer doped with n-type or p-type, a p-type semiconductor layer disposed on one side of the single crystal silicon layer, and an n-type semiconductor layer disposed on the other side or the same side of the single crystal silicon layer.
    The photoelectric conversion element according to claim 7 .
  9.  前記p型半導体層が、p型微結晶シリコン層またはその合金層である、および/または前記n型半導体層が、n型微結晶シリコン層またはその合金層であり、
     前記透明導電膜が、前記p型微結晶シリコン層またはその合金層および/または前記n型微結晶シリコン層またはその合金層に隣接して配置されている、
     請求項8に記載の光電変換素子。
    the p-type semiconductor layer is a p-type microcrystalline silicon layer or an alloy layer thereof, and/or the n-type semiconductor layer is an n-type microcrystalline silicon layer or an alloy layer thereof;
    the transparent conductive film is disposed adjacent to the p-type microcrystalline silicon layer or its alloy layer and/or the n-type microcrystalline silicon layer or its alloy layer;
    The photoelectric conversion element according to claim 8 .
PCT/JP2024/003815 2023-02-22 2024-02-06 Transparent electrically conductive film, substrate having transparent electrically conductive film, and photoelectric conversion element WO2024176803A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023026205 2023-02-22
JP2023-026205 2023-02-22

Publications (1)

Publication Number Publication Date
WO2024176803A1 true WO2024176803A1 (en) 2024-08-29

Family

ID=92500606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/003815 WO2024176803A1 (en) 2023-02-22 2024-02-06 Transparent electrically conductive film, substrate having transparent electrically conductive film, and photoelectric conversion element

Country Status (1)

Country Link
WO (1) WO2024176803A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256059A (en) * 1999-03-05 2000-09-19 Idemitsu Kosan Co Ltd Transparent conductive material, transparent conductive glass and transparent conductive film
JP2007314364A (en) * 2006-05-24 2007-12-06 Sumitomo Metal Mining Co Ltd Oxide sintered compact, target, oxide transparent conductive film obtained by using the same and method of manufacturing the same
JP2019009402A (en) * 2017-06-28 2019-01-17 国立研究開発法人物質・材料研究機構 Solar cell and manufacturing method of the same
WO2019188716A1 (en) * 2018-03-29 2019-10-03 株式会社カネカ Solar cell and manufacturing method therefor
JP2020167238A (en) * 2019-03-28 2020-10-08 パナソニック株式会社 Solar cell and solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256059A (en) * 1999-03-05 2000-09-19 Idemitsu Kosan Co Ltd Transparent conductive material, transparent conductive glass and transparent conductive film
JP2007314364A (en) * 2006-05-24 2007-12-06 Sumitomo Metal Mining Co Ltd Oxide sintered compact, target, oxide transparent conductive film obtained by using the same and method of manufacturing the same
JP2019009402A (en) * 2017-06-28 2019-01-17 国立研究開発法人物質・材料研究機構 Solar cell and manufacturing method of the same
WO2019188716A1 (en) * 2018-03-29 2019-10-03 株式会社カネカ Solar cell and manufacturing method therefor
JP2020167238A (en) * 2019-03-28 2020-10-08 パナソニック株式会社 Solar cell and solar cell module

Similar Documents

Publication Publication Date Title
Kim et al. Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition
JP4556407B2 (en) Oxide transparent electrode film and method for producing the same, transparent conductive substrate, solar cell, and photodetector
US7875945B2 (en) Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same
KR101000057B1 (en) Solar Cell Having Multiple Transparent Conducting Layers And Manufacturing Method Thereof
US20080308147A1 (en) Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same
US20090194165A1 (en) Ultra-high current density cadmium telluride photovoltaic modules
EP2530722A2 (en) Refractive index matching of thin film layers for photovoltaic devices and methods of their manufacture
EP3586375B1 (en) Photovoltaic devices including group v doped thin film stacks
US20110061730A1 (en) Textured rear electrode structure for use in photovoltaic device such as CIGS/CIS solar cell
JP5243697B2 (en) Transparent conductive film for photoelectric conversion device and manufacturing method thereof
Han et al. Room-temperature sputtered tungsten-doped indium oxide for improved current in silicon heterojunction solar cells
KR20100094988A (en) Improvements to elements capable of collecting light
US20140000690A1 (en) Intrinsically Semitransparent Solar Cell and Method of Making Same
TW201222843A (en) Transparent electrically conductive substrate carrying thereon a surface electrode, a manufacturing method therefor, a thin-film solar cell and a manufacturing method therefor
US20100206372A1 (en) Photovoltaic Devices Including Heterojunctions
US8354586B2 (en) Transparent conductor film stack with cadmium stannate, corresponding photovoltaic device, and method of making same
US20130109124A1 (en) Methods of making a transparent layer and a photovoltaic device
US20170104108A1 (en) Doping an absorber layer of a photovoltaic device via diffusion from a window layer
TW201246277A (en) Method of manufacturing transparent conductive substrate with surface electrode and method of manufacturing thin film solar cell
US9349885B2 (en) Multilayer transparent electroconductive film and method for manufacturing same, as well as thin-film solar cell and method for manufacturing same
WO2024176803A1 (en) Transparent electrically conductive film, substrate having transparent electrically conductive film, and photoelectric conversion element
US9034686B2 (en) Manufacturing methods for semiconductor devices
JP5563850B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2011171746A (en) Solar cell substrate, and solar cell including the same
Guo et al. Low‐Cost Tin Oxide Transparent Conductive Films for Silicon Heterojunction Solar Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24760109

Country of ref document: EP

Kind code of ref document: A1