WO2024176734A1 - Paint-sprayed material evaluation method, paint-sprayed material evaluation index estimation method, and method for determining usage amount of light-shielding coating agent - Google Patents
Paint-sprayed material evaluation method, paint-sprayed material evaluation index estimation method, and method for determining usage amount of light-shielding coating agent Download PDFInfo
- Publication number
- WO2024176734A1 WO2024176734A1 PCT/JP2024/002550 JP2024002550W WO2024176734A1 WO 2024176734 A1 WO2024176734 A1 WO 2024176734A1 JP 2024002550 W JP2024002550 W JP 2024002550W WO 2024176734 A1 WO2024176734 A1 WO 2024176734A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- direct
- coating agent
- light
- index
- paint
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 283
- 239000011248 coating agent Substances 0.000 title claims abstract description 164
- 238000011156 evaluation Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 36
- 239000003973 paint Substances 0.000 claims abstract description 120
- 238000000576 coating method Methods 0.000 claims abstract description 59
- 239000007921 spray Substances 0.000 claims description 68
- 238000005507 spraying Methods 0.000 claims description 35
- 238000012417 linear regression Methods 0.000 claims description 16
- 230000035515 penetration Effects 0.000 claims description 6
- 238000012886 linear function Methods 0.000 abstract description 7
- 238000010835 comparative analysis Methods 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 32
- 229920000098 polyolefin Polymers 0.000 description 17
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G13/00—Protecting plants
- A01G13/02—Protective coverings for plants; Coverings for the ground; Devices for laying-out or removing coverings
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G9/00—Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
- A01G9/14—Greenhouses
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/004—Reflecting paints; Signal paints
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/10—Devices for predicting weather conditions
Definitions
- the present invention relates to a method for evaluating paint spray materials that can evaluate the effect of paint spray materials on light components (direct light rate and scattered light rate) without being affected by weather conditions at the time of measurement, a method for estimating the evaluation index of paint spray materials, and a method for determining the amount of light-shielding coating agent to be used.
- Patent Document 1 describes calculating the component ratio (ratio information) of ambient light
- Patent Document 2 describes detecting the weather based on the result of comparing the ratio of direct light to scattered light with a reference value.
- FIG. 1 is an explanatory diagram showing the basic concept of the method for evaluating a light-shielding material of the present invention. Material A and material B have the same light blocking rate. Fig. 1(a) shows the direct light rate measured when an agricultural polyolefin film is covered with material A or material B. It is assumed that material A was measured on a sunny day, and material B was measured on a cloudy day.
- FIG. 1(a) shows a concept when it is assumed that the direct light rate on a material relative to the non-direct light rate on a material measured under the same weather conditions can be expressed by a linear regression equation.
- Material A has a direct light rate of 0.5, but if we assume that the non-direct light rate in simultaneous measurement is 0.9, and material B has a direct light rate of 0.3, but if we assume that the non-direct light rate in simultaneous measurement is 0.4, and assume that the direct light rate of the material against the non-direct light rate can be expressed by a regression equation of a linear function, we get the straight line shown in Figure 1(b).Therefore, it can be inferred that material B will have a higher direct light rate than material A's direct light rate of 0.5 under the same conditions as material A (material non-direct light rate of 0.9).
- the method for evaluating paint spray materials of the present invention described in claim 1 is characterized in that, under the same weather conditions, the non-direct light rate of a coating agent when no shading coating agent is applied and the direct light rate of a coating agent when the shading coating agent is applied are measured using a direct light rate measuring device 10, the slope of the measured direct light rate with a coating agent relative to the measured non-direct light rate of a coating agent is expressed as a regression equation of a linear function is defined as a direct index, and the direct index is used as an evaluation index for paint spray materials coated with the shading coating agent.
- the method for estimating an evaluation index of a paint spraying material of the present invention described in claim 2 measures the direct light rate without a coating agent when a shading coating agent is not applied and the direct light rate with a coating agent when the shading coating agent is applied under the same weather conditions using a direct light rate measuring device 10, and the slope of the measured direct light rate with a coating agent relative to the measured direct light rate without a coating agent is expressed as a regression equation of a linear function is taken as a direct index, and the direct index of the paint spraying material to be evaluated is estimated using a relational equation between the direct index obtained from a plurality of paint spraying materials with different application amounts per unit area and the application amount per unit area, characterized in that the application amount per unit area for the paint spraying material to be evaluated is specified, and the direct index for the paint spraying material to be evaluated is estimated using the relational equation from the specified application amount per unit area.
- the method for determining the amount of light-shielding coating agent to be used according to the present invention described in claim 3 measures the non-direct light rate of light when a light-shielding coating agent is not applied and the direct light rate of light with light-shielding coating agent when the light-shielding coating agent is applied under the same weather conditions using a direct light rate measuring device 10, and determines the amount of light-shielding coating agent to be used for materials to be sprayed with paint using a relational equation between the direct index obtained from a plurality of paint spraying materials having different application amounts per unit area and the application amount per unit area, characterized in that for the materials to be sprayed with paint, a planned paint spraying area and a planned direct index are specified, the application amount per unit area is determined from the specified planned direct index using the relational equation, and the amount of light-shielding coating agent to be used is determined from the determined application amount per unit area and the planned paint spraying area.
- the direct light index which is an inherent value of the paint spray material coated with the shading coating agent, can be obtained regardless of the weather conditions at the time of measurement, and the direct light rate and scattered light rate of different paint spray materials can be compared and evaluated.
- the direct index can be estimated using a relational equation, and the direct light rate and scattered light rate can be estimated.
- the amount of coating per unit area can be determined using a relational equation, and the amount of light-shielding coating agent to be used can be determined from the amount of coating per unit area and the planned paint spray area.
- FIG. 1 is an explanatory diagram showing the basic concept of the evaluation method for light-shielding materials of the present invention.
- Graph showing the relationship between the direct penetration index and the porosity of shading materials Graph showing the direct index
- Graph showing the measurement results using a light-shielding coating agent Graph showing the relationship between the direct coverage index and paint spraying materials with different application rates per unit area
- the method for evaluating paint spraying materials uses a direct light rate measuring device to measure the direct light rate without a light-shielding coating when no light-shielding coating is applied and the direct light rate with a light-shielding coating when a light-shielding coating is applied under the same weather conditions, and the slope of the measured direct light rate with a coating relative to the measured direct light rate without a light-shielding coating is expressed as a linear regression equation, and the direct light rate is used as an evaluation index for paint spraying materials coated with a light-shielding coating. Even for paint spraying materials coated with the same light-shielding coating, the direct light rate measured varies depending on the weather conditions at the time of measurement.
- the direct light rate which is an inherent value of the paint spraying materials coated with a light-shielding coating, can be obtained without being influenced by the weather conditions at the time of measurement, and the direct light rate and scattered light rate of different paint spraying materials can be compared and evaluated.
- the method for estimating an evaluation index of a paint spray material measures the direct light rate without a coating agent when no shading coating agent is applied and the direct light rate with a coating agent when a shading coating agent is applied under the same weather conditions using a direct light rate measuring device, and the slope of the measured direct light rate with a coating agent relative to the measured direct light rate without a coating agent expressed as a regression equation of a linear function is taken as the direct index, and the direct index of the paint spray material to be evaluated is estimated using a relational equation between the direct index obtained from multiple paint spray materials with different application amounts per unit area and the application amount per unit area, and the method identifies the application amount per unit area for the paint spray material to be evaluated, and estimates the direct index for the paint spray material to be evaluated using the relational equation from the identified application amount per unit area.
- the direct index can be estimated using the relational equation, and the direct light rate and scattered light rate can be estimated.
- a method for determining the amount of light-blocking coating agent to be used according to a third embodiment of the present invention measures the non-coating direct light rate when a light-blocking coating agent is not applied and the direct light rate with a light-blocking coating agent when a light-blocking coating agent is applied under the same weather conditions using a direct light rate measuring device, determines the slope of the measured direct light rate with a coating agent relative to the measured non-coating direct light rate expressed as a linear regression equation, determines the amount of light-blocking coating agent to be used for materials to be sprayed with paint using a relationship equation between the direct index obtained from multiple paint spraying materials with different application amounts per unit area and the application amount per unit area, and determines the amount of light-blocking coating agent to be used for materials to be sprayed with paint, identifies the planned paint spraying area and planned direct index for the materials to be sprayed with paint, determines the application amount per unit area using the relationship equation from the identified planned direct index, and determines the amount of light-blocking coating
- the amount of coating per unit area can be determined using the relational equation, and the amount of light-shielding coating agent to be used can be determined from the amount of coating per unit area and the planned paint spray area.
- FIG. 2 is a diagram showing the direct light efficiency measuring device used in the measurement and the measurement conditions.
- FIG. 2(a) shows a configuration diagram of a direct light rate measuring device.
- the direct light rate measuring device 10 has an upper opening of 40 cm ⁇ 40 cm, and the actinometer 11 is disposed so that the viewing angle is 120°.
- the four sides and the bottom of the direct light rate measuring device 10 are made of aluminum plates whose inner surfaces are painted black (reflectance 0.6%).
- a material spreading lid 12 is placed on the top opening of the direct light rate measuring device 10.
- a shielding plate 13 is provided above the actinometer 11. The shielding plate 13 blocks direct light.
- the direct light rate measuring device 10A measured the scattered light by the agricultural polyolefin film by placing only the agricultural polyolefin film (agricultural PO) on the material spreading lid 12 and providing a shielding plate 13.
- the direct light rate measuring device 10B placed only an agricultural polyolefin film (agricultural PO) on the material spreading lid 12 and did not provide a shielding plate 13, thereby measuring the scattered light and direct light caused by the agricultural polyolefin film.
- the direct light rate measuring device 10C placed an agricultural polyolefin film (agricultural PO) and a shading material on a material spreading lid 12 and provided a shielding plate 13 to measure the scattered light caused by the agricultural polyolefin film and the shading material.
- the direct light rate measuring device 10D placed an agricultural polyolefin film (agricultural PO) and a shading material on a material spreading lid 12, and measured the scattered light and direct light caused by the agricultural polyolefin film and the shading material by not providing a shielding plate 13.
- agricultural PO agricultural polyolefin film
- a shading material on a material spreading lid 12
- the four direct light rate measuring devices 10 were installed on the rooftop so that direct light was perpendicular to the material spreading lid 12 at meridian time.
- the direct light rate measuring device 10A and the direct light rate measuring device 10B can measure the direct light only of the agricultural polyolefin film (agricultural PO).
- the direct light rate measuring device 10C and the direct light rate measuring device 10D can be used to measure the direct light caused by agricultural polyolefin films (agricultural PO) and shading materials. In this way, by using four direct light rate measuring devices 10, it is possible to measure the material direct light rate without using shading materials and the material direct light rate with shading materials when using shading materials under the same weather conditions.
- FIG. 3 shows the light-shielding materials used in the measurements.
- Fig. 3(a) shows a white shading material with a shading rate of 30% (shading 30% (white))
- Fig. 3(b) shows a white shading material with a shading rate of 40% (shading 40% (white))
- Fig. 3(c) shows a white shading material with a shading rate of 50% (shading 50% (white))
- Fig. 3(d) shows a gray shading material with a shading rate of 50% (shading 50% (gray))
- Fig. 3(e) shows a black shading material with a shading rate of 50% (shading 50% (black)).
- the numerical values for the shading rate are values in the manufacturer's catalogue.
- FIG. 4 is a graph showing the measurement results for three light-shielding materials having the same brightness but different light-shielding rates.
- the material direct light rate relative to the material non-direct light rate can be expressed by a linear regression equation.
- the slope of the linear regression equation is taken as a direct index, and this direct index can be used as an evaluation index for the shading material.
- the direct index of shading material with 30% shading (white) is 0.8658
- the direct index of shading material with 40% shading (white) is 0.8535
- the direct index of shading material with 50% shading (white) is 0.7750.
- the shading material with 50% shading (white), which has the smallest direct index, can be evaluated as having the highest scattered light rate, while the shading material with 30% shading (white), which has the largest direct index, can be evaluated as having the highest direct light rate. Even if the same shading material is used, the measured direct light rate will differ depending on the weather conditions at the time of measurement. However, according to this embodiment, if the shading material is the same, it is possible to obtain the direct light index, which is an inherent value of the shading material, regardless of the weather conditions at the time of measurement, and it is possible to compare and evaluate the direct light rate and scattered light rate of different shading materials.
- FIG. 5 is a graph showing the measurement results for three light-shielding materials having the same light-shielding rate but different brightnesses.
- the material direct light rate relative to the material non-direct light rate can be expressed by a linear regression equation.
- the slope of the linear regression equation is taken as a direct index, and this direct index can be used as an evaluation index for the shading material.
- the direct index of shading materials with 50% shading (white) is 0.7750
- the direct index of shading materials with 50% shading (gray) is 0.8406, and the direct index of shading materials with 50% shading (black) is 0.9929.
- the shading material with 50% shading (white), which has the smallest direct index, can be evaluated as having the highest scattered light rate, while the shading material with 50% shading (black), which has the largest direct index, can be evaluated as having the highest direct light rate. Even if the same shading material is used, the measured direct light rate will differ depending on the weather conditions at the time of measurement. However, according to this embodiment, if the shading material is the same, it is possible to obtain the direct light index, which is an inherent value of the shading material, regardless of the weather conditions at the time of measurement, and it is possible to compare and evaluate the direct light rate and scattered light rate of different shading materials.
- FIG. 6 is a graph showing the relationship between the direct penetration index and the porosity of a shading material.
- the vertical axis in FIG. 6 is the slope of the regression line, which is the direct index.
- the direct index is the slope of the measured direct light rate with material to the measured non-direct light rate with material when a shading material is used, measured under the same weather conditions using a direct light rate measuring device 10, as shown in Fig. 4 and Fig. 5.
- the larger the direct index value the lower the scattering effect.
- the direct penetration index of the shading material to be evaluated can be estimated using the relational expression shown in FIG.
- the direct index of the shading material to be evaluated can be estimated using the relational equation between the direct index and the porosity obtained from a plurality of shading materials with different porosities. For example, if the porosity of the shading material to be evaluated is 50%, the direct index is approximately 0.7, and if the porosity of the shading material to be evaluated is 60%, the direct index is approximately 0.8. In this manner, the evaluation material porosity of the evaluation target light-shielding material is specified, and the direct penetration index of the evaluation target light-shielding material can be estimated from the specified evaluation material porosity using the relational expression. Although the relational expression is shown in a graph in FIG.
- a correspondence table between porosity and direct index can also be used, and when processing is performed by computer, the corresponding data is stored in a table.
- the porosity of the light-shielding material to be evaluated can be determined by calculation or measurement. As described above, a relational equation holds between the porosity and direct index of a shading material. Therefore, if the porosity of the shading material to be evaluated (the porosity of the evaluation material) is known, the relational equation can be used to estimate the direct index and, thereby, the direct light rate and scattered light rate.
- the direct index is the slope of the measured direct light rate with material to the measured non-direct light rate with material when a shading material is used, measured under the same weather conditions using a direct light rate measuring device 10, as shown in Fig. 4 and Fig. 5.
- the direct index of the shading material with 50% shading is 0.7750
- the direct index of the shading material with 50% shading is 0.8406
- the direct index of the shading material with 50% shading (black) is 0.9929
- the direct index of the shading material to be evaluated can be estimated using the relational equation between the direct index and the lightness obtained from a plurality of shading materials with different lightness.
- the evaluation material lightness of the evaluation target light-shielding material is specified, and the direct index of the evaluation target light-shielding material can be estimated from the specified evaluation material lightness using the relational expression.
- the lightness of the light-shielding material to be evaluated (evaluation material lightness) can be determined by calculation or measurement.
- a relational equation holds between the lightness and direct index of a shading material. Therefore, if the lightness of the shading material to be evaluated (evaluation material lightness) is known, the relational equation can be used to estimate the direct index and, therefore, the direct light rate and scattered light rate.
- FIG. 7 is a graph showing the direct index.
- Figure 7(a) shows the case where the horizontal axis represents the direct light rate of the agricultural polyolefin film alone, and the vertical axis represents the direct light rate of the agricultural polyolefin film and the shading material, and in this case the direct index is a value of 1 or less.
- Figure 7(b) shows a case in which the horizontal axis represents the direct light rate of the agricultural polyolefin film and the shading material, and the vertical axis represents the direct light rate of the agricultural polyolefin film alone, and in this case the direct index is a value of 1 or more.
- the direct index may be the slope of the regression line according to FIG. 7(a) or the slope of the regression line according to FIG. 7(b).
- agricultural shading materials are used for explanation, but shading materials for other purposes may also be used, and the direct index can also be used as an evaluation index for shading materials such as screen doors, blinds, curtains, or roller screens.
- the evaluation method of shading materials uses a direct light rate measuring device 10 to measure the material non-direct light rate when no shading material is used and the material direct light rate when a shading material is used under the same weather conditions, and the slope of the measured material direct light rate relative to the measured material non-direct light rate expressed as a linear regression equation is taken as the direct index, and the direct index is used as an evaluation index for the shading material. Even with the same shading material, the measured direct light rate differs depending on the weather conditions at the time of measurement. However, according to this embodiment, if the shading material is the same, the direct index, which is an inherent value of the shading material, can be obtained regardless of the weather conditions at the time of measurement, and the direct light rate and scattered light rate of different shading materials can be compared and evaluated.
- the method for estimating the evaluation index of shading materials measures the material non-direct light rate when no shading material is used and the material direct light rate when shading material is used under the same weather conditions using a direct light rate measuring device 10, and the slope of the measured material direct light rate relative to the measured material non-direct light rate expressed as a regression equation of a linear function is taken as the direct index, and the direct index of the shading material to be evaluated is estimated using the relationship between the direct index and porosity obtained from multiple shading materials with different porosities, and the evaluation index of the shading material to be evaluated is estimated by identifying the evaluation material porosity of the shading material to be evaluated, and estimating the direct index of the shading material to be evaluated using the relationship equation from the identified evaluation material porosity.
- the relational equation holds between the porosity and direct index of a shading material, according to this embodiment, if the porosity of the shading material to be evaluated (the porosity of the evaluation material) is known, the relational equation can be used to estimate the direct index, and the direct light rate and scattered light rate can be estimated.
- the method for estimating the evaluation index of shading materials measures the material non-direct light rate when no shading materials are used and the material direct light rate when shading materials are used under the same weather conditions using a direct light rate measuring device 10, and the slope of the measured material direct light rate relative to the measured material non-direct light rate expressed as a regression equation of a linear function is taken as the direct index, and the method estimates the direct index of the shading material to be evaluated using a relationship between the direct index and lightness obtained from multiple shading materials with different lightnesses, and identifies the evaluation material lightness of the shading material to be evaluated, and estimates the direct index of the shading material to be evaluated using the relationship equation from the identified evaluation material lightness. Since a relational equation exists between the brightness and direct index of a shading material, according to this embodiment, if the brightness of the shading material to be evaluated is known, the direct index can be estimated using the relational equation, and the direct light rate and scattered light rate can be estimated.
- FIG. 8 is a graph showing the measurement results using a light-shielding coating agent.
- (Coat A), (Coat B), and (Coat C) indicate light-shielding coatings with different components, and for example, "30% shading" indicates the light-shielding rate of a paint spraying material coated with a light-shielding coating.
- the components are the same but the light-shielding rates are different because the application amounts are different.
- the light-shielding rate values are from the manufacturer's catalogue values.
- the horizontal axis represents the direct light efficiency of the agricultural polyolefin film alone, and the vertical axis represents the direct light efficiency of a paint spray material in which a light-shielding coating agent has been sprayed onto an agricultural polyolefin film.
- four direct light rate measuring devices 10 are used as described with reference to Fig. 2.
- the direct light rate without a coating agent when no shading coating agent is applied and the direct light rate with a coating agent when a shading coating agent is applied are measured, and the slope of the measured direct light rate with a coating agent relative to the measured direct light rate without a coating agent expressed as a linear regression equation is taken as the direct index, and the direct index is used as an evaluation index for paint spraying materials coated with a shading coating agent.
- the coating agent direct light rate relative to the coating agent non-direct light rate can be expressed by a linear regression equation.
- the slope of the linear regression equation is taken as a direct index, and this direct index can be used as an evaluation index for the shading material.
- the direct hit index of paint spraying materials with 30% shielding is 0.8752
- the direct hit index of paint spraying materials with 10% shielding (Coat B) is 0.9557
- the direct hit index of paint spraying materials with 13% shielding (Coat B) is 0.8837
- the direct hit index of paint spraying materials with 25% shielding (Coat B) is 0.7453
- the direct hit index of paint spraying materials with 22% shielding (Coat C) is 0.3367
- the direct hit index of paint spraying materials with 28% shielding is 0.3019
- the direct hit index of paint spraying materials with 39% shielding (Coat C) is 0.1882.
- the paint spray material with the smallest direct index of 39% shading has the highest scattered light rate
- the paint spray material with the largest direct index of 10% shading can be evaluated as having the highest direct light rate.
- the measured direct light coefficient differs depending on the weather conditions at the time of measurement.
- the direct light index which is an inherent value of the paint spray material coated with the light-shielding coating agent, regardless of the weather conditions at the time of measurement, and it is possible to compare and evaluate the direct light coefficient and scattered light coefficient of different paint spray materials.
- FIG. 9 is a graph showing the relationship between the direct coverage index and paint spray materials with different application rates per unit area.
- the vertical axis in FIG. 9 is the slope of the regression line, which is the direct index.
- the direct light index is the slope of the measured direct light index with a coating agent against the measured direct light index without a coating agent, which is measured under the same weather conditions using a direct light index measuring device 10, as shown in Fig. 8.
- the larger the direct index value the lower the scattering effect.
- the scattering components increase as the coating amount per unit area increases. Therefore, the direct hit index of the paint spray material to be evaluated can be estimated using the relational expression shown in FIG.
- the direct index of the paint spray material to be evaluated can be estimated using a relational equation between the direct index obtained from a plurality of paint spray materials with different application amounts per unit area and the application amount per unit area.
- the direct index is approximately 0.8
- the direct index is approximately 0.2.
- the application amount per unit area of the paint spray material to be evaluated is identified, and the direct coverage index of the paint spray material to be evaluated can be estimated from the identified application amount per unit area using a relational equation.
- a correspondence table between the application amount per unit area and the direct index can also be used, and when processing is performed by computer, the corresponding data is stored in a table.
- the amount of paint applied per unit area for the paint spray material being evaluated can be determined by calculation or measurement. As described above, a relationship exists between the amount of coating per unit area and the direct index. Therefore, if the amount of coating per unit area of the paint spray material being evaluated is known, the direct index can be estimated using the relationship, and the direct light rate and scattered light rate can be estimated.
- the amount of light-shielding coating agent to be used for the material to be sprayed with paint can be determined using a relationship between the direct coverage index obtained from a plurality of paint spraying materials with different coating amounts per unit area and the coating amount per unit area.
- the method for determining the amount of light-blocking coating agent to be used in this embodiment identifies the planned area to which paint is to be sprayed and the planned direct index for the material to which paint is to be sprayed, determines the amount of coating agent to be applied per unit area using a relational equation from the identified planned direct index, and determines the amount of light-blocking coating agent to be used from the determined amount of coating agent per unit area and the planned area to which paint is to be sprayed.
- the relationship can be used to determine the amount of coating applied per unit area, and the amount of shading coating agent to be used can be determined from the amount of coating applied per unit area and the planned paint spray area.
- the method for evaluating paint spray materials uses a direct light rate measuring device 10 to measure the direct light rate without a light-shielding coating when no light-shielding coating is applied and the direct light rate with a light-shielding coating when a light-shielding coating is applied under the same weather conditions, and the slope of the measured direct light rate with a coating relative to the measured direct light rate without a light-shielding coating is expressed as a linear regression equation, and the direct light rate is used as an evaluation index for paint spray materials coated with a light-shielding coating. Even for paint spray materials coated with the same light-shielding coating, the direct light rate measured varies depending on the weather conditions at the time of measurement.
- the direct light rate which is an inherent value of the paint spray materials coated with a light-shielding coating, can be obtained without being influenced by the weather conditions at the time of measurement, and the direct light rate and scattered light rate of different paint spray materials can be compared and evaluated.
- the method for estimating an evaluation index of paint spray materials measures the direct light rate without coating when no shading coating is applied and the direct light rate with coating when a shading coating is applied under the same weather conditions using a direct light rate measuring device 10, and the slope of the measured direct light rate with coating against the measured direct light rate without coating expressed as a linear regression equation is taken as the direct index, and the direct index of the paint spray material to be evaluated is estimated using the relationship between the direct index obtained from multiple paint spray materials with different application amounts per unit area and the application amount per unit area, and the application amount per unit area for the paint spray material to be evaluated is identified, and the direct index for the paint spray material to be evaluated is estimated using the relationship from the identified application amount per unit area.
- the direct index can be estimated using the relational equation, and the direct light rate and scattered light rate can be estimated.
- the method for determining the amount of light-blocking coating agent to be used measures the direct light rate without a light-blocking coating agent when no light-blocking coating agent is applied and the direct light rate with a light-blocking coating agent when a light-blocking coating agent is applied under the same weather conditions using a direct light rate measuring device 10, and determines the amount of light-blocking coating agent to be used for materials to be sprayed with paint using a relationship equation between the direct index obtained from multiple paint spraying materials with different application amounts per unit area and the application amount per unit area, and specifies the planned paint spraying area and planned direct index for the materials to be sprayed with paint, determines the application amount per unit area from the specified planned direct index using the relationship equation, and determines the amount of light-blocking coating agent to be used from the determined application amount per unit area and the planned paint spraying area.
- the amount of coating per unit area can be determined using the relational equation, and the amount of light-shielding coating agent to be used can be determined from the amount of coating per unit area and the planned paint spray area.
- the direct penetration index of this invention can be used to evaluate shading materials and paint spray materials.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Atmospheric Sciences (AREA)
- Ecology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Toxicology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Greenhouses (AREA)
- Protection Of Plants (AREA)
Abstract
Provided are a paint-sprayed material evaluation method, a paint-sprayed material evaluation index estimation method, and a method for determining a usage amount of a light-shielding coating agent. In the paint-sprayed material evaluation method: a direct light rate measuring device 10 is used to measure, under the same weather conditions, a no-coating agent direct light rate when no light-shielding coating agent is applied, and a with-coating agent direct light rate when a light-shielding coating agent is applied; a gradient is defined as a direct index, the gradient being obtained when the measured with-coating agent direct light rate is expressed as a regression equation of a linear function with respect to the no-coating agent direct light rate; and the direct index is used as an evaluation index of a paint-sprayed material coated with a light-shielding coating agent, to estimate the direct index of a paint-sprayed material being evaluated, and to determine a coating amount per unit area and a usage amount of the light-shielding coating agent. This makes it possible to perform a comparative evaluation of the direct light rate and a scattered light rate between different paint-sprayed materials. The paint-sprayed material evaluation index estimation method makes it possible to estimate the direct light rate and the scattered light index from the coating amount per unit area for the paint-sprayed material being evaluated. The method for determining a usage amount of a light-shielding coating agent makes it possible to determine the usage amount of the light-shielding coating agent from the coating amount per unit area and the area planned to be sprayed with paint.
Description
本発明は、塗料吹付資材が光成分(直達光率・散乱光率)に与える影響を、測定時の気象条件に左右されずに評価できる塗料吹付資材の評価方法、塗料吹付資材の評価指標推定方法、及び遮光用塗布剤使用量決定方法に関する。
The present invention relates to a method for evaluating paint spray materials that can evaluate the effect of paint spray materials on light components (direct light rate and scattered light rate) without being affected by weather conditions at the time of measurement, a method for estimating the evaluation index of paint spray materials, and a method for determining the amount of light-shielding coating agent to be used.
遮光資材や遮光用塗布剤の性能は、「遮光率」として提示されている。しかし、各資材メーカーのカタログ表示は、メーカー独自の基準を用いており、遮光性能を定量的に評価する指標が存在しない。
園芸施設では、気候変動による気温の上昇、豪雨の頻発、長雨傾向などにより、厳しい労働環境、栽培環境となっており、特に夏季から初秋にかけて野菜の価格が高騰している。このような環境下で、収益向上のため夏季栽培の技術開発が求められている。
ところで、直達光や散乱光という概念が近年注目されている。散乱光の割合が高いと、光がハウス全体に広がることで、施設部材や植物体の影ができにくくなり、光合成量が増加し、生育のばらつきが減少する。午前中の急激な温度上昇を抑制することができれば、葉焼けや高温障害を回避することができる。
なお、特許文献1には、環境光の成分比(比情報)を算出することが記載され、特許文献2には、直達光と散乱光との比と基準値との比較結果に基づいて天候を検出することが記載されている。 The performance of light-blocking materials and light-blocking coatings is presented as a "light-blocking rate." However, the catalogs of each material manufacturer use their own standards, and there is no index to quantitatively evaluate the light-blocking performance.
In horticultural facilities, rising temperatures, frequent heavy rains, and a tendency toward long periods of rain due to climate change have created harsh working and cultivation environments, and vegetable prices have skyrocketed, especially from summer to early autumn. In this environment, there is a demand for the development of summer cultivation techniques to increase profits.
Incidentally, the concepts of direct light and scattered light have been attracting attention in recent years. If the proportion of scattered light is high, the light spreads throughout the greenhouse, making it difficult for the facility components and plants to cast shadows, increasing the amount of photosynthesis and reducing growth variation. If the sudden rise in temperature in the morning can be suppressed, leaf burn and high-temperature damage can be avoided.
In addition, Patent Document 1 describes calculating the component ratio (ratio information) of ambient light, and Patent Document 2 describes detecting the weather based on the result of comparing the ratio of direct light to scattered light with a reference value.
園芸施設では、気候変動による気温の上昇、豪雨の頻発、長雨傾向などにより、厳しい労働環境、栽培環境となっており、特に夏季から初秋にかけて野菜の価格が高騰している。このような環境下で、収益向上のため夏季栽培の技術開発が求められている。
ところで、直達光や散乱光という概念が近年注目されている。散乱光の割合が高いと、光がハウス全体に広がることで、施設部材や植物体の影ができにくくなり、光合成量が増加し、生育のばらつきが減少する。午前中の急激な温度上昇を抑制することができれば、葉焼けや高温障害を回避することができる。
なお、特許文献1には、環境光の成分比(比情報)を算出することが記載され、特許文献2には、直達光と散乱光との比と基準値との比較結果に基づいて天候を検出することが記載されている。 The performance of light-blocking materials and light-blocking coatings is presented as a "light-blocking rate." However, the catalogs of each material manufacturer use their own standards, and there is no index to quantitatively evaluate the light-blocking performance.
In horticultural facilities, rising temperatures, frequent heavy rains, and a tendency toward long periods of rain due to climate change have created harsh working and cultivation environments, and vegetable prices have skyrocketed, especially from summer to early autumn. In this environment, there is a demand for the development of summer cultivation techniques to increase profits.
Incidentally, the concepts of direct light and scattered light have been attracting attention in recent years. If the proportion of scattered light is high, the light spreads throughout the greenhouse, making it difficult for the facility components and plants to cast shadows, increasing the amount of photosynthesis and reducing growth variation. If the sudden rise in temperature in the morning can be suppressed, leaf burn and high-temperature damage can be avoided.
In addition, Patent Document 1 describes calculating the component ratio (ratio information) of ambient light, and Patent Document 2 describes detecting the weather based on the result of comparing the ratio of direct light to scattered light with a reference value.
しかし、遮光資材や遮光用塗布剤は、直達光や散乱光についての評価指標がない。
直達光や散乱光を測定する装置はあるが、同じ遮光資材であっても気象条件が異なれば測定値が変わってしまう。従って、遮光資材の製品同士の性能比較ができない。
図1は本発明の遮光資材の評価方法の基本概念を示す説明図である。
資材Aと資材Bとは遮光率が同じ資材である。
図1(a)は、農業用ポリオレフィン系フィルムに資材A又は資材Bを被覆して測定した直達光率を示している。資材Aは晴れの日、資材Bは曇りの日に測定した場合を想定している。資材Aの直達光率が資材Bの直達光率よりも高くなっているが、測定日の天候が異なるため、図1(a)から資材Bが資材Aよりも散乱光率が高いとは必ずしも言えない。
図1(b)は、同一気象条件の下で測定された資材無直達光率に対する資材有直達光率が一次関数の回帰式で表せると仮定した場合の概念を示している。
資材Aは、資材有直達光率が0.5であるが、仮に同時測定における資材無直達光率が0.9であり、資材Bは、資材有直達光率が0.3であるが、仮に同時測定における資材無直達光率が0.4であったとし、資材無直達光率に対する資材有直達光率が一次関数の回帰式で表せると仮定すると、図1(b)に示す直線となり、資材Bについては、資材Aと同一条件(資材無直達光率が0.9)では、資材Aの直達光率0.5よりも高い直達光率になると推測できる。
すなわち、資材Aの傾きが資材Bよりも小さいため、資材Aが資材Bよりも散乱光率が高いと判断できる。
なお、図1(b)では、資材による直達光率への影響がゼロの場合には、横軸1.0、縦軸1.0の45度の角度の直線となる。従って、直線の傾きが小さくなるほど、直達光率は低く散乱光率は高くなる。 However, there are no evaluation indices for direct light or scattered light for light-shielding materials and light-shielding coating agents.
Although there are devices that measure direct and scattered light, the measured values change depending on the weather conditions, even for the same shading material. Therefore, it is not possible to compare the performance of different shading material products.
FIG. 1 is an explanatory diagram showing the basic concept of the method for evaluating a light-shielding material of the present invention.
Material A and material B have the same light blocking rate.
Fig. 1(a) shows the direct light rate measured when an agricultural polyolefin film is covered with material A or material B. It is assumed that material A was measured on a sunny day, and material B was measured on a cloudy day. Although the direct light rate of material A is higher than that of material B, because the weather conditions on the measurement days were different, Fig. 1(a) does not necessarily mean that material B has a higher scattered light rate than material A.
FIG. 1(b) shows a concept when it is assumed that the direct light rate on a material relative to the non-direct light rate on a material measured under the same weather conditions can be expressed by a linear regression equation.
Material A has a direct light rate of 0.5, but if we assume that the non-direct light rate in simultaneous measurement is 0.9, and material B has a direct light rate of 0.3, but if we assume that the non-direct light rate in simultaneous measurement is 0.4, and assume that the direct light rate of the material against the non-direct light rate can be expressed by a regression equation of a linear function, we get the straight line shown in Figure 1(b).Therefore, it can be inferred that material B will have a higher direct light rate than material A's direct light rate of 0.5 under the same conditions as material A (material non-direct light rate of 0.9).
In other words, since the inclination of material A is smaller than that of material B, it can be determined that material A has a higher scattered light rate than material B.
In Fig. 1(b), when the effect of the material on the direct light coefficient is zero, the line is 1.0 on the horizontal axis and 1.0 on the vertical axis at an angle of 45 degrees. Therefore, the smaller the inclination of the line, the lower the direct light coefficient and the higher the scattered light coefficient.
直達光や散乱光を測定する装置はあるが、同じ遮光資材であっても気象条件が異なれば測定値が変わってしまう。従って、遮光資材の製品同士の性能比較ができない。
図1は本発明の遮光資材の評価方法の基本概念を示す説明図である。
資材Aと資材Bとは遮光率が同じ資材である。
図1(a)は、農業用ポリオレフィン系フィルムに資材A又は資材Bを被覆して測定した直達光率を示している。資材Aは晴れの日、資材Bは曇りの日に測定した場合を想定している。資材Aの直達光率が資材Bの直達光率よりも高くなっているが、測定日の天候が異なるため、図1(a)から資材Bが資材Aよりも散乱光率が高いとは必ずしも言えない。
図1(b)は、同一気象条件の下で測定された資材無直達光率に対する資材有直達光率が一次関数の回帰式で表せると仮定した場合の概念を示している。
資材Aは、資材有直達光率が0.5であるが、仮に同時測定における資材無直達光率が0.9であり、資材Bは、資材有直達光率が0.3であるが、仮に同時測定における資材無直達光率が0.4であったとし、資材無直達光率に対する資材有直達光率が一次関数の回帰式で表せると仮定すると、図1(b)に示す直線となり、資材Bについては、資材Aと同一条件(資材無直達光率が0.9)では、資材Aの直達光率0.5よりも高い直達光率になると推測できる。
すなわち、資材Aの傾きが資材Bよりも小さいため、資材Aが資材Bよりも散乱光率が高いと判断できる。
なお、図1(b)では、資材による直達光率への影響がゼロの場合には、横軸1.0、縦軸1.0の45度の角度の直線となる。従って、直線の傾きが小さくなるほど、直達光率は低く散乱光率は高くなる。 However, there are no evaluation indices for direct light or scattered light for light-shielding materials and light-shielding coating agents.
Although there are devices that measure direct and scattered light, the measured values change depending on the weather conditions, even for the same shading material. Therefore, it is not possible to compare the performance of different shading material products.
FIG. 1 is an explanatory diagram showing the basic concept of the method for evaluating a light-shielding material of the present invention.
Material A and material B have the same light blocking rate.
Fig. 1(a) shows the direct light rate measured when an agricultural polyolefin film is covered with material A or material B. It is assumed that material A was measured on a sunny day, and material B was measured on a cloudy day. Although the direct light rate of material A is higher than that of material B, because the weather conditions on the measurement days were different, Fig. 1(a) does not necessarily mean that material B has a higher scattered light rate than material A.
FIG. 1(b) shows a concept when it is assumed that the direct light rate on a material relative to the non-direct light rate on a material measured under the same weather conditions can be expressed by a linear regression equation.
Material A has a direct light rate of 0.5, but if we assume that the non-direct light rate in simultaneous measurement is 0.9, and material B has a direct light rate of 0.3, but if we assume that the non-direct light rate in simultaneous measurement is 0.4, and assume that the direct light rate of the material against the non-direct light rate can be expressed by a regression equation of a linear function, we get the straight line shown in Figure 1(b).Therefore, it can be inferred that material B will have a higher direct light rate than material A's direct light rate of 0.5 under the same conditions as material A (material non-direct light rate of 0.9).
In other words, since the inclination of material A is smaller than that of material B, it can be determined that material A has a higher scattered light rate than material B.
In Fig. 1(b), when the effect of the material on the direct light coefficient is zero, the line is 1.0 on the horizontal axis and 1.0 on the vertical axis at an angle of 45 degrees. Therefore, the smaller the inclination of the line, the lower the direct light coefficient and the higher the scattered light coefficient.
本発明は、異なる塗料吹付資材同士の直達光率や散乱光率を比較評価できる塗料吹付資材の評価方法を提供することを目的とする。
また本発明は、評価対象塗料吹付資材についての単位面積当たりの塗布量から直達光率や散乱光率を推定できる塗料吹付資材の評価指標推定方法を提供することを目的とする。
また本発明は、単位面積当たりの塗布量と塗料吹付予定面積とから遮光用塗布剤使用量を決定できる遮光用塗布剤使用量決定方法を提供することを目的とする。 An object of the present invention is to provide a method for evaluating paint spray materials that can compare and evaluate the direct light rate and scattered light rate of different paint spray materials.
Another object of the present invention is to provide a method for estimating an evaluation index of a paint spray material, which can estimate the direct light rate and scattered light rate from the coating amount per unit area of the paint spray material to be evaluated.
Another object of the present invention is to provide a method for determining the amount of light-shielding coating agent to be used, which can determine the amount of light-shielding coating agent to be used from the coating amount per unit area and the area to which the paint is to be sprayed.
また本発明は、評価対象塗料吹付資材についての単位面積当たりの塗布量から直達光率や散乱光率を推定できる塗料吹付資材の評価指標推定方法を提供することを目的とする。
また本発明は、単位面積当たりの塗布量と塗料吹付予定面積とから遮光用塗布剤使用量を決定できる遮光用塗布剤使用量決定方法を提供することを目的とする。 An object of the present invention is to provide a method for evaluating paint spray materials that can compare and evaluate the direct light rate and scattered light rate of different paint spray materials.
Another object of the present invention is to provide a method for estimating an evaluation index of a paint spray material, which can estimate the direct light rate and scattered light rate from the coating amount per unit area of the paint spray material to be evaluated.
Another object of the present invention is to provide a method for determining the amount of light-shielding coating agent to be used, which can determine the amount of light-shielding coating agent to be used from the coating amount per unit area and the area to which the paint is to be sprayed.
請求項1記載の本発明の塗料吹付資材の評価方法は、同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、前記遮光用塗布剤を塗布した場合の塗布剤有直達光率とを、直達光率測定装置10を用いて測定し、測定された前記塗布剤無直達光率に対する、測定された前記塗布剤有直達光率を、一次関数の回帰式で表した際の傾きを直達指数とし、前記直達指数を前記遮光用塗布剤を塗布した塗料吹付資材の評価指標に用いることを特徴とする。
請求項2記載の本発明の塗料吹付資材の評価指標推定方法は、同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、前記遮光用塗布剤を塗布した場合の塗布剤有直達光率とを、直達光率測定装置10を用いて測定し、測定された前記塗布剤無直達光率に対する、測定された前記塗布剤有直達光率を、一次関数の回帰式で表した際の傾きを直達指数とし、単位面積当たりの塗布量が異なる複数の塗料吹付資材から得られる前記直達指数と単位面積当たりの前記塗布量との関係式を用いて評価対象塗料吹付資材の前記直達指数を推定する塗料吹付資材の評価指標推定方法であって、前記評価対象塗料吹付資材についての単位面積当たりの前記塗布量を特定し、特定された単位面積当たりの前記塗布量から前記関係式を用いて前記評価対象塗料吹付資材についての前記直達指数を推定することを特徴とする。
請求項3記載の本発明の遮光用塗布剤使用量決定方法は、同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、前記遮光用塗布剤を塗布した場合の塗布剤有直達光率とを、直達光率測定装置10を用いて測定し、測定された前記塗布剤無直達光率に対する、測定された前記塗布剤有直達光率を、一次関数の回帰式で表した際の傾きを直達指数とし、単位面積当たりの塗布量が異なる複数の塗料吹付資材から得られる前記直達指数と単位面積当たりの前記塗布量との関係式を用いて塗料吹付予定資材に対する遮光用塗布剤使用量を決定する遮光用塗布剤使用量決定方法であって、前記塗料吹付予定資材について、塗料吹付予定面積と予定直達指数とを特定し、特定された前記予定直達指数から前記関係式を用いて単位面積当たりの前記塗布量を決定し、決定された単位面積当たりの前記塗布量と前記塗料吹付予定面積とから遮光用塗布剤使用量を決定することを特徴とする。 The method for evaluating paint spray materials of the present invention described in claim 1 is characterized in that, under the same weather conditions, the non-direct light rate of a coating agent when no shading coating agent is applied and the direct light rate of a coating agent when the shading coating agent is applied are measured using a direct light rate measuring device 10, the slope of the measured direct light rate with a coating agent relative to the measured non-direct light rate of a coating agent is expressed as a regression equation of a linear function is defined as a direct index, and the direct index is used as an evaluation index for paint spray materials coated with the shading coating agent.
The method for estimating an evaluation index of a paint spraying material of the present invention described in claim 2 measures the direct light rate without a coating agent when a shading coating agent is not applied and the direct light rate with a coating agent when the shading coating agent is applied under the same weather conditions using a direct light rate measuring device 10, and the slope of the measured direct light rate with a coating agent relative to the measured direct light rate without a coating agent is expressed as a regression equation of a linear function is taken as a direct index, and the direct index of the paint spraying material to be evaluated is estimated using a relational equation between the direct index obtained from a plurality of paint spraying materials with different application amounts per unit area and the application amount per unit area, characterized in that the application amount per unit area for the paint spraying material to be evaluated is specified, and the direct index for the paint spraying material to be evaluated is estimated using the relational equation from the specified application amount per unit area.
The method for determining the amount of light-shielding coating agent to be used according to the present invention described in claim 3 measures the non-direct light rate of light when a light-shielding coating agent is not applied and the direct light rate of light with light-shielding coating agent when the light-shielding coating agent is applied under the same weather conditions using a direct light rate measuring device 10, and determines the amount of light-shielding coating agent to be used for materials to be sprayed with paint using a relational equation between the direct index obtained from a plurality of paint spraying materials having different application amounts per unit area and the application amount per unit area, characterized in that for the materials to be sprayed with paint, a planned paint spraying area and a planned direct index are specified, the application amount per unit area is determined from the specified planned direct index using the relational equation, and the amount of light-shielding coating agent to be used is determined from the determined application amount per unit area and the planned paint spraying area.
請求項2記載の本発明の塗料吹付資材の評価指標推定方法は、同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、前記遮光用塗布剤を塗布した場合の塗布剤有直達光率とを、直達光率測定装置10を用いて測定し、測定された前記塗布剤無直達光率に対する、測定された前記塗布剤有直達光率を、一次関数の回帰式で表した際の傾きを直達指数とし、単位面積当たりの塗布量が異なる複数の塗料吹付資材から得られる前記直達指数と単位面積当たりの前記塗布量との関係式を用いて評価対象塗料吹付資材の前記直達指数を推定する塗料吹付資材の評価指標推定方法であって、前記評価対象塗料吹付資材についての単位面積当たりの前記塗布量を特定し、特定された単位面積当たりの前記塗布量から前記関係式を用いて前記評価対象塗料吹付資材についての前記直達指数を推定することを特徴とする。
請求項3記載の本発明の遮光用塗布剤使用量決定方法は、同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、前記遮光用塗布剤を塗布した場合の塗布剤有直達光率とを、直達光率測定装置10を用いて測定し、測定された前記塗布剤無直達光率に対する、測定された前記塗布剤有直達光率を、一次関数の回帰式で表した際の傾きを直達指数とし、単位面積当たりの塗布量が異なる複数の塗料吹付資材から得られる前記直達指数と単位面積当たりの前記塗布量との関係式を用いて塗料吹付予定資材に対する遮光用塗布剤使用量を決定する遮光用塗布剤使用量決定方法であって、前記塗料吹付予定資材について、塗料吹付予定面積と予定直達指数とを特定し、特定された前記予定直達指数から前記関係式を用いて単位面積当たりの前記塗布量を決定し、決定された単位面積当たりの前記塗布量と前記塗料吹付予定面積とから遮光用塗布剤使用量を決定することを特徴とする。 The method for evaluating paint spray materials of the present invention described in claim 1 is characterized in that, under the same weather conditions, the non-direct light rate of a coating agent when no shading coating agent is applied and the direct light rate of a coating agent when the shading coating agent is applied are measured using a direct light rate measuring device 10, the slope of the measured direct light rate with a coating agent relative to the measured non-direct light rate of a coating agent is expressed as a regression equation of a linear function is defined as a direct index, and the direct index is used as an evaluation index for paint spray materials coated with the shading coating agent.
The method for estimating an evaluation index of a paint spraying material of the present invention described in claim 2 measures the direct light rate without a coating agent when a shading coating agent is not applied and the direct light rate with a coating agent when the shading coating agent is applied under the same weather conditions using a direct light rate measuring device 10, and the slope of the measured direct light rate with a coating agent relative to the measured direct light rate without a coating agent is expressed as a regression equation of a linear function is taken as a direct index, and the direct index of the paint spraying material to be evaluated is estimated using a relational equation between the direct index obtained from a plurality of paint spraying materials with different application amounts per unit area and the application amount per unit area, characterized in that the application amount per unit area for the paint spraying material to be evaluated is specified, and the direct index for the paint spraying material to be evaluated is estimated using the relational equation from the specified application amount per unit area.
The method for determining the amount of light-shielding coating agent to be used according to the present invention described in claim 3 measures the non-direct light rate of light when a light-shielding coating agent is not applied and the direct light rate of light with light-shielding coating agent when the light-shielding coating agent is applied under the same weather conditions using a direct light rate measuring device 10, and determines the amount of light-shielding coating agent to be used for materials to be sprayed with paint using a relational equation between the direct index obtained from a plurality of paint spraying materials having different application amounts per unit area and the application amount per unit area, characterized in that for the materials to be sprayed with paint, a planned paint spraying area and a planned direct index are specified, the application amount per unit area is determined from the specified planned direct index using the relational equation, and the amount of light-shielding coating agent to be used is determined from the determined application amount per unit area and the planned paint spraying area.
本発明の塗料吹付資材の評価方法によれば、遮光用塗布剤を塗布した塗料吹付資材が同じであれば測定時の気象条件に左右されることなく、遮光用塗布剤を塗布した塗料吹付資材の固有値である直達指数を得ることができ、異なる塗料吹付資材同士の直達光率や散乱光率を比較評価できる。
また本発明の塗料吹付資材の評価指標推定方法によれば、評価対象塗料吹付資材についての単位面積当たりの塗布量が分かれば、関係式を用いて直達指数を推定し、直達光率や散乱光率を推定できる。
また本発明の遮光用塗布剤使用量決定方法によれば、評価対象塗料吹付資材についての塗料吹付予定面積と予定直達指数が分かれば、関係式を用いて単位面積当たりの塗布量を決定し、単位面積当たりの塗布量と塗料吹付予定面積とから遮光用塗布剤使用量を決定できる。 According to the paint spray material evaluation method of the present invention, as long as the paint spray material coated with the shading coating agent is the same, the direct light index, which is an inherent value of the paint spray material coated with the shading coating agent, can be obtained regardless of the weather conditions at the time of measurement, and the direct light rate and scattered light rate of different paint spray materials can be compared and evaluated.
In addition, according to the method for estimating the evaluation index of a paint spray material of the present invention, if the application amount per unit area of the paint spray material to be evaluated is known, the direct index can be estimated using a relational equation, and the direct light rate and scattered light rate can be estimated.
Furthermore, according to the method of the present invention for determining the amount of light-shielding coating agent to be used, if the planned paint spray area and planned direct coverage index for the paint spraying material to be evaluated are known, the amount of coating per unit area can be determined using a relational equation, and the amount of light-shielding coating agent to be used can be determined from the amount of coating per unit area and the planned paint spray area.
また本発明の塗料吹付資材の評価指標推定方法によれば、評価対象塗料吹付資材についての単位面積当たりの塗布量が分かれば、関係式を用いて直達指数を推定し、直達光率や散乱光率を推定できる。
また本発明の遮光用塗布剤使用量決定方法によれば、評価対象塗料吹付資材についての塗料吹付予定面積と予定直達指数が分かれば、関係式を用いて単位面積当たりの塗布量を決定し、単位面積当たりの塗布量と塗料吹付予定面積とから遮光用塗布剤使用量を決定できる。 According to the paint spray material evaluation method of the present invention, as long as the paint spray material coated with the shading coating agent is the same, the direct light index, which is an inherent value of the paint spray material coated with the shading coating agent, can be obtained regardless of the weather conditions at the time of measurement, and the direct light rate and scattered light rate of different paint spray materials can be compared and evaluated.
In addition, according to the method for estimating the evaluation index of a paint spray material of the present invention, if the application amount per unit area of the paint spray material to be evaluated is known, the direct index can be estimated using a relational equation, and the direct light rate and scattered light rate can be estimated.
Furthermore, according to the method of the present invention for determining the amount of light-shielding coating agent to be used, if the planned paint spray area and planned direct coverage index for the paint spraying material to be evaluated are known, the amount of coating per unit area can be determined using a relational equation, and the amount of light-shielding coating agent to be used can be determined from the amount of coating per unit area and the planned paint spray area.
本発明の第1の実施の形態による塗料吹付資材の評価方法は、同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、遮光用塗布剤を塗布した場合の塗布剤有直達光率とを、直達光率測定装置を用いて測定し、測定された塗布剤無直達光率に対する、測定された塗布剤有直達光率を、一次関数の回帰式で表した際の傾きを直達指数とし、直達指数を、遮光用塗布剤を塗布した塗料吹付資材の評価指標に用いるものである。同一の遮光用塗布剤を塗布した塗料吹付資材であっても、測定時の気象条件によって測定される直達光率は異なるが、本実施の形態によれば、遮光用塗布剤を塗布した塗料吹付資材が同じであれば測定時の気象条件に左右されることなく、遮光用塗布剤を塗布した塗料吹付資材の固有値である直達指数を得ることができ、異なる塗料吹付資材同士の直達光率や散乱光率を比較評価できる。
The method for evaluating paint spraying materials according to the first embodiment of the present invention uses a direct light rate measuring device to measure the direct light rate without a light-shielding coating when no light-shielding coating is applied and the direct light rate with a light-shielding coating when a light-shielding coating is applied under the same weather conditions, and the slope of the measured direct light rate with a coating relative to the measured direct light rate without a light-shielding coating is expressed as a linear regression equation, and the direct light rate is used as an evaluation index for paint spraying materials coated with a light-shielding coating. Even for paint spraying materials coated with the same light-shielding coating, the direct light rate measured varies depending on the weather conditions at the time of measurement. However, according to this embodiment, if the paint spraying materials coated with the light-shielding coating are the same, the direct light rate, which is an inherent value of the paint spraying materials coated with a light-shielding coating, can be obtained without being influenced by the weather conditions at the time of measurement, and the direct light rate and scattered light rate of different paint spraying materials can be compared and evaluated.
本発明の第2の実施の形態による塗料吹付資材の評価指標推定方法は、同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、遮光用塗布剤を塗布した場合の塗布剤有直達光率とを、直達光率測定装置を用いて測定し、測定された塗布剤無直達光率に対する測定された塗布剤有直達光率を一次関数の回帰式で表した際の傾きを直達指数とし、単位面積当たりの塗布量が異なる複数の塗料吹付資材から得られる直達指数と単位面積当たりの塗布量との関係式を用いて評価対象塗料吹付資材の直達指数を推定する塗料吹付資材の評価指標推定方法であって、評価対象塗料吹付資材についての単位面積当たりの塗布量を特定し、特定された単位面積当たりの塗布量から関係式を用いて評価対象塗料吹付資材についての直達指数を推定するものである。単位面積当たりの塗布量と直達指数との間には関係式が成り立つため、本実施の形態によれば、評価対象塗料吹付資材についての単位面積当たりの塗布量が分かれば、関係式を用いて直達指数を推定し、直達光率や散乱光率を推定できる。
The method for estimating an evaluation index of a paint spray material according to the second embodiment of the present invention measures the direct light rate without a coating agent when no shading coating agent is applied and the direct light rate with a coating agent when a shading coating agent is applied under the same weather conditions using a direct light rate measuring device, and the slope of the measured direct light rate with a coating agent relative to the measured direct light rate without a coating agent expressed as a regression equation of a linear function is taken as the direct index, and the direct index of the paint spray material to be evaluated is estimated using a relational equation between the direct index obtained from multiple paint spray materials with different application amounts per unit area and the application amount per unit area, and the method identifies the application amount per unit area for the paint spray material to be evaluated, and estimates the direct index for the paint spray material to be evaluated using the relational equation from the identified application amount per unit area. Since a relational equation holds between the amount applied per unit area and the direct index, according to this embodiment, if the amount applied per unit area of the paint spray material being evaluated is known, the direct index can be estimated using the relational equation, and the direct light rate and scattered light rate can be estimated.
本発明の第3の実施の形態による遮光用塗布剤使用量決定方法は、同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、遮光用塗布剤を塗布した場合の塗布剤有直達光率とを、直達光率測定装置を用いて測定し、測定された塗布剤無直達光率に対する測定された塗布剤有直達光率を一次関数の回帰式で表した際の傾きを直達指数とし、単位面積当たりの塗布量が異なる複数の塗料吹付資材から得られる直達指数と単位面積当たりの塗布量との関係式を用いて塗料吹付予定資材に対する遮光用塗布剤使用量を決定する遮光用塗布剤使用量決定方法であって、塗料吹付予定資材について、塗料吹付予定面積と予定直達指数とを特定し、特定された予定直達指数から関係式を用いて単位面積当たりの塗布量を決定し、決定された単位面積当たりの塗布量と塗料吹付予定面積とから遮光用塗布剤使用量を決定するものである。単位面積当たりの塗布量と直達指数との間には関係式が成り立つため、本実施の形態によれば、評価対象塗料吹付資材についての塗料吹付予定面積と予定直達指数が分かれば、関係式を用いて単位面積当たりの塗布量を決定し、単位面積当たりの塗布量と塗料吹付予定面積とから遮光用塗布剤使用量を決定できる。
A method for determining the amount of light-blocking coating agent to be used according to a third embodiment of the present invention measures the non-coating direct light rate when a light-blocking coating agent is not applied and the direct light rate with a light-blocking coating agent when a light-blocking coating agent is applied under the same weather conditions using a direct light rate measuring device, determines the slope of the measured direct light rate with a coating agent relative to the measured non-coating direct light rate expressed as a linear regression equation, determines the amount of light-blocking coating agent to be used for materials to be sprayed with paint using a relationship equation between the direct index obtained from multiple paint spraying materials with different application amounts per unit area and the application amount per unit area, and determines the amount of light-blocking coating agent to be used for materials to be sprayed with paint, identifies the planned paint spraying area and planned direct index for the materials to be sprayed with paint, determines the application amount per unit area using the relationship equation from the identified planned direct index, and determines the amount of light-blocking coating agent to be used from the determined application amount per unit area and the planned paint spraying area. Since a relational equation exists between the amount of coating per unit area and the direct index, according to this embodiment, if the planned paint spray area and planned direct index for the paint spray material to be evaluated are known, the amount of coating per unit area can be determined using the relational equation, and the amount of light-shielding coating agent to be used can be determined from the amount of coating per unit area and the planned paint spray area.
以下本発明の一実施例による遮光資材の評価方法について説明する。
図2は測定に用いた直達光率測定装置及び測定条件を示す図である。
図2(a)は直達光率測定装置の構成図を示している。
直達光率測定装置10は、上面開口を40cm×40cmとし、日射計11を視野角が120°となるように配置している。
直達光率測定装置10の4つの側面と底面には、内面を黒色に塗装(反射率0.6%)したアルミ板を用いている。
直達光率測定装置10の上面開口には、資材展張用蓋12を配置する。
2台の直達光率測定装置10については、日射計11の上方に遮蔽板13を設けている。この遮蔽板13によって、直達光を遮断している。 A method for evaluating a light-shielding material according to one embodiment of the present invention will now be described.
FIG. 2 is a diagram showing the direct light efficiency measuring device used in the measurement and the measurement conditions.
FIG. 2(a) shows a configuration diagram of a direct light rate measuring device.
The direct light rate measuring device 10 has an upper opening of 40 cm×40 cm, and the actinometer 11 is disposed so that the viewing angle is 120°.
The four sides and the bottom of the direct light rate measuring device 10 are made of aluminum plates whose inner surfaces are painted black (reflectance 0.6%).
A material spreading lid 12 is placed on the top opening of the direct light rate measuring device 10.
For the two direct light rate measuring devices 10, a shielding plate 13 is provided above the actinometer 11. The shielding plate 13 blocks direct light.
図2は測定に用いた直達光率測定装置及び測定条件を示す図である。
図2(a)は直達光率測定装置の構成図を示している。
直達光率測定装置10は、上面開口を40cm×40cmとし、日射計11を視野角が120°となるように配置している。
直達光率測定装置10の4つの側面と底面には、内面を黒色に塗装(反射率0.6%)したアルミ板を用いている。
直達光率測定装置10の上面開口には、資材展張用蓋12を配置する。
2台の直達光率測定装置10については、日射計11の上方に遮蔽板13を設けている。この遮蔽板13によって、直達光を遮断している。 A method for evaluating a light-shielding material according to one embodiment of the present invention will now be described.
FIG. 2 is a diagram showing the direct light efficiency measuring device used in the measurement and the measurement conditions.
FIG. 2(a) shows a configuration diagram of a direct light rate measuring device.
The direct light rate measuring device 10 has an upper opening of 40 cm×40 cm, and the actinometer 11 is disposed so that the viewing angle is 120°.
The four sides and the bottom of the direct light rate measuring device 10 are made of aluminum plates whose inner surfaces are painted black (reflectance 0.6%).
A material spreading lid 12 is placed on the top opening of the direct light rate measuring device 10.
For the two direct light rate measuring devices 10, a shielding plate 13 is provided above the actinometer 11. The shielding plate 13 blocks direct light.
直達光率測定装置10Aは、農業用ポリオレフィン系フィルム(農PO)だけを資材展張用蓋12に配置し、遮蔽板13を設けることで、農業用ポリオレフィン系フィルムによる散乱光を測定した。
直達光率測定装置10Bは、農業用ポリオレフィン系フィルム(農PO)だけを資材展張用蓋12に配置し、遮蔽板13を設けないことで、農業用ポリオレフィン系フィルムによる散乱光と直達光とを測定した。
直達光率測定装置10Cは、農業用ポリオレフィン系フィルム(農PO)と遮光資材とを資材展張用蓋12に配置し、遮蔽板13を設けることで、農業用ポリオレフィン系フィルムと遮光資材とによる散乱光を測定した。
直達光率測定装置10Dは、農業用ポリオレフィン系フィルム(農PO)と遮光資材とを資材展張用蓋12に配置し、遮蔽板13を設けないことで、農業用ポリオレフィン系フィルムと遮光資材とによる散乱光と直達光とを測定した。 The direct light rate measuring device 10A measured the scattered light by the agricultural polyolefin film by placing only the agricultural polyolefin film (agricultural PO) on the material spreading lid 12 and providing a shielding plate 13.
The direct light rate measuring device 10B placed only an agricultural polyolefin film (agricultural PO) on the material spreading lid 12 and did not provide a shielding plate 13, thereby measuring the scattered light and direct light caused by the agricultural polyolefin film.
The direct light rate measuring device 10C placed an agricultural polyolefin film (agricultural PO) and a shading material on a material spreading lid 12 and provided a shielding plate 13 to measure the scattered light caused by the agricultural polyolefin film and the shading material.
The direct light rate measuring device 10D placed an agricultural polyolefin film (agricultural PO) and a shading material on a material spreading lid 12, and measured the scattered light and direct light caused by the agricultural polyolefin film and the shading material by not providing a shielding plate 13.
直達光率測定装置10Bは、農業用ポリオレフィン系フィルム(農PO)だけを資材展張用蓋12に配置し、遮蔽板13を設けないことで、農業用ポリオレフィン系フィルムによる散乱光と直達光とを測定した。
直達光率測定装置10Cは、農業用ポリオレフィン系フィルム(農PO)と遮光資材とを資材展張用蓋12に配置し、遮蔽板13を設けることで、農業用ポリオレフィン系フィルムと遮光資材とによる散乱光を測定した。
直達光率測定装置10Dは、農業用ポリオレフィン系フィルム(農PO)と遮光資材とを資材展張用蓋12に配置し、遮蔽板13を設けないことで、農業用ポリオレフィン系フィルムと遮光資材とによる散乱光と直達光とを測定した。 The direct light rate measuring device 10A measured the scattered light by the agricultural polyolefin film by placing only the agricultural polyolefin film (agricultural PO) on the material spreading lid 12 and providing a shielding plate 13.
The direct light rate measuring device 10B placed only an agricultural polyolefin film (agricultural PO) on the material spreading lid 12 and did not provide a shielding plate 13, thereby measuring the scattered light and direct light caused by the agricultural polyolefin film.
The direct light rate measuring device 10C placed an agricultural polyolefin film (agricultural PO) and a shading material on a material spreading lid 12 and provided a shielding plate 13 to measure the scattered light caused by the agricultural polyolefin film and the shading material.
The direct light rate measuring device 10D placed an agricultural polyolefin film (agricultural PO) and a shading material on a material spreading lid 12, and measured the scattered light and direct light caused by the agricultural polyolefin film and the shading material by not providing a shielding plate 13.
4台の直達光率測定装置10は、直達光が南中時刻に資材展張用蓋12に垂直となるようにして屋上に設置した。
なお、直達光率測定装置10Aと直達光率測定装置10Bとによって、農業用ポリオレフィン系フィルム(農PO)だけの直達光を測定できる。
また、直達光率測定装置10Cと直達光率測定装置10Dとによって、農業用ポリオレフィン系フィルム(農PO)と遮光資材とによる直達光を測定できる。
このように、4台の直達光率測定装置10を用いることで、同一気象条件の下で、遮光資材を用いない場合の資材無直達光率と、遮光資材を用いた場合の資材有直達光率とを測定できる。 The four direct light rate measuring devices 10 were installed on the rooftop so that direct light was perpendicular to the material spreading lid 12 at meridian time.
In addition, the direct light rate measuring device 10A and the direct light rate measuring device 10B can measure the direct light only of the agricultural polyolefin film (agricultural PO).
In addition, the direct light rate measuring device 10C and the direct light rate measuring device 10D can be used to measure the direct light caused by agricultural polyolefin films (agricultural PO) and shading materials.
In this way, by using four direct light rate measuring devices 10, it is possible to measure the material direct light rate without using shading materials and the material direct light rate with shading materials when using shading materials under the same weather conditions.
なお、直達光率測定装置10Aと直達光率測定装置10Bとによって、農業用ポリオレフィン系フィルム(農PO)だけの直達光を測定できる。
また、直達光率測定装置10Cと直達光率測定装置10Dとによって、農業用ポリオレフィン系フィルム(農PO)と遮光資材とによる直達光を測定できる。
このように、4台の直達光率測定装置10を用いることで、同一気象条件の下で、遮光資材を用いない場合の資材無直達光率と、遮光資材を用いた場合の資材有直達光率とを測定できる。 The four direct light rate measuring devices 10 were installed on the rooftop so that direct light was perpendicular to the material spreading lid 12 at meridian time.
In addition, the direct light rate measuring device 10A and the direct light rate measuring device 10B can measure the direct light only of the agricultural polyolefin film (agricultural PO).
In addition, the direct light rate measuring device 10C and the direct light rate measuring device 10D can be used to measure the direct light caused by agricultural polyolefin films (agricultural PO) and shading materials.
In this way, by using four direct light rate measuring devices 10, it is possible to measure the material direct light rate without using shading materials and the material direct light rate with shading materials when using shading materials under the same weather conditions.
図3は測定に用いた遮光資材を示す図である。
図3(a)は遮光率が30%の白色遮光資材(遮30%(白))、図3(b)は遮光率が40%の白色遮光資材(遮40%(白))、図3(c)は遮光率が50%の白色遮光資材(遮50%(白))、図3(d)は遮光率が50%の灰色遮光資材(遮50%(灰))、図3(e)は遮光率が50%の黒色遮光資材(遮50%(黒))である。なお、遮光率の数値は、メーカーのカタログ値である。 FIG. 3 shows the light-shielding materials used in the measurements.
Fig. 3(a) shows a white shading material with a shading rate of 30% (shading 30% (white)), Fig. 3(b) shows a white shading material with a shading rate of 40% (shading 40% (white)), Fig. 3(c) shows a white shading material with a shading rate of 50% (shading 50% (white)), Fig. 3(d) shows a gray shading material with a shading rate of 50% (shading 50% (gray)), and Fig. 3(e) shows a black shading material with a shading rate of 50% (shading 50% (black)). The numerical values for the shading rate are values in the manufacturer's catalogue.
図3(a)は遮光率が30%の白色遮光資材(遮30%(白))、図3(b)は遮光率が40%の白色遮光資材(遮40%(白))、図3(c)は遮光率が50%の白色遮光資材(遮50%(白))、図3(d)は遮光率が50%の灰色遮光資材(遮50%(灰))、図3(e)は遮光率が50%の黒色遮光資材(遮50%(黒))である。なお、遮光率の数値は、メーカーのカタログ値である。 FIG. 3 shows the light-shielding materials used in the measurements.
Fig. 3(a) shows a white shading material with a shading rate of 30% (shading 30% (white)), Fig. 3(b) shows a white shading material with a shading rate of 40% (shading 40% (white)), Fig. 3(c) shows a white shading material with a shading rate of 50% (shading 50% (white)), Fig. 3(d) shows a gray shading material with a shading rate of 50% (shading 50% (gray)), and Fig. 3(e) shows a black shading material with a shading rate of 50% (shading 50% (black)). The numerical values for the shading rate are values in the manufacturer's catalogue.
図4は明度が同じで遮光率が異なる3つの遮光資材による測定結果を示すグラフである。
図4に示すように、明度が同じで遮光率が異なる3つの遮光資材について、資材無直達光率に対する資材有直達光率は一次関数の回帰式で表すことができる。
そして、一次関数の回帰式で表した際の傾きを直達指数とし、この直達指数を遮光資材の評価指標に用いることができる。
遮30%(白)の遮光資材の直達指数は0.8658、遮40%(白)の遮光資材の直達指数は0.8535、遮50%(白)の遮光資材の直達指数は0.7750となっている。
直達指数が最も小さい遮50%(白)の遮光資材は散乱光率が最も高く、直達指数が最も大きい遮30%(白)の遮光資材は直達光率が最も高いと評価できる。
同一の遮光資材であっても、測定時の気象条件によって測定される直達光率は異なるが、本実施例によれば、遮光資材が同じであれば測定時の気象条件に左右されることなく、遮光資材の固有値である直達指数を得ることができ、異なる遮光資材同士の直達光率や散乱光率を比較評価できる。 FIG. 4 is a graph showing the measurement results for three light-shielding materials having the same brightness but different light-shielding rates.
As shown in FIG. 4, for three shading materials with the same brightness but different shading rates, the material direct light rate relative to the material non-direct light rate can be expressed by a linear regression equation.
The slope of the linear regression equation is taken as a direct index, and this direct index can be used as an evaluation index for the shading material.
The direct index of shading material with 30% shading (white) is 0.8658, the direct index of shading material with 40% shading (white) is 0.8535, and the direct index of shading material with 50% shading (white) is 0.7750.
The shading material with 50% shading (white), which has the smallest direct index, can be evaluated as having the highest scattered light rate, while the shading material with 30% shading (white), which has the largest direct index, can be evaluated as having the highest direct light rate.
Even if the same shading material is used, the measured direct light rate will differ depending on the weather conditions at the time of measurement. However, according to this embodiment, if the shading material is the same, it is possible to obtain the direct light index, which is an inherent value of the shading material, regardless of the weather conditions at the time of measurement, and it is possible to compare and evaluate the direct light rate and scattered light rate of different shading materials.
図4に示すように、明度が同じで遮光率が異なる3つの遮光資材について、資材無直達光率に対する資材有直達光率は一次関数の回帰式で表すことができる。
そして、一次関数の回帰式で表した際の傾きを直達指数とし、この直達指数を遮光資材の評価指標に用いることができる。
遮30%(白)の遮光資材の直達指数は0.8658、遮40%(白)の遮光資材の直達指数は0.8535、遮50%(白)の遮光資材の直達指数は0.7750となっている。
直達指数が最も小さい遮50%(白)の遮光資材は散乱光率が最も高く、直達指数が最も大きい遮30%(白)の遮光資材は直達光率が最も高いと評価できる。
同一の遮光資材であっても、測定時の気象条件によって測定される直達光率は異なるが、本実施例によれば、遮光資材が同じであれば測定時の気象条件に左右されることなく、遮光資材の固有値である直達指数を得ることができ、異なる遮光資材同士の直達光率や散乱光率を比較評価できる。 FIG. 4 is a graph showing the measurement results for three light-shielding materials having the same brightness but different light-shielding rates.
As shown in FIG. 4, for three shading materials with the same brightness but different shading rates, the material direct light rate relative to the material non-direct light rate can be expressed by a linear regression equation.
The slope of the linear regression equation is taken as a direct index, and this direct index can be used as an evaluation index for the shading material.
The direct index of shading material with 30% shading (white) is 0.8658, the direct index of shading material with 40% shading (white) is 0.8535, and the direct index of shading material with 50% shading (white) is 0.7750.
The shading material with 50% shading (white), which has the smallest direct index, can be evaluated as having the highest scattered light rate, while the shading material with 30% shading (white), which has the largest direct index, can be evaluated as having the highest direct light rate.
Even if the same shading material is used, the measured direct light rate will differ depending on the weather conditions at the time of measurement. However, according to this embodiment, if the shading material is the same, it is possible to obtain the direct light index, which is an inherent value of the shading material, regardless of the weather conditions at the time of measurement, and it is possible to compare and evaluate the direct light rate and scattered light rate of different shading materials.
図5は遮光率が同じで明度が異なる3つの遮光資材による測定結果を示すグラフである。
図5に示すように、遮光率が同じで明度が異なる3つの遮光資材について、資材無直達光率に対する資材有直達光率は一次関数の回帰式で表すことができる。
そして、一次関数の回帰式で表した際の傾きを直達指数とし、この直達指数を遮光資材の評価指標に用いることができる。
遮50%(白)の遮光資材の直達指数は0.7750、遮50%(灰)の遮光資材の直達指数は0.8406、遮50%(黒)の遮光資材の直達指数は0.9929となっている。
直達指数が最も小さい遮50%(白)の遮光資材は散乱光率が最も高く、直達指数が最も大きい遮50%(黒)の遮光資材は直達光率が最も高いと評価できる。
同一の遮光資材であっても、測定時の気象条件によって測定される直達光率は異なるが、本実施例によれば、遮光資材が同じであれば測定時の気象条件に左右されることなく、遮光資材の固有値である直達指数を得ることができ、異なる遮光資材同士の直達光率や散乱光率を比較評価できる。 FIG. 5 is a graph showing the measurement results for three light-shielding materials having the same light-shielding rate but different brightnesses.
As shown in FIG. 5, for three shading materials with the same shading rate but different brightness, the material direct light rate relative to the material non-direct light rate can be expressed by a linear regression equation.
The slope of the linear regression equation is taken as a direct index, and this direct index can be used as an evaluation index for the shading material.
The direct index of shading materials with 50% shading (white) is 0.7750, the direct index of shading materials with 50% shading (gray) is 0.8406, and the direct index of shading materials with 50% shading (black) is 0.9929.
The shading material with 50% shading (white), which has the smallest direct index, can be evaluated as having the highest scattered light rate, while the shading material with 50% shading (black), which has the largest direct index, can be evaluated as having the highest direct light rate.
Even if the same shading material is used, the measured direct light rate will differ depending on the weather conditions at the time of measurement. However, according to this embodiment, if the shading material is the same, it is possible to obtain the direct light index, which is an inherent value of the shading material, regardless of the weather conditions at the time of measurement, and it is possible to compare and evaluate the direct light rate and scattered light rate of different shading materials.
図5に示すように、遮光率が同じで明度が異なる3つの遮光資材について、資材無直達光率に対する資材有直達光率は一次関数の回帰式で表すことができる。
そして、一次関数の回帰式で表した際の傾きを直達指数とし、この直達指数を遮光資材の評価指標に用いることができる。
遮50%(白)の遮光資材の直達指数は0.7750、遮50%(灰)の遮光資材の直達指数は0.8406、遮50%(黒)の遮光資材の直達指数は0.9929となっている。
直達指数が最も小さい遮50%(白)の遮光資材は散乱光率が最も高く、直達指数が最も大きい遮50%(黒)の遮光資材は直達光率が最も高いと評価できる。
同一の遮光資材であっても、測定時の気象条件によって測定される直達光率は異なるが、本実施例によれば、遮光資材が同じであれば測定時の気象条件に左右されることなく、遮光資材の固有値である直達指数を得ることができ、異なる遮光資材同士の直達光率や散乱光率を比較評価できる。 FIG. 5 is a graph showing the measurement results for three light-shielding materials having the same light-shielding rate but different brightnesses.
As shown in FIG. 5, for three shading materials with the same shading rate but different brightness, the material direct light rate relative to the material non-direct light rate can be expressed by a linear regression equation.
The slope of the linear regression equation is taken as a direct index, and this direct index can be used as an evaluation index for the shading material.
The direct index of shading materials with 50% shading (white) is 0.7750, the direct index of shading materials with 50% shading (gray) is 0.8406, and the direct index of shading materials with 50% shading (black) is 0.9929.
The shading material with 50% shading (white), which has the smallest direct index, can be evaluated as having the highest scattered light rate, while the shading material with 50% shading (black), which has the largest direct index, can be evaluated as having the highest direct light rate.
Even if the same shading material is used, the measured direct light rate will differ depending on the weather conditions at the time of measurement. However, according to this embodiment, if the shading material is the same, it is possible to obtain the direct light index, which is an inherent value of the shading material, regardless of the weather conditions at the time of measurement, and it is possible to compare and evaluate the direct light rate and scattered light rate of different shading materials.
図6は直達指数と遮光資材の間隙率との関係を示すグラフである。
図6の縦軸は、回帰直線の傾きであり直達指数である。
直達指数は、図2を用いて説明したように、同一気象条件の下で、遮光資材を用いない場合の資材無直達光率と、遮光資材を用いた場合の資材有直達光率とを、直達光率測定装置10を用いて測定し、図4及び図5に示すように、測定された資材無直達光率に対する、測定された資材有直達光率を、一次関数の回帰式で表した際の傾きである。直達指数は、値が大きいほど散乱効果が低くなる。
図6に示すように、間隙率が下がるほど散乱成分が多くなっている。
従って、図6に示すような関係式を用いて、評価対象遮光資材の直達指数を推定することができる。
すなわち、間隙率が異なる複数の遮光資材から得られる直達指数と間隙率との関係式を用いて、評価対象遮光資材の直達指数を推定することができる。
例えば、評価対象遮光資材の間隙率が50%であれば直達指数は約0.7、評価対象遮光資材の間隙率が60%であれば直達指数は約0.8となる。
このように、評価対象遮光資材についての評価資材間隙率を特定し、特定された評価資材間隙率から関係式を用いて評価対象遮光資材についての直達指数を推定することができる。
なお、図6では関係式をグラフで示しているが、間隙率と直達指数との対応表を用いることもでき、コンピュータによる処理を行う場合には、テーブルに対応データを持たせる。
評価対象遮光資材の間隙率(評価資材間隙率)は、算出又は計測によって特定することができる。
以上のように、遮光資材の間隙率と直達指数との間には関係式が成り立つため、評価対象遮光資材についての間隙率(評価資材間隙率)が分かれば、関係式を用いて直達指数を推定し、直達光率や散乱光率を推定できる。 FIG. 6 is a graph showing the relationship between the direct penetration index and the porosity of a shading material.
The vertical axis in FIG. 6 is the slope of the regression line, which is the direct index.
As explained with reference to Fig. 2, the direct index is the slope of the measured direct light rate with material to the measured non-direct light rate with material when a shading material is used, measured under the same weather conditions using a direct light rate measuring device 10, as shown in Fig. 4 and Fig. 5. The larger the direct index value, the lower the scattering effect.
As shown in FIG. 6, the amount of scattered components increases as the porosity decreases.
Therefore, the direct penetration index of the shading material to be evaluated can be estimated using the relational expression shown in FIG.
In other words, the direct index of the shading material to be evaluated can be estimated using the relational equation between the direct index and the porosity obtained from a plurality of shading materials with different porosities.
For example, if the porosity of the shading material to be evaluated is 50%, the direct index is approximately 0.7, and if the porosity of the shading material to be evaluated is 60%, the direct index is approximately 0.8.
In this manner, the evaluation material porosity of the evaluation target light-shielding material is specified, and the direct penetration index of the evaluation target light-shielding material can be estimated from the specified evaluation material porosity using the relational expression.
Although the relational expression is shown in a graph in FIG. 6, a correspondence table between porosity and direct index can also be used, and when processing is performed by computer, the corresponding data is stored in a table.
The porosity of the light-shielding material to be evaluated (porosity of the evaluation material) can be determined by calculation or measurement.
As described above, a relational equation holds between the porosity and direct index of a shading material. Therefore, if the porosity of the shading material to be evaluated (the porosity of the evaluation material) is known, the relational equation can be used to estimate the direct index and, thereby, the direct light rate and scattered light rate.
図6の縦軸は、回帰直線の傾きであり直達指数である。
直達指数は、図2を用いて説明したように、同一気象条件の下で、遮光資材を用いない場合の資材無直達光率と、遮光資材を用いた場合の資材有直達光率とを、直達光率測定装置10を用いて測定し、図4及び図5に示すように、測定された資材無直達光率に対する、測定された資材有直達光率を、一次関数の回帰式で表した際の傾きである。直達指数は、値が大きいほど散乱効果が低くなる。
図6に示すように、間隙率が下がるほど散乱成分が多くなっている。
従って、図6に示すような関係式を用いて、評価対象遮光資材の直達指数を推定することができる。
すなわち、間隙率が異なる複数の遮光資材から得られる直達指数と間隙率との関係式を用いて、評価対象遮光資材の直達指数を推定することができる。
例えば、評価対象遮光資材の間隙率が50%であれば直達指数は約0.7、評価対象遮光資材の間隙率が60%であれば直達指数は約0.8となる。
このように、評価対象遮光資材についての評価資材間隙率を特定し、特定された評価資材間隙率から関係式を用いて評価対象遮光資材についての直達指数を推定することができる。
なお、図6では関係式をグラフで示しているが、間隙率と直達指数との対応表を用いることもでき、コンピュータによる処理を行う場合には、テーブルに対応データを持たせる。
評価対象遮光資材の間隙率(評価資材間隙率)は、算出又は計測によって特定することができる。
以上のように、遮光資材の間隙率と直達指数との間には関係式が成り立つため、評価対象遮光資材についての間隙率(評価資材間隙率)が分かれば、関係式を用いて直達指数を推定し、直達光率や散乱光率を推定できる。 FIG. 6 is a graph showing the relationship between the direct penetration index and the porosity of a shading material.
The vertical axis in FIG. 6 is the slope of the regression line, which is the direct index.
As explained with reference to Fig. 2, the direct index is the slope of the measured direct light rate with material to the measured non-direct light rate with material when a shading material is used, measured under the same weather conditions using a direct light rate measuring device 10, as shown in Fig. 4 and Fig. 5. The larger the direct index value, the lower the scattering effect.
As shown in FIG. 6, the amount of scattered components increases as the porosity decreases.
Therefore, the direct penetration index of the shading material to be evaluated can be estimated using the relational expression shown in FIG.
In other words, the direct index of the shading material to be evaluated can be estimated using the relational equation between the direct index and the porosity obtained from a plurality of shading materials with different porosities.
For example, if the porosity of the shading material to be evaluated is 50%, the direct index is approximately 0.7, and if the porosity of the shading material to be evaluated is 60%, the direct index is approximately 0.8.
In this manner, the evaluation material porosity of the evaluation target light-shielding material is specified, and the direct penetration index of the evaluation target light-shielding material can be estimated from the specified evaluation material porosity using the relational expression.
Although the relational expression is shown in a graph in FIG. 6, a correspondence table between porosity and direct index can also be used, and when processing is performed by computer, the corresponding data is stored in a table.
The porosity of the light-shielding material to be evaluated (porosity of the evaluation material) can be determined by calculation or measurement.
As described above, a relational equation holds between the porosity and direct index of a shading material. Therefore, if the porosity of the shading material to be evaluated (the porosity of the evaluation material) is known, the relational equation can be used to estimate the direct index and, thereby, the direct light rate and scattered light rate.
図6に示す横軸を明度とすることで、直達指数と遮光資材の明度との関係を示すことができる。
直達指数は、図2を用いて説明したように、同一気象条件の下で、遮光資材を用いない場合の資材無直達光率と、遮光資材を用いた場合の資材有直達光率とを、直達光率測定装置10を用いて測定し、図4及び図5に示すように、測定された資材無直達光率に対する、測定された資材有直達光率を、一次関数の回帰式で表した際の傾きである。直達指数は、値が大きいほど散乱効果が低くなる。
図5に示すように、遮50%(白)の遮光資材の直達指数は0.7750、遮50%(灰)の遮光資材の直達指数は0.8406、遮50%(黒)の遮光資材の直達指数は0.9929であり、明度が高くなるほど散乱成分が多くなっている。
従って、明度が異なる複数の遮光資材から得られる直達指数と明度との関係式を用いて、評価対象遮光資材の直達指数を推定することができる。
このように、評価対象遮光資材についての評価資材明度を特定し、特定された評価資材明度から関係式を用いて評価対象遮光資材についての直達指数を推定することができる。
評価対象遮光資材の明度(評価資材明度)は、算出又は計測によって特定することができる。
以上のように、遮光資材の明度と直達指数との間には関係式が成り立つため、評価対象遮光資材についての明度(評価資材明度)が分かれば、関係式を用いて直達指数を推定し、直達光率や散乱光率を推定できる。 By plotting the brightness on the horizontal axis in FIG. 6, the relationship between the direct index and the brightness of the shading material can be shown.
As explained with reference to Fig. 2, the direct index is the slope of the measured direct light rate with material to the measured non-direct light rate with material when a shading material is used, measured under the same weather conditions using a direct light rate measuring device 10, as shown in Fig. 4 and Fig. 5. The larger the direct index value, the lower the scattering effect.
As shown in Figure 5, the direct index of the shading material with 50% shading (white) is 0.7750, the direct index of the shading material with 50% shading (gray) is 0.8406, and the direct index of the shading material with 50% shading (black) is 0.9929, and the higher the brightness, the more scattered components there are.
Therefore, the direct index of the shading material to be evaluated can be estimated using the relational equation between the direct index and the lightness obtained from a plurality of shading materials with different lightness.
In this manner, the evaluation material lightness of the evaluation target light-shielding material is specified, and the direct index of the evaluation target light-shielding material can be estimated from the specified evaluation material lightness using the relational expression.
The lightness of the light-shielding material to be evaluated (evaluation material lightness) can be determined by calculation or measurement.
As described above, a relational equation holds between the lightness and direct index of a shading material. Therefore, if the lightness of the shading material to be evaluated (evaluation material lightness) is known, the relational equation can be used to estimate the direct index and, therefore, the direct light rate and scattered light rate.
直達指数は、図2を用いて説明したように、同一気象条件の下で、遮光資材を用いない場合の資材無直達光率と、遮光資材を用いた場合の資材有直達光率とを、直達光率測定装置10を用いて測定し、図4及び図5に示すように、測定された資材無直達光率に対する、測定された資材有直達光率を、一次関数の回帰式で表した際の傾きである。直達指数は、値が大きいほど散乱効果が低くなる。
図5に示すように、遮50%(白)の遮光資材の直達指数は0.7750、遮50%(灰)の遮光資材の直達指数は0.8406、遮50%(黒)の遮光資材の直達指数は0.9929であり、明度が高くなるほど散乱成分が多くなっている。
従って、明度が異なる複数の遮光資材から得られる直達指数と明度との関係式を用いて、評価対象遮光資材の直達指数を推定することができる。
このように、評価対象遮光資材についての評価資材明度を特定し、特定された評価資材明度から関係式を用いて評価対象遮光資材についての直達指数を推定することができる。
評価対象遮光資材の明度(評価資材明度)は、算出又は計測によって特定することができる。
以上のように、遮光資材の明度と直達指数との間には関係式が成り立つため、評価対象遮光資材についての明度(評価資材明度)が分かれば、関係式を用いて直達指数を推定し、直達光率や散乱光率を推定できる。 By plotting the brightness on the horizontal axis in FIG. 6, the relationship between the direct index and the brightness of the shading material can be shown.
As explained with reference to Fig. 2, the direct index is the slope of the measured direct light rate with material to the measured non-direct light rate with material when a shading material is used, measured under the same weather conditions using a direct light rate measuring device 10, as shown in Fig. 4 and Fig. 5. The larger the direct index value, the lower the scattering effect.
As shown in Figure 5, the direct index of the shading material with 50% shading (white) is 0.7750, the direct index of the shading material with 50% shading (gray) is 0.8406, and the direct index of the shading material with 50% shading (black) is 0.9929, and the higher the brightness, the more scattered components there are.
Therefore, the direct index of the shading material to be evaluated can be estimated using the relational equation between the direct index and the lightness obtained from a plurality of shading materials with different lightness.
In this manner, the evaluation material lightness of the evaluation target light-shielding material is specified, and the direct index of the evaluation target light-shielding material can be estimated from the specified evaluation material lightness using the relational expression.
The lightness of the light-shielding material to be evaluated (evaluation material lightness) can be determined by calculation or measurement.
As described above, a relational equation holds between the lightness and direct index of a shading material. Therefore, if the lightness of the shading material to be evaluated (evaluation material lightness) is known, the relational equation can be used to estimate the direct index and, therefore, the direct light rate and scattered light rate.
図7は直達指数を示すグラフである。
図7(a)は、横軸を農業用ポリオレフィン系フィルムだけの直達光率とし、縦軸を農業用ポリオレフィン系フィルムと遮光資材との直達光率とした場合であり、この場合の直達指数は1以下の値となる。
これに対して図7(b)は、横軸を農業用ポリオレフィン系フィルムと遮光資材との直達光率とし、縦軸を農業用ポリオレフィン系フィルムだけの直達光率とした場合であり、この場合の直達指数は1以上の値となる。
直達指数は、図7(a)による回帰直線の傾きでも、図7(b)による回帰直線の傾きであってもよい。
なお、本実施例では、農業用遮光資材を用いて説明したが、その他の用途の遮光資材であってもよく、網戸、すだれ、カーテン、又はロールスクリーンのような遮光資材に対しても直達指数を評価指数に用いることができる。 FIG. 7 is a graph showing the direct index.
Figure 7(a) shows the case where the horizontal axis represents the direct light rate of the agricultural polyolefin film alone, and the vertical axis represents the direct light rate of the agricultural polyolefin film and the shading material, and in this case the direct index is a value of 1 or less.
In contrast, Figure 7(b) shows a case in which the horizontal axis represents the direct light rate of the agricultural polyolefin film and the shading material, and the vertical axis represents the direct light rate of the agricultural polyolefin film alone, and in this case the direct index is a value of 1 or more.
The direct index may be the slope of the regression line according to FIG. 7(a) or the slope of the regression line according to FIG. 7(b).
In this embodiment, agricultural shading materials are used for explanation, but shading materials for other purposes may also be used, and the direct index can also be used as an evaluation index for shading materials such as screen doors, blinds, curtains, or roller screens.
図7(a)は、横軸を農業用ポリオレフィン系フィルムだけの直達光率とし、縦軸を農業用ポリオレフィン系フィルムと遮光資材との直達光率とした場合であり、この場合の直達指数は1以下の値となる。
これに対して図7(b)は、横軸を農業用ポリオレフィン系フィルムと遮光資材との直達光率とし、縦軸を農業用ポリオレフィン系フィルムだけの直達光率とした場合であり、この場合の直達指数は1以上の値となる。
直達指数は、図7(a)による回帰直線の傾きでも、図7(b)による回帰直線の傾きであってもよい。
なお、本実施例では、農業用遮光資材を用いて説明したが、その他の用途の遮光資材であってもよく、網戸、すだれ、カーテン、又はロールスクリーンのような遮光資材に対しても直達指数を評価指数に用いることができる。 FIG. 7 is a graph showing the direct index.
Figure 7(a) shows the case where the horizontal axis represents the direct light rate of the agricultural polyolefin film alone, and the vertical axis represents the direct light rate of the agricultural polyolefin film and the shading material, and in this case the direct index is a value of 1 or less.
In contrast, Figure 7(b) shows a case in which the horizontal axis represents the direct light rate of the agricultural polyolefin film and the shading material, and the vertical axis represents the direct light rate of the agricultural polyolefin film alone, and in this case the direct index is a value of 1 or more.
The direct index may be the slope of the regression line according to FIG. 7(a) or the slope of the regression line according to FIG. 7(b).
In this embodiment, agricultural shading materials are used for explanation, but shading materials for other purposes may also be used, and the direct index can also be used as an evaluation index for shading materials such as screen doors, blinds, curtains, or roller screens.
本実施例による遮光資材の評価方法は、同一気象条件の下で、遮光資材を用いない場合の資材無直達光率と、遮光資材を用いた場合の資材有直達光率とを、直達光率測定装置10を用いて測定し、測定された資材無直達光率に対する、測定された資材有直達光率を、一次関数の回帰式で表した際の傾きを直達指数とし、直達指数を遮光資材の評価指標に用いるものである。同一の遮光資材であっても、測定時の気象条件によって測定される直達光率は異なるが、本実施の形態によれば、遮光資材が同じであれば測定時の気象条件に左右されることなく、遮光資材の固有値である直達指数を得ることができ、異なる遮光資材同士の直達光率や散乱光率を比較評価できる。
The evaluation method of shading materials according to this embodiment uses a direct light rate measuring device 10 to measure the material non-direct light rate when no shading material is used and the material direct light rate when a shading material is used under the same weather conditions, and the slope of the measured material direct light rate relative to the measured material non-direct light rate expressed as a linear regression equation is taken as the direct index, and the direct index is used as an evaluation index for the shading material. Even with the same shading material, the measured direct light rate differs depending on the weather conditions at the time of measurement. However, according to this embodiment, if the shading material is the same, the direct index, which is an inherent value of the shading material, can be obtained regardless of the weather conditions at the time of measurement, and the direct light rate and scattered light rate of different shading materials can be compared and evaluated.
また本実施例による遮光資材の評価指標推定方法は、同一気象条件の下で、遮光資材を用いない場合の資材無直達光率と、遮光資材を用いた場合の資材有直達光率とを、直達光率測定装置10を用いて測定し、測定された資材無直達光率に対する、測定された資材有直達光率を、一次関数の回帰式で表した際の傾きを直達指数とし、間隙率が異なる複数の遮光資材から得られる直達指数と間隙率との関係式を用いて、評価対象遮光資材の直達指数を推定する遮光資材の評価指標推定方法であって、評価対象遮光資材についての評価資材間隙率を特定し、特定された評価資材間隙率から関係式を用いて評価対象遮光資材についての直達指数を推定するものである。遮光資材の間隙率と直達指数との間には関係式が成り立つため、本実施の形態によれば、評価対象遮光資材についての間隙率(評価資材間隙率)が分かれば、関係式を用いて直達指数を推定し、直達光率や散乱光率を推定できる。
In addition, the method for estimating the evaluation index of shading materials according to this embodiment measures the material non-direct light rate when no shading material is used and the material direct light rate when shading material is used under the same weather conditions using a direct light rate measuring device 10, and the slope of the measured material direct light rate relative to the measured material non-direct light rate expressed as a regression equation of a linear function is taken as the direct index, and the direct index of the shading material to be evaluated is estimated using the relationship between the direct index and porosity obtained from multiple shading materials with different porosities, and the evaluation index of the shading material to be evaluated is estimated by identifying the evaluation material porosity of the shading material to be evaluated, and estimating the direct index of the shading material to be evaluated using the relationship equation from the identified evaluation material porosity. Since a relational equation holds between the porosity and direct index of a shading material, according to this embodiment, if the porosity of the shading material to be evaluated (the porosity of the evaluation material) is known, the relational equation can be used to estimate the direct index, and the direct light rate and scattered light rate can be estimated.
また本実施例による遮光資材の評価指標推定方法は、同一気象条件の下で、遮光資材を用いない場合の資材無直達光率と、遮光資材を用いた場合の資材有直達光率とを、直達光率測定装置10を用いて測定し、測定された資材無直達光率に対する、測定された資材有直達光率を、一次関数の回帰式で表した際の傾きを直達指数とし、明度が異なる複数の遮光資材から得られる直達指数と明度との関係式を用いて、評価対象遮光資材の直達指数を推定する遮光資材の評価指標推定方法であって、評価対象遮光資材についての評価資材明度を特定し、特定された評価資材明度から関係式を用いて評価対象遮光資材についての直達指数を推定するものである。遮光資材の明度と直達指数との間には関係式が成り立つため、本実施の形態によれば、評価対象遮光資材についての明度が分かれば、関係式を用いて直達指数を推定し、直達光率や散乱光率を推定できる。
In addition, the method for estimating the evaluation index of shading materials according to this embodiment measures the material non-direct light rate when no shading materials are used and the material direct light rate when shading materials are used under the same weather conditions using a direct light rate measuring device 10, and the slope of the measured material direct light rate relative to the measured material non-direct light rate expressed as a regression equation of a linear function is taken as the direct index, and the method estimates the direct index of the shading material to be evaluated using a relationship between the direct index and lightness obtained from multiple shading materials with different lightnesses, and identifies the evaluation material lightness of the shading material to be evaluated, and estimates the direct index of the shading material to be evaluated using the relationship equation from the identified evaluation material lightness. Since a relational equation exists between the brightness and direct index of a shading material, according to this embodiment, if the brightness of the shading material to be evaluated is known, the direct index can be estimated using the relational equation, and the direct light rate and scattered light rate can be estimated.
図8は遮光用塗布剤による測定結果を示すグラフである。
図8において、(塗A)(塗B)(塗C)は、それぞれ成分が異なる遮光用塗布剤を示しており、例えば「遮30%」は、遮光用塗布剤を塗布した塗料吹付資材の遮光率を示している。成分が同じで遮光率が異なるのは、塗布量を異ならせている。なお、遮光率の数値は、メーカーのカタログ値である。
図8は、横軸を農業用ポリオレフィン系フィルムだけの直達光率とし、縦軸を農業用ポリオレフィン系フィルムに遮光用塗布剤を吹き付けた塗料吹付資材の直達光率としている。
本実施例においても、図2を用いて説明したように、4台の直達光率測定装置10を用いる。そして、同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、遮光用塗布剤を塗布した場合の塗布剤有直達光率とを測定し、測定された塗布剤無直達光率に対する、測定された塗布剤有直達光率を、一次関数の回帰式で表した際の傾きを直達指数とし、直達指数を、遮光用塗布剤を塗布した塗料吹付資材の評価指標に用いる。 FIG. 8 is a graph showing the measurement results using a light-shielding coating agent.
In Fig. 8, (Coat A), (Coat B), and (Coat C) indicate light-shielding coatings with different components, and for example, "30% shading" indicates the light-shielding rate of a paint spraying material coated with a light-shielding coating. The components are the same but the light-shielding rates are different because the application amounts are different. The light-shielding rate values are from the manufacturer's catalogue values.
In FIG. 8, the horizontal axis represents the direct light efficiency of the agricultural polyolefin film alone, and the vertical axis represents the direct light efficiency of a paint spray material in which a light-shielding coating agent has been sprayed onto an agricultural polyolefin film.
In this embodiment, four direct light rate measuring devices 10 are used as described with reference to Fig. 2. Then, under the same weather conditions, the direct light rate without a coating agent when no shading coating agent is applied and the direct light rate with a coating agent when a shading coating agent is applied are measured, and the slope of the measured direct light rate with a coating agent relative to the measured direct light rate without a coating agent expressed as a linear regression equation is taken as the direct index, and the direct index is used as an evaluation index for paint spraying materials coated with a shading coating agent.
図8において、(塗A)(塗B)(塗C)は、それぞれ成分が異なる遮光用塗布剤を示しており、例えば「遮30%」は、遮光用塗布剤を塗布した塗料吹付資材の遮光率を示している。成分が同じで遮光率が異なるのは、塗布量を異ならせている。なお、遮光率の数値は、メーカーのカタログ値である。
図8は、横軸を農業用ポリオレフィン系フィルムだけの直達光率とし、縦軸を農業用ポリオレフィン系フィルムに遮光用塗布剤を吹き付けた塗料吹付資材の直達光率としている。
本実施例においても、図2を用いて説明したように、4台の直達光率測定装置10を用いる。そして、同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、遮光用塗布剤を塗布した場合の塗布剤有直達光率とを測定し、測定された塗布剤無直達光率に対する、測定された塗布剤有直達光率を、一次関数の回帰式で表した際の傾きを直達指数とし、直達指数を、遮光用塗布剤を塗布した塗料吹付資材の評価指標に用いる。 FIG. 8 is a graph showing the measurement results using a light-shielding coating agent.
In Fig. 8, (Coat A), (Coat B), and (Coat C) indicate light-shielding coatings with different components, and for example, "30% shading" indicates the light-shielding rate of a paint spraying material coated with a light-shielding coating. The components are the same but the light-shielding rates are different because the application amounts are different. The light-shielding rate values are from the manufacturer's catalogue values.
In FIG. 8, the horizontal axis represents the direct light efficiency of the agricultural polyolefin film alone, and the vertical axis represents the direct light efficiency of a paint spray material in which a light-shielding coating agent has been sprayed onto an agricultural polyolefin film.
In this embodiment, four direct light rate measuring devices 10 are used as described with reference to Fig. 2. Then, under the same weather conditions, the direct light rate without a coating agent when no shading coating agent is applied and the direct light rate with a coating agent when a shading coating agent is applied are measured, and the slope of the measured direct light rate with a coating agent relative to the measured direct light rate without a coating agent expressed as a linear regression equation is taken as the direct index, and the direct index is used as an evaluation index for paint spraying materials coated with a shading coating agent.
図8に示すように、成分や塗布量が異なる塗料吹付資材について、塗布剤無直達光率に対する塗布剤有直達光率は一次関数の回帰式で表すことができる。
そして、一次関数の回帰式で表した際の傾きを直達指数とし、この直達指数を遮光資材の評価指標に用いることができる。
遮30%(塗A)の塗料吹付資材の直達指数は0.8752、遮10%(塗B)の塗料吹付資材の直達指数は0.9557、遮13%(塗B)の塗料吹付資材の直達指数は0.8837、遮25%(塗B)の塗料吹付資材の直達指数は0.7453、遮22%(塗C)の塗料吹付資材の直達指数は0.3367、遮28%(塗C)の塗料吹付資材の直達指数は0.3019、遮39%(塗C)の塗料吹付資材の直達指数は0.1882となっている。
直達指数が最も小さい遮39%(塗C)の塗料吹付資材は散乱光率が最も高く、直達指数が最も大きい遮10%(塗B)の塗料吹付資材は直達光率が最も高いと評価できる。
同一の遮光用塗布剤を塗布した塗料吹付資材であっても、測定時の気象条件によって測定される直達光率は異なるが、本実施例によれば、遮光用塗布剤を塗布した塗料吹付資材が同じであれば測定時の気象条件に左右されることなく、遮光用塗布剤を塗布した塗料吹付資材の固有値である直達指数を得ることができ、異なる塗料吹付資材同士の直達光率や散乱光率を比較評価できる。 As shown in FIG. 8, for paint spraying materials with different components and coating amounts, the coating agent direct light rate relative to the coating agent non-direct light rate can be expressed by a linear regression equation.
The slope of the linear regression equation is taken as a direct index, and this direct index can be used as an evaluation index for the shading material.
The direct hit index of paint spraying materials with 30% shielding (Coat A) is 0.8752, the direct hit index of paint spraying materials with 10% shielding (Coat B) is 0.9557, the direct hit index of paint spraying materials with 13% shielding (Coat B) is 0.8837, the direct hit index of paint spraying materials with 25% shielding (Coat B) is 0.7453, the direct hit index of paint spraying materials with 22% shielding (Coat C) is 0.3367, the direct hit index of paint spraying materials with 28% shielding (Coat C) is 0.3019 and the direct hit index of paint spraying materials with 39% shielding (Coat C) is 0.1882.
The paint spray material with the smallest direct index of 39% shading (Coat C) has the highest scattered light rate, while the paint spray material with the largest direct index of 10% shading (Coat B) can be evaluated as having the highest direct light rate.
Even when paint spray materials are coated with the same light-shielding coating agent, the measured direct light coefficient differs depending on the weather conditions at the time of measurement. However, according to this embodiment, as long as the paint spray materials coated with the light-shielding coating agent are the same, it is possible to obtain the direct light index, which is an inherent value of the paint spray material coated with the light-shielding coating agent, regardless of the weather conditions at the time of measurement, and it is possible to compare and evaluate the direct light coefficient and scattered light coefficient of different paint spray materials.
そして、一次関数の回帰式で表した際の傾きを直達指数とし、この直達指数を遮光資材の評価指標に用いることができる。
遮30%(塗A)の塗料吹付資材の直達指数は0.8752、遮10%(塗B)の塗料吹付資材の直達指数は0.9557、遮13%(塗B)の塗料吹付資材の直達指数は0.8837、遮25%(塗B)の塗料吹付資材の直達指数は0.7453、遮22%(塗C)の塗料吹付資材の直達指数は0.3367、遮28%(塗C)の塗料吹付資材の直達指数は0.3019、遮39%(塗C)の塗料吹付資材の直達指数は0.1882となっている。
直達指数が最も小さい遮39%(塗C)の塗料吹付資材は散乱光率が最も高く、直達指数が最も大きい遮10%(塗B)の塗料吹付資材は直達光率が最も高いと評価できる。
同一の遮光用塗布剤を塗布した塗料吹付資材であっても、測定時の気象条件によって測定される直達光率は異なるが、本実施例によれば、遮光用塗布剤を塗布した塗料吹付資材が同じであれば測定時の気象条件に左右されることなく、遮光用塗布剤を塗布した塗料吹付資材の固有値である直達指数を得ることができ、異なる塗料吹付資材同士の直達光率や散乱光率を比較評価できる。 As shown in FIG. 8, for paint spraying materials with different components and coating amounts, the coating agent direct light rate relative to the coating agent non-direct light rate can be expressed by a linear regression equation.
The slope of the linear regression equation is taken as a direct index, and this direct index can be used as an evaluation index for the shading material.
The direct hit index of paint spraying materials with 30% shielding (Coat A) is 0.8752, the direct hit index of paint spraying materials with 10% shielding (Coat B) is 0.9557, the direct hit index of paint spraying materials with 13% shielding (Coat B) is 0.8837, the direct hit index of paint spraying materials with 25% shielding (Coat B) is 0.7453, the direct hit index of paint spraying materials with 22% shielding (Coat C) is 0.3367, the direct hit index of paint spraying materials with 28% shielding (Coat C) is 0.3019 and the direct hit index of paint spraying materials with 39% shielding (Coat C) is 0.1882.
The paint spray material with the smallest direct index of 39% shading (Coat C) has the highest scattered light rate, while the paint spray material with the largest direct index of 10% shading (Coat B) can be evaluated as having the highest direct light rate.
Even when paint spray materials are coated with the same light-shielding coating agent, the measured direct light coefficient differs depending on the weather conditions at the time of measurement. However, according to this embodiment, as long as the paint spray materials coated with the light-shielding coating agent are the same, it is possible to obtain the direct light index, which is an inherent value of the paint spray material coated with the light-shielding coating agent, regardless of the weather conditions at the time of measurement, and it is possible to compare and evaluate the direct light coefficient and scattered light coefficient of different paint spray materials.
図9は直達指数と単位面積当たりの塗布量が異なる塗料吹付資材との関係を示すグラフである。
図9の縦軸は、回帰直線の傾きであり直達指数である。
直達指数は、図2を用いて説明したように、同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、遮光用塗布剤を塗布した場合の塗布剤有直達光率とを、直達光率測定装置10を用いて測定し、図8に示すように、測定された塗布剤無直達光率に対する測定された塗布剤有直達光率を一次関数の回帰式で表した際の傾きである。直達指数は、値が大きいほど散乱効果が低くなる。
図9に示すように、単位面積当たりの塗布量が多くなるほど散乱成分が多くなっている。
従って、図9に示すような関係式を用いて、評価対象塗料吹付資材の直達指数を推定することができる。
すなわち、単位面積当たりの塗布量が異なる複数の塗料吹付資材から得られる直達指数と単位面積当たりの塗布量との関係式を用いて評価対象塗料吹付資材の直達指数を推定することができる。
例えば、塗布剤Bを用いる場合には、単位面積当たりの塗布量が50mL/m2であれば、直達指数は約0.8となり、塗布剤Cを用いる場合には、単位面積当たりの塗布量が50mL/m2であれば、直達指数は約0.2となる。
このように、評価対象塗料吹付資材についての単位面積当たりの塗布量を特定し、特定された単位面積当たりの塗布量から関係式を用いて評価対象塗料吹付資材についての直達指数を推定することができる。
なお、図9では関係式をグラフで示しているが、単位面積当たりの塗布量と直達指数との対応表を用いることもでき、コンピュータによる処理を行う場合には、テーブルに対応データを持たせる。
評価対象塗料吹付資材についての単位面積当たりの塗布量は、算出又は計測によって特定することができる。
以上のように、単位面積当たりの塗布量と直達指数との間には関係式が成り立つため、評価対象塗料吹付資材についての単位面積当たりの塗布量が分かれば、関係式を用いて直達指数を推定し、直達光率や散乱光率を推定できる。 FIG. 9 is a graph showing the relationship between the direct coverage index and paint spray materials with different application rates per unit area.
The vertical axis in FIG. 9 is the slope of the regression line, which is the direct index.
As explained with reference to Fig. 2, the direct light index is the slope of the measured direct light index with a coating agent against the measured direct light index without a coating agent, which is measured under the same weather conditions using a direct light index measuring device 10, as shown in Fig. 8. The larger the direct index value, the lower the scattering effect.
As shown in FIG. 9, the scattering components increase as the coating amount per unit area increases.
Therefore, the direct hit index of the paint spray material to be evaluated can be estimated using the relational expression shown in FIG.
In other words, the direct index of the paint spray material to be evaluated can be estimated using a relational equation between the direct index obtained from a plurality of paint spray materials with different application amounts per unit area and the application amount per unit area.
For example, when Coating Agent B is used and the amount of coating per unit area is 50 mL/ m2 , the direct index is approximately 0.8, and when Coating Agent C is used and the amount of coating per unit area is 50 mL/ m2 , the direct index is approximately 0.2.
In this way, the application amount per unit area of the paint spray material to be evaluated is identified, and the direct coverage index of the paint spray material to be evaluated can be estimated from the identified application amount per unit area using a relational equation.
Although FIG. 9 shows the relational expression in the form of a graph, a correspondence table between the application amount per unit area and the direct index can also be used, and when processing is performed by computer, the corresponding data is stored in a table.
The amount of paint applied per unit area for the paint spray material being evaluated can be determined by calculation or measurement.
As described above, a relationship exists between the amount of coating per unit area and the direct index. Therefore, if the amount of coating per unit area of the paint spray material being evaluated is known, the direct index can be estimated using the relationship, and the direct light rate and scattered light rate can be estimated.
図9の縦軸は、回帰直線の傾きであり直達指数である。
直達指数は、図2を用いて説明したように、同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、遮光用塗布剤を塗布した場合の塗布剤有直達光率とを、直達光率測定装置10を用いて測定し、図8に示すように、測定された塗布剤無直達光率に対する測定された塗布剤有直達光率を一次関数の回帰式で表した際の傾きである。直達指数は、値が大きいほど散乱効果が低くなる。
図9に示すように、単位面積当たりの塗布量が多くなるほど散乱成分が多くなっている。
従って、図9に示すような関係式を用いて、評価対象塗料吹付資材の直達指数を推定することができる。
すなわち、単位面積当たりの塗布量が異なる複数の塗料吹付資材から得られる直達指数と単位面積当たりの塗布量との関係式を用いて評価対象塗料吹付資材の直達指数を推定することができる。
例えば、塗布剤Bを用いる場合には、単位面積当たりの塗布量が50mL/m2であれば、直達指数は約0.8となり、塗布剤Cを用いる場合には、単位面積当たりの塗布量が50mL/m2であれば、直達指数は約0.2となる。
このように、評価対象塗料吹付資材についての単位面積当たりの塗布量を特定し、特定された単位面積当たりの塗布量から関係式を用いて評価対象塗料吹付資材についての直達指数を推定することができる。
なお、図9では関係式をグラフで示しているが、単位面積当たりの塗布量と直達指数との対応表を用いることもでき、コンピュータによる処理を行う場合には、テーブルに対応データを持たせる。
評価対象塗料吹付資材についての単位面積当たりの塗布量は、算出又は計測によって特定することができる。
以上のように、単位面積当たりの塗布量と直達指数との間には関係式が成り立つため、評価対象塗料吹付資材についての単位面積当たりの塗布量が分かれば、関係式を用いて直達指数を推定し、直達光率や散乱光率を推定できる。 FIG. 9 is a graph showing the relationship between the direct coverage index and paint spray materials with different application rates per unit area.
The vertical axis in FIG. 9 is the slope of the regression line, which is the direct index.
As explained with reference to Fig. 2, the direct light index is the slope of the measured direct light index with a coating agent against the measured direct light index without a coating agent, which is measured under the same weather conditions using a direct light index measuring device 10, as shown in Fig. 8. The larger the direct index value, the lower the scattering effect.
As shown in FIG. 9, the scattering components increase as the coating amount per unit area increases.
Therefore, the direct hit index of the paint spray material to be evaluated can be estimated using the relational expression shown in FIG.
In other words, the direct index of the paint spray material to be evaluated can be estimated using a relational equation between the direct index obtained from a plurality of paint spray materials with different application amounts per unit area and the application amount per unit area.
For example, when Coating Agent B is used and the amount of coating per unit area is 50 mL/ m2 , the direct index is approximately 0.8, and when Coating Agent C is used and the amount of coating per unit area is 50 mL/ m2 , the direct index is approximately 0.2.
In this way, the application amount per unit area of the paint spray material to be evaluated is identified, and the direct coverage index of the paint spray material to be evaluated can be estimated from the identified application amount per unit area using a relational equation.
Although FIG. 9 shows the relational expression in the form of a graph, a correspondence table between the application amount per unit area and the direct index can also be used, and when processing is performed by computer, the corresponding data is stored in a table.
The amount of paint applied per unit area for the paint spray material being evaluated can be determined by calculation or measurement.
As described above, a relationship exists between the amount of coating per unit area and the direct index. Therefore, if the amount of coating per unit area of the paint spray material being evaluated is known, the direct index can be estimated using the relationship, and the direct light rate and scattered light rate can be estimated.
また、単位面積当たりの塗布量が異なる複数の塗料吹付資材から得られる直達指数と単位面積当たりの塗布量との関係式を用いて塗料吹付予定資材に対する遮光用塗布剤使用量を決定することができる。
すなわち、本実施例による遮光用塗布剤使用量決定方法は、塗料吹付予定資材について、塗料吹付予定面積と予定直達指数とを特定し、特定された予定直達指数から関係式を用いて単位面積当たりの塗布量を決定し、決定された単位面積当たりの塗布量と塗料吹付予定面積とから遮光用塗布剤使用量を決定する。
単位面積当たりの塗布量と直達指数との間には関係式が成り立つため、評価対象塗料吹付資材についての塗料吹付予定面積と予定直達指数が分かれば、関係式を用いて単位面積当たりの塗布量を決定し、単位面積当たりの塗布量と塗料吹付予定面積とから遮光用塗布剤使用量を決定できる。 In addition, the amount of light-shielding coating agent to be used for the material to be sprayed with paint can be determined using a relationship between the direct coverage index obtained from a plurality of paint spraying materials with different coating amounts per unit area and the coating amount per unit area.
In other words, the method for determining the amount of light-blocking coating agent to be used in this embodiment identifies the planned area to which paint is to be sprayed and the planned direct index for the material to which paint is to be sprayed, determines the amount of coating agent to be applied per unit area using a relational equation from the identified planned direct index, and determines the amount of light-blocking coating agent to be used from the determined amount of coating agent per unit area and the planned area to which paint is to be sprayed.
Since a relationship exists between the amount of coating applied per unit area and the direct index, if the planned paint spray area and planned direct index for the paint spray material being evaluated are known, the relationship can be used to determine the amount of coating applied per unit area, and the amount of shading coating agent to be used can be determined from the amount of coating applied per unit area and the planned paint spray area.
すなわち、本実施例による遮光用塗布剤使用量決定方法は、塗料吹付予定資材について、塗料吹付予定面積と予定直達指数とを特定し、特定された予定直達指数から関係式を用いて単位面積当たりの塗布量を決定し、決定された単位面積当たりの塗布量と塗料吹付予定面積とから遮光用塗布剤使用量を決定する。
単位面積当たりの塗布量と直達指数との間には関係式が成り立つため、評価対象塗料吹付資材についての塗料吹付予定面積と予定直達指数が分かれば、関係式を用いて単位面積当たりの塗布量を決定し、単位面積当たりの塗布量と塗料吹付予定面積とから遮光用塗布剤使用量を決定できる。 In addition, the amount of light-shielding coating agent to be used for the material to be sprayed with paint can be determined using a relationship between the direct coverage index obtained from a plurality of paint spraying materials with different coating amounts per unit area and the coating amount per unit area.
In other words, the method for determining the amount of light-blocking coating agent to be used in this embodiment identifies the planned area to which paint is to be sprayed and the planned direct index for the material to which paint is to be sprayed, determines the amount of coating agent to be applied per unit area using a relational equation from the identified planned direct index, and determines the amount of light-blocking coating agent to be used from the determined amount of coating agent per unit area and the planned area to which paint is to be sprayed.
Since a relationship exists between the amount of coating applied per unit area and the direct index, if the planned paint spray area and planned direct index for the paint spray material being evaluated are known, the relationship can be used to determine the amount of coating applied per unit area, and the amount of shading coating agent to be used can be determined from the amount of coating applied per unit area and the planned paint spray area.
本実施例による塗料吹付資材の評価方法は、同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、遮光用塗布剤を塗布した場合の塗布剤有直達光率とを、直達光率測定装置10を用いて測定し、測定された塗布剤無直達光率に対する、測定された塗布剤有直達光率を、一次関数の回帰式で表した際の傾きを直達指数とし、直達指数を、遮光用塗布剤を塗布した塗料吹付資材の評価指標に用いるものである。同一の遮光用塗布剤を塗布した塗料吹付資材であっても、測定時の気象条件によって測定される直達光率は異なるが、本実施の形態によれば、遮光用塗布剤を塗布した塗料吹付資材が同じであれば測定時の気象条件に左右されることなく、遮光用塗布剤を塗布した塗料吹付資材の固有値である直達指数を得ることができ、異なる塗料吹付資材同士の直達光率や散乱光率を比較評価できる。
The method for evaluating paint spray materials according to this embodiment uses a direct light rate measuring device 10 to measure the direct light rate without a light-shielding coating when no light-shielding coating is applied and the direct light rate with a light-shielding coating when a light-shielding coating is applied under the same weather conditions, and the slope of the measured direct light rate with a coating relative to the measured direct light rate without a light-shielding coating is expressed as a linear regression equation, and the direct light rate is used as an evaluation index for paint spray materials coated with a light-shielding coating. Even for paint spray materials coated with the same light-shielding coating, the direct light rate measured varies depending on the weather conditions at the time of measurement. However, according to this embodiment, if the paint spray materials coated with the light-shielding coating are the same, the direct light rate, which is an inherent value of the paint spray materials coated with a light-shielding coating, can be obtained without being influenced by the weather conditions at the time of measurement, and the direct light rate and scattered light rate of different paint spray materials can be compared and evaluated.
また本実施例による塗料吹付資材の評価指標推定方法は、同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、遮光用塗布剤を塗布した場合の塗布剤有直達光率とを、直達光率測定装置10を用いて測定し、測定された塗布剤無直達光率に対する測定された塗布剤有直達光率を一次関数の回帰式で表した際の傾きを直達指数とし、単位面積当たりの塗布量が異なる複数の塗料吹付資材から得られる直達指数と単位面積当たりの塗布量との関係式を用いて評価対象塗料吹付資材の直達指数を推定する塗料吹付資材の評価指標推定方法であって、評価対象塗料吹付資材についての単位面積当たりの塗布量を特定し、特定された単位面積当たりの塗布量から関係式を用いて評価対象塗料吹付資材についての直達指数を推定するものである。単位面積当たりの塗布量と直達指数との間には関係式が成り立つため、本実施の形態によれば、評価対象塗料吹付資材についての単位面積当たりの塗布量が分かれば、関係式を用いて直達指数を推定し、直達光率や散乱光率を推定できる。
In addition, the method for estimating an evaluation index of paint spray materials according to this embodiment measures the direct light rate without coating when no shading coating is applied and the direct light rate with coating when a shading coating is applied under the same weather conditions using a direct light rate measuring device 10, and the slope of the measured direct light rate with coating against the measured direct light rate without coating expressed as a linear regression equation is taken as the direct index, and the direct index of the paint spray material to be evaluated is estimated using the relationship between the direct index obtained from multiple paint spray materials with different application amounts per unit area and the application amount per unit area, and the application amount per unit area for the paint spray material to be evaluated is identified, and the direct index for the paint spray material to be evaluated is estimated using the relationship from the identified application amount per unit area. Since a relational equation holds between the amount applied per unit area and the direct index, according to this embodiment, if the amount applied per unit area of the paint spray material being evaluated is known, the direct index can be estimated using the relational equation, and the direct light rate and scattered light rate can be estimated.
また本実施例による遮光用塗布剤使用量決定方法は、同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、遮光用塗布剤を塗布した場合の塗布剤有直達光率とを、直達光率測定装置10を用いて測定し、測定された塗布剤無直達光率に対する測定された塗布剤有直達光率を一次関数の回帰式で表した際の傾きを直達指数とし、単位面積当たりの塗布量が異なる複数の塗料吹付資材から得られる直達指数と単位面積当たりの塗布量との関係式を用いて塗料吹付予定資材に対する遮光用塗布剤使用量を決定する遮光用塗布剤使用量決定方法であって、塗料吹付予定資材について、塗料吹付予定面積と予定直達指数とを特定し、特定された予定直達指数から関係式を用いて単位面積当たりの塗布量を決定し、決定された単位面積当たりの塗布量と塗料吹付予定面積とから遮光用塗布剤使用量を決定するものである。単位面積当たりの塗布量と直達指数との間には関係式が成り立つため、本実施の形態によれば、評価対象塗料吹付資材についての塗料吹付予定面積と予定直達指数が分かれば、関係式を用いて単位面積当たりの塗布量を決定し、単位面積当たりの塗布量と塗料吹付予定面積とから遮光用塗布剤使用量を決定できる。
In addition, the method for determining the amount of light-blocking coating agent to be used according to this embodiment measures the direct light rate without a light-blocking coating agent when no light-blocking coating agent is applied and the direct light rate with a light-blocking coating agent when a light-blocking coating agent is applied under the same weather conditions using a direct light rate measuring device 10, and determines the amount of light-blocking coating agent to be used for materials to be sprayed with paint using a relationship equation between the direct index obtained from multiple paint spraying materials with different application amounts per unit area and the application amount per unit area, and specifies the planned paint spraying area and planned direct index for the materials to be sprayed with paint, determines the application amount per unit area from the specified planned direct index using the relationship equation, and determines the amount of light-blocking coating agent to be used from the determined application amount per unit area and the planned paint spraying area. Since a relational equation exists between the amount of coating per unit area and the direct index, according to this embodiment, if the planned paint spray area and planned direct index for the paint spray material to be evaluated are known, the amount of coating per unit area can be determined using the relational equation, and the amount of light-shielding coating agent to be used can be determined from the amount of coating per unit area and the planned paint spray area.
本発明による直達指数を用いることで遮光資材や塗料吹付資材を評価できる。
The direct penetration index of this invention can be used to evaluate shading materials and paint spray materials.
10、10A、10B、10C、10D 直達光率測定装置
11 日射計
12 資材展張用蓋
13 遮蔽板 10, 10A, 10B, 10C, 10D Direct light rate measuring device 11 Pyranometer 12 Material spreading lid 13 Shielding plate
11 日射計
12 資材展張用蓋
13 遮蔽板 10, 10A, 10B, 10C, 10D Direct light rate measuring device 11 Pyranometer 12 Material spreading lid 13 Shielding plate
Claims (3)
- 同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、前記遮光用塗布剤を塗布した場合の塗布剤有直達光率とを、直達光率測定装置を用いて測定し、
測定された前記塗布剤無直達光率に対する、測定された前記塗布剤有直達光率を、一次関数の回帰式で表した際の傾きを直達指数とし、
前記直達指数を前記遮光用塗布剤を塗布した塗料吹付資材の評価指標に用いる
ことを特徴とする塗料吹付資材の評価方法。 Under the same weather conditions, the direct light efficiency without the light-shielding coating agent and the direct light efficiency with the light-shielding coating agent are measured using a direct light efficiency measuring device.
The slope of the measured direct light rate with the coating agent relative to the measured non-direct light rate with the coating agent expressed as a linear regression function is defined as a direct index;
A method for evaluating paint spray materials, characterized in that the direct penetration index is used as an evaluation index for paint spray materials coated with the light-shielding coating agent. - 同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、前記遮光用塗布剤を塗布した場合の塗布剤有直達光率とを、直達光率測定装置を用いて測定し、
測定された前記塗布剤無直達光率に対する、測定された前記塗布剤有直達光率を、一次関数の回帰式で表した際の傾きを直達指数とし、
単位面積当たりの塗布量が異なる複数の塗料吹付資材から得られる前記直達指数と単位面積当たりの前記塗布量との関係式を用いて評価対象塗料吹付資材の前記直達指数を推定する塗料吹付資材の評価指標推定方法であって、
前記評価対象塗料吹付資材についての単位面積当たりの前記塗布量を特定し、
特定された単位面積当たりの前記塗布量から前記関係式を用いて前記評価対象塗料吹付資材についての前記直達指数を推定する
ことを特徴とする塗料吹付資材の評価指標推定方法。 Under the same weather conditions, the direct light efficiency of the coating agent without the light-shielding coating agent and the direct light efficiency of the coating agent with the light-shielding coating agent are measured using a direct light efficiency measuring device;
The slope of the measured direct light rate with the coating agent relative to the measured non-direct light rate with the coating agent expressed as a linear regression function is defined as a direct index;
A paint spray material evaluation index estimation method for estimating the direct hit index of a paint spray material to be evaluated using a relational equation between the direct hit index obtained from a plurality of paint spray materials having different application amounts per unit area and the application amount per unit area,
Identifying the coating amount per unit area of the paint spraying material to be evaluated;
A method for estimating an evaluation index of a paint spray material, comprising estimating the direct index of the paint spray material to be evaluated from the specified application amount per unit area using the relational expression. - 同一気象条件の下で、遮光用塗布剤を塗布しない場合の塗布剤無直達光率と、前記遮光用塗布剤を塗布した場合の塗布剤有直達光率とを、直達光率測定装置を用いて測定し、
測定された前記塗布剤無直達光率に対する、測定された前記塗布剤有直達光率を、一次関数の回帰式で表した際の傾きを直達指数とし、
単位面積当たりの塗布量が異なる複数の塗料吹付資材から得られる前記直達指数と単位面積当たりの前記塗布量との関係式を用いて塗料吹付予定資材に対する遮光用塗布剤使用量を決定する遮光用塗布剤使用量決定方法であって、
前記塗料吹付予定資材について、塗料吹付予定面積と予定直達指数とを特定し、
特定された前記予定直達指数から前記関係式を用いて単位面積当たりの前記塗布量を決定し、
決定された単位面積当たりの前記塗布量と前記塗料吹付予定面積とから遮光用塗布剤使用量を決定する
ことを特徴とする遮光用塗布剤使用量決定方法。 Under the same weather conditions, the direct light efficiency of the coating agent without the light-shielding coating agent and the direct light efficiency of the coating agent with the light-shielding coating agent are measured using a direct light efficiency measuring device;
The slope of the measured direct light rate with the coating agent relative to the measured non-direct light rate with the coating agent expressed as a linear regression function is defined as a direct index;
A method for determining the amount of light-shielding coating agent to be used for a material to be sprayed with paint, using a relational expression between the direct coverage index obtained from a plurality of paint spraying materials having different coating amounts per unit area and the coating amount per unit area,
For the material to be sprayed with paint, a planned paint spray area and a planned direct hit index are identified;
determining the application amount per unit area using the relational expression from the specified expected direct index;
A method for determining an amount of light-shielding coating agent to be used, comprising determining an amount of light-shielding coating agent to be used from the determined amount of coating per unit area and the area to which the paint is to be sprayed.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023027175 | 2023-02-24 | ||
JP2023-027175 | 2023-02-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024176734A1 true WO2024176734A1 (en) | 2024-08-29 |
Family
ID=92501002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/002550 WO2024176734A1 (en) | 2023-02-24 | 2024-01-29 | Paint-sprayed material evaluation method, paint-sprayed material evaluation index estimation method, and method for determining usage amount of light-shielding coating agent |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024120854A (en) |
WO (1) | WO2024176734A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10174530A (en) * | 1996-12-18 | 1998-06-30 | Kanebo Ltd | Light shield material |
JP2007222021A (en) * | 2006-02-21 | 2007-09-06 | Achilles Corp | Agricultural covering material for leek cultivation |
JP2007295858A (en) * | 2006-05-01 | 2007-11-15 | Achilles Corp | Agricultural coating material |
CN112840887A (en) * | 2021-01-06 | 2021-05-28 | 安徽省农业科学院水稻研究所 | Light supplementing method for crop phytotron |
-
2024
- 2024-01-24 JP JP2024008403A patent/JP2024120854A/en active Pending
- 2024-01-29 WO PCT/JP2024/002550 patent/WO2024176734A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10174530A (en) * | 1996-12-18 | 1998-06-30 | Kanebo Ltd | Light shield material |
JP2007222021A (en) * | 2006-02-21 | 2007-09-06 | Achilles Corp | Agricultural covering material for leek cultivation |
JP2007295858A (en) * | 2006-05-01 | 2007-11-15 | Achilles Corp | Agricultural coating material |
CN112840887A (en) * | 2021-01-06 | 2021-05-28 | 安徽省农业科学院水稻研究所 | Light supplementing method for crop phytotron |
Also Published As
Publication number | Publication date |
---|---|
JP2024120854A (en) | 2024-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pisello et al. | Experimental in-lab and in-field analysis of waterproof membranes for cool roof application and urban heat island mitigation | |
Piccolo et al. | Effect of switchable glazing on discomfort glare from windows | |
Hartley et al. | The optimisation of the angle of inclination of a solar collector to maximise the incident solar radiation | |
Synnefa et al. | A study of the thermal performance of reflective coatings for the urban environment | |
Almorox et al. | Global solar radiation estimation using sunshine duration in Spain | |
Suehrcke et al. | Relationship between sunshine duration and solar radiation | |
Bretz et al. | Long-term performance of high-albedo roof coatings | |
CN108169161B (en) | Corn planting area soil humidity assessment method based on improved MODIS index | |
Mohawesh | Evaluation of evapotranspiration models for estimating daily reference evapotranspiration in arid and semiarid environments. | |
Yumino et al. | Total assessment for various environmentally conscious techniques from three perspectives: Mitigation of global warming, mitigation of UHIs, and adaptation to urban warming | |
Zhang et al. | Systematic comparison of the influence of cool wall versus cool roof adoption on urban climate in the Los Angeles Basin | |
Luo et al. | A daylight-linked shading strategy for automated blinds based on model-based control and Radial Basis Function (RBF) optimization | |
Berdahl et al. | Three-year weathering tests on asphalt shingles: Solar reflectance | |
Li et al. | Predicting daylight illuminance on inclined surfaces using sky luminance data | |
Khalil et al. | Performance of statistical comparison models of solar energy on horizontal and inclined surface | |
Pattanasethanon et al. | All sky modeling daylight availability and illuminance/irradiance on horizontal plane for Mahasarakham, Thailand | |
WO2024176734A1 (en) | Paint-sprayed material evaluation method, paint-sprayed material evaluation index estimation method, and method for determining usage amount of light-shielding coating agent | |
CN113408206B (en) | Indoor natural illuminance modeling method | |
WO2024176733A1 (en) | Evaluation method for shading material and evaluation index estimation method for shading material | |
Abravesh et al. | A method to evaluate glare risk from operable fenestration systems throughout a year | |
JP2006078465A (en) | Method and computer program product for determining physical characteristics of optical layer or layer texture | |
Pop et al. | A highly abrasive-resistant, long-lasting anti-reflective coating for PV module glass | |
CN104634765B (en) | The apparatus and method that atmospheric transmittance is measured based on optical radiation measuring instrument | |
Cheng et al. | A mini-scale modeling approach to natural daylight utilization in building design | |
CN101614728B (en) | Device and method for measuring lowest construction temperature of synthetic resin emulsion coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24760041 Country of ref document: EP Kind code of ref document: A1 |